Note on Algebra



Contents

1 Group theory

1.1  Group Homomorphisms . . . . . . . . . . . e
1.2 Composition Series . . . . . . . .
1.3 Transpositions and Alternating Groups . . . . . . . . . . .. Lo
1.4 Group Actions . . . . . . .
1.4.1 Burnside’s lemma . . . . . . ..o
1.4.2  Primitive actions . . . . . . . . . L
1.4.3 Actions by left multiplication . . . . . . ... ... 0000
1.4.4 Actions by conjugation . . . . . . . ...
1.4.5 Conjugacy classes in S, . . . . . . .
1.4.6  Conjugacy classes in A, . . . . . . . e
1.4.7 Automorphisms . . . . . . ...
1.5 Sylow’s Theorem . . . . . . . . . .
1.5.1 Applications . . . . . .. e
1.6 Semi-direct Product . . . . . . ..o
1.6.1 Fundamental Theorem of Finitely Generated Abelian Groups . . . .. ... .. ..
1.6.2  Direct products . . . . . . . L
1.6.3 Semi-direct products . . . . . . ..
1.7 Special Genres of Groups . . . . . . . . ..
L7100 p-groups . . . . o .o e
1.7.2  Nilpotent groups . . . . . . . .
1.7.3 Solvable groups . . . . . . ..

2 Ring theory
2.1 Concept of Rings . . . . . . . . L
2.1.1 Polynomial rings . . . . . . . . .. e

11
14
15
16
17
19
20
20
22
24
26
29
29
30
31
33
33
33
35



2.1.2 Matrix rings . . . . . .. e e e e 42

2.1.3  Group rings . . . . . ..o e e 43
2.2 Ring Homomorphisms and Quotient Rings . . . . . . .. ... .. ... ... ... ..., 44
221 Ideals . . . . . e e 47
2.2.2 Rings of Fractions . . . . . . . . 52
2.2.3 Chinese Remainder Theorem . . . . . . . . . ... ... ... ... ... .. ... 54
2.3 Special Domains . . . . . . .. e 56
2.3.1 Euclidean Domains . . . . . . . . . . . .. 56
2.3.2  Principal Ideal Domains . . . . . . . . .. ..o 59
2.3.3 Unique Factorization Domains . . . . . . . . . . . . ... ... . ... 60
2.4 Polynomial Rings . . . . . . . .. L 64
24.1 Gauss’ lemma . . . . . L. e e 64
2.4.2  Irreducibility criteria . . . . . . .. Lo 65
2.4.3 Polynomial rings over fields . . . . . . ... o 68
2.4.4 Hilbert’s basis theorem . . . . . . . . . ... L 68
2.4.5 Resultants . . . . . . . e 69
2.5 Artinian Rings . . . . . ... 76
2.6 Discrete Valuation Rings . . . . . . . . . . .. 79
2.7 Commutative rings and algebraic geometry . . . . . . . . ... Lo 81
2.7.1 Affine algebraic sets . . . . . . . L 81
2.7.2 Radicals and affine varieties . . . . . . . .. ... o 85
2.7.3 Integral extensions and Hilbert’s Nullstellensatz . . . . . . ... ... ... ..... 95
2.7.4 Localization . . . . . . . . . 104
Field theory and Galois theory 105
3.1 Field Extensions . . . . . . . .. 106
3.1.1 Constructible numbers . . . . . . . .. ... 109
3.1.2  Splitting Fields and Algebraic Closures . . . . . . . .. . ... . ... ........ 110
3.1.3 Separable and Inseparable Extensions . . . . .. ... ... ... ... ... 113
3.1.4  Cyclotomic Polynomials and Extensions . . . . . .. .. .. .. ... .. ...... 115
3.1.5  Wedderburn’s theorem . . . . . . . .. ... 117
3.2 Galois Theory . . . . . . . . 118
3.2.1 Separable extensions . . . . . . . .. 118
3.2.2 Galois extensions . . . . . . .. 122
3.2.3 The fundamental theorem of Galois theory . . . . . . .. .. .. ... .. .. .... 123



3.2.4 Simple extensions and composite extensions . . . . . ... ... 131

3.2.5 Cyclotomic extensions and abelian extensions . . . . . . .. ... ... ... .... 133
3.2.6  Galois groups of polynomials . . . . . . .. ... o oo 137
3.2.7 Solvable and radical extensions . . . . . . .. ... oL 145
3.3 Transcendental extensions . . . . . . . . . ... 152
3.3.1 Dependence relations . . . . . . ... e 152
3.3.2 Transcendence extensions . . . . . . . . . . ... 154
3.3.3 Purely transcendental extension . . . . . . .. ..o oL 159
Module theory 162
4.1 Module theory . . . . . . . e 163
4.1.1 Module homomorphisms and quotient modules . . . . .. ... ... ... ..... 164
4.1.2  Generation of modules, direct sums and free modules. . . . . . . ... .. ... ... 165
4.1.3 Tensor products of modules . . . . . .. .. ... oo 167
4.1.4  Exact seqUENces . . . . . ... e e 170
4.2 Modules over PID . . . . . . . o 182
4.2.1 Application to vector spaces . . . . . . . . ... e 189
4.3 Linear representations of finite groups . . . . . . ... oo L0 195
4.3.1 Characters . . . . . . . . e e e e 199
4.3.2  Orthogonality relations . . . . . . . . . . . ... 202
4.3.3 Galois property of characters . . . . . . . .. .. ... ... ... 207
4.3.4 Method of constructing characters . . . . . ... .. ... oo 209
4.3.5 An application to group theory . . . . . . . ... oo 217



Chapter 1

Group theory



1.1 Group Homomorphisms

By G we always mean a group.

Definition. Let G, G’ be two groups. A function ¢ : G — G’ is a group homomorphism if for each
z,y € G we have ¢ (zy) = (2)(y).

Proposition 1.1.1. Let G, G’ be groups and ¢ : G — G’ a homomorphism.
1. kery I G
2. If N 4@, then N is the kernel of some homomorphism.
3. akery = ¢~(¢(a)).
Theorem 1.1.2 (Lagrange’s). |G| <« = VH < G[|H|||G|]
Definition (Index). Let H be a subgroup of G. The index of H in G is defined to be

|G : H] := #{left cosets of H in G}

Corollary 1.1.2.1. |G| < o0 = Yg € G[|{g)|||G|]. In particular, ord g | |G| for all g € G.
Corollary 1.1.2.2 (Euler’s). Yn e NYa € Z[(n,a) =1 = a®™ =1 (mod n)]

Corollary 1.1.2.3. If |G| = p is a prime, then G = Z/pZ.

Proposition 1.1.3. Let K < H < G. Then [G: H|[H : K] =[G : K].

Remark 1.1.4. The converse of the Lagrange theorem is not true in general. However, we do have some

partial converse results:
1. If G is abelian and n | |G|, then there’s a subgroup of order n.
2. (Cauchy’s) If p | |G| is a prime, then there’s a subgroup of order p.

3. (Sylow’s) If |G| = p™m, where p is a prime and p { m, then there’s a subgroup of order p’ for
j=1...,n.
[ H|| K]

Proposition 1.1.5. YVH, K < G ||H||K| < w0 = |[HK| = oK
N

Proposition 1.1.6. VH, K < G[HK < G < KH = HK]|



Corollary 1.1.6.1. VH, K < G[H < Ng(K) = HK = KH < @]. In particular, if H < G and N <G,
then KH < G.

Corollary 1.1.6.2. If N is a normal subgroup of a finite group G with (|N|,[G : N]) = 1, then N is the
unique normal subgroup of order |N].

Theorem 1.1.7 (Isomorphism theorems). Let G’ be a group and ¢ : G — G’ a group homomorphism.

1. G/kery = Imvy

AB A
2. VA B<G |A<Ng(B) = =2 ~
’ G{ ¢(B) =5 AmB}

G/H G
3. VHHK<B |[H< K= —— = —
= { T K/H K]
4. Let N <G and 7 : G — G/N be the projection map. Then 7 induces a set-theoretic bijection
between {H < G | N < H} and {H < G/N}. In particular, 7 restricts to a bijection between

{H<JG|N < H}and {H<G/N}.

Corollary 1.1.7.1 (universal property of quotient groups). Let G’ be a group and ¢ : G — G’ a group
homomorphism. If N <kert, then ¢ induces a homomorphism ¢’ : G/N — G'. Moreover, ¢ = ¢/ o,
where 7 : G — G/N is the projection.



1.2 Composition Series
Definition. A group G is simple if N IG = N=1v N =_G.

Definition. A sequence of subgroup of G: 1 = Ny < N; < --- < N, = (G is a composition series for G
if Nl S] Ni+1 and Nz’—i—l/Ni is Simple for i = 0, ey k—1.

o We call N;;;/N; a composition factor of G. Dy
Example 1.2.1. There are 7 composition series for Dsg. / \
All composition factors are Cs. {r?,s) {ry (r?, sry

P N I N

® &w Gy e

Lemma 1.2.2 (Zassenhaus’). Let H, K, H', K’ be subgroups of a group G with H'<H and K’ JK. Then

\

1

(a) ( HNnK'YH' J<(HnK)H and (K nH)K'<(KnH) K’
(b) (HnEK)H)/((HnK')H') = (KnH)K') /(K H)K').
Proof.

1. Notethat HNnK'<HNn K and K n H <K n H. Pickge (Hn K)H" and a€ (Hn K') H, then
g =kh and a = bd for some ke Hn K, c,he H and be H n K’'. Then

gag™" = khbch 'k~ = kbhych k™" = by (khych k™) € (H n K') H’

for some hy € H and by € H n K’ by the normality. Hence (H n K') H' < (H n K) H'. Similarly,
(KnH)YK'I<(KnH)K'.
2. By the second isomorphism theorem, we have

(HnK)H" _ HnK
(HANK)YH ~— (HnK)n (HnK')H'

and
(HnK)K' _ Hn K
(HNK)K' ~— (HnK)n (H nK)K'
Note that (HNnK)n (HnK')H = (HnK')(H nK)=(Hn K)n (H' n K) K’, so the result

ensues.




Theorem 1.2.3 (Jordan-Hélder). Let G be a nontrivial finite group. Then
1. G has a composition series.

2. Composition factors are unique in the sense that if
l=Hy]JH,<---9dH,=Gand 1=K JIK; <J--- 4K, =G
are two composition series, then k = m and {M; 1/ M;} = {N;11/N;} up to isomorphisms as multisets.
Proof. 1. This follows from the induction on n = |G/.

2. Let

be two composition series. Define H;; = (H; n K;) H;_ and K;; = (K; n H;) K;_; for 0 <i < m
and 0 < j < n respectively. Then

lcHy<c---<cH,<Hy< ---cHy,c---<H,0< < H,, =G and

l1cKpn<c---CKn<SEKp<---CKp<c---CKp< - CKpn=G
are two series of G. Clearly
H(i+1)0 = (HH-I N Ko) H;=H; = HiH; | = (Hi N Kn) H;_ = H;
Similarly, we have Koj;1) = Kpj. By Zassenhaus’ lemma, we have

Hij/Higy = ((Hi 0 K;) Hioa) [ (H; 0 K1) Hia)
= ((Kj n Hy) Kj) / (Kj 0 Hioa) K1) = Kij /K-y,

Since

are composition series, m = [ {(i,7) |Hi;/Hyj—1) # 1} | = | {(i,5) | Ki;/K@-1); # 1} | = n. and there
is a permutation o € S,, such that

Hi1/Hi = Ko(iy41/ Koy, 0 <i<n

since Hi;/H;j—1) = Kij/K—1); for 0 <i,j <n =m.



Remark 1.2.4. In general, structure of N and G/N do not uniquely determine G. For instance,
G=Dg, N={%, G/N=V,and G' = Qg, N =(-1), G'/N' =V,
Definition. Let G be a group with composition series
1=Ny<---dN, =0G.
The (composition) length of G is defined by ¢(G) := s, which is well-defined by Jordan-Hélder theorem.

Lemma 1.2.5. If A is a simple group and ¢ is a group homomorphism from A, then ¢ (A) is either trivial

or isomorphic to A.

Proposition 1.2.6. Let
1 > G > G > G > 1

be a exact sequence of groups. Then G admits a composition series if and only if G’ and G” admit
composition series. In particular, /(G) = ¢(G") + ¢(G"). (HW. 8)

Remark 1.2.7 (Holder program).
1. Classify all finite simple groups.
e This was solved in 1980’s: 18 infinite families of simple groups and 26 sporadic simple groups.

2. For any 2 groups A, B, determine all groups G such that N =~ A and G/N =~ B for some normal
subgroup N < G.

o This is very difficult, as shown on the right. n # of groups of order 2
1 1
2 2 (Cy, Vi)
3 15 (C3, Cy x Cy, Cs, D, Qs)
4 14
10 49487365422

Definition. A group is solvable if all of its composition factors are abelian.
Lemma 1.2.8. Let G be finite and solvable.

1. Any subgroup H of G is solvable.



2. Let ¢ be any homomorphism from G. Then ¢ (G) is solvable. In particular, any quotient group of

G is solvable.
Proposition 1.2.9. Let G be a finite group. (HW. 7)
1. G is solvable.
2. G has a chain of subgroups: 1 = Hy < H; <--- < Hy = G such that H; 1 /H; is cyclic, 0 <1 < s.
3. All composition factors of GG are cyclic of a prime order.

4. G has a chain of subgroups: 1 = Ny < N; <--- < N, = G such that each V; is a normal subgroup of
G and N;,1/N; is abelian, 0 < i < t.

Remark 1.2.10. A polynomial equation over a field F' is solvable in radicals if and only if its Galois group

is solvable.
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1.3 Transpositions and Alternating Groups

Proposition 1.3.1. Let G be a cyclic group.
1. Every subgroup of H is cyclic.
2. If |G| < oo, then there’s a set-theoretic bijection between {d € N | d||G|} and {H | H < G}.
3. If |G| = oo, then H =~ Z.

Proposition 1.3.2 (disjoint cycle decomposition). Every element in S, can be written uniquely as a

product of disjoint cycles.

Definition. The orbit for an element in 5, is the number of disjoint cycles, 1-cycles included, in its

disjoint cycle decomposition.
Proposition 1.3.3. For each 0 € S,,, o(iy -+ i)o ! = (o(iy) -+ o(ig)).

Corollary 1.3.3.1. Conjugation by an element in S,, sends a permutation to another permuation of the

same cycle type.
Definition. o € S, is a transposition if it’s a 2-cycle.
Proposition 1.3.4. Every element of S,, can be written as a product of transpositions.

Proposition 1.3.5. No permutation in S,, can be written both as a product of an even # of transposition

and an odd # of transposition.

Proof.

Claim. If o € S,, and 7 is a transposition, then #{orbits for 7o} = #{orbits for o} + 1

Let 7 = (i 7). We discuss the following two cases:

1° 4,4 lie in 2 different orbits for 0. Let 0 = (iay -+ a.)(jby -+ b))y - - - i, be the decomposition for
o (r,s could be 0). Then

(i)(Gay - a)(jby --- bs) = (iay - apjby --- by)
2° 14,7 lie in the same orbit. Then

(ij)Giay - apjby - by) = (iay -~ a,)(jby --- by)

11



We return to the proof of the proposition. Assume o = oy --- o0y, where o;’s are transposition. For each

T € Sy, let o(T) denote the number of its orbits. Then by Claim, we have

o(id) =n =n (mod 2)
o(ox) =n—1 =n—1 (mod 2)
o(og_10r) =n—-2vn =n-—2 (mod 2)
ooy o%) =n—k (mod 2)
Hence k =n+ o(o) (mod 2). O
Remark 1.3.6. There’s an alternative proof of the proposition above: consider S, —~ Z[zy,...,x,] by
of(x1,...,2n) = [(To(1), .- Towy) and P(z) := [[ (x; —x;). Check that if 7 is a transposition, then
1<i<j<n

Ul(O'Qf) = (010'2)f and TP = —P.

Definition. An element in S, is an even/odd permutation if it’s a product of an even/odd number of

transposition.
Definition. A, := {0 € S, | 0 is even} is called the alternating group of degree n.
Remark 1.3.7. A cycle of even/odd length is and odd/even permutation.
Proposition 1.3.8. 1. A, <S5,

2. If n > 2, then [S,, : A,] =2, and hence 4, <.5,,.

3. A, is generated by 3-cycles.
Proof.

2. Let B, := S,\A,. Then An = Ba is a set-theoretic bijection.

o—— (12)0
3. ()i9) =1, (1) k) = (1K), (KD = (k)i k0.
O

Example 1.3.9. A, =1, Ay =1, Ay = ((123)) = Cs, Ay = {1, (12)(34), (13)(24), (14)(23),8 3-cycles}.
Note that {1,(12)(34),(13)(24),(14)(23)} < Ay, which implies that A4 is not simple.

Remark 1.3.10. Note that A, provide a counterexample to the converse statement of the Lagrange’s
theorem: 6 | 12 = |A4| but A4 fails to have a subgroup of order 6.
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Proof. Say H < A4 such that |[H| = 6. Then H < A,. Since |H| > 4, H contains a 3-cycle. By conjugating
with (12)(34), we find that H contains all 3-cycles, a contradiction. O
Notation 1.3.11. For 0,7 € S,,, let 0™ denote the conjugation of ¢ by 7, i.e, 07 = 707 L.

Theorem 1.3.12. For n > 5 and n = 3, A, is simple.

Proof.

1° A, is generated by 3-cycles.
2° If H < A, contains a 3-cycles, then H = A,,.

3° If H is a nontrivial normal subgroup of A,,, then it contains a 3-cycle.

2° WLOG, assume H contains (123). Let (ij k) be another 3-cycle. We construct o € A, such that
o(1) =1, 0(2) = j and 0(3) = k so that (123)7 € H < A,,.

o {i,j,k} n{1,2,3} = &. Take 0 = (1i2j)(3 k).
o #{i,5,k} n{1,2,3} =1,say i = 1. Take 0 = (25)(3 k).
o #{i k) n{1,2,3) =1 Ifi=1j=2 takeo = (3k4). If i =2,j =1, take 0 = (3k)(12)

3° Say o € H is a nontrivial element. Consider the following possible cases for the cycle decomposition

of 0.
o It contains a cycle of length > 4. Say 0 = (1 --- m)7, m < 4. Then
o o2 = 77112 ... m) 72314 - m)T = (13m)
« It contains more than one 3-cycles. Say o = (123)(456)7. Then
o o2 = (14263)

It reduces to the first case.
o It contains one 3-cycle and several transposition. Then o2 is a 3-cycle.

« It contains only transpositions. Say o = (12)(34)7. Put 6 := 0~'0(12%) = (13)(24). Then

9~1o13% = (135)

13



1.4 Group Actions

GxA— A
Definition. A (left) group action of a group G on a set A is a map such that

(9.a) — ga
1. (g192)a = g1(goa) for all g1, g2 € G and a € A
2. la=aforallae A
Proposition 1.4.1. Let G be a group and A a set. Assume that GG acts on A.
1. Define ¢, : A — A by ¢,4(a) := ga. Then ¢, € Sy
2. Define ® : G — S4 by ®(g) := ¢,. Then ® is a group homomorphism.

Definition. ® in the preceding proposition is called the permutation representation of G associated

to the given group action.

Example 1.4.2.
1. Define G x A — A by (g,a) — a for all g € G and a € A. This is called the trivial action.
2. F acts on F" by r(ay,...,a,) = (ray,...,ra,).

3. S, actson {1,...,n} by gi = o(i).

b b
4. SLy(R) acts on H:= {z € C|Imz > 0} by (Z d) 7= ij——d'

5. G acts on itself by left multiplication.
6. G acts on itself by conjugation.

Proposition 1.4.3. Assume that G acts on A. Define ~ on A by a ~ b < a = gb for some g € G. Then

~ is an equivalence relation.

Definition. The equivalence class in the preceding proposition in called an orbit. The orbit containing
a € A is denoted by Ga.

Proposition 1.4.4. Assume that G acts on A. For a € A, let G, :== {g€ G | ga = a}. Then G, < G.

Definition. G, is the preceding proposition is called the stabilizer subgroup of a.

14



Proposition 1.4.5 (Orbit-stabilizer formula). Assume that G acts on A. Then

Ga —— { all left cosets of G, }

ga > 9Ga
is a set-theoretic bijection. In particular, if #G < o, |Ga| = [G : G,] and |G| = |G,||Gal

Theorem 1.4.6 (Cauchy’s). Let G be a finite group and p be a prime dividing |G|. Then there’s an

element x € G of order p.

Proof. Consider the set

S = {(zrar. . 1y) € CF |z a, = 1)

Define the relation ~ on § by letting
a~pB<pf=(12--p)a for some k

It’s clear that ~ is an equivalence relation. Viewing the equivalence relation as a action of C}, on S. then
by the orbit-stabilizer formula, the size of an orbit, an equivalence class, is either p or 1 since p is a prime.
Since the size of the orbit of (1,...,1) is 1 and p divides |G|P~!, there must be at least p — 1 orbits whose

sizes are 1, and they must be of the form (z,...,z) with 2”7 = 1. Such z is the desired element. O
Definition. Assume that G acts on A.

1. The subgroup {g€ G | ga = aVa e A} = ker ® is called the kernel of the group action.

2. The group action is called faithful if the kernel is trivial.

3. The group action is called transitive if Va,be AJge Gla = gb|, i.e, #{Ga | a € A} = 1.

1.4.1 Burnside’s lemma

Theorem 1.4.7 (Burnside’s) (Frobenius’). Assume that G' acts on X and |G|, |X| < 0. For g € G, let
X, ={re X | gr =z} Then

1
#{Gr |re X} =— > |X,|
Gl &

15



Proof. Consider S := {(g9,2) € G x X | gv = x}. Then S := | [{(g,2) | g = z}, and thus |S| = > |X,|.
9eG geG
On the other hand, S := | | {(g,2) | gr = z}, and thus

xeX
G
EENARNDWES W W
reX O: orbit zeO O orbit :ceO
G
_ Z:o|| Y 5 Z1—|G| 4G | e X)
O: orbit zeO O: orblt xEO

]

Example 1.4.8. Given n distinct colors, we count the number of ways to paint the frame of a square with

Burside’s lemma. Let X the set that collects all possible coloring, assuming the frame is fixed. Consider

1
Dg-action on X as usual. Hence # of orbits = g(nA‘ +2n3 + 3n% + 2n), as shown in the following picture.

id 90° 180° 270°
n4 n n2 n
n3 n3 n? n?

1.4.2 Primitive actions

Definition. Subgroups of symmetric groups are called permutation groups.
From now on, we let A be a nonempty finite set and G be a permutation group on A.

Definition. A G-action on A (|A| = 2) is doubly transitive if G acts transitively on (A x A)\A, where
A is the diagonal of A x A.

Example 1.4.9. S, is doubly transitive on {1,2,... ,n} for n > 2.

Definition. Let G transitive. A block is a nonempty subset B of A such that Vo € G[o(B) n B # @ =
o(B) = B].

Definition. G is said to be primitive if it’s transitive and the only blocks in A are A and {a},a € A.

16



Proposition 1.4.10. Let G be transitive. (HW. 9)
1. If B is a block containing a € A, then
Gp:={oeG|o(B)= B}

is a subgroup of G containing G,. In particular,

A=| |oi(B)

=1

for some o; € G.
2. G is primitive if and only if G, is maximal in G for each a € A

3. If G is doubly transitive, then G is primitive.

Proposition 1.4.11. Let the action G on A be transitive and faithful. Suppose G acts on A primitively,
then for any 1 # H < G, the induced action H on A is transitive.

1.4.3 Actions by left multiplication

Definition. The permutation representation of GG associated to the left multiplication is called the left

regular representation.
Proposition 1.4.12. G acts on itself by left multiplication is faithful and transitive.
Theorem 1.4.13 (Cayley’s). Any group G can be embedded in to its symmetric group Sg.

Theorem 1.4.14. Let H < G and X := {all left cosets of H in G}. Consider the G-action on X be left

multiplication.

1. The action is transitive and Gy = H.

2. The kernel is (| gHg ™!, which is the largest normal subgroup of G contained in H.
geG

Corollary 1.4.14.1. Assume that |G| < o0 and p is the smallest prime factor of |G|. Then any subgroup

of index p in GG is normal in G.

Proof. Let K := () gHg™'. Then G/K = a subgroup in S,. Thus
geG

plH : K| = (G2 H|[H : K] = (G : K| |S,] =

ie, [H: K] | (p—1). Since [H : K| | |G| p is the smallest prime factor, we deduce [H : K| = 1, i.e,
H=KdJdG. [

17



Example 1.4.15.

1. Let G = Dg and H = {s). We have [\ gHg™' = 1, i.e, G acts on {left cosets of H} faithfully.
geDs
Hence Dg =~ a subgroup of ;.

2. Any nontrivial subgroup of Qs contains {£+1}. If |H| # 1, then the action on the left cosets of H
isn’t faithful. Hence, QJs cannot embedded into S7.

Lemma 1.4.16. If H < G has prime index p, then for all K < G, either K < H or G = HK with
K : K n H]=p.

Proposition 1.4.17. Let G be a finite group and ¢ : G — S be the left regular representation.
1. For each g € G, ®(g) is an odd permutation if and only if |g| is even and |G|/ ord ¢ is odd.
2. f Im® & Ag, then G has a subgroup of index 2.

Proof.

1. Put ®(g) = ¢, and n := |G|. For each g € G, identify ¢, with its image in S, via the canonical

isomorphism Sz — S,,. Fix a g € G, and let ~ be the equivalence relation generated by
a~b<eabt =¢* for some ke N
Clearly, each equivalence class has the same cardinality ord g, and each corresponds to a cycle in

Gl

ordg’

the cycle decomposition of ¢,. Hence each cycle has length ord g and the number of cycles is

Hence

¢, is odd < (ordg — 1)ﬂ is odd < ﬂ is odd and ord g is even

2. Since Ag < Sg has index 2 and Im G ¢ Ag, we have ImG : ImG n Ag] by Lemma 1.4.16. Then
O~ HIm G n Ag) is a subgroup of G of index 2.

Corollary 1.4.17.1. If G is a finite group with 1»(|G|) = 1, then G has a subgroup of index 2.
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1.4.4 Actions by conjugation

Definition. Let G be a group.

1. The orbit of a € G under the action of conjugation is called the conjugacy class of a, and is denoted
by Cl(a).

2. The stabilizer G, (a € G) under conjugation is denoted by Cg(a), called the centralizer of a.

3. a,be G are said to be conjugates if b = gag~! for some g € G.
By the orbit-stabilizer formula, we have # Cl(a) = [G : Cg(a)].
Definition. The center of a group G is the subgroup
Z(G):={aeG|ag=gaVge G}
o Z(@G) is the kernel of the action by conjugation. Hence the action is not faithful in general.
e g€ Z(G) if and only if Cl(g) = {g}.
Proposition 1.4.18. Let G be a group. If G/Z(G) is cyclic, then G is abelian.

Theorem 1.4.19 (Class equation). Let G be finite, and g, . . ., g, the representatives of conjugacy classes

of G having more than 1 elements. Then

n

Gl =12(G)] + )G : Calgy)]

i=1

Definition. Let p be a prime. A finite group is called a p-group if |G| = p" for some n € N.
Corollary 1.4.19.1. If G is a p-group, then Z(G) # 1.

Corollary 1.4.19.2. If G is a p-group of order p, then G is abelian, and G = C7 or G = Cpe.
Corollary 1.4.19.3. Any finite p-group is solvable.

Corollary 1.4.19.4. Let p be a prime and G a group of order p™. Then G has a subgroup of order p* for
1=0,...,n.
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1.4.5 Conjugacy classes in S,

Definition. Let o € S,,. If the cycle decomposition of ¢ is a product of cycles of lengths

nq < N9 <- < N
k
(including 1-cycles so that > n; = n), then the sequence of integers ny,...,ny is called the cycle types
i=1
of 0.
k
Definition. A nondecreasing sequence of positive integers n; < ng < -+ < ny such that >, n; = n is

=1
called a partition of n.

Proposition 1.4.20. Two elements in .S,, are conjugates if and only if they have the same cycle type.
Corollary 1.4.20.1. There’s a set-theoretic bijection between {conjugacy classed of S,,} and {partitions of n}.

Example 1.4.21. We demonstrate the correspondence with Sg.

partition |conjugacy class| 1Css(1)] = _ ||
|conjugacy class|
6 6!/6 6=#(12---6))
343 6!/(3-3-2)=40 | 18=#(ijk),({mn),(il)(jm)(kn))
24+2+2 |61/(2:-2-2-3) =15 48
24 1+1+1| 61/(2-4)=15 48

1.4.6 Conjugacy classes in A,

Lemma 1.4.22. Let G be a group, K a conjugacy class of G and N < G. Then either K n N = & or

K < N. Hence a normal subgroup of GG is a disjoint union of some conjugacy classes.

Lemma 1.4.23. Let 0 € A,, and 0°* and o denote the conjugacy classes of o in S,, and A, respectively.

If o commutes with some odd permutation, then o4» = g% . Otherwise, o = o4 11 (12)0"(12).

Proof. If o commutes with an odd permutation, say 7, then for any p € S,\A,,

pop~t = pro(pr) e ol

and thus ¢% = ¢47. Now suppose o does not commute with any odd permutation.
Claim. o4 A (12)0"(12) = &.

Suppose otherwise there are g,¢' € A, such that gog™' = (12)¢g'oc¢g’~'(12), then ¢ commutes with
g 1(12)g, a contradiction since ¢'~!(12)g is odd. O
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Lemma 1.4.24. Let o € S,, whose cycle type consists of distinct integers. Then ¢ only commutes with

the subgroup generated by the cycles in its cycle decomposition.

Proof. Let ¢ = o1---0 be its cycle decomposition, counting 1-cycles. Suppose otherwise that there’s
a permutation 7 ¢ (o; | i = 1,...,k) such that o7 = 70. WLOG, let {i | 0; and 7 are not disjoint} =
{1,...,r} for some r < k. Since o7 = 70, TOy--0,7 ' = 0y--0,. T cannot send elements in ; to
o; since |o;| # |oj| for all i # j. Also, orders of the elements in o; must be preserved under 7 for
otherwise 70,771 # o, for all i. Hence, 7 must be a product of o;"* for some integer m; for all i < r, a

contradiction. ]

Theorem 1.4.25. o € S,, does not commute with odd permutation if and only if its cycle type consists of

distinct odd integers.

Proof. (=) Note that ¢ commutes with cycles in its cycle decomposition, so the cycle type of ¢ consists
of odd integers. Were two cycle to have the same length, say o = (1 --- k) and f = (k+ 1 --- 2k) for
some odd integer k, then 7 := (1 k+1)---(k 2k) € S,\A, satisfies Ta7™! = 3 and 787! = «, implying
Taf = aft. Thus, To = o7, a contradiction. Hence its cycle type must consist of distinct odd integers.

(<) This follows directly from Lemma 1.4.24. 0]

Corollary 1.4.25.1. Let I be a conjugacy class of S,, and assume K < A,. Then K consists of two

conjugacy classes in A, if and only if the cycle type of an element of I consists of distinct odd integers.

cycle types Sh A,
5-cycles | |0%5| =24 | 12+ 12
Example 1.4.26. Even permutation in A; are  3-cycles |JS5| =20 20
(i) (ke) ||o5°|=15| 15
1 1 1
Now, no proper partial sums of {1,15,20, 12,12} is a divisor of 60. Hence Aj; is simple.

Proposition 1.4.27. Consider the G-action on {H | H < G} by conjugation.
1. The stabilizer subgroup of H < G is Ng(H).
2. The number of subgroup conjugate to H is [G : Ng(H)].
Proposition 1.4.28. A, (n > 5) does not have a proper subgroup of index < n.

Proof. Let H < A, be of index m < n and consider the A,-action on the set of all left cosets of H by left

translation. O]
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1.4.7 Automorphisms

Definition. Let G be a group and A a nonempty subset of G.

1. The centralizer of A in G is the subgroup Cg(A) :=={g€ G | ag = gaVa € A}
2. The normalizer of A in G is the subgroup Ng(A) :={ge G | gAg~' = A}

3. The normal closure of A in G, or the normal subgroup generated by A, is the subgroup

generated by [ J Cl(a).
acA

Definition. Let G be a group.

1. The automorphism group of G is Aut(G) := {f : G — G | f is a group isomorphism}.

2. The inner automorphism group of G is Inn(G) :={f : G - G | g€ GVz € G[f(x) = gzg~']}.
Proposition 1.4.29. Let G be a group and H a subgroup of G.

1. G/Z(G) = InnG

2. Ng(H)/Cq(H) < Aut H.

3. InnG < AutG
Example 1.4.30.

(Z/nZ)* —— Aut(C,)

is an isomorphism, and thus Aut(C,,) =~ (Z/nZ)*. Furthermore, if n = p*,
a ——— [z — 29

then
Cpkfl(p,l) if p#2
(Z/HZ)X: CoxCor—2 ifp=2Ak=2
1 ifp=2nak=1

Proof. For brevity, put G := (Z/nZ)*. If p = 2, we see that 5 = 1 + 22 has order 2*~2 in G, and
thus +52"° have order 2. This shows G is not cyclic, and one of +5%° does not lie in (5). Hence
G = (5) x (s), where s = +52"°. For odd primes p, note that 1+ p has order p"~! in G. Consider

the reduction homomorphism
VG ——— (Z/pL)*

a (mod p*) —— a (mod p)
Note that (1 +p) < kery) < G, so keryp = (1 +p), i.e, keryp = Cpr-1. Note also that (Z/pZ)* is
cyclic of order p — 1, and since (p — 1,p*7!) = 1, we obtain G = Cp-1 x Cp_y = Cpr-1(p—1)- O
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2. Aut Dg = Dg and Aut Qg = 5,.
3. Let p be a prime. Then Aut(C}') = GL,(F,). Also, # GL,(F,) = (p" — 1)(p" —p) --- (p" — p" ).
Proposition 1.4.31. S, = Inn S, = Aut S, for n > 3,n # 6. (HW. 8)
Proof. For 1 <k <n/2, let
Cy : {0 €S, | 0is a product of k disjoint 2-cycles}
There are some facts:

o If 7€ Aut S, then 7(C4) = Cy for some k.

n\ (2k)!
2k ) 2Kk

- sci=
o #(C) # #C unless k=1 or n =6.

Also, one can show if ¢ € Aut S,, such that (C;) = C4, then ¥ € Inn S,,. With these facts we may deduce
the second equality. For the first equality, note that Z(S,) =1 for n = 3, so S,, = Inn S,,. [

Proposition 1.4.32. [Aut S : Inn Sg] = 2.

Definition. H < G is a characteristic subgroup of G if o(H) = H for each 0 € Aut G, and we denote
this as H char G.

Proposition 1.4.33. 1. HcharG= H <G
2. (Kchar HAH<G)=K<4G
3. (k char H A H char G) = K char G
Example 1.4.34. 1. Z(G) char G and |G, G| char G.

2. Every subgroup of cyclic groups is characteristic. Thus every subgroup contained in a cyclic subgroup

of G is normal in G.
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1.5 Sylow’s Theorem

In this section by p we mean a prime number, and G always denote a group.
Definition. Assume that p | |G].

1. If H < G with |H| = p* for some a € N, then we say that H is a p-subgroup of G.

2. If |G| = p*m with a € Nand ptm and H < G with |H| = p®, then we say H is a Sylow p-subgroup
of G.

« We denote the set of all Sylow p-subgroup of G' by Syl (G).
Lemma 1.5.1. Let G be a finite p-group and X a finite set. Assume that G acts on X. Let
Xg={reX|gr=aVge G}
Then |X| = |X¢| (mod p).

Proof. Let Oy,..., 0, be the orbits under the action with |O;| =--- =|0,| =1 and |O,44/,...,|O,] > 1
for some r € N. Note that |O;| =1, say O; = {x}, means = € Xg. Thus

n

X = 1Xel + ) 10 =1X¢| (mod p)
i=r+1
since |O;| | |G| by the orbit-stabilizer formula. O
Theorem 1.5.2 (Sylow’s). Assume that |G| = p®m with a € N and p { m. Put n, = n,(G) := # Syl,(G).

1. Syl(G) # &. More precisely, |H| = p' for some H < G for each i € {1,...,a}, and each subgroup of

order p' (1 <7 < a— 1) is normal in some subgroup of order p**.
2. P,QeSyl(G)=3geG[Q=gPg7'].
3. n, =1 (mod p) and n, | m. More precisely, n, = [G : Ng(P)] for each P € Syl,(G).
Proof.

1. By Cauchy’s theorem, G has a subgroup of order p. Assume inductively that there’s H; < G such
that |H;| = p’. Consider H;-action on X := {all left cosets of H; in G} by left multiplication. By
Lemma 1.5.1, | Xp,| = |X| (mod p). Note that

gH;, e Xy, & hgH,;, = gH,; Vh e H;
< g 'hge H;VYhe H; & ge Ng(H,)

24



Thus, | Xg,| = [Ne(H;) : H;]. Also, | X| = |G|/|H;| = mp®™" | p, so [Ng(H;) : H;] =0 (mod p). Hence
there’s a subgroup H;,; of order p in Ng(H;)/H; by Cauchy’s theorem. Let H;,y := 7 '(H,; 1), where
7 : Ng(H;) — Ng(H;)/H; is the natural projection. Then |H; 1| = p"™ and H; < Hyy4.

2. Let P,Q € Syl (G). Consider Q-action on X := {all left cosets of P in G} by left multiplication. By
Lemma 1.5.1, | Xg| = | X| (mod p). Note that

gPeXg<e hgP =gPVhe@
=g 'hge PYheQ
< g 'Qy=P<=gPg ' =Q

Since |Xg| = |X| (mod p), there exists g € G such that gPg~" = Q.

3. By 2. and Proposition 1.4.27, n, = # Syl (G) = [G : Ng(P)] for all P € Syl (G). Since P < Ng(P) <
G,ny | [G: Pl =m. Let P e Syl (G) and consider P-action on X = Syl (G) by conjugation. By
Lemma 1.5.1, n, = |z| = | Xp| (mod p). Note that

QeXpegQg ' '=QVge P+ P<NgQ)

By 2., since @ < Ng(Q), @ is the unique Sylow p-group in Ng(Q), and thus P = @, implying that
ny = |X| = (P} = 1.

O
Corollary 1.5.2.1. Assume that |G| = p*m with a € N and p{m. Put n, = n,(G) := # Syl (G). TFAE:
1.n,=1
2. All Sylow p-subgroups of G are normal in G.
3. All Sylow p-subgroups of G are characteristic.
4. All subgroups generated by elements of p-power order are p-groups.

Proof. 1 < 2,3 follows from the second part of Sylow’s theorem. That 1 = 4 is clear. For the reverse

x= |J r

Pesyl,(G)

implication, let

which is a p-group by our assumption. Hence P < (X)) for each P € Syl (G), and thus P = (X). N

Corollary 1.5.2.2. For P € Syl (G), we have Ng(Ng(P)) = Na(P).
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Proof. That Ng(Ng(P)) 2 Ng(P) is clear. For the reverse inclusion, note that P < Ng(P), and thus it’s
characteristic by the preceding corollary. Since, Ng(P) < Ng(Ng(P)), by Proposition 1.4.33, we obtain
P 9 Ng(Ng(P)), implying Ng(Ne(P)) < Nea(P). 0

Proposition 1.5.3. Let H < G and P € Syl (G). Then H n gPg~" € Syl (H) for some g € G.

Proof. Consider the H-action on X, the set of all left cosets of P in G, by left multiplication. The H-
stabilizer of the points of X are of the form H n gPg~!, with g € G. Since P € Syl,(H), p1|X], and thus
at least one orbit Hx whose order is not divisible by p. Then H, is a p-group of the form H n gPg~! for
some g. That [H : H,] is coprime to p indicates that H, € Syl,(H). O

Corollary 1.5.3.1. Let H < G and P € Syl (H). Then P =S n H for some S € Syl (G).
Proposition 1.5.4 (Frattini argument). Let H I G. If Q € Syl (H), then HNg(Q) = G.

Proof. Let g € G. Then gQg~' < gHg™' = H. Since gQg~"' € Syl,(H), gQg~" = hQh™" for some h € H,
i.e, h"lg e Ng(Q), i.e, g€ HNg(Q). O

Example 1.5.5. In S5, (12),(13),(23) are elements of order 2 but the subgroup generated by them is

not a 2-group.

1.5.1 Applications

Lemma 1.5.6. If N, K <G with N n K =1, then N € Cg(K).

Example 1.5.7. |G| = pg, where p < ¢ are distinct primes. We have n, = 1, i.e, the Sylow ¢-subgroup @

is normal. Then
1 ifg#1 (mod p)
n g
v lvg ifg=1 (mod p)

e (n, = 1) Then the Sylow p-subgroup P is normal in G. Since P n @ =1, P and ) commute. Hence
G=C,xC,=Cy,.

° (np = q) Say P = <x> and Q = <y> Since Q S] G7 [Eyl’_l = yj for some j € N. Note that
y = aPyz P = 2P (wyr e 0D = aplylpm 0T = = 0"

and thus j» = 1 (mod ¢q). Recall that (Z/qZ)* = Cy_1, i.e, (Z/qZ)* = {a = for some a € Z. Write
j =a* (mod q) for some k. Then k satisfies

-1
a'? =1 (mOdq)=>(q—1)|kp=>q—’k
D
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1° If k = 0, then j = 1, i.e, zyz~! = y, implying that G =~ C, x C, = C,,.
-1 -1 —1
2° If [ = q—, 2q—, oo (p— 1)q—, then G is nonabelian; however, all choices yield isomorphic
p

groups. b

Example 1.5.8. |G| = 45 = 3? x 5. Then n3 = ns = 1. Put P, € Syl,(G) (i = 3,5). Then P, P; < G, so
P; and Ps; commute. Thus
- { Cy x Cs
O3 x O3 x O5 = Cq x C5

o Alternative approach: since P3<G, the Ps-action on P3 by conjugation is well-defined, and it induces a
group homomorphism P; > Aut P;. Since | Aut Cy| = |(Z/9Z)*| = 6, | Aut(C3)] = (9—1)(9—3) = 48
and (5,6) =1 = (5,48), Ps/ker® =1, i.e, ker ® = P5. Hence zgx~! = g for each z € P5,y € P3, i.e,

P5 and P; commute.
Lemma 1.5.9. If G < S, is transitive, then n | |G].

Example 1.5.10. |G| = 12 with ny =4 = G ~ A4. Consider G-action on Syl;(G) by conjugation, which
induces a homomorphism G 2 Sy. Then G/ker® =~ T < S;. By Sylow’s theorem, T' is a transitive
subgroup of Sy. Thus |T'| =4 v 12. 4 is not possible since this implies ker ® is a normal subgroup of order

3, a contradiction to the assumption ng = 4. Hence G =~ a subgroup of order 12 in S; =~ Ay.

Definition. If G is abelian (= every subgroup is normal), then for each p | |G|, there’s a unique Sylow

p-subgroup, called the p-primary subgroup.

Example 1.5.11. |G| = 30. Then n3 = 1 v 10 and n5 = 1 v 6. Note that ng = 10 and n5 = 6 cannot

happen at the same time since

{ nz = 10 = 320 elements of order 3

ns =6 = 124 elements of order 5
but 20 4+ 24 > 30, a contradiction. Put P; € Syl,(G) (i = 3,5). Then we have

either P; <G or P G

so P3Ps < G has order 15. Since [G : P3Ps] = 2, P3P5 is normal, and since it’s cyclic, each subgroup of
P3P; is cyclic; in particular, Ps, Ps < G, i.e, n3 = ns = 1. Put P3P = (y) and P, = (). Then zyx~! = ¢
for some j. Thus j2 =1 (mod 15), as in Example 1.5.7. Hence j = 1,4,11,14 (mod 15). The four groups

Gj=(x,yla®=y® =1 aya™ =¢)(j = 1,4,11,15)
give 4 non-isomorphic groups of order 30. In fact, G; =~ C3p, G4 =~ Dg x C5, G171 = D19 x C3 and G4 = Dsg.
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Example 1.5.12. |G| = 60 with n; = 6 = G is simple.

Proof. Suppose otherwise there’s a normal subgroup H with 1 # H # G. If 5 | |H|, then H contains
a Sylow 5-subgroup of G and since H is normal, H contains all of them. Hence |H| > 1+ 4 -6 = 25,
and thus |H| = 30. Since a group of order 30 contains a normal 5-subgroup, H has a normal 5-subgroup,
then so does G, which leads to a contradiction since n; = 6. Hence |H| is not a multiple of 5. Then
|H| =2,3,4,6,12. If |H| = 6,12, then H has a normal, and hence characteristic, Sylow subgroup, which is
therefore normal in G. We then assume WLOG that |H| = 2,3,4. Put G’ = G/H, then |G’| = 30,20, 15.
In each case G’ contains a normal 5-subgroup, and hence G has a normal subgroup of order 10, 15,20, a
contradiction since a nontrivial proper normal subgroup of G cannot be of order of a multiple of 5. Hence,
G is simple. [

Remark 1.5.13. In fact, one can show any simple group of order 60 is isomorphic to As.
Lemma 1.5.14. Qg cannot be embedded into any symmetric group S,, with n < 7. (HW. 3)

Example 1.5.15. G = S;. We have 4! = 23 x 3. Then
4x3x2 1
ng=——— X —
3 2
Note that the Sylow 2-subgroups of Sy are isomorphic to Dg. (One may verify this by considering actions

=4

on {1,2,3,4} of all possible groups of order 8.) Also, a Sylow 2-subgroup of Sy depends only on the choice

of 4-cycles contained in it. Thus
4 x3x2x1

4
Example 1.5.16. G = S5. We have 5! = 23 x 3 x 5. Likewise,

1
Mo X§

Bx4x3x2x1 1 6
= X — —
= 5 1
bx4x3 1
ng — T X 5 = 10
bx4x3x2x1 1
Ng = 1 X 5 =15
. 120 120 .
These imply #Ng(Ps) = - = 20 and #Ng(P3) = ST 12. Concretely, we have, for instance,
Ne(P3) =((123),(45),(23))
Exercise. 1. Find no, ng, ns for Sg.

2. Find ng for Sy. (Note that a Sylow 3-subgroup is ((123),(456),(789), (147)(258)(369) ).)

o J
N~

which normalizes

{(123),(456),(789))

28



1.6 Semi-direct Product

1.6.1 Fundamental Theorem of Finitely Generated Abelian Groups

Definition. A group G is finitely generated if G = (A) for some finite subset A of G.
Theorem 1.6.1. If GG is a finitely generated abelian group, then
G=Z"xC, x--xCy,

where r € Zsg and ny,...,ny € Zgey such that n,q | n; for i = 1,...,¢t — 1. Moreover, they’re uniquely

determined.

o 7 is called the (free) rank, or Betti number, of GG, and the n; are called the invariant factors of

G. Such a decomposition is called the invariant factor decomposition of G.
Theorem 1.6.2. If G is a finite abelian group of order n = p{* - - - pi*, where the p; are primes, then
G~A x---x A
where Ai;Cpf_cl X oo X C’p{-ti, fiz--=fiy=1and fi+ -+ fi, =e; for each ¢.

o The p;’ are called the elementary divisors of G, and such a decomposition is called the elementary

decomposition of G. This decomposition is unique.

Example 1.6.3. Groups G of order 20. Then by Sylow’s theorem, ns = 1. Let P = (z) € Syl;(G) and let
Q € SyL,(G).

1. Q =V, ={y,2): Since PG, yry~! = 2* and 220z~ = 27 for some i,j = 1, 4.
e =7 =1: y,z commute with x, so G = (5 x (.
o i=j=4: set y =yz. Then y/zy 'z, thus G = Dy.
e i =1,j =4: y commutes with z, so (zxy) = C1y and z(zy)z~' = (zy)~!, thus G =~ Dy
e 1 =14,5 = 1: the same as above.
2. Q =~ C,; = (y): then yry~! = 27 for some j =1,2,3, 4.
. j =1. G x~ 020.
e j=4 Gx(ry|’=y=1Lyry =2V =CsxC,
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e 7 = 2,3 give the same structure, denoted as Fy and called the Frobenius group of order 20,
which can be realized as the normalizer of P = {(12345)) in S;.

Since # Syl;(S5) = 2 -1 =6 = [S5 : Ng(P)], we have #Ng(P) = 20. Pick y = (2354). One
can see y(12345)y~! = (13524). Hence

Na(P) = {(12345), (2354))

1.6.2 Direct products

Theorem 1.6.4. If HL K <G and H n K =1, then HK ~ H x K.

Definition. Under the assumption of the theorem above, we say G = HK is the internal product of H
and K.

Example 1.6.5. Groups of order 30. As shown in Example 1.5.11, G admits a cyclic subgroup {(x) of
order 15. Let (y) € Syl,(G). We have yzry~! =27, j = 1,4,11, 14.

. j:1ZG2030.
. j:14GED30

o j=4: yry ' =2 then yr®y~! = 2% = 25 thus K := (2°) < Zg. Also, we have yx3y~! = 273, so0

H := {23 y) =~ Dyg. One can check H, K G and H n K, and hence G = HK ~ H x K = Dy x C3.
e j =11: similar as the case above, we have G =~ Dg x Cs.
Example 1.6.6. Dy, = (r,s) with n odd. Then Dy, =~ Dy, x Cy, here Cy = (r*) < Zg and Dy, = {(r? s).

Definition. Let G be a group. The exponent of GG is the smallest positive integer m such that ¢™ =1
for all g € G. If no such integer exists, the exponent is co.

Proposition 1.6.7. Let G be an abelian group of exponent mn, where m,n are relatively prime. Then G
is a direct sum of a subgroup of exponent m and a subgroup of exponent n. Moreover, such decomposition

is unique.

Proof. Let G™ :={g™ | g € G} and G" := {¢" | g € G}. Since m, n are relatively prime, the Bézout identity
indicates that 1 = am + bn for some integers m,n. Then g = g*™¢*" for all g € G; this shows G = G"G".
Since (m,n) = 1, G™ n G™ = 1, and since G is abelian, they’re normal in G; hence G = G™ x G™. The

uniqueness is guaranteed by the fact (m,n) = 1. ]
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1.6.3 Semi-direct products
Let GG be a group, and set H G, K < G with H n K = 1. We wish to define a group structure on the set
S={(h,k)| he H ke K}

such that HK =~ S under this group structure.
Observe that if hl, hg € H, k?l, k?g € K,

hikihoky = hy(kihoky M)k ks
Thus if ¢ : HK — S is a homomorphism that ¢(hk) = (h, k), then
(h1, k1) (ha, ko) = d(hikihoks) = ¢(hy(kihoky ) kiks) = (hy(kihoki ), kiko)
This suggests us to define the group structure on S to be
(h1, k1) (hy, kg) := (hy(krhokh), kiks)

which is called a semi-direct product of H and K. Note that ¢ : K 3 k — 1, € Aut(H) is a group
homomorphism, where n : H 3 h — khk™' € H.

In general, if we are given two groups H, K, and a homomorphism ¢ : K — Aut(H), we may define a
group structure on {(h, k) | h € H,k € K}, denoted as H x, K, by

(h1, k1) (he, k) = (h1¢(k1)(h2), kiks)
which is called the semi-direct product of H and K with respect to ¢.

Theorem 1.6.8. H x4 K is a group. Identifying H with {(h,1) | he H} and K with {(1,k) | k € K}, we
have HIH xy K, K <Hxy K, Hn K =1and HK = H x4 K.

Remark 1.6.9. If ¢ : K — Aut(H) is trivial, then H x, K is simply the direct product H x K.
Example 1.6.10. 1. Dy, ={r,s). H={r) < Dy,, K ={_s). Then Dy, = H x4 K = H x4 C5, where
é(s): h— shs™t =h~1
2. In general, if H is abelian and K = (y) is a cyclic group of order 2, define ¢ : K — Aut(H) by
P(y) : x> x~1; this gives H x4 C.
In the case H = 7Z, Z x4 C5 is called the infinite dihedral group, denoted as D..

3. More generally, if H is abelian, K = Cy, = (y) and ¢ : K — Aut(H) as above. Then we obtain
H ) 0211-

4. A4 = (CZ X CQ) X Cg.

Example 1.6.11. Groups of order p? for p odd primes.
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Fact. 1If |G| = p® and G is nonabelian, then Z(G) = [G,G] =~ C, := (x).
Lemma 1.6.12. The map G 3 x — 2P is a homomorphism.
We have 2 cases:

1. All elements have order p. Let y ¢ (x). Then H := (z,y) = C}, x C}, and since |G : H| = p, H < G.

Let 2 ¢ H. Since z € Z(G), zzz7" = z; let 2y2z~1 = 2%°. Since zy2z~'y~! € [G, G| = (), we have

1

b=1,i.e, zyz~" = 2%. a can be any integer between 1 and —1. But one can show each choice yields

the same group structure. Hence

G={r,y,z|aP =yP =2 =1, 2y = yz, vz = zx, 2y = TYZ2)

2. G has an element y of order p?>. Then we have y? € Z(G) = y? = 27 for some j =1,...,p— 1.

Claim. G\(y) has an element of order p.

Let 2 € G\(y); again, 2P = 2 for some i = 1,...,p — 1. Since g — ¢” is a homomorphism, we have
2/ = y'277 has order p, and it’s not in (y).

Thus G = (y) x (z'), here 2'yz'~1 = y* for some k such that y*" =y, i.e, &» = 1 (mod p)?. Hence
k =1+ k'p for some p 1 k’. We may check each choice of k’ gives the isomorphic group, hence

G= 7 |y =2 =12y =y"7)
Example 1.6.13. Nonabelian groups G of order 8. As the fact above, Z(G) = [G, G] := (x) is cyclic of

order p. Now assume p = 2.

1. Jy ¢ {1,z} such that y> = 1: Then H := (y is not normal in G. Consider the G-action on G/H

by left translation. Then its kernel is (| gHg~! = 1 since H is not normal and has order 2. Thus
geG
G =T < Sig:a) = S4, and hence G = Dg.

2. G does not have another element of order 2. Then G =~ Qs. (G/Z(G) = V})
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1.7 Special Genres of Groups

1.7.1 p-groups

Theorem 1.7.1. Let P be a group of order p*. Then
1. Z(P) is nontrivial.
22 14#H<IP=HnZ(P)#1

3. If H< P, then for any p® dividing |H|, there’s a normal subgroup of P of order p® in H. In particular,

P has a normal subgroup of order p° (b =1,...,a)
4. H< P= H < Ng(H)

5. Every maximal subgroup of P is of index p and is normal in P.

1.7.2 Nilpotent groups

Definition. Let G be a group. A central series for G is a sequence of (normal) subgroups 1 = Hy <
H, <---< H, =G such that [G, H;] < H;_;.

Remark 1.7.2. Note that H <G < [G,H| < H. Thus |G, H;| < H;-1 = H; < G. Also,

G, H)<Hiy, ©1=[G/Hi_,H;/H; 1] <G/H;_,
i Hi/H’ifl < Z(G/Hzfl)

which is why such a sequence is called a central series.
There are 2 ways to construct central series for G, if such a sequence of subgroups exists:

e From the bottom: If 1 = Hy < H; < --- < H, = G is a central series, then H, < Z(G).
That is, the largest possible H; is Z(G). Put Zy(G) = 1 and Z,(G) = Z(G). Likewise, the
largest possible choice for Hy/H; is Z(G/H;); thus, we choose Z5(G) be to the subgroup such that
Zy(G) ) Z1(G) = Z(G/Z1(G)). Continuing in this way, we may define Z;(G) to be the subgroup such
that Z;(G)/Zi-1(G) = Z(G/ Zi—1(G)).

Definition. The sequence of subgroups 1 = Zy(G) < Z1(G) < Z»(G) < --- is called the upper central

series, or ascending central series for G.
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o From the top: The smallest normal subgroup N such that G/N is abelian is [G, G]. Let G° = G and
G' = [G,G]. Next, if N is a normal subgroup contained in G* and G'/N < Z(G/N), then we have
for all g e G, h e G*

ghN = hgN < ¢ 'h~'ghe N

so the smallest such N is [G, G']. Let G? = [G, G']. Continuing in this way, define G"™! = [G, G"].

Definition. The sequence of the normal subgroups G = G° > G! > G2 > - - - is called the lower central

series, or descending central series for G.
Theorem 1.7.3. Let G be a group. TFAE:
1. G has a central series.
2. Z,(G) = G for some n.
3. G™ =1 for some m.
Moreover, if 2. or 3. holds, then the smallest n with Z,(G) and the smallest m with G™ = 1 coincide.

Definition. If G is a group satisfying one of the 3 statements above, then G is said to be nilpotent, and

thus smallest n in 2. is called the nilpotent class of G.

Remark 1.7.4. 1. Nilpotent implies solvable. The converse may not hold in general. For instance, S5

is solvable but not nilpotent since Z(S3) = 1.
2. Z;(@),G" are all characteristic subgroups of G.
Example 1.7.5. 1. Abelian groups are all nilpotent of class 1.
2. Q3 and Dg are nilpotent of class 2. In general, a nonabelian group of order p? is nilpotent of class 2.
3. All finite p-groups are nilpotent, since their centers are nontrivial.

Theorem 1.7.6. Let G be a finite group, pi,...,p, be all distinct prime divisors of |G| and P; €
Syl,,(G) (i =1,...,n). Then, TFAE:

1. G is nilpotent.
2. If H < G, then H < Ng(H).
3. P, <@ for all 4.

4. G~ P, x---x P,.
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1.7.3 Solvable groups

Definition. Let G be a group. Define G° := G, G*™! := [G*, G']. The sequence G° > G' > - - is called

the derived series, or commutator series for G.
Theorem 1.7.7. (G is solvable < G™ =1 for some n > 0.

Definition. If G is solvable, the smallest nonnegative n for which G™ = 1 is called the solvable length
of G, denoted by dI(G).

Example 1.7.8.

1. S, is solvable if and only if n < 4.

Proof. Note that [S,,S,] < A,. By simplicity of A,, for n > 5 and n = 3, we see [S,, S| = An;
trivially, [Sy : So] = A2 = 1. For n = 4, normal subgroups of S, contained in A, are

1, H = {1,(12)(34), (13)(24), (14)(23)} and A,

Since S4/H =~ S3 is not abelian, thus [S4, Sy| = A4. (Recall that groups of order 6 are isomorphic to
either C or S3.) The result follows again by the fact that A, is simple for n > 5. L]

2. Let G = Dy, ={(r,s|r" =s*>=1,sr =r~'s). Then [G,G] = {r?).

Proof. Since s™'r7lsr = r% (r?) < [G,G].

e (nis odd) Then (r?) = {r), implying that G/{r?) has order 2, thus [G,G] < (r?).
e (nis even) That [G : (r*)] = 4 implies G/{r?) has order 4, and thus [G,G] < {r?).

In conclusion, we have [G, G| = (r?), which is cyclic, and thus G is solvable. O

Remark 1.7.9. In the definition of the solvable groups, the sequence 1 = Hy I H; J--- < Hy, = G only
require that H; < H; 1, but H; need not be normal in G. However, in the definition of the derived series,
G" < G for each i. (Recall that [G,G] char G.)

Theorem 1.7.10 (Burnside’s). Groups of order p®q®, p, ¢ being primes, are solvable.

Theorem 1.7.11 (Feit-Thompson). Groups of odd order are solvable.
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Chapter 2

Ring theory
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2.1 Concept of Rings

Definition. A ring R is a set with two binary operations, + and x, such that
1. (R,+) is an abelian group.
2. x is associative.
J.ax(b+c)=axbt+axcand (b+c¢)xa=bxa+cxaforalla,b,ceR.
We usually omit x if no ambiguity occurs.
o If x is commutative, then R is called a commutative ring.

o If R has an element, denoted by 1, such that 1 x a =a =a x 1 for all a € R, then R is called a ring
with identity (or unity).

Let R be a ring with identity.

1. If for all a € R and a # 0, there’s b € R such that ab = ba = 1, then R is called a division ring, and

such a b is denoted by a™!, called the multiplicative inverse of a.
2. If R is a noncommutative division ring, then R is a skew field.
3. If R is a commutative division ring with 0 # 1, then R is a field.

Remark. If French, corps means field. But in mathematics, corps means division ring while corps com-

mutatif means field.
Example 2.1.1.

1. Let R be any abelian group and define x on R by setting a x b = 0 for all a,b € R. Then R becomes

a ring, called a trivial ring.
2. R = {0} is the only ring such that 1 = 0.
3. Z,Q,R,C are commutative rings; Q, R, C are fields.
4. 7Z/nZ is a commutative ring; it’s a field < n is a prime.

5. Let H:={a+bi + c¢j + dk | a,b,c,d € R}, where H stands for Hamilton. Define + on H componen-

twise and x by expanding directly via distributive law such that
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e ij=k=—ji jk=i=—kj; ki=j=—ik

Then H is a noncommutative ring, called the ring of real Hamilton Quaternions.

Proof. It & = a+bi + cj + dk, let @ := a — bi — ¢j — dk, the quaternionic conjugate. Then
1

aa=a’>+0"+c*+d>eRspand aa =0 < a =0, and hence ™! = —a. O
o

6. M, (Z),M, (Q),M,(R), M, (C) are rings with identity.

7. 27 is a commutative ring without identity.

b
8. { ( ab ) la,be R} is a field, isomorphic to C.
—b a

9. The set of real-valued continuous functions defined on [0, 1] is a commutative ring with identity. The
set of real-valued continuous functions with compact support defined on [0, 1] is a commutative ring

without identity.
Proposition 2.1.2. Let R be a ring and a,b € R.
1. 0a = a0 =0.
2. (—a)b = a(—b) = —(ab), where —a denotes the additive inverse of a.
3. (—a)(—=b) = ab.
4. The multiplicative identity, if exists one, is unique.
Definition. Let R be a ring.
1. A nonzero element a € R is a zero divisor if there’s 0 # b € R such that ab =0 or ba = 0.

2. Let R be a ring with identity 1 # 0. An element v € R is an unit if there’s v € R such that
uv = 1 = vu. The set of all units in R is denoted by R*.

Remark 2.1.3.
1. R* is automatically a multiplicative group, and is called the group of units of R.
2. A zero divisor is not a unit.

3. The definition of a division ring can be rephrased as a ring with identity such that all nonzero

elements are units.
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Example 2.1.4.

01
1. (0 0 € M, (Q) is a zero divisor. In fact, a matrix A € M, (Q) is a zero divisor < det A = 0, and

is a unit < det A # 0.
2. In Z/nZ, a # 0 is a zero divisor < ged(a,n) # 1, and is a unit < ged(a,n) = 1.

3. Let D # 1 be a square-free integer. Q (\/ﬁ) = {a + VD | a,be Q} is a field, and (a + b\/ﬁ)fl =
a—bvVD
a? — 2D’
Definition. A commutative ring with identity is said to be an integral domain if it possesses no zero

divisor.

Proposition 2.1.5 (Cancellation laws). Let R be a ring. If 0 # a € R is not a zero divisor, then

ab=ac = b= cand ba = ca = b = c. In particular, if R is an integral domain, then the cancellation laws
holds.

Corollary 2.1.5.1. A finite integral domain is a field.

Remark 2.1.6. If R is a finite ring with identity having no zero divisor, then R is a division ring. Also,

a theorem of Wedderburn shows that a finite division ring is commutative, and hence a field.

Definition. A subset S of R is said to be a subring if S is an additive subgroup of R that is closed under
multiplication. We denote the subring relation by S < R.

Example 2.1.7.
1. Z<Q<R<C.
2. nZ < 7.
3. Z+Zi+Zj+ Zk < H.

Example 2.1.8. [The ring of quadratic integers] Let D # 1 be a square-free integer. Let

4. L+7i+7j+7

0 = {a +bV/DeQ (\/5) | a+bV'D is a root of some monic polynomial in Z[:B]} .

Z + 7ZND if D=,23

Exercise. O = 1 D
Z+Z+;ﬁ
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Solution. Let a + bv/D € O. Then 2 — 2ax + (a®> — b*D) € Z[z]. Let a = %, m € Z. Then

a’> —b’DeZ < m*— (2b)*D € AZ

Let b= g, n € N. Then it’s equivalent to m? — n2D € 4Z. Assume that D = 2,3 mod 4. Then m, n must

be even since an odd square equal 1 modulo 4. This proves the first case. Now assume D = 1 mod 4. Then

m,n share the same parity and m,n can be even or odd. This proves the second case.
O is called the ring of integers in Q (\/5)
 In the case D = —1, the ring O = Z[i] is called the ring of Gaussian integers.
 Define the norm function N on O by N (a + b\/ﬁ) = (a + b\/b) (a — b\/ﬁ) =a?—bD.
o N(af) = N(@)N(8)
o a€ O isaunit & N(a) = +1.

Proof. (<) N (a+bvD) = £1= (a+bVD) ' =+ (a—bV/D) € O. (check if D =, 1)

O

(=) If a+bvD is a unit, so is a — byv/D (check !), and thus (a + b\/ﬁ) (a — b\/ﬁ) e 7 is a unit.

Hence N (a + b\/ﬁ) = +1.
e When D < 0, O is finite.

. (D=-2)N(a+b/-2)=a’>+2*=1<b=0,a=+1.
2. (D=-1) 0" = {1, 44} (a*>+V* =1).

3. (D=-3)O0* ={exp—= [k =0,...,5} (a®> +ab+b*=1).

3
e When D > 0, O* = {£1} x (&) for some 0 < € € O, called the fundamental unit.
o D=2~ec=14++2.

o D=3~ ec=2++/3.

1
o D=5~ ec= +2\/5.
o D=6~ =5+ 26.

o D =31~ ¢=1520+271v/31.

o D = 46 ~ £ = 24335 + 3588+/46.
o D =65~ c=28++65.
o D =67~ e = 48842 + 5967+/67.
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o D =94~ ¢ = 2143295 4 221064+/94.

Remark 2.1.9. The determination of ¢ is closely related to Pell’s equation 22 — Dy? = 1. It was studied
extensively in the 7-th century in India by Brahmagupta, who also studied Pythagorean triples. Finding

€ can be done using continued fraction.

2.1.1 Polynomial rings
Let R be a ring and = an indeterminate. A formal sum

p(x) = apa” + -+ a1z + ag, aj € R
is called a polynomial in X with coefficients in R.

o Ifa, # 0, nis called the degree of the polynomial p, denoted by degp, and a,, is called the leading

coeflicient.
e Ifa, =1, pissaid to be monic.

e If a; = 0Vj > 0, then p is called a constant polynomial; if ay # 0, degp = 0, and if ap = 0, a

zero polynomial 0, we define deg( := —oo.
o The set of all polynomials in x with coefficients in R is denoted by R[x].

o Define + and x on R[z]| by

an a;xt + Zn: bxt = Zn:(ai + b;)a’
- L

i= i=0 i=0
(Zn: aixi> (Zn: bﬂ’) = i (Zk: aibk_i) zF
i=0 =0 k=0 \i=0
Under such + and x, R[z| becomes a ring, called the polynomial ring.

Proposition 2.1.10. Let R be a ring.

1. If R is commutative, then so is R[z].

2. If R has an identity, then so does R[z].

3. Assume R is a integral domain and p, ¢ € R[x]. Then

(a) degpq = degp + degq.
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(b) (R[z])* = R*.

(¢) R]z] is an integral domain.

Example 2.1.11. In the case R = Z/4Z, 2(2x +2) =0 and (2z + 1)*> = 1.

2.1.2 Matrix rings

Let R be a ring and M, (R) the set of all n x n matrices with entries all from R. Defined + and x by

(ai;) + (bij) = (C:Lz'j + bij)
(ais) x (big) = (O aixbry)

k=1

Then M, (R) is a ring under such + and x, called the matrix ring.

In general M, (R) is not commutative, even R is commutative.

In general M, (R) has zero divisors.

a 0 --- 0
0 a -~ 0

A matrix of the form | | is called a scalar matrix.
00 --- a

If R is commutative, then scalar matrices commute with every element in M, (R). Moreover, if R
has identity, the center of M, (R) is exactly the set of all scalar matrices. (HW. 13)

0 --- 0
o0

If R has an identity, then | | is the identity of M, (R).
00 - 1

Assume that R has an identity. The group of units of M, (R) are denoted as GL, (R), called the

general linear group of degree n over R.
If S <R, then M,(S) < M,(R).

{upper (lower) triangular matrices} < M, (R).

Remark. If R is commutative, we may define determinant as usual. Then A € GL,(R) < det A € R*.
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2.1.3 Group rings

Let R be a ring and G a group. Let

RG = { Z ayg | ag =0 for all but finitely many ¢ € G}
geG

Z agg + Z byg = Z(ag +by)g

geG geG geG

(Zo) (Z0) =2 (5 )

Then RG is a ring under + and x, called a group ring.

with + and x defined by

Remark. Some people also call it a group algebra, especially when R is a field. The notion of group rings

appears naturally in the group representation theory.

o If R has an identity, then RG has an identity 1z1g.
o If R is commutative, then rlg commutes with every element in RG. More generally, let C be a
conjugacy class of G with finite elements. Then ) rg is in the center of RG. In fact, under some
geC
suitable condition like, for instance, R is a commutative ring with identity 1 and G is a finite group,
every element in the center of the RG is a linear combination of such sums. (HW. 13)

o If R is commutative and G is abelian, then RG is commutative.

o If |G| > 1, then RG in general has zero divisors. For instance, if g has order m > 2, then
(le—9)lgg+ - +1lag" ) =1l —g" =0

 Be careful with confusion arising from notation. For example, in QQs, the element 1-141-(—1) # 0,
whilein H, 1-14+1-(—1) =0.
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2.2 Ring Homomorphisms and Quotient Rings
Definition. Let R and S be rings.

1. A ring homomorphism from R to S is a function ¢ : R — S such that p(a+b) = p(a) + ¢(b) and
o(ab) = p(a)p(b) for all a,b € R.

2. The kernel of ¢ is defined to be the set ker ¢ := {r e R | p(r) = 0}.
3. If ¢ is bijective, then ¢ is called an isomorphism. In such a case, we write R =~ S.

Example 2.2.1.

7 —— Z/nZ
/n is a ring homomorphism with kernel nZ.

T — T

2. Z nZ is not a ring homomorphism unless n = 0 or 1.

T —r NI

Rlz] —— R
3. Let R be a commutative ring and a € R. Then is a ring homomorphism, called

f(@) —— f(a)

an evaluation homomorphism at a.

Proposition 2.2.2. Let ¢ : R — S be a ring homomorphism.

1. p(R) < S.

2. ker ¢ < R. Moreover, aker ¢, (ker p)a < keryp Va € R.
Discussion 2.2.3. Let / < R be a subring and R/I be the set of all (left) cosets of I in R. We know that

(r+0+(s+1I):=r+s)+1
is well-defined on R/I. Then when will
(r+0)(s+1I):=rs+1

be well-defined? We first find its necessary condition. Suppose that it’s well-defined. In particular, we
must have for all se [ and r e R

rs+I=r+1)(s+1)=r+01)0+1)=0+1
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implying rs € I for all se I and r € R, i.e, rI < I for all r € R. Likewise, Ir < I for all r € R.
We'll show that this turns out to be sufficient as well. Suppose rI, Ir < [ forallr € R. Now ifri+1 =ro+1

and sy +1 =s9+ 1, ie, r =79+ a and s; = sy + b for some a,b € I, then
(ri+D(si+I)=((ro+a)+D((s2+b)+1)=(ra+a)(sa+b)+1=ryso+1

where the last equality results from the assumption that r1, Ir < I. We conclude our discussion as the

following proposition.

Proposition 2.2.4. Let ] < R. (r+1,s+ I) — rs+ I is well-defined if and only if r1, Ir < I for all
r € R. If at least one of them holds, then R/I is a ring under + and x defined before.

Definition. Let I < R be a subring.
1. If rl < I (vesp. Ir < I) for all r € R, then [ is called a left (resp. right) ideal of R.

2. If I is both a left ideal and right ideal, then I is called an ideal of R. We denote this relation as
I <4R.

3. If I is an ideal of R, then R/I is called the quotient ring of R by I.
Example 2.2.5.

1. {0}, R<R.

2. nZ <17.

3. If ¢ is a ring homomorphism from R, then ker p < R. Conversely, any ideal is the kernel of some

ring homomorphism.

4. n R = My(Q), g g la,be @} is a right ideal but not a left ideal, while { (Z 8) la,be Q}
is a left ideal but not a right ideal.
0o Rlx] —— R
5. R = Q[z]. For a € Q, define . Then
f(@) — [f(a)
ker o, = {f € Q[z] | f(a) = 0} = {(z —a)g(x) € Qz] | g € Q[z]}

In general, if R is a commutative ring, then for all a € R, (a) := {ra | r € R} is an ideal, called the

principal ideal generated by a.
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6. R = Qlxz]. Following the notation above, we have
ker 5 = {(2* + 1)g(z) € Q[z] | g € Qlz]}
By the first isomorphism theorem, we have

@m/(ﬁﬂ) ~ QIW=1] = {a+bvV=1|a,beQ}.

Likewise, the kernel of ¢_ 7 is also (2% + 1), and hence again @[x]/(mQ +1) = Q[v/—1]. Combining
these two isomorphisms, we obtain an automorphism a + by/—1 — a — by/—1 of Q[v/—1]. This is
the starting point of the Galois theory.

7. Q[z] / (x?) has zero divisors, even though Q[z] is an integral domain.

8. If I < R is an ideal, then M, (I) < M, (R). Moreover, M, (I) is the kernel of the canonical projection
M,(R) — M,(R/I). In fact, all ideals of M, (R) are of this form. (HW. 14)

9. Let R be a ring and G a group. We have the ring homomorphism » 7,9 — > 7,. The kernel of this

homomorphism is called the augmentation ideal.
Theorem 2.2.6 (Isomorphism theorems). Let R, S be two rings.
1. If p: R — S is a ring homomorphism, then R/ ker ¢ = Im ¢.
A+B A
B T AnB
R/I R
J)I —J
4. If I <J, then there’s a natural bijection between {S < R | I < S} and {S < R/I}. Moreover, there’s
a natural bijection between {S <R | I < S} and {S I R/I} as well.

2. If A< R and B < R, then

3. If I,J<Rand I <J, then

Definition. Let I, J < R. Define

I+J:={a+blaecl,beJ}and IJ:= {Zaibilaiel,bjeJ,neN}

i=1

Remark 2.2.7. The set {ab | a € I,b € J} may not be closed under +.
o I =1{2p(x)+zq(x)|p qeZx]}. We have 4,22 € {pq | p,qe I} but 4 + 2% ¢ {pq| p,qe I}.
e R=Z[V—6], I =(52++/—6)and J = (2,4/—6). We have
24+V=6=5V-6—(24+V—6)-2— (2+V—6)vV—6¢e IJ
but 2 + 1/—6 fails to be of the form ab, a € I, be J.
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2.2.1 Ideals
Definition. Let A < R.

1. (A):=({I<R|Ac I} is the smallest ideal containing A, also called the ideal generated by
A. Likewise, the left and right ideals generated by A are similarly defined.

2. An ideal generated by a singleton is called a principal ideal.
3. An ideal is said to be finitely generated if it’s generated by a finite set.

Proposition 2.2.8. Let R be a ring with identity 1 # 0. Then
the left ideal generated by Ais RA:=<> ra;|rie Rya;€ I,neN
i=1

the right ideal generated by Ais RA := a;s; | s;€ Rya; e I,neN
=1

1=

the ideal generated by Ais RAR := {Z ria;S; | 1,8 € Rya; € I,ne N}
i=1
Remark 2.2.9. Note that the proposition doesn’t hold in general if R has no identity. For example, when
R =27 and A = {2}, (A) = R but RAR = 8Z.

o In general, in the case of commutative rings, when people speak of the ideal generated by A, they

usually refer to RA, rather than the smallest ideal containing A.

o If R is commutative with identity, then the principal ideal generated by {a} is Ra = {ra | r € R}.

n
However, if R is noncommutative, it’s { > r;as; | i, 8, € R,i € N¢.
i=1

Example 2.2.10.
1. {0} = (0) and R = (1) are principal if R has identity 1 # 0.
2. If R =7, then every ideal is principal since all subgroups of Z is of the form nZ.

3. If G is a finite group and R is a commutative ring with 1, then the augmentation ideal is generated
by the set {g — 1 | g € G}. This may not be the minimal set of generators; for example, if G = (o),

then the augmentation ideal is a principal ideal with generator o — 1.

4. R =Z[\/—6]. I = (2,4/—6) is not principal.
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Proof. Suppose otherwise I = (a). Then 2 = ab,/—6 = ac for some b, ¢, and thus

where N(a + by/—6) = a* + 60 is the norm function. Then N(a) = 1, 2 since they’re integers.

e N(a) =1= a= +1, a contradiction since 1 ¢ (2,+/—6).
e N(a)=2. No such a exists in Z[/—0].

5. R=12Z[z]. I = (2,z) = {2p(x) + zq(x) | p,q € Z[z]} is not principal.
Proof. 1f I = (a), then a must be a constant polynomial, a contradiction. Il

Remark 2.2.11. In Chapter 9, we'll see that if IF is a field, then every ideal in F[z] is principal.
Proposition 2.2.12. Let R be a ring with identity and I < R.

1. I = R < I contains a unit.

2. Assume that R is commutative. Then R is a field < the only ideals of R are {0} and R.

3. Assume that R is an integral domain and a,b € R. Then Then (a) = (b) < a = ub for some unit .
Corollary 2.2.12.1. If F is a field, then any nontrivial ring homomorphism from F must be injective.

Remark 2.2.13. For noncommutative ring R, we still have that if R is a division ring, then R has only
two ideals {0} and R. However, the converse may not hold in general. For example, if F is a field and
n = 2, then M, (F) has only two ideals since an ideal must be of the form M, (I), I <F but M,(F) is not

a division ring.

Definition. An ideal I of a ring R is said to be a maximal ideal if the only ideal containing I are I and

S.

Corollary 2.2.13.1. Let R be a commutative ring with identity and I < R. Then R/I is a field < [ is a

maximal ideal.
Proof. This follows from Proposition 2.2.12 and the fourth isomorphism theorem. [

Remark 2.2.14. If R has no identity, R/I may not be a field for a maximal ideal I. For example, R = 27Z
and [ =47 but R/I is a trivial ring, i.e, ab =0 for all a,b e R/I.
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Proposition 2.2.15. Let R be a ring with identity. Then every proper ideal [ is contained in some

maximal ideal.

Proof. The proof is based on the Zorn’s lemma. Let A := {all proper ideals of R containing /}. If suffices

to check if C is a chain in A, then C has an upper bound in A. Let J = [ J S. We claim J e Aand S < J
SeC
for all S € C. The latter is triviality. For the former, 1 ¢ J since each S € C is proper, and that it’s an

ideal is obvious. ]

Remark 2.2.16. If R does not have identity, then R may not have a maximal ideal. For example R = Q
with x defined by ab = 0 for all a,b € Q. Then Q has no identity and every additive group is an ideal.

However, every proper additive subgroup is contained in another proper subgroup.
Example 2.2.17.
1. nZ is a maximal ideal < Z/nZ is a field < n is a prime.

2. (2, ) is a maximal ideal of Z[z] since Z/(2,z) =~ Z/2Z.

(x) is not a maximal ideal since Z|[x]/(z) = Z is not a field.

3. Let F be a field and G a group. Let I denote the augmentation ideal of FG. Then [ is maximal
since FG/I =~ I is a field, where the isomorphism comes from the fact that I = ker (3 a,9 — > a,)
is the kernel of a surjective homomorphism from FG to F. Notice that in this example G can be

even non-abelian, FG is not commutative and has zero divisors.

Definition. A commutative ring with identity 1 # 0 is called a local ring if it has a unique maximal
ideal I, and R/I is called the residue field of R.

Proposition 2.2.18. Let R be a commutative ring with identity.

1. I # (1) is an ideal of R such that every element of R — I is a unit in R if and only if R is a local

ring and [ is the maximal ideal.
2. If I is a maximal ideal such that every element of 1 + I is a unit in R, then R is a local ring.
Proposition 2.2.19. (HW. 15) Let R be a commutative ring with identity. TFAE:
1. Ris a local ring
2. R— R* is an ideal of R

3. for any x € R, either z or 1 — z is a unit
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Question 2.2.20. When is R/I an integral domain?

Definition. Let R be a commutative ring. We say I < R is a prime ideal if it’s a proper ideal such that
Va,be Rlabe I = aelvbel|.

Proposition 2.2.21. Let R be a commutative ring with identity 1 # 0 and I <R. Then R/I is an integral

domain < [ is a prime ideal.

Proof.

Integral domain < Va,be R[(a+I)(b+1)=0=a+I1=0vb+1=0]
< Va,be Rlabe [ =aelvbel]

Example 2.2.22.
1. R=7Z. nZ is a prime ideal <& n =0 or n is a prime.

2. A principal ideal domain is an integral domain in which every ideal is principal. Then in such a

ring every non-zero prime ideal is maximal.

Proof. Let (x) # 0 be a prime ideal and (y) 2 (z). Then x € (y), i.e, x = yz for some z. Thus
yz € (x). Since y ¢ (z), z € (z), say z = tx. Hence x = yz = ytz, implying yt = 1, i.e, (y) = (1). O

3. Note that {0} < pZ are both prime ideals. In general, unlike maximal ideals, a prime ideal can by

properly contained in another prime ideal.For example, R = Q[zy,...,z,]. Then
(0) < (21) < (x1,20) <+ < (x1,...,2p)
Each of ideals in the sequence is a prime ideal since Q[zy, ... ,xn]/(xl, coy ) = Qzja, ..., 3y 8

an integral domain.

Remark 2.2.23. In general, if R is an integral domain, we define the Krull dimension to be the largest
number of inclusions in a chain of prime ideals. This gives us a way to define the dimension of an algebraic

variety.
Definition. An element z in a ring is nilpotent if 2" = 0 for some n € N.

Proposition 2.2.24. Let R be a commutative ring with 1 # 0. The set, denoted by +/0, of all nilpotent

elements in R is an ideal (HW. 13), and R/+/0 contains no nonzero nilpotent elements.
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Definition. The ideal 4/0 is called the nilradical of R.

Proposition 2.2.25. The nilradical of a commutative ring R with 1 # 0 in the intersection of all the

prime ideals of R.

Proof. Let x be nilpotent and I any prime ideal. Since 2™ = 0 € I for some n € N, x € [ since [ is prime.
We next prove the reverse inclusion. Suppose x is not nilpotent. Let ¥ denote the set of ideals with the
property

neN=z"¢1]
Y is not empty since 0 € ¥. By the Zorn’s lemma to the set X, ordered by inclusion, ¥ has a maximal
element, denoted by J. We will show J is a prime ideal. Let a,b ¢ J. Then (a)+ J, (b) +J 2 J so they're

not in . Hence
zhe(a)+ J, 2™ e (b)+J

for some n,m € N, and thus ™" € (ab) + J. This means (ab) + J ¢ 3, i.e, ab ¢ J. Hence J is a prime
ideal such that x ¢ J. O

Definition. Let R be a commutative ring with 1 # 0. The Jacobson radical Jac(R) is the intersection

of all maximal ideals of R.

Proposition 2.2.26. Let R be a commutative ring with 1 # 0. x € Jac(R) < 1 —zy is a unit in R for all
y e R.

Proof. (=) Suppose 1 —zy is not a unit, then it’s contained in a maximal ideal, say I. Since x € I, xy € I,
and thus 1 € I, a contradiction.

(<) Suppose z ¢ [ for some maximal ideal I. Then (z,1) = (1), and thus xzy+t = 1 for some y € R, t € I,
implying that £ = 1 — zy € I is not a unit. [

Theorem 2.2.27 (Nakayama’s lemma). Let R be a commutative ring with 1 # 0 and M a finitely
generated R-module. Put J = Jac(R). If M = IM for some I <.J, then M = 0.

Proof. Let M = {ay,...,a,yr. Since a; € IM, a; = Z?Zl rija; for some r;; € I. Put A := (r;;) € M,(I)
and a := (ay ay - a,)". Then we have Aa = a, i.e, (A —Ia=0. Put B=A—I. Then

det B-la=adjB-Ba=0

i.e, (det B)a; = 0 for each i. Note that det B = xa(1) = +1 + r for some r € I < J, so det B € R* by
Proposition 2.2.26. Hence a; = 0 for each 1. [
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2.2.2 Rings of Fractions

Goal 2.2.28. Let R be a commutative ring. Construct a larger ring () > R such that every nonzero

non-zero divisor element in R has an inverse of Q) (R =7Z, Q = Q, for instance).

Observation 2.2.29. Let S = {be R | b # 0 and is not a zero divisor} and b € S. If ) contains b, then

it also contains ab™! for all a € R to be a ring. Thus a natural setting for defining @ is
A:={(a,b) e R x S}

Now bb~! should be the identity of @ as we imagine. Thus we should identify (b,b) with (d,d). More
general, if ab™' = cd™!, i.e, ad = bc, we should identity (a,b) with (c,d). Accordingly, we define ~ on A by

(a,b) ~ (¢,d) < ad = be

This is an equivalence relation. Let @) := A/ ~ and denote the equivalence class of (a,b) as %. Define +

and x on ) by
a n ¢ ad+be
b d b
a c ac
— X — = —
b d bd
R—— Q@
Then @ is made into a ring and e is an canonical injective ring homomorphism for each e € S.
a —— —
e

. .. e
Thus R can be regarded as a subring of () and every nonzero non-zero divisor element — of R has an
e

. (&
mverse -—

be
Definition. The ring () constructed is called the ring of fractions of R. In the case when R is an integral
domain, then @ is a field, called the field of fractions.

Example 2.2.30. The following are some examples of rings and their rings of fractions.

R Q
Z Q
ZIV'D] | Qv D]
27 Q
Flz] | F(a)
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More generally, we may construct () > R such that a particular subset of R has an inverse in (). Namely,

let D < R such that a) it does not contain 0 nor zero divisor of R and b) is closed under multiplication.

Then we can construct a ring, denoted by D™'R := (R x D) / ~, in which every element of D has an

inverse.

Theorem 2.2.31. D™'R is the smallest commutative ring with identity containing R as a subring such

that every element in D is a unit, in the sense of the following universal property:

o Let S be any commutative ring with identity and ¢ : R — S any injective ring homomorphism such

that ¢(d) is a unit in S for all d € D. Then there’s an injective ring homomorphism ® : D™'R — S

DR « 1P > Q
\O/
R

Proof. The injection from R to D™ R is given by

extending .

t:R—— DR

ae
a ——> —
e
. ) ae a .
where e is any element of D. Since — = i for all d,e € D, ¢ does not depend on the choice of e.
e

e ¢ is a ring homomorphism since D is multiplicative closed.
e ¢ is injective since D does not contain 0 nor zero divisor.

Via ¢, we may view R as a subring of (). We are ready perfectly to show the universal property. Let
¢ : R — S be an injective homomorphism such that ¢(d) is a unit € S for all d € D. Define ® : D™'R — Q
by sending rd~! to ¢(r)p(d)! for all r € R, d € D.

o & is well-defined and is an extension of ¢.
e & is a ring homomorphism.

o & is injective.
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e p=0o..
O

Definition. Let F be a field and A < F. The subfield generated by A is the intersection of all subfields

of F' containing A, i.e, the smallest subfield containing A.

Corollary 2.2.31.1. Let R be an integral domain and () the field of fractions of R. If a field F contains
a subring R’ isomorphic to R, then the subfield generated by R’ is isomorphic to Q.

Proof. Let ¢ : R ~ R’ < F be a ring isomorphism from R to R’. Then ¢ is an injective homomorphism
from R into F. Then by Theorem 2.2.31, there’s an injective ring homomorphism @ : () — F extending ¢.
Note that every subfield containing R’ = ¢(R) contains the elements of the form ¢(rs™1) for all 7, s € R and
every element of ®(Q)) = @ is of the same form as R'. Hence ®(Q) is exactly the subfield of F generated
by R'. O

Example 2.2.32.

1
L. R=2,D={1,2,2,...}. D'R="7[g).

2. R=17,D = {all odd integers}. D™'R = {% €eQlbis odd}. It has a unique maximal ideal (2).

Example 2.2.33. More generally, if R is an integral domain and P is a prime ideal, then D := R — P
has no 0 and zero divisor and is closed under multiplicative. Then D™!R is a local ring with the unique

maximal ideal generated by P. This process is called the localization of R at P.

2.2.3 Chinese Remainder Theorem
Recall the Chinese remainder theorem:
o If gcd(m,n) = 1, the congruence equations

r=a (modm)

r=b (mod n)
is solvable in Z for all a,b € Z.

Observe that the condition ged(m,n) = 1 is equivalent to mZ + nZ = Z. Now we give a generalized

version.

Theorem 2.2.34 (Chinese remainder theorem). Let R be a commutative ring with identity 1 # 0 and
I, I, ..., I, be ideals in R.
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1. The map
¢:R—— R/I; x --- x R/I,

r——— (r+hL,...,r+1,)
is a ring homomorphism with ker ¢ = (), I,.
2. If I, + I; = R for all i # j, then ¢ is surjective and (\_, [; = 115 I,,.
Proof.
1. A straightforward computation.

2. We prove this for n = 2. Assume that Iy + I, = R. Since 1 € R, 1 = x + y for some x € I, y € Is.
Observe that ¢(z) = (x+1,z+13) = (0+ 11,4+ 1) = (0,1) and ¢(y) = (1,0). Thus for all r{,rs € R,
we have ¢(r1y + roz) = (r1 + 1,72 + I3), demonstrating the surjectivity of ¢. We next show the
second statement. It’s clear that I1lo € [y nIy. Let ae Iy nl;. Thena=a-1=ax+ ay e 1.
Hence 1115 = I; n I. The general case follows once I; + Is - - - I,, = R is established.

Corollary 2.2.34.1. If n = p{* - - - p*, then
ZInL = LJpS' L x - - - X L/ pFZ

as rings. In particular,

(Z/nZ)" = (Z)p3Z)" x - x (Z/pZ)”

as groups.
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2.3 Special Domains

2.3.1 Euclidean Domains
Recall the Euclidean algorithm for Z: to find ged(a,b), b > 0, we compute

a=qb+nr
b= quri+ry

Th—2 = Qqn-1Tn-11+"n

Tn—1 = QqnTn + 0
with 0 <7, <71 <---<ry <71 <band g € Zso. Then r, = ged(a,b).
Discussion 2.3.1. Why does this work? It’s down to three properties:

1. On Z, there’s a function, namely the absolute value, taking values in Z that measures the size of an
element in Z.

2. (Division algorithm) Va,b.o€ Z g, r € Zla=qb+1r A0 <71 < b).
3. Z=o has a property that any strictly decreasing sequence in Z-, must terminate in a finite stage.
Definition. Let R be integral domain.

1. A function N : R\{0} — Z is called a norm.

2. R is called an Euclidean domain if there is a norm N on R such that for all a,b.o € R, there are
q,7 € R with

e a=0bq+r
e 7=0o0r N(b) > N(r).
Example 2.3.2. 1. Z with N(a) = |a|.
2. Flz] (F : a field) with N(f) = deg f (Note that N(0) := —o0).
3. Z[v/—1] with N(a + by/—1) = a® 4+ V*.

Proof. Let a, B0 € Z[\/—1] be given. To find ¢,r € Z[+/—1] such that a« = ¢f + r, we let ¢ be a
1 1
% and let r := o — ¢f8. Then |q — %]2 <3 ie, [r]>=]a—gB]* < §|ﬂ|2. O

lattice point closest to
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14T
2

~14+/-3
2

. Z[—1 +4/-11

5 ZI
(HW. 16)

|, Z] ], Z[\/—2] are Euclidean domains with N being | - |?.

5. Any discrete valuation ring R is a Euclidean domain with N(a) := v(a).

Proof. Given a, by € R, if v(b) > v(a), then a = 0-b+ a; if v(b) < v(a), then take ¢ = ab™' € R, i.e,
a = qb. O

6. Any field is a Euclidean domain with N(a) = 0 for all a.
Proposition 2.3.3. Any ideal in an Euclidean domain R is principal.

Proof. Let N be the norm function associated with R. Let I < R. If I = (0), there’s nothing to prove.
Suppose I # (0). Let b,y € I such that N(b) = min{N(r) | r € I}. For any a € I, we have a = gb+ r for
some ¢, € R with r = 0 or N(b) > N(r). Since r = a — ¢qb € I, it forces that r = 0 since b has smallest

norm in I. Hence a = qb. Il
Example 2.3.4. 1. Z[z] is not an Euclidean domain since (2, x) is not principal.

2. Z[y/—6] is not an Euclidean domain since (2,+/—6) is not principal.

3. Z[y/-5] is not an Euclidean domain since (3,1 + 1/—5) is not principal.
Definition. Let R be a commutative ring and a,b e R with b # 0.

1. If there’s a ¢ € R such that a = bc, then we say b divides a, or a is a multiple of b, and write b | a.

2. A G.C.D. of a, b, if exists, is an element d € R such that d | a,b and d' | d for all d’ such that d’ | a,b.
If it is the case, we write d = ged(a, b), or simply d = (a, b).

Remark 2.3.5. Note that a G.C.D. may not exist in general. For example, R = Z[+/—5], a = 6 and

b=3(1+4+/-5).

Proof. If d | a,b, then N(d) | N(a) = 36 and N(d) | N(b) = 54 by the multiplicativity of N, and thus
N(d) | 18. On the other hand, 3 | a,b and 1 + /=5 | a,b. If dis a G.C.D. of a,b, 9 = N(3) | N(d)
and 6 = N(1 ++/=5) | N(d), and thus 18 | N(d). Therefore, N(d) = 18; however, in Z[/—5], there’s no

element of norm 18. O]

Remark 2.3.6. Let R be a Euclidean domain. Then (gcd(a,b)) = (a, b) given that a G.C.D. of a, b exists.
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Proof. Note b | a < a € (b) < (a) < (b), so a G.C.D d of a,b satisfies (a), (b) < (d), and thus (a,b) < (d).
Also, if (a,b) < (d'), then (d) < (d’). Hence if d exists, (d) is the smallest principal ideal containing (a,b).
Since any ideal in a Euclidean domain is principal, the smallest principal ideal containing (a, b) is simply

(a, b) itself, and thus (d) = (a,b). O
This somewhat shows that it’ll not cause confusion to denote ged(a, b) by (a,b).
Remark 2.3.7. ged(a, b), if exists, is unique up to a unit.

Remark 2.3.8. The Fuclidean algorithm for Z is very fast, in the sense that the divisions required to

compute (a,b) is < 5 - (# of digits of the smaller one between a, b). Precisely, it’s less than

_ loga log b 1
min log. HQ\/g’ log HZ\/E +

Some books on continued fractions may mention this.

Proposition 2.3.9 (A criterion for showing a ring is not a Euclidean domain). Let R be an integral
domain and S < R\{0}. If R is an Euclidean domain, then there’s a b€ R\S such that Vae R3¢, 7€ R
with 7)a=¢b+rand 2)r=0o0rres.

Proof. Let N be the associated norm. Let b € R\S such that b # 0 and N(b) = min{N(a) | a €
R\(S u {0})}. Since R is an Euclidean domain, a = ¢b + r with r = 0 or N(b) > N(r), which implies
res. O
14+4/-19
—
Proof. Suppose otherwise R is a Euclidean domain. Choose S = {£1} and let b be an element satisfying
the property in Proposition 2.3.9. Consider a = 2. Then b | 2 — r for r € {0, %1}, i.e, b | 1,2,3, i.e,
N(b) | 1,4,9, where N is the usual norm on R. Since

1+ /=19
¥

Example 2.3.10. R =7Z] ] is not a Euclidean domain (in fact R is PID).

N(z + ) = 2* + a2y + 5y

that N(b) = 1,4,9 implies b = +1, +2, +3, where +1 are impossible since +1 € S.

14++/-19
2

Euclidean domain. O

Consider a = . However, none of a, a + 1 can be divisible by any of +2, +3, and thus R is not a
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2.3.2 Principal Ideal Domains

Definition. A principal ideal domain, or PID for short, is an integral domain in which every ideal is

principal.
Example 2.3.11. 1. Proposition 2.3.3 shows that a Euclidean domain is PID.
2. Zlx], Z]\/=5], Z][v/—5] are NOT PIDs.

1++vD
2

3. Z] ] for D = -3, -7, 11,19, —43, —67, =163 and Z[v/D] for D = —1, —2 are PIDs.

1+ 4/-163
2

Remark. N(z +y ) = x® + xy + 41y*. Consider f(n) = n? +n + 41. Note f(n) is a prime

1+4++4/-163
2

for n =10,1,...,39. Some theorems in the algebraic number theory with the fact Z] | is a PID

1+4++4/-163
+T] such that N(a) = p. We may check that
the smallest prime that N represents is 41. Thus, if f(n) < 41? — 1, f(n) must be a prime.

imply that if p | n? + n + 41, then there’s an « € Z

Proposition 2.3.12. Let R be a PID, a,b.o € R and d € R such that (d) = (a,b). Then

1. d = ged(a,b).

2. d = ax + by for some z,y € R.

3. d is unique up to units.
Proof. See Remark 2.3.6. O
Proposition 2.3.13. Every nonzero prime ideal in a PID is maximal.

Proof. Let (p) be a prime ideal and suppose (p) < (a) < (1). Since p € (a), p = ab for some b, and thus
a€(p)orbe(p). Iface (p), (a) = (p). Iif be (p), (b) = (p), implying a is a unit, and thus (a) = (1). O

Corollary 2.3.13.1. If R is a commutative ring such that R[z] is a PID, then R is a field.
Proof. Since (z) is a prime ideal in R|z], (z) is maximal, i.e, R = R[x]/(z) is a field. O

Proposition 2.3.14. Let R be a integral domain. If every prime ideal of R is principle, then R is a PID.
(HW. 16)

Proof.
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1° Let S := {I < R | I is not principal}. Suppose otherwise S # ¢f. Show S admits a maximal

element.

2° Let I € S be maximal. Let abe I but a,b¢ I. Let I, = (I,a), I, = (I,b) and
J:={reR|rl,c I}
Show that [, = («) and J = (B) with I < I, € J and [,J = (af) < I.

3° If x € I, show x = sa for some s € J. Show I = [,J is principal, which is a contradiction.

O]

Proposition 2.3.15. Let R be a PID and D a multiplicative closed subset of R. Then D~'R is a PID.
(HW. 16)

Definition. A positive norm N on an integral domain is called a Dedekind-Hasse norm if N(0) = 0
and for all a, b,y € R, either a € (b) or there’s a ¢ € (a,b) such that 0 < N(c) < N(b).

Proposition 2.3.16. R is a PID if and only if R has a Dedekind-Hasse norm N.

Proof. (<) Let (0) # I < R and let 0 # b € [ such that N(b) = min{N(a) | a € I — {0}}. Then I = (b).

(=) Since R is a PID, R is a UFD. Define N : R — Z>o by N(0) = 0 and N(a) = 2" if a = up;y - - - py,
where p;s are irreducibles and u is a unit. Clearly, we have N(ab) = N(a)N(b) and N is positive. Let
a,byo € R. Since R is PID, (a,b) = (r) for some r € R. If a = ¢b for some ¢, then (r) = (a,b) = (b).
Otherwise, (b) # (r). Since b € (1), b = xr for some non-unit ¢, and thus N(b) > N(r). O

Remark 2.3.17. The norm N constructed in the proof possesses more properties:
1. N(ab) = N(a)N(b)
2. Na)=0<a=0

3. N(a) =1 < ais a unit.

2.3.3 Unique Factorization Domains

Recall the fundamental theorem of arithmetic: every positive integer has a unique prime factorization.
The notion of unique factorization domain, or UFD for short, generalizes this property of Z. Note

that there are two properties of primes that we use very often

1. p=ab=aorbis aunit +1.
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2. plab=plaorp]|b.
Definition. Let R be an integral domain and p € R\(R* u {0}).
1. pis called a irreducible if p = ab implies a or b is a unit, i.e, (p) = (a) or (b).
2. pis called a prime if p | ab implies p | a or p | b, i.e, (p) is a prime ideal.
3. If a,b € R satisfies a = ub for some unit u, then a, b are said to be associates.
Proposition 2.3.18. In an integral domain, a prime is an irreducible.

Proof. Let p be a prime and p = ab. Then a € (p) or b € (p). If a € (p), bis a unit. If b € (p), a is a
unit. =

Example 2.3.19. In Z[\/=5], 2,3,1 £ 1/—5 are irreducibles but not primes.

Proof. If a = be, then N(a) = N(b)N(c). Also, N(a) = 1 < a is a unit. Since N(2) = 4, N(3)
9, N(1++/—5) = 6 but no element has norm 2 or 3, they’re all irreducibles. Since 2x3 = (1++/—5)(1—+/=5)
but 2,3t 1+ /=5, they’re not primes.

[

Proposition 2.3.20. In a PID, an irreducible is a prime.

Proof. Let p be an irreducible. We will show that (p) is maximal. Let (p) < (a) < (1). Then we have

p € (a), i.e, p = ab for some b. Since p is irreducible, a or b is a unit. If a is a unit, (a) = (1). If b is a unit,
(@) = (p). O

Definition. A UFD is an integral domain R with the following properties: if » € R is not 0 nor a unit,
then

1. r can be written as a finite product of irreducibles.

2. the factorization is unique up to units and order in the sense that if r = py---p,, = ¢1 -+ - ¢, with

Pi, q; irreducibles, then m = n and after renumbering, if necessary, p; = u;q; for some units ;.
Example 2.3.21. 1. All fields are UFDs.
2. PIDs are UFDs. Thus Z, F[z], Z[y/—1] are UFDs.
3. If Ris UFD, so is R[z]. Thus Z[z1,...,z,] and F[xy,...,z,| are UFDs.

4. 7Z[2i] is not a UFD since +2, +2i are irreducibles, we have 4 = 2---2 = (2¢)(—2i) but 2 is not an
associates of +2i (+i ¢ Z[2i]). However, for elements with odd norm in Z[2i], the UF property still
holds
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5. Z[v/—b] is not a UFD since 6 = 2-3 = (1++/—5)(1—+/—5). However, Z[/—5] still has a UF property
at the level of ideals in the following sense: every non-zero ideal in Z+/—5] can be written uniquely

as a product of primes ideals.

/ /

(6)=(2,1++v-5)’(3,1++-5) (3,1 — v-5)

-~

Py Ps Py

One can check they're all maximal and (2) = PZ, (3) = P3P}, (1 ++/=5) = B, (1 —+/—5) = P;.
This UF property at the level of ideals is a property or a definition of a Dedekind domain.

Proposition 2.3.22. In a UFD, primes < irreducibles.

Proof. (<) Let p be an irreducible and ab € (p), i.e, ab = pt for some t. Let a = up; - - - p, and b = vqy - - - G,
where p;, ¢; are irreducibles and u,v are units. By the uniqueness of the factorization, p must divide at

least one of p;, ¢;, and thus a € (p) or b € (p). O

Proposition 2.3.23. Let R be a UFD and a,b.o € R. Suppose that a = up{' ---pS* and b = vp{1 cople,

where p;s are irreducibles and u, v are units. Then ged(a,b) = prlnin{el’fl} .. poinlenfn},

Lemma 2.3.24 (Ascending chain condition for PIDs, ACC). Let R be PID. If ; < I, < --- is an
ascending chain of ideals in R, then there’s an N € N such that I, = Iy for alln > N.

Proof. Let I = JI). This is clearly an ideal. Since R is PID, I = (a) for some a € R. Since a€ I, a€ Iy
k
for some N € N, and thus I < [, for all n > N. The result follows. O

Theorem 2.3.25. Every PID is a UFD.

Proof. We break the proof into three steps. Let r € R\(R* u {0}).

1° Show that r is divisible by some irreducible.
2° Show that r is a finite product of irreducibles.

3° Show that the factorization is unique.

1° If r is reducible, we are done. Otherwise, r = rys; for some ry, s; € R\(R* u{0}). If ry is irreducible,

we are done. Otherwise, continuing this process we will obtain rq,79,.... Consider the chain

(r) < (r) < (r2) -+

where inequalities are due to that s; are not units. By Lemma 2.3.24, this chain cannot go on for

good, and thus there’s an N € N such that ry is irreducible by our construction with ry | r.
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2° If r is irreducible, we are done. Otherwise, by 1°, r = rys; for some irreducible s;. If ry is irreducible,

we are done. Otherwise, continuing this process we obtain rq,7s,.... Consider the chain
(r) = (r) < (r2) = -

By Lemma 2.3.24, this chain cannot go on for good, and thus there’s an N € N such that ry is

irreducible by our construction. Thus r = s; - - syry.

3° Suppose 7 = Py Pn = q1°--Qm, Where p;,q; are irreducibles, and hence primes by Proposition
2.3.20. Since p1 | q1 - gm, WLOG, say p; | ¢1, i.e, piu; = ¢1. Since ¢ is irreducible, u; is a unit.

Hence ps -+ p, = u1qg2 - - - ¢, The proof will be completed by continuing this process.

Irreducibles/primes in Z|i|

Observation 2.3.26. In the following, by p we always denote a prime in Z.
1. If m € Z[i] has norm p, then 7 is an irreducible.

2. If 7 is a prime in Z[i], then (7) N Z = pZ for some p. In this case, we say 7 is a prime of Z[i| lying

above p.

o Casep=2: 2= (1+14)(1—1)and £1 £ i are associates of each other; (2) = (1 + ).

o Case p =4 3: a® + b*> = p has no solution in Z, implying that p is an irreducible in Z[i]; this also

implies that Z[i]/(p) is a field of p? elements.

o Case p =4 1: recall that (Z/pZ)™ is a cyclic group, i.e, (Z/pZ)* = {a). for some a. Let n := aP~D/4,
Then n? = a®"Y/2. Since orda = p — 1, a? V2 =, —1,ie, (n +i)(n —i) =n?+1 =, 0. Now
p| (n+i)(n—1i)but pt(n+1i),(n—1),sopisnot a prime in Z[i]. Hence p = (a + bi)(a — bi) for

some a,b € Z such that a® + b?> = p; also note that a + bi and a — bi are not associates.

Proposition 2.3.27. 1. pis a sum of two squares <> p=2or p=1 (mod 4).
2. Irreducibles in Z[i] are 1 + i, p(=4 3), a £ bi with norm p(=4 1) and their associates.

Corollary 2.3.27.1. Let n = 2%p7* -+ -pi’“q{l -~ qJm where p; =4 1, ¢; =4 3 are primes. Then n is a sum

of two squares < 2 | f; for all j.
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2.4 Polynomial Rings

Proposition 2.4.1. Let R be an integral domain.
1. deg fg = deg f + degg for all f,g € R|x].
2. Rlz|* = R*.
3. R]z] is an integral domain.

Proposition 2.4.2. Let I 9 R and (/) = I[z]. Then R[z]/(I) = (R/I)[z]. In particular, if I is a prime
ideal, () is a prime ideal of R|x].

Proof. Consider the reduction homomorphism R[z] — (R/I)|[x]. O

Definition. Let xz,...,x, be indeterminates. The polynomial ring in variables zi,...,x, with

coefficients in R is defined inductively to be

Rlxy,...,xn] = Rlz1, ..., Tpe1][T4)

dn

dy |
1 n -

e A monomial is an element of [xy,...,z,] of the form 7" ---x
o The degree of a nonzero polynomial is the largest degree of any of its monomial terms.
e A polynomial is said to be homogeneous if each of its monomial terms shares the same degree.
Theorem 2.4.3. Let F be a field. Then deg : F[z| — Z is a Euclidean norm on F'[x].
Corollary 2.4.3.1. If F' is a field. Then F[z] is an Euclidean domain, and hence PID and UFD.

Remark 2.4.4. According to the proof of ED = PID, an ideal of F[z] is generated by a polynomial of

smallest degree in it.

Proposition 2.4.5. Let R be a commutative ring. Then R is a field < R[z] is a PID.

2.4.1 Gauss’ lemma

Lemma 2.4.6 (Gauss’). Let R be a UFD and F be its field of fractions. If f € R[] is reducible in F[x],
then it’s reducible in R[z]. More precisely, if f(z) = A(z)B(x) for some nonconstant A, B € F[z], then
there are r, s € F* such that f(x) = a(z)b(z), where a = rA,b = sB € R[x].
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Proof. Let f(x) = A(x)B(x) for some nonconstant polynomials A, B € F[z]. Pick di,ds € R such that
d(x) = diA(x),b = dyB(z) € R[z]; for instance, just take d; and dy to be LCMs of denominators of
coefficients in A and B, respectively. Put d = dydy. Then df(z) = a/(z)V/(x). Since R is a UFD, we
have d = p; ---p, for some irreducibles p; in R, and hence in R[z]. Since R[z]/p;R[z] = (R/(p;))[]
is an integral domain, (p;) is a prime ideal in R[z]. Consider the reduction homomorphism modulo p;.
Then 0 = df (z) = oa'(x)V/(x) (mod p;), and hence o’ or b’ belongs to (p;). WLOG, say a' € (p;). Then
a"(x) := —ad'(z) € R[z]. Then py---p,f(zr) = a"(z)l/(x). Continuing this way and we will obtain
a,b e R[z] SilCh that f(x) = a(z)b(x). N
Corollary 2.4.6.1. Let R be a UFD and F be its field of fractions. Let f € R[z]| such that 1 is a GCD of
its coefficients. Then f is irreducible in R[z] < f is irreducible in F[x].

Proof. (=) follows from Lemma 2.4.6.
(<) Suppose f is reducible in R[x]. Since 1 is a GCD of coefficients of f, f(z) = a(x)b(x) for some

nonconstant polynomials a,b € R[z], and hence f is reducible in F'[x] with the same factorization. N
Theorem 2.4.7. R[z] is a UFD < R is a UFD.

Proof. (=) is clear.
(<) Let F denote the field of fractions of R and put f(z) = p1(z) - - - pn(z) a factorization of f(z) into a
product of irreducibles in F[z|. By Lemma 2.4.6, there are r; € F* such that P;(z) := r;p;(x) € R[x] and

1
f(x) = Pi(z) - Py(x). Let d; denote a GCD of coefficients of P;(z) and put Q;(z) := d—P] Then
J

fl@)=di---dyQi(z) - Qu(z)
Let dy---d, = s1 -y, be a factorization of d; - - - d,, into irreducibles in R, and hence in R[z]. Now
f(@) =s1-5,Q1(z) - Qu(z)

Since 1 is a GCD of coefficients in (); and @); is irreducibles in F'[z], @); is irreducible in R[z] by Corollary
2.4.6.1. The uniqueness of the factorization follows from the UF property of R and F[z]. 0

Corollary 2.4.7.1. If Ris a UFD, so is R[z1,...,z,].

2.4.2 Irreducibility criteria

Proposition 2.4.8. Let F' be a field and f € F[z].

1. f(z) has a factor z — a € F|x] < « is a root of f.
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2. If deg f = 2,3, then f is reducible < it has a root in F.

Proposition 2.4.9. Let R be a UFD and F its field of fractions. Let f(x) = a,2" + - -+ + ag € R[x] with
a, # 0. If P e F with ged(p, q) = 1is a root of f, then ¢ | a, and p | ay.
q

Proof. By Lemma 2.4.6, since f is reducible in F[z], it’s reducible in R[z], and gz — p | f(x) in R[z]. O

Proposition 2.4.10. Let I be a proper ideal in an integral domain R and f a nonconstant monic poly-
nomial in R[z|. If f(z) mod I can not be factored into a product of two polynomials of smaller degree in
(R/I)[x], then f is irreducible in R[z].

Example 2.4.11. There are examples where f(z) factorizes in (R/I)[x] for all prime ideals I in R but
fails to factorize in R[z]. For example, f(z) = * 4+ 1 € Z[z] is reducible modulo every prime number but

irreducible in Z[x]:
o If p=g1,a*=,—1 for some a € Z, and thus a* + 1 = 0.
o If p=g5, a*>=, —1 for some a € Z, and thus z* + 1 = (z? — a)(2? + a).
o Ifp=53,7,a® =, F2 for some a € Z, and thus 2+ 1 = (22 £ 1) F 22% = (2?2 —ax £ 1)(2* + ax £ 1).

Example 2.4.12. 2% + zy + 1 is irreducible in Z[z, y] since Z[x,y]/(y) = Z[x] and z* + 1 is irreducible in
Z|x].

Proposition 2.4.13 (Eisenstein’s criterion). Let P be a prime ideal in an integral domain R. Let f(z) =
apx™ + -+ 4+ ag € R[z] (n = 1) be such that a, € R*, a, ¢ P, an_1,...,a9 € P but ag ¢ P>. Then f(z) is
irreducible in R[z].

Proof. Suppose f(x) = a(x)b(z) for some a, b € R[z]. Modulo P we have f(x) = a,z™ (mod P). Note that
for an integral domain D, the factorization of ™ in D[z] can be only a product of some powers of z, up to
units. Thus a(z) = uz”® and b(z) = va™* (mod P) for some u,v ¢ P. If k # 0,n, then the constant terms
of a,b must be in P, leading to ag € P?, a contradiction. Hence a(z) or b(x) is a constant polynomial.

Since a,, is a unit, the constant polynomial must be a unit in R[x]. [
Example 2.4.14. 1. 2* + 223 + 422 4+ 8z + 2 is irreducible in Z[z].

2. y? + 2% — x is irreducible in Z[z, y|.

P )P —1
’ 1 =P+ 4 1 Wehaveép(:v—{—l):u:
— x

2P~ + pr®? + .- + p. Hence ®, is irreducible in Z[z].

3. Let p be a prime and ®,(z) =
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Proposition 2.4.15. Let f (2) = ag + a1x + - + apa® + -+ + a,2™ € Z[z] and p a prime integer such
that p | a; for i =0,---,(k—1), ptax, ptan, and p*>{ ag. Then f (x) has an irreducible factor in Z [z] of
degree at least k.

Proposition 2.4.16 (Perron’s). Let f(z) = 2" +a, 12" '+ - +a, € Z[z] such that |a, 1| > 1+]|an_o| +
-+ + |ag| and ag # 0. Then f is irreducible over Z.

Proof. Let aq,...,a, be roots of f. WLOG, assume |a;| = -+ = |ay].
o |ay| =1 since |ag| = 1.
o Put A(z) = a,_12°!. Then for |z| = 1, we have
1/ (2) = A(2)| < 1+ |an—of + - + |ao| <an| = [A(2)]
By the Rouché’s theorem, #Z; n B1(0) = #Z4 n B1(0) =n — 1.

e Suppose otherwise f = gh, degg,degh = n. Then exactly one of g(ay),h(ay) is 0, say g(ag) = 0.
This forces |h(0)| < 1, so h(0) = 0, implying ag = f(0) = 0, a contradiction.

]

Proposition 2.4.17 (Cohn’s). Let f(z) = a,2™ + ap_12" ' + -+ + a, € Z[z]. If there’s a N 3 b > 2 such
that 0 < a; < b for each i and f(b) is a prime p, then f is irreducible over Z.

Proof. Suppose f = gh, degg,degh = 1. Then p = f(b) = g(b)h(b). WLOG, say |g(b)| = p and h(b)| = 1.
1++/4b -3
—

Claim. If f(a) =0, then Rea <0 or |af <

1++v4b—-3

o If b= 3, — — < b—1,s0 |b—«a| > 1. Hence 1 = |h(b)| > 1, a contradiction.

3
Claim. If f(o) =0 then Rea < B (=1[2—al>|1—-al).
o Let aq,...,a, be roots of h. Then
AW =lelll —onl - [1 =] < |e|)2 =] [2 = as| = [n(2)] = 1

i.e, |h(1)| < 1, which forces that h(1) = 0, a contradiction.
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2.4.3 Polynomial rings over fields

Let F' denote a field.

Proposition 2.4.18. Maximal ideals in F'[x] are precisely (p(x)), where p(x) are irreducibles. Hence,
Flz]/(p(x)) is a field < p(z) is irreducible.

Proof. Let I be a maximal ideal in Flz]|. Since F[z] is a PID, I = (p(z)) for some p € Flz| and I is a

prime ideal. Hence p is a prime, and thus an irreducible. O

Proposition 2.4.19. Let g(z) = fi(z)™ - fg(x)™ € F[z] be a nonconstant polynomial, where f; are

irreducible and distinct. Then

Flal/(g(x)) = (Flo]/(f1(2)™)) x - x (Fla/(fe(2)™))

Proposition 2.4.20. If a is a root of f € Flz| in F, then 2 — a | f(x). Hence, a polynomial of degree n

in F[z| has at most n roots in F.

Proposition 2.4.21. Any finite subgroup of F'* is cyclic. In particular, if F' is a finite field, then F'* is

cyclic.

Proof. Say G is a finite subgroup of F*. By FIFGAG, G = (Z/mZ) x --- x (Z/axZ) with a; | a;—1.
Observe that x* =1 for all z € G. If k > 2, then there are more than a; roots for £ — 1, a contradiction.

Hence k =1, i.e, G is cyclic. O

2.4.4 Hilbert’s basis theorem

Definition. A commutative ring with 1 is called Noetherian if every ideal of R is finitely generated.
Proposition 2.4.22. Let R is a commutative ring. TFAE: (HW. 17)
1. R is Noetherian.
2. The Ascending chain condition for R holds.
3. Every nonempty collection of ideals of R has a maximal element.
Theorem 2.4.23 (Hilbert’s basis theorem). If R is Noetherian, then so is R[]
Proof. Let I < R[z]. For f(x) € R[x], let LC(f) denote the leading coefficient in f(x).

1° Let L:={LC(f) | f(z) e I}.
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Claim. L < R.

2° Since R is Noetherian, we have L = (a4, ...,a,) for some a; € R. Let fi,..., f, € I be such that
LC(f;) = a;-

3° Let N =max{deg f; | j=1,...,n}. Foreachd =0,...,N=1,let Ly :={LC(f) | fel ndegf=d}.
Claim. L; < R.

4° Since R is Noetherian, Ly = (bg 1, ..., ba,) for some by ; € R. Let f;; € I be a polynomial such that
LC(fd’]> - de.
Claim. I = (f1,..., fo, fa;j |d=0,....N—=1,j=1,... kq) Let fel.

(i) Assume deg f > N. Since L = (a4, ...,a,), we have LC(f) = ria; +- - - +rpa, for some r; € R.
Then
f— (Tl‘,]:deg;f—degﬁf1 4t T’nl’degf_degf”fn)

has degree < deg f — 1. Continuing this way, we reduce the proof of this case to deg f < N — 1.

(ii) Assume deg f < N —1. Since Ly = (bg1,...,bak,), L(f) = s1ba1+- - -+ sk,bar, for some s; € R.
Then
f—=(sifaa+ -+ Sw,fan,)

has degree < deg f — 1. Continuing this way, the proof is completed.

2.4.5 Resultants

Notation 2.4.24. Let R be a ring with 1 and n € N. We put Z := (J;,41-;) € M,(R), the reverse
identity, and N := (§;,-1) € M,(R).

In the following context, we let F' denote a field, f,g € F[x], n := max{deg f,degg} and f(x) =
fo+ fix+---+ fo,x™. Note that f may not has degree n.

Definition. We define the Hankel matrix

fo fo fa
f2 f3

HfiI .
J
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and the Toeplitz matrix

fo fi o faar
Tf =
fi
Jo
of the polynomial f.
From the definition, we have
fn fO
ZHy = , 2Ty =
fioe e fo o o fan

We list some properties of Hy and T%:
o ZTy = (ZTy)' =T4Z, and thus ZTiZ =TiZZ = Ty, ie, Ty = ZT}Z.
o T4yT,=T,Ty, since Ty = fol + fiN + -+ fu 1 N" %
e ZH;ZH,=ZH,ZHy, and thus H;ZH, = H,ZH;.

Notation 2.4.25. 1. v,(x) == (1 z - x”1>t.

n—1
2. For A = (a;jk) € M, (F), we put a(z,y) := artiyt = v, (z) Av,(y) € Flz,y].
4k=0

Definition (Resultant matrix). The resultant matrix, denoted by R, of two polynomials f, g is defined

T
R = s ZHy
T, ZH,

to be the 2n x 2n matrix
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Explicitly,

fO fnfl fn
R Jo v o fa & My (F)
90 In—-1 Gn
go g1 gn

Note that Rva,(z) = <f(x) f@)e - f@)z g(z) --- g(x)ﬂ”)t _ ( f(z)v, () )

g(x)vn(x)

Definition (Bézoutian). The Bézoutian, denoted by B, of two polynomials f, ¢ is defined implicitly by
Flw,y] 3 f(2)g(y) - 9(2) F(y) = (= )bz, y) = (2 — 9) (vn(2) Bun(y))

Lemma 2.4.26. B = H;T, — H/ 1y = (H;T, — H,Ty)". In particular, B is symmetric.

n—1
Proof. Since 2" —y" = (x —y) Y, 2" "yl = (z —y) (Un(x)thn(y)>, we have
7=0

(2" = y")b(z,y) = (& = )b(z,y) (va2) Zoa(y))
= (F(2)g(v) = 9@)f (W) (tnlw) Zoay)

_ ( f(@)on(2) ) ( 0 Z) ( F@)on(y) )
g(x)vn () ~Z O 9(y)vn(y)

_OZ i) Rusa(y) = ()’ - B (

0O Z

7 O) B -van(y)

On the other hand,

(2" = )bz, y) = (2" — ") (va(@)' Bun(y)
= ("0 (@) Bualy) = val@) By va(y))

(o0 -B
= U2n () (B O)Uzn(y)
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Hence
-B Z
© _p(° R
B O -Z 0
(1 zH)\ (0 z\ (1 zH,
- \1, zH,) \-Zz 0)\1, ZH,
(T T ZT, ZZH,
(ZH;)' (ZH,)') \—ZT; —ZZH;

(212 ZTgZ> (ZTg Hg>

ZH; ZH, ) \-ZT; —H;
B 0] ZTiZH, — ZT,ZH;
- \H;T, - H,Ty 0]
_ 0 _(Hng - Hng>t
H;T, — H,T; O

Lemma 2.4.27.

I 0\, (o I B O\(I O
T; ZH;) \z Ty+2zH,) \O 1) \1T, ZH;

I 0\, _(I 0\ ZH,
T; ZH;) — \1y zH;) \T, ZH,

T ZH,
T? + ZH;Ty TyZH;+ ZH;ZH,
—

Proof.

commutes

T ZH,
(Lemma 2.4.26) =
ZB+ (Ty+ ZH)Ty (Ty+ ZH,)ZH;

(o0 I I 0
-~ \ZB Ty+zH,) \T; ZH;

e I B O\(I O
- \z 1y+za,) \o 1) \1, ZH;
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Theorem 2.4.28. dimker R = dimker B = deg ged(f, g).

fi oo fa
2 fs
Proof. Suppose deg f = n. Then rank Hy = rank | . =n. By Lemma 2.4.27,

fn

I O R O I B O I O

T; ZH;) \Z Ty+2zH,) \O 1) \T; ZH;

\—T:_/ b h - —
rank=2n rank=2n rank=2n

and thus rank R = rank g ? . Therefore, dim ker R = dim ker B.

For the last equality, we introduce the linear transformation
M : Flx]<, x Flx]<p — Flx]<2n

(u,v) ——— > uf +vg
and put h = ged(f, g) and k = degh. Then f = hf,g = hg with gcd(f, g) = 1. Consider the set

S = {(u,v) € Flz]<, x Flx]<p | u = —gq,v = fq,q¢€ F[w]<k}
Claim. ker M = S, and thus dimker M = k.

Clearly, S < ker M. Now suppose u,v € Flz]-, and fu+gv = 0. Then fu = —gv. Since ged(f, §) = 1,
u = gp and v = fq for some p,q € F[z]. Then p = —¢q, implying (u,v) € S. Therefore, S 2 ker M.
Let

B=1{(1,0),...,(z"10),(0,1),...,(0,2" 1)}

be an ordered basis for Fz]., x F[z]-, and

B ={1,...,2*" 1}
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an ordered basis of F|x].g,. Then

Jo 90

: Jo : 9o
B8 _ . . _ pt

[M]B - fn : fO 9n : do =R

fn 9n

Jn 9n
Hence,
dim ker B = dimker R = dimker R' = dimker M = k = deggcd(f, g)

O

Corollary 2.4.28.1. Suppose that f, g are nonconstant. Then degged(f,g) =1 < hf + kg = 0 for some
k,h e Flz]\{0} with degh < degg and degk < deg f.

Definition (Resultant). Let deg f = n and deg g = m. The resultant, denoted by Ry, is defined to be

fO e fn—l fn

Ry det O
90 e Im—-1 Gm

go (7)1 9m

(n+m)x (n+m)
Corollary 2.4.28.2. degged(f,g9) > 1< Ry, =0. (HW. 18)

Proof. Let deg f = n and deg g = m. Consider the linear transformation

M : Flz]., x Flx]<py —— Fl2]<pnim

(u,v) > uf +vg
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and Let
B=1{(1,0),..., ("% 0),(0,1),...,(0,2™ )

be an ordered basis for Flz]., x F[z]<,, and
y=A{1,..., 2"

an ordered basis of F[x]<,ym. Then we have [M]}; = (resultant matrix)". O

Proposition 2.4.29. Let F' be a field and let f(z) = [ [(x — ;) € Flz] and g(x) = [[(x — ;) € Fx] be
i=1 i=1
two polynomials. Then

m

Ryg = H [ [(ei = 8))

i=1 j=1
Proof. Suppose all the z; are distinct and all the y; are distinct. Consider Ry, as a polynomial of the z;

and the y;. By Corollary 2.4.28.2, z; = y; & Ry, = 0; this shows z; —y; | Ry, for all ¢,j. Since F'is a
UFD and each z; — y; is relatively prime, [] [](c; — ;) | Ry,. Also, deg, Ry, =n and deg, Ry = m,

i=1j=1
[ 1_[1(042' — B;) for some c € F. Letting §; = 0 for all j, we see Ry, = fi’ = Hla;ﬂ’ and thus
7 J= 1=

c=1. O]

1=

so Rpy =c

Corollary 2.4.29.1. Under the same notation above, we have

m

Rpy =] otes) =[] 1(5)

J=1
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2.5 Artinian Rings
o In this section, all ring are assumed to be commutative with 1 # 0.

Definition. R is called an Artinian ring if it satisfies any of the two equivalent conditions:
1. R satisfies the descending chain condition (D.C.C.).
2. Any nonempty collection of ideals of R has a minimal element.
Example 2.5.1. Z is Noetherian (since it’s PID) but not Artinian; for instance Z 22Z 24Z > - - -.

Definition. The Krull dimension, or simply dimension, of R is the maximum length, the number of <,

of a chain of prime ideals P, & P, < ---.
Example 2.5.2. The Krull dimension of Z is 1; 0 < pZ.
Lemma 2.5.3. Let I, .J be ideals.
1. If I+ J = (1), then I* + J* = (1) for any k,/ € N.
2. If IJ < P for some prime ideal P, then I € P or J < P.
Lemma 2.5.4. Let R be an Artinian ring and / an ideal of R. Then R/I is Artinian.
Lemma 2.5.5. Let R, S be Noetherian rings. Then R x S is Noetherian.
Theorem 2.5.6. Let R be an Artinian ring. Put J = Jac R.
1. the number of maximal ideals in R is finite
2. R/J = a product of a finite number of fields
3. Every prime ideal is maximal. In particular, the Krull dimension is 0.
4. J is nilpotent, i.e, J* = 0 for some n € N. Moreover, J = /0
5. R = a product of finitely may Artinian local rings
6. R is Noetherian.
Proof.

1. Let & := {M; n--- n My, | M; is maximal ideals of R}. Since R is Artinian, S contains a minimal

element I = My n--- n M, where each M; is maximal.
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Claim. My, ..., M, are the only maximal ideals of R.

Let M be a maximal ideal and consider M n I € §. By the minimality, we have M n I = I. Then
1S M,ie,
Min---nM,c M

By Lemma 2.5.3.1, M = M; for some j.

. Let My, ..., M, be the maximal ideals of R. Clearly, M; + M, = (1) if i # j. Then by the Chinese
Remainder theorem,
R/J~R/M; x ---x R/M,

Each term on the right is a field since M; is maximal.
. Let P be a prime ideal. It suffices to check if x ¢ P, then (x, P) = R. Consider the chain
(z,P)2 (z*,P) 2 (2>, P) 2 ---

Since R is Artinian, (2", P) = (2"*!, P) for some n € N. In particular, z" = rz"*! + a for some

re Rae P, ie, 2"(1 —ar) =a. Since z ¢ P, so is ", which implies that 1 —xr € P, i.e, 1 € (x, P).

. Consider the chain
JoJ*PoJPo...

Since R is Artinian, J" = J"*! for some n € N. We claim J" = 0. Suppose otherwise that J" # 0.
Let S:={I <R | IJ" # 0}(# ). Since R is Artinian, S has a minimal element, say Iy. Let x € I,
such that xJ" # 0. Then by the minimality, Iy = (z). But now ((z)J)J" = (x)J"™! = (z)J", so
by the minimality we have (z)J = (z). By the Nakayama’s lemma, (z) = 0, a contradiction. Hence
J"=0.

. Since J" =0, we have M{"--- M =0, where M, ..., M,, are the maximal ideals of R. Then
R~R/J"~R/M{x---x R/M

by Lemma 2.5.3.2 and the Chinese Remainder theorem. Note that the only maximal ideal in R/M}
is M;/M]", and thus R/M]" is local. By Lemma 2.5.4, R/M]" is Artinian.

. By 5. and Lemma 2.5.5, it suffices to prove the case when R is an Artinian local ring. Now assume
that R is an Artinian local ring with the maximal ideal M = Jac R. By 4., M™ = 0 for some n € N.
Then M*=1/M* (k < n) is a R/M-vector space. Check

o Artinian implies dimpg/y M*~!/M* < co, implying M*~'/M* is Noetherian as R-modules.
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o IS asrings = (S is Noetherian < I and S/I are Noetherian as S-modules )

Corollary 2.5.6.1. R is an Artinian ring if and only if R is Noetherian and of Krull dimension 0.
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2.6 Discrete Valuation Rings

Definition. (HW. 13)
1. A discrete valuation on a field K is a function v : K* — Z such that
(a) v is surjective
(b) v(zy) =v(z) +v(y) for all z,y e K*
(¢) v(z+y) = min{v(x),v(y)} if x +y # 0 for all z,y e K*

The subring {a € K* | v(a) = 0} U {0} is called the valuation ring of v.

2. An integral domain R is called a discrete valuation ring (D.V.R.) if it’s the valuation ring of a

discrete valuation on its fraction of rings.
Example 2.6.1.

1. K=Q, p: a prime. Define z/p(pk%) = k. Then the DVR is

(P2 1k=0fuioy =2,

2. F :afield, K = F(z), R = Flx]. For each irreducible polynomial f € F[z] and for each r € F[z],
r= f’Cg for some unique k € N and a,b € F[z] with (a, f) = (b, f) = 1. Define v¢(r) = k. The DVR
is the localization F'|x]; of F[x] at f consisting of the rational functions in F'(x) whose denominator
is not divisible by f.

3. F((z)) : the field of formal Laurent series. v(Y. a;z") := n. The DVR is the ring F[[x]] of formal
i=n

power series. (HW. 13)

4. Fix z € C and let K := { functions meromorphic near z}. v(f) := ord, f. The DVR is the ring of

holomorphic functions near z.
Proposition 2.6.2. Let R be a DVR with the valuation v. Let m be an element in R such that v(7) = 1.
1. nonzero element a € R is a unit < v(a) =0 (HW. 13)
2. Every element in R can be written uniquely as un™ for some unit v and n > 0

3. Nonzero ideals are of the form (7") for some n > 0. In particular, R is a PID. (HW. 15)
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Definition. Let R be a DVR with the valuation v. An element 7 with v(7) = 1 is called a uniformizing

parameter or a local parameter of R.

Corollary 2.6.2.1. Let R be a DVR with the valuation.

1.

R is a local ring with the unique maximal ideal M = {a € K* | v(a) = 1} U {0}.

2. The only prime ideals of R are 0 and M. In particular, R has Krull dimension 1.

Theorem 2.6.3. TFAE:

1.
2.
3.
4.
Proof.
1.

2.

R is a DVR.
R is a PID with a unique maximal ideal.
R is a UFD with a unique irreducible element 7 up to unit.

R is a local Noetherian integral domain whose unique maximal ideal is nonzero and principal.

(1 = 2,3,4) These are clear.
(2 = 3) Recall that in a PID, (x) is a maximal ideal < x is irreducible.
(3 =1) Define v : R — Z by v(ur") = n.

Let M be the unique maximal ideal. We show that for each x € R there exists a unique integer n = 0

such that x € M™ but x ¢ M. Then we may define v : R — Z by setting v(x) = n. It suffices
0

to show My := () M™ = 0. Since M My = M,, we have My = 0 by Nakayama’s lemma (Theorem

n=1
2.2.27).
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2.7 Commutative rings and algebraic geometry

o All rings are commutative rings with identity, and all algebra are commutative algebras.

We recall some basic fact for Noetherian rings:

Proposition 2.7.1. Let R be a Noetherian ring and I be any ideal of R.
1. R/I is Noetherian.
2. R[z] is Noetherian. Thus Rxy,...,x,] is Noetherian.

Corollary 2.7.1.1. If k is a field, then k[xy,...,z,] is Noetherian.

Proposition 2.7.2. A ring R is a finitely generated k-algebra < R is a quotient of some polynomial ring

with finitely many variables.

Proof. The if part is clear. For the only if part, say R = k[ry,...,r,]. Define
¢ klry,...,x,] — R
e

¢ is clearly surjective, so by the isomorphism theorem we see R =~ k[z1,...,x,]/ ker ¢. ]

2.7.1 Affine algebraic sets

Definition. The set A™ of n-tuples of elements of k is called the affine n-space over k.

o The polynomial ring k[z1,. .., x,], viewed as a set of functions on A", is called the coordinate ring
of A denoted by k[A™].

Definition. Let S < k[A"]. The set Z(S) := {pe A" |V f € S[f(p) = 0]} the called the zero locus/

vanishing set of S in A"
« Wesay A< A" is an affine algebraic set if A = Z(S) for some S < k[A"].

o When S = {f} consists of a single nonconstant polynomial f, then the zero locus, denoted briefly by
Z(f), is called a hypersurface.

Example 2.7.3. Let £ = R.

1. In A2, the z-axis is an affine algebraic set Z(y).
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2. The circle 22 +y? = 1is Z(2? +y? — 1).
3. Z(xy — 1) is the hyperbola zy = 1.
4. Z(0) = A" and Z(1) = .
5. In A', Z(f) is the zeros of f, and is a finite set if f # 0.
Property 2.7.4. Z assigns each subset of k[A"] to an affine algebraic set, with the properties that
1. if S < T < k[A™], then Z(T) < Z(S).

2. if T = (S), then Z(I) = Z(S).

. N2 =2 (Us:).

4. Z(S)u Z(T) = Z(IJ), where I = (S) and J = (T).

Therefore every affine algebraic set A is the zero locus of some ideal I < k[A"]. Since I a finitely
generated, each A is an intersection of finitely many hypersurfaces.
Note that different ideals may have the same locus, e.g, Z(x) = Z(2?). Nevertheless, given an affine

algebraic set A, there’s a unique largest ideal
I={fekA"]|Vpe A" [f(p) = O]}
such that Z(I) = A.

Definition. For any subset A = A", the set Z(A) = {f € k[A"] | Vpe A" [f(p) = 0]} is called the defining
ideal of A.

Example 2.7.5.
1. In A2 Z(z-axis) = (y).

2. Z((ay, . ..,a,)) = (r1 —ay, ..., T, — a,) is a maximal ideal since it’s the kernel of the evaluation map

at the point (aq, ..., a,).

3. Let V = Z(y* — 2*). Let’s determine Z(V'). Note that V = {(a?,a®) | a € k}. Let f € k[A?]; we can
write it as
f@.y) = go(@) +ygi(z) + (y° — 2°)g2(w, y)
(this can be seen by passing to the quotient.) Now if f € Z(V), then 0 = f(x,y) = go(a®) + a3g1(a?)
for all a € k. If #k = oo, we have gy = ¢g; = 0, implying that Z(V) = (y?> — 2®). Note that
when #k < oo, it’s not true. For instance, if & = Fy, we have V = {(0,0),(1,1)} and Z(V) =
(y—z,2(z - 1)) # (y* — 2°).
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Property 2.7.6.
1. If Ac B< A", then Z(B) < Z(A).
2. I(A U B) = Z(A) n Z(B).
3. I(P) = k[A"]. If #k = o0, T(A") = 0.
4. If A< A", then A < Z(Z(A)). If I < k[A"], then I < Z(Z(I))
5. If V = Z(I), then V = Z(Z(V)). If I = Z(A), then I = Z(Z(I)).

Thus, once we restrict Z to the defining ideals and Z to the affine algebraic sets, Z and Z are mutually

inverse to each other.

Definition. If V' < A" is an affine algebraic set, then the quotient k[V] := E[A"]/Z(V) is called the

coordinate ring of V.

Definition. Let V < A™ and W < A™ be affine algebraic sets. A map ¢ : V' — W is called a morphism/
regular map/polynomial map if there exist ¢y, ..., ¢, € kE[A"] such that

olar, ..., an) = (p1(at, .- an), -y pmlas, ..., a,))
for all (ay,...,a,) e V.

o If there exists a morphism ¢ : W — V such that ¢ oy = idy and ¢ o p = idy, we say ¢ is an

isomorphism.
Let ¢ : V — W be a morphism. Now if f € Z(W), then for all (ay,...,a,) € V, we have
fler(ar, ... an)y ...y omlar,...,a,)) =0
so that f o e Z(V). This show ¢ induces a well-defined k-algebra homomorphism
@ kW] —— k[V]
f———Tfop

Conversely, suppose we have a k-algebra homomorphism @ : k[W] — Ek[V]. We'll see that @ is identical
with ¢ for some ¢ : V' — W. For clarity, let k[A"] = k[xy,...,x,] and k[A™] = k[y1, ..., Ym]. Set

FE+Z(V)=®(y +Z(W)),i=1,....,m
and define ¢ : A" — A™ by ¢ = (F,..., F,).
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o For g e Z(W), we have ®(g) € Z(V'). Also, since g is a polynomial and & is a k-algebra homomor-

phism, we have
Z(V) 229y, - ym)) = 9(@(1), - - -, B(Ym))

SO
g(Fy (z, .o xn), .o (2, .o x,)) € Z(V)

This follows that for all (aq,...,a,) € V = Z(Z(V)), we have
(gop)(ar,...,an) =g(Fi(ay,...,an), ..., Fu(a,...,a,)) =0
and thus ¢(aq,...,a,) € Z(Z(W)) = W, proving that ¢ is a morphism from V' to W.

« For all g € k[IW], we have
(g) = 2(g(y1;- - ym)) + (V) = 9(®(11), - - -, @(ym)) + Z(V)
=g(Fi(x1,...,20), o, Fop(x, ..o 2)) + Z(V)
=goy
so that ¢ = ®.

« Different choices of F; yield the same ¢ since the F; is well-defined modulo Z(V'). This also shows the
uniqueness of ¢ with ¢ = ® since we must have (y; +Z(W))op = ®(y; +Z(W)) for every ¢ : V. — W
with ¢ = ©.

Theorem 2.7.7. Let V< A" and W < A™ be affine algebraic sets. Then there’s a bijective correspondence
{morphisms from V to W} ————— {k-algebra homomorphism from k[W] to k[V]}
with the following properties:

1. Every morphism ¢ : V' — W induces a k-algebra homomorphism ¢ : k[W] — k[V] defined by the
pullback, i.e, f — fop.

2. Every k-algebra homomorphism ® : V' — W is induced by a unique morphism ¢ : V' — W defined
by setting (y; +Z(W)) o ¢ = ®(y; + Z(W)).

3. ¢ :V — W is an isomorphism if and only if @ : k[W] — k[V] is an isomorphism.

Example 2.7.8. Let #k =0, V=AY W = Z(y* — 23) = {(a*,a®) | a € k}. The map ¢ : a — (a?,a?) is
a bijective morphism, but Im ¢ = k + 2?k[z], which is not surjective. Thus ¢ is not an isomorphism. The
0 ,ifa=b=0

, which cannot be defined by polynomials.
b/a ,ifa+#0 Yy POy

inverse map of ¢ is ¢! : (a,b) —
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Corollary 2.7.8.1. Let ¢ : V. — W be a map of affine algebraic sets. Then ¢ is a morphism < for all
f e kW], foep, as a k-valued function on V', coincides with some element in k[V]. When ¢ is a morphism,
©(v) = w with v € V and w € W if and only if o~ (Z({v})) = Z({w}).

Proof. The only if part is clear. For the converse, we first show when ¢ is a k-algebra homomorphism, we

have
o(v) =w for ve V and w e W if and only if o~ (Z({v})) = Z({w})
Since {w} is an algebraic set, {w} = Z(Z({w})), and thus
o(v) = w if and only if every polynomial f vanishing at w also vanishes at p(v)

This is equivalent to saying ¢(f) vanishes at v, so we have @(Z({w})) < Z({v}), or Z{w}) < o7 'Z({v}).
Since Z({w}) and Z({v}) are maximal ideals (c.f. Example 2.7.5.2), it’s equivalent to Z({w}) = ¢~ Z({v}),
as wanted.

Let @ : k[W] 3 f — fop e k[V]; this is clear a k-algebra homomorphism. The theorem above shows
there exists a morphism ¢’ : V' — W such that ¢/ = ®. We claim ¢’ = . Indeed, for each v € V, by the

first paragraph we have

Fv) = w=pv) < I({v}) = I({w}) = ¢ 'I({v})

The RHS is clear since we have p = & = . ]

2.7.2 Radicals and affine varieties

For A < A", if f* € Z(A) for some k € N, then f € Z(A) since k is an integral domain. This suggests us to

have the following definition.

Definition. Let I < R be an ideal.
1. The radical of I is the set v/I := {a € R | a™ € I for some n € N}.
2. 4/0 is called the nilradical of R, the set of nilpotent elements of R.
3. I is called radical is I = /1.

Property 2.7.9. Let I, J be ideals of R.
1. V1 is a ideal containing I.

2. IcJ=+1c+J.
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w

4.

D.

D

7.
8.

9.

Proof.

1.

VVI = VI
VIJI=VInJ=VInI.
VIi=(1)e1=(1).
VI+T=NVI+VT

If I is a prime, then /I = 1.
VI/I is the nilradical of R/I.

If I # R, then
Vi= () P

P : prime’
IcP

In particular, 4/0 is the intersection of all prime ideals of R.

That I < /1 is clear. If 2,y € \/I, say 2" € I and y™ € I for some n,m € N, then (x +y)"*™ € I, so
x+yeﬁ. For all a € R, (ax)" = a™z™ € I so ax € \1.

Let z € v/I. Then 2" € I < J for some n, and thus z € v/J.

We have /I < v/+/I. For the reverse inclusion, let € A/+/I, then by definition there are n,m € N
such that 2 € v/T and (xm)y™el, ie ™ €l. Thus z € V.

We have IJ c InJsoVIJcVInJ IfxeInd say 2" e I nJ < I,j for some n, then
xe\/fm\/j, so that v/ I nJ < VT n+/J. Now ifxe\ﬁm\/j, then there are m,n € N such that
el and 2" € J. Then 2" e IJ, i.e, z € V/1J.

Since I < +/I, I = (1) implies v/I = (1). Now if 1 € /I, then 1 = 1" € I for some n € N so that
I=(1).

We have €. If 2" € /T 4+ +/J, then "™ e I + J for M » 0, so that z € \/T + J.
If x € /I, then 2" € I for some n. Since I is a prime, z € I.

Let « 4+ I € R/I be nilpotent. Then z" + I = I for some n € I, i.e, 2™ € I. This means z € /I, i.e,
v+ TerI/I
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9. Passing to the quotient R/I, it suffices to show the second assertion, which holds by Proposition
2.2.25.

O
Corollary 2.7.9.1. Prime ideals, and hence maximal ideals, are radical.
Corollary 2.7.9.2. If /T and v/J are coprime, then I and J are coprime.
Proof. By5.and6.,1:\/m:\/msothatl+J:1. O
Proposition 2.7.10. Let R be Noetherian. Then VI" < I for some n e N. In particular, 4/0 is nilpotent.

Proof. This follows from the fact v/ is finitely generated. O

Zariski topology

Definition. Let’s specify the closed sets of A™ to be the affine algebraic sets; by Property 2.7.4
1. @ =Z2(1), A" = Z(0).
2 NZ(L) =2 (L),
3. Z(L) v Z(1y) = Z(1I115).

The topology thus obtained is called the Zariski topology.

o The Zariski topology of an affine algebraic set V' < A" is defined as the subspace topology inherited

from A™.
« Note that if 7 < k[V] is an ideal, then
Zy(I):={(a1,...,a,) €V | f(a1,...,a,) =0forall fel}=Z(x () nV
where 7 : k[A"] — k[V] is the canonical projection, and if A € V' is a subset, then
Iv(A) .= {f ek[V]]| f(ai,...,a,) =0 for all (ay,...,a,) € A} =7(Z(A))

We can define the Zariski topology in terms of Zy,, and it’s clearly the same as the one defined by
subspace topology.

Remark 2.7.11. The Zariski topology is very coarse in the sense that there are few open sets. For
instance, if #k = oo, then the Zariski topology is not Hausdorff, since any intersection of two nonempty
open sets is nonempty. (Intuitively, a closed set has codimension at least 1.) Note that when #k < o, it’s

precisely the discrete topology.
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Proposition 2.7.12. A morphism ¢ : V — W is continuous with respect to Zariski topology.

Proof. Let I < k[W] be an ideal. Then

e (Z(D) ={pe V| fl¢(p)) =0forall fel}=2(5I))
is Zariski closed in V. Thus ¢ is continuous. [

Example 2.7.13. Consider M, (k) as A", Then SL, (k) is Zariski closed set and GL, (k) is Zariski open

set. (Note that the determinant is by definition a polynomial of its entries.)

Definition. Let A € A™. The Zariski closure A of A is the smallest closed set containing A. If A< V

for an algebraic set V', we say A is Zariski dense if the Zariski closure of A is V.
Proposition 2.7.14. The Zariski closure of a subset A in A" is A = Z(Z(A)).

Proof. Let V be any algebraic set containing A. Then Z(Z(A)) < Z(Z(V)) = V so that Z(Z(A)) is the

smallest closed set containing A. [
Example 2.7.15. As in general topology, a continuous morphism need not be a closed map. For example,
o: Z(xy—1) —— Al
consider the morphism . Then Im ¢ = £, which is not closed when #k = c0.
(,y) ————
Proposition 2.7.16. Let ¢ : V — W be a morphism.
1. kero =Z(p(V)).
2. (V)= Z(kerg) n W.
Proof.
1. fekerp<e fopeZ(V)<e feZ(p(V)).
2. o(V)=Z(Z(p(V))) n W = Z(ker @) n W.
O

Example 2.7.17. V = Z(zy — 1), W = A, ¢ : V 5 (z,y) — x € W. Then kerp = 0, p(V) = k*. If

#k =0, Z(V) = 0 and Z(0) = A! = o(V).
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Affine varieties

Definition. A topological space is irreducible if it cannot be written as a union of two proper closed

subspaces.

« An irreducible affine algebraic set is called an affine variety. (some authors define affine varieties

without the irreducibility.)
Proposition 2.7.18. Let V' be an affine algebraic set.
1. V is irreducible if and only if Z(V) is a prime ideal in k[A"].
2. V=Viu---uV, for unique irreducible algebraic sets V; with V; & V} if i # j.
Proof.
1. Let fge Z(V). Then V < Z(fg) = Z(f) u Z(g) so that
V=(Z(f)nV) U (E(g) A V)

The irreducibility implies either Z(f) "V =V or Z(g) nV =V, i.e, either V < Z(f) or V < Z(g).
Taking Z, we see f € Z(V) or g € Z(V). If V is reducible, say V = V; u Vo with Vi, V5 € V. Then
Z(V) € Z(V;). Pick fi e Z(V,\Z(V). Then fifs e Z(V).

2. Let

S := {algebraic sets W | W cannot be written as a union of irreducible algebraic sets}

and let T := {Z(W) | W e S}. If S is nonempty, since k[A"] is Noetherian, 7 has an maximal
element, and thus S has a minimal element, say W. In particular, W is not irreducible, say W =
Vi u Ve with Vi, Vo © W. Since Vi, V; are proper, Vi, Vo ¢ S, so they’re unions of irreducible algebraic

sets, and so is W, a contradiction. Hence § is empty.

Now write V = V; U --- U V,,; we may assume V; € V; if ¢ # j. Now suppose
V=Viu---uV,=Uvu---uly
with V; € V; and U; ¢ U; if © # j. Consider the intersection
N=VinV=WVinlU)u--u(Vinl)

Since V; is irreducible, Vi n U; =V for some j, i.e, Vi € U;. Symmetrically, we have U; < V for
some j', so

VicU;cVy

and thus 1 = j" and V; = U; by our conditions imposed on Vj. Continuing in this way, we conclude
m=/{and {Vi,...,Vp,} ={Uy,...,U}.
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]

Corollary 2.7.18.1. Let V' be an affine algebraic set. Then V' is irreducible if and only if k[V] is an

integral domain.

Proof. By Proposition above, V' is irreducible < Z(V') is a prime < k[V] := k[A"]/Z(V) is an integral

domain. []

Definition. Let V' be an irreducible affine algebraic set. The fraction field Frac k[V] is called the rational
functions of V' and is denoted by k(V).

« The dimension of V, denoted by dim V/, is defined to be tr.deg,k(V).

Primary decomposition

Definition. A proper ideal Q of R is called primary if whenever ab € Q and a ¢ Q, then b € \/Q.
« Equivalently, @ is primary if and only if the zero divisors of R/ are nilpotent.
Property 2.7.19.
1. Prime ideals are primary.
2. If Q is primary, then /Q is a prime and is the smallest prime containing Q.
3. If Q is an ideal such that /@ is maximal, then @ is primary.

4. If M is a maximal ideal and @) is an ideal with M™ < @Q < M for some n > 1, then () is primary and

VQ =M.
Proof.

2. If ab € \/Q, then a"b" € Q for some n € N. Since @ is primary, a” € Q or b € 1/Q, i.e, a € 4/Q or
b € 4/Q. The second assertion follows from Proposition 2.7.9.9.

3. Let abe @ but a ¢ Q. We must show b € \/Q. If not, then (b,+/Q) = 1, i.e, tb+q =1 for some t € R
and ¢ € \/Q, so tab+ ga = a Thus @ 3 (qa)™ = (a — tab)™ for some n. Expanding, since ab € Q, we

see a € (), a contradiction.

4. Taking radicals, we see M = v/ M" < 4/Q < v/ M = M so that v/Q = M. By 3., Q is primary.
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Definition. If ) is a primary ideal, then the prime ideal P = 4/Q is called the associated prime of Q,
and we say () is P-primary.

Proposition 2.7.20. If @4, ..., Q,, are P-primary, then so is Q1 N -+ N Q.

Proof. By Property 2.7.9.4, we have

VO A nQm=1Qin-n1/Qn=P

Example 2.7.21.

1. In Z, the primary ideals are 0 and (p™) for p a prime and m > 1.

2. For any field k, (z) is an primary ideal of k[z,y| since it’s prime, and (x,y)™ is primary since (x,y)

is maximal.
3. Q = (z%,y) in k[x,y] is primary since (z,y)? € Q < (z,y) and (z,y) is maximal.

4. Tn general, however, powers of a prime might not be primary. For instance, R = k[z, vy, z]/(zy — 2?).
Let P = (Z,z) € R. P is a prime since R/P = k[y| is an integral domain. But

z)

p? = (z*,7%,7) = T(Z,7,
is not primary for 7y € P2 but 7 ¢ P> and " ¢ P for all n > 1.

5. Also, @ need not be primary when 4/Q is only a prime. For instance, consider the ideal I = (22, zy)
in k[z,y]. We have ()% < I < (z) so v/I = (x). But I is not primary: zy € I but = ¢ I and y" ¢ I
for all n > 1.

2

Though (z?, ry) is not primary, (22, zy) = (z) N (z,y)? is an intersection of primary ideals.

6. Let R be a UFD and 7 an irreducible element of R. Then the (7) is a prime and (7") is primary for
each n € N. Conversely, let @ be a (7)-primary ideal, and n € N be the largest integer with @ < (7)
(n exists since v/Q = (m).) If ¢ € Q\(7™*), then ¢ = ra™ for some 7 € R and r ¢ (7). Since @ is

(m)-primary and r ¢ (7), we see 1" € @), and thus @ = (7™). This generalizes 1.
Definition.

1. An ideal I in R has a primary decomposition if it may by written as a finite intersection of

=@
=1

primary ideals, that is,

with ); being primary.
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2. A primary decomposition is minimal/irredundant/reduced if (| Q; € Q; and /Q; # /Q; if
j#i
i ]

o If I has primary decomposition, then by Proposition 2.7.20, the decomposition can be made minimal

by eliminating the superfluous primary ideals involved.

Definition. A proper ideal [ is irreducible if I cannot be written as an intersection of two ideals strictly

containing [.
Example 2.7.22.

1. A prime ideal P is irreducible: suppose P = I n J for some P & I,.J. Then pick a € I\P, b € J\P;
thus
abelJcInJ=P

Since P is a prime, a € P or b € P, a contradiction.

2. The notion of irreducible ideals is related to that of irreducible affine algebraic sets as follows: If V'
is an irreducible affine algebraic set, then Z(V') is a prime ideal, and hence irreducible. Conversely,

when £ is algebraically closed, if I is irreducible, then Z(I) is irreducible.

Proof. By Proposition 2.7.18.1, it suffices to show Z(Z(I)). By Hilbert’s Nullstellensatz, Z(Z([)) =
V1. By Lemma 2.7.24, I is primary, and thus +/T is a prime. O

3. The above is not true when k isn’t algebraically closed. For instance, when k& = R, consider f(z,y) =
(z? —1)® + y? and its zero locus Z(f). We see f is irreducible over k[z,y] so that (f) is prime by
Proposition 2.3.22. By 1., (f) is irreducible. Also,

Z2(f) = 2((z = 1)* +9*) v 2((z + 1)* + )
so Z(f) is not irreducible. (One can see Z(f) is even not connected.)

4. Being irreducible is not necessarily prime. For instance, for p a prime in Z, (p™) is irreducible but

not a prime: say (p") = (a) n (b) = (Iem(a,b)). Then one of (a), (b) is (p").

5. Being primary is not necessarily irreducible. For instance, (z,y)? < k[z,y] is (x,y)-primary but not

irreducible since (z,y)* = (z%,y) n (z, y?).

Lemma 2.7.23. If R is Noetherian, then every ideal is a finite intersection of irreducible ideals of R.
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Proof. Suppose otherwise, then the collection
S ={I QR | I is not a finite intersection of irreducible ideals}

is nonempty, so S admits a maximal element, say I. Since I cannot be irreducible, I = J n K for some
J, K 2 I. The maximality implies J, K can be written as finite intersections of irreducible ideals, and so

is I, a contradiction. Il
Lemma 2.7.24. If R is Noetherian, then every irreducible ideal is primary.

Proof. Let I < R be irreducible. Suppose ab € I and a ¢ I. We must show b € v/I. Consider the ascending
chain of ideals
(I:b)c(I:b*) <

Since R is Noetherian, there’s an integer n such that (I :b") = (I : ") for all N > n.
Claim. (a,I) n (b",1) = I (so that b" € I since [ is irreducible.)

Let ve (a,I) n (b™,I). Then v = ax +y = b"z + w for some z,z € R, y,w € 1. Multiplying b gives

vb = abx + by + 0"z + wb

so V"2 =abr +by —wbel, ie, ze ([:0")=([:0"). Thusv=b"2+w=wel. O
Lemma 2.7.25. Let () be a P-primary ideal and = € R. Then

l.ze@Q=(Q:z)=(1).

2. x¢ Q= (Q:x)is P-primary.

3.x¢ P=(Q:x)=0Q.
Proof.

2. If y € (Q : ), then zy € Q. Since = ¢ @, we have y € v/Q = P. Hence Q < (Q : x) < P. Taking
radicals gives P = 4/(Q : x). Now if abe (Q : z) and a ¢ (Q : x), then abr € Q, i.e, a"b"x™ € P for
somen > 1. Sincex ¢ P,a¢ (Q:x) S P, weseeb” e P,sobe P.

3. Ifae (Q:x), then ax € Q. Since x ¢ \/Q = P, a € Q.
[

Theorem 2.7.26. Let [ has a minimal primary decomposition I = Q1 n -+ N Q,,. Let P, = 4/Q); for
i =1,...,m. Then the P, are precisely the prime ideals occurring in the set {+/({ : z) | z € R}, so that

the P; are independent of the particular decomposition of 1.
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Proof. For x € R, we have (I : z) = ((\Q; : ) = ()(Q; : x) so that by Lemma 2.7.25 we have /([ : z) =
(P;. If /(I : x) is a prime, then 4/(I : x) = P; for some i. Conversely, for each i there exists z; € [ Q;\Q;

j#i
since the decomposition is minimal, and thus (Q; : x) is Pi-primary by Lemma again. O

Corollary 2.7.26.1. Let R be Noetherian. Then every proper ideal admits a minimal primary decom-

position, and is unique in the following sense: let I = (Q; =) Q; be minimal primary decompositions.

Then
n = m and {\/@} = {\/@}

and for prime ideals P that are minimal in the set above, the P-primary components of the decomposition

are the same.

Proof. All assertions result from the above Lemma and Theorem except for the last one, which will be

proved by localization in the follow section. [

Definition. The prime ideals P; are called the associated primes of I. The minimal elements of the set

{Py,..., Py} are called the isolated primes of I and the others are called embedded primes.

o The isolated primes of I < k[A"] correspond to the irreducible components of Z(I), maximal irre-

ducible subspaces, and the embedded primes are irreducible subspaces of these components.
Proposition 2.7.27. Let I be a proper ideal in R. Suppose [ has a minimal decomposition.
1. A prime ideal P contains [ if and only if P contains one of the associated primes of I.

2. The isolated primes of I are precisely the minimal elements of the set of all primes containing I. In

particular, there are only finitely many minimal prime ideals containing /.

3. VI = N P= N P.

P:ass. primes of I P:iso. primes of

4. If R is Noetherian, then there are primes P, ..., P, of R containing [ such that P, ---P,, < I.
Proof. Let I = Q1 n--- n Q, be a minimal primary decomposition of I and P; = +/Q; fori =1,...,n.

l.IcPs@Qin---nQ,cP<Pn---nP,c P< P, < P for some i.

2. These are clear.

3. This follows from 1.,2, and Property 2.7.9.4 and 9.

4. By Proposition 2.7.10, \ﬁe c I for some £ > 1. Then P{---P' c I.
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2.7.3 Integral extensions and Hilbert’s Nullstellensatz

Definition. Let R < S be commutative rings with 1z = 1g.
1. s € S is said to be integral over R if there exists a monic polynomial f € R[z] such that f(s) = 0.
2. S is an integral extension of R if every element in S is integral over R.
3. The integral closure of R in S is the set {s € S | s is integral over R}.
4. R is integrally closed in S if the integral closure of R in S is R itself.

5. When R is an integral domain, we say R is integrally closed/normal if R is integrally closed over
its fraction field Frac R.

Example 2.7.28. R = 7Z[y/—3] is not normal; ¢ R but it’s a root of 2% + x + 1.

—1+ /3
2
Proposition 2.7.29. Let R < S as before. TFAE:
1. s e S is integral over R.
2. R[s] is a finitely generated R-module.
3. seT and R < T < S for some subring 7' of S that is also a finitely generated R-module.

Proof. The direction 1 = 2 = 3 is clear. For 3 = 1, let T = (vy,...,v,)g. Since T is a ring, sv; € T' and
thus

n
SUi:Z&ijUj,i: 1,...,7’L
j=1
for some a;; € R. Hence

0= Z(S(Sij - aij)vj, 1= 1,. .., n
j=1

i.e, 0= (s0;; — a;;)ijv, where v = (v1 - - - v,)". Multiplying by the adjoint of (sd;; — a;;)i; to both sides, we
obtain det(sd;; — a;;)v = 0. Since 1 € T', 1 is a R-combination of the v; so that det(sd;; — a;;) = 0. Hence

s is a root of the monic polynomial det(zd;; — a;;) € R[z]. O
Corollary 2.7.29.1. Let R < S as above.
1. If s,t € S are integral over R, then so are s + t, as.

2. The integral closure of R in S is a subring of S.
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3. If Rc S < T with S integral over R and T integral over S, then T is integral over R.
Proof.

1. Since R][s|, R[t] are finitely generated R-modules, so are R[s + t] and R][st].

2. This follows from 1.

3. Let t € T. Then t" + a,_1t" ' 4+ - 4+ a1t + ap = 0 for some a; € S. Since S is integral over R,
Rla,_1,...,a0] is a finitely generated R-module, and thus R[t,a,_1,...,a] is a finitely generated

R-module. Since R < R[t,a, 1,...,a9] T, the above Proposition shows ¢t € T is integral over R.
]

Corollary 2.7.29.2. The integral closure of R is S is integrally closed in S.

Proof. Let R’ be the integral closure of R in S and R” the one of R’ in S. Now we have R € R’ < R".
Corollary above shows R’ is integral over R so that R” < R’, and thus R’ = R”. O

Example 2.7.30. A finite field extension K of Q is called a number field. Then the ring of integers Ok
of K over Q is integrally closed. For example, when K = Q[v/—3], O = Z[#] (c.f. Example 2.1.8)

Example 2.7.31. Let R < S as above.
1. If R, S are fields, then S is integral over R if and only if S/R is an algebraic extension.
2. If S is integral over R and I < S is an ideal, then S/I is integral over R/R N 1.
3. If Ris a UFD, then it’s integrally closed. (Proposition 2.4.9.)

« Since Z[v/—3] is not integrally closed, Z[/—3] is not a UFD.
o By Gauss’ lemma, k[xq,...,z,] is a UFD, so it’s integrally closed.

o klz,y]/(y* — x3) is not integrally closed, though it’s an integral domain: (7/Z)?> —Z = 0 but
y/T ¢ klz,y]/(y* — 2°).

Definition. Let ¢ : R — S be a ring homomorphism of commutative rings with 1.
1. If I <R, then I¢:= ¢([)S < S is called the extension of I to S.

2. If J< S, then J¢:= ¢ *(J) < R is called the contraction of J in R.

e When R< S and ¢ : R — S is the inclusion, we have [ = IS and J° = J n R.
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Property 2.7.32. Let I, I, I, be ideals of R and J, J;, Js ideals of S.
1. T I JoJe.
2. I =1°c¢ J=Jee.

3. The set C of contracted ideals in R is {I | I®® = I} and the set £ of extended ideals in R is

{J | J = J}. Moreover, I — I¢ is a bijective map of C onto &, with inverse J — J°.

(h+L)=I{+15 (J1+ L) 2J0+JS
(hnh)yclinly (Jinh)=JnlJS
4. (I11,)° = I¢IS (J1J2)e 2 JEJS
(I : L)< (If:15)  (Jy: Jo)e < (JP: JS)
VITcVIe VI =VJe

~— —

Proof.
1. ¢(I) < I°so that I < o (p(I)) < I°. Since J 2 ¢(J¢) and J is an ideal, J 2 J.
2. This follows from 1.

3. f I eC,say [ = J¢ then [ = J¢ = Je=1]. If Je &, say J=1° then J = [ =][°= ] If
I, I € C are such that I{ = IS, then I} = I{¢ = [§¢ = I,. For J € £, J¢ € C such that (J°)¢ = J.
This shows the bijectivity of I — I of C onto &.

o Let o(r)s e (I : I)¢ with r € (I, : Iy), s € S. Then p(r)sIs < p(r)p(l2)S < ¢([1)S = If. If
re (Jy:Jy)¢ then ¢(r)Jy € Jy. Taking inverse image gives rJS < Jf.

o Let p(r)s € I° with r € v/I, s € S. Then " € I for some n > 1 and ¢(r")s" € p!S = I¢.
Taking radicals gives ¢(r)s € v/ I¢. If r € v/J¢, then ™ € J¢ for some n = 1 and p(r)" € J.
Taking radicals gives ¢(r) € VI , and thus r € \/jc. For the reverse inclusion, let r € \/jc.
Then ¢(r)* € J for some n > 1, i.e, v € J°. Hence r € v/J¢. (the essence is that ¢ is a ring

homomorphism.)

Example 2.7.33. The above inclusion can be strict. Here are some examples.

1.Z2<cQ, I =nZ,n+#0. ThennZ =1< IQnZ = 7. Also, when n = p, IQ is either a prime ideal

nor a maximal ideal.
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2. Z< 7ZJi], J = (1+1). We have J nZ = (2) so that (J nZ)Z[i]| = 2Z][i]. We see J < 2Z]i] is proper.

Lemma 2.7.34. Let R < S be commutative rings with 1¢ = 1z and S be integral over R. If D is

multiplicatively closed set in R containing 1, then D~1S is integral over D™ R.

Proof. Let z e D7'S. Sincez € S, 2" + ap_12" '+ - -+ a1x + ap = 0 for some a; € R. Then
Yy

n n—1
T Ay — T a X a
Yy Y Yy Y Y Yy

T
so that = € D715 is integral over D' R. O
Yy

Theorem 2.7.35. Let R < S be commutative rings with 1¢ = 1z and S be integral over R.
1. If S is an integral domain, then S is a field if and only if R is a field.

2. For P a prime in R, there exists a prime () in S such that ) n R = P. Moreover, P is maximal if

and only if () is maximal.

3. (Going-up) If P, € P, are primes of R and @) is a prime of S such that (); n R = Py, then there’s a
prime ()5 of S such that )1 € Q)2 and Q2 N R = P>.

4. (Going-down) Suppose S is an integral domain and R is integrally closed in R. If P, € P are primes
of R and @5 is a prime of S such that Qo n R = P,, then there’s a prime ); of S such that ), < @,
and Ql NR= Pl-

Proof.
1. Let r € R\{0}. Then r~! € S so that (r™')" +a, 1(r" )" '+ -+ a;r~' + ag = 0 for some a; € R.
Multiplying by "~ gives r~!' = —(agr"!' 4+ -+ + a,_1) € R. Conversely, let s € S\{0}. Then
S+ ap 15"V -+ ays + ag = 0 for some a; € R; assume that ag # 0 (it’s the step that being an

-1
integral domain matters). Then s - —(s""!' 4+ -+ +a;) = 1 so that s is invertible.
Qo

2. We first prove the second part. Since @) is a prime, S/Q) is an integral domain, and since S is integral
over R, S/Q is integral over R/Q° = R/P. By 1., S/Q is a field if and only if R/P, i.e, () is maximal
if and only if P is maximal. For the first part, let D = R\P. Consider the commutative diagram

D'R—— DS
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By Lemma, D~1S is integral over D' R. Let M be a maximal ideal of D~1S. Then M¢= M nD™'R
is also maximal by the second part. Since D~!'R is a local ring, M = D~'P is the unique maximal
ideal. Then the prime ideal 3~!(M) has the property that 37'(M) N R = a~!(M¢) = P, as wanted.

3. S/Q is integral over R/P; and P,/P; is a prime of R/P;. The result follows from 2.
O

Remark 2.7.36. The prime ideal in 2. is not unique. For example, R = Z, S = Z[i], P = 5Z. Then @
can be (14 2i) or (1 — 2i).

Theorem 2.7.37. Let R < S be commutative rings with 1g = 1z and assume S is integral over R and is
a finitely generated R-algebra. If P is maximal, then

0<#{Q<2S|Qis maximal, Q n R= P} <o

Proof. The nonzero part follows from 2. of the Theorem above. Now if ) is maximal in S such that
Q N R = P, then R/P < S/Q is a field extension. Since S/Q is integral over R/P, it’s also algebraic.
Denote by W an algebraic closure of R/P. Each maximal ideal @) of S such that Q@ n R = P gives rise
to a distinct pair (K, ¢), where K < R/P is a subfield and ¢ : S — K is a ring homomorphism such that

¢|r = mod P, pictorially
R S

#{Q < S| Q is maximal, Q " R = P} < #{(K,¢) | K < R/P, ¢ € Hom(ring) (S, K) with ¢|zr = mod P}

c

» S/QQ =K< R/P

\
7

P NR——m

so that

Let F = {(K,¢) | K € R/P, ¢ € HomRing) (S, K) with ¢|z = mod P}. We contend F is a finite set.
Assume S = R]sy,. .., Sy). Since S is integral over R, there are monic polynomial f; = 2™ +---+a;o € R[z]
such that f;(s;) = 0. If (K, ¢) € F, then 0 = ¢(f;(s;)) = &(s;)™ + --- + @jo (here a;; := a;; mod P).
This means ¢(s;) is a root of m in R/P. Since there are only finitely many roots of f;, we conclude

#F < w. ]

Example 2.7.38. Given a prime P in R, we make use of the proof above to find primes () in S lying over
P.
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1. R=7,S8 =2Z[i], P=5Z, R/P =Ts, f(r) = 2? + 1. Then ¢(i) € {roots of 2% + 1 in F5} = {2, —2}.
o ¢(i) =2 so that ¢(i —2) = 0. This means i — 2 € @, and thus @ = (5,7 — 2) = (1 + 2i).
o P(i)=-2~Q=(51i+2)=(1—2).

2. R=7,S =17, P=27, R/P =Ty, f(x) =2+ 1= (z—1)?>in Fy. Then Q = (2,i — 1) = (1 +1).
(Note that 2Z[i] = (1 + ¢)?). If P = TZ, x* + 1 has not root in F; but in Fs9. We then see Q = (7).

3. R=17,8 = Z[V?2], f(x) = 2® — 2, P = 5Z. We have 1> — 2 = (v — 3)(22 — 22 — 1) in F3. Thus
Q=05,V2-3)=(Vd+1)orQ=(5V4—-2v2-1)=(J4—-2v2-1).
Algebraic integers

Proposition 2.7.39. An element « in some field extension of QQ is an algebraic integer if and only if it’s

algebraic over Q and mq g € Z[z].

Proof. The if part is clear. For the converse, let g(z) € Z[z] be a monic polynomial such that g(a) = 0;
suppose g has the minimal degree. If g is reducible over Q, then by Gauss’ lemma, g is reducible over
Z, contradicting to the minimality of g. Hence g¢ is irreducible over Q. Since m,qg | g, we conclude

g = My Q. L]
Proposition 2.7.40. Let K be a number field.

1. As a vector space over Q, K has a basis consisting of elements in O.

2. Let I < Ok be a non-trivial ideal. Then as an abelian group, it is of rank [K : Q]. In particular,

O is Noetherian.

3. Ok is a Dedekind domain, i.e, Noetherian, integrally closed and of Krull dimension 1.
Proof.
1. Let a € K\Q and m,o(z) = an2™ + - - - + a1z + ap. Consider the polynomial
(an)" + an_1(anz)" '+ + al2ay(a,x) + al ag
From this, we see that a,z is a root of the monic polynomial
n n—1 n—2 n—1
Y+ an—1y +--+a, a1y +ta, a

implying that a,x € O. We’ve proved that for any a € K, ma € O for some m € Q*. Now given any
basis {aq,...,a,} for K/Q, {m;a; | i = 1,...,n} is a basis for K/Q, where m; € Q* is such that

m;Qy; € 0.
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2. Let {v1,...,v,} € O be a basis of K/Q; this exists by (a). Put Emb(K/Q) = {oy,...,0,}. For
x € O, write

r=av + -+ a,v,

where a; € Q is to be determined. Applying o; gives a system a equations

0'1(37) = alUl(U1)+"'+an01(Un)
oa(x) = aro2(v1) + -+ + ano2(vy)
on(r) = arop(v) + -+ + ano,(vy)

Put D = det(o;v,) and D; to be the determinant of the matrix obtained by replacing the i-th column
of the matrix (o;v;) by (o1(x) -+ on(x))". By Cramer’s rule, we have a; = D;/D for i = 1,...,n,
ie, a;D* = D;D. Since z,v; € O, so are o;(z),0;(v;) € O, and thus D;,;D € O. Also, note
that (o;v;)(0w;)" = (tri/g(vv;)) and trig(vv;) € Q, so that D* = det(trg g(viv;)) € Q. Hence
wD*=D,DehnQ=7

So far we’ve shown that for each x € O, there exist m; € Z such that

1

myvy + - -+ mpvy,)

1
equivalently, O < ﬁz@l’ ..+, Upy. On the other hand, we have Z{vy, ..., v,) € O. Combining these
gives
1
Z<U1, c.. ,’Un> cOc ﬁZ@l,. .. ;Un>
Both RHS and LHS are free abelian groups of rank n, forcing O itself to be a free abelian group of

rank n, as wanted.
For each av € I, we have O < I < O. Again, RHS and LHS are free abelian groups of rank n, and

thus so is /. In particular, I is finitely generated Z-module. Hence O is Noetherian.

3. Let o € P\{0}. Then m := Nk z(o) = a3 € Z for some § € Ok, so m € P, and thus Ok /P <
Ok /(m). Since Ok has rank n, #Of/(m) = m" < o, and thus Ok /P is a finite integral domain,

i.e, a field. Hence P is a prime.

It remains to show O is integrally closed. Since Ok is the integral closure of Z in K, Ok is integrally

closed in K. Since K = Frac Ok, we are done.

Definition. A Z-basis for O is called an integral basis for Ok (or K).
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Example 2.7.41.

1.

2.

Let D # 1 be square-free. Then an integral basis for Q[v/D] is {1,w}, where

VD ,if D=23 (mod 4)
w=1 1++/D
2

,if D=1 (mod 4)
(c.f. Example 2.1.8.)

An integral basis for Q(¢) = Q(e*™/) is 1,(, ..., (¢,

Hilbert’s Nullstellensatz

Theorem 2.7.42 (Noether’s normalization lemma). Let A = k[ry,...,7r,] be a finitely generated k-

algebra. Then there exist y1,...,ys € A (0 < d < m) such that the y; are algebraically independent and A

is integral over k[y1,. .., y4l.

Proof. We prove this by induction on m.

10

20

m = 1 : Suppose A = k[r]. If r is algebraically independent over k, pick y; = r. Otherwise, r is
algebraic over k so that A is integral over k.

m > 1: If ry,...,r, is algebraically independent over k, then done. Otherwise, there’s a nonzero
f € k[xy,...,xy) such that f(ry,...,7,) = 0. Renumbering the subscripts, if necessary, we assume
f(z1,...,x,) is not a constant in the variable z,,,. Let d = deg f, the maximum of the total monomial

degrees. For j =1,...,m — 1, define

For each monomial z{' - - - z¢", we have

it arm = ( Xy + x,l,jd)el o (X1 + xﬁi+d)M7l)em*1x%’L

_ mfrfln—i-m(H—Cl)-&-'"-‘-em—l(1“'Cl)m_l 4.

Note that different (eq,...,e,,) give polynomials in Xy, ..., X,,_1, %, with the different highest de-

grees of x,,.
Now write
N-1
1 .
g( X1, . X1, o) = f(Xq + $2(1+d) o alm) = el + Z X1, .., Xmo1)x),
§=0
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j 1
for non-zero ¢ € k. For j = 1,...,m —1, let 5; = r; — ri " Then —g(S15- oy Sm_1,Tm) =
c
1
—f(ri,...,mm) = 0, i.e, r, is integral over B := k[s1,...,S,_1]. By induction hypothesis, there
c
exists y1, ..., Y4, (0 < d < m —1) such that yy,...,yq are algebraically independent over k and B is
integral over k[yy,...,yq| and thus A is integral over klyi, ..., y4].
O

Corollary 2.7.42.1 (Zariski’s lemma). Let K/k be a field extension. If K is finitely generated as k-

algebras, it’s a finite field extension.

Proof. By normalization lemma, k < klyi,...,y4] € K with K integral over klyi,...,y4] for some alge-
braically independent elements ¥, ..., yq over k. Since K is a field, Theorem 2.7.35.1 implies kyy, . . ., y4]
is a field, and thus d = 0, i.e, K is algebraic over k. Since K is finitely generated as k-algebra, [K : k| is
finite. [

Theorem 2.7.43 (Hilbert’s Nullstellensatz - Weak form). Let k& be an algebraically closed field. Then
M <Qklzy,...,x,| is a maximal ideal if and only if M = (z1 —ay,...,z, —a,) for some a; € k. Equivalently,

we have the bijection
{points in A"} —><; {maximal ideals in k[A"]}
z

Moreover, if I is any proper ideal of k[xy, ..., z,|, then Z(I) # &.

Proof. Clearly, M = (x1 — ay,...,x, — a,) is a maximal ideal. Conversely, let M be any maximal ideal of
klxi,...,2z,). Then K = k[xy,...,2z,]/M is a field of finite degrees. By Noether’s normalization lemma,
there exist y1,...,yq € K, (0 < d < n) being algebraically independent over k such that K is integral over

klyi,...,yq]. Since K is a field, so is k[y1,...,yq], and thus d = 0, i.e, K is algebraic over k. Since k is
algebraically closed, K =k, i.e, k[z1,...,2,]/M = k. Then for each j, x; —a; € M for some a; € k. Hence

M = (zy —ay,...,z, — a,). The moreover part is clear. O

Theorem 2.7.44 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. Then Z(Z(I)) = v/1

for every ideal of I < k[xq,...,x,]. Moreover, we have the bijection

{affine algebraic sets} ﬁ {radical ideals in k[A"]}
z

Proof. Tt remains to show Z(Z(I)) < v/I. Assume g € Z(Z(I)) and I = (fi,..., fm). Introduce a new

indeterminate x,,,1, and consider the ideal
I'=(fi, - s fos 9Tme1 — 1) QEk[x, ... 2, T
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Then Z(I') = . By the weak form, (fi,..., fm,gTms1 — 1) = k[z1,...,2n, xy11]. In particular, 1 =

arfi+ -+ amfm + ami1(gTmyr — 1) for some a; € klxy, ..., Tpmia]. Let y = . Then
Tm+1
yN = blfl + - +bmfm +bm+l<g - y)
for N >> 0 and b; € k[zy,...,Tm,y]. Substituting g for y gives g € I < kfx1,...,2,], ie, g€ V1. N

Corollary 2.7.44.1. If k is a field with algebraic closure k and I < k[z1,...,,], the T(Z:(I)) = V1,
where Z(I) is the zero locus of I in k' and Z(Z¢(I)) is the defining ideal of Z¢(I) in k[zy,...,xy).
Moreover, I = (1) if and only if there are no common zeros in E"of I.

Proof. Tt follows from Theorem 2.7.35.2 and Property 2.7.9.9 that if R < S are commutative rings with
lg = 1z and S is integral over R, then
S ISR =R \/j

Since k[z1, ..., x,] is integral over k[zy, ..., z,], the result follows from the Nullstellensatz.

2.7.4 Localization
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Chapter 3

Field theory and (Galois theory
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3.1 Field Extensions

Definition. The characteristic of a ring R with 1 is defined to be the smallest positive p, denoted by
Char R such that 1 +1+---+ 1 = 0. If no such integer exists, we define the characteristic to be 0.
\——V—/

p

Proposition 3.1.1. If R is an integral domain with 1 # 0, then Char R = 0 or a prime. Moreover, if
Char R = p, then pa =0 for all « € R. (HW. 14)

Proposition 3.1.2. Let F' be a field. If Char ' = 0, then F' contains a subfield isomorphic to Q. If
Char F' = p, then F' contains a subfield isomorphic to Z/pZ. (HW. 15)

Definition. In the preceding proposition, Q or Z/pZ is called the prime field of F.
Notation 3.1.3. We denote Z/pZ as F,, a field of order p.

Definition. If K is a field containing a subfield F', we say K is an extension field of F' and denote it

by K/F (not confused with the quotient). Sometimes we call F' the base field of the extension.

Definition. Given K/F and «, 3,7, ... € K, the smallest subfield of K containing «, 3,7, ... is called the
subfield generated by «, 3,7, ... over F, and is denoted by F(a, 3,7,...).

o If K = F(«) for some o € K, we say K is a simple extension of F' and « is the primitive

element for the extension K /F.

o Note that we may regard K as a wvector space over F, and we call dimp K the degree of the

extension, and denote it by [K : F].
o Wesay K/F is a finite extension if [K : F] < 0.

Proposition 3.1.4. If ¢ : F — F” is a field homomorphism, i.e, a ring homomorphism that sends 1 to 1,

then either ¢ = 0 or ¢ is injective. Hence, either o(F) =0 or ¢(F) = F.

Theorem 3.1.5. Let p € F[x] be irreducible. Then there exists an extension field K /F such that p has a
root in K. More precisely, there’s a field K containing a subfield F =~ F and § has a root in K, where p

is the image of p under the natural isomorphism Flz] = F[z].
Proof. Let K = Flx]/(p(z)). Then z + (p(x)) is a root of p in K. O

Definition. Given K/F, an element a € K is called algebraic over F if « is a root of some nonzero

polynomial in F[z]. Otherwise, « is called transcendental over F.

o If all elements of K are algebraic over F', then we say K is an algebraic extension of F.
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o When speaking of algebraic numbers, we always refer to those that are algebraic over Q.
Example 3.1.6. 1. 7 is transcendental over Q. (Lindemann)

2. e is transcendental over Q. (Hermite)

3. /7 is algebraic over Q(7).

Proposition 3.1.7. Let a be algebraic over F'. Then there’s a unique monic irreducible polynomial,

denoted as m, g, in F[z] such that « is a root of it. Moreover, if « is a root of f € Fz], then myr | f.

Proof. Let I, = {f € F[z] | f(a) = 0}. Clearly I, < F[z], and thus there’s a unique monic polynomial

Ma,r such that I, = (mg, r(x)). That m, g is irreducible follows from the uniqueness. O

Definition. The polynomial m, r in the preceding proposition is called the minimal polynomial of «
over F.

« The degree of a over F'is defined to be degp a := degm,, p.
Theorem 3.1.8. Let a be algebraic over F' and n := degp a. Then
1. F(a) = Flz]/(ma,r(x)).
2. 1,a,...,a"! form a basis for F'(«) over F. In particular, [F(«) : F] = n.

Proof. Consider the homomorphism

¢: Flz] s f(z) — fla) € F(a)

Note ker ¢ = (mqr(z)), so Flz|/(Mmar(z)) = Im¢. Also, Im¢ contains F' and «, so ¢ is surjective,
implying that F[z]|/(mar(z)) = Im¢ = F(«). For the second statement, it’s clear that every element in
Flx]/(mar(z)) can be represented by some polynomial of degree < n — 1. In view of the isomorphism
Flz]/(mar(r)) =~ F(a), this means 1,a,...,a" ! spans F(a). To show the linear independence, let

agp + a1+ - + ap_1x =0 for a; € F. Then myr | ap+ a1z + - + a,_12" ', and thus a; = 0. O
\ ) - >

n—1

~
deg=n deg<n—1

Example 3.1.9. 1. Rz]/(2? + 1) = C, deg = 2
2. Qlal/(e” — 2) = Q(v2), deg = 2
3. Qlel/(e* ~2) = QVE) = Q) = Q/le?), deg =3
4. Fy/(2? + x4+ 1) is a field of 4 elements since the degree of the extension over Fy is 2.
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Proposition 3.1.10. « is algebraic over F' < [F(a) : F] < o0.

Proof. The only if part follows from Theorem 3.1.8. If « is transcendental, then 1, c, o2, ... are linearly
independent over F', implying that [F(«) : F] = 0. O

Corollary 3.1.10.1. If [K : F| < o0, then K/F is an algebraic extension.

Theorem 3.1.11. For extensions L K F | it satisfies [L: F] = [L: K|[K : F].

Proof. The cases [L : K] or [K : F| is infinity are trivial. Suppose that [L : K] = m and [K : F] = n, say
{aq,...,ap} is a basis for L over K and {f3, ..., (,} for K over F.

Claim. S ={a;0; |i=1,...,m, j=1,...,n} is a basis for L over F.

Example 3.1.12. 1. v/2 ¢ Q[v/2] since degy v/2 = 3 but [Q(v/2) : Q] = 2.
Q(V2)

2. 4 Q(va) »and thus [Q(V2) : Q(V2)] = 3 = deggyg) V2 = 3 and m g5 (5 (¥) = 2° — V2

E

Q
Theorem 3.1.13. An extension K /F is finite < K is generated by a finite number of algebraic numbers
over F'. Moreover, a field generated by aq, ..., a; of degree ny,...,n, over F' has degree < nq---ny over
F.

Proof. Consider field extensions
Fc F(a) € Fla,a) S-S Flag,ag,...,a) = K
By Theorem 3.1.11,
[K : F] =[F(aq) : F][F(aq,00) : F(ag)] -+ [K : Fag,a,...,a5_1)] < nqng---np < o
O

Corollary 3.1.13.1. If o, 8 are algebraic over F', so are o + 3, af3, % (B # 0). In particular, given K/F,

the set of elements in K algebraic over F' forms a subfield of K.
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Example 3.1.14. Let Q be the set of all algebraic numbers in C. Then Q is an algebraic extension of Q

but not a finite extension of Q since, for instance, Q contains /2 for any n € N.

Theorem 3.1.15. If L/K and K /F are algebraic, so is L/F.

Proof. Let e L and put mg g () = 2" 4 an_12" " 4 -+ + ao. Then degp (o 40 0, )@ =1, and thus
QAo ...y Ap) @ F]

a,ag, ..., an1): Fag,...,a,-1)|[F(ag,...,an_1), F]
1

<n| |degpa; < w since a; € K and K/F is algebraic

]

Definition. Let K, K5 be subfields of K. The composite of K; and K5, denoted by K;K,, is the
smallest subfield of K containing K, Ks.

Proposition 3.1.16. Let K;, Ky be subfields of K containing F'. Then [K1K, : F| < [K; : F|[Ky : F].
Moreover, the equality holds when ged([K; : F], [Ky : F]) = 1.

Proof. Put m = [K; : Fland n = [Ky : F]. Let {a1,...,a,,} and {51, ..., 5.} be bases for K; and K5 over
F, respectively.

Claim. {o;03; |1 <i<m, 1 <j<n}spans K;Ks.

If ged([Ky : F],[Ky: F]) =1, m,n | [K1K; : F] implies mn | [K1 K, : F], and hence mn < [K Ky : F|. O

3.1.1 Constructible numbers
Definition. A real number is constructible if it can be constructed using a straightedge and a compass.
o The three geometric problems of ancient Greek mathematics

1. Doubling a cube ~» whether /2 is constructible.

0
2. Trisecting an angle ~» whether cos 3 is constructible given any cos 6.

3. Squaring a cube ~» whether 4/7 is constructible.

a
o Note that if a, b are constructible, so are a + b, ab, 7 and +/a.

Proposition 3.1.17. « is constructible < [Q(«) : Q] = 2* for some k € N.
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Example 3.1.18. The minimal polynomial for *™/7 over Q is #°+2°+- - -41, and thus [Q(e*™/7) : Q] = 6.

. 2 2 . 4 2
Also, [Q(e*™/7) : Q(cos ;)] = 2 since 200877r = e2™/7 4 ¢=2™/7_ Hence [Q(cos TW) : Q] = 3, implying

2
that cos 77T is not constructible by Proposition 3.1.17.

Question 3.1.19. For which n can we draw a regular n-gon using a straightedge and a compass? Equiv-

27 s
alently, for which n is cos — constructible, i.e, [Q(cos —) : Q] a power of 2, i.e,
n n

for which n is [Q(e*™ /n) : Q] a power of 27

We'll see that
[Q(e*™/n) : Q] = ¢(n)

and clearly, ¢(n) = 28 < n = 2"p; ... pp with p; — 1 = 2" m; > 1.
Definition. A prime of the form 2* + 1 is called a Fermat prime.

Observation 3.1.20. If k is divisible by any odd integer > 3, then 2¥+1 is composite, via the factorization
"+ 1= (x+1)<xm_l—xm_2_|_..._|_1)_

o Hence, a Fermat prime is necessarily of the form 22" 4 1, which we will denote by Fj.
o Fy=3, F\ =5, Fy, F3 =257, F; = 65537 are primes.

o Fermat conjectured that all Fj, are primes; however, this conjecture is way off. In fact, now it’s

believed that those above are the only Fermat primes.

3.1.2 Splitting Fields and Algebraic Closures

Definition. Let f € F[z]. If K is an extension field of F' such that f splits completely in K[z| and no
proper subfield of K possesses this property, we say K is a splitting field of f over F.

Theorem 3.1.21. A splitting field for f € F|x] exists.

Proof. We prove this by induction on n = deg f for each polynomial over any field. The case n = 1
is trivial. In general, let g be an irreducible factor of f over F. By Theorem 3.1.5, there exists an
extension E/F such that g admits a root o in E. Write f(z) = (z — aq) fi(z) for some f; € E[x]. Now
deg fi = deg f — 1 < deg f, so by the induction hypothesis, there exists an extension E’/FE such that E’
is a splitting field for f; over E. Hence, f splits completely in E’[z]. Let K be the smallest subfield of E’

containing all roots of f and F. Such K is what we desire. ]

Proposition 3.1.22. If K is a splitting field for f € F[x], then [K : F| < n!, where n = deg f.
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Remark 3.1.23. The bound is in general the best. Consider 3 — 2 € Q[z]. Its splitting field is

Q(\S/i’ \3/§€2ﬁi/3, \3/56727ri/3> — Q(\?)@, e271'i/3)

3

) and thus [Q(~3/2,e*™/3) : Q] = 6 = 3!.
E

(\3/57 627”‘/3)
Q(

Q
Then 6

Q

P _

1 .
Example 3.1.24. Let p be a prime. A splitting field of 2771 4+ --- +1 = ‘ T over Q is Q(e*™/7) since
all roots are of the form e™*/? k=1,...,p — 1, and thus [Q(e*"/?),Q] = p — 1.

Definition. If K /F is an algebraic extension such that K is a splitting field for a collection of polynomial

in Flz|, then we say K is a splitting field, or normal field, of F.

Lemma 3.1.25. Assume that F' =4 I, let p be an irreducible polynomial in F'[z] and put p’ = ¢(p) € F'[z].
Let a, o be roots of p, p’ in some extension fields, respectively. Then ¢ can be extended to an isomorphism
from F(«) to F' (o).

Proof. Consider the isomorphism

®: Fa) = Flz]/(p(x) =4 F'[z]/(p'(z)) = F'(d)
where the first and the third isomorphisms are as in Theorem 3.1.8. Then ® is an extension of ¢. [

Theorem 3.1.26. Assume that F' =, F’ and extend ¢ to F[z] naturally. Let f € F[z] and put f' := ¢(f).
Let E, E' be splitting fields of f, f’ over F, F’, respectively. Then ¢ can be extended to an isomorphism
from E to F'.

Proof. We prove this by induction on n = deg f for each polynomial over any field. The case n = 1 is
simply Lemma 3.1.25. For the general case, let g be an irreducible factor of f in F[z] and put ¢’ = ¢(g).
Then ¢ is an irreducible factor of f’ in F'[z]. Let o, &’ be roots of g, ¢ in E, E', respectively. By Lemma
3.1.25, ¢ can be extended to an isomorphism, denoted by ¢, from F := F(«a) to F| := F'(a/). Now
write f(x) = (z — a)h(z) and f'(z) = (x — o')W/ (x) for some h € Fi[z] and h' € F{[z]. Note that
degh = degf — 1 < degf and ' = ¢1(h). By the induction hypothesis, ¢; can be extended to an
isomorphism, denoted by @, from FE, a splitting field of h, to E’, a splitting field of A’. Then & : E — E’

is an isomorphism extending ¢. [
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Corollary 3.1.26.1. Any splitting fields for f € F[z] are isomorphic, and the isomorphism may be chosen

so that it fixes [’ pointwise.
Proof. This follows from Theorem 3.1.26 with ¢ = idp. O

Definition. An algebraic closure of a field F', denoted by F, is an algebraic extension of F such that

each polynomial over F splits completely over F.
Definition. A field K is algebraically closed if each polynomial over K admits a root in K.
Proposition 3.1.27. An algebraic closure of a field is algebraically closed.

Proof. Let F be a field, f(z) = Y a;2° € Flz] and a be a root of f in some extension of F. Then « is
=0

algebraic over K = F(ay, ..., a,), and K is algebraic over F, so « is algebraic over F. Hence a € F. [
Example 3.1.28. 1. Q = {algebraic numbers} is an algebraic closure of Q.
2. The Fundamental theorem of algebra states that C is algebraically closed.

Theorem 3.1.29. Let F be a field. Then an algebraic closure of F exists. Moreover, if K, K’ are two

algebraic closures of F', then there exists a field isomorphism between K and K’ that fixes F' pointwise.

Proof. Let S := {algebraic extensions of F'}, partially ordered by set-theoretic inclusion. By the Zorn’s
lemma S has a maximal element, say, K. Then K is an algebraic closure of F', which can be shown by an

argument similar to the proof of Proposition 3.1.27. For the moreover part, we let
T:={(E,¢) | Eis a subfield of K, ¢ : E =~ E’ for some subfield E’ of K'}
and define a partial order on T' by

(E1,¢n) < (B2, 10) © Ey € Ey A alp, =11

Let C be a chain in 7. Let By = |J E, Ej = |J FE' and define ¢ : Ey — Ej by for all x € Ey,
(Bap)eC (Ep)eC
o(z) := (x) for some 1 whose associated subfield E contains x.

o g is well-defined by the definition of < on T'.
e 1)y is clearly an isomorphism from Ej to Ej.
o (E,¢) < (FEo, 1) for each (E,¢) e C.

Hence (Ey, 1) € T is an upper bound for C. By the Zorn’s lemma, T" has a maximal element, say, (Ko, ¢o)-

112



Claim. Ky = K and Im ¢y = K'.

« Suppose otherwise that Ky & K. Pick a € K \K, and put p := mq g, € Ko[z]. Also, put p’ := ¢y(p)
and let o be a root of p’ in K’. Then by Lemma 3.1.25 we can extend ¢q to an isomorphism from
Ky(a) 2 Ky to Kj(o) € K', a contradiction to the maximality of (Ko, ¢p).

o Note that Im ¢y € K’ is also an algebraic closure of F', which forces that Im ¢q = K’ since it cannot

be extended algebraically.

3.1.3 Separable and Inseparable Extensions

Example 3.1.30. 22 — 2 € Q[] defines an extension Q(1/2) of degree 2 over Q, and has two distinct roots
++1/2 in Q(1/2). On the other hand, 2? —t € Fy(t)[x] also defines an extension Fa(#)(y/t) = Fo(+y/t) of degree
2 over Fy(t); however, 22 —t = (x — v/t)! has a (and the only) repeated root v/t in Fy(+/1).

Definition. A polynomial over a field is separable if it has no repeated roots in its splitting field. A
polynomial which is not separable is called inseparable.

Definition. Let f(z) = Y] ;2" € F[z]. The formal derivative Df of f is Df := > ia;x"! € Flz].

=0 1=1

Property 3.1.31. Let f, g€ Fl[z].
1. D(f+9)=Df+ Dy
2. D(fg) = fDg+gDf

Proposition 3.1.32. f € F[x] has a repeated root a < Df(a) = 0. In particular, f is separable if and
only if f and Df are relatively prime.

Corollary 3.1.32.1. Every irreducible polynomial over a field of characteristic 0 is separable.

Corollary 3.1.32.2. An irreducible polynomial f over a field F' of characteristic p is inseparable if and
only if f(z) = g(«P) for some g € F[z].

Example 3.1.33. In Fy(t)[z], D(z? — t) = 22 = 0. Thus z? — ¢ has a repeated root.
Proposition 3.1.34. Let F' be a field of characteristic p. Then F' 3 a — a” is a field endomorphism on F'.

Corollary 3.1.34.1. If F' is a finite field of characteristic p, then F' 3 a — aP is a field automorphism on
F.
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Definition. The function F' 3 a — a? is called the Frobenius endomorphism of F'.

Example 3.1.35. The Frobenius endomorphism on Fy(+/¢), which has image Fy(t), is not surjective. This

also gives us an example that a field is isomorphic to its proper subgroup.
Proposition 3.1.36. Every irreducible polynomial over a finite field F' (of characteristic p) is separable.

Proof. If f € F[z] is inseparable, by Corollary 3.1.32.2, f(z) = g(zP) for some g € Fl[z], say g(x) =

apx™ + -+ 4 ag. Since x — zP is an automorphism, a; = b¥ for some b; for each i. Hence
f(x) = apa™ + -+ a12? + ap = (byz™)P + - + (biz)? + by = (bpa”™ + -+ - + byx + by)”
and thus f isn’t irreducible over F'. Il

Definition. A field is said to be perfect is every irreducible polynomial over it is separable.

Example 3.1.37. Fields of characteristic 0 and field of characteristic p such that = — 2? is an automor-

phism are perfect.

Theorem 3.1.38. Let p be a prime. Then for each positive integer n there exists a finite field of p”
elements. Moreover, any two finite fields of p" elements are isomorphic, which will be denoted by .

Precisely, F := {a € F, | a?" — a = 0} is a finite field of p" elements.

Proof. Since D(x?" — x) = —1, 2" — z has no repeated roots, i.e, #F = p". Also, for all a,b € F,
a+b,abe F and % e Fifb+#0, so F is a field. Suppose F’ is another field of p" elements, then 27" ~! =1

for each 0 # x € F, and thus each element of F” is precisely a root of 7" — z. Therefore, F' and F’ are
splitting fields of 27" — x, and hence, by Corollary 3.1.26.1, F' =~ F. O

Proposition 3.1.39. Let f be an irreducible polynomial over a field F' of characteristic p. Then there exist

a unique integer k£ > 0 and a unique separable irreducible polynomial fi., € F[z] such that f(x) = f, sep(azpk).

Proof. If f is separable, we are done with k£ = 0 and f,., = f. Otherwise, by Corollary 3.1.32.2, f(x) =
fi(a?) for some f; € Fz]. If f; is separable, we are done with £ =1 and f,., = f1. Otherwise, continuing

this way, and since deg f < oo, this must stop in a finite stage. ]

Definition. In the preceding proposition, the integer p*, denoted by deg, f, is called the inseparable
degree of f, and the integer deg fs.p, denoted by deg, f, is called the separable degree.

Remark 3.1.40. Clearly, deg f = (deg; f)(deg, f). Note that we only define these degrees over irreducible

polynomials. For example, we cannot say what they should be for f(z) = (27 — t)(z?" — t).

Example 3.1.41.
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1. p(x) = 2P —t is irreducible over F,(¢) by the Eisenstein’s criterion, and is separable since it has zero

derivative. Hence pye,(v) = x —t, deg, = 1 and deg, = p
2. p(x) = 2" — ¢ is irreducible over F,(t) with ps, = = — ¢ and deg, p = p".

Definition. An algebraic extension K /F' is said to be a separable extension if m, r is separable for
each a € K.

Example 3.1.42. Each algebraic extension of a perfect field is separable. In particular, any finite extension

of either Q or a finite field is separable.

3.1.4 Cyclotomic Polynomials and Extensions
Definition. Let n be a positive integer.
1. ¢, := e2miln,
2. pin ={C* | k=0,...,n— 1} is the group of n-th roots of unity over Q.
3. ¢ € p, is a primitive if u, = ((), i.e, ged(k,n) = 1.
4. ¢, (z) = 11 (x — ¢¥) is called the n-th cyclotomic polynomial.

ged(k,n) =1
1<k<n

Lemma 3.1.43. 2" — 1 = | [ 4(z)
dn

Proof.

ﬁ 2k7rz/n _ H H (.T o erﬂ'i/n)

k=1 d'|n ged(k,n) = d’
1<k<n
(Let d= d/’ H H (ZL‘ . €2k;/7ri/d> _ H CI)d<ZL')
din k'e(z/dZ)* dn

Lemma 3.1.44. ®,, € Z|[x] is monic of degree ¢(n).

Proof. That ®,, is monic of degree ¢(n) is clear. We prove it by induction on n. The result is clear when
n = 1. Suppose ®;, € Z[z] when 1 < k < n. By Lemma 3.1.43 we have 2" — 1 = f(z)®,(z), where

f(x)= ] ®4(z). Since f € Z[z] by the induction hypothesis and is monic, ®,, € Z[z] by the division,
d|n, d#n
and thus the induction stage is completed. [
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Definition. For each n > 2, we write n = pi* ---p}*, where each p; is prime and e; > 1. We define the
Moébius function i : N — {—1,0,1} by setting

1 fn=1
p(n) =< (=1)k | ife; =1 for each i
0 , if e; > 1 for some i

Proposition 3.1.45. Let G := {f : N — R | f(1) # 0}. Define the operation * on G by setting

(f *9)(n) = Y fd)g(5)
d|n

for each f,g € G. Then (G, ) is an abelian group with identity dy,,.

Proposition 3.1.46. Let f,g: N — R with f(1),¢(1) # 0. TFAE:

L f(n) = gg(d)

2. g(n) = S p(5)f(d)

dln

Equivalently, p 1 = 0y, where 1 : N3 n — 1.

Proposition 3.1.47. &, (z) = [(z¢ — 1)*@).
dn

Proof. This follows from Lemma 3.1.43 and Proposition 3.1.46, by exponentiating. O
Remark 3.1.48. This also gives a proof for Lemma 3.1.44.

Theorem 3.1.49. ®,, is irreducible over Q.

Proof. Suppose that ®,(x) = f(x)g(z), where f,g € Q[z]. By the Gauss’ lemma, we may assume that
f,9 € Z]x]. We also assume f = mc, g.

Claim. If p is a prime such that ged(p,n) = 1, then f(¢2) = 0.

Note that (? is also a root of ®,. Suppose otherwise f(¢?) # 0. Then ¢(¢?) = 0, implying that
f(x) =me, o(x) | g(2P), say g(2P) = f(x)h(x) for some h € Q[z]. Since f is monic, h € Z[z]|. Consider the
reduction modulo p. We have g(z) = g(z?) = f(z) - h(x). Since F,[z] is a UFD, f,g have common factor

of degree > 1 in F,[z]. This implies that ®, has a repeated irreducible factor in F,[z], so does 2™ — 1,
which leads to a contradiction since 2" — 1, D(z™ — 1) = (2" — 1,nz"" ') = (1) in F, with ged(n,p) = 1.
Hence the proof of the claim is completed.

Now for all a € N such that ged(a,n) = 1, write a = p; - - - px, where each p; is prime. Then the claim
implies that (,, (%, ..., (PP = (2 are roots of f(z). Hence f = ®,, i.e, , = m¢, . N

n
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3.1.5 Wedderburn’s theorem

Theorem 3.1.50 (Wedderburn’s). Every finite division ring is a field.

Proof. Let R be a finite division ring. For any a € R, denote
C(a) :={re R |ar =ra}

and

Z(R) =) C(a).

aER
Note that Z(R) is a finite commutative division ring, so Z(R) is a field. Put F = Z(R) and ¢ = |F|. Also
note that R and C(a) are both vector spaces over F. Since R and C(a) are finite, R = F" and C(a) = F"

for some n,n, € N.

o R* = R\{0} is a multiplicative group, so we may consider the class equation:

R~
|R| = [Z(R")] +
e
ie,
"1
1=+ X

|[a]|#1

The last term on the RHS implies that n, | n since ¢"* — 1 ‘ q" — 1.

e On the other hand,
" —1=][%uq) =Pulq) [ [Oul) [] Palg)

dn dng ng<d|n,d#n
—_——
qra—1 =:A€eZ
qt—1 . . q" -1
and hence 1= A, (q), implying [®,(q)| ‘ | 1|-
qna _ qna —

Hence, we must have |®,(q)| | (¢ —1). Thus

i1zl =1 T] (e-ew™@)1 = TT (al-0=(d -0

ke(Z,/nZ) ke(Z/nZ)*

\%

If ¢ = 2, then all inequalities turn out being equalities, and thus n = 1. Otherwise, we have p(n) = 1,
implying that n = 1,2 and hence n = 1 for ®3(q) = ¢ + 1. Hence, we have R = F" = F is commutative,
and thus a field. n
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3.2 Galois Theory

3.2.1 Separable extensions

Let F be a field and a € F. Recall that we have F(a) =~ F[z]/(mqr(z)). If 3 is another root of m, r,
then F\(8) = Flx]/(mar(z)) = F(a). This gives the isomorphism

Pap : Fla) —— F(B)
o ﬁ
Definition. For o, 3 € F, we say a and 3 are conjugates over F if m, r = mg p.

Proposition 3.2.1. ¢ : F(a) <> F be an isomorphism from F is a subfield of F such that ¢ fixes F

pointwise. Then ¢(«) is a conjugate of « over F.
Definition. Let F' € E < F be fields.

1. An embedding of E into F is a nontrivial (injective) field homomorphism from E to F.

2. Emb(E/F) := {embeddings of F into F that fix F pointwise}.

3. {E: F}:=#Emb(E/F)
Corollary 3.2.1.1. Let F be a field and o € F. Then {F(a) : F} = # of distinct roots of mg, r =
deg, ma. r.

Theorem 3.2.2. Let F <€ K € F and [F: F| <o, then {E: F} ={E: K}{K : F}.

Proof. Note that if 7 € Emb(E/F), then 7|k € Emb(K/F).
Claim. For all 0 € Emb(K/F), there are {E : K} embeddings 7 € Emb(E/F) such that 7|x = 0.

In fact, we will prove a stronger statement:

Claim.

For all 01,09 € Emb K/ F, # of 71 € Emb(E/F) such that m|x = oy
= # of » € Emb(E/F) such that 7|k = 09
= # of 7€ Emb(E/F) such that 7|x = idx = {F : K}

Let 0, : K — K, i = 1,2. Extend them to isomorphisms @, : ¥ — F by Zorn’s lemma, as in the proof of
Theorem 3.1.29. Let A = 55 05, ". Then for any 7, € Emb(E/F) such that 7|x = 01, (Ao 71)|x = 02.
Conversely, for any 7, € Emb(E/F) such that m|x = 09, (A™! o 7)|x = o1. Thus X induces a bijection
from {r € Emb(E/F) | 11|x = 01} to {ms € Emb(E/F) | 73|k = 02}. O
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Definition. Let F be a field and o € F.
1. a is separable over F'is {F(a): F} = [F(«) : F], i.e, mq r is separable over F'.
2. Let F < EC F. E/F is a separable extension if each element in E is separable over F.
3. Let F < EC F. E/F is a purely inseparable extension if mga,r has only one root for all g e E.
 In the case E/F is finite, E/F is separable if and only if {E : F'} = [E : F].

o If « is separable over F, then F(«)/F is a separable extension. Indeed, let § € F(a), then

{F(a) : I} [F(e) : F]
{F(B): F} = =
{Fla): F(B)}  [F(a): F(B)]
in which the second equality holds since if « is separable over F', it remains separable over any
intermediate field of F' € F(«).

= [F(B): F]

o If F has characteristic 0, then every algebraic extension of F' is separable (see Corollary 3.1.32.1).

In general, any algebraic extension of a perfect field is separable.

Corollary 3.2.2.1. Let F be a field and «, 8 € F are separable over F, then F(a, 3)/F is separable. In
particular, o + 3, a3, 1/« are separable.

Definition. Let ' < E < F be fields.
1. Ey:={a € E | « is separable over F'} is a subfield of E, called the separable closure of F in E.
2. [Es : F|] is called the separable degree of E/F, denoted as deg, F/F.
3. [E : E] is called the inseparable degree of E/F, denoted as deg; F/F.

Proposition 3.2.3. Let E/F be an inseparable algebraic extension and p = Char E. Then E /F is
separable and E/FE; is purely inseparable.

Proof. The first is clear by definition. Let o € E. By Proposition 3.1.39, there’s a k£ > 0 and an irreducible
separable polynomial f € F[z]| such that m, p(x) = f (fL‘pk), and thus o?" is separable over F, i.e, a?" € E,.

Hence m, g, has only one root, and thus E/E; is purely inseparable. Il

Corollary 3.2.3.1. Let E/F be algebraic and p = Char F. Then E/F is purely inseparable if and only

if for each element a € E, a4 is separable over F for some ¢ = p*, k > 0.

Proof. This can be seen from the proof above. ]
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Traces and norms

Definition. Let L/K be a finite field extension. For each x € L we associate it with a translation

T, : L — L defined by y — xy; T, is a K-linear map.

1.

The trace Try k() is defined to be the trace of T;.

2. The norm Ny k() is defined to be the determinant of 7.

e One can see the trace is additive and the norm is multiplicative.

Proposition 3.2.4. Let L be a finite separable extension of K of degree n. Let a be an element of L.
(HW. 1)

1.

The minimal polynomial for o over K is the same as the minimal polynomial for the linear transfor-

mation T,. (Moreover, the characteristic polynomial of T, is a power of its minimal polynomial.)

Proof.

1.

TI'L/K(Oé) = Z O'(Oé) e K
o€Emb(L/K)
Np/k(a) = [T ola)eK
oeEmb(L/K)
Let f(xz) = mqk(x) and g(z) be the minimal polynomial of 7,; by definition g(x) € K[z]. By

definition, we have g(7,)5 = 0 for all § € K, and thus g(«) = 0, implying f(x) | g(z). Conversely,
f(a) = 0 implies f(«)f =0 for all § € K, i.e, f(T,) = 0. Hence g(z) | f(x). To sum up, we obtain
f=g
Let d = degj a. Clearly, we have d | n. Let ¢(«) and n(a) be the sum and product of conjugates of
a over K| respectively. Obviously, we have
n
Trp p(a) = Et(a)
Ni/r(a) = n(a)"

Let {fi,..., B4} be a basis for L/K(a). Then 8 :={a'8; |0 <i<d—1,1<j<d}is a basis for
L/K. Ordering 8 appropriately, we have [T,]s = A®---® A € M,(K), where

0 0 -+ 0 —ag
1 0 0 —ay
A= : e My(K)
I —ag
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and g(z) = 24 + ag_12¥t + -+ + a17 + ap. Thus

—Qq—1N n
tr(T,) = Cclz = —t(a) = Tr k(o)

3. As in 2., we have
det(T,) = ((—1)%a)"" = n(a)"* = Ny k()

]

Proposition 3.2.5. Let L/K be a finite extension and V' a finite dimensional vector space over L. Let

¢ :V — V be an L-linear map. Then
trg () = Trr/k(tro(e))
detg (@) = N i (detr(¢))
Proof.

1. Let {vy,...,v,} be an L-basis for V. By linearity of the first asserted identity, assume @ (v;) = av,
and ¢(v;) = 0 for i # t. Let {aq,...,ay,} be a K-basis for L. Then p(ov;) = dtjacvs = 84T, () vs,
and hence

trg(p) = trg T, = Try k(a) = Tr (trr(v))

when ¢t = s and
trx () =0 =Trr/k(0) = Trr k(trr(p))

when ¢ # s.
2. We may assume ¢ is invertible. Also, by multiplicativity, we may assume ¢ is an elementary matrix.
o Assume ¢(v;) = vy + avs and @(v;) = v; for @ # t. Then @(a;v;) = a;vj + 04T, (o)vs so that
detr(p) =1 = Np/k(1) = Npjk(det(g))

o Assume ¢(vy) = av, and @(v;) = v; for i # t. Then p(a;v) = acqvy = T,(a;)v; so that
[o] = [T,] ® I in terms of the basis {o;v;}, and thus

detK(go) = detK Ta = NL/F(CL) = NL/K(detL(go))
OJ

Definition. Let L/K be a finite extension of degree n and {x1,...,z,} be elements of L. The discrimi-

nant disc(zy,...,,) is the determinant of the matrix (Trz x (x;x;))s;-
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« Suppose L/K is separable. Let Emb(L/K) = {o1,...,0,}. Then disc(z1,...,z,) = det(o;(z;))>.
Theorem 3.2.6. Let L/K be a finite extension of degree n. TFAE:

1. L/K is separable.

2. Trp,k is not identically zero.

3. The pairing @Q = Try/k : L x L — K is nondegenerate.
Proof.

1. (3 = 2) This is clear.

2. (2 = 3) Pick y € L such that Try/x(y) # 0. Then for all z # 0, Q(z,y/x) # 0. This shows @ is

nondegenerate.

3. (2= 1) Suppose L/K is inseparable. Say Char K = p for some prime p. By Proposition 3.2.3, Ly/K
is separable and and L/L; is purely inseparable. By Proposition 3.2.5, the trace is identically zero

since L/L; is purely inseparable.

4. (1 = 2) Suppose L/K is separable. Use induction on n we show the trace map is not identically zero.
By Proposition 3.2.5 we may assume L = K(«) for some o € L. Let ay,...,q, be the conjugates
of a over K; they're distinct by separability. Note also that they are the eigenvalues of the linear
transformation induced by a. Consider the map ; : 7 — «]; this is a character from the group Z to
L*. Proposition 3.2.9 shows m(e) 4 - -- + m,(e) # 0 for some e € Z, i.e, Try/x(a®) # 0.

3.2.2 (Galois extensions

Definition. Let F be a field.

1. An algebraic extension E/F is normal if o(E) = FE for all 0 € Emb(E/F); equivalently, for any

a € E| conjugates of a over F all lie in E.
2. If E/F is an extension, let
Aut(E) :={o: E — E | o is a field isomorphism}

and let
Aut(E/F) := {0 € Aut(E) | o fixes F' (pointwise)}
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« Note that F, € F if Char £ = p. Since o(1) = 1 for all 0 € Aut(E), o fixes F,. Hence Aut(F) =
Aut(E/F,). Likewise, Aut(E) = Aut(£/Q) if Char £ = 0.

« An algebraic extension E/F is normal if and only if Emb(E/F) = Aut(E/F).

« The splitting field of a collection of polynomials of F[z] over F is a normal extension of F.

Proposition 3.2.7. Let F be the splitting filed of a collection of polynomials in F'[z] over F'. Then E/F

is normal.

Proof. Note Emb(E/F) < Aut(E/F), so Emb(E/F) = Aut(E/F). Now if o € E and 3 is a conjugate
of a over F', there exists a field isomorphism ¢ : F(o) — F(f3) sending « to 5. Extend ¢ to an element
o€ Emb(E/F) = Aut(E/F). Thus 8 = ¢(a) = o(a) € E. O

Definition. Let F' be a field. If E/F is separable and normal, we say F/F is a Galois extension . In
this case, we write Gal(E/F) := Aut(E/F), and call it the Galois group of E/F.

o In the case E/F is finite, E/F is Galois if and only if # Aut(E/F) = [E : F].

o If f e F[z] is separable, "the Galois group of f” refers to the Galois group of the splitting field of f

over F.
Example 3.2.8. 1. Quadratic extensions of a field of characteristic # 2 are Galois.
2. Q(¥/2)/Q is not Galois (not normal), but Q(+/2, e2™/3) is; it’s the splitting field of 2% — 2 over Q.
3. A Galois extension of a Galois extension may not be Galois. For instance, Q € Q(v/2) < Q(v/2).

4. Fyn /I, is Galois since it’s the splitting field of 2" — x over F,. Let o : a — a? be the Frobenius

automorphism on Fj.. Clearly, 0" = idp,,. On the other hand, 27" — 2 has at most p* roots, so o*

cannot fix every element of F» if & < n. This means the order of 0 = n = [Fpn : F)| = # Gal(Fpn /F)).
Thus Gal(F,- /F,) = (o).

3.2.3 The fundamental theorem of Galois theory
Definition. Let K be a field and S be a subset of Aut(K). Then the set
K% :={aeK|oa=aforaloeS}

is a subfield of K, called the fixed field of S.
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Definition. Let G be a group and K be a field. A character of G with values in K is a group homomor-
phism y : G — K*.

o Each homomorphism from E ot K may be viewed as a character of £* with values in K*. In

particular, embeddings and automorphism of a field are characters.

Proposition 3.2.9. Let G be a group and K be a field. If xq,..., x, are distinct characters of G' with
values in K, they're K-linearly independent.

Corollary 3.2.9.1. Let K/F be a finite separable field extension. Then the trace Trg,p : K — F is
surjective.

Theorem 3.2.10. Let K be a field and G = {0y = idg, 02, ...,0,} < Aut(K) be a finite subgroup. Then
(K : K9 = #G.

Proof. Let m = [K : K¢ and let o, ..., a,, be a basis for K/F.
1. n > m: consider the system of equations

0'1(061)(131 + -+ O'n(Oél).Tn =0

o1(ag)zy + -+ op(az)r, =0

(%) :
or(am)ry + -+ op(am)r, =0

Since n > m, (*) has a nontrivial solution (f1,. .., 5,) € K™. Since the «; form a basis for K/F, we

have
(#x) o1 ()Br+ -+ op(@) B =0, Vae K

WLOG, suppose (51, ...,05,) is a solution of all nontrivial solutions of (*) such that the number
of nonzero entries is minimal; say f,...,8, # 0 and B,41,...,8, = 0. Pick oy € K* so that

o1(ap) # o.(). Replacing a by apa in (#x), we obtain
o1(a)or () b1 + -+ + o (@) o () B = 0
On the other hand, by multiplying o, (ag) to both side of (), we obtain
o1(a)on(ag)fr + -+ + op(a)o, () fr =0
Subtracting the latter from the former, we have
or()]o1(a) = or(@0)]Br + - - - + o1 (@) [or—1 () — 0v(0)]Br—1 = 0

which contradicts to the minimality of r.
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2. m > n: consider the system of equations:

o)z + -+ o1(m)Tm =0

oo(ar)xy + -+ + oa(m)Tm =0

on(ar)ry + -+ op(m)T, =0

Again, since m > n, it has a nontrivial solution (51, ..., 5,) € K™; WLOG, suppose the number of

its nonzero entries is minimal, and say f§i,..., 8, # 0 and 5,41, ..., B» = 0. Furthermore, replace [,
by 8;/B, so that 8, = 1. Thus

(k%) 1 oj(@1)pr+ -+ 0j(ar—1)Br—1 + 0j(a,) =0, 5 =1,...,n

Note that i, ..., 5, cannot all lie in F, for otherwise the «; wouldn’t be linearly independent, by
taking j = 1 in (= = »); WLOG, say 8, ¢ F. Let 0; € G so that o;(8;) # B1. Applying o; to (» = =),
we obtain
oioj(a1)oi(Br) + -+ oigi(r1)oi(Br1) + oioi(ar) =0, =1,...,n
ie,
oj(a1)oi(Br) + -+ oj(—1)oi(Bro1) + 05(ar) =0, j =1,...,n

Subtracting (* = =) from the latter, we have
oj(ar)[oi(Br) = il + -+ + oj(ar-1)[oi(Bro1) — Bra] =0, 7 =1,...,n
which contradicts to the minimality of r.
Hence, we must have n = m. Il

Corollary 3.2.10.1. Under the notations of above theorem, we have K /K¢ is Galois with Galois group
G.

Proof. By the definition of K¢, we have G < Aut(K/K®Y). The preceding theorem shows that #G =
[K : K9, and this forces G = Aut(K/K%); in the mean while, this shows [K : K9] = # Aut(K/K%), i.e,
K/K¢ is Galois. O

Corollary 3.2.10.2 (Hilbert theorem 90). Let K be a Galois extension of F' with cyclic Galois group of
order n generated by 0. If v € K has Nk, p(a) = 1, then aw = o~ !(8) for some € K*.
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2 n—1

Proof. Since 1,0,0%,...,0" " are linearly independent over K, we have

1+ a0 + (aoa)o? + -+ (aoca--- 0" 2a)o™ 1 £ 0
Thus
B =0+ a0+ (aca)o®d + -+ (aoa--- 0" 2a)o" 0 # 0
for some 0 € K. Then

ﬁ _ 0+ ac(0) + (ac(a))o?(0) + - + ( o(@) - 0" ()™ (0)
aff  0(0) + a(@)o*(8) + (o(a )02(04))0 (9) + -+ (o(a)o?(a) - - o Ha))om(0)
0+ ao(0) + (ac(a))o?(8) + - + (ao(a) - - ”—2(@))071—1(9)
00 + o(a)o*(0) + (o (04)02(04))03(9) -+ a6

=«
where the second equality results from the assumption 1 = Ng/p(a) = ao(a)--- 0" *(a)o" (). O

Corollary 3.2.10.3 (Additive Hilbert theorem 90). Let K be a Galois extension of F' with cyclic Galois
group of order n generated by o. If @ € K has Trg/p(a) =0, then o =  — () for some 3 € K.

Proof. The linear independence of 1,0,02,...,0" ! shows that
Trg/r(0) =0+ 0(0) +0*(0) + -+ " H(0) # 0

for some 0 € K. Now let

1 2 . a—+ola e O_n72 o))o
—m(a0(9)+(0¢+0(a))0 O) + -+ (ato(@)+---+ 0" (a))o())
Then
808 = g (000 o+ 07 0) ~ (o) £+ o a))
1 2 n—1 o
= m(a(a O)+---+0"(0)) + ab)
= m(a(@—i—a @) +---+ (0)))
where the second equality comes from the assumption 0 = Trg p(a) = o+ o(a) + - + 0" (). O

Theorem 3.2.11 (Fundamental theorem for Galois theory). Let K /F be a finite Galois extension.
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1. If F ¢ F < K, then K/FE is Galois with Gal(K/F) < Gal(K/F) and # Gal(K/E) = [K : E], i.e,
[E: F)=[Gal(K/F) : Gal(K/E)].

2. There’s a one-to-one inclusion-reversing correspondence

(F|IFcEcK} — {H|1<H<Gal(K/F)}
E > ME) .= Gal(K/E)
KH « T H

where the mappings above are mutually inverses.
3. f FC B < EyC K, then /\(El N EQ) = <A(E1), A(E2)> and /\<E1E2> = )\(El) N )\(Eg)

4. For FC EC K,
E/F is Galois « Gal(K/FE) < Gal(K/F)
If it occurs, Gal(E/F) = Gal(K/F)/ Gal(K/E).
Proof.

1. Since K/F is normal separable, K /F is automatically normal and separable, and hence Galois. The

remaining is clear.

2. Let F€ Ec K and H := \(F) = Gal(K/E). Clearly, E < K. 1. and the previous theorem show
that [K : E] = #H = [K : K¥], so E = K. Vice versa.

3. This is clear.

4. Note that E/F is clearly separable, so it suffices to show E/F is normal if and only if A\(E) < \(F).

Nevertheless,
E/F is normal < o(F) = E for all 0 € Emb(E/F) = Aut(E/F)

Note that for all 0 € Emb(E/F), o(FE) is the fixed field of o Gal(K/E)o~!. The results follows.

Example 3.2.12.
1. Q(v2)/Q:
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Q(v2) 1

Q (o) 02 =2

2. Q(¥/2,p)/Q, where p = >™/3 : Let
V2 =2 V2 -2
o T
p —p p —p!
Then o7 = 70?; this shows Gal(Q(3/2, p)/Q) = Ss.

(o,7) Q
(o) Q(V2)
(r) Qp) (o) Q(V/2p°) {o*1) Q(V/2p)
/
\1 Q(V2, p)/

3. Q(v2,v3)/Q : Let

Then

{o,7) Q

(o) Q(V3) (r) QV2) (o) Q(V6)

1 Q(v2,V3)
4. Let K be the splitting field of z* — 2 over Q; K = Q(~v/2,1). Let
{ V2 20 { V2 2
o , T _

T 0 1 — —1
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Then o7 = 70%; this shows Gal(K/Q) =~ Dy

(o,7) Q

T

(0%, 7) Q(V2)) (o) Qi) (0%, 0m) Q(vV=2)

(1) Q(W2) _ {o*r) QWV2i) (0% Q(2,i) {om) QW2(1+1) {o'r) Q(V2(1—1)

SR O e

1 K

We elaborate how to find the fixed field of {(o7). A technique is to find « € K such that o7(a)+a # 0.
Then clearly, o7(«) 4+ « is fixed by o7.

5. Let K be the splitting field of * — 222 — 1 over Q; K:Q(\/l—l—\/§7 \/1—\/5) = Q(W1++/2,9).
Let
U'{\/1+\/§ —/1-2 T.{¢1+\/§ V142
1 1 '

Then o7 = 703. This shows K =~ Dx.

/\

(0%, 7) Q(v2)) > Qi) (0%, 07) Q(v-2)

/\\ e

() QV/1+v2)  (0*1) QW1 -+2) {(0® Q(v2,i) (o) Q(W2+2i) (o*r) Q(v2 - 2i)

SR g e

o Since 0?7 = o707!, the fixed field of (o%7) is o(fixed field of (7)) = o(Q(\/1++2)) =
QW1 V2).

« To find the fixed field of (o7), let @ = 4/1+ /2. Then o7a + a # 0 is fixed by o7; note that
\/1 +2+ \/1 —4/2 = 4/2 + 2i. Counting the degree, we see Q(+/2 + 2i) is the fixed field of
{oT).
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6. Let K be the splitting field of 2% — 2 over Q; K = Q(¥/2,e*/%) = Q(~/2,i). Let w = €*™/% and

define
{%Hm} {wHw
o . T ! )

17 — 7 1 — —7

Then 707 = 03. It’s easy to see that

Gal(Q(v/2,1)/Q) = {o,7 | 0¥ =7° =1, 707 = 0%}

(o,7) Q

(0*,7) Q(V2) (o) Q%) (0%, 70%) Q(V-2)

| | T

(o, 70%) Q(V2i) (o4, ) QWV2)  (0*) QW2.4) (o) QL+i)v2)  (ro) Q(L—i)V2)

e e N

(16*) QW2w) _ (1o Q") (ro*) QV2i)  (m) QV2)  (¢*) Q(V2,9)

SN

o The fixed field of (T) can be sought out easily. Note that o700~ = 702, so its fixed field can be
obtained by applying ¢ to that of (7). Similar for (ro%) and (ro?).

1 K

« Once the fixed fields of degree 2 are determined, it’s not hard to determine those of (o*, 76°%)

and (o, 7), by the fundamental theorem.

o It’s not so easy to determine the fixed fields of (703) and (r0); but once one of them is found,
the other can be determined easily, since o(r0)o™! = 703. We strive to seek the fixed field of
(o). Let H = {r0); it’s a cyclic group of order 4. The lattice above shows (o) is a normal

subgroup of H of index 2, with representatives 1, 7o for the cosets. Consider the element
a:=(1+70)V2=(1-i)V2
Then « is fixed by o*. Also, « is fixed by 70:

oo = (10 4 (10))V2 = (10 + o*) V2
= (1o + 1)\4@

the last equality holds since o* fixes v/2. This shows that « is in the fixed field of H. However,
rota = 1o ((1 —i)v2) = (1 +i)vV2w # «
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which means the fixing subgroup of Q(«) is not larger than H, and thus is H. In conclusion,
the fixed field of H is Q(a) = Q((1 —14)v/2)

7. Fpn/F, : We have seen that Gal(F,./F,) = (o), where o is the Frobenius automorphism. We draw

its lattice when n = 12:

(o) Fp

|
Ca ]FPQ\

‘ <03> Fys

<‘74> Fpa ‘

3.2.4 Simple extensions and composite extensions

Proposition 3.2.13. Let K/F be a finite extension. Then K /F is simple if and only if there are only
finitely many subfields of K containing F'.

Proof. (=) Say K = F(a). Let F' < E < K; then mq g | map. Let E' = F(coefficients of m, g).
Claim. £ =F'

Clearly, we have £/ < E. On the other hand, m, g € E’[x] is irreducible over E’, which implies
Ma g = Mg . Thus [K : E] = [K : E'], and hence E' = E.
This means £ is the subfield generated by F' and coefficients of some monic irreducible factor of m, p.
The result follows.
(<) If F is a finite field, K /F is of course simple. Now suppose F' is infinite. By virtue of the finiteness of
K/F, write K = F(aq,...,a,) for some aq, ..., a,. By induction, it suffices to show the case K = F(«, ().
Consider the field F(a+¢f), ¢ € F. Since F is infinite and there are only finitely many intermediate fields,
F(a+ c18) = F(a + ¢3f) for some distinct ¢1, ¢ € F. This means F(«, 8) = F(a+ ¢13). O

Example 3.2.14. Let F = F,(27,y") and K = F,(z,y). We have [K : F] = p? For any ¢ € F,,
[F(z + cy) : F] = p, since (z + cy)? = 2P + Py? € F. Thus F(x + cy) # K. Also, different choices of ¢
gives different fields. The previous proposition then shows that K /F' is not simple. (HW. 20)

Theorem 3.2.15 (Primitive element theorem, PET). If K/F is finite separable, then K/E is simple.

131



Proof. Since K/F, K = F(ay,...,a,). Let L be the splitting field of ma, p,...,mq, r. Then L/F is
separable normal, and hence Galois. Since L/F is finite Galois, each intermediate fields corresponds to a

subgroup of Gal(L/FE), so they’re in finite number. The previous proposition shows that K /F'is simple. [J

Proposition 3.2.16. Let K /F be a finite Galois extension and F’/F be any field extension. Then K F’/F’
is Galois and Gal(KF'/F') =~ Gal(K /K n F").

Proof. PET shows that K = F(«a) for some a € K. Then KF’ is the splitting field of m, g, which is
separable. Hence K F'/F’ is Galois. Consider the map

¢ : Gal(KF'/F') ——— Gal(K/F)

o > 0|k
Note that ker ® = {0 | o|x = idg} = idgp; @ is injective. Let H = Im ®. Clearly, we have K n F' < K,
On the other hand, K F' is fixed by Gal(KF'/F"), so K'F' < F’, implying K¥ < F'. Since K ¢ K,
KH# = K n F'. In conclusion, K = K n F’. Hence H =~ Gal(K/K n F). O
(K : F|[F': F|
KnF - F

Corollary 3.2.16.1. Let K, F’ as above. Then [KF': F] =

Remark 3.2.17. The condition imposed above is not superfluous. For instance, consider K = Q(+/2),

F' = Q(¥/2¢*™/%) and F = Q. Then KF' = Q(¢/2), [KF’: F] = 6, but [[[(K ?}F FT —9.

Proposition 3.2.18. Let K;/F be finite Galois, i = 1,2. Then
1. K; n K, is Galois over F'.

2. KK, is Galois over F', with
Gal(KlKg/F) = {(O‘, T) € Gal(Kl/F) X Gal(Kg/F) | U|K1mK2 = T’KIQIQ}
Proof.

1. This is clear.

2. That KK, is Galois over F' is clear. Consider the map

O Gal(K 1Ky /F) ——— Gal(K/F) x Gal(K,/F)

ot ? (U|K17U|K2)
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Note that ker & = {0 | 0|k, = idg,, i = 1,2} = 1; ® is injective. Put H := {(o,7) € Gal(K;/F) x
Gal(Ky/F) | 0|k nky = T|k,~K, - It’s clear that Im® < H. We count their cardinality. #Im® =
[K1K; : F] and

#H= > #{7eGal(Ky/F) | ol nk, = Tlrinks}
oeGal(K1/F)

(K : F][Ky : F]

= K Pl s Koo Jo] = T o

where the second equality holds as in the proof of Theorem 3.2.2. The previous corollary shows
#H = #Im ®, and thus Im® = H.

]

Corollary 3.2.18.1. With the same condition above, if K1 n Ky = F, then Gal(K; K,/ F) =~ Gal(K;/F) x
Gal(K,/F). Conversely, if Gal(K/F) = G; x G for some G1,Gy < Gal(K/F), then K = K K% with
K& n K¢ =F,

Corollary 3.2.18.2. Let E//F be finite separable. Then

N K
ECcKcF
K/F: Galois
is Galois over F', which is the smallest Galois extension of F' containing E, called the Galois closure of

EJF.

3.2.5 Cyclotomic extensions and abelian extensions

Definition. Let ¢, be a primitive n-th root of unity. We call Q((,,) the n-th cyclotomic field.
o It’s Galois over Q since all conjugates of ¢, over Q have the form ¢¢, (d,n) = 1.
o Gal(Q(¢,)/Q) = (Z/nZ)*, where the isomorphism is given by (Z/nZ)* 3 a — [0, : , — (2.
 Consequently, if n = p{* - - - pi* is the prime decomposition of n, then

Gal(Q(¢n)/Q) = Gal(Q(G})/Q) x --- x Gal(Q(G)/Q)

Example 3.2.19. n =5 : (Z/5Z)* = (2). Let 0 = 0. Note that /5 = (5 + 02(5 is fixed by o?.
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(o) Q () Q

(o) QV-T)

(6?) Q(+/5) ,
(o Q(cos 7”)

1 Q(¢s) 1o Q(¢r)

2
Example 3.2.20. n =7 : (Z/7Z)* = (3). Let 0 = 03. Note 2(30877T = (74 03¢ = ¢+ ¢t s fixed by
3
a°.

2
Let’s find the minimal polynomial of 2 cos 77T The conjugates of (7 + ¢, * over Q are o(¢; + ¢; ') and
0%(Cr+ (1), Thus macosen/7),0(x) = 23 4+ 22 — 22 — 1.

Q(y/p) ifp=1 (mod p)
Q(v/—p) if p=3 (mod p)

Definition. An extension E/F is called an abelian extension if F/F is Galois and Gal(F/F) is abelian.

Exercise. Let p be an odd prime. Then Q((,) contains {

Proposition 3.2.21. Let G be a finite abelian group. Then there exists a Galois extension K /Q with

Galois group isomorphic to G.

Proof. By FTFGAG, say G = C,,, x --- x (Cy,. By Dirichlet’s theorem on primes in arithmetic progression,
there are primes p; such that p; = 1 (mod n);. Now (Z/p,;,Z)™ is cyclic of order p; — 1, so it contains a
subgroup of index nj, and thus Q((,,) contains a subfield K of degree n; over Q. Then the composite
K = K --- K, satisfies that K /Q is Galois and Gal(K/Q) =~ G, since K; n K; = Q if 7 # j. O

Theorem 3.2.22 (Kronecker-Weber). Any abelian extension of Q is a subfield of some cyclotomic field.

Exercise. Let D be a squarefree integer. We know Q(+/D) is contained in some cyclotomic field. Find

one.

Remark 3.2.23. 1. The Kronecker-Weber theorem basically says {abelian extensions of Q} corresponds
to {subgroups of (Z/nZ)*}. More generally, the class field theory says that if F' is a number field

and O is its ring of integers, then {abelian extensions of F'} corresponds to {(O/(nonzero ideal))™}.

2. (, is a value of analytic function e?™* at torsion points of R/Z, i.e, Q/Z. Thus, every abelian
Yy

extension of Q can be obtained by adjoining special values of some analytic functions to Q.
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Kronecker’s Jugendtraum (Youth dream in English), aka Hilbert’s twelfth problem, asks given a
number field F', find analytic functions such that every abelian extension of F' can be obtained by
adjoining some special values of these functions to F. For example, F' = Q(+/D) (D > 0) can be
obtained by adjoining elliptic functions and modular functions. For general F', only for CM field

case we know such functions exist (but not constructive).

Example 3.2.24. Recall that a regular 17-gon is constructible. Let o0 = o3.

(o) Q
Let m =C+0*C+o'C 4=+ + P+ P+ 0+ + ¢+ ¢ and |
Ny =o0ny=C+ 0+ -... Then 7, + 1, = —1 and n1p = —4; to determine the (o) Q(\/17)
value of 1y, note that |
m=C+CH+CHHH(E+HCTH+H(G+HC?) ~ 1.562>0 (o*) K
M= (CHCH)+H(CHC)F(CC+CH+(T+¢T)~-2562<0 |
the (0% Qleos )
—1+4/17 —1—4/17 17
M=y =y |
1 Q(Gi7)

This shows the fixed field of (o) is Q(\/17).

In general, for a Fermat prime n = 22 4+ 1, N > 1, we consider the periods of ( = (,: first,

X .
n?

choose a generator of F*; we may pick 3 as a generator since 3 is not a quadratic residue mod n, for

3 2
(—) = (g) = (§> = —1, and F) has order a power of 2. Let 0 = 03, n = kf, and for 0 < r < k — 1,
n

put

0-1)

Ny = (1 + Jk 4. +0k(£—1))0r< _ Cgr + C3T+k RN C3r+k(

Let H, = (%) < Gal(Q(¢)/Q) be the subgroup of order ¢, and let K, = Q(¢)*¢ be its fixed field. Then
the 7, are fixed by o} and we see {ng,n1,...,nx_1} is a basis for K,/Q, and we call them the periods of
¢ terms. Also, we define n® = ¢t 4+ ¢ + .. + ¢B*“"Y for n a period of ¢ term, for 0 < ¢t < n — 1; note
that n® is the n, in which ¢! appears.

We resume our work on finding fixed fields of subgroups. As the terminology above, we establish the

periods of 8 terms (k = 2)
o :Cgo+C30+2+C30+4+"'+C30+M :C‘I‘Cg+C13+Cl5+C16+C8+C4+C2
m o= C31 +4«31+2 +C31+4 4. +C31+14 _ C3 +C10 +C5 +C11 +C14 +C7 +C12 +C6
Then ny +n; = —1 and
nom = N 4+ 4 p® 4 (2 4 (15 4 @& 4 p(3) 4 (D — gpo + 4y = —4
As shown in above, we have

=117

—14+4/17
= wmdm= 9

Mo
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Next, consider the period of 4 terms (k = 4)
m = ¢+ = P !
Moo= AT T O = G O
mo= ¢ T T = O P
my =TT T T =0 T

We have 1 + 05 = no, 0y + 15 =m

momy =m0+ 00 O 4y =y =1
mny =0/ 4+ 400 Ly O — Lol 4y = -1
Also,
ny =C+M+4+¢t =2(cos3Z +cosE) >0
n =C+C+M+ " =2(cosZ +cosTE) >0
m =C+MP+E+3 =2(cosE +cosi¥E) <0
ny =0+ M+ T+ =2(cos B 4 cos HE) <0
Thus
» Mo+ H4 1+ V1T /34— 2417
L= —
2 4
» Lo A/m 4 14 VIT— /34— 2V17
= _
2 4
» ComAmi 4 1= VIT 34+ 2717
_ _
2 4
” S mAAni 4 1= V1T — /3442017
L= _
2 4

This shows K = Q(4/34 — 24/17). Last, consider two period of 2 terms (k = 8)

77(/)/ — €30 + C30+8 _ C+ §16 = 2 oS ?_;r
Wi =TT =B =200

"N

Clearly, ng + nj = ny and ngny = n** + n'? +n° +n* = n|. We finally arrive at the expression

2 " / 2 A
COS_W _"o _ "o + /15— 4n
17 2

4
—1+\/ﬁ+x/34—2\/ﬁ+2\/17+3\/ﬁ—x/34—2\/1*7—2\/34+2ﬁ

16
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3.2.6 Galois groups of polynomials

Let f(x) be a separable polynomial over F' of degree n, aq,...,a, be its roots, and K its splitting field
over F. Clearly, we can embed Gal(K /F) into S,,.

o If f isirreducible over F, then Gal(K/F) < S, is transitive.

Example 3.2.25. n = 4 : The Galois group of an irreducible separable polynomial over F' can only be
547 A4’ D87 047 ‘/;1

We consider a general setting : Let x1,...,z, be indeterminates, and put L = F(xy,...,z,). Let

n

S1 :le :ZL’1‘|—+Z‘”
i=1

Sy = ), T;T; =T1T2 + T1X3+ -+ Tp_1Ty,
1<jJ

S3 = D, TiTTy
i<j<k

Sp =1 "Iy

Equivalently, let f(X) := ﬁ(X —x) = X" — 51 X" 4 5, X" 2 .o 4 (=1)"s,, € L[ X]; the s; are called
the i-th elementary syril_rlnetric function of xq,...,z,, and f(X) is called the general polynomial
of degree n.

Put K = F(s1,...,8,). Then clearly, L/K is Galois since L is the splitting field of f(X) over K; this
shows [L : K] < n!. On the other hand, every automorphism on L may be viewed as a permutation on
subscripts of the x;, so S, < Aut(L). The symmetry makes K lie in the fixed field L5 of S,,. By Galois

theory, [L : K| = [L : L°"] = n!. Thus, we conclude that [L : K] = n!, that is, Gal(L/K) = S,,.

Theorem 3.2.26. The fixed field of S, acting on the field F'(x,...,z,) of rational functions in n variables
is the field F'(sy,...,s,) of rational functions in elementary symmetric functions.

Corollary 3.2.26.1. Any symmetric function in z4,...,z, is a rational function in sy, ..., s,.
In fact, we have a stronger statement:

Theorem 3.2.27. Let A be a commutative ring with 1 and R = Afzy,...,z,]. Regard S, as a subgroup
of Aut(R). Then RS = Alsy, ..., s,).

Proof. We define the lexicographical order on R by

1. L1 > Tog > > Ty
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2. af - x> g% ... gt if and only if there exists k € {1,...,n} such that a; = b; for i < k and a; > b;.

Let f € RS let z{*---z% be its leading monomial and ¢ € R be its coefficient. By symmetric, we may
sgn. Then h has order
less than f. The result follows by induction on order of f. [

assume a; > -+ > a,. Consider the polynomial h = f — as{' 25327 ... g0 %"

Proposition 3.2.28. Let A be a UFD of characteristic # 2, R = A[xy,...,z,] and let

d=][@ -z
1<jJ
Let A, act on R by o(x;) = @,(;); thus, we may regard A, as a subgroup of Aut(R). Then R4" = RS"[d] =
Alsy, ..., Sp,d].
Proof. Let f € R and fix o € S,\A,. Consider the expression

_fHof  f-of
=Ty Tt

f

If 7€ A,, then

2 2

T(fiaf) :TfiU(O'_lTO')f_in'f
2

if 7€ S,\A,,, then

T(fiaf) _ olc7')f£10f _ of £ f . (fiaf)
2 2 2 o 2

Hence the former is in RS" so it suffices to deal with the latter. Let h € R and o(h) = —h for all
o€ S,\A,. We claim h = dg for some g € R°". Note (12)h(x1,2s,...,2,) = h(xa,21,...,7,), but since
(12) ¢ A, (12)h = —h; thus h(zq,x2,...,2,) + h(z2, 21,...,2,) = 0, which implies x; — x5 | h. Similarly,
x;—x; | hforall i # j. Since R is a UFD and each x; —x;, ¢ < j is relatively prime, d | h, and thus h = dg
for some g € R. Since o(h/d) = h/d for all o € S,,, we have g € RS, O

n
For i = 0, we consider p; = > zi =1+ -+ xy, the sum of the i-th powers. For convenience, we let
j=1

s; = 0 for ¢ > n. Then we have {he Newton formulas:

Theorem 3.2.29.

k
1 )
Sk(xla U ,.’Ifn) = E ;<_1)Z_1Sk—i('x17 e 7xn)pi(x17 e ,.’Ifn),
k—1 ‘
pk(xl) e 73771) = (_1)k_1k8k(x17 e 7:)377,) + 2(_]—>k_1+28k—i(x1a s 7xn)pi(x17 cee 7xn)7
=1



Proof. Let R = Z|xy,...,x,]. We may view f(X) = ]_[(1 —1;X) = Y (—=1)ks;. X* € R[[X]], the ring of
k=0
formal power series. Formally differentiating f(X Wlth respect to X and multiplying X, one obtain

)
[ 1 —.CE]X)]

n

D (= DF ks XF =

M:

k=0 i=1
= — 1—a;X
(;1_%,() (-
n o] n
—_ (Z Z(g;l)()’f) (Z(—1)kstk>
i=1k=1 k=0
o0 n
— (Z ka’f> <2(—1)’f s X’“)
k=1 k=0
which is what we want. O
Definition. Define the discriminant A of x4, ..., x, to be the product
A= n(x
1<j

For f e F[xz], we define disc(f) to be the discriminant of its roots.

n(n—1)

o By Corollary 2.4.29.1, we see Ry p = [[ f'(x;). Hence A = (=1)" =z Ry p.
i=1

Proposition 3.2.30. Let F' be a field of characteristic # 2 and f € F[z] be a separable polynomial of
degree n. Then the Galois group of f over F' is contained in A, if and only if disc(f) is a square in F.

Proof. This is a consequence of Proposition 3.2.28. [
Example 3.2.31.

1. f(x) =2*+azx +b, disc(f) = a* — 4b.

2. f(x) = 23 + ax® + bx + ¢, disc(f) = a®V? — 4b> — 4a®c — 27¢ + 18abe

(i) #3 — 2, disc = —108, which is not a square in Q = Gal =~ 53
(i) M2cos2n/m)0(®) = * + 22 — 2z — 1, disc =49 = 7> = Gal =~ A;

Let F be a field with Char(F) # 2. Let f € F[x] and K be its splitting field over F. Let § € K be a
root of f and put G = Gal(K/F).
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o If f is reducible, the G is either trivial or Cs.
o If f is irreducible and disc(f) is a square in F, then G = A3 = C3 and K = F(); otherwise, if
disc(f) is not a square in F', then G = S3 and K = F(0,+/disc(f)).

3. f(x) = 2* + ax® + ba® + cx +d. Let ay,..., a4 be its roots, and K be its splitting field over Q.
Suppose f is irreducible; this implies Gal(K/Q) < Sy is transitive. We list all transitive subgroups

of S; below:
Sa
Ay \
Dél) Déz) Dés)
V;L / C«il) Cf) C«f)
DY =<(1324),(12))

<
where DE(;Q) ={(1234),(13)) are Sylow 4-subgroups and V; = {1, (12)(34), (13)(24), (14)(23)}.
DY =((1243),(14))
Consider the elements

61 = (Oél =+ 042)(043 =+ 044) S KDél)

92 = (&1 + 013)(0./2 + 044) € KDéQ)

p®
O3 = (a1 + aq)(ag + az) € K7
Any symmetric sum of the 6; is invariant under Sy, so

9(x) = (z — 01)(x = 02)(x — 03) € Flz]
= 2% — 2b2* + (b® + ac — 4d)x + (* — abe + ad)

called the resolvent cubic of f. Equivalently, we may consider the elements
(1)
9/1 = Qg + Q304 € KDSI

(2)
8; = g + Qo0 € KD8

(3)
Qé = 104 + Qo3 € KD8
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and similarly define the resolvent cubic
(z —0))(z — 05)(z — 0;) = 2° — ba* + (ac — 4d)z + (4bd — ¢* — a*d) € F[x]

The relation of two different resolvent is that 6; + 0 = b (i = 1,2, 3). Notice that

91 — 92 = —(Oél — 044)(042 — 043)
01 — 05 = —(041 - a3)(a2 - 044)
Oy — 05 = —(Oél - 042)(CY3 - 044)

so disc(g) = disc(f). Thus

disc(f) = — 1280*d* — 4a®c® + 16b*d — 4b>c* — 27a*d* + 18abc®
+ 144a2bd? — 192acd? + ab*c® — 4a*b3d — 6a°c?d
+ 144bc?d + 256d> — 27¢* — 80ab®cd + 18abed

Let E be the splitting field of the resolvent cubic g over ). We have F < K, so the Galois group
of g is a quotient of that of f. Hence knowing the action of Galois group on the roots of g gives
information above the Galois group of f. Let G = Gal(K/F).

o If g is irreducible over F', this means 3 | G = 12 | G. If disc(f) is not a square in F, then
G = Sy4; otherwise, G = Ajy.

o If g splits completely in F', this means 6,605,605 € F', and thus G = Dél) N DéZ) N DS’) = V4. The
only possible is G = V.

e If g has only one root in F', say 6; € F', we have G < Dél) but G &€ V), so whether G = Dél)
or G = C’f). To distinguish them, recall that F'(4/disc(f)) is the fixed field of A4 and that

Dgn Ay = Vi, Cy n Ay = Cf; the former group is transitive, while the latter is not. This
indicates that is f is irreducible over F'(4/disc(f)), then G = Dél); otherwise, G = C’f).

The criteria for Dg and Cy are hard to verify. However, when Char(F') # 2, we have an alternative,

which is quite elementary. Assume 6, € F' and 65,605 ¢ F. Consider the polynomial
h(z) = (2* + ax + 0;)(z*> — (b— 01)x + d) € F[a]

in which the quadratic factors are picked so that the former has roots a; + as, as + a4 and the
latter has roots ajag, agay. If G = Cy, then E = F(4/disc(f)) is the only quadratic extension of F
contained in K, so the quadratic factors of h(x) splits in E. Conversely, if h(x) splits completely in
E, consider the quadratic polynomial 2% — (a; + o) + ajas € Efz], and let M be its splitting field
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over E. We have oy, as € M, and since az + oy = —a — a1 — ag and agay = d/aqag, ag, ay € M; this
shows M = K. Thus

#G=|K:M|M:E|E:F]<1-2-2=4 < #D{"
and this forces G = C\", and E = F(+/disc(f)).

(i) z* + 23 + 22 + x + 1. disc = 125. resolvent cubic = 23 — 22 — 2z + 1 = (z + 1)(2? — 3z + 1).

1 ) 1—+/5
+2f 2\F:r + 1) is reducible in Q(+/5), so

Also, z* + 2® + 22 + 2+ 1= (2% + x4+ 1)(z? +

the Galois group is Cjy.

(i) z* — 22% — 1. disc = —1024. resolvent cubic = x(2? + 4z + 8). Also, x* — 22% — 1 is irreducible
over Q(7), so the Galois group is Ds.

(iii) In general, the polynomial f(x) = !+ ax? +b € F[z] has its resolvent cubic g(z) = 2% — 2az? +
(% — 4b)x = x(2? — 2az + (a® — 4b)) splits in F, so its possible Galois group G is Vj, Dg, Cy.
The discriminant of f(z) is disc(g) = 16b(a® — 4b)?, so G = V} if and only if b is a square in F.
Assume Char(F') # 2 so that our criteria above apply. The remaining cases automatically satisfy
that b is not a square in F. Let h(x) = 2(2* — ax + b) be the associated polynomial as above.
Then G = Cj if and only if a> — 4b is a square in F(v/b), if and only if F(v/b) = F(v/a® — 4b),
if and only if b(a? — 4b) is a square in F. Thus G = Dy if and only if neither b(a? — 4b) nor b is

a square in F.

. Let p be a prime and f € Q[z] be an irreducible polynomial of degree p. Assume f has p — 2
distinct real roots and two non-real roots. Then Gal(f/Q) = S,. Indeed, the irreducibility shows
that Gal(f/Q) < S, is transitive, and thus p | Gal(f/Q). Cauchy’s theorem indicates Gal(f/Q) has
a p-cycle. The two non-real roots of f makes the complex conjugation lies in Gal(f/Q), so Gal(f/Q)
has a 2-cycle. By conjugating, Gal(f/Q) admits all 2-cycles, and thus Gal(f/Q) = S,,.

For instance, let p > 5 and pick p — 2 distinct even integers n; < --- < n,_o and m a positive even

integer. Form the polynomial
F(@) = (@ m)(@ — 1)+ (@ = mpa) — 2
If ¢ is any odd integer in some interval (n;,n;41), then
|(* +m)(k—n1) - (k —ny0)] = k* +m >3

and therefore f has at least p — 2 distinct real roots. We will pick appropriate m so that f has
exactly p — 2 real roots. Let

(z—a)) - (z—ay) =@ +m)(x—ny) - (x—ny o) —2
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Comparing the coefficients of zP~! and zP~2, we have Y a; = Z n; and Y, ooy = m+ Y, nng, so
A 1<j i<j

204 = Zaz —2204204] an —QannJ 2m = Zn —2m

1<j 1<j

Pick 2m > > n? so that >, a? < 0; this will make some «; non-real. We may pick m = >, n?, and

3 7 3

<x —i—Z ) r—mng) (T —np_2) —2€ Q[z]

is a polynomial with Galois group S,, p = 5.

thus

Computation of Galois group over Q

Let f € Z[z]. Consider the reduction f of f modulo p, p a prime. The Galois group of f over F, will give

us some information about the Galois group of f over Q.

Theorem 3.2.32. For p { disc(f), the Galois group of f over F, is isomorphic to a subgroup of that of f

over Q.
Example 3.2.33.

1. 2* — 2. Consider p = 5. Then 2* — 2 = (z — 3)(2*> — 22 — 1) (mod 5), so the Galois group over Fj is
(5. This means there’s a 2-cycle in the Galois group of QQ, and thus it’s Ss.

2. 2> —x —1. disc = 19-151. For p = 2, we have 2° —x — 1 = (2* + = + 1)(23 + 2% + 1), whose Galois
group over [y is Cg. This means the Galois group G of % — x — 1 over Q has an element of order 6.
In Ss, it must has form (--)(- - -). Raising this element to the 3-rd power, we get a transposition, so

G contains a 5H-cycle and a 2-cycle, and thus is Ss.

More precisely, assume f € Z[x] is irreducible over Q and of degree n. Let K be its splitting field
over Q and Ok be its ring of integers. Assume p t disc(f). Pick a prime ideal @ of Ok containing p,
which is always available since O is a Dedekind domain. Then there’s a unique o € Gal(K /Q) such that
o(a) = a? (mod Q) for all a € Ok and Gal(f/F,) = (o). Different choices of @) yield conjugates of o.
Moreover, consider ¢ as an element of S, and assume it has cycle type ny, ns,...,ng, including 1-cycles.
Then the irreducible factors of f over [F, has degrees ny,...,n;. Note that if Gal(K/Q) is abelian, then
the condition o(a) = a? (mod Q) reduces to o(a) = a? (mod pOk). The correspondence @) — o is called

the Artin map.

Example 3.2.34.
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1. 22+ 1.

1 (mod 4), we have @ =i and ¢ = id; 2> + 1 = (x — a)(z + a) for some a € F,,

p
p=3 (mod 4), we have ¥ = —i and o = —id; 2? 4 1 is irreducible over F,,.

2. Let a € Z be squarefree and p a prime. Consider 2% — a. o(y/a) = (v/a)? (mod p). We have

o=id e va=(vay (modp)
a7 =1 (mod p)

< @ is a quadratic residue mod p

This shows that the Artin map is a generalization of the Legendre symbol.

3. 23 — 2. disc = —108. Let p be a prime # 2, 3.

-1

1or A; if (£>:1©p51 (mod 3)
p

Sy ifp=2 (mod 3)

Gal ~

If p =2 (mod 3), the map a — d*

solution a in F,. Then 2 — 2 = (z — a)(2* 4+ bz + ¢) (mod p), with 22 4 bz + ¢ irreducible over F,,.

is an automorphism on [F. This means 23 — 2 always has a

Theorem 3.2.35 (Chebatarev’s). Let f € Z[x] be irreducible over Q of degree n. Given a partition 7 if
n, say n =mny +---+mng with n; = n; 1. Let N; be the number of elements in Gal(f/Q) < S,, having cycle
type m. Then the ratio

#{p<X|flx)=g(x) --gr(r) mod p, g; is irreducible over F, of degree n; =1,...,k}
#{p < X}

™

# Gal(f/Q)

Example 3.2.36. 23 — 2. The Galois group over Q is S5, which has one 1-cycle, three 2-cycles and two
3-cycle. Let X be the 10000-th prime. Then we have

tends to as X — oo.

Type ‘ Number
(x—a)(x—b)(z—c)| 1634
irreducible 3354

(x —a)(x? +bx+c) | 5010

which demonstrates the above theorem.
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Example 3.2.37. 2° + 15z + 12. It’s Eisenstein at 3, so it’s irreducible. disc = 2!°-3%.5% Let X be the
10000-th prime.. Recall that all transitive subgroup of Sy are S, As, Fs, D1g, Cs.

Cycle type Number
5 1979
4+1 5022
3+2 0
3+1+1 0
24241 2488
2+1+1+1 0
1+14+1+1+1 508
Note that H08 ~ i We guess its Galois group is Fyg.
10000 20

Exercise. Prove the Galois group of 2° 4+ 152 + 12 over Q is Fy.

3.2.7 Solvable and radical extensions
By F' we mean a field.
Definition. If K = F({/a) for some a € F and n € N, we say K /F is a simple radical extension.

all n-th roots of unity are contained in F'

o K/F is Galois if and only if (x) : { Char(F) |
ar n

Proposition 3.2.38. Assume (*) holds and a € F. Then Gal(F({/a)/F) is cyclic of order dividing n.

Proof. By our assumption, F(/a)/F is Galois. Denote by pu, the group of n-th roots of unity. For each
o€ Gal(F({/a)/F), o({/a) = (,(/a) for some (, € u,. We thus obtain a map
Gal(F(3/a)/F) ——— pn
ot > Co
Note that u, < F' by assumption, so the map above is a homomorphism. Its kernel consists of automor-

phisms fixing {/a, which turn out being identity; this means the kernel is trivial. This shows Gal(F'({/a)/F)
can be embedded into p,, and this makes it a cyclic group of order dividing n = #p,,. O

Definition. We say K /F is a cyclic extension if K /F is Galois with cyclic Galois group.

Proposition 3.2.39. Assume (*) holds and that K /F is cyclic of degree n. Then K = F({/a) for some
aeF.
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Proof. Say Gal(K/F) = (o). Let ¢ be a primitive n-th roots of unity in F. Proposition 3.2.9 guarantees
the existence of an element a € F' such that

B:=a+Co(a)+Co*a)+-+ (" toln—1)(a) #0

where the form on the RHS is called the Lagrange resolvent. Applying o to both sides, we obtain
o(B) = ¢ ta, and thus the smallest integer 7 such that o?(3) = 3 is n, which implies 3 is not contained in
any proper intermediate field of K/F, i.e, degp 8 = n; this shows K = F([).

Now consider o(3)" = (¢7!'8)" = ", 50 a := " € K. Thus K = F(3/a). O

Remark 3.2.40.
1. Albeit Q(cos 77T) /Q is cyclic, it’s not a simple radical extension.

2. By the same token, assume (x) holds, then K = F(g/ay, ..., {/ai) is a Galois extension over F' with
Gal(K /F) abelian and of exponent n. Conversely, assume (x) holds, and K /F is an abelian extension
with Gal(K/F) of exponent n. Then K = F({/ay, ..., {/a;) for some a; € F. Such an extension
is called a Kummer extension, and one can show there’s an one-to-one correspondence between
Kummer extensions of F' and finitely generated subgroups of F*/(F*)". See also Artin-Schreier

extensions.
Definition.
1. We say K/F is a radical extension if there is a tower of extensions
F=KycKic---K,1cK,=K
such that K;,,/K; is simple radical for i = 0,1,...,s — 1.
2. a € F is said to be expressible by radicals if a € K for some radical extension K /F.
3. A polynomial f € F[z] can be solved by radicals if all its roots can be expressible by radicals.

Lemma 3.2.41. Assume Char(F) = 0 and o € F is expressible by radicals, say o € K, where K/F is

radical. Then there’s a Galois radical extension K'/F' containing K with
F=K/cKic- K, ,cK. =K
such that K|, ,/K; is cyclic. In particular, Gal(K'/F) is solvable.

Proof. We will use the fact (which can be verified easily):
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& If F,, E, are radical over F, so is E1FEy/F.

Assume F'= Ko< Ky € --- <€ K;1 € K; = K such that each K;,,/K; is simple radical. Let L/F be the
Galois closure of K /F. Recall that L is the composite of all o(K), o0 € Emb(K/F); by applying ¢ to the

tower, we see o(K)/F is also a radical extension. By #, L/F is radical, say
F=LyclicL,,<L,=1L

with each L;1/L; simple radical. Note that those quotients might not be Galois; to make it so, consider
F’ = F(all n;-th roots of unity), where n; = [L; 41 : L;] for 0 < i < n — 1. Establish the tower

FcF =FILycFL,cFL, ,<FL,=FL

By Proposition 3.2.38, each F'L;1/F'L; is cyclic (it is the place that Char(F) = 0 matters). Since
Gal(F'/F) is abelian, it’s solvable, so one may find a composition series of Gal(F’/F') with each composition

factor being cyclic; thus there’s tower of extensions

F:FggFlg"'gmelgFm:F/

such that Fj,1/F; is cyclic. Hence, K’ := F'L has the desired property. N

Theorem 3.2.42. Assume Char(F') = 0. The polynomial f € F[z] can be solved by radicals if and only

if its Galois group over F is solvable.

Proof. (=) Let K/F be the splitting field of f. By Lemma above, there’s a radical extension K'/F
containing F' such that Gal(K’/F) is solvable. Then Gal(K/F) = Gal(K'/F)/ Gal(K'/K) is solvable.
(<) Let K/F be the splitting field of f. Say 1 =G, <G <--- <Gy <Gy = Gal(K/F). Let

F=KycKic ---cK,1cK,=K

be the corresponding tower such that each K;,;/K; is cyclic of order n;. Asin the proof of Lemma, consider
F’ = F(all n;-th roots of unity) and the tower

FcF =FKycFK,c --cFK,_,CcFK =FK
The result ensues by following the proof of the previous lemma. ]

Corollary 3.2.42.1. The general polynomial of degree n > 5 cannot be solved by radicals.

Proof. This follows from the previous theorem and the fact that S, is not solvable for n > 5 (see Example
1.7.8). O
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Remark 3.2.43. If K/F is Galois with Galois group being solvable, we say K /F' is a solvable extension.
It should be noted that a solvable extension may not be radical, but it’s always contained in some radical
extension of F'. (This can be seen in the proof of the theorem above)

For instance, let f(z) = 2® + 2% — 2x — 1 € Q[z] and K its splitting field over Q; f is the minimal
polynomial of 2 cos 1, and Gal(K /Q) = As, which is solvable and implies all roots of f are real. Suppose,
for contradiction, K = Q(a) for some a € K with a™ € Q. Consider the polynomial ™ — a". We have
f(z) | 2" —a", since [K : Q] = 3 = degga, and a is a root of f. Let r be another root of f. Then 2 is a
real root of unity, implying r = +a, a contradiction for this shows f has at most two roots. Hence K/Q

is not a radical extension.

Cardano’s formulas
Let F be a field with characteristic 0. We consider the irreducible cubic f(z) = 2® + ax? 4+ bx + ¢ € F[z].
By virtue of substitution z — x — a/3, we only need to deal with the case

g(x):a:3+paz+q

Let A := disc(g) be the discriminant. Over F(v/A), the Galois group of g is A3 = Cs. By adjoining a
primitive 3-rd root of unity w, F(v/A,w)/F(w) becomes a radical extension, with a generator of Galois

group being a Lagrange resolvent, as in Proposition 3.2.39. Therefore, consider the elements

a+ [+ =0
0 = a+wf+wy
b = a+w?B+wy

where «, 3, are the three roots of g(x). Since w? +w + 1 = 0, we have

01 + (92 = 3a
w291 + w@z = SB
le + w202 = 3’)/

As shown in Proposition 3.2.39, the cube of these resolvents lies in F’ (\/K, w). We compute them in terms

of roots: one has

VA = (a—B)(a=7)(B—7)
= (&®B+ B>y + ) — (af® + 57 +7a?)
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SO

07 = (o + wB + w?y)?
=a’ + 57+ 9+ 3w(e®B + %y + %) + 3w (e’ + By +70”) + 6aBy

3v-3

= (@ + 8 +7" =3aBy) + —— [(@*B+ B*7 +7°) — (aB” + B7" + 70?)]
+ _73 [(a?B + 8%y +9%a) + (af” + By* +7a%)] + 9aBy

— (@t B, )+%?3\/Z+_73[(a+5+7)(a5+m+m) ~ 3067] + 9apy
LD N NI

Similarly (by interchanging 5 and ), we have
03 = ——q - —\/ 3vVA

Also, we have
0165 = ® + 32 +7* + w(ay + fa + 7f) + w(af + ya + By) = =3p

At last, recall we have A = —4p® — 27¢%, and let

4 i/——q 3U3VA B §/__q N

where the cubic roots are chosen so that AB = —3p. Then we have
A+B w?A+wB wA +w?B
=Ty e T

Casus irreducibilis
. 2
Example 3.2.44. Consider the equation #® + 2% — 2z — 1 = 0, the minimal polynomial of 2 cos 77r Under

1 7 7
substitution x =y — 3 it becomes 1y — gy o = = 0. Multiplying by 27 and letting z = 3y, it becomes

22 —212—-7=0

which has discriminant —4(—21)% — 27(—7)? = 3%- 72. We apply the Cardano’s formula to solve the cubic;

let

7 21 721
A=3y5+5V=3  B={l;-5V=3

Then the roots can be expressed by combinations of A, B using the formula above.
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Let f(z) = 2® — 21z — 7. Tt has Galois group As, and thus all roots of f(x) are real; however, we see
that the expressions of roots involves non-real numbers. We shall see, in fact, this always happens in the

case A > 0, called the casus irreducibilis (Latin for "the irreducible case”).

Lemma 3.2.45. Let L be the Galois closure of the finite extension Q(«)/Q. For any prime p dividing
# Gal(L/Q), there’s subfield F of L with [L: F] = p and L = F(a).

Proof. By Cauchy’s theorem, there’s subgroup P of Gal(L/Q) of order p; let F’ be the corresponding
subfield by Galois theory. If for all ¢ € Gal(L/Q), o(«) € F’, then F' = L, a contradiction. Hence
o'(a) ¢ F' for some o' € Gal(L/Q), and F'(¢'(a))) = L. Now put F := ¢~ '(F'). Then F(a) = L and
[L:F]=np. O

Lemma 3.2.46. Let F' be a subfield of R. Let a € F and K = F({/a), where {/a denotes a real n-th root
of a. Then any Galois extension L/F contained in K has degree [L : F] < 2.

Proof. Put [K : F] =d < n. Let F < E < K with [E : F|] = (. Consider the norm Nk g{/a € FE;
since the only roots of unity in R are +1, we have Nk, p{/a = +a' . Note that degp ant = ¢, so we have
E = F(axt), by degree considerations.

Hence, all subextensions of K /F have the form E = F (a%) for some ¢ € N. To make it Galois, ' must

possess enough roots of unity. Since +1 is the only roots of unity in F', we conclude that the only way to
make it Galois is that [E: F] < 2. O

Theorem 3.2.47. If all roots of the irreducible polynomial f € Q[z] are real, and one of these roots can

be expressed by real radicals, then its Galois group is a 2-group.

Proof. Say « is the root of f that can be expressed by real radicals, i.e, there’s a radical extension of real
fields
Q=KycKic---<cK, <R

with a € K,,, and each K, ,/K; being simple radical. Let L < R be the Galois closure of Q(«)/Q.

Suppose, for contradiction, that [L : Q] is divisible by some odd prime p. By Lemma 3.2.45, let F' be
a subfield of L with [L : F| = p and L = F(«). Consider the composites K] = FK;, i = 0,1,...,m; each
K[ ,/K; is again real simple radical. We may assume each [K;, , : K] is prime by inserting more simple
radical extensions between any two successive subfields. Since a ¢ F = FKj, there’s an integer s such
that o ¢ K/_, but a € K.. Since the extensions are of prime degree, we have K! = K,_(«), and K./K!_,
is Galois of degree p, contradicting to Lemma 3.2.46. O

Corollary 3.2.47.1 (casus irreducibilis). For an irreducible cubic equation over Q, if it has the positive

discriminant, then the expressions of the roots must involve radicals of non-real numbers.

Proof. Note that the positive discriminant indicates that all the roots are real. [
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Quartic equations

Consider a quartic polynomial f(z) = 2* + az® + bx? + cz + d € F[z]; under the substitution z = y — %,
we may consider
hy) =y +py’ +qy+r
Let
‘91 = (041 + 062)(043 + Oé4)
(92 = (061 + Ckg)(OéQ + 064)
O3 = (a1 + ay)(az + az)
and form the resolvent cubic
9(x) = (z — 01)(x — 02)(x — 03) € F[a]
= 2° — 2pa® + (p* — 4r)x + ¢
With the condition oy + as + a3 + ay = 0, we have
ap + g =+/—0; as + oy = —/—0;
ay + ag =/ —0s g + oy = —+/—05
a1+ oy =/ —93 Qo + g = —1/ —93
where the square roots are chosen so that +/—0;y/—62v/—03 = —q. (Any two determines the third.)

Therefore,

201 =+/—01 + /=0y + /=03
200 = /=01 — /=0y — /=03
205 = —/—=01 + /=01 — /03
20 = —/=01 — /—0s + /03
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3.3 Transcendental extensions

3.3.1 Dependence relations

Definition. Let X be a nonempty set and let A € X x 2% be a binary relation. We write z < S if
(,8) e Aand S < T if s < T for all z € S. We say A is a dependence relation if it satisfies the

following properties, for all S,T,U € 2X:
(I) (reflexivity) S < S
(IT) (compactness) x < S = x < Sy for some finite subset Sy of S
(IIT) (transitivity) S <T AT <U =S < U
(IV) (Steinitz exchange axiom) z < S A x € S\{s} = s < (S\{s}) v {z}
We say z is dependent on S if z < S; otherwise, we say x is independent of S.
Definition. A subset S < X is dependent if s < S\{s} for some s € S. Otherwise, S is independent.
Property 3.3.1. 1. If S < T, then S < Tj for all supersets Ty of T
2. Any superset of a dependent set is dependent.
3. Any subset of an independent set is independent.

4. If S is dependent set, then some finite subset of S is dependent. Equivalently, if every finite subset
of T" is independent, then 7' is independent.

Proof.

1. By (I), we have Ty < Ty, i.e, t < Ty for all t € Tp; in particular, t < Ty for all t € T, i.e, T < Tp. By
(III), we have S < Tp.

2. Let S be dependent and 7' 2 S. Since S dependent, s < S\{s} for some s € S. By 1. we have
s < T\{s}.

3. This follows from 2.

4. Say s < S\{s} for some s € S. By (II), s < Sy for some finite subset Sy of S. Then Sy U {s} = S is
finite and dependent.

152



Proposition 3.3.2. If S is independent and x « S, then S U {z} is independent.

Proof. If s < Su{z}\{s} for some s € S U {z}, by (V), we have z < S\{s}. By Proposition 3.3.1.1, z < S,

a contradiction. Hence S u {z} is independent. O
Proposition 3.3.3. If S is dependent, then S < S\{u} for some u € S.

Proof. The dependence of S shows that u < S\{u} for some u. By (I), we have S\{u} < S\{u}, and thus
S < S\{u}. O

Definition. A subset B € X is called a base for X if B is independent and X < B.
Theorem 3.3.4. Let X be a nonempty set with a dependence relation <. For B € X, TFAE:
1. B is a base.
2. B is a maximal independent set in X.
3. B is a minimal set with respect to the property set X < B.
Proof.
1. 1. = 2.: Pick x € X\B. Since x < B, we have B u {z} is dependent.

2. 2. = 3.: Take z € B. If X < B\{z}, then, in particular, z < B\{z}, contradicting to the fact B is

independent. Hence, B is minimal.

3. 3. = 1.: Take x € B. If B is dependent, then X < B < B\{z} by Proposition 3.3.3. Hence B is

independent.
O

Theorem 3.3.5. Let X be a nonempty set with a dependence relation <. Let S € T' < X such that S is
independent and X < T'. Then there exists a base B for X such that S B < T.

Proof. Put A={I < X | S < c<T alisindependent}, partially ordered by inclusion. Let {I,},en be
a chain in A. By Property 3.3.1.3 and .4, we see | J, I,, is also independent. By Zorn’s lemma, A has a

maximal element, say B. We claim X < B. Since B < T, the maximality forces T" < B, by Proposition
3.3.2; (III) implies X < B. O

Lemma 3.3.6. Let S be a finite dependent set and let A < S be an independent subset of S. Then there
exists u € S\ A such that S < S\{u}.
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Proof. By Theorem 3.3.5, let B be a base such that A € B < S. If u € S\B, then u < B < S\{u} by
Property 3.3.1.1. (I) and (IIT) show S < S\{u}. O

Theorem 3.3.7. 1. If B is a finite set for which X < B and if C is independent in X, then #C < #B.

2. Any two bases with respect to < for a set X have the same cardinality.
Proof.

1. Let B = {by,...,b,}. Pick ¢; € C and consider the set C; = B u {¢;}. By Lemma 3.3.6, with
A = {c¢1}, we have, say, X < Cy < {c1,b1,...,bp_1}. Picking ¢y € C\{c1} and repeating the
procedure above, we must exhaust the element of C' first, for otherwise X < Cj for some proper
subset Cy < C, contradicting to the independence of C'. Hence #C < #B.

2. Let B,C be two bases for X. If they are finite, 1. indicates that #B = #C. Assume B, are
infinite. For each ¢ € C, we have ¢ < B, and by (II), ¢ < B. for some finite subset B. € B. It

follows B = | J B., for otherwise b < C' < |J B. < B\{b} for b € B\ | B., contradicting to the
ceC ceC ceC
independence of B. Hence

#B =#| | B. <#(C xN) = #C

ceC
Reversing the roles of B and C, we conclude #B = #C.

3.3.2 Transcendence extensions

In this section, F' € E always denotes a field extension.
Definition. a € F is transcendental over F' if ¢ is not algebraic over F.

Definition. Let S € E. a € E is algebraically dependent on S over F', written @ < S, if « is

algebraic over F(S). Otherwise, « is algebraically independent of S over F, written o € S.

e a < Sif and only if F(S) € F(S,a) is algebraic. Also, the class of algebraic extensions is closed
under any composite. Thus, for A,S € E, A < S if and only if F(S) < F(S, A) is algebraic, i.e, A
is algebraic over F(.9).

« S is algebraically dependent over F if s < S\{s} for some s € S. Otherwise, S is algebraically

independent over F'.
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Definition. A subset S € F is said to have a nontrivial polynomial relationship over F'if p(sy,...,s,) =

0 for some nonzero polynomial p € Flzy,...,x,] and distinct s;,...,s, € S.

Theorem 3.3.8. Let S € E. S is algebraically dependent if and only if S has a nontrivial polynomial

relationship over F'.

Proof. (=) Let s € S such that s < S\{s}, i.e, s is algebraic over F(S\{s}). Hence, f(s) = 0 for some
polynomial f e F'(S\{s})[z] of degree n > 0, say

for distinct sq, ..., s, € S\{s}. Multiplying by the product of the denominators gives a nonzero polynomial
satisfied by s.
(<) Let s1,..., 8, € S such that p(sy, ..., s,) = 0 for some nonzero polynomial p € F[xy,...,x,]; WLOG,

say m is the smallest number having such a property. Write
p(T1, .., Tm) = Zpi(xg, e T T
i=1
where p, # 0. By the minimality, p,(sa,. .., sn) # 0. Hence, s; satisfies the nonzero polynomial p(x) :=
p(T, 82, ...y Sm), 1.e, 51 < S\{s1}. O
Theorem 3.3.9. Algebraic dependence is a dependence relation.

Proof. The reflexivity holds trivially. Let o < S and mq p(s)(x) = ana™ + -+ + a1z + ag € F(S)[z]. Put
C = {ag,...,a,}. Then o < C, which proves the compactness. For the transitivity, let & € S. Then the
tower F(U) < F(U,T) < F(U,T,«) is algebraic, proving that F(U) < F (U, «) is algebraic, i.e, « < U.
Finally, we verify the exchange axiom. Suppose t < S but ¢ ¥ S\{s}. Then ¢ satisfies a polynomial
f e F(S)[z]\F(S\{s})[z] of degree n > 0; write

for distinct sq,...,s, € S with, WLOG, s = s;. Multiplying by the product of the denominators and
setting © = t gives a nonzero polynomial over F(S\{s},t) satisfied by s, and thus s < (S\{s}) u {t} O

Property 3.3.10. 1. Any superset of an algebraically dependent set is algebraically dependent.

2. Any subset of an algebraically independent is algebraically independent.
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3. If S is algebraically independent over F' and « is transcendental over F'(S), then S U {a} is alge-

braically independent over F'.

Definition. A transcendence basis for E over F' is a subset B < E which is algebraically independent
over F' and for which F(B) < FE is algebraic.

Theorem 3.3.11. Let B < E. TFAE:

1. B is a transcendental basis for E over F.
2. B is a maximal algebraically independent subset of E over F.

3. B is a minimal set with respect to the property that F'(B) € E is algebraic.
Theorem 3.3.12. Let FF < S < T < E, where S is algebraically independent over F' and F(T) < E is

algebraic. Then there exists a transcendental basis B for E over F satisfying S € B < T.

Theorem 3.3.13. Any two transcendental bases for F over F have the same cardinality, called the
transcendental degree of E over F' and denoted by tr.degpF.

Theorem 3.3.14. Let F < K € F.

1. If S € K is algebraically independent over F' and T' < F is algebraically independent over K, then
S u T is algebraically independent over F'.

2. If S is a transcendental bases for K over F' and T is a transcendental bases for E over K, then SuT

is a transcendental bases for E over F.

3. The transcendence degree is additive in towers.
Proof.

1. Let s1,...,8m €S, t1,...,tp€ Tandletp € Flxy, ..., Tm, Y1, ., Yn) such that p(sy, ..., Sm,t1,. .., tn) =

0, where s;,t; are distinct. Write

p(q;l"“7g;m7y1,_”7yn):2 (2(1]01'{11'%”) yfl...yTeLn

e \'7
where ay = ay, _r. € F and each e = (ey,...,e,) is distinct and for each e, each f = (f1,..., fim)
is distinct. Consider the polynomial q(yi,...,Yyn) = (81, -+, Sm, Y1, - - -, Yn). Since T is algebraically

independent over K, we obtain
Zafsll ceslm =0
f

Again, since S is algebraically independent over F', we obtain ay = 0. In conclusion, p =0, i.e, SUT

is algebraically independent over F'.
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2. We must show F(S uT) € FE is algebraic. Since F'(S) € K and K(T') € E are algebraic, each step
in the tower FI(S uT) < K(T) < E is algebraic, and thus F'(S uT) < E is algebraic.

Definition. F' < F is totally transcendental if every element of E\F is transcendental over K.

o If E = F(t) for some transcendence t over F, we say E/F is a simple transcendental extension.

t
Proposition 3.3.15. Let ¢t be a transcendence over F. Let s = p(t) € F(t)\F, where (p,q) = 1. Then
[F(t) : F(s)] = max{degp,degq}. (HW. 19)
Proof. Consider the polynomial g(x) = g(x)s — p(x) € F(s)[z]. Then ¢ is a root of g(z), so F(t)/F(s) is
algebraic; this forces F'(s)/F to be transcendental. Regard s as an independent variable y. To show g(x) is
irreducible over F'(s), it suffices to show g(z)y — f(x) € F(y)[z] is irreducible over F(y). By Gauss’ lemma,

we only need to show h(y,z) = g(x)y — f(z) € Fly|[z] is irreducible in F[y|[z] = F[x,y] = F|z][y], which
holds trivially since (g, f) = 1. Thus [F(¢) : F(s)] = degp = max{degp,degq}. The left is clear. O

Corollary 3.3.15.1. Let F'(t)/F be a simple transcendental extension. Then

A= <Z Z) e GLQ(F)}

Furthermore, A — o4 is a surjective homomorphism from GLy(F') to Aut(F(t)/F), with kernel equal to
the group of all nonzero scalar matrices in GLy(F), i.e, Aut(F(t)/F) = PGLy(F). (HW2. 1)

Aut(F(t)/F) = {UA it .

~—

t
Proof. An automorphism f of F(t)/F is uniquely determined by it action on ¢; suppose f(t) = p—, where

(t)
p,q € Flz], ¢ # 0 and (p,q) = 1. Since it’s an automorphism F'(t) = F(f(t)), so [F(t) : F(f(t))] = 1. By

Proposition 3.3.15, max{degp, degq} = 1; say p(z) = ax+ b and q(z) = cx +d. If ¢ =0, then a,d # 0 and
b

L

~—

thus ad # 0. If ¢ # 0, since (p,q) = 1, we have ad — bc # 0. Hence (a
c

Theorem 3.3.16 (Liiroth). Let ¢ be transcendental over F. If FF € K < F(t), then K = F(s) for some
s€ F(t).

Proof. Assume K # F. By Proposition 3.3.15, for each s € K\F', the tower F(s) € K < F\(t) is algebraic;
in particular, F'(t)/K is algebraic. Consider

at) 1 lt)
bi(1) b (t)

p(x) = my k() = 2" +
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where a;(t),b;(t) € F(t) are relatively prime; note that none of a;(t)/b;(t) € F thanks to the transcendence

t
of t over F'. We claim each s = Zk((t)) is the desired element such that K = F(s).
k
t
Consider the polynomial h(x) = ax(z) — Zk—((t;bk(x) € Klz|. Since s ¢ F, we have h(x) # 0. But
k

h(t) = 0, we have p | h over K, i.e, there exists ¢ € K[z] so that

Qg (t)

ag(z) — m

br(z) = q(z)p(x)

ar(2)bi(t) — ar(t)bi(z) = bi(t)g(2)p(z)
Multiplying both sides by 7(t) = by(t) - - - b, (t) gives

where

i=1
Let g(t) be the greatest common factor of the coefficients on the RHS. Since g(t) | b1(t)---b,(t) and
(bi,a;) = 1, we have
g(&) | b1(t) - - b1 (E)br11(t) - - bn(t)
for all k. Factoring out g(t) gives
r(t)p(x) = g(O)p'(t, )
where p' € F[t, z] is not divisible by any nonconstant polynomial in ¢ (). Thus

deg, p'(t, x) = max{degax(t),degby(t)} = [F(t) : F(s)]

and
r(t)[ax (2)0x(t) — ax(t)be(2)] = bi(t)q(x)g(t)p'(t, =)

Multiplying both sides by a polynomial u(t) that clear all of the denominators of ¢(x), we obtain
w(t)r(t)a(z)be(t) — ax(t)br(z)] = br(2)d' (¢, 2)p (¢, @)
where ¢’ € F[t, x]. By (x), we have ag(x)bg(t) — ar(t)br(z) | p'(t, z), i.e, there exists ¢"(t, ) € Ft, z| so that

ar(2)by(t) — ar(t)bi(z) = ¢"(t, 2)p'(t, 2)
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Note that the degree of RHS with respect to ¢ is at least [F'(t) : F'(s)] and the RHS is at most max{deg ay(t), deg by (t
[F(t) : F(s)]. Hence deg, ¢"(t,x) =0, i.e,

ar(2)bi(t) — ar(t)br(x) = ¢"(2)p'(t, )

for some ¢” € F[z]. Since the RHS is not divisible by any nonconstant polynomial of ¢, neither is the LHS.
But the LHS is symmetric in x, ¢, so it cannot divisible by any nonconstant polynomial of x either. Hence
q"(x) € F, ie,
ar(2)be(t) — ar(t)bi(x) = ¢"p'(t, )
for some ¢” € F. Finally, since the degree w.r.t. = and that w.r.t. ¢ of the LHS agree, this holds for the
RHS. Hence
n =deg, p'(t,z) = deg, p'(t,x) = [F(t) : F(s)] =n

and thus [F(t) : F(s)] = n = degmy k(x), i.e, K = F(s), completing the proof. O
Proposition 3.3.17. Every field extension is a totally transcendental extension of an algebraic extension.

Proof. Let F' < E be any field extension. Let A := {a € E | a is algebraic over F'}, which is a subfield of
E containing F. If a € E is algebraic over A, then A < A(«) is algebraic, and thus F' < A(«) is algebraic,
ie, « € A. Thus A € E is totally transcendental. Il

Example 3.3.18. F'((z;)s) is totally transcendental over F' with transcendence degree n over F.

Proof. First we show that F(x) is totally transcendental over F'. For clarity, we prove F(m) = F(x) is

p(m)

totally transcendental over I, where 7 is a transcendence over F. Let aw € F(m)\F, so that o = ﬁ for
q(m
some p, q € F[z]. Then 7 satisfies 0 # ag—p € F(a)[z], i.e, 7 is algebraic over F'(«), i.e, [F(7) : F(a)] < 0.

It forces that [F(a) : K] = o, i.e, av is transcendental over F. Now F'(z1,...,x,) is totally transcendental
over F follows by induction on n. Finally, let a € f/g € F((x;)ie;) be algebraic over K. Since f, g have

finitely nonzero zeros, a € F'((x;)cs) for some finite subset J < I. Hence a € F. O

3.3.3 Purely transcendental extension

Definition. A extension F' € F is purely transcendental if F admits a transcendental base S over F
such that £ = F(95).

 It’s equivalent to saying that F is F-isomorphic to some K ((x;)icr)-

Proposition 3.3.19. If E/F is purely transcendental, then every « € E\F is transcendental over F'.
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Proof. Let B be a transcendence base for E/F such that £ = F(B). Assume a € L := F(t,...,t,) for
some finite subset {t,...,t,} < B, and also assume that o ¢ K := F(ty,...,t,—1). Then L = K(t,) is a
simple transcendental extension of K with o € L\K. By Proposition 3.3.15, « is transcendental over K,
and thus over F. O

Example 3.3.20. Let n > 3 and F be a field with Char(F') 1 n. Let u be transcendental over F' and let
v be a root of p(x) = 2" +u" — 1. Put £ = F(u,v). Clearly, E/F is nor algebraic. We claim that E/F is

not purely transcendental.

Proof. Since F(u,v)/F(u) is algebraic, tr.deg,F(u,v) = 1. Suppose otherwise £ = F\(t) for some tran-

a(t) c(t)

scendence t over F'. Write u = —= and v = —= where a,b,¢,d € F[x]. Then

b(t) d(t)

or

We rewrite it as
f@)" +g(t)" = h(t)"

where f,g,h € F[z]\F are, say, pairwise relatively prime. Assume deg f < degg; then degh < degg.
Dividing by A™ and taking the derivative with respect to ¢, we obtain

U h= f0) + g (g'h = gh') = 0
Since (f,g) = 1, we have ¢g"~' | f'h — fh’. While this implies
(n—1)degg < deg(fh) —1 =2deg(g) — 1
which is impossible for n > 3. Hence E/F is not purely transcendental. Il

Example 3.3.21. If ¢ is transcendental over Q then Q(¢,v/t3 — t) is not a purely transcendental extension
of Q.

Proof. Since Q(t) € Q(t,V/t? —t) is algebraic, we see tr.degyQ(t, vt* —t) = 1. Suppose, for contradiction,
that Q(u) = Q(t,v/t? —t) for some transcendence u over Q. Then t = f(u), vVt3 —t = g(u) for some
f,9 € Q(x)\Q; let us identify Q(u) with Q(x) for clarity. Thus, we have
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Write f = %, g= 2 for some a, b, ¢, d € Q[x] with (a,b) = (¢,d) = 1; we assume a, b, ¢,d € Z[x]. Then we
have
b = d*a(a® — b?)
Since (a,b) = 1 and (c,d) = 1, we have b* | d*> and d? | b3, thus, say, b®> = d*. Since Z[z] is a UFD, there’s
w € Z[z] such that wb = b* = d?; let b = w? and d = w®. Now we have f = % and g = % Consider the
w w
_ f'=)

. We have
g9(z)

rational function ¢(x)

- 3f(x)2—1  3a® —w?
where the first equality in the second row results from the fact 2g(z)g’(x) = 3f(x)?f'(x) — f'(x), obtained
from differentiating the identity in f, g above. We contend that ¢(x) is in fact a polynomial. Suppose
that  — « is a factor of the denominator of ¢. Then c(a) = 0 = 3a(a)? — w(a)?. w(a) # 0 for otherwise
(w?,a) # 1, a contradiction. Thus g(a) = 0 = 3f(a)? — 1, together with g(a)? = f(a)® — f(«), which is
impossible. Hence ¢(z) is a polynomial.
Replace f(z) and g(x) by f(1/x) and g(1/x), respectively; by the same token, we may show

e p(n) a2 (1))
A0 = o ey T 3 1

is a polynomial. On the other hand, we have —z~2¢(1/x) = p(x), which is impossible while both ¢(x) and

¢(x) are polynomials at the same time. Hence Q(¢,+/t3 — t) is not purely transcendental.
]

Lemma 3.3.22. Let E, E' be two field and K < E, K’ < E’ be subfield. Let I be an index set and
X = (x)ier € E (vesp. X' = (2})ier € E’) be algebraically independent over E (resp. over E'). If
u: K — K’ is a field isomorphism, then there’s a unique field isomorphism v : K(X) — K'(X’) extending

u and sending z; to x} for each i € I.

Proof. The uniqueness is clear. For the existence, note the algebraic independence means that there is a ring
isomorphism w : K[X] — K[X'] sending x{" - - - " to a7 - - - ;%" for 4y,... i, € I, aj € N, n € N. Passing
to their fraction fields we obtain a field isomorphism v : K(X) — K'(X’) with desired properties. O
Proposition 3.3.23. Let K < E,F < Q be fields with  being algebraically closed. Then any K-

isomorphism between E and F' can be extended to some K-automorphism on (2 if and only if tr.deg,2 =
tr.deg{2.

Proof. The necessity is clear. The converse holds by Lemma above. [
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Chapter 4

Module theory
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4.1 Module theory

Definition. Let R be a ring.

1.

2.

A left R-module is an abelian group M on which R acts on the left by endomorphisms on M.

An R-submodule N of M is a subgroup of M stable under the action on R, i.e, rN < N for all
r € R. In this case, we write N < M.

Similarly, we may define a right R-module.
If R has identity 1, we assume 1m = m for all m € M. In this case, we say M is a unital R-module.

Let S be a ring. An (S, R)-bimodule is a left S-module M that is also a right R-module at
the same time on which two ring actions are compatible in the sense that (sm)r = s(mr) for all
meM,seS, reR.

Unless indicated otherwise, by R-modules we mean left R-modules.

Example 4.1.1.

1

2.

. If R = F is a field, then R-modules are simply F-vector spaces, and R-submodules are subspaces.
If R = Z, unital R-modules are abelian groups, and R-submodules are subgroups.

R itself is an R-module, and R-submodules are left ideals.

More generally, R" := {(ai,...,a,) | a; € R} is an R-module.

If S is a subring of R, then an R-module is automatically an S-module.

If M is an R-module and [ is a left ideal of R such that /M = 0, then M is an (R/I)-module, with
the (R/I)-action on M given by (x+ I)m := xm for all x € R. For example, if A is an abelian group
of exponent m, i.e, (mZ)A = 0, then A is a Z/mZ-module. In particular, if m = p is a prime, then

A is a F)-vector space. For example, V; is a Fo-vector space of dimension 2.

Let F' be a field. We consider the F[z]-module V. In particular, V' is a F-vector space. Then the
action of x defines a linear map T : v — xv, and determines the F[x]-action on V. Conversely, given
a F-vector space V and T € End(V), let F[z] act on V' by p(x)v := p(t)v for all p € F[z].

In conclusion, an F[z]-module corresponds to a F-vector space with an endomorphism 7.
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Definition. Let R be a commutative ring with 1z. An R-algebra is a ring A with identity 14 together
with a ring homomorphism f : R — A such that f(R) € Z(A) and f(1g) = 14.

o Equivalently, an R-algebra is an R-module that is also a ring with identity such that the multiplication

is R-bilinear.
Example 4.1.2.
1. Any commutative ring with 1 is a Z-algebra.

2. If A is a ring with 1 and R is a subring of the center of A containing the same 1, then A is an

R-algebra.

4.1.1 Module homomorphisms and quotient modules

Definition. Let R be a ring and M, N be R-modules.

1. Amap ¢ : M — N is an R-module homomorphism is ¢ is an abelian group homomorphism that
respects the R-action on M and N, i.e ,¢(rm) =r¢(m) for all r € R, me M.

2. If ¢ is bijective, we say it’s an R-module isomorphism, and write M = N.

3. ker¢p:={me M | ¢(m) =0} and Im ¢ := ¢(M).

4. Homgr(M,N):={¢: M — N | ¢ is an R -module homomorphism}.
Example 4.1.3.

1. Z-module homomorphisms are just abelian group homomorphisms.

2. When F'is a field, F-module homomorphisms are simply F-linear transformations.
Property 4.1.4. Let R be a ring and M, N be R-modules.

1. Hompg(M, N) is an abelian group and a Z(R)-module. In particular, if R is commutative, it’s an

R-module.

2. Endg(M) := Hompg(M, M) is a ring with identity, with multiplication being function composition.

If R is commutative with 1, then it’s an R-algebra.

Property 4.1.5. Let R be a ring and N, M be R-modules with N < M. Then the quotient group M /N
is an R-module on which R acts by r(z + N) := rxz + N for all r € R. Also, the map M 32 — z + N is

an R-module homomorphism with kernel V.
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Definition. Let R be a ring and M be an R-module. For submodules A, B of M, define A+ B := {a+1 |
a € A,be B}, which is the smallest submodule containing A and B.

Proposition 4.1.6. Let R be a ring and N, M be R-modules.
1. ¢ € Homg(M,N) = M/ker ¢ =~ Im ¢.

2. M+ N/N=M/MnN

M/A

ALK B< M= ——
3 :>B/A

~ M/B

4. If N < M, then there’s a bijection between submodules of M /N and submodules of M containing
N.

4.1.2 Generation of modules, direct sums and free modules.

Definition. Let R be a ring and M be an R-module.

1. Let A< M be a subset. Define RA := {rja; +---+rpa, |n €N, r; € R, a; € A} to be the module

generated by A. In this case, we say A is a generating set.
2. If N < M such that N = RA for some A € M with #A < o0, we say N is finitely generated.

3. If N = Ra for some a € M, we say N is the cyclic module generated by a.
e If A={ay,...,a,}, we write RA = Ra; + - - - + Ray,.

Example 4.1.7.
1. If R =7, then Za is just the cyclic group generated by a.
2. If M = R is a ring, then cyclic submodules are precisely principal left ideals of R.

3. V is a cyclic F[z]-modules means precisely that V is a T-cyclic subspace generated by v for some

TeEnd(V),veV.

Definition. Let R be a ring and My, ..., M, be R-modules. Define an action of R on M; x --- x M,
componentwise. The resulting R-module is called the (external) direct sum of M, ..., M,, denoted as
M@ - -®M,.

Proposition 4.1.8. Let R be a ring and Ny,..., N, < M be R-modules. TFAE:
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Ny x-- - x Ny —— Ny +---+ N, ' '
1. is an isomorphism.

(al,...,ak): > ap + -+ ag

2. Njn > N; =0 for any j.
1#]

3. Every element x € N; + --- + N, can be written uniquely as ¢ = a; + - - - + a;, for a; € N;.

Definition. If any of the above holds, we say Ny +-- -+ N, is the (internal) direct sum of the N;, also
denoted as Ny @® - ® N,,.
Remark 4.1.9. Let (M,;);e; be a family of R-modules. The direct product of the A is the set [ [ M;
el
on which R acts componentwise, making it an R-module. The direct sum of the M, is defined by the
restricted product
HMZ' = {(ai)iel € H M; | a; = 0 for all but finitely many ¢ € I}
el 1€l
on which R acts componentwise.
The direct product has the following universal property. Let m; : [ [ M; — M, be the j-th projec-
i€l
tion. Then given any family of R-module homomorphisms f; € Hompg(A, M;), there exists a unique
f e Homg(A, [[; M;) such that m; o f = f; for all j € I.
The direct sum has the dual universal property. Let ¢; : M; — @ M; be the j-th inclusion. Then given
i€l
any family of R-module homomorphisms f; € Hompg(M;, A), there exists a unique f € Hompg([ [, M;, A)
such that fou; = f; forall je 1.

Definition. An R-module F' is said to be free on a subset A if every x € I can be expressed uniquely
as ¢ = ria; + --- + rpa, with unique a; € A, r; € R. We say A is a basis or a set of free generators of
F. When R is commutative, # A is called the rank of F.

o Let R be commutative with 1 and let I be a maximal ideal. Let f : R™ — R™ be an isomorphism.

Then id® f : R/I ®g R* — R/I ®g R™ is an isomorphism between vector spaces. Hence n = m.

Proposition 4.1.10. Let R be a ring and A be a set. Then there’s a free R-module F(A) on the set
A satisfying the universal property: for any R-module M with a map ¢ : A — M, there’s a unique
® € Hompg(F(A), M) such that ® ov = ¢, where ¢ : A — F(A) is the inclusion.
Proof. 1t’s clear that F'(A) := @ R is the desired free module on A. Equivalently, one can construct it as
€A
F(A)={f:A— M| f(z) =0 for all but finitely many = € A}
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4.1.3 Tensor products of modules

Question 4.1.11. Suppose R, S are rings with R < S. Then any S-module is automatically an R-module.
How above the converse? That is, given an R-module, can we make it a nontrivial S-module. The answer
is generally negative. For example, Z is a Z-module but fails to be a Q-module.

How best can we do? Let M be an R-module. Consider the free abelian group Z(S x M). To make
it an S-module, we need to identify (s; + so,m) — (s1,m) — (s2,m), (s,m1 + ma) — (s,m1) — (s,mz) and
(sr,m) — (s,rm) with 0 for all s, s1,80 € .S, m,my,my € M and r € R; let H be the subgroup of Z(S x M)
generated by the above identification. Define the tensor product of S and M over R to be the quotient

S®r M =17(S x M)/H

and denote the coset of (s, m) by s ®@ m. Elements of S ®g M are called tensors, and those of the form

s ®m are called a simple tensor.

Proposition 4.1.12. Define the S-action on S ®g M by s(D,. s, x m;) = >, ss; ® m;. Then S @ M

becomes an S-module.

Example 4.1.13.
1. Q®z Z/aZ = 0.
2. More generally, if A is a torsion abelian group, then Q ®; A = 0.
3. Q®zZ = Q.

Theorem 4.1.14. Let R < S be rings with 1 and let N be an R-module. Let ¢ : N — S®g N be defined by
t(n) = 1®n. Suppose L is an S-module and ¢ € Homg(N, L), then there’s a unique ® € Homg(S®g N, L)
such that ¢ = ® o .

Corollary 4.1.14.1. Under the condition above, then ker: € ker ¢.
Corollary 4.1.14.2. Under the condition above, we have the bijection

Homg(S ®g N, L) =~ Hompg(N, Resg(L))
where Resg : (S-Mod) — (R-Mod) is the forgetful functor.

Remark 4.1.15. The process of obtaining the S-module S ® N from N is called the extension of

scalars.
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We next consider the tensor products of two modules. Let R be a ring, N be a left R-module and
R a right R-module. Consider the free abelian group Z(M x N) and let H < Z(M x N) generated by
(my+ma,n)—(my,n)—(mg,n), (m,n1+ny)—(m,ny)—(m,ny) and (mr,n)—(m,rn) for all m, m;, ms € M,
n,ni,ny € N and r € R. Then
M®g N :=Z(M x N)/H

is called the tensor product of M and N over R. Note that M ®r N is, in general, just an abelian
group, unless M is given the structure of some left module.

If M is an (S, R)-bimodule, then M ®pz N can become a left S-module, where the S-action is given by
s(D;mi®n;) == Y, sm; ®n,. In particular, if R is commutative, then we can make M an (R, R)-bimodule

by setting rm = mr for all r € R, m e M, and M ®z N is automatically an R-module.

Example 4.1.16.
1. Let m,n € N and d = ged(m,n). Then Z/mZ Qg Z/nZ = 7/dZ and is cyclic generated by 1 ® 1.
2. R[z] ®r Ry] = Rz, y].

Definition. Let R be a ring, N a left R-module, R a right R-module and L an abelian group. A map
¢ : M x N is R-balanced, or R-middlelinear, if it’s bilinear as groups and ¢(mr,n) = ¢(m,rn) for all
meM,ne N, reR.

Theorem 4.1.17. Let M, N, L, ¢ as above and ¢ : M x N — M ®gr N be an R-balanced map defined by
t(m,n) := m®n. Then there’s a unique ® € Homyz(M ®g N, L) such that ¢ = & o .

Corollary 4.1.17.1. Let R, S be rings, M a right R-module, N an (R, S)-bimodule and L a right S-

module. Then there’s a bijection
Homnmoa-s)(M ®r N, L) = Hommod-r) (M, Hommioa-s) (N, L))
Corollary 4.1.17.2. Let R be a commutative ring and M, N, L be R-modules. Then there’s a bijection
{¢: M x N — L|¢is R-bilinear} ~ Homp(M ®g N, L)
Example 4.1.18.

1. Let f: R — S be a ring homomorphism. This map induces a right R-module structure on S, given
by sr:= sf(r) for all s € S,;r € R. Then for any left R-module N, S ®g N changes the base from R
to S.

2. If f: R— S is aring homomorphism with f(1g) = 1g, then S®g R =~ S via the map s®@r — sf(r)

with inverse s — s® 1.
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3. Let R be a ring, I < R a two-sided ideal and N an R-module. Then (R/I) ®g N = N/IN.

4. A abelian group G is divisible if for all n € N and g € G, ny = ¢ for some y € G. Then for any
divisible abelian group A and torsion abelian group B, we have A ®z B = 0.

More generally, given a ring R with 1, we say an R-module M is divisible if for every non zero-divisor

r € R, the map r — rm is a surjective endomorphism on M.

5. Let M, M’ be right R-modules and N, N’ be left R-modules. Let ¢ : M — M’ and v : N — N’ be
R-module homomorphisms. Then we can define a group homomorphism ¢p®1 : Mg N — M'Qr N’
in a natural way, and this is unique. Furthermore, if M, M’ are (S, R)-bimodules for some ring S

and ¢ is an S-module homomorphism, then ¢ ® ¢ is an S-module homomorphism.

Proposition 4.1.19. Let R, S be rings, M a right R-module, N an (R, S)-bimodule and L a right S-

module. Then there’s a bijection
(M®rN)®s L =MQEgr(N®sL)
Proposition 4.1.20. Let R be a ring, M, M’ be right R-modules and N, N’ be left R-modules. Then
(MeM)®r N=(M®rN)® (M ®g N)
M®r(N®N')= (M®grN)®(M®grN')
Corollary 4.1.20.1. Let R < S be rings with the same 1 and n,m € N. Then
S®r R" = 5"

and
R" ®R R™ ~ Rnm

Proposition 4.1.21. Let R be a commutative ring and M, N be R-modules. Then
M ®r N =~ N@R M

Proposition 4.1.22. Let R be a commutative ring and A, B be R-algebra. Then the tensor product of
modules A ®g B has a structure of R-algebra, given by (a® a')(b®V) := (ab® a'l’).
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4.1.4 Exact sequences

Definition.
1. A pair of group/ring/module homomorphisms X - Y 2 7 is exact if ker g =Ima.
2. A sequence --- — X; | —» X; — X;,; — - is exact if it’s exact at each Xj.

3. An exact sequence of the form 0 - X — Y — Z — 0 is called a short exact sequence. Here 0

denotes the additive identity; if XY, Z are multiplicative groups, we write 1 instead.

« 0> X 5Y is exact < a is injective.
e Y% Z 5 0is exact B is surjective.

« 05X 3Y 5 Z50is a short exact sequence < Y/a(X) = Z.

Remark 4.1.23. We have the following short exact sequences:

0 —— Z/)20 — (Z)27)? » (Z)22)) —— 0
0 —— {((2,0)) —— Z/AZ x 7.)]27 — (ZJAZ x Z./27)/{(2,0)y — 0

1 > (02) » Dg = (o, 7) y Dg/{0?) ————— 1

1 —— (-1) > Qg > Qsg/(—1) ——— 1

Those in the second column are isomorphic to Z/27 and those in the fourth column are isomorphic to
(Z/27.)?, but those in the middle column are not isomorphic.

This is a part of the classification of finite groups, which consists of
(i) classification of all finite simple groups

(ii) given any groups A, B, find all exact sequences 1 - N — G — G/N — 1 such that A =~ N and
B~ G/N.

Proposition 4.1.24. Consider the commutative diagram of modules with exact rows

A-YsB_*,C
I R

Al w/>B’ LYo

1. If ¢, a are surjective and [ is injective, then ~ is injective.
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2. If ¢/, v are injective and [ is surjective, then « is surjective.
3. If ¥, a,,y are injective, then ( is injective.
4. If p, o,y are surjective, then [ is surjective.

Proposition 4.1.25 (five lemma). Consider the commutative diagram of modules

A s C

> B > D
L

A s B s O D’

1. If 8,0 are injective and « is surjective, then + is injective.

2. If a,y are surjective and 0 is injective, then [ is surjective.

Corollary 4.1.25.1. Consider the commutative diagram of modules

A 5

IR RN

A 5 s ' s D/ s B/

If 8,6 are isomorphisms, « is surjective and € is injective, then  is an isomorphism.

Proposition 4.1.26 (snake lemma). Consider the commutative diagram of modules

Af>

B g
I N
A’ f B’ g s " Iy pr 7 s B/

with « surjective, n injective and two rows being exact. Then it induces a long exact sequence

ker ffaa — ker § ——— ker v —— ker €

A s B s C s D s B
| | | | |
+ + + 5 + )
A’ s B s O s D! s I

7

> coker § —— coker v —— coker ¢ —— coker nj.
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in which the map 0 is called a connecting homomorphism.

Corollary 4.1.26.1. Consider the commutative diagram with exact rows

A g
| A
s AT 2

,
%
=
1
Q

0

Then it induces a long exact sequence
ker § —— kery —— kere —2% 4 coker f —— coker v —— coker €

Proposition 4.1.27 (3 x 3 lemma). Consider the commutative diagram of modules

0 0 0

0 s B’ s B s B s 0
0 s O s C s O s 0
0 0 0

with all columns being exacts.
1. If the bottom two rows are exact, then the top row is exact.
2. If the top two rows are exact, then the bottom row is exact.
3. If the top and bottom rows are exact and the middle row is a complex, then the middle row is exact.

Definition. A short sequence 0 — A % B % C' — 0 is said to split if B = Y(A) @ C' for some C' < B
with C" = C by ¢, that is, B~ A® C.

o« We say B is a split extension of C' by A.

Lemma 4.1.28. Let R be a ring and M an R-module. If 7 € Endz(M) is idempotent, i.e, 72 = 7, then
M ~ kerm @ Imm.
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Proof. Note that for all m = w(m’) € Im7, we have m — n(m) = w(m/) — #2(m/) = 0, since 7° = 7.
Conversely, if m € ker(idy; —m), then m = w(m) € Im 7. Hence, ker(idy; —7) = Im 7.
For each m € M, we may write m = 7(m) + (idy; —7)(m), so M = kerm + Im7. If z € kerm n Im,

say z = 7(y), then 0 = m(z) = 7*(y) = 7(y) = x. Hence M = ker 7 @ Im 7. O
Proposition 4.1.29. Let 0 - A % B % C — 0 be an exact sequence. TFAE:

1. It splits.

2. There exists a u € Hom(C, B) such that ¢ o pu = idc.

3. There exists a A € Hom(B, A) such that A ot = id 4.
If this is the case, we call u a splitting homomorphism.

Proof. Assume 1, and let B = ¢(A) @ C" with C" =~ C by . Then pick u = (p|;)"' : C — C' < B and
A: B — ¢(A) = A be the projection.

Conversely, let f = po @ and g = 1 o A. Both of them are idempotent endomorphisms on B, so by
Lemma 4.1.29, B =~ ker f®Im f = ker o®Im p = AP C, since p is injective. Similarly, B =~ ker g®Im g =~
B/A®A=Co®A. O

Example 4.1.30. 0 — Z 3 Z ™% " Z/nZ — 0 does not split since Homy(Z/nZ, Z) = 0.

Projective modules

Proposition 4.1.31. Let R be a ring with 1 and A, B, C' an R-module. TFAE:

1. 0 > A— B — (C is exact.

2. 0 > Homg(D, A) - Homg(D, B) — Hompg(D, C) is exact for all R-modules D.
Proposition 4.1.32. Let R be a ring with 1 and P an R-module. TFAE:

1. Hom(P, —) is an exact functor.

2. Hom(P, —) is a right exact functor.

3. Every exact sequence 0 > A — B — P — 0 splits.

4. P is a direct summand of some free module.

Definition. An R-module P satisfies any of the above equivalent conditions is called projective.
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Corollary 4.1.32.1. Let R be a ring with 1.

1. Free R-modules are projective.

2. Every R-module is a quotient of some projective R-module.
Example 4.1.33.

1. If R = F is a field, then any R-module is a F-vector space, which is free and thus projective.

2. If A is a nontrivial torsion abelian group, then it cannot be a projective Z-module.

3. Q is not a projective Z-module. In general, a divisible abelian group is not a projective Z-module.
Theorem 4.1.34 (Dual basis lemma). Let R be a ring and P be an R-module. TFAE:

1. P is projective.

2. There exist {a; | i€ I} < P and {f; | i € [} < Hompg(P, R) such that for any a € P, f;(a) = 0 for all
but finitely many ¢, and a = ), fi(a)a;.

Proof.

2.=1. Let F = @, Re; and consider projection ¢ : F' — P given by g(e;) = a;. Also, consider f: P — F
given by f(a) = > fi(a)e;. Then go f =idp, and P is a direct summand of F'.

1.=2. Let F' = @, Re; be the free module and g : F' — P be the projection. Let a; = g(e;). Since P is
projective, there exists h : P — F such that a = ), f;(a)e; and ho g = idp. Then {a;} and {f;} are

the desired collection.

O

Definition. The associated right R-module Hompg(M, R) of an R-module M is called the dual module
of M, and is denoted by M*.

« The R-action on M* is given by (¢r)(m) := o(m)r.

o If M is a finitely generated free left R-module, then M* is a free right R-module of the same rank.

In particular, if M is finitely generated projective, then M* is projective.
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Injective modules

Proposition 4.1.35. Let R be a ring with 1 and A, B, C' be R-modules. TFAE:
1. A—- B — C — 0 is exact.

2. 0 > Homg(C, D) — Hompg(B, D) — Homg(A, D) is exact for all R-modules D.
Proposition 4.1.36. Let R be a ring with 1 and J be an R-modules. TFAE:

1. Hompg(—, J) is an exact functor.

2. Hompg(—,J) is a right exact functor.

3. Every exact sequence 0 - J — B — (' — 0 splits.
Definition. An R-module P satisfies any of the above equivalent conditions is called injective.

0 y 7 —" 7
Example 4.1.37. Z is not an injective Z-module. Consider lid . If n # £1, then id

Z
cannot be lifted to a homomorphism nZ — Z.

Proposition 4.1.38 (Baer’s criterion). Let R a ring with 1 and J an R-module.

1. J is an injective R-modules < for all left ideals I < R, any R-module homomorphism ¢ : I — J can

be extended to some R-module homomorphism f: R — J.

2. If Ris a PID, then J is injective < rJ = J for all r € R\{0}, i.e, J is a divisible R-module.
Proof.

1. Consider

0 s A w>B

Q

J

and let S :={(B',¢') | Imy € B’ < BA ¢ € Homg(B’', J) such that ¢'t) = g}; this is nonempty since
(Im), gy~ ') € S. Partially ordered S as usual and by Zorn’s lemma, S admits a maximal element
(Bo, fo).

Suppose for contradiction that By & B, say b € B\By. Consider I = (By : b) < R and define
fi o I — J by f'(r) := fo(rb). By assumption, f; can be extended to some " : R — J. Put
B’ = By + Rb 2 By and define [’ : B" — J by f'(by + rb) = fo(bo) + fi(r) for by € By, r € R; this is
well-defined and (B’, f') € S is larger than (B, fo), a contradiction.
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2. Let I = (r) be a nonzero ideal of R, and for each q € J define g : I — J such that g(r) = ¢; this
is well-defined and unique. g can be extended to a homomorphism G : R — J if and only if there
exists ¢’ € J with G(1) = ¢ such that ¢'r = G(r) = g(r) = ¢, if and only if J = rJ. The result

follows from 1.
O
Corollary 4.1.38.1. A Z-module is injective if and only if it’s divisible.
Corollary 4.1.38.2. If R is a PID, then any quotient of an injective R-module is again injective.
Corollary 4.1.38.3. Every Z-module is a submodule of some injective module.

Proof. Let A be a Z-module and let ¢ : Z(A) — A be the canonical projection. Consider Q := Q®z Z(A);

this is an injective Z-module since it’s a direct sum of Q and thus divisible, Corollary 4.1.38.1 applies.

Then A =~ Z(A)/ ker p < Q/ker ¢ and @)/ ker ¢ is injective over Z by Corollary 4.1.38.2. O
Theorem 4.1.39. If R is a ring with 1, then every left R-module M is submodule of some injective
module.

Proof.

1° Show that Homgy (R, M) is a left R-module under the action (ry)(s) = ¢(sr).
2° Show that if () is an injective R-module then Homy (R, @) is also an injective R-module.
3° View M as an Z-module any thus it’s contained in some injective Z-module Q).

4° Note that Homg(R, M) < Homgz(R, M) < Homgz(R,Q) and use the R-module isomorphism
M =~ Hompg(R, M) to conclude the theorem.

We elaborate on 2°. Given that 0 — A —%> B is an exact sequence of R-modules and now since Q is
injective,

Homgy(B, Q) <, Homgz(A, Q) — 0

is exact. Given f’ € Hompg(A, Homz (R, @)), consider

> A
|

Homgz(R, Q) 1

;

0 Y B
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Hence f := f'(—)(1r) € Homg(A, Q). By our assumption, there’s a g € Homy(B, @) such that f = g o .
Define ¢'(b)(r) := g(rb) for b € B and r € R; clearly ¢'(b) € Homz(R, @), and ¢’ € Homy(B, Homz(R, Q)).
We contend [’ = ¢’ o . Indeed, for each a € A and r € R,

9'(0(a))(r) = g(re(a)) = g(e(ra)) = f(ra) = f'(a)(r)
so g'op=f". 0

Remark 4.1.40. Among all injective modules containing M, a minimal one the called the injective hull
FE of M. "The” injective hull E has the universal property: if () is an injective R-module such that M < @),
then M € F C Q.

For instance, Q is the injective hull of the Z-module Z and any injective hull of a field F'is F itself.

Flat modules

Proposition 4.1.41. Let R be a ring with 1 and A, B, C' be R-modules. TFAE:
1. A—» B — C — 0 is exact.
2. D®r A —> D®rB— D®rC — 0is exact for all R-modules D.
Definition. An R-module D is such that D ®g — is a left exact functor is called a flat R-module.

Proposition 4.1.42. Let R be a ring with 1. Then projective R-modules are flat.

Proof. Let P be a projective R-module and F' a free R-module such that F' = P ® M for some R-module
M. Let ¢ : A — B be injective. Consider

(PRAOMRA) —— (POM)QA=FRA 2% F®B —» (PQB)®(MQ B)
To show P® A — P ® B is injective, it suffices to show id® ¢ is injective. Indeed, write FF = @ R and

consider the commutative diagram
PR®A) — (PRI®A — (PR)® B —— P(R® B)
DA > P B

The result follows once we note that the bottom arrow is injective. [

Proposition 4.1.43 (Flatness criterion). Let R be a ring with 1 and D an R-module. TFAE:

1. D is flat.
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2.

For every finitely generated left ideal I < R, the map D ®r I — D ®g R induced by the inclusion

I < R is injective.

Proof. Let D be an R-module satisfying 2. We break our proof into some steps.

10

20

30

We show D® I — D ® R is injective for every left ideal I of R. Indeed, every element in D ® [ is a
finite sum of simple tensors, and hence is contained in some D ® I’ for some finitely generated left
ideal I’ of R. Hence if it’s sent to zero, by our assumption it’s itself zero in D® I’ and thus in D® 1.

This shows the injectivity.

We show if K is a submodule of some finitely generated free module F', then M ® K — M ® F' is
injective. Write F' = K + Rvy + -+ - + Rv, and F; = K + Rv; + - - - + Rv,,. We show each step in

MK — MQQF —— MQF, —— -+ —— MQF,=MQ®F

is injective. For convenience, put K = Fy. For i =0,1,...,n — 1, we have the short exact sequence

0 >Fi > l+1—>E+1/E;R/[fL—>O

where [; :== {a € R | av;;; € F;} and = follows from some isomorphism theorem; I; is an ideal of R

since F; is an R-module. Then we have the induced long exact sequence
o —— Tor®(M,R/L;}) —— M®F, — M®F,,, —— M®R/I; —— 0

We contend Torf'(M, R/I;) = 0. For eachi =0,...,n —1,0 — I, - R — R/I; — 0 induces the

exact sequence

0 = Torf(M, R) —— Torf(M,R/I,) —— M ®I, M »y M@ R/I; —— 0

2\

By our assumption, M ® I; — M ® R is injective, and thus Tor (M, R/I;) = 0. Hence
0 — M®F, — M®F,,, —— M®R/I, —— 0

and thus M ® F; - M ® F;,; is injective.

Now we show if K is a submodule of some free module F', then M ® K — M ® F' is injective. Indeed,
every element of M ® K is a finite sum of simple tensors, and thus is contained in some finitely

generated free submodule of F'. Then this follows directly from 2°.
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4° Let A, B be R-modules and A % B be injective. Write B = F/Q for some free module F' and

submodule (). Then we have a short exact sequence

2\
=}

0 > . F 1.8

Put J = f~(g(A)) and ¢+ : J — F to be the inclusion, then we have the commutative diagram with

exact rows
0 > Q) y J > A > 0
f
0 > > F' > B > 0

Apply the functor D ® —, we obtain a commutative diagram with exact rows

DRQYP —— DRJ —— DRKA——0

lid lid R lid ®g

DRQ —— DRF 2L peB —— 0

By 2°, we know id ® ¢ is injective, and by Proposition 4.1.24.1, id ® g is injective.

Proposition 4.1.44. Let R be a PID and D an R-module. Then D is flat < D is torsion free.

Proof. (<) Let I = (a) # 0 be an ideal of R. Consider the composition of maps

D-—"3 DR -—">DRrI 2 D®rR —> D

mr —— mQPr —— mRPra —— m R ra ——— mra

where ¢ : [ — R is the inclusion. Since D is torsion free, this composition is injective, and thus id ®¢ is
injective. By flatness criterion, D is flat.
(=) Let a € R\{0} and consider the exact sequence 0 »y R —%% R . Since N is flat, we have

the exact sequence

~

id xa

0 — D®r R —— DQgrR
1~ 1~

D— D
m ——— ma

The injectivity gives Annys(a) = {m € M | ma = 0} = 0, and thus Tor(M) = | J Anny(a) = 0. O
aeR
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We consider the following table. (HW. 6)

Projective | Injective | Flat

submodule

quotient

finite direct sum

direct sum

direct product

direct summand

tensor product

(assuming R is comm.)

extension of scalars

Each (4, j) blank corresponds to the question whether any i of j module is j. For instance, the (1,2) black
corresponds to whether any submodule of an injective modules is injective. We will not complete this table,

but we only discuss some of them.

submodules and quotients.
Definition. A ring R is left hereditary if all left ideal of R is a projective left R-modules.

Theorem 4.1.45. Let R be a hereditary ring. Then any submodule P of a free R-module F' = @ Re; is
el
isomorphic to a direct sum of left ideals of R. In particular, P is projective over R.

Proof. By virtue of AC, let < be a well-ordering on I. For each i € I, let F; = @ Re; and G; = @ Re;.
J<i Jj<i

Let p; : FF — R be the i-th projection. Put J; := p;(P n F;); this is a left ideal of R. Since J; is projective

over R, the exact sequence

00— PnG, —— PnF, -2 J |

splits, and thus Pn F; = (P n G;) ® A; for some submodule A; =~ J; as R-modules. We contend P = @ A;.

Suppose a; +- - - +a, = 0 for some a; € A,,;; WLOG, say oy < --- < a,. Then a,, = —(a;+-- -+a:f_[1) €
G,, N F,, =0, s0 a, = 0; by induction, a; = 0. Finally, we show P = Z A;. If not, then there would exist
a smallest j (since < is a well ordering) such that P n Fj contains anzeélement a that is not belonging to

> A;. Write a = b+ ¢ where be Pn G; and c € Aj. Then b e P n Fy, for some k < j; the minimality of j
i€l
shows be > A;. But a =b+ce )] A;, a contradiction. N

el el
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Corollary 4.1.45.1. A ring R is hereditary if and only if all R-submodules of a projective R-module are

projective.

Proposition 4.1.46. Let R be a commutative ring. Then R is a PID < all R-submodules of a free

R-module are free.

Proof. (<) Let a € R\{0}. Then Ra is free, say ra is a basis, for some r # 0. If ba = 0 for some b € R,
then b(ra) = 0, hence b = 0. This shows R is an integral domain. On the other hand, any = # y in R\{0}
cannot be R-linearly independent since yx + (—xz)y = 0. Hence if I is a nonzero ideal of R, since it’s free,
it must have a basis consisting of one element of I, and thus I is principal.

(=) This follows from the fact that a PID is hereditary and Theorem 4.1.45. N

Proposition 4.1.47. A ring R is left hereditary < all quotient of injective modules are injective.

direct sum.
Proposition 4.1.48. Let R be a ring and A, B be R-module. Then
A @ B is projective/injective/flat < A, B are projective/injective/flat.
This can be sharpen, for the flatness and projectivity.

Proposition 4.1.49. A direct sum of R-modules is flat /projective over R <> each direct summand is flat/

projective over R.
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4.2 Modules over PID

Definition. Let R be a ring and M be a left R-module. M is a Noetherian module if it satisfies any

of the three equivalent conditions
1. Every submodule is finitely generated.
2. It satisfies the ascending chain condition on submodules.
3. Every nonempty set of submodules has a maximal element.
o A left Noetherian ring R is noetherian as left R-modules.

Example 4.2.1. Albeit R = Flxy,29,...] is a finitely generated R-module, namely, generated by 1,
I ={feR| f(0) =0} is not finitely generated as R-module.

Proposition 4.2.2. Let R be an integral domain and M be a free R-module of rank n. Then any n + 1

element in M are R-linearly dependent.
Proof. Let F' = Frac R and consider the embedding M — F®r M = F". O

Definition. Let R be an integral domain. The rank of an R-module is defined to be the maximum number

of R-linearly independent elements of M.

Theorem 4.2.3. Let R be a PID and M be an free R-module of rank n. Let N < M be a submodule.
Then

1. N is free of rank m < n.

2. There is an R-basis y1,...,y, for M and a; € R(j = 1,...,m) with ay | az | --- | ay, such that

a1Y1, - - -5 @Y is an R-basis for N.
Proof.

1. This follows from Proposition 4.1.46 and 4.2.2.

2. Let x1,...,z, be a basis for M and pick wy,...,w; to be a generating set of N. Now we write
w1 by -+ bin I
wy, bir b/ \@n
=B

for some B = (b;j) € Mixn(R).
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Claim. We will show there exist U € GLg(R) and V' € GL,(R) such that

ai
UBV = R
am
O O
This means
a1
wy ) Y1 Y1 L1
Ut Sl = - 0 , where =V
am
w n n 'In
k 0 O Y Y
and implies N is a free module with basis a1y, ..., @mYm.

We devise an algorithm to construct what we desire. We set some global variables.
Let m = 0. For i = 0,...,min(k,n) — 1, let d; = 0. For i = 0,...,k— 1, let U; = I;_; and for
i=0,...,n—11let V; =1, ;. Let ko =k, np =n and for 1 <i < min(k,n), let k; =n; =0.

Algorithm.

1° Find j such that b;; # 0. Let S be the matrix corresponding to swapping the 1-st column and
the j-th column, and let V,, =V,,S, B = BS.
—bjy

——2  and
ng(bn, bjl)

2° For j = 2 to ky,. Find o, 8 such that aby; + Bbj; = ged(bi1,bj1). Put v =

bll

0 = —————. Let A be the matrix with
ng(blla bjl)

An=a, Ayy =08, A=, Aj; =0

Ay =1fore# 1,75 and A; = 0 else. For example, when j = 2, we have

a B
A= ~ o
I

Now let U,, = AU,, and B = AB. If B;; =0 for each : = 2,...,k,,, go to 3°.
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—by;
ng(bu, blj)

3° For j = 2 to n,,. Find «, 8 such that aby; + 8by; = ged(byy,by;). Put v = and

bll

0 = —————. Let A be the matrix with
ng(bn; blj)

A = a, Ajl = £, Alj =7, Ajj =9
Ay =1fori# 1,n and A;y = 0 else. For example, when j = 2, we have
a v
A=\ B o
I
Now let V,, = V,,A and B = BA. If By; =0 for each it = 2,...,n,,, go to 4°.

4° If B;; # 0 for some i = 2,...,k,,, go to 2°.
If By; # 0 for some i = 2,...,n,,, go to 3°.

o This terminates at a finite stage since R is Noetherian.

5° For j = 2,...,ky, let D = ged{bje,...,djn,,}. If b1y 1 D, let S the matrix corresponding to
adding the j-th row to the 1-st row. Let U,, = SU,,, B =SB and go to 3°.

o This terminates at a finite stage since R is Noetherian.

6° Let d,, = By and let B’ € My, —1)x(n,,—1) be the submatrix in

B dy | O
O | B
If B" = O or min{k,,,n,,} = 2, break. Let k.1 = kpp — 1, nyper = nyy — 1, m = m + 1 and

B =B Goto 1°

Now, let Uy = (I, ®U,,) - - (Lo @ Up) and Vo = (I D Vp) - - (I;n ® Vi), where I; is the i x i identity

matrix. Hence, we have obtained that
do

UyBVy = - O

Wlthd0|d1’|dmby5o
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Definition. Let R be a PID and A € M, (R). A smith normal form of A is a diagonal matrix
D € M, xm(R) of the form

ay
O
ay
O O
in which a; | --- | ag such that D = UAV for some U € GL,(R), V € GL,,(R).
o The diagonal element a4, ..., a, are called the invariant factors of A.

o Note that ¢ is the rank of the matrix A.

Definition. Let A be a n x m matrix. For each i < min{n, m}, an ¢ x ¢ minor of A is the determinant

of a matrix obtaining by eliminating n — ¢ rows and m — ¢ columns of A.

o For each i < min{n, m}, there are at most ( , ) ( ) i x ¢ minors of A.
AN

Corollary 4.2.3.1. Let R be a PID, A € M, «,»(R) and r be the rank of A.
1. A admits a smith normal form, with invariant factors d; | - - - | d,..

2. For each i < r, let A; be a GCD of all ¢ x ¢ minors of A. Then d; = Ay and d; = AiA;_ll for each

2 <1 < r, up to units.
3. The invariant factors of A are unique up to units.

Proof. It remains to show the second assertion. Let @ € M,(R). Since the jk-entry of QA is a linear
combination of entries of the j-column of A, this indicates that ¢ x ¢ minors of QA is a linear combination
of those of A, and thus the GCD of ¢ x ¢ minors of A is a divisor of that of QA. Similar for the case AP
when P € M,,(R). Hence, any two similar matrices have the same GCD of ¢ x ¢ minors. Now the second

assertion is crystal clear. O

Theorem 4.2.4. Let R be a PID and M a finitely generated R-module. Then
M~R ®R/(a1))® - D R/(anm)
in which 7 > 0,a; € R with ay | -+ | apm,.

Proof. Let M = >, Rx; and let F' be the free R-module on {ej,...,e,}. Then we have the natural
i=1
homomorphism
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p: F— M
e — I;
and thus M =~ F/ker ¢. By Theorem 4.2.3, there’s a basis {y1,...,y,} for F'and a; € R with ay | --- | a,

such that ayy1, ..., anyn, is a basis for ker p. Then

Ryi @ - @ Ryn @ --- D Ryn,

M =~
Rayyy @ - - - @ Raynym

> R"™®R/(a)® - @R/ (an)

Example 4.2.5. Let G = Z? and H be the subgroup of G generated by
wy = (12,6, —6) wy = (—16,—4,12) ws = (—24, -6, 18) wy = (4,4,6)

Let’s find the structure of G/H. Put {ej, €3, €3} to be the standard basis of G. Then

€1
Wo —-16 —4 12
ws —24 —6 18

€3
Wy 4 4 6

We apply our algorithm in Theorem 4.2.3 to find the basis for H.
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S O O N

o O O N

Definition. Let the notation be as in Theorem 4.2.4.

12
18

o O o O

—6 4
12 —16
—
18 —24
6 12
0 2
72 36
—
108 54
—48 —24
0 2
72 0
 —
—12 0
—36 0
0
12
0

1. The number r is called the (free) rank of M.

—60
-90
42

o O o O

2. ay,...,a,, are called the invariant factors of M.

e 7 =dimp F'®g M, where F' = Frac R is the fraction field of R.

o Tor(M)=R/(a1)® - -® R/(a,,) called the torsion part of M.

o Anng(Tor(M)) = (an,) < R.

Theorem 4.2.6. Let R be a PID and M a finitely generated R-module. Then

M=R ®R/p)® - ®R/(pF)

for some prime powers pjj (p; may not be distinct).
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Proof. Let a € R and let a = ugo{1 -~ pln be its prime factorization, where u is a unit and py,...,p, are

distinct primes. For i # j, (p/") + (p;cj) = 1; thus, by Chinese remainder theorem, we have

R/(a) = R/(p{") -~ x R/(p]")
Now the theorem follows from Theorem 4.2.4. [
Definition. Let the notation be as in Theorem 4.2.6.

1. The prime power pj.j are called the elementary divisors of M.

2. Let
M, :={me M | p"m = 0 for some k € N} = @ R/(p])

p;j=p

We call M), the p-primary component of M.

Theorem 4.2.7. Let R be a PID. Any two finitely generated R-modules are isomorphic < they have the

same rank and the same list of invariant factors / elementary divisors.

Proof. (=) Suppose M; = M,. Note that an isomorphism must send p-primary components to p-primary
components. Thus it suffices to show that the ranks are equal and the p-primary components have the

same decomposition.
o M,;/Tor(M;) = My/Tor(Ms;), so the ranks are equal.
o Let
My, = R/(p") @@ R/(p™)
My, = R/(p") ®--- @ R/(p™)
be the p-primary component of My, M, respectively.
Claim. For each k e N, #{e; | e; = k} = #{f; | f; = k}. (= {ei}1<i<m = {fi}1<i<n as multisets.)

PTHR/(P) _ ) /() = R/(p) i<
PH(R/(p7)) 0 Jif i > g

Since My, = My, ‘ '
pz—lMlp N pl_lep

piMlp N piMQp
as R/(p)-vector spaces, having dimension #{ey | ex =i} = #{fx | fx = i}.
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4.2.1 Application to vector spaces
Rational canonical forms

In this subsection, unless otherwise stated, by F' we always means a (fixed) field and by V' we always means
a (fixed) finite dimensional F-vector space.

As we've seen in Example 4.1.1.7, via an endomorphism 7" € Endp(V) we may regard V' as an F|[z]-
module, denoted as Vr, the action given by = -v := T'(v) for each v € V. Since F[z] is a PID, the preceding

fundamental theorem is available, i.e,
V= Flz]"®Tor(V) =~ Flz]"® Flz|/(a1) ® - - ® F[z]|/(an)

where the a; € F[z] are monic and have degree at least 1, such that a;(z) | - - | ay,(z) over Flz]. Since V
is finite dimensional as F-vector space, it must be the case that » = 0, for F[z] is an infinite dimensional

F-vector space. Hence, V' turns out to be torsion, i.e,
V =Tor(V) = Flz]/(a1) ®- - ® Flz]/(am)
Below we let T' € Endp (V') be a (fixed) endomorphism of V. Recall the annihilators of V/
Am(V) :={fe Flz] |[Yve V[f -v=0]}
This is an ideal of F[z]. Since F[z] is a PID, there’s a unique monic polynomial, denoted by mg(x),
generates Ann(V).
Definition. The unique monic polynomial my(z) € F[z] is called the minimal polynomial of 7'
A direct consequence of the fundamental theorem is that
Proposition 4.2.8. my(z) = a,,(2) is the largest invariant factor of V.
For the completeness, we recall
Definition. chary(x) := det(xl —T) is called the characteristic polynomial of 7'
Now consider a(x) = o + by_12*1 + -+ + byz + by € F|x] and the F-vector space F[z]/(a(z)). Pick

{1,Z, -, zF"1} as a basis for F[z]/(a(x)) over F, then the linear transformation [v — x -v] has the matrix
representation
0 0 0 —bg
10 —b;
Ca(z) := 0 1 0 —by | e My(F)
0 0 1 —bs

This is called the companion matrix of a(z).
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Definition.

1. Coy @ - ®C,,, is called the rational (canonical) form of 7.

2. Let Ae M, (F). We say A is in rational (canonical) form if

A=Cp, @ - DCy,
for some nonconstant monic polynomials by, ..., b, € Fx] such that by | --- | by over Fx].

Theorem 4.2.9.

1. There exist a basis for V over F' such that 7" is in rational form.

2. The rational form is unique.

Proof. Let by,...,b; € F|x| be nonconstant monic with by | - - | b, over F[x] such that there’s an ordered
basis  for V' such that [T]g = Cp, @ --- D@ Cp,. Let 5; < B be the corresponding ordered basis such that
A

p:)g; = Cp;, where D; is the T-invariant subspace spanned by f;. By definition, = 8, L --- 1 f;, and
V=Di@ @D

Let e; be the first element in §;. Clearly, D; is a cyclic F|z]-module generated by e; and has annihilator
(bi(x)). This means D; =~ F[z]|/(b;(x)), and thus

V= Fla]/(bi(2)) ® - - @ Flz]/(be())

with by | --- | b;. Hence by,...,b; are the invariant factors of V' as F[z]-modules, and Theorem 4.2.7 then

shows {b1,...,0;} = {ai,...,a,} as multisets. Therefore, the rational form is unique. O
Theorem 4.2.10. Let S, T € Endp(V). TFAE:

1. S~T,ie, S=UTU™! for some U € Autp(V).

2. Vg = Vp as F[z]-modules.

3. S, T have the same rational form.
Proof.

1. We claim that U € Homppy)(Vs, V). Indeed, U(z - v) = UT(v) = SU(v) = s - U(v) for each v € V.

Hence U : Vg — V7 is an F[z]-module isomorphism.
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2. The isomorphism guarantees that they have the same invariant factors, so they have the same rational

form.
3. Let 3,7 be the bases for V' over F' such that [S]g, [T], are in rational form. Then
[S)s = [id]3[T][id]7

Let U : V' — V be the linear transformation induced by [id];. Precisely, write 8 = {3;}, v = {7}
and v = a1y + - - - + apYg; then

a

U)i= (B - i) lidl]

Qg
Then U € Autp(V) and S =UTU .
U

Corollary 4.2.10.1. Let A, B € M,(F'). Then A ~ B over F' if and only if they have the same rational

form over F.
Theorem 4.2.11. Let A, B € M,,(F) and K © F be a field. Then
A~BinF< A~ BinK.

Proof. Let M be the rational form of A computed over F'. Since M is clearly satisfies the definition the
rational form of A computed over K, the uniqueness shows that M is also the rational form of A over K,
which implies the invariant factors of A are the same whether it’s viewed over F' or over K.

A ~ B over K whenever A ~ B over F. Now if A ~ B over K, then they have the same invariant

factors over K, thus over F', by the first paragraph. Hence A ~ B over F'. ]
Corollary 4.2.11.1. Let A e M, (F).

1. the minimal polynomial m 4 is unchanged when A is viewed over a field extension of F'.

2. char(z) equals the product of invariant factors of A.

3. ma(x) | chara(z) over F[z].

4. my and char4 have the same roots, not counting multiplicities.

Assume that dimpV = n and let e = {eq,...,e,} be an order basis of V' over F. Consider the free

F[z]-module & Flz]e; on {eq,...,e,}. Then we have the projection
i=1
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m: Flz|" — V
e ——— €
The relations of e; in V' is that x - e; = T'(e;), i.e, (I —T)e; = 0. Hence we have the exact sequence

Flz]" 25 Fla]r —— v > 0

We know coker(xl —T) =V = Flx]/(a1) ®--- @ Flz]/(am), so kerm = F[z|" " ® (a1) ® - - ® (a;,,). Let
A = (a;;) = [T)e and put v; = (2l —T)e; = x - e; — Y, a;;e;. Then vy, ..., v, generates ker(xl —T') and
=1

T —an —a12 s —Qain
—Qaz1 T — QA2 - —Aap
(Ul Vg e Un) = (el €y - €n> . '
—Qp1 —Ap2 e T — Qpp
By Theorem 4.2.3 there are P,Q € GL,(F[x]) such that
I @)
a1
Pzl -T)Q =A=
O
Qm
Thus
(v1 Uy -+ vn) = (61 ey - en) PtAQ™!
Let

<f1 fg €n>:<€1 €y - 6n>P71

Now identifying e; with w(e;) € V gives & = -+ =&, = 0. Put f; := &,y for j =1,...,m. From the
matrix A we see

V=F|fi®Fla]fo® - @ Fla]fm

as F[r]-modules, with Flz]f; = F[z]/(a;). Now put B = {f;,Tf;,T?fi,..., T9% 1f}  Then § :=
b1 U U By, is the desired basis for V' over F' such that
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Jordan canonical forms

Let the notation be as in the previous subsection. Assume that invariant factors aq, ..., a,, split completely
in F, i.e, I contains all eigenvalues of T'. Then each elementary divisor has the form (z — \)*. By Theorem
4.2.6, V is a direct sum of finitely many cyclic F'[z]-modules of the form F[z]/(x — \)*, where X € F is an
eigenvalue of T

Consider the elements (Z — A\)*7!,..., 7 — A\, 1 in the quotient F[z]/(z — A\)¥; this is an F-basis for

Fx]/(z—\)*. With respect to this basis, the linear transformation [z + x-v] has the matrix representation

Al

A
e My(F)

Such matrix is called a Jordan block corresponding to .
Definition.

1. A matrix is in Jordan (canonical) form if it’s a block diagonal matrix with Jordan blocks along

its diagonal.

2. A Jordan (canonical) form of the linear transformation 7" is a matrix representation of 7" that is

in Jordan form.
e “The” Jordan form is unique up to permutation of the blocks along its diagonal by Theorem 4.2.7.
Theorem 4.2.12.
1. There’s an F-basis for V' such that T is in Jordan form.

2. The Jordan form of T is unique up to a permutation of the Jordan blocks along its diagonal.

Corollary 4.2.12.1. Let A € M,(F) and F contain all eigenvalues of A. Then A is similar to a matrix J
in Jordan form, i.e, J = P~'AP for some P € GL,(F).

Corollary 4.2.12.2. Let A€ M, (F) and F contain all eigenvalues of A.
1. A is similar to a diagonal matrix D, then D is its Jordan form.

2. Two diagonal matrices are similar if and only if their diagonal entries are the same up to a permu-

tation.
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3. A is diagonalizable if and only if its minimal polynomial m 4 is separable over F'.

We now convert a rational form to a Jordan form. For each invariant factor a(z) of Vp, write a(x) =

(x — M) -+ (x — Ag)®. By Chinese Remainder theorem, we have an isomorphism
Flal/(a(r)) —— Flz]/(z = M)" @ - @ Flz]/(x = A)*

f > (f mod (x — A\p)™)g

Let f be the F|x]-generator of the cyclic module F[x]/(a(z)). Then the elements

a(x) a(x) a(x)
(l’—Al)alf’ (x_ )\2)02f7 ] ("L‘ . )\S)asf
are F'[z]-generators of cyclic modules F[z]/(x — \)*, Flz]/(x — X2)*?, ..., Flz]/(x — X\s)*, respectively.
a(x)
Put g; = — ) __ £ Then
(= Aj)

(T - )\j[)ajilgja R (T - )\jl)gj7 gj

form an F-basis for F[z]/(z — A;)®, so that the restriction of 7" is in Jordan form with this basis.
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4.3 Linear representations of finite groups

Definition. Let G be a group, F' a field and V' an F-vector space. A (linear) representation (p,V’) of
G on V is a group homomorphism p : G — GL(V).

o dimp V is called the degree of p.

o pis faithful if p is injective.

o If W <€ V is an F-subspace such that for all ¢ € W we have p(g)W < W, then we say W is a
G-invariant /stable subspace of V| and (p|w, W) is a subrepresentation of (p, V).

o If an F-basis for V is chosen, we may realize p as a group homomorphism p : G — GL, (F).
Example 4.3.1.

1. If V = F and p(g) := idy for all g € G, we say p is the trivial representation.

2. Define p(h) : FG — FG by p(h)( X cgg9) = >, c4(hg) for all h € G. Then p : G — GL(FG) is a
geG geG
representation of G, called the left regular representation. Here F'G is an F-algebra, called a

group algebra.

3. Let V := @ Fv; and G < S,,. Define p(0)(v;) := vo(;). Then p : G — GL(V) is called a permutation
i=1
representation of ¢

4. G=Dg={o,7 |0t =712=1, 7077 = 07!). Define

o o -1y (1 oY
O T >
P 10/ \o -1

One can check p is an representation of GG. In general, for G = Ds,, the group homomorphism

2T o1\ ¢

ey cos — —sin— 1 0 i
proi— | b o | g 4
sin —  cos —
n n
is a faithful representation of Ds,.

5. For G = Qg = {+1, £i, +j, £k}, the map

is a representation of Q.
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If p: G — GL(V) is a representation of G, then V becomes an FG-module, on which F'G acts by

(D cgg)v == Y, cyp(g)v € V. Conversely, if V' is an F'G-module, then we may define p : G — GL(V) by
geG geG
p(g)v := gv. Thus, we obtain a bijection

{representations of G over F'} ———— {F'G-modules}

Moreover, subrepresentations of a given representation correspond to F'G-submodules of its corresponding
FG-module. Via this connection, we say an F'G-module is a trivial /regular /permutation F'G-module

if the corresponding representation is.
Example 4.3.2.

1. f #G < 0, {c ] g|ce F} is an FG-submodule of FG. In fact, this is a trivial FG-module.
geG

2. The augmentation ideal { Y] c,g | ] ¢, = 0 € F'} is an F'G-submodule of F'G.

geG geG

3. The group algebra F'G, as F'G-modules, corresponds to the left regular representation of G.

Definition. Let (p, V), (p, W) be two representations of G. We say p and ¢ are isomorphic/similar/
equivalent if there exists an F-vector space isomorphism 7" : V' — W such that ¢(g)(Tv) = T'(p(g)v) for

all g e G, v eV, ie, the diagram commutes for all g € G:
V—1— W
p(g) ©(9)
V—/)/—W

Equivalently, p, ¢ are isomorphic if V =~ W as FG-modules, i.e, there exists an F'G-module isomorphism
T:V —>W.

e A homomorphism S : V' — W is said to intertwine p, ¢ if p(g)(Tv) = T(p(g)v) forall ge G, ve V,

or equivalently, if it’s also an F'G-module homomorphism.
Definition. Let R be a ring and M a nonzero R-module.
1. M is simple/irreducible if M has no proper nontrivial submodule.

2. M is indecomposible if M cannot be written as a direct sum of some proper nontrivial submodule
of M. Otherwise, it’s decomposible.

3. M is semisimple/completely reducible if it’s a direct sum of irreducible submodules of M.
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o We usually use the term "irreducible” when discussing F'G-modules. In general, people tend to use

"simple”.
e An irreducible module is indecomposible and completely reducible.

« We say a representation is irreducible/indecomposible/decomposible/completely reducible

if the corresponding F'G-module is.

1 k
Example 4.3.3. G = Z/pZ, F =F,. Let p: G — GLy(F) defined by p(k) = (0 1). Then p is reducible
but indecomposible, and not completely reducible.

Theorem 4.3.4 (Maschke’s). Let #G < oo, Char F' { #G and V be an FG-module. If U is an F'G-module,

then U is a direct summand of V.

Proof. We construct a m € Hompg(V,V) such that Imm = U and 7> = 7. Then by Lemma 4.1.28,
V =U @ kerm as FG-modules.
Let mg € Homp(V,U) be the projection. Define 7 : V — U by

7(v) = #ng mo(gv)

geG

Then
e ForveV, n(v) e U since Immy = U and U is an F'G-submodule.

e For ¢ €@,
——Zg o(d'gv) #ngh tmo(hw) = g'm(v)

geG heG
That is, 7 € Hompg(V, V)

e ForueU,
1
Zg mo(gu) #GZgl.gu:u

gEG gelG

This shows 7|y = idy, and thus 7% = 7.

]

Corollary 4.3.4.1. If #G < o and Char F't #G, then any finite dimensional F'G-module/representation

is semisimple.

Below we assume all groups are finite and all F'G-modules are finite dimensional.
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Theorem 4.3.5 (Schur’s lemma). Let V, W be irreducible F'G-modules.
1. If ¢ € Hompg(V, W), then either ¢ = 0 or ¢ is an isomorphism.
2. If F is algebraically closed and ¢ € Endpg(V, V), then there exists a € F such that ¢ = a - idy.

Corollary 4.3.5.1. Let V, W be two non-isomorphic irreducible F'G-submodules of F'G. Then vw = 0 for
allve V. weW.

Proof. For w € W, the map [v — vw] is an F'G-modules homomorphism from V' to W. By Schur’s lemma,

it’s a zero map, since V, W are non-isomorphic by assumption. O

Theorem 4.3.6. Assume Char F't #G. Then any irreducible F'G-module is isomorphic to some irreducible
submodule of F'G.

Proof. Let V be an irreducible FG-module and let v # 0 in V. Define ¢ : FG — V by ¢(x) = zv. Clearly,
Im ¢ # 0, and by irreducibility it forces Im¢ = V. Hence V =~ FG/ker ¢. Since F'G = ker ¢ ® U for some
U < FG, we conclude U = V. O

Proposition 4.3.7. Assume F' is algebraically closed. Given two irreducible F'G-modules V, W, we have

1 ,iftVeW

dimp Hompg(V, W) = { 0 ,if VW

Proof. By Schur’s lemma, dimp Hompg(V, W) = 0 when V 2 W. If ¢ : V — W is an isomorphism and
Y : V. — W is another, then ¢ o ¢ € Autpg(V), and by Schur’s lemma again, v~ o ¢ = a - idy, i.e,
¢ = ay for some a € F. Hence dimp Hompg(V,W) =1 when V = . O

Proposition 4.3.8. Assume V =U; @ --- @ U, is a decomposition of V' into a direct sum of irreducible
FG-modules. If U is an irreducible F'G-submodules of V', then U = U; for some .

Proof. The composition U < V —» U; is nonzero for some ¢, and the irreducibility shows it’s an isomor-

phism. Il

Corollary 4.3.8.1. Assume F is algebraically closed and suppose V =U; @ --- @ U, is a decomposition
of V into a direct sum of irreducible F'G-modules. Let U be an irreducible FG-module. Then

#{U, | Uz = U} = dlIIlF HOIHFG«VV, U) = dlmF Hompg(U, V)

Proof. This follows from Proposition 4.3.7, 4.3.8 and the universal property of finite direct sum of modules.
O
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Corollary 4.3.8.2. If Char F' { #G and F is algebraically closed, then the number of irreducible F'G-

modules, up to isomorphisms, is finite.
Proof. This follows from Proposition 4.3.6, 4.3.8 and 4.3.7. [

Corollary 4.3.8.3. Assume Char F' t #G and F is algebraically closed. Let FG = Uy @ --- @ U, be a
decomposition of V' into a direct sum of irreducible FG-modules, and {Vi,...,V,} is a complete set of
irreducible F'G-modules. Then

#{U; | U; = V;} = dimp V

k
In particular, #G = Y, (dimp V;)%

j=1
Proof. By Corollary above, #{U; | U; = V;} = dimp Hompe(FG,V;) = dimp V;. The second assertion
follows by observing #G = dimp FG = ) dimp U;. O

i=1

4.3.1 Characters

Definition. Let p : G — GL(V) be a representation. The character y : G — F is defined by x(g) :=
tr(p(g))-

« We call x is trivial /regular/irreducible if its representation is.
o We say y is linear if its representation is one dimensional.

e The character y of an F'G-module V is defined by

X(Q ] ce9) == D cotr(p(g))

geG geG

where p is the associated representation on V.
Example 4.3.9.

1. For the trivial character y, we have x(g) =1 for all g € G.

#G itg=1

2. For the regular character x;¢;, we have x,e4(g) = ]
0 ,ifg#1

3. Let G < S,, and p : G — GL(V) be the permutation representation. Then its character x satisfies
x(o) =fix(o) :=#{ie {1,...,n} | o(i) = i}.
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4. Let G,V be as above. Say V = @ Fv;. V has a submodule U = FG(vy + - -+ + v,), which is the

=1
trivial F'G-module. By Maschke’s theorem, V = W @ U for some submodule W. Then the character
of Wis [0 — fix(o) — 1].

5. Let G=Dg={(o,7|ot=7*=1, 707! =071) and

27T . 27'[' : 7
i COS ? — Sin 7 (1 0 )
poT — 2 2
sin il cos il 0 -1
n n
2 ifg=1
Then its character x satisfies x(¢) =< -2 ,if g =02
0 ,else
1 ,ifoe A,

) is a character.
-1 ,ifo¢ A,

6. Let G < 5,. Thenx:aH{
Proposition 4.3.10. Let V,V;, V5 be FFG-modules and Y, x1, x2 be their characters.

L Vi=Vy=x1=Xxe

2. g1, g2 € G are conjugates = x(g1) = x(92)-

3. V=VielV,=x=x1+Xx2
Proof. For 1,2, one note that tr(AB) = tr(BA) for A, B € M,(F). O
Definition. We say f : G — F is a class function if f(g) = f(hgh™!) for each g,h € G.

« For g € G, we denote by g% the conjugacy class of ¢ in G.

Below we assume F' = C, for the sake of algebraically closedness, characteristic 0 and the existence of

inner product.
Proposition 4.3.11. Let p : G — GL(V) be a representation and y its character.
1. x(1) =dimc V
2. ordg =m e N = x(g) is a sum of some m-th roots of unity.
3. x(97") = x(9)-
4. g7 e g =x(g) e R.
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Proof.

2. Note that p(g)™ = I implies the minimal polynomial of p(g) divides 2™ — 1, which is separable. This

means p(g) is diagonalizable, and all eigenvalues are distinct m-th roots of unity.

3. Let £ be a basis for V such that

[p(9)]s =

where w = e2™/™ and k; € Z. Then

[p(g~)s = = [p(9)]s

so that x(97") = x(9)-
O

Corollary 4.3.11.1. Let G be a finite group. Then there are finitely many irreducible characters of G
over C, and they satisfy > x(1)? = #G.

X: irr.
Proof. This is a reformulation of Corollary 4.3.8.3. [
Proposition 4.3.12. Let p : G — GL(V) be a representation of G' and x its character.
1. |x(g9)] < x(1), and the equality holds < p(g) = a - idy for some a € C.
2. kerp={geG|x(g) =x(1)}
Proof.

1. Assume g € G has order m and put w = ¢*/™. Then p(g) has eigenvalue w®,...,w for some

0<ap<m-—1,s0
X(9)] = [w™ 4 -+ < ™[+ F ™ = n = Xx(1)

The equality holds iff w* = \;w® for some A; > 0. Since each of them has norm 1, A\; = 1 for each

i, and thus p(g) = w™ -idy.

2. If x(g9) = x(1), by 1 we obtain p(g) = idy, and thus g € ker p.

Definition. We define the kernel of a character to be the kernel of its representation.
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4.3.2 Orthogonality relations

Definition. Let 0, : G — C be two functions. Define their inner product to be

0.0)= 5 3, 00)00)

geG
o If x1, x2 are characters of (G, then

(X1, X2) = #—1G Y xa@xa(g ) = # > xalg xalg) = O xa)

9eG geG
so {x1, x2) € R.

Definition. Let V' be an FG-module. The composition factor of U is an irreducible F'G-module V'

that is isomorphic to some submodule of V.

Proposition 4.3.13. Let CG = Vi@®V; and Vi, V5 have no common composition factor. Write 15 = e;+es
with e; € V;, i = 1,2. Then

1. ev; = &;v4, 1, = 1,2. In particular, e = ¢;, i.e, e; is idempotent.

2. Let x; be the character of V;. We have

1
‘=75 dixalg g

geG
Proof.
1. This follows from Corollary 4.3.5.1.

2. Put e; = )] ¢y9 and let x,¢, be the regular character of G. For h € G, consider the left translation
geG

¢ : v — h7 ey on CG. Then

tr(¢h) = Xreg(z Cgh_lg) = Cp - #G

geG
Here recall the corresponding representation of CG is the regular representation.

On the other hand, tr(¢y) = tr(gnlv,) + tr(dnlvy)-

o For all v; € Vi, hteyvy = htoy, so tr(dnlvy) = xa(h7Y).

e For all vy € Vo, htejvy = 0, so tr(onlyv,) = 0.
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Thus ¢, - #G = x1(h7Y), ie, ¢ = h~') for each h € G.

1
%Xl(
O]

Theorem 4.3.14 (Orthogonality relations). Let V; and V5 be two irreducible CG-modules and 1, x2 be
1 ,ifVi=V,

their characters, respectively. Then , =
p Y X1 X2) 0 L if 1y £V,

Proof. WLOG, we assume V;, Vo € CG. (Theorem 4.3.6.) Let CG = U; @ - - - @ Uy, be a decomposition of

Cd into a direct sum of irreducible submodules. Let

@ U @U

J:U;=Vp J:U;=

and let ¢y, @9 be the characters of V;, V3, respectively; note that ¢; = (dim V)Xz, =1,2.

Write 15 = e; + ey with e; € W;, i = 1,2. By Proposition 4.3.13, e; = #G > ¢1(g7')g. Then
geG

(dim V1)*(xa, x1) = {¢1, 1) = Z¢1 Nor(g) = ¢i(er)

geG
On the other hand, e;w; = w; for all wy; € W;. Thus
o1(e1) = tr(Wy 3wy — eywy) = dim Wy = (dim 14)?
Hence {x1, x1) = 1. Similarly,
0 = tr(W2 3wy = eywy) = ¢a(er) = dim Vi dim Va{x1, x2)
and thus {(x1, x2) = 0. ]

1 if o i

Example 4.3.15. G = S3. Let x; be the trivial character, ys : 0 — ’ 1 ’ %S even Since S3 has
—1 ,if ois odd

three conjugacy classes and 6 = 12 4 12 + 22 there is a 2-dimensional irreducible character, denoted by ys.

By orthogonality relations, we may complete the following table

e (12) (123)
g |1 3
x1 |1
Yo |1 —1 1
s |2 0 ~1




e x3(e) =2 since y3 has dimension 2.
« x1(e)x1((12)) + xa(e)x2((12)) + xs(e)xs((12)) = 0, so x3((12)) = 0.
« xa(e)x1((123)) + xa(e)x2((123))) + xs(e)xs((123))) =0, so x3((123))) = —1.

1
(X3, X3) = [1 x 22 4+ 3 x 02 + 2 x (—1)%] = 1, which demonstrates the irreducibility of xs3.

Corollary 4.3.14.1. Let {V4,...,V,} be a complete set of irreducible CG-modules up to isomorphisms

and x1,..., X, be their characters, respectively.
1. Let V be a CG-module and V = é%di be its decomposition into irreducible CG-modules. Let
0 be its characters. Then 0 = ﬁ]l<xi,9>xi, ie, di = (x;,0) for each i, and (0,6) = il d?. If
0 =eix1+ -+ enxn, then (6,0 = ,ildiei'
2. A character x is irreducible if and only if (x, x) = 1.
3. X1,---,Xn are C-linearly independent.
Corollary 4.3.14.2. Let V; and V5 be two CG-modules and x1, x2 be their characters, respectively.
1. dim¢ Homeg(Vi, V) = (x1, X2)-
2. VizVoe x1 =X

Proposition 4.3.16. For each conjugacy class C' of G, define e¢ = >} g. Then {ec}c form C-basis of
geC
Z(CGQ), the center of CG.

Proof.

x:chgeZ(CG)©VheG[]hchgh ! chg
=VYhg49eGlg =hgh™ = ¢y = C]]
< ¢y = ¢, if g, " are conjugates.

< x € span{ec}

Theorem 4.3.17. #{irreducible characters of CG} = #{conjugacy classes of G'}.
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Proof. Let x1,...,xn be distinct irreducible characters of G and C4, ..., ), be distinct conjugacy classes

of G. We must show m = n.

1° Since the x; are linearly independent class functions, they are linearly independent elements in
Hom¢(Z(CG),C), and hence n < m.

2° Let Vi,...,V, be CG-modules corresponding to x1i, ..., Xn, respectively. Write CG =U; @ - -- @ Uy
be a decomposition of CG into a direct sum of irreducible submodules and put W; = P, v,~v, Uj for
each i. Write e = e; + - -+ + e, with e; € W; for each 1.

Claim. Z(CG) < span{ey,...,e,} (= m < n)

Since the V; are irreducible, for all z € Z(CG), there exists a; € C such that for all v; € V;, we have
zv; = a;v;. In fact, for all w; € Wy, we have zw; = a;w; (explicitly, a; = x;(z)/xi(e)). Consequently

r=ze=zx(e;+ - +e,) =are;+ -+ aney,

O

Corollary 4.3.17.1. Let G be a finite group. Then G is abelian if and only if every complex irreducible

character of G is linear.

Character tables

Definition. Let xi,...,x, be the irreducible characters of G and g¢i,..., g, be the representatives of

conjugacy classes of G. The n x n matrix (x;(g;)); is called a character table of G.
o Non-isomorphic groups may have the same character table, as shown in the following example.

Example 4.3.18.

' =o71): Let x; be the trivial character. Let

(i) Ds={o, 7|0t =7>=1, 107"
Hy, ={o), H, = <02, T, Hs; = <a2, oT)

1 ,lngHl

. Also, define
—1 , else

these are the subgroups of index 2. For i = 1,2, 3, define ;41 : g — {
0 -1 1 0
Lo , T —
& 10 0 -1
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e {0} {o,0%} {r,0%1} {oT,o%r}
w1l o1 1 1 1
vl 1l 1 1 1 1
Wl o1 -1 1 1
wlt 1 -1 1 1
wl2 =2 0 0 0
1x2241x2?

Since {xs, X5) = =1, x5 is irreducible.

8
(il) Qs = {£1, +i, +j, £k} : define x1,... x4 in a similar way as above and define

. 0 -1\ V=1 0
et o)7L o oy

and x5 be its character; it’s irreducible by a direct computation of its inner product. Then

{1} {1} {£i} {&j} {=k}
vi| 1 1 1 1 1
Yol 1 1 1 -1 -1
s 1 1 -1 1 -1
va] 1 1 -1 -1 1
s | 2 2 0 0 0

Theorem 4.3.19 (Orthogonality relations). Let xi,...,x» and g1,..., g, be as usual. Then

13 X90x(9e) {1 iti =

0 ,else

3

2. kgl Xe(9)xk(h) =

{ #Cq(g) ,if heg®

0 , else

Sometimes 1. is referred to as the row orthogonality relations and 2. is referred to as the column
orthogonality relations for the irreducible characters.

Proof. This is a reformulation of Theorem 4.3.14. ]

Example 4.3.20. G = S,.
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1 2 3 22 4

#g¢ 1 6 8 3 6
#Ca(g) |24 4 3 8 4
Y1 1 1 1 1 1
Yo 1 -1 1 1 -1
X3 3 1 0o -1 -1
Ya 3 -1 0 -1 1
Ys 2 0 -1 2 0

» Note ker x5 = {1,(12)(34),(13)(24),(14)(23)}, which implies that it’s a normal subgroup of Sj.

4.3.3 (Galois property of characters

Let p: G — GL(V) be a complex representation. Assume that g € G has order m. Then there’s a basis
for V' such that p(g) is diagonal with respect to this basis, and all diagonal entries are m-th roots of unity,

say

wi"

where w = €>™/™ and iy, ...,i, € NU {0}. Then x(g9) = w + --- 4+ w™. Now for j with (j,m) = 1, let
o; € Gal(Q(w)/Q) such that w — w’. Then
wh

oi(x(g)) = w4+ +uwi =t . = x(g’)

Lemma 4.3.21. For j with (j,m) =1, 0;(x(9)) = x(¢°).

Corollary 4.3.21.1. Suppose g € G has order m. If ¢ € g% for all j with (j,m) = 1, then x(g) € Z for

all characters Y.

Proof. By Lemma, we have o;(x(g)) = x(¢’) = x(g) for all j with (j,m) = 1. By Galois theory, x(g) € Q.
Since x(g) is an algebraic integer, x(g) € Z. N

Example 4.3.22. When G = §,,, the hypothesis of Corollary above is satisfied so that x(g) € Z for all

g € S, and characters .

Theorem 4.3.23. Let x be an irreducible character and V' a CG-module corresponding to y. Then
x(1) | #G.
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Proof. Let g1, ..., 9, € G be the representatives of conjugacy classes of G. For each j, define
¢j:= > geCG
99§
Recall, in fact, e; € Z(ZG) (Proposition 4.3.16), so there exists a; € C such that eju = a;v for all v e V,
and thus x(e;) = a;x(1).
Claim. a; is an algebraic integer.
Note that a; is an eigenvalue of the linear map CG 3 z — ejz. Now with respect to its standard basis

{g | g € G}, the entries of its matrix are all integers, which precisely shows that a; is an algebraic integer.

We resume our proof. Since

1=00x) = = Zn] #95x(9;)x(95)

and
x(e;) = > x(9) = #95x(95)
94§
we have 40
x(1) <~ #9; x(1)
1==Z . = &7
m ; ko) = 47 ;agx(gg)
i.e,
#G <
=), a;x(9;)
x(1) ;1 S
Since the RHS is an algebraic integer, so is the LHS; since the LHS is also a rational number, it’s an
integer, i.e, x(1) | #G. O
Example 4.3.24. G = S;.
1 2 22 23 3 4 5
#q¢ 110 15 20 20 30 24
#Cq(g) | 120 12 8 6 6 4 5
X1 1 1 1 1 1 1 1
X2 1 -1 1 -1 1 -1 1
X3 4 2 0o -1 1 0 -1
X4 4 -2 0 1 1 0 -1
X5 5 1 1 1 -1 -1 0
X6 5 -1 1 -1 -1 1
X7 6 0O -2 0 0 O 1




e x3 = fix(c) — 1. Check it’s irreducible.

The values of x5, xs, X7 are determined by orthogonality relations, Theorem 4.3.23 and Example
4.3.22.

e x4 = X2Xx3 and xg = x2X5.- These will be shown to be representations of G' by Proposition 4.3.31.

2x5(1)? + x7(1)? = 86 and x5(1), x7(1) | 120, so that x5(1) = xs(1) = 5 and x7(1) = 6.

4.3.4 Method of constructing characters
Lifts

Assume N <G and p : G/N — GL(V) is a representation. By the universal property of quotient group, p
lifts to a unique homomorphism g : G — GL(V), defined by g — p(gNN). p is a representation of G, called
the lift of p.

Proposition 4.3.25. If p is irreducible, then so is p.

Proof. Let x be the character of p. Then x is also the character of p. Since p is irreducible, we have

1= 25 3 x0T = 55 S M0N@)

geG/N geG

so that x is an irreducible character of G, i.e, p is irreducible. O
Corollary 4.3.25.1. The number of the distinct linear characters of G equals #(G/[G, G]).

Example 4.3.26. G = Ay, [G,G] = {1,(12)(34),(13)(24),(14)(23)} so that G/[G,G] = C;. Put

¢ = e2mif3,
1 (123) (132) (1 2)(34)

#q¢ 1 3

#Ca(g) | 12 3 3 4

X1 1 1 1 1

X2 1 ¢ ¢? 1

X3 1 ¢? ¢ 1
w |3 0 0 1

» The up-left 3 x 3 matrix is the character table of C3. The values of x1, x2, x3 for (12)(34) are 1 since
(12)(34) € [G,G].
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o x4 = fix(c) — 1. Check it’s irreducible.
Proposition 4.3.27. A group G is simple < ker y = 1 for all nontrivial irreducible characters y.

Proof. The only if part is clear since ker y < G. For the if part, suppose G is not simple, say N is a
nontrivial proper normal subgroup of G. Consider the quotient group G/N. Since G/N # 1, G/N has a
conjugacy class other than {1}, so G/N admits a nontrivial irreducible representation, and by Proposition
4.3.25 it lifts to a nontrivial irreducible representation of G whose kernel contains N. O

Galois conjugates

Proposition 4.3.28. Let N be a positive integer such that ¢ = 1 for all g € G. Let x be a character. For
o € Gal(Q(e?™/N)/Q), define x” : g — o(x(g)). Then x“ is also a character. Moreover, X is irreducible

whenever y is irreducible.
Proof. Let p: G — GL(V) be a complex representation of G with character x.

Method I. By Proposition 3.3.23, o extends to an automorphism ¢’ on C. Then o’ op: G — GL(V) is

a representation of G with character being x?. The moreover part holds by a direct computation.

Method II. Note that the complex irreducible characters of G are exactly the Q irreducible characters
of GG, so every complex representation is isomorphic to some @—representation. Hence we may regard p
as a Q-representation. Now extend o to an automorphism ¢’ on Q. Then ¢’ o p is a representation with
character y°. [

Proposition 4.3.29. Assume g € G has order m. For j with (j,m) = 1, let o; be the element of
Gal(@(ezm/m)/(@) that maps 627Ti/m to e27rij/m'

1. The set {j € (Z/mZ)* | ¢’ € g°} is a subgroup of (Z/mZ)*.
2. Let K be the fixed field of {o; | j € A}. Then x(g) € K for all characters x of G.

3. Let B < (Z/mZ)* and L the fixed field of {0, | j € B}. If x(g) € L for all characters x of G, then
g e g¥ for all j e B.

Proof.
1. Let j,ke A, £ =kt e (Z/mZ)* and h,h € G such that ¢/ = hgh™, g* = Wgh'~1. Then
¢t =ntg"g = KR gh' T h Tt = RfR g(h'R) T e g¢
so that j¢ € A. Hence A < (Z/mZ)*.
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2. It suffices to show o;x(g) = x(g) for each j € A. Recall we have o;x(g) = x(¢), and since characters

are class functions and j € A, we have x(¢’) = x(g), as wanted.
3. We prove a stronger result:

Lemma 4.3.30. g, ¢’ € G are conjugates if and only if x(g) = x(¢’) for all characters x of G.

Proof. The only if part holds since each character is a class function. For the if part, recall the

orthogonality relations

IO :{ #Colg) it g e g

0 , else

To show g, ¢" are conjugates, it suffices to show > x(g)x(¢’) # 0. This holds since > x(g)x(¢') =
X

> x(g)* > 0. '

]

Since x(g9) € L, x(g) = ojx(9) = x(¢’) for all j € B and yx. Hence, it follows from Lemma that

¢’ € g%, as desired.

Tensor products

Proposition 4.3.31. Let V, W be two CG-module. Let G act on V®&c W by g(v ®w) := gv ® gw. Then
V ®c W is a CG-module, and its character is the product of those of V and W.

Consider V®c V. We have an involution 7' € Endc(V ®c V) (i.e, T? = id) given by T'(vi ®uy) = v2®uy.
Since T? = id, V ®c V is the direct sum of 2 eigenspaces corresponding to eigenvalues 1 and —1. One
corresponding to 1 is called the symmetric square S(V ®c V') of V and to —1 is called the alternating
square A(V ®c V) of V.

Proposition 4.3.32. S(V® V) and A(V ® V) are CG-modules. Let x, xs, xa be the characters of V,
S(VRV), A(V®YV), respectively. Then

xs(g) = %(X(Q)Q +x(g%))
xalg) = %(X(Q)Q —x(g%))
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Proof. That they’re CG-modules is clear. For the rest part, let ¢ € G and pick a basis {vy,...,v,} for V
so that the matrix of [v — gv] is diag(A1, ..., A,). Note that {v; ® v; +v; ®v; | 1 < i < j < n} is a basis
for S(V®V) and {v; ®v; —v; ®u; | 1 <i < j < n}is that for A(V®V). We have

g(UZ‘ @Uj + (% ®Uz) = )\1)\](?}@ @Uj + (% ®UZ)

g(UZ‘ ®Uj —Vj ®UZ) = )\Z>\J(UZ ®Uj —Vj ®Uz)

and hence

xs(g) = Z Aij = Z A+ Z Aij

1<i<j<n 1<isn 1<i<j<sn
1
_ 2 2 2
RN
1<isn A i

= ST = 2 = S (x(9) + x(e")

o)=Y A= 50— T = S0l — x(6)

I<i<j<sn

Example 4.3.33. G = S;.

1 2 3 22 4 23 5 | Inner product
#9° 1 10 20 15 30 20 24
#Ca(9) 120 12 6 8 4 6 5
g€ 1 1 3 1 22 3 5
X1 1 1 1 1 1 1 1
X2 1 -1 1 1 -1 -1 1 1
x3=fix(g) — 1 4 2 1 0 0 -1 -1 1
X4 = X2X3 4 =2 1 0 0 1 -1 1
X3, 10 4 1 2 0 1 0 3
X3,4 6 0o 0 -2 0 O 1 1
X3,5 — X1 — X3 5! 1 -1 1 -1 1 0 1
xe(xss —x1—x3)| 5 -1 -1 1 1 -1 0 1

e X35 and x3 4 are the symmetric square and the alternating square induces by xs.

o {x3,5:x1) =1 =1{x3,8,X3) 50 X3, — X1 — X3 is irreducible.
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Remark 4.3.34. Note that
x(5) =x(1) (mod 5)
x(3) =x(1)  (mod 3)
X(2),x(4) =x(1)  (mod 2)

In general, when the order of g € GG is a prime power p¥, if x(g) € Z, we must have x(g) = x(1) (mod p).

Proof. Pick a basis such that the matrix of p(g) is diagonal, say

where w = €2™/?" i, are integers. Then y(g) — x(1) = J(w’ — 1) € (1 — w)Z[w]. By algebraic number
theory, (1 —w)Z|w] is a prime ideal of Z[w| and (1 — w)Z[w| N Z = pZ, so x(g) = x(1) (mod p). O

Restriction

If H< G and p: G — GL(V) is a representation of G, then p|g : H — GL(V) is a representation of H.
If y is the character of p, we denote by Res% x the character of p|g

Proposition 4.3.35. Let H be a subgroup of GG. Let x be an irreducible character of G and /1, ..., ¥
be irreducible characters of H. Decompose Res% y as Res$ x = dyi)y + - - - + dytpy. Then

k

Zd?é[G:H]

=1

and the equality holds if and only if x(¢g) =0 for all g ¢ H.

Proof.
=06 = # & 2 x(@x(e) = #L D x(R)x(h) + # > x(9)x(9)
geG heH geG\H
Z t2G XX
gEG\H
1 k
d2

27
Since x(g)x(g) > 0 for each g € G\H, we may easily see the equality holds if and only if x(g) = 0 for each
ge G\H. ]
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Example 4.3.36. G = S5, H = As.

1 2 3 22 4 23 b
¢ 11 10 20 15 30 20 24 R 2
?’g 120 12 6 8 4 6 #9° Lo 12 12
#Calg) — #Ca(g) | 60 3 4 5 5
X 11 ResGyi| 1 1 1 1
A2 . _2 R _0 _1 ~ ResGxs|4 1 0 -1 -1
s T ResGxs | 5 —1 1 0 0
X« |4 =2 1 0 o0 1 -1 L+vE 1+
X5 5 1 -1 1 -1 1 0 (G0 3 0 -1 5 5
1 — 1—+/5 1 )
X 5 -1 -1 1 1 -1 0 b 13 0 1 V6 14456
X7 6 0 0 -2 0 0 1 2 2
e For x1,..., s, there are odd permutations on which characters do not vanish. By Proposition above,
(Res% s, Res xomw < [G: H] = 2, i.e, (Res% s, Res% xi>m = 1 so that the Res$ y; are irreducible
fori=1,...,6.

o For x7, (Res$ x7, ResS x7ou = 2 and (Res% x7, Res% xdw =0 fori =1,...,6.
o Y1(1)2+1y(1)2 =18 =9+ 9 so that ¥1(1) = (1) = 3.

e By column orthogonality relations we have

¥1(22) +¢5(22) =2
P1(22) +¢2(22) = -2
s0 11(22) = ¢»(22) = —1.

e By column orthogonality relations again we have

v3) +u3(3) =0
P1(3) +2(3) =0

SO wl(?)) = w2<3) = 0.
e The down-right block can be filled in the same manner as above.

o The down-right block gives an example of the Galois property. Since (12345) is conjugate to
(15432) = (12345)"! in H, by Proposition 4.3.29, the value of (12345) must lie in the fixed field
of (o : &2/ s 7275 ie Q(1/5).
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o Res% x7 =1 + s,

o By Proposition 4.3.27, A5 is simple.

Proposition 4.3.37. Let N be a normal subgroup of G. Let V' be an irreducible CG-module. Assume
that U is an irreducible CN-submodule of Res§ V. Then

1. for all g € G, the set gU is an irreducible CN-submodule of V.
2. V is a direct sum of some gU (as CN-modules), and
3. if g1U and goU are isomorphic CN-modules, then gg,U and ggoU are isomorphic C/N-modules.

In particular, every irreducible C/N-submodule of V' has the same degree as U and every CN-composition

factor has the same multiplicity.
Proof.

1. Let n € N; since N < G, ng = gn’ for some n € N. For each u € U, ngu = gn'u € gU since U is a
CN-module. gU is clearly a C-vector subspace of V', so gU is thus a CN-submodule of V. Now if
W is a CN-submodule of gU, then ¢g7'U is a CN-submodule of U. Since U is irreducible, g7*W = 0
or g 'W = U, and thus W = 0 or W = gU; this shows gU is irreducible.

2. We have V' = > gU. The results follows from the general fact below.
geG

Lemma 4.3.38. Let {N;}ic; be a family of simple modules. If M = >’ N;, then M = @ N; for some
el el’

subset I’ < I.

3. Let ¢ : ¢1U — ¢goU be a CN-module isomorphism. We show gog~! : gq1U — ggoU is a CN-module
homomorphism with inverse g¢p~'g~!, and hence an isomorphism. It’s clear a C-linear transformation,

so it remains to show it’s an N-homomorphism. Let n € N and u € U. Then

(909~ ") (nggru) = gp(g 'nggru) = g9~ 'ngd(g1u) = n(gpg™")(gg1u)

showing that g¢g—! is an N-homomorphism. That g¢~'g~! and g¢g~—! are mutually inverses is clear,

and the proof is completed.

Example 4.3.39. In the above example, since A5 < S5, we see Res% x7 = ¢y + 15 and 11 (1) = 15(1).
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Induction

Definition. Let H < G and U a FH-module. The FG-module F'G Qrg U is called the induced FG-
module of U, denoted by Ind$ U. If y is the character of U, denote by Ind% y the character of Ind% U.

o Let g1,..., 9, be representatives of left cosets of H in G. Then
FGR®rrU=(¢:1QU)® - ®(gm®U)
as F-vector spaces.
o For each 7, there exists a unique i’ and h; € J such that gg; = gih;. Then for all u € U,
99 @ u = gih; ®u = gy @ hju
Let uy,...,u, be a basis of U. Then

{g1u1, .., G1ln, GoUL, . - ., GolUin, - .+, G lin }
is a basis for FFG ®py U. Then the matrix of g with respect to this basis if
An o Am

Aml Amm
where A;; € M, (F') such that A;; = 0;;H; and H; is the matrix of h; with respect to {uy,...,u,}.
Thus

(Indfx)(g) = 3, trHi= ), x(ha) = 3 xX(97'90) = ), x(9'99)

S, —, -, 1
1:0=1 IRES) 1:9=1 irg; 'ggi€H

Proposition 4.3.40.
_ 1 _
(Indx)(9) = >, x(6'99) =% .  x@'gx)

N #H -
irg; "gg9i€H zeG:x—lgreH

Example 4.3.41. H =S, G =S5, g; = (12345)".

1 2 3 22 4
vi|lt 1 1 1 1
Yo |1 -1 1 1 -1
w3 1 0 -1 -1
xa/3 -1 0 -1 1
vs|2 0 -1 2 0




o For 2, say (12), we need to count how many g; are there such that (g;(1) g;(2)) = g:(12)g; ' € Si,
i.e, gi(1),9:(2) # 5. We have

#{geSs|g(12)g ' e S =(4x3) x3x2x1=72

so that .
(Indfx)((12)) = 57 < 72 x x((12)) = 3x((12))
e Similarly,
(ma w)((123) = X2 g 51123y € 53)
:Wx4x3x2x2x1:2x((123))

e In general, for g € S,,_1, we have

#{oeS,|ogote S, 1} B
#Sn—l

where fix(g) = #{i € {1,...,n} | gt = i}. Note that g € S,\S,_1; makes no sense for the RHS, but

fix(¢g) = 0 in this situation. Then

(Indg"  x)(9) = x(9) x(9)fix(g)

3 22 4 23 5
Ind% x1 2 1 1 0 0
mdSy, |5 -3 2 1 -1 0 0
Indys |15 3 0 -1 -1 0 0
IdSxs|15 =3 0 -1 1 0 0
Id%ys |10 0 =2 2 0 0 0

One can check they’re linear sums of irreducible characters of S5 with non-negative integral coeffi-

cients.

Example 4.3.42. G = PSLy(F;) = SLy(IF7) /center = SLy(F7)/{2-th roots of unity}

4.3.5 An application to group theory
Theorem 4.3.43 (Burnside’s). Let p, ¢ be two primes. Then any group of order p?¢®, a,b = 0 is solvable.

Proof.
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1. Reduction : It suffices to show that the only simple group of order p?¢® are cyclic.

2. Let G be a simple group of order p®¢®. Then G has either a nontrivial center or has a conjugacy

class of size p", 1 < r < a.
3. If G has a nontrivial center, then G is simple abelian, i.e, G is cyclic.

4. If G has a conjugacy class of size p", show that there exists a nontrivial irreducible character y

such that |x(g)| = x(1) for some nonidentity element g € G.

5. Let p be a representation with character y. Since G is simple, p is injective. Also, by Proposition

4.3.12, |x(g)| = x(1) implies p(g) is a scalar matrix, i.e, p(g) € Z(Imp), and thus g € Z(G). So

Z(G) is nontrivial center, reducing to 3.

1. Recall if N QG is a normal subgroup, then G is solvable if and only if both G/N and N are solvable.

2. It b = 0, then G is a p-group, so by class equation it must have a nontrivial center. If b # 0, let
Q € Syl (G) and g € Z(Q)\{1}. We have Cc(g) 2 Q, so

#G
#q“ = = =pi*
#Cal9)  p*¢°
for some z. If = a, i.e, Cs(g) = G, then g € Z(G). If x < a, then good!

3. Let x1,...,Xxn be the irreducible characters of GG, with x; being the trivial character. Let g € G be

in the conjugacy class of size p” mentioned. By column orthogonality,
1+ > xi(Dx(g) =0
i=1

so there exists x; such that p # x;,(1) and x;(g) # 0 (if not, then 1 + p(algebraic integers) = 0,
a contradiction.) Since p { x;(1), we have ged(#¢%, x;(1)) = 1, i.e, a#£g® + bx;(1) = 1 for some
a,be Z. Then

a#gaxj(g) by (g) = X;(9)

Xo(1) xi(1)

so that XJ—% is an algebraic integer (Proposition 4.3.23) with absolute value < 1. Let m = ordg
Xi
and ¢ = 2™/™. We have Ng(¢)/0 (Xj (g)) € Q n {algebraic numbers} = Z. Since it also has absolute

Xj|(1)

value < 1, we conclude x;(g) =0 or |x;(g)] = x;(1).

O
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