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Group theory
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1.1 Group Homomorphisms
By G we always mean a group.

Definition. Let G,G1 be two groups. A function ψ : G Ñ G1 is a group homomorphism if for each
x, y P G we have ψ(xy) = ψ(x)ψ(y).

Proposition 1.1.1. Let G,G1 be groups and ψ : G Ñ G1 a homomorphism.

1. kerψ �G

2. If N �G, then N is the kernel of some homomorphism.

3. a kerψ = ψ´1(ψ(a)).

Theorem 1.1.2 (Lagrange’s). |G| ă 8 ñ @H ď G[|H|
ˇ

ˇ |G|]

Definition (Index). Let H be a subgroup of G. The index of H in G is defined to be

[G : H] := #tleft cosets of H in Gu

Corollary 1.1.2.1. |G| ă 8 ñ @g P G [|xgy|
ˇ

ˇ |G|]. In particular, ord g | |G| for all g P G.

Corollary 1.1.2.2 (Euler’s). @n P N @a P Z [(n, a) = 1 ñ aϕ(n) ” 1 (mod n)]

Corollary 1.1.2.3. If |G| = p is a prime, then G – Z/pZ.

Proposition 1.1.3. Let K ď H ď G. Then [G : H][H : K] = [G : K].

Remark 1.1.4. The converse of the Lagrange theorem is not true in general. However, we do have some
partial converse results:

1. If G is abelian and n | |G|, then there’s a subgroup of order n.

2. (Cauchy’s) If p | |G| is a prime, then there’s a subgroup of order p.

3. (Sylow’s) If |G| = pnm, where p is a prime and p ∤ m, then there’s a subgroup of order pj for
j = 1, . . . , n.

Proposition 1.1.5. @H,K ď G

[
|H||K| ă 8 ñ |HK| =

|H||K|

|H X K|

]
Proposition 1.1.6. @H,K ď G [HK ď G ô KH = HK]
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Corollary 1.1.6.1. @H,K ď G [H ď NG(K) ñ HK = KH ď G]. In particular, if H ď G and N � G,
then KH ď G.

Corollary 1.1.6.2. If N is a normal subgroup of a finite group G with (|N |, [G : N ]) = 1, then N is the
unique normal subgroup of order |N |.

Theorem 1.1.7 (Isomorphism theorems). Let G1 be a group and ψ : G Ñ G1 a group homomorphism.

1. G/ kerψ – Imψ

2. @A,B ď G

[
A ď NG(B) ñ

AB

B
–

A

A X B

]

3. @H,K �B

[
H ď K ñ

G/H

K/H
–
G

K

]
4. Let N � G and π : G Ñ G/N be the projection map. Then π induces a set-theoretic bijection

between tH ď G | N ď Hu and tH ď G/Nu. In particular, π restricts to a bijection between
tH �G | N ď Hu and tH �G/Nu.

Corollary 1.1.7.1 (universal property of quotient groups). Let G1 be a group and ψ : G Ñ G1 a group
homomorphism. If N � kerψ, then ψ induces a homomorphism ψ1 : G/N Ñ G1. Moreover, ψ = ψ1 ˝ π,
where π : G Ñ G/N is the projection.
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1.2 Composition Series
Definition. A group G is simple if N �G ñ N = 1 _ N = G.

Definition. A sequence of subgroup of G: 1 = N0 ď N1 ď ¨ ¨ ¨ ď Nk = G is a composition series for G
if Ni �Ni+1 and Ni+1/Ni is simple for i = 0, . . . , k ´ 1.

• We call Ni+1/Ni a composition factor of G.

Example 1.2.1. There are 7 composition series for D8.
All composition factors are C2.

D8

xr2, sy xry xr2, sry

xsy xsr2y xr2y xsry xsr3y

1

Lemma 1.2.2 (Zassenhaus’). Let H,K,H 1, K 1 be subgroups of a group G with H 1�H and K 1�K. Then

(a) (H X K 1)H 1 � (H X K)H 1 and (K X H 1)K 1 � (K X H)K 1

(b) ((H X K)H 1) / ((H X K 1)H 1) – ((K X H)K 1) / ((K X H 1)K 1) .

Proof.

1. Note that H XK 1 �H XK and K XH 1 �K XH. Pick g P (H X K)H 1 and a P (H X K 1)H 1, then
g = kh and a = bd for some k P H X K, c, h P H 1 and b P H X K 1. Then

gag´1 = khbch´1k´1 = kbh1ch
´1k´1 = b1

(
kh1ch

´1k´1
)

P (H X K 1)H 1

for some h1 P H 1 and b1 P H X K 1 by the normality. Hence (H X K 1)H 1 � (H X K)H 1. Similarly,
(K X H 1)K 1 � (K X H)K 1.

2. By the second isomorphism theorem, we have

(H X K)H 1

(H X K 1)H 1
–

H X K

(H X K) X (H X K 1)H 1

and
(H X K)K 1

(H 1 X K)K 1
–

H X K

(H X K) X (H 1 X K)K 1

Note that (H X K) X (H X K 1)H 1 = (H X K 1) (H 1 X K) = (H X K) X (H 1 X K)K 1, so the result
ensues.
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Theorem 1.2.3 (Jordan-Hölder). Let G be a nontrivial finite group. Then

1. G has a composition series.

2. Composition factors are unique in the sense that if

1 = H0 �H1 � ¨ ¨ ¨ �Hm = G and 1 = K0 �K1 � ¨ ¨ ¨ �Kn = G

are two composition series, then k = m and tMi+1/Miu = tNi+1/Niu up to isomorphisms as multisets.

Proof. 1. This follows from the induction on n = |G|.

2. Let
1 = H0 �H1 � ¨ ¨ ¨ �Hm = G and 1 = K0 �K1 � ¨ ¨ ¨ �Kn = G

be two composition series. Define Hij = (Hi X Kj)Hi´1 and Kij = (Kj X Hi)Kj´1 for 0 ă i ď m

and 0 ă j ď n respectively. Then

1 Ď H10 Ď ¨ ¨ ¨ Ď H1n Ď H20 Ď ¨ ¨ ¨ Ď H2n Ď ¨ ¨ ¨ Ď Hm0 Ď ¨ ¨ ¨ Ď Hmn = G and
1 Ď K01 Ď ¨ ¨ ¨ Ď Km1 Ď K02 Ď ¨ ¨ ¨ Ď Km2 Ď ¨ ¨ ¨ Ď K0n Ď ¨ ¨ ¨ Ď Kmn = G

are two series of G. Clearly

H(i+1)0 = (Hi+1 X K0)Hi = Hi = HiHi´1 = (Hi X Kn)Hi´1 = Hin

Similarly, we have K0(j+1) = Kmj. By Zassenhaus’ lemma, we have

Hij/Hi(j´1) = ((Hi X Kj)Hi´1) / ((Hi X Kj´1)Hi´1)

– ((Kj X Hi)Kj´1) / ((Kj X Hi´1)Kj´1) = Kij/K(i´1)j.

Since
1 = H0 �H1 � ¨ ¨ ¨ �Hm = G and 1 = K0 �K1 � ¨ ¨ ¨ �Kn = G

are composition series, m = |
␣

(i, j) |Hij/Hi(j´1) ‰ 1
(

| = |
␣

(i, j) |Kij/K(i´1)j ‰ 1
(

| = n. and there
is a permutation σ P Sn such that

Hi+1/Hi = Kσ(i)+1/Kσ(i), 0 ď i ă n

since Hij/Hi(j´1) – Kij/K(i´1)j for 0 ă i, j ď n = m.
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Remark 1.2.4. In general, structure of N and G/N do not uniquely determine G. For instance,

G = D8, N = xr2y, G/N = V4 and G1 = Q8, N
1 = x´1y, G1/N 1 = V4

Definition. Let G be a group with composition series

1 = N0 � ¨ ¨ ¨ �Ns = G.

The (composition) length of G is defined by ℓ(G) := s, which is well-defined by Jordan-Hölder theorem.

Lemma 1.2.5. If A is a simple group and φ is a group homomorphism from A, then φ (A) is either trivial
or isomorphic to A.

Proposition 1.2.6. Let
1 G1 G G2 1

be a exact sequence of groups. Then G admits a composition series if and only if G1 and G2 admit
composition series. In particular, ℓ(G) = ℓ(G1) + ℓ(G2). (HW. 8)

Remark 1.2.7 (Hölder program).

1. Classify all finite simple groups.

• This was solved in 1980’s: 18 infinite families of simple groups and 26 sporadic simple groups.

2. For any 2 groups A,B, determine all groups G such that N – A and G/N – B for some normal
subgroup N �G.

• This is very difficult, as shown on the right. n # of groups of order 2n

1 1
2 2 (C4, V4)
3 5 (C3

2 , C2 ˆ C4, C8, D8, Q8)
4 14
...

...

10 49487365422

Definition. A group is solvable if all of its composition factors are abelian.

Lemma 1.2.8. Let G be finite and solvable.

1. Any subgroup H of G is solvable.
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2. Let ϕ be any homomorphism from G. Then ϕ (G) is solvable. In particular, any quotient group of
G is solvable.

Proposition 1.2.9. Let G be a finite group. (HW. 7)

1. G is solvable.

2. G has a chain of subgroups: 1 = H0 �H1 � ¨ ¨ ¨ �Hs = G such that Hi+1/Hi is cyclic, 0 ď i ă s.

3. All composition factors of G are cyclic of a prime order.

4. G has a chain of subgroups: 1 = N0 �N1 � ¨ ¨ ¨ �Nt = G such that each Ni is a normal subgroup of
G and Ni+1/Ni is abelian, 0 ď i ă t.

Remark 1.2.10. A polynomial equation over a field F is solvable in radicals if and only if its Galois group
is solvable.
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1.3 Transpositions and Alternating Groups
Proposition 1.3.1. Let G be a cyclic group.

1. Every subgroup of H is cyclic.

2. If |G| ă 8, then there’s a set-theoretic bijection between td P N | d
ˇ

ˇ |G|u and tH | H ď Gu.

3. If |G| = 8, then H – Z.

Proposition 1.3.2 (disjoint cycle decomposition). Every element in Sn can be written uniquely as a
product of disjoint cycles.

Definition. The orbit for an element in Sn is the number of disjoint cycles, 1-cycles included, in its
disjoint cycle decomposition.

Proposition 1.3.3. For each σ P Sn, σ(i1 ¨ ¨ ¨ ik)σ
´1 = (σ(i1) ¨ ¨ ¨ σ(ik)).

Corollary 1.3.3.1. Conjugation by an element in Sn sends a permutation to another permuation of the
same cycle type.

Definition. σ P Sn is a transposition if it’s a 2-cycle.

Proposition 1.3.4. Every element of Sn can be written as a product of transpositions.

Proposition 1.3.5. No permutation in Sn can be written both as a product of an even # of transposition
and an odd # of transposition.

Proof.

Claim. If σ P Sn and τ is a transposition, then #torbits for τσu = #torbits for σu ˘ 1

Let τ = (i j). We discuss the following two cases:

1° i, j lie in 2 different orbits for σ. Let σ = (i a1 ¨ ¨ ¨ ar)(j b1 ¨ ¨ ¨ bs)µ1 ¨ ¨ ¨µm be the decomposition for
σ (r, s could be 0). Then

(i j)(i a1 ¨ ¨ ¨ ar)(j b1 ¨ ¨ ¨ bs) = (i a1 ¨ ¨ ¨ ar j b1 ¨ ¨ ¨ bs)

2° i, j lie in the same orbit. Then

(i j)(i a1 ¨ ¨ ¨ ar j b1 ¨ ¨ ¨ bs) = (i a1 ¨ ¨ ¨ ar)(j b1 ¨ ¨ ¨ bs)
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We return to the proof of the proposition. Assume σ = σ1 ¨ ¨ ¨ σk, where σj’s are transposition. For each
τ P Sn, let o(τ) denote the number of its orbits. Then by Claim, we have

o(id) = n ” n (mod 2)

o(σk) = n ´ 1 ” n ´ 1 (mod 2)

o(σk´1σk) = n ´ 2 _ n ” n ´ 2 (mod 2)
...

o(σ1 ¨ ¨ ¨ σk) ” n ´ k (mod 2)

Hence k ” n+ o(σ) (mod 2).

Remark 1.3.6. There’s an alternative proof of the proposition above: consider Sn ñ Z[x1, . . . , xn] by
σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) and P (x) :=

ś

1ďiďjďn

(xi ´ xj). Check that if τ is a transposition, then

σ1(σ2f) = (σ1σ2)f and τP = ´P .

Definition. An element in Sn is an even/odd permutation if it’s a product of an even/odd number of
transposition.

Definition. An := tσ P Sn | σ is evenu is called the alternating group of degree n.

Remark 1.3.7. A cycle of even/odd length is and odd/even permutation.

Proposition 1.3.8. 1. An ď Sn

2. If n ě 2, then [Sn : An] = 2, and hence An � Sn.

3. An is generated by 3-cycles.

Proof.

2. Let Bn := SnzAn. Then
An Bn

σ (1 2)σ

is a set-theoretic bijection.

3. (i j)(i j) = 1, (i j)(i k) = (i k j), (i j)(k ℓ) = (i k j)(i k ℓ).

Example 1.3.9. A1 = 1, A2 = 1, A3 = x(1 2 3)y – C3, A4 = t1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), 8 3-cyclesu.
Note that t1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)u � A4, which implies that A4 is not simple.

Remark 1.3.10. Note that A4 provide a counterexample to the converse statement of the Lagrange’s
theorem: 6 | 12 = |A4| but A4 fails to have a subgroup of order 6.
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Proof. Say H ď A4 such that |H| = 6. Then H�A4. Since |H| ą 4, H contains a 3-cycle. By conjugating
with (1 2)(3 4), we find that H contains all 3-cycles, a contradiction.

Notation 1.3.11. For σ, τ P Sn, let στ denote the conjugation of σ by τ , i.e, στ = τστ´1.

Theorem 1.3.12. For n ě 5 and n = 3, An is simple.

Proof.

1° An is generated by 3-cycles.

2° If H � An contains a 3-cycles, then H = An.

3° If H is a nontrivial normal subgroup of An, then it contains a 3-cycle.

2° WLOG, assume H contains (1 2 3). Let (i j k) be another 3-cycle. We construct σ P An such that
σ(1) = i, σ(2) = j and σ(3) = k so that (1 2 3)σ P H � An.

• ti, j, ku X t1, 2, 3u = H. Take σ = (1 i 2 j)(3 k).

• #ti, j, ku X t1, 2, 3u = 1, say i = 1. Take σ = (2 j)(3 k).

• #ti, j, ku X t1, 2, 3u = 1. If i = 1, j = 2, take σ = (3 k 4). If i = 2, j = 1, take σ = (3 k)(1 2)

3° Say σ P H is a nontrivial element. Consider the following possible cases for the cycle decomposition
of σ.

• It contains a cycle of length ě 4. Say σ = (1 ¨ ¨ ¨ m)τ, m ď 4. Then

σ´1σ(1 2 3) = τ´1(1 2 ¨ ¨ ¨ m)´1(2 3 1 4 ¨ ¨ ¨ m)τ = (1 3m)

• It contains more than one 3-cycles. Say σ = (1 2 3)(4 5 6)τ . Then

σ´1σ(1 2 4) = (1 4 2 6 3)

It reduces to the first case.

• It contains one 3-cycle and several transposition. Then σ2 is a 3-cycle.

• It contains only transpositions. Say σ = (1 2)(3 4)τ . Put θ := σ´1σ(1 2 3) = (1 3)(2 4). Then

θ´1θ(1 3 5) = (1 3 5)

13



1.4 Group Actions

Definition. A (left) group action of a group G on a set A is a map
G ˆ A A

(g, a) ga
such that

1. (g1g2)a = g1(g2a) for all g1, g2 P G and a P A

2. 1a = a for all a P A

Proposition 1.4.1. Let G be a group and A a set. Assume that G acts on A.

1. Define ϕg : A Ñ A by ϕg(a) := ga. Then ϕg P SA

2. Define Φ : G Ñ SA by Φ(g) := ϕg. Then Φ is a group homomorphism.

Definition. Φ in the preceding proposition is called the permutation representation of G associated
to the given group action.

Example 1.4.2.

1. Define G ˆ A Ñ A by (g, a) ÞÑ a for all g P G and a P A. This is called the trivial action.

2. F acts on F n by r(a1, . . . , an) := (ra1, . . . , ran).

3. Sn acts on t1, . . . , nu by σi = σ(i).

4. SL2(R) acts on H := tz P C | Im z ą 0u by
(
a b

c d

)
z :=

az + b

cz + d
.

5. G acts on itself by left multiplication.

6. G acts on itself by conjugation.

Proposition 1.4.3. Assume that G acts on A. Define „ on A by a „ b ô a = gb for some g P G. Then
„ is an equivalence relation.

Definition. The equivalence class in the preceding proposition in called an orbit. The orbit containing
a P A is denoted by Ga.

Proposition 1.4.4. Assume that G acts on A. For a P A, let Ga := tg P G | ga = au. Then Ga ď G.

Definition. Ga is the preceding proposition is called the stabilizer subgroup of a.

14



Proposition 1.4.5 (Orbit-stabilizer formula). Assume that G acts on A. Then

Ga t all left cosets of Ga u

ga gGa

is a set-theoretic bijection. In particular, if #G ă 8, |Ga| = [G : Ga] and |G| = |Ga||Ga|

Theorem 1.4.6 (Cauchy’s). Let G be a finite group and p be a prime dividing |G|. Then there’s an
element x P G of order p.

Proof. Consider the set
S = t(x1, x2, . . . , xp) P Gp | x1x2 ¨ ¨ ¨ xp = 1u.

Define the relation „ on S by letting

α „ β ô β = (1 2 ¨ ¨ ¨ p)kα for some k

It’s clear that „ is an equivalence relation. Viewing the equivalence relation as a action of Cp on S. then
by the orbit-stabilizer formula, the size of an orbit, an equivalence class, is either p or 1 since p is a prime.
Since the size of the orbit of (1, . . . , 1) is 1 and p divides |G|p´1, there must be at least p´ 1 orbits whose
sizes are 1, and they must be of the form (x, . . . , x) with xp = 1. Such x is the desired element.

Definition. Assume that G acts on A.

1. The subgroup tg P G | ga = a @ a P Au = kerΦ is called the kernel of the group action.

2. The group action is called faithful if the kernel is trivial.

3. The group action is called transitive if @ a, b P A D g P G [a = gb], i.e, #tGa | a P Au = 1.

1.4.1 Burnside’s lemma
Theorem 1.4.7 (Burnside’s) (Frobenius’). Assume that G acts on X and |G|, |X| ă 8. For g P G, let
Xg := tx P X | gx = xu. Then

#tGx | x P Xu =
1

|G|

ÿ

gPG

|Xg|

15



Proof. Consider S := t(g, x) P G ˆ X | gx = xu. Then S :=
Ů

gPG

t(g, x) | gx = xu, and thus |S| =
ř

gPG

|Xg|.

On the other hand, S :=
Ů

xPX

t(g, x) | gx = xu, and thus

|S| =
ÿ

xPX

|Gx| =
ÿ

O: orbit

ÿ

xPO
|Gx| =

ÿ

O: orbit

ÿ

xPO

|G|

|Gx|

=
ÿ

O: orbit

ÿ

xPO

|G|

|O|
= |G|

ÿ

O: orbit

1

|O|

ÿ

xPO
1 = |G| ¨ #tGx | x P Xu

Example 1.4.8. Given n distinct colors, we count the number of ways to paint the frame of a square with
Burside’s lemma. Let X the set that collects all possible coloring, assuming the frame is fixed. Consider
D8-action on X as usual. Hence # of orbits = 1

8
(n4 +2n3 +3n2 +2n), as shown in the following picture.

id 90° 180° 270°

n4 n n2 n

n3 n3 n2 n2

1.4.2 Primitive actions
Definition. Subgroups of symmetric groups are called permutation groups.

From now on, we let A be a nonempty finite set and G be a permutation group on A.

Definition. A G-action on A (|A| ě 2) is doubly transitive if G acts transitively on (A ˆ A)z∆, where
∆ is the diagonal of A ˆ A.

Example 1.4.9. Sn is doubly transitive on t1, 2, . . . , nu for n ě 2.

Definition. Let G transitive. A block is a nonempty subset B of A such that @σ P G [σ(B) X B ‰ ∅ ñ

σ(B) = B].

Definition. G is said to be primitive if it’s transitive and the only blocks in A are A and tau, a P A.

16



Proposition 1.4.10. Let G be transitive. (HW. 9)

1. If B is a block containing a P A, then

GB := tσ P G | σ(B) = Bu

is a subgroup of G containing Ga. In particular,

A =
n
ğ

i=1

σi(B)

for some σi P G.

2. G is primitive if and only if Ga is maximal in G for each a P A

3. If G is doubly transitive, then G is primitive.

Proposition 1.4.11. Let the action G on A be transitive and faithful. Suppose G acts on A primitively,
then for any 1 ‰ H �G, the induced action H on A is transitive.

1.4.3 Actions by left multiplication
Definition. The permutation representation of G associated to the left multiplication is called the left
regular representation.

Proposition 1.4.12. G acts on itself by left multiplication is faithful and transitive.

Theorem 1.4.13 (Cayley’s). Any group G can be embedded in to its symmetric group SG.

Theorem 1.4.14. Let H ď G and X := tall left cosets of H in Gu. Consider the G-action on X be left
multiplication.

1. The action is transitive and G1H = H.

2. The kernel is
Ş

gPG

gHg´1, which is the largest normal subgroup of G contained in H.

Corollary 1.4.14.1. Assume that |G| ă 8 and p is the smallest prime factor of |G|. Then any subgroup
of index p in G is normal in G.

Proof. Let K :=
Ş

gPG

gHg´1. Then G/K – a subgroup in Sp. Thus

p[H : K] = [G : H][H : K] = [G : K] | |Sp| = p!

i.e, [H : K] | (p ´ 1)!. Since [H : K] | |G| p is the smallest prime factor, we deduce [H : K] = 1, i.e,
H = K �G.
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Example 1.4.15.

1. Let G = D8 and H = xsy. We have
Ş

gPD8

gHg´1 = 1, i.e, G acts on tleft cosets of Hu faithfully.

Hence D8 – a subgroup of S4.

2. Any nontrivial subgroup of Q8 contains t˘1u. If |H| ‰ 1, then the action on the left cosets of H
isn’t faithful. Hence, Q8 cannot embedded into S7.

Lemma 1.4.16. If H � G has prime index p, then for all K ď G, either K ď H or G = HK with
[K : K X H] = p.

Proposition 1.4.17. Let G be a finite group and Φ : G Ñ SG be the left regular representation.

1. For each g P G, Φ(g) is an odd permutation if and only if |g| is even and |G|/ ord g is odd.

2. If ImΦ Ę AG, then G has a subgroup of index 2.

Proof.

1. Put Φ(g) = ϕg and n := |G|. For each g P G, identify ϕg with its image in Sn via the canonical
isomorphism SG Ñ Sn. Fix a g P G, and let „ be the equivalence relation generated by

a „ b ô ab´1 = gk for some k P N

Clearly, each equivalence class has the same cardinality ord g, and each corresponds to a cycle in
the cycle decomposition of ϕg. Hence each cycle has length ord g and the number of cycles is |G|

ord g .
Hence

ϕx is odd ô (ord g ´ 1)
|G|

ord g is odd ô
|G|

ord g is odd and ord g is even

2. Since AG � SG has index 2 and ImG R AG, we have [ImG : ImG X AG] by Lemma 1.4.16. Then
Φ´1(ImG X AG) is a subgroup of G of index 2.

Corollary 1.4.17.1. If G is a finite group with ν2(|G|) = 1, then G has a subgroup of index 2.
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1.4.4 Actions by conjugation
Definition. Let G be a group.

1. The orbit of a P G under the action of conjugation is called the conjugacy class of a, and is denoted
by Cl(a).

2. The stabilizer Ga (a P G) under conjugation is denoted by CG(a), called the centralizer of a.

3. a, b P G are said to be conjugates if b = gag´1 for some g P G.

• By the orbit-stabilizer formula, we have # Cl(a) = [G : CG(a)].

Definition. The center of a group G is the subgroup

Z(G) := ta P G | ag = ga @g P Gu

• Z(G) is the kernel of the action by conjugation. Hence the action is not faithful in general.

• g P Z(G) if and only if Cl(g) = tgu.

Proposition 1.4.18. Let G be a group. If G/Z(G) is cyclic, then G is abelian.

Theorem 1.4.19 (Class equation). Let G be finite, and g1, . . . , gn the representatives of conjugacy classes
of G having more than 1 elements. Then

|G| = |Z(G)| +
n
ÿ

i=1

[G : CG(gi)]

Definition. Let p be a prime. A finite group is called a p-group if |G| = pn for some n P N.

Corollary 1.4.19.1. If G is a p-group, then Z(G) ‰ 1.

Corollary 1.4.19.2. If G is a p-group of order p2, then G is abelian, and G – C2
p or G – Cp2 .

Corollary 1.4.19.3. Any finite p-group is solvable.

Corollary 1.4.19.4. Let p be a prime and G a group of order pn. Then G has a subgroup of order pi for
i = 0, . . . , n.
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1.4.5 Conjugacy classes in Sn

Definition. Let σ P Sn. If the cycle decomposition of σ is a product of cycles of lengths

n1 ď n2 ď ¨ ¨ ¨ ď nk

(including 1-cycles so that
k
ř

i=1

ni = n), then the sequence of integers n1, . . . , nk is called the cycle types
of σ.

Definition. A nondecreasing sequence of positive integers n1 ď n2 ď ¨ ¨ ¨ ď nk such that
k
ř

i=1

ni = n is
called a partition of n.

Proposition 1.4.20. Two elements in Sn are conjugates if and only if they have the same cycle type.

Corollary 1.4.20.1. There’s a set-theoretic bijection between tconjugacy classed of Snu and tpartitions of nu.

Example 1.4.21. We demonstrate the correspondence with S6.

partition |conjugacy class| |CS6(¨)| =
|S6|

|conjugacy class|
6 6!/6 6 = #x(1 2 ¨ ¨ ¨ 6)y

3 + 3 6!/(3 ¨ 3 ¨ 2) = 40 18 = #x(i j k), (ℓmn), (i ℓ)(j m)(k n)y

2 + 2 + 2 6!/(2 ¨ 2 ¨ 2 ¨ 3!) = 15 48

2 + 1 + 1 + 1 6!/(2 ¨ 4!) = 15 48

1.4.6 Conjugacy classes in An

Lemma 1.4.22. Let G be a group, K a conjugacy class of G and N � G. Then either K X N = ∅ or
K Ď N . Hence a normal subgroup of G is a disjoint union of some conjugacy classes.

Lemma 1.4.23. Let σ P An and σSn and σAn denote the conjugacy classes of σ in Sn and An, respectively.
If σ commutes with some odd permutation, then σAn = σSn . Otherwise, σSn = σAn \ (1 2)σAn(1 2).

Proof. If σ commutes with an odd permutation, say τ , then for any ρ P SnzAn,

ρσρ´1 = ρτσ(ρτ)´1 P σAn

and thus σSn = σAn . Now suppose σ does not commute with any odd permutation.

Claim. σAn X (1 2)σAn(1 2) = H.

Suppose otherwise there are g, g1 P An such that gσg´1 = (1 2)g1σg1´1(1 2), then σ commutes with
g1´1(1 2)g, a contradiction since g1´1(1 2)g is odd.
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Lemma 1.4.24. Let σ P Sn whose cycle type consists of distinct integers. Then σ only commutes with
the subgroup generated by the cycles in its cycle decomposition.

Proof. Let σ = σ1 ¨ ¨ ¨ σk be its cycle decomposition, counting 1-cycles. Suppose otherwise that there’s
a permutation τ R xσi | i = 1, . . . , ky such that στ = τσ. WLOG, let ti | σi and τ are not disjointu =

t1, . . . , ru for some r ď k. Since στ = τσ, τσ1 ¨ ¨ ¨ σrτ
´1 = σ1 ¨ ¨ ¨ σr. τ cannot send elements in σi to

σj since |σi| ‰ |σj| for all i ‰ j. Also, orders of the elements in σi must be preserved under τ for
otherwise τσiτ´1 ‰ σi for all i. Hence, τ must be a product of σmi

i for some integer mi for all i ď r, a
contradiction.

Theorem 1.4.25. σ P Sn does not commute with odd permutation if and only if its cycle type consists of
distinct odd integers.

Proof. (ñ) Note that σ commutes with cycles in its cycle decomposition, so the cycle type of σ consists
of odd integers. Were two cycle to have the same length, say α = (1 ¨ ¨ ¨ k) and β = (k + 1 ¨ ¨ ¨ 2k) for
some odd integer k, then τ := (1 k + 1) ¨ ¨ ¨ (k 2k) P SnzAn satisfies τατ´1 = β and τβτ´1 = α, implying
ταβ = αβτ . Thus, τσ = στ , a contradiction. Hence its cycle type must consist of distinct odd integers.
(ð) This follows directly from Lemma 1.4.24.

Corollary 1.4.25.1. Let K be a conjugacy class of Sn and assume K Ď An. Then K consists of two
conjugacy classes in An if and only if the cycle type of an element of K consists of distinct odd integers.

Example 1.4.26. Even permutation in A5 are

cycle types Sn An

5-cycles |σS5 | = 24 12 + 12

3-cycles |σS
5
| = 20 20

(i j)(k ℓ) |σS
5
| = 15 15

1 1 1

Now, no proper partial sums of t1, 15, 20, 12, 12u is a divisor of 60. Hence A5 is simple.

Proposition 1.4.27. Consider the G-action on tH | H ď Gu by conjugation.

1. The stabilizer subgroup of H ď G is NG(H).

2. The number of subgroup conjugate to H is [G : NG(H)].

Proposition 1.4.28. An (n ě 5) does not have a proper subgroup of index ă n.

Proof. Let H ň An be of index m ă n and consider the An-action on the set of all left cosets of H by left
translation.
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1.4.7 Automorphisms
Definition. Let G be a group and A a nonempty subset of G.

1. The centralizer of A in G is the subgroup CG(A) := tg P G | ag = ga @a P Au

2. The normalizer of A in G is the subgroup NG(A) := tg P G | gAg´1 = Au

3. The normal closure of A in G, or the normal subgroup generated by A, is the subgroup
generated by

Ť

aPA

Cl(a).

Definition. Let G be a group.

1. The automorphism group of G is Aut(G) := tf : G Ñ G | f is a group isomorphismu.

2. The inner automorphism group of G is Inn(G) := tf : G Ñ G | Dg P G @x P G [f(x) = gxg´1]u.

Proposition 1.4.29. Let G be a group and H a subgroup of G.

1. G/Z(G) – InnG

2. NG(H)/CG(H) ď AutH.

3. InnG� AutG

Example 1.4.30.

1.
(Z/nZ)ˆ Aut(Cn)

a [x ÞÑ xa]

is an isomorphism, and thus Aut(Cn) – (Z/nZ)ˆ. Furthermore, if n = pk,

then

(Z/nZ)ˆ =

$

’

&

’

%

Cpk´1(p´1) if p ‰ 2

C2 ˆ C2k´2 if p = 2 ^ k ě 2

1 if p = 2 ^ k = 1

Proof. For brevity, put G := (Z/nZ)ˆ. If p = 2, we see that 5 = 1 + 22 has order 2k´2 in G, and
thus ˘52

k´3 have order 2. This shows G is not cyclic, and one of ˘52
k´3 does not lie in x5y. Hence

G = x5y ˆ xsy, where s = ˘52
k´3 . For odd primes p, note that 1 + p has order pn´1 in G. Consider

the reduction homomorphism
ψ : G (Z/pZ)ˆ

a (mod pk) a (mod p)

Note that x1 + py ď kerψ ň G, so kerψ = x1 + py, i.e, kerψ = Cpk´1 . Note also that (Z/pZ)ˆ is
cyclic of order p ´ 1, and since (p ´ 1, pk´1) = 1, we obtain G = Cpk´1 ˆ Cp´1 = Cpk´1(p´1).
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2. AutD8 = D8 and AutQ8 = S4.

3. Let p be a prime. Then Aut(Cn
p ) – GLn(Fp). Also, # GLn(Fp) = (pn ´ 1)(pn ´ p) ¨ ¨ ¨ (pn ´ pn´1).

Proposition 1.4.31. Sn = InnSn = AutSn for n ě 3, n ‰ 6. (HW. 8)

Proof. For 1 ď k ď n/2, let

Ck : tσ P Sn | σ is a product of k disjoint 2-cyclesu

There are some facts:

• If τ P AutSn, then τ(C1) = Ck for some k.

• #Ck =
(
n

2k

)
(2k)!

2kk!
.

• #Ck ‰ #C1 unless k = 1 or n = 6.

Also, one can show if ψ P AutSn such that ψ(C1) = C1, then ψ P InnSn. With these facts we may deduce
the second equality. For the first equality, note that Z(Sn) = 1 for n ě 3, so Sn = InnSn.

Proposition 1.4.32. [AutS6 : InnS6] = 2.

Definition. H ď G is a characteristic subgroup of G if σ(H) = H for each σ P AutG, and we denote
this as H char G.

Proposition 1.4.33. 1. H char G ñ H �G

2. (K char H ^ H �G) ñ K �G

3. (k char H ^ H char G) ñ K char G

Example 1.4.34. 1. Z(G) char G and [G,G] char G.

2. Every subgroup of cyclic groups is characteristic. Thus every subgroup contained in a cyclic subgroup
of G is normal in G.
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1.5 Sylow’s Theorem
In this section by p we mean a prime number, and G always denote a group.

Definition. Assume that p | |G|.

1. If H ď G with |H| = pa for some a P N, then we say that H is a p-subgroup of G.

2. If |G| = pam with a P N and p ∤ m and H ď G with |H| = pa, then we say H is a Sylow p-subgroup
of G.

• We denote the set of all Sylow p-subgroup of G by Sylp(G).

Lemma 1.5.1. Let G be a finite p-group and X a finite set. Assume that G acts on X. Let

XG := tx P X | gx = x @g P Gu

Then |X| ” |XG| (mod p).

Proof. Let O1, . . . ,On be the orbits under the action with |O1| = ¨ ¨ ¨ = |Or| = 1 and |Or+1|, . . . , |On| ą 1

for some r P N. Note that |Oi| = 1, say Oi = txu, means x P XG. Thus

|X| = |XG| +
n
ÿ

i=r+1

|Oi| ” |XG| (mod p)

since |Oi|

ˇ

ˇ

ˇ
|G| by the orbit-stabilizer formula.

Theorem 1.5.2 (Sylow’s). Assume that |G| = pam with a P N and p ∤ m. Put np = np(G) := # Sylp(G).

1. Sylp(G) ‰ H. More precisely, |H| = pi for some H ď G for each i P t1, . . . , au, and each subgroup of
order pi (1 ď i ď a ´ 1) is normal in some subgroup of order pi+1.

2. P,Q P Sylp(G) ñ Dg P G [Q = gPg´1].

3. np ” 1 (mod p) and np | m. More precisely, np = [G : NG(P )] for each P P SylP (G).

Proof.

1. By Cauchy’s theorem, G has a subgroup of order p. Assume inductively that there’s Hi ď G such
that |Hi| = pi. Consider Hi-action on X := tall left cosets of Hi in Gu by left multiplication. By
Lemma 1.5.1, |XHi

| ” |X| (mod p). Note that

gHi P XHi
ô hgHi = gHi @h P Hi

ô g´1hg P Hi @h P Hi ô g P NG(Hi)
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Thus, |XHi
| = [NG(Hi) : Hi]. Also, |X| = |G|/|Hi| = mpa´i | p, so [NG(Hi) : Hi] ” 0 (mod p). Hence

there’s a subgroup Hi+1 of order p in NG(Hi)/Hi by Cauchy’s theorem. Let Hi+1 := π´1(Hi+1), where
π : NG(Hi) Ñ NG(Hi)/Hi is the natural projection. Then |Hi+1| = pi+1 and Hi �Hi+1.

2. Let P,Q P Sylp(G). Consider Q-action on X := tall left cosets of P in Gu by left multiplication. By
Lemma 1.5.1, |XQ| ” |X| (mod p). Note that

gP P XQ ô hgP = gP @h P Q

ô g´1hg P P @h P Q

ô g´1Qg = P ô gPg´1 = Q

Since |XQ| ” |X| (mod p), there exists g P G such that gPg´1 = Q.

3. By 2. and Proposition 1.4.27, np = # Sylp(G) = [G : NG(P )] for all P P Sylp(G). Since P ď NG(P ) ď

G, np | [G : P ] = m. Let P P Sylp(G) and consider P -action on X = Sylp(G) by conjugation. By
Lemma 1.5.1, np = |x| ” |XP | (mod p). Note that

Q P XP ô gQg´1 = Q @g P P ô P ď NG(Q)

By 2., since Q � NG(Q), Q is the unique Sylow p-group in NG(Q), and thus P = Q, implying that
np = |X| = |tP u| = 1.

Corollary 1.5.2.1. Assume that |G| = pam with a P N and p ∤ m. Put np = np(G) := # Sylp(G). TFAE:

1. np = 1

2. All Sylow p-subgroups of G are normal in G.

3. All Sylow p-subgroups of G are characteristic.

4. All subgroups generated by elements of p-power order are p-groups.

Proof. 1 ô 2, 3 follows from the second part of Sylow’s theorem. That 1 ñ 4 is clear. For the reverse
implication, let

X =
ď

PPSylp(G)

P

which is a p-group by our assumption. Hence P ď xXy for each P P Sylp(G), and thus P = xXy.

Corollary 1.5.2.2. For P P Sylp(G), we have NG(NG(P )) = NG(P ).
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Proof. That NG(NG(P )) Ě NG(P ) is clear. For the reverse inclusion, note that P �NG(P ), and thus it’s
characteristic by the preceding corollary. Since, NG(P ) � NG(NG(P )), by Proposition 1.4.33, we obtain
P �NG(NG(P )), implying NG(NG(P )) Ď NG(P ).

Proposition 1.5.3. Let H ď G and P P Sylp(G). Then H X gPg´1 P Sylp(H) for some g P G.

Proof. Consider the H-action on X, the set of all left cosets of P in G, by left multiplication. The H-
stabilizer of the points of X are of the form H X gPg´1, with g P G. Since P P Sylp(H), p ∤ |X|, and thus
at least one orbit Hx whose order is not divisible by p. Then Hx is a p-group of the form H X gPg´1 for
some g. That [H : Hx] is coprime to p indicates that Hx P Sylp(H).

Corollary 1.5.3.1. Let H ď G and P P Sylp(H). Then P = S X H for some S P Sylp(G).

Proposition 1.5.4 (Frattini argument). Let H �G. If Q P Sylp(H), then HNG(Q) = G.

Proof. Let g P G. Then gQg´1 Ď gHg´1 = H. Since gQg´1 P Sylp(H), gQg´1 = hQh´1 for some h P H,
i.e, h´1g P NG(Q), i.e, g P HNG(Q).

Example 1.5.5. In S3, (1 2), (1 3), (2 3) are elements of order 2 but the subgroup generated by them is
not a 2-group.

1.5.1 Applications
Lemma 1.5.6. If N,K �G with N X K = 1, then N Ď CG(K).

Example 1.5.7. |G| = pq, where p ă q are distinct primes. We have nq = 1, i.e, the Sylow q-subgroup Q
is normal. Then

np =

#

1 if q ı 1 (mod p)

1 _ q if q ” 1 (mod p)

• (np = 1) Then the Sylow p-subgroup P is normal in G. Since P XQ = 1, P and Q commute. Hence
G – Cp ˆ Cq – Cpq.

• (np = q) Say P = xxy and Q = xyy. Since Q�G, xyx´1 = yj for some j P N. Note that

y = xpyx´p = xp´1(xyx´1)x´(p´1) = xp´1yjx´(p´1) = ¨ ¨ ¨ = yj
p

and thus jp ” 1 (mod q). Recall that (Z/qZ)ˆ – Cq´1, i.e, (Z/qZ)ˆ = xa ñ for some a P Z. Write
j ” ak (mod q) for some k. Then k satisfies

akp ” 1 (mod q) ñ (q ´ 1) | kp ñ
q ´ 1

p

ˇ

ˇ k

26



1° If k = 0, then j = 1, i.e, xyx´1 = y, implying that G – Cp ˆ Cq – Cpq.

2° If l = q ´ 1

p
, 2
q ´ 1

p
, . . . , (p´1)

q ´ 1

p
, then G is nonabelian; however, all choices yield isomorphic

groups.

Example 1.5.8. |G| = 45 = 32 ˆ 5. Then n3 = n5 = 1. Put Pi P Syli(G) (i = 3, 5). Then P3, P5 � G, so
P3 and P5 commute. Thus

G –

#

C9 ˆ C5

C3 ˆ C3 ˆ C5 – C3 ˆ C15

• Alternative approach: since P3�G, the P5-action on P3 by conjugation is well-defined, and it induces a
group homomorphism P5

Φ
Ñ AutP3. Since | AutC9| = |(Z/9Z)ˆ| = 6, | Aut(C2

3)| = (9´1)(9´3) = 48

and (5, 6) = 1 = (5, 48), P5/ kerΦ = 1, i.e, kerΦ = P5. Hence xgx´1 = g for each x P P5, y P P3, i.e,
P5 and P3 commute.

Lemma 1.5.9. If G ď Sn is transitive, then n | |G|.

Example 1.5.10. |G| = 12 with n3 = 4 ñ G – A4. Consider G-action on Syl3(G) by conjugation, which
induces a homomorphism G

Φ
Ñ S4. Then G/ kerΦ – T ď S4. By Sylow’s theorem, T is a transitive

subgroup of S4. Thus |T | = 4_ 12. 4 is not possible since this implies kerΦ is a normal subgroup of order
3, a contradiction to the assumption n3 = 4. Hence G – a subgroup of order 12 in S4 – A4.

Definition. If G is abelian (ñ every subgroup is normal), then for each p | |G|, there’s a unique Sylow
p-subgroup, called the p-primary subgroup.

Example 1.5.11. |G| = 30. Then n3 = 1 _ 10 and n5 = 1 _ 6. Note that n3 = 10 and n5 = 6 cannot
happen at the same time since

#

n3 = 10 ñ D 20 elements of order 3

n5 = 6 ñ D 24 elements of order 5

but 20 + 24 ą 30, a contradiction. Put Pi P Syli(G) (i = 3, 5). Then we have

either P3 �G or P5 �G

so P3P5 ď G has order 15. Since [G : P3P5] = 2, P3P5 is normal, and since it’s cyclic, each subgroup of
P3P5 is cyclic; in particular, P5, P3 �G, i.e, n3 = n5 = 1. Put P3P5 = xyy and P2 = xxy. Then xyx´1 = yj

for some j. Thus j2 ” 1 (mod 15), as in Example 1.5.7. Hence j ” 1, 4, 11, 14 (mod 15). The four groups

Gj = xx, y | x2 = y15 = 1, xyx´1 = yjy (j = 1, 4, 11, 15)

give 4 non-isomorphic groups of order 30. In fact, G1 – C30, G4 – D6ˆC5, G11 – D10ˆC3 and G14 – D30.
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Example 1.5.12. |G| = 60 with n5 = 6 ñ G is simple.

Proof. Suppose otherwise there’s a normal subgroup H with 1 ‰ H ‰ G. If 5 | |H|, then H contains
a Sylow 5-subgroup of G and since H is normal, H contains all of them. Hence |H| ě 1 + 4 ¨ 6 = 25,
and thus |H| = 30. Since a group of order 30 contains a normal 5-subgroup, H has a normal 5-subgroup,
then so does G, which leads to a contradiction since n5 = 6. Hence |H| is not a multiple of 5. Then
|H| = 2, 3, 4, 6, 12. If |H| = 6, 12, then H has a normal, and hence characteristic, Sylow subgroup, which is
therefore normal in G. We then assume WLOG that |H| = 2, 3, 4. Put G1 = G/H, then |G1| = 30, 20, 15.
In each case G1 contains a normal 5-subgroup, and hence G has a normal subgroup of order 10, 15, 20, a
contradiction since a nontrivial proper normal subgroup of G cannot be of order of a multiple of 5. Hence,
G is simple.

Remark 1.5.13. In fact, one can show any simple group of order 60 is isomorphic to A5.

Lemma 1.5.14. Q8 cannot be embedded into any symmetric group Sn with n ď 7. (HW. 3)

Example 1.5.15. G = S4. We have 4! = 23 ˆ 3. Then

n3 =
4 ˆ 3 ˆ 2

3
ˆ

1

2
= 4

Note that the Sylow 2-subgroups of S4 are isomorphic to D8. (One may verify this by considering actions
on t1, 2, 3, 4u of all possible groups of order 8.) Also, a Sylow 2-subgroup of S4 depends only on the choice
of 4-cycles contained in it. Thus

n2 =
4 ˆ 3 ˆ 2 ˆ 1

4
ˆ

1

2

Example 1.5.16. G = S5. We have 5! = 23 ˆ 3 ˆ 5. Likewise,

n5 =
5 ˆ 4 ˆ 3 ˆ 2 ˆ 1

5
ˆ

1

4
= 6

n3 =
5 ˆ 4 ˆ 3

2
ˆ

1

2
= 10

n2 =
5 ˆ 4 ˆ 3 ˆ 2 ˆ 1

4
ˆ

1

2
= 15

These imply #NG(P5) =
120

6
= 20 and #NG(P3) =

120

10
= 12. Concretely, we have, for instance,

NG(P3) = x(1 2 3), (4 5), (2 3)y

Exercise. 1. Find n2, n3, n5 for S6.

2. Find n3 for S9. (Note that a Sylow 3-subgroup is x(1 2 3), (4 5 6), (7 8 9), (1 4 7)(2 5 8)(3 6 9)
loooooooooomoooooooooon

which normalizes
x(1 2 3), (4 5 6), (7 8 9)y

y.)
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1.6 Semi-direct Product

1.6.1 Fundamental Theorem of Finitely Generated Abelian Groups
Definition. A group G is finitely generated if G = xAy for some finite subset A of G.

Theorem 1.6.1. If G is a finitely generated abelian group, then

G – Zn ˆ Cn1 ˆ ¨ ¨ ¨ ˆ Cnt

where r P Zě0 and n1, . . . , nt P Zgeq0 such that ni+1 | ni for i = 1, . . . , t ´ 1. Moreover, they’re uniquely
determined.

• r is called the (free) rank, or Betti number, of G, and the ni are called the invariant factors of
G. Such a decomposition is called the invariant factor decomposition of G.

Theorem 1.6.2. If G is a finite abelian group of order n = pe11 ¨ ¨ ¨ pekk , where the pi are primes, then

G – A1 ˆ ¨ ¨ ¨ ˆ Ak

where Ai – C
p
f1
i

ˆ ¨ ¨ ¨ ˆ C
p
fti
i

, f1 ě ¨ ¨ ¨ ě ft1 ě 1 and f1 + ¨ ¨ ¨ + fti = ei for each i.

• The pfji are called the elementary divisors ofG, and such a decomposition is called the elementary
decomposition of G. This decomposition is unique.

Example 1.6.3. Groups G of order 20. Then by Sylow’s theorem, n5 = 1. Let P = xxy P Syl5(G) and let
Q P Syl2(G).

1. Q – V4 = xy, zy: Since P �G, yxy´1 = xi and zxz´1 = xj for some i, j = 1, 4.

• i = j = 1: y, z commute with x, so G – C10 ˆ C2.

• i = j = 4: set y1 = yz. Then y1xy1´1x, thus G – D20.

• i = 1, j = 4: y commutes with x, so xxyy – C10 and z(xy)z´1 = (xy)´1, thus G – D20

• i = 4, j = 1: the same as above.

2. Q – C4 = xyy: then yxy´1 = xj for some j = 1, 2, 3, 4.

• j = 1: G – C20.

• j = 4: G – xx, y | x5 = y4 = 1, yxy´1 = x4y – C5 ¸ C4
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• j = 2, 3 give the same structure, denoted as F20 and called the Frobenius group of order 20,
which can be realized as the normalizer of P = x(1 2 3 4 5)y in S5.
Since # Syl5(S5) =

5!
5

¨ 1
4
= 6 = [S5 : NG(P )], we have #NG(P ) = 20. Pick y = (2 3 5 4). One

can see y(1 2 3 4 5)y´1 = (1 3 5 2 4). Hence

NG(P ) = x(1 2 3 4 5), (2 3 5 4)y

1.6.2 Direct products
Theorem 1.6.4. If H,K �G and H X K = 1, then HK – H ˆ K.

Definition. Under the assumption of the theorem above, we say G = HK is the internal product of H
and K.

Example 1.6.5. Groups of order 30. As shown in Example 1.5.11, G admits a cyclic subgroup xxy of
order 15. Let xyy P Syl2(G). We have yxy´1 = xj, j = 1, 4, 11, 14.

• j = 1: G – C30.

• j = 14: G – D30.

• j = 4: yxy´1 = x4, then yx5y´1 = x20 = x5, thus K := xx5y ď ZG. Also, we have yx3y´1 = x´3, so
H := xx3, yy – D10. One can check H,K�G and H XK, and hence G = HK – H ˆK = D10 ˆC3.

• j = 11: similar as the case above, we have G – D6 ˆ C5.

Example 1.6.6. D4n = xr, sy with n odd. Then D4n – D2n ˆC2, here C2 = xr2y ď ZG and D2n = xr2, sy.

Definition. Let G be a group. The exponent of G is the smallest positive integer m such that gm = 1

for all g P G. If no such integer exists, the exponent is 8.

Proposition 1.6.7. Let G be an abelian group of exponent mn, where m,n are relatively prime. Then G
is a direct sum of a subgroup of exponent m and a subgroup of exponent n. Moreover, such decomposition
is unique.

Proof. Let Gm := tgm | g P Gu and Gn := tgn | g P Gu. Since m,n are relatively prime, the Bézout identity
indicates that 1 = am+ bn for some integers m,n. Then g = gamgbn for all g P G; this shows G = GmGn.
Since (m,n) = 1, Gm X Gn = 1, and since G is abelian, they’re normal in G; hence G = Gm ˆ Gn. The
uniqueness is guaranteed by the fact (m,n) = 1.
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1.6.3 Semi-direct products
Let G be a group, and set H �G, K ď G with H XK = 1. We wish to define a group structure on the set

S = t(h, k) | h P H, k P Ku

such that HK – S under this group structure.
Observe that if h1, h2 P H, k1, k2 P K,

h1k1h2k2 = h1(k1h2k
´1
1 )k1k2

Thus if ϕ : HK Ñ S is a homomorphism that ϕ(hk) = (h, k), then

(h1, k1)(h2, k2) = ϕ(h1k1h2k2) = ϕ(h1(k1h2k
´1
1 )k1k2) = (h1(k1h2k

´1
1 ), k1k2)

This suggests us to define the group structure on S to be

(h1, k1)(h2, k2) := (h1(k1h2k
´1
1 ), k1k2)

which is called a semi-direct product of H and K. Note that ϕ : K Q k ÞÑ ηk P Aut(H) is a group
homomorphism, where ηk : H Q h ÞÑ khk´1 P H.

In general, if we are given two groups H,K, and a homomorphism ϕ : K Ñ Aut(H), we may define a
group structure on t(h, k) | h P H, k P Ku, denoted as H ¸ϕ K, by

(h1, k1)(h2, k2) := (h1ϕ(k1)(h2), k1k2)

which is called the semi-direct product of H and K with respect to ϕ.

Theorem 1.6.8. H ¸ϕ K is a group. Identifying H with t(h, 1) | h P Hu and K with t(1, k) | k P Ku, we
have H �H ¸ϕ K, K ď H ¸ϕ K, H X K = 1 and HK = H ¸ϕ K.

Remark 1.6.9. If ϕ : K Ñ Aut(H) is trivial, then H ¸ϕ K is simply the direct product H ˆ K.

Example 1.6.10. 1. D2n = xr, sy. H = xry �D2n, K = xsy. Then D2n = H ¸ϕ K – H ¸ϕ C2, where
ϕ(s) : h ÞÑ shs´1 = h´1.

2. In general, if H is abelian and K = xyy is a cyclic group of order 2, define ϕ : K Ñ Aut(H) by
ϕ(y) : x ÞÑ x´1; this gives H ¸ϕ C2.

In the case H = Z, Z ¸ϕ C2 is called the infinite dihedral group, denoted as D8.

3. More generally, if H is abelian, K = C2n = xyy and ϕ : K Ñ Aut(H) as above. Then we obtain
H ¸ϕ C2n.

4. A4 – (C2 ˆ C2) ¸ C3.

Example 1.6.11. Groups of order p3 for p odd primes.
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Fact. If |G| = p3 and G is nonabelian, then Z(G) = [G,G] – Cp := xxy.

Lemma 1.6.12. The map G Q x ÞÑ xp is a homomorphism.

We have 2 cases:

1. All elements have order p. Let y R xxy. Then H := xx, yy – Cp ˆ Cp and since [G : H] = p, H �G.
Let z R H. Since x P Z(G), zxz´1 = x; let zyz´1 = xayb. Since zyz´1y´1 P [G,G] = xxy, we have
b = 1, i.e, zyz´1 = xay. a can be any integer between 1 and ´1. But one can show each choice yields
the same group structure. Hence

G = xx, y, z | xp = yp = zp = 1, xy = yx, xz = zx, zy = xyzy

2. G has an element y of order p2. Then we have yp P Z(G) ñ yp = xj for some j = 1, . . . , p ´ 1.

Claim. Gzxyy has an element of order p.
Let z P Gzxyy; again, zp = xi for some i = 1, . . . , p ´ 1. Since g ÞÑ gp is a homomorphism, we have
z1 = yiz´j has order p, and it’s not in xyy.

Thus G = xyy ¸ xz1y, here z1yz1´1 = yk for some k such that ykp = y, i.e, kp ” 1 (mod p)2. Hence
k = 1 + k1p for some p ∤ k1. We may check each choice of k1 gives the isomorphic group, hence

G = xy, z1 | yp
2

= zp = 1, zyz´1 = y1+py

Example 1.6.13. Nonabelian groups G of order 8. As the fact above, Z(G) = [G,G] := xxy is cyclic of
order p. Now assume p = 2.

1. D y R t1, xu such that y2 = 1: Then H := xy is not normal in G. Consider the G-action on G/H

by left translation. Then its kernel is
Ş

gPG

gHg´1 = 1 since H is not normal and has order 2. Thus

G – T ď S[G:H] = S4, and hence G – D8.

2. G does not have another element of order 2. Then G – Q8. (G/Z(G) – V4)
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1.7 Special Genres of Groups

1.7.1 p-groups
Theorem 1.7.1. Let P be a group of order pa. Then

1. Z(P ) is nontrivial.

2. 1 ‰ H � P ñ H X Z(P ) ‰ 1

3. If H�P , then for any pb dividing |H|, there’s a normal subgroup of P of order pb in H. In particular,
P has a normal subgroup of order pb (b = 1, . . . , a)

4. H ň P ñ H ň NG(H)

5. Every maximal subgroup of P is of index p and is normal in P .

1.7.2 Nilpotent groups
Definition. Let G be a group. A central series for G is a sequence of (normal) subgroups 1 = H0 ď

H1 ď ¨ ¨ ¨ ď Hn = G such that [G,Hi] ď Hi´1.

Remark 1.7.2. Note that H �G ô [G,H] ď H. Thus [G,Hi] ď Hi´1 ñ Hi �G. Also,

[G,Hi] ď Hi´1 ô 1 = [G/Hi´1, Hi/Hi´1] ď G/Hi´1

ô Hi/Hi´1 ď Z(G/Hi´1)

which is why such a sequence is called a central series.

There are 2 ways to construct central series for G, if such a sequence of subgroups exists:

• From the bottom: If 1 = H0 ď H1 ď ¨ ¨ ¨ ď Hn = G is a central series, then H1 ď Z(G).
That is, the largest possible H1 is Z(G). Put Z0(G) = 1 and Z1(G) = Z(G). Likewise, the
largest possible choice for H2/H1 is Z(G/H1); thus, we choose Z2(G) be to the subgroup such that
Z2(G)/Z1(G) = Z(G/Z1(G)). Continuing in this way, we may define Zi(G) to be the subgroup such
that Zi(G)/Zi´1(G) = Z(G/Zi´1(G)).

Definition. The sequence of subgroups 1 = Z0(G) ď Z1(G) ď Z2(G) ď ¨ ¨ ¨ is called the upper central
series, or ascending central series for G.
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• From the top: The smallest normal subgroup N such that G/N is abelian is [G,G]. Let G0 = G and
G1 = [G,G]. Next, if N is a normal subgroup contained in G1 and G1/N ď Z(G/N), then we have
for all g P G, h P G1

ghN = hgN ô g´1h´1gh P N

so the smallest such N is [G,G1]. Let G2 = [G,G1]. Continuing in this way, define Gi+1 = [G,Gi].

Definition. The sequence of the normal subgroups G = G0 �G1 �G2 � ¨ ¨ ¨ is called the lower central
series, or descending central series for G.

Theorem 1.7.3. Let G be a group. TFAE:

1. G has a central series.

2. Zn(G) = G for some n.

3. Gm = 1 for some m.

Moreover, if 2. or 3. holds, then the smallest n with Zn(G) and the smallest m with Gm = 1 coincide.

Definition. If G is a group satisfying one of the 3 statements above, then G is said to be nilpotent, and
thus smallest n in 2. is called the nilpotent class of G.

Remark 1.7.4. 1. Nilpotent implies solvable. The converse may not hold in general. For instance, S3

is solvable but not nilpotent since Z(S3) = 1.

2. Zi(G), Gi are all characteristic subgroups of G.

Example 1.7.5. 1. Abelian groups are all nilpotent of class 1.

2. Q8 and D8 are nilpotent of class 2. In general, a nonabelian group of order p3 is nilpotent of class 2.

3. All finite p-groups are nilpotent, since their centers are nontrivial.

Theorem 1.7.6. Let G be a finite group, p1, . . . , pn be all distinct prime divisors of |G| and Pi P

Sylpi(G) (i = 1, . . . , n). Then, TFAE:

1. G is nilpotent.

2. If H ň G, then H ň NG(H).

3. Pi �G for all i.

4. G – P1 ˆ ¨ ¨ ¨ ˆ Pn.
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1.7.3 Solvable groups
Definition. Let G be a group. Define G0 := G, Gi+1 := [Gi, Gi]. The sequence G0 � G1 � ¨ ¨ ¨ is called
the derived series, or commutator series for G.

Theorem 1.7.7. G is solvable ô Gn = 1 for some n ě 0.

Definition. If G is solvable, the smallest nonnegative n for which Gn = 1 is called the solvable length
of G, denoted by dl(G).

Example 1.7.8.

1. Sn is solvable if and only if n ď 4.

Proof. Note that [Sn, Sn] ď An. By simplicity of An for n ě 5 and n = 3, we see [Sn, Sn] = An;
trivially, [S2 : S2] = A2 = 1. For n = 4, normal subgroups of S4 contained in A4 are

1, H = t1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)u and A4

Since S4/H – S3 is not abelian, thus [S4, S4] = A4. (Recall that groups of order 6 are isomorphic to
either C6 or S3.) The result follows again by the fact that An is simple for n ě 5.

2. Let G = D2n = xr, s | rn = s2 = 1, sr = r´1sy. Then [G,G] = xr2y.

Proof. Since s´1r´1sr = r2, xr2y ď [G,G].

• (n is odd) Then xr2y = xry, implying that G/xr2y has order 2, thus [G,G] ď xr2y.

• (n is even) That [G : xr2y] = 4 implies G/xr2y has order 4, and thus [G,G] ď xr2y.

In conclusion, we have [G,G] = xr2y, which is cyclic, and thus G is solvable.

Remark 1.7.9. In the definition of the solvable groups, the sequence 1 = H0 �H1 � ¨ ¨ ¨ �Hs = G only
require that Hi �Hi+1, but Hi need not be normal in G. However, in the definition of the derived series,
Gi �G for each i. (Recall that [G,G] char G.)

Theorem 1.7.10 (Burnside’s). Groups of order paqb, p, q being primes, are solvable.

Theorem 1.7.11 (Feit-Thompson). Groups of odd order are solvable.
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Chapter 2

Ring theory
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2.1 Concept of Rings
Definition. A ring R is a set with two binary operations, + and ˆ, such that

1. (R,+) is an abelian group.

2. ˆ is associative.

3. a ˆ (b+ c) = a ˆ b+ a ˆ c and (b+ c) ˆ a = b ˆ a+ c ˆ a for all a, b, c P R.

We usually omit ˆ if no ambiguity occurs.

• If ˆ is commutative, then R is called a commutative ring.

• If R has an element, denoted by 1, such that 1 ˆ a = a = aˆ 1 for all a P R, then R is called a ring
with identity (or unity).

Let R be a ring with identity.

1. If for all a P R and a ‰ 0, there’s b P R such that ab = ba = 1, then R is called a division ring, and
such a b is denoted by a´1, called the multiplicative inverse of a.

2. If R is a noncommutative division ring, then R is a skew field.

3. If R is a commutative division ring with 0 ‰ 1, then R is a field.

Remark. If French, corps means field. But in mathematics, corps means division ring while corps com-
mutatif means field.

Example 2.1.1.

1. Let R be any abelian group and define ˆ on R by setting aˆ b = 0 for all a, b P R. Then R becomes
a ring, called a trivial ring.

2. R = t0u is the only ring such that 1 = 0.

3. Z,Q,R,C are commutative rings; Q,R,C are fields.

4. Z/nZ is a commutative ring; it’s a field ô n is a prime.

5. Let H := ta+ bi+ cj + dk | a, b, c, d P Ru, where H stands for Hamilton. Define + on H componen-
twise and ˆ by expanding directly via distributive law such that

• i2 = j2 = k2 = ´1; (´1)2 = 1
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• ij = k = ´ji; jk = i = ´kj; ki = j = ´ik

Then H is a noncommutative ring, called the ring of real Hamilton Quaternions.

Proof. If α = a + bi + cj + dk, let α := a ´ bi ´ cj ´ dk, the quaternionic conjugate. Then
αα = a2 + b2 + c2 + d2 P Rě0 and αα = 0 ô α = 0, and hence α´1 =

1

αα
α.

6. Mn (Z) ,Mn (Q) ,Mn (R) ,Mn (C) are rings with identity.

7. 2Z is a commutative ring without identity.

8.
#(

a b

´b a

)
| a, b P R

+

is a field, isomorphic to C.

9. The set of real-valued continuous functions defined on [0, 1] is a commutative ring with identity. The
set of real-valued continuous functions with compact support defined on [0, 1] is a commutative ring
without identity.

Proposition 2.1.2. Let R be a ring and a, b P R.

1. 0a = a0 = 0.

2. (´a)b = a(´b) = ´(ab), where ´a denotes the additive inverse of a.

3. (´a)(´b) = ab.

4. The multiplicative identity, if exists one, is unique.

Definition. Let R be a ring.

1. A nonzero element a P R is a zero divisor if there’s 0 ‰ b P R such that ab = 0 or ba = 0.

2. Let R be a ring with identity 1 ‰ 0. An element u P R is an unit if there’s v P R such that
uv = 1 = vu. The set of all units in R is denoted by Rˆ.

Remark 2.1.3.

1. Rˆ is automatically a multiplicative group, and is called the group of units of R.

2. A zero divisor is not a unit.

3. The definition of a division ring can be rephrased as a ring with identity such that all nonzero
elements are units.
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Example 2.1.4.

1.
(
0 1

0 0

)
P M2 (Q) is a zero divisor. In fact, a matrix A P M2 (Q) is a zero divisor ô detA = 0, and

is a unit ô detA ‰ 0.

2. In Z/nZ, ā ‰ 0 is a zero divisor ô gcd(a, n) ‰ 1, and is a unit ô gcd(a, n) = 1.

3. Let D ‰ 1 be a square-free integer. Q
(?

D
)
:=

␣

a+ b
?
D | a, b P Q

(

is a field, and
(
a+ b

?
D
)´1

=

a ´ b
?
D

a2 ´ b2D
.

Definition. A commutative ring with identity is said to be an integral domain if it possesses no zero
divisor.

Proposition 2.1.5 (Cancellation laws). Let R be a ring. If 0 ‰ a P R is not a zero divisor, then
ab = ac ñ b = c and ba = ca ñ b = c. In particular, if R is an integral domain, then the cancellation laws
holds.

Corollary 2.1.5.1. A finite integral domain is a field.

Remark 2.1.6. If R is a finite ring with identity having no zero divisor, then R is a division ring. Also,
a theorem of Wedderburn shows that a finite division ring is commutative, and hence a field.

Definition. A subset S of R is said to be a subring if S is an additive subgroup of R that is closed under
multiplication. We denote the subring relation by S ď R.

Example 2.1.7.

1. Z ď Q ď R ď C.

2. nZ ď Z.

3. Z+ Zi+ Zj + Zk ď H.

4. Z+ Zi+ Zj + Z
1 + i+ j + k

2
ď H.

Example 2.1.8. [The ring of quadratic integers] Let D ‰ 1 be a square-free integer. Let

O :=
!

a+ b
?
D P Q

(?
D
)

| a+ b
?
D is a root of some monic polynomial in Z[x]

)

.

Exercise. O =

$

&

%

Z+ Z
?
D if D ”4 2, 3

Z+ Z
1 +

?
D

2
if D ”4 1
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Solution. Let a+ b
?
D P O. Then x2 ´ 2ax+ (a2 ´ b2D) P Z[x]. Let a =

m

2
, m P Z. Then

a2 ´ b2D P Z ô m2 ´ (2b)2D P 4Z

Let b = n

2
, n P N. Then it’s equivalent to m2 ´ n2D P 4Z. Assume that D ” 2, 3 mod 4. Then m,n must

be even since an odd square equal 1 modulo 4. This proves the first case. Now assume D ” 1 mod 4. Then
m,n share the same parity and m,n can be even or odd. This proves the second case............................

O is called the ring of integers in Q
(?

D
)
.

• In the case D = ´1, the ring O = Z[i] is called the ring of Gaussian integers.

• Define the norm function N on O by N
(
a+ b

?
D
)
=
(
a+ b

?
D
) (
a ´ b

?
D
)
= a2 ´ b2D.

˛ N(αβ) = N(α)N(β)

˛ α P O is a unit ô N(α) = ˘1.

Proof. (ð) N
(
a+ b

?
D
)
= ˘1 ñ

(
a+ b

?
D
)´1

= ˘
(
a ´ b

?
D
)

P O. (check if D ”4 1)
(ñ) If a+ b

?
D is a unit, so is a´ b

?
D (check !), and thus

(
a+ b

?
D
) (
a ´ b

?
D
)

P Z is a unit.
Hence N

(
a+ b

?
D
)
= ˘1.

• When D ă 0, Oˆ is finite.

1. (D = ´2) N(a+ b
?

´2) = a2 + 2b2 = 1 ô b = 0, a = ˘1.

2. (D = ´1) Oˆ = t˘1,˘iu (a2 + b2 = 1).

3. (D = ´3) Oˆ = texp kπi
3

| k = 0, . . . , 5u (a2 + ab+ b2 = 1).

• When D ą 0, Oˆ = t˘1u ˆ xεy for some 0 ă ε P O, called the fundamental unit.

˛ D = 2 ; ε = 1 +
?
2.

˛ D = 3 ; ε = 2 +
?
3.

˛ D = 5 ; ε =
1 +

?
5

2
.

˛ D = 6 ; ε = 5 + 2
?
6.

˛ D = 31 ; ε = 1520 + 271
?
31.

˛ D = 46 ; ε = 24335 + 3588
?
46.

˛ D = 65 ; ε = 8 +
?
65.

˛ D = 67 ; ε = 48842 + 5967
?
67.
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˛ D = 94 ; ε = 2143295 + 221064
?
94.

Remark 2.1.9. The determination of ε is closely related to Pell’s equation x2 ´Dy2 = 1. It was studied
extensively in the 7-th century in India by Brahmagupta, who also studied Pythagorean triples. Finding
ε can be done using continued fraction.

2.1.1 Polynomial rings
Let R be a ring and x an indeterminate. A formal sum

p(x) = anx
n + ¨ ¨ ¨ + a1x+ a0, aj P R

is called a polynomial in X with coefficients in R.

• If an ‰ 0, n is called the degree of the polynomial p, denoted by deg p, and an is called the leading
coefficient.

• If an = 1, p is said to be monic.

• If aj = 0 @j ą 0, then p is called a constant polynomial; if a0 ‰ 0, deg p = 0, and if a0 = 0, a
zero polynomial 0, we define deg 0 := ´8.

• The set of all polynomials in x with coefficients in R is denoted by R[x].

• Define + and ˆ on R[x] by
n
ÿ

i=0

aix
i +

n
ÿ

i=0

bix
i :=

n
ÿ

i=0

(ai + bi)x
i(

n
ÿ

i=0

aix
i

)(
n
ÿ

i=0

bix
i

)
:=

2n
ÿ

k=0

(
k
ÿ

i=0

aibk´i

)
xk

Under such + and ˆ, R[x] becomes a ring, called the polynomial ring.

Proposition 2.1.10. Let R be a ring.

1. If R is commutative, then so is R[x].

2. If R has an identity, then so does R[x].

3. Assume R is a integral domain and p, q P R[x]. Then

(a) deg pq = deg p+ deg q.
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(b) (R[x])ˆ = Rˆ.

(c) R[x] is an integral domain.

Example 2.1.11. In the case R = Z/4Z, 2(2x+ 2) = 0 and (2x+ 1)2 = 1.

2.1.2 Matrix rings
Let R be a ring and Mn(R) the set of all n ˆ n matrices with entries all from R. Defined + and ˆ by

(aij) + (bij) = (aij + bij)

(aij) ˆ (bij) = (
n
ÿ

k=1

aikbkj)

Then Mn(R) is a ring under such + and ˆ, called the matrix ring.

• In general Mn(R) is not commutative, even R is commutative.

• In general Mn(R) has zero divisors.

• A matrix of the form


a 0 ¨ ¨ ¨ 0

0 a ¨ ¨ ¨ 0
...

...

0 0 ¨ ¨ ¨ a

 is called a scalar matrix.

• If R is commutative, then scalar matrices commute with every element in Mn(R). Moreover, if R
has identity, the center of Mn(R) is exactly the set of all scalar matrices. (HW. 13)

• If R has an identity, then


1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...

0 0 ¨ ¨ ¨ 1

 is the identity of Mn(R).

• Assume that R has an identity. The group of units of Mn(R) are denoted as GLn (R), called the
general linear group of degree n over R.

• If S ď R, then Mn(S) ď Mn(R).

• tupper (lower) triangular matricesu ď Mn(R).

Remark. If R is commutative, we may define determinant as usual. Then A P GLn(R) ô detA P Rˆ.
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2.1.3 Group rings
Let R be a ring and G a group. Let

RG :=
!

ÿ

gPG

agg | ag = 0 for all but finitely many g P G
)

with + and ˆ defined by
ÿ

gPG

agg +
ÿ

gPG

bgg :=
ÿ

gPG

(ag + bg)g(
ÿ

gPG

agg

)(
ÿ

gPG

bgg

)
:=

ÿ

gPG

(
ÿ

hh1=g

ahbh1

)
g

Then RG is a ring under + and ˆ, called a group ring.

Remark. Some people also call it a group algebra, especially when R is a field. The notion of group rings
appears naturally in the group representation theory.

• If R has an identity, then RG has an identity 1R1G.

• If R is commutative, then r1G commutes with every element in RG. More generally, let C be a
conjugacy class of G with finite elements. Then

ř

gPC
rg is in the center of RG. In fact, under some

suitable condition like, for instance, R is a commutative ring with identity 1 and G is a finite group,
every element in the center of the RG is a linear combination of such sums. (HW. 13)

• If R is commutative and G is abelian, then RG is commutative.

• If |G| ą 1, then RG in general has zero divisors. For instance, if g has order m ě 2, then

(1G ´ g)(1Gg + ¨ ¨ ¨ + 1Gg
m´1) = 1G ´ gm = 0

• Be careful with confusion arising from notation. For example, in QQ8, the element 1 ¨1+1 ¨(´1) ‰ 0,
while in H, 1 ¨ 1 + 1 ¨ (´1) = 0.
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2.2 Ring Homomorphisms and Quotient Rings
Definition. Let R and S be rings.

1. A ring homomorphism from R to S is a function φ : R Ñ S such that φ(a+ b) = φ(a)+φ(b) and
φ(ab) = φ(a)φ(b) for all a, b P R.

2. The kernel of φ is defined to be the set kerφ := tr P R | φ(r) = 0u.

3. If φ is bijective, then φ is called an isomorphism. In such a case, we write R – S.

Example 2.2.1.

1. Z Z/nZ

x x

is a ring homomorphism with kernel nZ.

2. Z nZ
x nx

is not a ring homomorphism unless n = 0 or 1.

3. Let R be a commutative ring and a P R. Then
R[x] R

f(x) f(a)

is a ring homomorphism, called

an evaluation homomorphism at a.

Proposition 2.2.2. Let φ : R Ñ S be a ring homomorphism.

1. φ(R) ď S.

2. kerφ ď R. Moreover, a kerφ, (kerφ)a Ď kerφ @a P R.

Discussion 2.2.3. Let I ď R be a subring and R/I be the set of all (left) cosets of I in R. We know that

(r + I) + (s+ I) := (r + s) + I

is well-defined on R/I. Then when will

(r + I)(s+ I) := rs+ I

be well-defined? We first find its necessary condition. Suppose that it’s well-defined. In particular, we
must have for all s P I and r P R

rs+ I = (r + I)(s+ I) = (r + I)(0 + I) = 0 + I
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implying rs P I for all s P I and r P R, i.e, rI Ď I for all r P R. Likewise, Ir Ď I for all r P R.
We’ll show that this turns out to be sufficient as well. Suppose rI, Ir Ď I for all r P R. Now if r1+I = r2+I

and s1 + I = s2 + I, i.e, r1 = r2 + a and s1 = s2 + b for some a, b P I, then

(r1 + I)(s1 + I) = ((r2 + a) + I)((s2 + b) + I) = (r2 + a)(s2 + b) + I = r2s2 + I

where the last equality results from the assumption that rI, Ir Ď I. We conclude our discussion as the
following proposition.

Proposition 2.2.4. Let I ď R. (r + I, s + I) ÞÑ rs + I is well-defined if and only if rI, Ir Ď I for all
r P R. If at least one of them holds, then R/I is a ring under + and ˆ defined before.

Definition. Let I ď R be a subring.

1. If rI Ď I (resp. Ir Ď I) for all r P R, then I is called a left (resp. right) ideal of R.

2. If I is both a left ideal and right ideal, then I is called an ideal of R. We denote this relation as
I �R.

3. If I is an ideal of R, then R/I is called the quotient ring of R by I.

Example 2.2.5.

1. t0u, R�R.

2. nZ� Z.

3. If φ is a ring homomorphism from R, then kerφ � R. Conversely, any ideal is the kernel of some
ring homomorphism.

4. In R =M2(Q),
#(

a b

0 0

)
| a, b P Q

+

is a right ideal but not a left ideal, while
#(

a 0

b 0

)
| a, b P Q

+

is a left ideal but not a right ideal.

5. R = Q[x]. For a P Q, define
φa : R[x] R

f(x) f(a)

. Then

kerφa = tf P Q[x] | f(a) = 0u = t(x ´ a)g(x) P Q[x] | g P Q[x]u

In general, if R is a commutative ring, then for all a P R, (a) := tra | r P Ru is an ideal, called the
principal ideal generated by a.
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6. R = Q[x]. Following the notation above, we have

kerφ?
´1 =

␣

(x2 + 1)g(x) P Q[x] | g P Q[x]
(

.

By the first isomorphism theorem, we have

Q[x]
/
(x2 + 1) – Q[

?
´1] =

␣

a+ b
?

´1 | a, b P Q
(

.

Likewise, the kernel of φ´
?

´1 is also (x2+1), and hence again Q[x]
/
(x2+1) – Q[

?
´1]. Combining

these two isomorphisms, we obtain an automorphism a + b
?

´1 ÞÑ a ´ b
?

´1 of Q[
?

´1]. This is
the starting point of the Galois theory.

7. Q[x]
/
(x2) has zero divisors, even though Q[x] is an integral domain.

8. If I �R is an ideal, then Mn(I)�Mn(R). Moreover, Mn(I) is the kernel of the canonical projection
Mn(R) Ñ Mn(R/I). In fact, all ideals of Mn(R) are of this form. (HW. 14)

9. Let R be a ring and G a group. We have the ring homomorphism
ř

rgg ÞÑ
ř

rg. The kernel of this
homomorphism is called the augmentation ideal.

Theorem 2.2.6 (Isomorphism theorems). Let R,S be two rings.

1. If φ : R Ñ S is a ring homomorphism, then R
/

kerφ – Imϕ.

2. If A ď R and B �R, then A+B

B
–

A

A X B
.

3. If I, J �R and I ď J , then R/I

J/I
–
R

J
.

4. If I�J , then there’s a natural bijection between tS ď R | I ď Su and tS ď R/Iu. Moreover, there’s
a natural bijection between tS �R | I ď Su and tS �R/Iu as well.

Definition. Let I, J �R. Define

I + J := ta+ b | a P I, b P Ju and IJ :=

#

n
ÿ

i=1

aibi | ai P I, bj P J, n P N

+

Remark 2.2.7. The set tab | a P I, b P Ju may not be closed under +.

• I = t2p(x) + xq(x) | p, q P Z[x]u. We have 4, x2 P tpq | p, q P Iu but 4 + x2 R tpq | p, q P Iu.

• R = Z[
?

´6], I = (5, 2 +
?

´6) and J = (2,
?

´6). We have

2 +
?

´6 = 5
?

´6 ´ (2 +
?

´6) ¨ 2 ´ (2 +
?

´6)
?

´6 P IJ

but 2 +
?

´6 fails to be of the form ab, a P I, b P J .
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2.2.1 Ideals
Definition. Let A Ď R.

1. (A) :=
Ş

tI �R | A Ď Iu is the smallest ideal containing A, also called the ideal generated by
A. Likewise, the left and right ideals generated by A are similarly defined.

2. An ideal generated by a singleton is called a principal ideal.

3. An ideal is said to be finitely generated if it’s generated by a finite set.

Proposition 2.2.8. Let R be a ring with identity 1 ‰ 0. Then

the left ideal generated by A is RA :=

"

n
ř

i=1

riai | ri P R, ai P I, n P N
*

the right ideal generated by A is RA :=

"

n
ř

i=1

aisi | si P R, ai P I, n P N
*

the ideal generated by A is RAR :=

"

n
ř

i=1

riaisi | ri, si P R, ai P I, n P N
*

Remark 2.2.9. Note that the proposition doesn’t hold in general if R has no identity. For example, when
R = 2Z and A = t2u, (A) = R but RAR = 8Z.

• In general, in the case of commutative rings, when people speak of the ideal generated by A, they
usually refer to RA, rather than the smallest ideal containing A.

• If R is commutative with identity, then the principal ideal generated by tau is Ra = tra | r P Ru.

However, if R is noncommutative, it’s
"

n
ř

i=1

riasi | ri, si P R, i P N
*

.

Example 2.2.10.

1. t0u = (0) and R = (1) are principal if R has identity 1 ‰ 0.

2. If R = Z, then every ideal is principal since all subgroups of Z is of the form nZ.

3. If G is a finite group and R is a commutative ring with 1, then the augmentation ideal is generated
by the set tg ´ 1 | g P Gu. This may not be the minimal set of generators; for example, if G = xσy,
then the augmentation ideal is a principal ideal with generator σ ´ 1.

4. R = Z[
?

´6]. I = (2,
?

´6) is not principal.
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Proof. Suppose otherwise I = (a). Then 2 = ab,
?

´6 = ac for some b, c, and thus

4 = N(2) = N(a)N(b), 6 = N(
?

´6) = N(a)N(c)

where N(a+ b
?

´6) = a2 + 6b2 is the norm function. Then N(a) = 1, 2 since they’re integers.

• N(a) = 1 ñ a = ˘1, a contradiction since 1 R (2,
?

´6).

• N(a) = 2. No such a exists in Z[
?

´6].

5. R = Z[x]. I = (2, x) = t2p(x) + xq(x) | p, q P Z[x]u is not principal.

Proof. If I = (a), then a must be a constant polynomial, a contradiction.

Remark 2.2.11. In Chapter 9, we’ll see that if F is a field, then every ideal in F[x] is principal.

Proposition 2.2.12. Let R be a ring with identity and I �R.

1. I = R ô I contains a unit.

2. Assume that R is commutative. Then R is a field ô the only ideals of R are t0u and R.

3. Assume that R is an integral domain and a, b P R. Then Then (a) = (b) ô a = ub for some unit u.

Corollary 2.2.12.1. If F is a field, then any nontrivial ring homomorphism from F must be injective.

Remark 2.2.13. For noncommutative ring R, we still have that if R is a division ring, then R has only
two ideals t0u and R. However, the converse may not hold in general. For example, if F is a field and
n ě 2, then Mn(F) has only two ideals since an ideal must be of the form Mn(I), I � F but Mn(F) is not
a division ring.

Definition. An ideal I of a ring R is said to be a maximal ideal if the only ideal containing I are I and
S.

Corollary 2.2.13.1. Let R be a commutative ring with identity and I �R. Then R/I is a field ô I is a
maximal ideal.

Proof. This follows from Proposition 2.2.12 and the fourth isomorphism theorem.

Remark 2.2.14. If R has no identity, R/I may not be a field for a maximal ideal I. For example, R = 2Z
and I = 4Z but R/I is a trivial ring, i.e, ab = 0 for all a, b P R/I.
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Proposition 2.2.15. Let R be a ring with identity. Then every proper ideal I is contained in some
maximal ideal.

Proof. The proof is based on the Zorn’s lemma. Let A := tall proper ideals of R containing Iu. If suffices
to check if C is a chain in A, then C has an upper bound in A. Let J =

Ť

SPC
S. We claim J P A and S ď J

for all S P C. The latter is triviality. For the former, 1 R J since each S P C is proper, and that it’s an
ideal is obvious.

Remark 2.2.16. If R does not have identity, then R may not have a maximal ideal. For example R = Q
with ˆ defined by ab = 0 for all a, b P Q. Then Q has no identity and every additive group is an ideal.
However, every proper additive subgroup is contained in another proper subgroup.

Example 2.2.17.

1. nZ is a maximal ideal ô Z/nZ is a field ô n is a prime.

2. (2, x) is a maximal ideal of Z[x] since Z
/
(2, x) – Z/2Z.

(x) is not a maximal ideal since Z[x]/(x) – Z is not a field.

3. Let F be a field and G a group. Let I denote the augmentation ideal of FG. Then I is maximal
since FG/I – F is a field, where the isomorphism comes from the fact that I = ker (

ř

agg ÞÑ
ř

ag)

is the kernel of a surjective homomorphism from FG to F. Notice that in this example G can be
even non-abelian, FG is not commutative and has zero divisors.

Definition. A commutative ring with identity 1 ‰ 0 is called a local ring if it has a unique maximal
ideal I, and R/I is called the residue field of R.

Proposition 2.2.18. Let R be a commutative ring with identity.

1. I ‰ (1) is an ideal of R such that every element of R ´ I is a unit in R if and only if R is a local
ring and I is the maximal ideal.

2. If I is a maximal ideal such that every element of 1 + I is a unit in R, then R is a local ring.

Proposition 2.2.19. (HW. 15) Let R be a commutative ring with identity. TFAE:

1. R is a local ring

2. R ´ Rˆ is an ideal of R

3. for any x P R, either x or 1 ´ x is a unit
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Question 2.2.20. When is R/I an integral domain?

Definition. Let R be a commutative ring. We say I �R is a prime ideal if it’s a proper ideal such that
@a, b P R [ab P I ñ a P I _ b P I].

Proposition 2.2.21. Let R be a commutative ring with identity 1 ‰ 0 and I�R. Then R/I is an integral
domain ô I is a prime ideal.

Proof.

Integral domain ô @a, b P R [(a+ I)(b+ I) = 0 ñ a+ I = 0 _ b+ I = 0]

ô @a, b P R [ab P I ñ a P I _ b P I]

Example 2.2.22.

1. R = Z. nZ is a prime ideal ô n = 0 or n is a prime.

2. A principal ideal domain is an integral domain in which every ideal is principal. Then in such a
ring every non-zero prime ideal is maximal.

Proof. Let (x) ‰ 0 be a prime ideal and (y) Ľ (x). Then x P (y), i.e, x = yz for some z. Thus
yz P (x). Since y R (x), z P (x), say z = tx. Hence x = yz = ytx, implying yt = 1, i.e, (y) = (1).

3. Note that t0u ň pZ are both prime ideals. In general, unlike maximal ideals, a prime ideal can by
properly contained in another prime ideal.For example, R = Q[x1, . . . , xn]. Then

(0) ă (x1) ă (x1, x2) ă ¨ ¨ ¨ ă (x1, . . . , xn)

Each of ideals in the sequence is a prime ideal since Q[x1, . . . , xn]
/
(x1, . . . , xj) – Q[xj+1, . . . , xn] is

an integral domain.

Remark 2.2.23. In general, if R is an integral domain, we define the Krull dimension to be the largest
number of inclusions in a chain of prime ideals. This gives us a way to define the dimension of an algebraic
variety.

Definition. An element x in a ring is nilpotent if xn = 0 for some n P N.

Proposition 2.2.24. Let R be a commutative ring with 1 ‰ 0. The set, denoted by
?
0, of all nilpotent

elements in R is an ideal (HW. 13), and R/
?
0 contains no nonzero nilpotent elements.
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Definition. The ideal
?
0 is called the nilradical of R.

Proposition 2.2.25. The nilradical of a commutative ring R with 1 ‰ 0 in the intersection of all the
prime ideals of R.

Proof. Let x be nilpotent and I any prime ideal. Since xn = 0 P I for some n P N, x P I since I is prime.
We next prove the reverse inclusion. Suppose x is not nilpotent. Let Σ denote the set of ideals with the
property

n P N ñ xn R I

Σ is not empty since 0 P Σ. By the Zorn’s lemma to the set Σ, ordered by inclusion, Σ has a maximal
element, denoted by J . We will show J is a prime ideal. Let a, b R J . Then (a) + J, (b) + J Ľ J so they’re
not in Σ. Hence

xn P (a) + J, xm P (b) + J

for some n,m P N, and thus xm+n P (ab) + J . This means (ab) + J R Σ, i.e, ab R J . Hence J is a prime
ideal such that x R J .

Definition. Let R be a commutative ring with 1 ‰ 0. The Jacobson radical Jac(R) is the intersection
of all maximal ideals of R.

Proposition 2.2.26. Let R be a commutative ring with 1 ‰ 0. x P Jac(R) ô 1´ xy is a unit in R for all
y P R.

Proof. (ñ) Suppose 1´xy is not a unit, then it’s contained in a maximal ideal, say I. Since x P I, xy P I,
and thus 1 P I, a contradiction.
(ð) Suppose x R I for some maximal ideal I. Then (x, I) = (1), and thus xy+ t = 1 for some y P R, t P I,
implying that t = 1 ´ xy P I is not a unit.

Theorem 2.2.27 (Nakayama’s lemma). Let R be a commutative ring with 1 ‰ 0 and M a finitely
generated R-module. Put J = Jac(R). If M = IM for some I � J , then M = 0.

Proof. Let M = xa1, . . . , anyR. Since ai P IM , ai =
řn
j=1 rijaj for some rij P I. Put A := (rij) P Mn(I)

and a := (a1 a2 ¨ an)
t. Then we have Aa = a, i.e, (A ´ I)a = 0. Put B = A ´ I. Then

detB ¨ Ia = adjB ¨ Ba = 0

i.e, (detB)ai = 0 for each i. Note that detB = χA(1) = ˘1 + r for some r P I Ď J , so detB P Rˆ by
Proposition 2.2.26. Hence ai = 0 for each i.
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2.2.2 Rings of Fractions
Goal 2.2.28. Let R be a commutative ring. Construct a larger ring Q ě R such that every nonzero
non-zero divisor element in R has an inverse of Q (R = Z, Q = Q, for instance).

Observation 2.2.29. Let S = tb P R | b ‰ 0 and is not a zero divisoru and b P S. If Q contains b´1, then
it also contains ab´1 for all a P R to be a ring. Thus a natural setting for defining Q is

A := t(a, b) P R ˆ Su

Now bb´1 should be the identity of Q as we imagine. Thus we should identify (b, b) with (d, d). More
general, if ab´1 = cd´1, i.e, ad = bc, we should identity (a, b) with (c, d). Accordingly, we define „ on A by

(a, b) „ (c, d) ô ad = bc

This is an equivalence relation. Let Q := A / „ and denote the equivalence class of (a, b) as a
b
. Define +

and ˆ on Q by

a

b
+
c

d
:=

ad+ bc

bd
a

b
ˆ
c

d
:=

ac

bd

Then Q is made into a ring and
R Q

a
ae

e

is an canonical injective ring homomorphism for each e P S.

Thus R can be regarded as a subring of Q and every nonzero non-zero divisor element be

e
of R has an

inverse e

be
.

Definition. The ring Q constructed is called the ring of fractions of R. In the case when R is an integral
domain, then Q is a field, called the field of fractions.

Example 2.2.30. The following are some examples of rings and their rings of fractions.

R Q

Z Q
Z[

?
D] Q[

?
D]

2Z Q
F[x] F(x)
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More generally, we may construct Q ě R such that a particular subset of R has an inverse in Q. Namely,
let D Ď R such that a) it does not contain 0 nor zero divisor of R and b) is closed under multiplication.
Then we can construct a ring, denoted by D´1R := (R ˆ D)

/
„, in which every element of D has an

inverse.

Theorem 2.2.31. D´1R is the smallest commutative ring with identity containing R as a subring such
that every element in D is a unit, in the sense of the following universal property:

• Let S be any commutative ring with identity and φ : R Ñ S any injective ring homomorphism such
that φ(d) is a unit in S for all d P D. Then there’s an injective ring homomorphism Φ : D´1R Ñ S

extending φ.

D´1R Q

ö

R

D Φ

φι

Proof. The injection from R to D´1R is given by

ι : R D´1R

a
ae

e

where e is any element of D. Since ae
e

=
ad

d
for all d, e P D, ι does not depend on the choice of e.

• ι is a ring homomorphism since D is multiplicative closed.

• ι is injective since D does not contain 0 nor zero divisor.

Via ι, we may view R as a subring of Q. We are ready perfectly to show the universal property. Let
φ : R Ñ S be an injective homomorphism such that φ(d) is a unit P S for all d P D. Define Φ : D´1R Ñ Q

by sending rd´1 to φ(r)φ(d)´1 for all r P R, d P D.

• Φ is well-defined and is an extension of φ.

• Φ is a ring homomorphism.

• Φ is injective.
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• φ = Φ ˝ ι.

Definition. Let F be a field and A Ď F. The subfield generated by A is the intersection of all subfields
of F containing A, i.e, the smallest subfield containing A.

Corollary 2.2.31.1. Let R be an integral domain and Q the field of fractions of R. If a field F contains
a subring R1 isomorphic to R, then the subfield generated by R1 is isomorphic to Q.

Proof. Let φ : R – R1 Ď F be a ring isomorphism from R to R1. Then φ is an injective homomorphism
from R into F. Then by Theorem 2.2.31, there’s an injective ring homomorphism Φ : Q Ñ F extending φ.
Note that every subfield containing R1 = φ(R) contains the elements of the form φ(rs´1) for all r, s P R and
every element of Φ(Q) – Q is of the same form as R1. Hence Φ(Q) is exactly the subfield of F generated
by R1.

Example 2.2.32.

1. R = Z, D = t1, 2, 22, . . .u. D´1R = Z[
1

2
].

2. R = Z, D = tall odd integersu. D´1R =
!a

b
P Q | b is odd

)

. It has a unique maximal ideal (2).

Example 2.2.33. More generally, if R is an integral domain and P is a prime ideal, then D := R ´ P

has no 0 and zero divisor and is closed under multiplicative. Then D´1R is a local ring with the unique
maximal ideal generated by P . This process is called the localization of R at P .

2.2.3 Chinese Remainder Theorem
Recall the Chinese remainder theorem:

• If gcd(m,n) = 1, the congruence equations

x ” a (mod m)

x ” b (mod n)

is solvable in Z for all a, b P Z.

Observe that the condition gcd(m,n) = 1 is equivalent to mZ + nZ = Z. Now we give a generalized
version.

Theorem 2.2.34 (Chinese remainder theorem). Let R be a commutative ring with identity 1 ‰ 0 and
I1, I2, . . . , In be ideals in R.
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1. The map
ϕ : R R/I1 ˆ ¨ ¨ ¨ ˆ R/In

r (r + I1, . . . , r + In)

is a ring homomorphism with kerϕ =
Şn
i=1 Ii.

2. If Ii + Ij = R for all i ‰ j, then ϕ is surjective and
Şn
i=1 Ii = I1I2 ¨ ¨ ¨ In.

Proof.

1. A straightforward computation.

2. We prove this for n = 2. Assume that I1 + I2 = R. Since 1 P R, 1 = x + y for some x P I1, y P I2.
Observe that ϕ(x) = (x+I1, x+I2) = (0+I1, x+I2) = (0, 1) and ϕ(y) = (1, 0). Thus for all r1, r2 P R,
we have ϕ(r1y + r2x) = (r1 + I1, r2 + I2), demonstrating the surjectivity of ϕ. We next show the
second statement. It’s clear that I1I2 Ď I1 X I2. Let a P I1 X I2. Then a = a ¨ 1 = ax + ay P I1I2.
Hence I1I2 = I1 X I2. The general case follows once I1 + I2 ¨ ¨ ¨ In = R is established.

Corollary 2.2.34.1. If n = pe11 ¨ ¨ ¨ pekk , then

Z/nZ – Z/pe11 Z ˆ ¨ ¨ ¨ ˆ Z/pekk Z

as rings. In particular,
(Z/nZ)ˆ

– (Z/pe11 Z)ˆ
ˆ ¨ ¨ ¨ ˆ (Z/pekk Z)ˆ

as groups.
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2.3 Special Domains

2.3.1 Euclidean Domains
Recall the Euclidean algorithm for Z: to find gcd(a, b), b ą 0, we compute

a = q1b+ r1

b = q2r1 + r2

...

rn´2 = qn´1rn´1 + rn

rn´1 = qnrn + 0

with 0 ă rn ă rn´1 ă ¨ ¨ ¨ ă r2 ă r1 ă b and qi P Zě0. Then rn = gcd(a, b).

Discussion 2.3.1. Why does this work? It’s down to three properties:

1. On Z, there’s a function, namely the absolute value, taking values in Z that measures the size of an
element in Z.

2. (Division algorithm) @a, b‰0 P Z D q, r P Z [a = qb+ r ^ 0 ď r ă b].

3. Zě0 has a property that any strictly decreasing sequence in Zě0 must terminate in a finite stage.

Definition. Let R be integral domain.

1. A function N : Rzt0u Ñ Zě0 is called a norm.

2. R is called an Euclidean domain if there is a norm N on R such that for all a, b‰0 P R, there are
q, r P R with

• a = bq + r

• r = 0 or N(b) ą N(r).

Example 2.3.2. 1. Z with N(a) = |a|.

2. F[x] (F : a field) with N(f) = deg f (Note that N(0) := ´8).

3. Z[
?

´1] with N(a+ b
?

´1) = a2 + b2.

Proof. Let α, β‰0 P Z[
?

´1] be given. To find q, r P Z[
?

´1] such that α = qβ + r, we let q be a
lattice point closest to α

β
and let r := α ´ qβ. Then |q ´

α

β
|2 ď

1

2
, i.e, |r|2 = |α ´ qβ|2 ď

1

2
|β|2.
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4. Z[
´1 +

?
´11

2
], Z[

´1 +
?

´7

2
], Z[

´1 +
?

´3

2
], Z[

?
´2] are Euclidean domains with N being | ¨ |2.

(HW. 16)

5. Any discrete valuation ring R is a Euclidean domain with N(a) := ν(a).

Proof. Given a, b‰0 P R, if ν(b) ą ν(a), then a = 0 ¨ b+ a; if ν(b) ď ν(a), then take q = ab´1 P R, i.e,
a = qb.

6. Any field is a Euclidean domain with N(a) = 0 for all a.

Proposition 2.3.3. Any ideal in an Euclidean domain R is principal.

Proof. Let N be the norm function associated with R. Let I � R. If I = (0), there’s nothing to prove.
Suppose I ‰ (0). Let b‰0 P I such that N(b) = mintN(r) | r P Iu. For any a P I, we have a = qb + r for
some q, r P R with r = 0 or N(b) ą N(r). Since r = a ´ qb P I, it forces that r = 0 since b has smallest
norm in I. Hence a = qb.

Example 2.3.4. 1. Z[x] is not an Euclidean domain since (2, x) is not principal.

2. Z[
?

´6] is not an Euclidean domain since (2,
?

´6) is not principal.

3. Z[
?

´5] is not an Euclidean domain since (3, 1 +
?

´5) is not principal.

Definition. Let R be a commutative ring and a, b P R with b ‰ 0.

1. If there’s a c P R such that a = bc, then we say b divides a, or a is a multiple of b, and write b | a.

2. A G.C.D. of a, b, if exists, is an element d P R such that d | a, b and d1 | d for all d1 such that d1 | a, b.
If it is the case, we write d = gcd(a, b), or simply d = (a, b).

Remark 2.3.5. Note that a G.C.D. may not exist in general. For example, R = Z[
?

´5], a = 6 and
b = 3(1 +

?
´5).

Proof. If d | a, b, then N(d) | N(a) = 36 and N(d) | N(b) = 54 by the multiplicativity of N , and thus
N(d) | 18. On the other hand, 3 | a, b and 1 +

?
´5 | a, b. If d is a G.C.D. of a, b, 9 = N(3) | N(d)

and 6 = N(1 +
?

´5) | N(d), and thus 18 | N(d). Therefore, N(d) = 18; however, in Z[
?

´5], there’s no
element of norm 18.

Remark 2.3.6. Let R be a Euclidean domain. Then (gcd(a, b)) = (a, b) given that a G.C.D. of a, b exists.
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Proof. Note b | a ô a P (b) ô (a) ď (b), so a G.C.D d of a, b satisfies (a), (b) ď (d), and thus (a, b) ď (d).
Also, if (a, b) ď (d1), then (d) ď (d1). Hence if d exists, (d) is the smallest principal ideal containing (a, b).
Since any ideal in a Euclidean domain is principal, the smallest principal ideal containing (a, b) is simply
(a, b) itself, and thus (d) = (a, b).

This somewhat shows that it’ll not cause confusion to denote gcd(a, b) by (a, b).

Remark 2.3.7. gcd(a, b), if exists, is unique up to a unit.

Remark 2.3.8. The Euclidean algorithm for Z is very fast, in the sense that the divisions required to
compute (a, b) is ď 5 ¨ (# of digits of the smaller one between a, b). Precisely, it’s less than

min
#

log a
log 1+

?
5

2

,
log b

log 1+
?
5

2

+

+ 1

Some books on continued fractions may mention this.

Proposition 2.3.9 (A criterion for showing a ring is not a Euclidean domain). Let R be an integral
domain and S Ď R zt0u. If R is an Euclidean domain, then there’s a b P R zS such that @ a P R D q, r P R

with 1) a = qb+ r and 2) r = 0 or r P S.

Proof. Let N be the associated norm. Let b P R zS such that b ‰ 0 and N(b) = mintN(a) | a P

R z(S Y t0u)u. Since R is an Euclidean domain, a = qb + r with r = 0 or N(b) ą N(r), which implies
r P S.

Example 2.3.10. R = Z[
1 +

?
´19

2
] is not a Euclidean domain (in fact R is PID).

Proof. Suppose otherwise R is a Euclidean domain. Choose S = t˘1u and let b be an element satisfying
the property in Proposition 2.3.9. Consider a = 2. Then b | 2 ´ r for r P t0,˘1u, i.e, b | 1, 2, 3, i.e,
N(b) | 1, 4, 9, where N is the usual norm on R. Since

N(x+ y
1 +

?
´19

2
) = x2 + xy + 5y2

that N(b) = 1, 4, 9 implies b = ˘1,˘2,˘3, where ˘1 are impossible since ˘1 P S.

Consider a =
1 +

?
´19

2
. However, none of a, a˘ 1 can be divisible by any of ˘2,˘3, and thus R is not a

Euclidean domain.
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2.3.2 Principal Ideal Domains
Definition. A principal ideal domain, or PID for short, is an integral domain in which every ideal is
principal.

Example 2.3.11. 1. Proposition 2.3.3 shows that a Euclidean domain is PID.

2. Z[x],Z[
?

´5],Z[
?

´5] are NOT PIDs.

3. Z[
1 +

?
D

2
] for D = ´3,´7,´11,´19,´43,´67,´163 and Z[

?
D] for D = ´1,´2 are PIDs.

Remark. N(x + y
1 +

?
´163

2
) = x2 + xy + 41y2. Consider f(n) = n2 + n + 41. Note f(n) is a prime

for n = 0, 1, . . . , 39. Some theorems in the algebraic number theory with the fact Z[
1 +

?
´163

2
] is a PID

imply that if p | n2 + n+ 41, then there’s an α P Z[
1 +

?
´163

2
] such that N(α) = p. We may check that

the smallest prime that N represents is 41. Thus, if f(n) ă 412 ´ 1, f(n) must be a prime.

Proposition 2.3.12. Let R be a PID, a, b‰0 P R and d P R such that (d) = (a, b). Then

1. d = gcd(a, b).

2. d = ax+ by for some x, y P R.

3. d is unique up to units.

Proof. See Remark 2.3.6.

Proposition 2.3.13. Every nonzero prime ideal in a PID is maximal.

Proof. Let (p) be a prime ideal and suppose (p) ď (a) � (1). Since p P (a), p = ab for some b, and thus
a P (p) or b P (p). If a P (p), (a) = (p). If b P (p), (b) = (p), implying a is a unit, and thus (a) = (1).

Corollary 2.3.13.1. If R is a commutative ring such that R[x] is a PID, then R is a field.

Proof. Since (x) is a prime ideal in R[x], (x) is maximal, i.e, R – R[x]/(x) is a field.

Proposition 2.3.14. Let R be a integral domain. If every prime ideal of R is principle, then R is a PID.
(HW. 16)

Proof.
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1° Let S := tI � R | I is not principalu. Suppose otherwise S ‰ H. Show S admits a maximal
element.

2° Let I P S be maximal. Let ab P I but a, b R I. Let Ia = (I, a), Ib = (I, b) and

J := tr P R | rIa Ď Iu

Show that Ia = (α) and J = (β) with I Ĺ Ib Ď J and IaJ = (αβ) Ď I.

3° If x P I, show x = sα for some s P J . Show I = IaJ is principal, which is a contradiction.

Proposition 2.3.15. Let R be a PID and D a multiplicative closed subset of R. Then D´1R is a PID.
(HW. 16)

Definition. A positive norm N on an integral domain is called a Dedekind-Hasse norm if N(0) = 0

and for all a, b‰0 P R, either a P (b) or there’s a c P (a, b) such that 0 ă N(c) ă N(b).

Proposition 2.3.16. R is a PID if and only if R has a Dedekind-Hasse norm N .

Proof. (ð) Let (0) ‰ I �R and let 0 ‰ b P I such that N(b) = mintN(a) | a P I ´ t0uu. Then I = (b).
(ñ) Since R is a PID, R is a UFD. Define N : R Ñ Zě0 by N(0) = 0 and N(a) = 2n if a = up1 ¨ ¨ ¨ pn,
where pis are irreducibles and u is a unit. Clearly, we have N(ab) = N(a)N(b) and N is positive. Let
a, b‰0 P R. Since R is PID, (a, b) = (r) for some r P R. If a = qb for some q, then (r) = (a, b) = (b).
Otherwise, (b) ‰ (r). Since b P (r), b = xr for some non-unit t, and thus N(b) ą N(r).

Remark 2.3.17. The norm N constructed in the proof possesses more properties:

1. N(ab) = N(a)N(b)

2. N(a) = 0 ô a = 0

3. N(a) = 1 ô a is a unit.

2.3.3 Unique Factorization Domains
Recall the fundamental theorem of arithmetic: every positive integer has a unique prime factorization.
The notion of unique factorization domain, or UFD for short, generalizes this property of Z. Note
that there are two properties of primes that we use very often

1. p = ab ñ a or b is a unit ˘1.
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2. p | ab ñ p | a or p | b.

Definition. Let R be an integral domain and p P R z(Rˆ Y t0u).

1. p is called a irreducible if p = ab implies a or b is a unit, i.e, (p) = (a) or (b).

2. p is called a prime if p | ab implies p | a or p | b, i.e, (p) is a prime ideal.

3. If a, b P R satisfies a = ub for some unit u, then a, b are said to be associates.

Proposition 2.3.18. In an integral domain, a prime is an irreducible.

Proof. Let p be a prime and p = ab. Then a P (p) or b P (p). If a P (p), b is a unit. If b P (p), a is a
unit.

Example 2.3.19. In Z[
?

´5], 2, 3, 1 ˘
?

´5 are irreducibles but not primes.

Proof. If a = bc, then N(a) = N(b)N(c). Also, N(a) = 1 ô a is a unit. Since N(2) = 4, N(3) =

9, N(1˘
?

´5) = 6 but no element has norm 2 or 3, they’re all irreducibles. Since 2ˆ3 = (1+
?

´5)(1´
?

´5)

but 2, 3 ∤ 1 ˘
?

´5, they’re not primes.

Proposition 2.3.20. In a PID, an irreducible is a prime.

Proof. Let p be an irreducible. We will show that (p) is maximal. Let (p) ď (a) � (1). Then we have
p P (a), i.e, p = ab for some b. Since p is irreducible, a or b is a unit. If a is a unit, (a) = (1). If b is a unit,
(a) = (p).

Definition. A UFD is an integral domain R with the following properties: if r P R is not 0 nor a unit,
then

1. r can be written as a finite product of irreducibles.

2. the factorization is unique up to units and order in the sense that if r = p1 ¨ ¨ ¨ pm = q1 ¨ ¨ ¨ qn with
pi, qi irreducibles, then m = n and after renumbering, if necessary, pi = uiqi for some units ui.

Example 2.3.21. 1. All fields are UFDs.

2. PIDs are UFDs. Thus Z,F[x],Z[
?

´1] are UFDs.

3. If R is UFD, so is R[x]. Thus Z[x1, . . . , xn] and F[x1, . . . , xn] are UFDs.

4. Z[2i] is not a UFD since ˘2,˘2i are irreducibles, we have 4 = 2 ¨ ¨ ¨ 2 = (2i)(´2i) but 2 is not an
associates of ˘2i (˘i R Z[2i]). However, for elements with odd norm in Z[2i], the UF property still
holds
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5. Z[
?

´5] is not a UFD since 6 = 2 ¨3 = (1+
?

´5)(1´
?

´5). However, Z[
?

´5] still has a UF property
at the level of ideals in the following sense: every non-zero ideal in Z

?
´5] can be written uniquely

as a product of primes ideals.

(6) = (2, 1 +
?

´5)2
looooooomooooooon

P2

(3, 1 +
?

´5)
loooooomoooooon

P3

(3, 1 ´
?

´5)
loooooomoooooon

P31

One can check they’re all maximal and (2) = P 2
2 , (3) = P3P

1
3, (1 +

?
´5) = P3, (1 ´

?
´5) = P 1

3.
This UF property at the level of ideals is a property or a definition of a Dedekind domain.

Proposition 2.3.22. In a UFD, primes ô irreducibles.

Proof. (ð) Let p be an irreducible and ab P (p), i.e, ab = pt for some t. Let a = up1 ¨ ¨ ¨ pn and b = vq1 ¨ ¨ ¨ qm,
where pi, qi are irreducibles and u, v are units. By the uniqueness of the factorization, p must divide at
least one of pi, qi, and thus a P (p) or b P (p).

Proposition 2.3.23. Let R be a UFD and a, b‰0 P R. Suppose that a = upe11 ¨ ¨ ¨ penn and b = vpf11 ¨ ¨ ¨ pfnn ,
where pis are irreducibles and u, v are units. Then gcd(a, b) = p

minte1,f1u

1 ¨ ¨ ¨ p
minten,fnu
n .

Lemma 2.3.24 (Ascending chain condition for PIDs, ACC). Let R be PID. If I1 ď I2 ď ¨ ¨ ¨ is an
ascending chain of ideals in R, then there’s an N P N such that In = IN for all n ě N .

Proof. Let I =
Ť

k

Ik. This is clearly an ideal. Since R is PID, I = (a) for some a P R. Since a P I, a P IN

for some N P N, and thus I Ď In for all n ě N . The result follows.

Theorem 2.3.25. Every PID is a UFD.

Proof. We break the proof into three steps. Let r P R z(Rˆ Y t0u).

1° Show that r is divisible by some irreducible.

2° Show that r is a finite product of irreducibles.

3° Show that the factorization is unique.

1° If r is reducible, we are done. Otherwise, r = r1s1 for some r1, s1 P R z(Rˆ Yt0u). If r1 is irreducible,
we are done. Otherwise, continuing this process we will obtain r1, r2, . . .. Consider the chain

(r) ň (r1) ň (r2) ň ¨ ¨ ¨

where inequalities are due to that si are not units. By Lemma 2.3.24, this chain cannot go on for
good, and thus there’s an N P N such that rN is irreducible by our construction with rN | r.
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2° If r is irreducible, we are done. Otherwise, by 1°, r = r1s1 for some irreducible s1. If r1 is irreducible,
we are done. Otherwise, continuing this process we obtain r1, r2, . . .. Consider the chain

(r) ň (r1) ň (r2) ň ¨ ¨ ¨

By Lemma 2.3.24, this chain cannot go on for good, and thus there’s an N P N such that rN is
irreducible by our construction. Thus r = s1 ¨ ¨ ¨ sNrN .

3° Suppose r = p1 ¨ ¨ ¨ pn = q1 ¨ ¨ ¨ qm, where pi, qi are irreducibles, and hence primes by Proposition
2.3.20. Since p1 | q1 ¨ ¨ ¨ qm, WLOG, say p1 | q1, i.e, p1u1 = q1. Since q1 is irreducible, u1 is a unit.
Hence p2 ¨ ¨ ¨ pn = u1q2 ¨ ¨ ¨ qm. The proof will be completed by continuing this process.

Irreducibles/primes in Z[i]

Observation 2.3.26. In the following, by p we always denote a prime in Z.

1. If π P Z[i] has norm p, then π is an irreducible.

2. If π is a prime in Z[i], then (π)XZ = pZ for some p. In this case, we say π is a prime of Z[i] lying
above p.

• Case p = 2: 2 = (1 + i)(1 ´ i) and ˘1 ˘ i are associates of each other; (2) = (1 + i)2.

• Case p ”4 3: a2 + b2 = p has no solution in Z, implying that p is an irreducible in Z[i]; this also
implies that Z[i]/(p) is a field of p2 elements.

• Case p ”4 1: recall that (Z/pZ)ˆ is a cyclic group, i.e, (Z/pZ)ˆ = xay. for some a. Let n := a(p´1)/4.
Then n2 = a(p´1)/2. Since ord a = p ´ 1, a(p´1)/2 ”p ´1, i.e, (n + i)(n ´ i) = n2 + 1 ”p 0. Now
p | (n + i)(n ´ i) but p ∤ (n + i), (n ´ i), so p is not a prime in Z[i]. Hence p = (a + bi)(a ´ bi) for
some a, b P Z such that a2 + b2 = p; also note that a+ bi and a ´ bi are not associates.

Proposition 2.3.27. 1. p is a sum of two squares ô p = 2 or p ” 1 (mod 4).

2. Irreducibles in Z[i] are 1 + i, p(”4 3), a ˘ bi with norm p(”4 1) and their associates.

Corollary 2.3.27.1. Let n = 2ape11 ¨ ¨ ¨ pekk q
f1
1 ¨ ¨ ¨ qfmm , where pi ”4 1, qi ”4 3 are primes. Then n is a sum

of two squares ô 2 | fj for all j.
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2.4 Polynomial Rings
Proposition 2.4.1. Let R be an integral domain.

1. deg fg = deg f + deg g for all f, g P R[x].

2. R[x]ˆ = Rˆ.

3. R[x] is an integral domain.

Proposition 2.4.2. Let I � R and (I) = I[x]. Then R[x]/(I) – (R/I)[x]. In particular, if I is a prime
ideal, (I) is a prime ideal of R[x].

Proof. Consider the reduction homomorphism R[x] Ñ (R/I)[x].

Definition. Let x1, . . . , xn be indeterminates. The polynomial ring in variables x1, . . . , xn with
coefficients in R is defined inductively to be

R[x1, . . . , xn] := R[x1, . . . , xn´1][xn]

• A monomial is an element of [x1, . . . , xn] of the form xd11 ¨ ¨ ¨ xdnn .

• The degree of a nonzero polynomial is the largest degree of any of its monomial terms.

• A polynomial is said to be homogeneous if each of its monomial terms shares the same degree.

Theorem 2.4.3. Let F be a field. Then deg : F [x] Ñ Z is a Euclidean norm on F [x].

Corollary 2.4.3.1. If F is a field. Then F [x] is an Euclidean domain, and hence PID and UFD.

Remark 2.4.4. According to the proof of ED ñ PID, an ideal of F [x] is generated by a polynomial of
smallest degree in it.

Proposition 2.4.5. Let R be a commutative ring. Then R is a field ô R[x] is a PID.

2.4.1 Gauss’ lemma
Lemma 2.4.6 (Gauss’). Let R be a UFD and F be its field of fractions. If f P R[x] is reducible in F [x],
then it’s reducible in R[x]. More precisely, if f(x) = A(x)B(x) for some nonconstant A,B P F [x], then
there are r, s P Fˆ such that f(x) = a(x)b(x), where a = rA, b = sB P R[x].
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Proof. Let f(x) = A(x)B(x) for some nonconstant polynomials A,B P F [x]. Pick d1, d2 P R such that
a1(x) = d1A(x), b

1 = d2B(x) P R[x]; for instance, just take d1 and d2 to be LCMs of denominators of
coefficients in A and B, respectively. Put d = d1d2. Then df(x) = a1(x)b1(x). Since R is a UFD, we
have d = p1 ¨ ¨ ¨ pn for some irreducibles pj in R, and hence in R[x]. Since R[x]/pjR[x] – (R/(pj))[x]

is an integral domain, (pj) is a prime ideal in R[x]. Consider the reduction homomorphism modulo p1.
Then 0 ” df(x) = a1(x)b1(x) (mod p1), and hence a1 or b1 belongs to (p1). WLOG, say a1 P (p1). Then
a2(x) :=

1

p1
a1(x) P R[x]. Then p2 ¨ ¨ ¨ pnf(x) = a2(x)b1(x). Continuing this way and we will obtain

a, b P R[x] such that f(x) = a(x)b(x).

Corollary 2.4.6.1. Let R be a UFD and F be its field of fractions. Let f P R[x] such that 1 is a GCD of
its coefficients. Then f is irreducible in R[x] ô f is irreducible in F [x].

Proof. (ñ) follows from Lemma 2.4.6.
(ð) Suppose f is reducible in R[x]. Since 1 is a GCD of coefficients of f , f(x) = a(x)b(x) for some
nonconstant polynomials a, b P R[x], and hence f is reducible in F [x] with the same factorization.

Theorem 2.4.7. R[x] is a UFD ô R is a UFD.

Proof. (ñ) is clear.
(ð) Let F denote the field of fractions of R and put f(x) = p1(x) ¨ ¨ ¨ pn(x) a factorization of f(x) into a
product of irreducibles in F [x]. By Lemma 2.4.6, there are rj P Fˆ such that Pj(x) := rjpj(x) P R[x] and
f(x) = P1(x) ¨ ¨ ¨Pn(x). Let dj denote a GCD of coefficients of Pj(x) and put Qj(x) :=

1

dj
Pj. Then

f(x) = d1 ¨ ¨ ¨ dnQ1(x) ¨ ¨ ¨Qn(x)

Let d1 ¨ ¨ ¨ dn = s1 ¨ ¨ ¨ sm be a factorization of d1 ¨ ¨ ¨ dn into irreducibles in R, and hence in R[x]. Now

f(x) = s1 ¨ ¨ ¨ smQ1(x) ¨ ¨ ¨Qn(x)

Since 1 is a GCD of coefficients in Qj and Qj is irreducibles in F [x], Qj is irreducible in R[x] by Corollary
2.4.6.1. The uniqueness of the factorization follows from the UF property of R and F [x].

Corollary 2.4.7.1. If R is a UFD, so is R[x1, . . . , xn].

2.4.2 Irreducibility criteria
Proposition 2.4.8. Let F be a field and f P F [x].

1. f(x) has a factor x ´ α P F [x] ô α is a root of f .
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2. If deg f = 2, 3, then f is reducible ô it has a root in F .

Proposition 2.4.9. Let R be a UFD and F its field of fractions. Let f(x) = anx
n + ¨ ¨ ¨ + a0 P R[x] with

an ‰ 0. If p
q

P F with gcd(p, q) = 1 is a root of f , then q | an and p | a0.

Proof. By Lemma 2.4.6, since f is reducible in F [x], it’s reducible in R[x], and qx ´ p | f(x) in R[x].

Proposition 2.4.10. Let I be a proper ideal in an integral domain R and f a nonconstant monic poly-
nomial in R[x]. If f(x) mod I can not be factored into a product of two polynomials of smaller degree in
(R/I)[x], then f is irreducible in R[x].

Example 2.4.11. There are examples where f(x) factorizes in (R/I)[x] for all prime ideals I in R but
fails to factorize in R[x]. For example, f(x) = x4 + 1 P Z[x] is reducible modulo every prime number but
irreducible in Z[x]:

• If p ”8 1, a4 ”p ´1 for some a P Z, and thus a4 + 1 = 0.

• If p ”8 5, a2 ”p ´1 for some a P Z, and thus x4 + 1 = (x2 ´ a)(x2 + a).

• If p ”8 3, 7, a2 ”p ¯2 for some a P Z, and thus x4 +1 = (x2 ˘ 1)2 ¯ 2x2 = (x2 ´ ax˘ 1)(x2 + ax˘ 1).

Example 2.4.12. x2 + xy + 1 is irreducible in Z[x, y] since Z[x, y]/(y) – Z[x] and x2 + 1 is irreducible in
Z[x].

Proposition 2.4.13 (Eisenstein’s criterion). Let P be a prime ideal in an integral domain R. Let f(x) =
anx

n + ¨ ¨ ¨ + a0 P R[x] (n ě 1) be such that an P Rˆ, an R P , an´1, . . . , a0 P P but a0 R P 2. Then f(x) is
irreducible in R[x].

Proof. Suppose f(x) = a(x)b(x) for some a, b P R[x]. Modulo P we have f(x) ” anx
n (mod P ). Note that

for an integral domain D, the factorization of xn in D[x] can be only a product of some powers of x, up to
units. Thus a(x) ” uxk and b(x) ” vxn´k (mod P ) for some u, v R P . If k ‰ 0, n, then the constant terms
of a, b must be in P , leading to a0 P P 2, a contradiction. Hence a(x) or b(x) is a constant polynomial.
Since an is a unit, the constant polynomial must be a unit in R[x].

Example 2.4.14. 1. x4 + 2x3 + 4x2 + 8x+ 2 is irreducible in Z[x].

2. y2 + x3 ´ x is irreducible in Z[x, y].

3. Let p be a prime and Φp(x) =
xp ´ 1

x ´ 1
= xp´1 + ¨ ¨ ¨ + 1. We have Φp(x + 1) =

(x+ 1)p ´ 1

x
=

xp´1 + pxx´2 + ¨ ¨ ¨ + p. Hence Φp is irreducible in Z[x].

66



Proposition 2.4.15. Let f (x) = a0 + a1x + ¨ ¨ ¨ + akx
k + ¨ ¨ ¨ + anx

n P Z [x] and p a prime integer such
that p | ai for i = 0, ¨ ¨ ¨ , (k ´ 1), p ∤ ak, p ∤ an, and p2 ∤ a0. Then f (x) has an irreducible factor in Z [x] of
degree at least k.

Proposition 2.4.16 (Perron’s). Let f(x) = xn+an´1x
n´1+ ¨ ¨ ¨+an P Z[x] such that |an´1| ą 1+ |an´2|+

¨ ¨ ¨ + |a0| and a0 ‰ 0. Then f is irreducible over Z.

Proof. Let α1, . . . , αn be roots of f . WLOG, assume |α1| ě ¨ ¨ ¨ ě |αn|.

• |α1| ě 1 since |a0| ě 1.

• Put A(z) = an´1z
x´1. Then for |z| = 1, we have

|f(z) ´ A(z)| ď 1 + |an´2| + ¨ ¨ ¨ + |a0| ă |an´1| = |A(z)|

By the Rouché’s theorem, #Zf X B1(0) = #ZA X B1(0) = n ´ 1.

• Suppose otherwise f = gh, deg g, degh ě n. Then exactly one of g(α1), h(α1) is 0, say g(α1) = 0.
This forces |h(0)| ă 1, so h(0) = 0, implying a0 = f(0) = 0, a contradiction.

Proposition 2.4.17 (Cohn’s). Let f(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + an P Z[x]. If there’s a N Q b ě 2 such
that 0 ď ai ă b for each i and f(b) is a prime p, then f is irreducible over Z.

Proof. Suppose f = gh, deg g, degh ě 1. Then p = f(b) = g(b)h(b). WLOG, say |g(b)| = p and h(b)| = 1.

Claim. If f(α) = 0, then Reα ď 0 or |α| ă
1 +

?
4b ´ 3

2
.

• If b ě 3, 1 +
?
4b ´ 3

2
ă b ´ 1, so |b ´ α| ą 1. Hence 1 = |h(b)| ą 1, a contradiction.

Claim. If f(α) = 0 then Reα ă
3

2
(ñ |2 ´ α| ą |1 ´ α|).

• Let α1, . . . , αs be roots of h. Then

|h(1)| = |c||1 ´ α1| ¨ ¨ ¨ |1 ´ αs| ă |c||2 ´ α1| ¨ ¨ ¨ |2 ´ αs| = |h(2)| = 1

i.e, |h(1)| ă 1, which forces that h(1) = 0, a contradiction.
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2.4.3 Polynomial rings over fields
Let F denote a field.

Proposition 2.4.18. Maximal ideals in F [x] are precisely (p(x)), where p(x) are irreducibles. Hence,
F [x]/(p(x)) is a field ô p(x) is irreducible.

Proof. Let I be a maximal ideal in F [x]. Since F [x] is a PID, I = (p(x)) for some p P F [x] and I is a
prime ideal. Hence p is a prime, and thus an irreducible.

Proposition 2.4.19. Let g(x) = f1(x)
n1 ¨ ¨ ¨ fk(x)

nk P F [x] be a nonconstant polynomial, where fi are
irreducible and distinct. Then

F [x]/(g(x)) – (F [x]/(f1(x)
n1)) ˆ ¨ ¨ ¨ ˆ (F [x]/(fk(x)

nk))

Proposition 2.4.20. If α is a root of f P F [x] in F , then x ´ α | f(x). Hence, a polynomial of degree n
in F [x] has at most n roots in F .

Proposition 2.4.21. Any finite subgroup of Fˆ is cyclic. In particular, if F is a finite field, then Fˆ is
cyclic.

Proof. Say G is a finite subgroup of Fˆ. By FTFGAG, G – (Z/a1Z) ˆ ¨ ¨ ¨ ˆ (Z/akZ) with ai | ai´1.
Observe that xa1 = 1 for all x P G. If k ě 2, then there are more than a1 roots for xa1 ´ 1, a contradiction.
Hence k = 1, i.e, G is cyclic.

2.4.4 Hilbert’s basis theorem
Definition. A commutative ring with 1 is called Noetherian if every ideal of R is finitely generated.

Proposition 2.4.22. Let R is a commutative ring. TFAE: (HW. 17)

1. R is Noetherian.

2. The Ascending chain condition for R holds.

3. Every nonempty collection of ideals of R has a maximal element.

Theorem 2.4.23 (Hilbert’s basis theorem). If R is Noetherian, then so is R[x]

Proof. Let I �R[x]. For f(x) P R[x], let LC(f) denote the leading coefficient in f(x).

1° Let L := tLC(f) | f(x) P Iu.

68



Claim. L�R.

2° Since R is Noetherian, we have L = (a1, . . . , an) for some aj P R. Let f1, . . . , fn P I be such that
LC(fj) = aj.

3° LetN = maxtdeg fj | j = 1, . . . , nu. For each d = 0, . . . , N´1, let Ld := tLC(f) | f P I ^ deg f = du.

Claim. Ld �R.

4° Since R is Noetherian, Ld = (bd,1, . . . , bd,kd) for some bd,j P R. Let fd,j P I be a polynomial such that
LC(fd,j) = bd,j.

Claim. I = (f1, . . . , fn, fd,j | d = 0, . . . , N ´ 1, j = 1, . . . , kd) Let f P I.

(i) Assume deg f ě N . Since L = (a1, . . . , an), we have LC(f) = r1a1+ ¨ ¨ ¨+ rnan for some rj P R.
Then

f ´
(
r1x

deg f´deg f1f1 + ¨ ¨ ¨ + rnx
deg f´deg fnfn

)
has degree ď deg f ´ 1. Continuing this way, we reduce the proof of this case to deg f ď N ´ 1.

(ii) Assume deg f ď N ´1. Since Ld = (bd,1, . . . , bd,kd), L(f) = s1bd,1+ ¨ ¨ ¨+skdbd,kd for some sj P R.
Then

f ´ (s1fd,1 + ¨ ¨ ¨ + skdfd,kd)

has degree ď deg f ´ 1. Continuing this way, the proof is completed.

2.4.5 Resultants
Notation 2.4.24. Let R be a ring with 1 and n P N. We put Z := (δi,n+1´j) P Mn(R), the reverse
identity, and N := (δi,j´1) P Mn(R).

In the following context, we let F denote a field, f, g P F [x], n := maxtdeg f, deg gu and f(x) =

f0 + f1x+ ¨ ¨ ¨ + fnx
n. Note that f may not has degree n.

Definition. We define the Hankel matrix

Hf :=


f1 f2 ¨ ¨ ¨ fn

f2 f3
... . .

.

fn


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and the Toeplitz matrix

Tf :=


f0 f1 ¨ ¨ ¨ fn´1

...
. . . f1

f0


of the polynomial f .

From the definition, we have

ZHf =


fn
...

. . .
...

. . .

f1 ¨ ¨ ¨ ¨ ¨ ¨ fn

 , ZTf =


f0

. .
. ...

. .
. ...

f0 ¨ ¨ ¨ ¨ ¨ ¨ fn´1


We list some properties of Hf and Tf :

• ZTf = (ZTf )
t = T tfZ, and thus ZTfZ = T tfZZ = T tf , i.e, Tf = ZT tfZ.

• TfTg = TgTf , since Tf = f0I + f1N + ¨ ¨ ¨ + fn´1N
n´1.

• ZHfZHg = ZHgZHf , and thus HfZHg = HgZHf .

Notation 2.4.25. 1. vn(x) :=
(
1 x ¨ ¨ ¨ xn´1

)t
.

2. For A = (ajk) P Mn(F ), we put a(x, y) :=
n´1
ř

j,k=0

ajkx
jyk = vn(x)

tAvn(y) P F [x, y].

Definition (Resultant matrix). The resultant matrix, denoted by R, of two polynomials f, g is defined
to be the 2n ˆ 2n matrix

R :=

(
Tf ZHf

Tg ZHg

)
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Explicitly,

R :=



f0 ¨ ¨ ¨ fn´1 fn
...

...
. . .

. . .
...

...

f0 f1 ¨ ¨ ¨ fn

g0 ¨ ¨ ¨ gn´1 gn
...

...
. . .

. . .
...

...

g0 g1 ¨ ¨ ¨ gn


P M2n(F )

Note that Rv2n(x) =
(
f(x) f(x)x ¨ ¨ ¨ f(x)xn´1 g(x) ¨ ¨ ¨ g(x)xn´1

)t
=

(
f(x)vn(x)

g(x)vn(x)

)
Definition (Bézoutian). The Bézoutian, denoted by B, of two polynomials f, g is defined implicitly by

F [x, y] Q f(x)g(y) ´ g(x)f(y) := (x ´ y)b(x, y) = (x ´ y)
(
vn(x)

tBvn(y)
)

Lemma 2.4.26. B = HfTg ´ HgTf = (HfTg ´ HgTf )
t. In particular, B is symmetric.

Proof. Since xn ´ yn = (x ´ y)
n´1
ř

j=0

xn´1´jyj = (x ´ y)
(
vn(x)

tZvn(y)
)
, we have

(xn ´ yn)b(x, y) = (x ´ y)b(x, y)
(
vn(x)

tZvn(y)
)

= (f(x)g(y) ´ g(x)f(y))
(
vn(x)

tZvn(y)
)

=

(
f(x)vn(x)

g(x)vn(x)

)t(
O Z

´Z O

)(
f(y)vn(y)

g(y)vn(y)

)

= Rv2n(x)
t

(
O Z

´Z O

)
Rv2n(y) = v2n(x)

t ¨ Rt

(
O Z

´Z O

)
R ¨ v2n(y)

On the other hand,

(xn ´ yn)b(x, y) = (xn ´ yn)
(
vn(x)

tBvn(y)
)

= (znvn(x))
tBvn(y) ´ vn(x)

tB(ynvn(y))

= v2n(x)
t

(
O ´B

B O

)
v2n(y)
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Hence (
O ´B

B O

)
= Rt

(
O Z

´Z O

)
R

=

(
Tf ZHf

Tg ZHg

)t(
O Z

´Z O

)(
Tf ZHf

Tg ZHg

)

=

(
T tf T tg

(ZHf )
t (ZHg)

t

)(
ZTg ZZHg

´ZTf ´ZZHf

)

=

(
ZTfZ ZTgZ

ZHf ZHg

)(
ZTg Hg

´ZTf ´Hf

)

=

(
O ZTfZHg ´ ZTgZHf

HfTg ´ HgTf O

)

=

(
O ´(HfTg ´ HgTf )

t

HfTg ´ HgTf O

)

Lemma 2.4.27. (
I O

Tf ZHf

)
R =

(
O I

Z Tf + ZHg

)(
B O

O I

)(
I O

Tf ZHf

)
Proof. (

I O

Tf ZHf

)
R =

(
I O

Tf ZHf

)(
Tf ZHf

Tg ZHg

)

=

 Tf ZHf

T 2
f + ZHfTf TfZHf + ZHfZHg

loooomoooon

commutes


(Lemma 2.4.26) =

(
Tf ZHf

ZB + (Tf + ZHf )Tf (Tf + ZHg)ZHf

)

=

(
O I

ZB Tf + ZHg

)(
I O

Tf ZHf

)

=

(
O I

Z Tf + ZHg

)(
B O

O I

)(
I O

Tf ZHf

)
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Theorem 2.4.28. dim kerR = dim kerB = deg gcd(f, g).

Proof. Suppose deg f = n. Then rankHf = rank


f1 f2 ¨ ¨ ¨ fn

f2 f3
... . .

.

fn

 = n. By Lemma 2.4.27,

(
I O

Tf ZHf

)
loooooomoooooon

rank=2n

R =

(
O I

Z Tf + ZHg

)
looooooooomooooooooon

rank=2n

(
B O

O I

)(
I O

Tf ZHf

)
loooooomoooooon

rank=2n

and thus rankR = rank
(
B O

O I

)
. Therefore, dim kerR = dim kerB.

For the last equality, we introduce the linear transformation

M : F [x]ăn ˆ F [x]ăn F [x]ă2n

(u, v) uf + vg

and put h = gcd(f, g) and k = degh. Then f = hf̂ , g = hĝ with gcd(f̂ , ĝ) = 1. Consider the set

S :=
!

(u, v) P F [x]ăn ˆ F [x]ăn | u = ´ĝq, v = f̂ q, q P F [x]ăk

)

Claim. kerM = S, and thus dim kerM = k.

Clearly, S Ď kerM . Now suppose u, v P F [x]ăn and fu+gv = 0. Then f̂u = ´ĝv. Since gcd(f̂ , ĝ) = 1,
u = ĝp and v = f̂ q for some p, q P F [x]. Then p = ´q, implying (u, v) P S. Therefore, S Ě kerM .

Let
β = t(1, 0), . . . , (xn´1, 0), (0, 1), . . . , (0, xn´1)u

be an ordered basis for F [x]ăn ˆ F [x]ăn and

β1 = t1, . . . , x2n´1u
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an ordered basis of F [x]ă2n. Then

[M ]β
1

β =



f0 g0
... f0

... g0
...

...
. . .

...
...

. . .

fn
... f0 gn

... g0

fn
... gn

...
. . .

...
. . .

...

fn gn


= Rt

Hence,
dim kerB = dim kerR = dim kerRt = dim kerM = k = deg gcd(f, g)

Corollary 2.4.28.1. Suppose that f, g are nonconstant. Then deg gcd(f, g) ě 1 ô hf + kg = 0 for some
k, h P F [x]zt0u with degh ă deg g and deg k ă deg f .

Definition (Resultant). Let deg f = n and deg g = m. The resultant, denoted by Rf,g, is defined to be

Rf,g = det



f0 ¨ ¨ ¨ fn´1 fn
...

...
. . .

. . .
...

...

f0 f1 ¨ ¨ ¨ fn

g0 ¨ ¨ ¨ gm´1 gm
...

...
. . .

. . .
...

...

g0 g1 ¨ ¨ ¨ gm


(n+m)ˆ(n+m)

Corollary 2.4.28.2. deg gcd(f, g) ě 1 ô Rf,g = 0. (HW. 18)

Proof. Let deg f = n and deg g = m. Consider the linear transformation

M : F [x]ăn ˆ F [x]ăm F [x]ăn+m

(u, v) uf + vg
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and Let
β = t(1, 0), . . . , (xn´1, 0), (0, 1), . . . , (0, xm´1)u

be an ordered basis for F [x]ăn ˆ F [x]ăm and

γ = t1, . . . , xn+m´1u

an ordered basis of F [x]ăn+m. Then we have [M ]γβ = (resultant matrix)t.

Proposition 2.4.29. Let F be a field and let f(x) =
n
ś

i=1

(x ´ αi) P F [x] and g(x) =
m
ś

i=1

(x ´ βi) P F [x] be
two polynomials. Then

Rf,g =
n
ź

i=1

m
ź

j=1

(αi ´ βj)

Proof. Suppose all the xi are distinct and all the yj are distinct. Consider Rf,g as a polynomial of the xi
and the yj. By Corollary 2.4.28.2, xi = yj ô Rf,g = 0; this shows xi ´ yj | Rf,g for all i, j. Since F is a
UFD and each xi ´ yj is relatively prime,

n
ś

i=1

m
ś

j=1

(αi ´ βj)
ˇ

ˇRf,g. Also, degxi Rf,g = n and degyj Rf,g = m,

so Rf,g = c
n
ś

i=1

m
ś

j=1

(αi ´ βj) for some c P F . Letting βj = 0 for all j, we see Rf,g = fm0 =
n
ś

i=1

αmi , and thus

c = 1.

Corollary 2.4.29.1. Under the same notation above, we have

Rf,g =
n
ź

i=1

g(αi) =
m
ź

j=1

f(βj)
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2.5 Artinian Rings
• In this section, all ring are assumed to be commutative with 1 ‰ 0.

Definition. R is called an Artinian ring if it satisfies any of the two equivalent conditions:

1. R satisfies the descending chain condition (D.C.C.).

2. Any nonempty collection of ideals of R has a minimal element.

Example 2.5.1. Z is Noetherian (since it’s PID) but not Artinian; for instance Z Ě 2Z Ě 4Z Ě ¨ ¨ ¨ .

Definition. The Krull dimension, or simply dimension, of R is the maximum length, the number of Ĺ,
of a chain of prime ideals P1 Ĺ P2 Ď ¨ ¨ ¨ .

Example 2.5.2. The Krull dimension of Z is 1; 0 Ĺ pZ.

Lemma 2.5.3. Let I, J be ideals.

1. If I + J = (1), then Ik + J ℓ = (1) for any k, ℓ P N.

2. If IJ Ď P for some prime ideal P , then I Ď P or J Ď P .

Lemma 2.5.4. Let R be an Artinian ring and I an ideal of R. Then R/I is Artinian.

Lemma 2.5.5. Let R,S be Noetherian rings. Then R ˆ S is Noetherian.

Theorem 2.5.6. Let R be an Artinian ring. Put J = JacR.

1. the number of maximal ideals in R is finite

2. R/J – a product of a finite number of fields

3. Every prime ideal is maximal. In particular, the Krull dimension is 0.

4. J is nilpotent, i.e, Jn = 0 for some n P N. Moreover, J =
?
0

5. R – a product of finitely may Artinian local rings

6. R is Noetherian.

Proof.

1. Let S := tM1 X ¨ ¨ ¨ X Mk | Mi is maximal ideals of Ru. Since R is Artinian, S contains a minimal
element I =M1 X ¨ ¨ ¨ X Mn, where each Mi is maximal.
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Claim. M1, . . . ,Mn are the only maximal ideals of R.

Let M be a maximal ideal and consider M X I P S. By the minimality, we have M X I = I. Then
I Ď M , i.e,

M1 X ¨ ¨ ¨ X Mn Ď M

By Lemma 2.5.3.1, M =Mj for some j.

2. Let M1, . . . ,Mn be the maximal ideals of R. Clearly, Mi +Mj = (1) if i ‰ j. Then by the Chinese
Remainder theorem,

R/J – R/M1 ˆ ¨ ¨ ¨ ˆ R/Mn

Each term on the right is a field since Mi is maximal.

3. Let P be a prime ideal. It suffices to check if x R P , then (x, P ) = R. Consider the chain

(x, P ) Ě (x2, P ) Ě (x3, P ) Ě ¨ ¨ ¨

Since R is Artinian, (xn, P ) = (xn+1, P ) for some n P N. In particular, xn = rxn+1 + a for some
r P R, a P P , i.e, xn(1´ xr) = a. Since x R P , so is xn, which implies that 1´ xr P P , i.e, 1 P (x, P ).

4. Consider the chain
J Ě J2 Ě J3 Ě ¨ ¨ ¨

Since R is Artinian, Jn = Jn+1 for some n P N. We claim Jn = 0. Suppose otherwise that Jn ‰ 0.
Let S := tI �R | IJn ‰ 0u(‰ H). Since R is Artinian, S has a minimal element, say I0. Let x P I0

such that xJn ‰ 0. Then by the minimality, I0 = (x). But now ((x)J)Jn = (x)Jn+1 = (x)Jn, so
by the minimality we have (x)J = (x). By the Nakayama’s lemma, (x) = 0, a contradiction. Hence
Jn = 0.

5. Since Jn = 0, we have Mn
1 ¨ ¨ ¨Mn

m = 0, where M1, . . . ,Mm are the maximal ideals of R. Then

R – R/Jn – R/Mn
1 ˆ ¨ ¨ ¨ ˆ R/Mn

m

by Lemma 2.5.3.2 and the Chinese Remainder theorem. Note that the only maximal ideal in R/Mn
i

is Mi/M
n
i , and thus R/Mn

i is local. By Lemma 2.5.4, R/Mn
i is Artinian.

6. By 5. and Lemma 2.5.5, it suffices to prove the case when R is an Artinian local ring. Now assume
that R is an Artinian local ring with the maximal ideal M = JacR. By 4., Mn = 0 for some n P N.
Then Mk´1/Mk (k ď n) is a R/M -vector space. Check

• Artinian implies dimR/M Mk´1/Mk ă 8, implying Mk´1/Mk is Noetherian as R-modules.
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• I � S as rings ñ ( S is Noetherian ô I and S/I are Noetherian as S-modules )

Corollary 2.5.6.1. R is an Artinian ring if and only if R is Noetherian and of Krull dimension 0.
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2.6 Discrete Valuation Rings
Definition. (HW. 13)

1. A discrete valuation on a field K is a function ν : Kˆ Ñ Z such that

(a) ν is surjective

(b) ν(xy) = ν(x) + ν(y) for all x, y P Kˆ

(c) ν(x+ y) ě mintν(x), ν(y)u if x+ y ‰ 0 for all x, y P Kˆ

The subring ta P Kˆ | ν(a) ě 0u Y t0u is called the valuation ring of ν.

2. An integral domain R is called a discrete valuation ring (D.V.R.) if it’s the valuation ring of a
discrete valuation on its fraction of rings.

Example 2.6.1.

1. K = Q, p : a prime. Define νp(pk
a

b
) = k. Then the DVR is

!

pk
a

b
| k ě 0

)

Y t0u = Zp

2. F : a field, K = F (x), R = F [x]. For each irreducible polynomial f P F [x] and for each r P F [x],
r = fk

a

b
for some unique k P N and a, b P F [x] with (a, f) = (b, f) = 1. Define νf (r) = k. The DVR

is the localization F [x]f of F [x] at f consisting of the rational functions in F (x) whose denominator
is not divisible by f .

3. F ((x)) : the field of formal Laurent series. ν(
ř

iěn

aix
i) := n. The DVR is the ring F [[x]] of formal

power series. (HW. 13)

4. Fix z P C and let K := t functions meromorphic near zu. ν(f) := ordz f . The DVR is the ring of
holomorphic functions near z.

Proposition 2.6.2. Let R be a DVR with the valuation ν. Let π be an element in R such that ν(π) = 1.

1. nonzero element a P R is a unit ô ν(a) = 0 (HW. 13)

2. Every element in R can be written uniquely as uπn for some unit u and n ě 0

3. Nonzero ideals are of the form (πn) for some n ě 0. In particular, R is a PID. (HW. 15)
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Definition. Let R be a DVR with the valuation ν. An element π with ν(π) = 1 is called a uniformizing
parameter or a local parameter of R.

Corollary 2.6.2.1. Let R be a DVR with the valuation.

1. R is a local ring with the unique maximal ideal M = ta P Kˆ | ν(a) ě 1u Y t0u.

2. The only prime ideals of R are 0 and M . In particular, R has Krull dimension 1.

Theorem 2.6.3. TFAE:

1. R is a DVR.

2. R is a PID with a unique maximal ideal.

3. R is a UFD with a unique irreducible element π up to unit.

4. R is a local Noetherian integral domain whose unique maximal ideal is nonzero and principal.

Proof.

1. (1 ñ 2, 3, 4) These are clear.

2. (2 ñ 3) Recall that in a PID, (x) is a maximal ideal ô x is irreducible.

3. (3 ñ 1) Define ν : R Ñ Z by ν(uπn) = n.

4. Let M be the unique maximal ideal. We show that for each x P R there exists a unique integer n ě 0

such that x P Mn but x R Mn+1. Then we may define ν : R Ñ Z by setting ν(x) = n. It suffices
to show M0 :=

8
Ş

n=1

Mn = 0. Since MM0 = M0, we have M0 = 0 by Nakayama’s lemma (Theorem

2.2.27).

80



2.7 Commutative rings and algebraic geometry
• All rings are commutative rings with identity, and all algebra are commutative algebras.

We recall some basic fact for Noetherian rings:

Proposition 2.7.1. Let R be a Noetherian ring and I be any ideal of R.

1. R/I is Noetherian.

2. R[x] is Noetherian. Thus R[x1, . . . , xn] is Noetherian.

Corollary 2.7.1.1. If k is a field, then k[x1, . . . , xn] is Noetherian.

Proposition 2.7.2. A ring R is a finitely generated k-algebra ô R is a quotient of some polynomial ring
with finitely many variables.

Proof. The if part is clear. For the only if part, say R = k[r1, . . . , rn]. Define

ϕ : k[x1, . . . , xn] R

xi ri

ϕ is clearly surjective, so by the isomorphism theorem we see R – k[x1, . . . , xn]/ kerϕ.

2.7.1 Affine algebraic sets
Definition. The set An of n-tuples of elements of k is called the affine n-space over k.

• The polynomial ring k[x1, . . . , xn], viewed as a set of functions on An, is called the coordinate ring
of An, denoted by k[An].

Definition. Let S Ď k[An]. The set Z(S) := tp P An | @ f P S [f(p) = 0]u the called the zero locus/
vanishing set of S in An.

• We say A Ď An is an affine algebraic set if A = Z(S) for some S Ď k[An].

• When S = tfu consists of a single nonconstant polynomial f , then the zero locus, denoted briefly by
Z(f), is called a hypersurface.

Example 2.7.3. Let k = R.

1. In A2, the x-axis is an affine algebraic set Z(y).
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2. The circle x2 + y2 = 1 is Z(x2 + y2 ´ 1).

3. Z(xy ´ 1) is the hyperbola xy = 1.

4. Z(0) = An and Z(1) = H.

5. In A1, Z(f) is the zeros of f , and is a finite set if f ‰ 0.

Property 2.7.4. Z assigns each subset of k[An] to an affine algebraic set, with the properties that

1. if S Ď T Ď k[An], then Z(T ) Ď Z(S).

2. if I = (S), then Z(I) = Z(S).

3.
Ş

iPI

Z(Si) = Z
(
Ť

iPI

Si

)
.

4. Z(S) Y Z(T ) = Z(IJ), where I = (S) and J = (T ).

Therefore every affine algebraic set A is the zero locus of some ideal I � k[An]. Since I a finitely
generated, each A is an intersection of finitely many hypersurfaces.

Note that different ideals may have the same locus, e.g, Z(x) = Z(x2). Nevertheless, given an affine
algebraic set A, there’s a unique largest ideal

I = tf P k[An] | @ p P An [f(p) = 0]u

such that Z(I) = A.

Definition. For any subset A Ď An, the set I(A) = tf P k[An] | @ p P An [f(p) = 0]u is called the defining
ideal of A.

Example 2.7.5.

1. In A2, I(x-axis) = (y).

2. I((a1, . . . , an)) = (x1 ´ a1, . . . , xn ´ an) is a maximal ideal since it’s the kernel of the evaluation map
at the point (a1, . . . , an).

3. Let V = Z(y2 ´ x3). Let’s determine I(V ). Note that V = t(a2, a3) | a P ku. Let f P k[A2]; we can
write it as

f(x, y) = g0(x) + yg1(x) + (y2 ´ x3)g2(x, y)

(this can be seen by passing to the quotient.) Now if f P I(V ), then 0 = f(x, y) = g0(a
2) + a3g1(a

2)

for all a P k. If #k = 8, we have g0 = g1 = 0, implying that I(V ) = (y2 ´ x3). Note that
when #k ă 8, it’s not true. For instance, if k = F2, we have V = t(0, 0), (1, 1)u and I(V ) =

(y ´ x, x(x ´ 1)) ‰ (y2 ´ x3).

82



Property 2.7.6.

1. If A Ď B Ď An, then I(B) Ď I(A).

2. I(A Y B) = I(A) X I(B).

3. I(H) = k[An]. If #k = 8, I(An) = 0.

4. If A Ď An, then A Ď Z(I(A)). If I Ď k[An], then I Ď I(Z(I))

5. If V = Z(I), then V = Z(I(V )). If I = I(A), then I = I(Z(I)).

Thus, once we restrict Z to the defining ideals and I to the affine algebraic sets, Z and I are mutually
inverse to each other.

Definition. If V Ď An is an affine algebraic set, then the quotient k[V ] := k[An]/I(V ) is called the
coordinate ring of V .

Definition. Let V Ď An and W Ď Am be affine algebraic sets. A map φ : V Ñ W is called a morphism/
regular map/polynomial map if there exist φ1, . . . , φm P k[An] such that

φ(a1, . . . , an) = (φ1(a1, . . . , an), . . . , φm(a1, . . . , an))

for all (a1, . . . , an) P V .

• If there exists a morphism ψ : W Ñ V such that φ ˝ ψ = idW and ψ ˝ φ = idV , we say φ is an
isomorphism.

Let φ : V Ñ W be a morphism. Now if f P I(W ), then for all (a1, . . . , an) P V , we have

f(φ1(a1, . . . , an), . . . , φm(a1, . . . , an)) = 0

so that f ˝ φ P I(V ). This show φ induces a well-defined k-algebra homomorphism

φ̃ : k[W ] k[V ]

f f ˝ φ

Conversely, suppose we have a k-algebra homomorphism Φ : k[W ] Ñ k[V ]. We’ll see that Φ is identical
with φ̃ for some φ : V Ñ W . For clarity, let k[An] = k[x1, . . . , xn] and k[Am] = k[y1, . . . , ym]. Set

Fi + I(V ) = Φ(yi + I(W )), i = 1, . . . ,m

and define φ : An Ñ Am by φ = (F1, . . . , Fm).
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• For g P I(W ), we have Φ(g) P I(V ). Also, since g is a polynomial and Φ is a k-algebra homomor-
phism, we have

I(V ) Q Φ(g(y1, . . . , ym)) = g(Φ(y1), . . . ,Φ(ym))

so
g(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)) P I(V )

This follows that for all (a1, . . . , an) P V = Z(I(V )), we have

(g ˝ φ)(a1, . . . , an) = g(F1(a1, . . . , an), . . . , Fm(a1, . . . , an)) = 0

and thus φ(a1, . . . , an) P Z(I(W )) = W , proving that φ is a morphism from V to W .

• For all g P k[W ], we have

Φ(g) = Φ(g(y1, . . . , ym)) + I(V ) = g(Φ(y1), . . . ,Φ(ym)) + I(V )

= g(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)) + I(V )

= g ˝ φ

so that φ̃ = Φ.

• Different choices of Fi yield the same φ since the Fi is well-defined modulo I(V ). This also shows the
uniqueness of φ with φ̃ = Φ since we must have (yi+I(W ))˝φ = Φ(yi+I(W )) for every φ : V Ñ W

with φ̃ = Φ.

Theorem 2.7.7. Let V Ď An andW Ď Am be affine algebraic sets. Then there’s a bijective correspondence

tmorphisms from V to W u tk-algebra homomorphism from k[W ] to k[V ]u

with the following properties:

1. Every morphism φ : V Ñ W induces a k-algebra homomorphism φ̃ : k[W ] Ñ k[V ] defined by the
pullback, i.e, f ÞÑ f ˝ φ.

2. Every k-algebra homomorphism Φ : V Ñ W is induced by a unique morphism φ : V Ñ W defined
by setting (yi + I(W )) ˝ φ = Φ(yi + I(W )).

3. φ : V Ñ W is an isomorphism if and only if φ̃ : k[W ] Ñ k[V ] is an isomorphism.

Example 2.7.8. Let #k = 8, V = A1, W = Z(y2 ´ x3) = t(a2, a3) | a P ku. The map φ : a ÞÑ (a2, a3) is
a bijective morphism, but Im φ̃ = k + x2k[x], which is not surjective. Thus φ is not an isomorphism. The

inverse map of φ is φ´1 : (a, b) ÞÑ

#

0 , if a = b = 0

b/a , if a ‰ 0
, which cannot be defined by polynomials.

84



Corollary 2.7.8.1. Let φ : V Ñ W be a map of affine algebraic sets. Then φ is a morphism ô for all
f P k[W ], f ˝φ, as a k-valued function on V , coincides with some element in k[V ]. When φ is a morphism,
φ(v) = w with v P V and w P W if and only if φ̃´1(I(tvu)) = I(twu).

Proof. The only if part is clear. For the converse, we first show when φ̃ is a k-algebra homomorphism, we
have

φ(v) = w for v P V and w P W if and only if φ̃´1(I(tvu)) = I(twu)

Since twu is an algebraic set, twu = Z(I(twu)), and thus

φ(v) = w if and only if every polynomial f vanishing at w also vanishes at φ(v)

This is equivalent to saying φ̃(f) vanishes at v, so we have φ̃(I(twu)) Ď I(tvu), or I(twu) Ď φ̃´1I(tvu).
Since I(twu) and I(tvu) are maximal ideals (c.f. Example 2.7.5.2), it’s equivalent to I(twu) = φ̃´1I(tvu),
as wanted.

Let Φ : k[W ] Q f ÞÑ f ˝ φ P k[V ]; this is clear a k-algebra homomorphism. The theorem above shows
there exists a morphism φ1 : V Ñ W such that φ̃1 = Φ. We claim φ1 = φ. Indeed, for each v P V , by the
first paragraph we have

φ1(v) = w = φ(v) ô φ̃1
´1I(tvu) = I(twu) = φ̃´1I(tvu)

The RHS is clear since we have φ̃ = Φ = φ̃1.

2.7.2 Radicals and affine varieties
For A Ď An, if fk P I(A) for some k P N, then f P I(A) since k is an integral domain. This suggests us to
have the following definition.

Definition. Let I �R be an ideal.

1. The radical of I is the set
?
I := ta P R | an P I for some n P Nu.

2.
?
0 is called the nilradical of R, the set of nilpotent elements of R.

3. I is called radical is I =
?
I.

Property 2.7.9. Let I, J be ideals of R.

1.
?
I is a ideal containing I.

2. I Ď J ñ
?
I Ď

?
J .
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3.
a?

I =
?
I.

4.
?
IJ =

?
I X J =

?
I X

?
J .

5.
?
I = (1) ô I = (1).

6.
?
I + J =

a?
I +

?
J

7. If I is a prime, then
?
I = I.

8.
?
I/I is the nilradical of R/I.

9. If I ‰ R, then
?
I =

č

P : prime1

I Ď P

P

In particular,
?
0 is the intersection of all prime ideals of R.

Proof.

1. That I Ď
?
I is clear. If x, y P

?
I, say xn P I and ym P I for some n,m P N, then (x+ y)n+m P I, so

x+ y P
?
I. For all a P R, (ax)n = anxn P I so ax P

?
I.

2. Let x P
?
I. Then xn P I Ď J for some n, and thus x P

?
J .

3. We have
?
I Ď

a?
I. For the reverse inclusion, let x P

a?
I, then by definition there are n,m P N

such that xn P
?
I and (xn)m P I, i.e, xnm P I. Thus x P

?
I.

4. We have IJ Ď I X J so
?
IJ Ď

?
I X J . If x P

?
I X J , say xn P I X J Ď I, j for some n, then

x P
?
I X

?
J , so that

?
I X J Ď

?
I X

?
J . Now if x P

?
I X

?
J , then there are m,n P N such that

xm P I and xn P J . Then xn+m P IJ , i.e, x P
?
IJ .

5. Since I Ď
?
I, I = (1) implies

?
I = (1). Now if 1 P

?
I, then 1 = 1n P I for some n P N so that

I = (1).

6. We have Ď. If xn P
?
I +

?
J , then xnM P I + J for M " 0, so that x P

?
I + J .

7. If x P
?
I, then xn P I for some n. Since I is a prime, x P I.

8. Let x + I P R/I be nilpotent. Then xn + I = I for some n P I, i.e, xn P I. This means x P
?
I, i.e,

x+ I P
?
I/I.
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9. Passing to the quotient R/I, it suffices to show the second assertion, which holds by Proposition
2.2.25.

Corollary 2.7.9.1. Prime ideals, and hence maximal ideals, are radical.

Corollary 2.7.9.2. If
?
I and

?
J are coprime, then I and J are coprime.

Proof. By 5. and 6., 1 =
a?

I +
?
J =

?
I + J so that I + J = 1.

Proposition 2.7.10. Let R be Noetherian. Then
?
I
n

Ď I for some n P N. In particular,
?
0 is nilpotent.

Proof. This follows from the fact
?
I is finitely generated.

Zariski topology

Definition. Let’s specify the closed sets of An to be the affine algebraic sets; by Property 2.7.4

1. H = Z(1), An = Z(0).

2.
Ş

Z(Ii) = Z (
Ť

Ii).

3. Z(I1) Y Z(I2) = Z(I1I2).

The topology thus obtained is called the Zariski topology.

• The Zariski topology of an affine algebraic set V Ď An is defined as the subspace topology inherited
from An.

• Note that if I � k[V ] is an ideal, then

ZV (I) := t(a1, . . . , an) P V | f(a1, . . . , an) = 0 for all f P Iu = Z(π´1(I)) X V

where π : k[An] Ñ k[V ] is the canonical projection, and if A Ď V is a subset, then

IV (A) := tf P k[V ] | f(a1, . . . , an) = 0 for all (a1, . . . , an) P Au = π(I(A))

We can define the Zariski topology in terms of ZV , and it’s clearly the same as the one defined by
subspace topology.

Remark 2.7.11. The Zariski topology is very coarse in the sense that there are few open sets. For
instance, if #k = 8, then the Zariski topology is not Hausdorff, since any intersection of two nonempty
open sets is nonempty. (Intuitively, a closed set has codimension at least 1.) Note that when #k ă 8, it’s
precisely the discrete topology.
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Proposition 2.7.12. A morphism φ : V Ñ W is continuous with respect to Zariski topology.

Proof. Let I Ď k[W ] be an ideal. Then

φ´1(Z(I)) = tp P V | f(φ(p)) = 0 for all f P Iu = Z(φ̃(I))

is Zariski closed in V . Thus φ is continuous.

Example 2.7.13. Consider Mn(k) as An2 . Then SLn(k) is Zariski closed set and GLn(k) is Zariski open
set. (Note that the determinant is by definition a polynomial of its entries.)

Definition. Let A Ď An. The Zariski closure A of A is the smallest closed set containing A. If A Ď V

for an algebraic set V , we say A is Zariski dense if the Zariski closure of A is V .

Proposition 2.7.14. The Zariski closure of a subset A in An is A = Z(I(A)).

Proof. Let V be any algebraic set containing A. Then Z(I(A)) Ď Z(I(V )) = V so that Z(I(A)) is the
smallest closed set containing A.

Example 2.7.15. As in general topology, a continuous morphism need not be a closed map. For example,

consider the morphism
φ : Z(xy ´ 1) A1

(x, y) x

. Then Imφ = kˆ, which is not closed when #k = 8.

Proposition 2.7.16. Let φ : V Ñ W be a morphism.

1. ker φ̃ = I(φ(V )).

2. φ(V ) = Z(ker φ̃) X W .

Proof.

1. f P ker φ̃ ô f ˝ φ P I(V ) ô f P I(φ(V )).

2. φ(V ) = Z(I(φ(V ))) X W = Z(ker φ̃) X W .

Example 2.7.17. V = Z(xy ´ 1), W = A1, φ : V Q (x, y) ÞÑ x P W . Then ker φ̃ = 0, φ(V ) = kˆ. If
#k = 8, I(V ) = 0 and Z(0) = A1 = φ(V ).

88



Affine varieties

Definition. A topological space is irreducible if it cannot be written as a union of two proper closed
subspaces.

• An irreducible affine algebraic set is called an affine variety. (some authors define affine varieties
without the irreducibility.)

Proposition 2.7.18. Let V be an affine algebraic set.

1. V is irreducible if and only if I(V ) is a prime ideal in k[An].

2. V = V1 Y ¨ ¨ ¨ Y Vm for unique irreducible algebraic sets Vj with Vi Ę Vj if i ‰ j.

Proof.

1. Let fg P I(V ). Then V Ď Z(fg) = Z(f) Y Z(g) so that

V = (Z(f) X V ) Y (Z(g) X V )

The irreducibility implies either Z(f) X V = V or Z(g) X V = V , i.e, either V Ď Z(f) or V Ď Z(g).
Taking I, we see f P I(V ) or g P I(V ). If V is reducible, say V = V1 Y V2 with V1, V2 Ĺ V . Then
I(V ) Ĺ I(Vi). Pick fi P I(Vi)zI(V ). Then f1f2 P I(V ).

2. Let

S := talgebraic sets W | W cannot be written as a union of irreducible algebraic setsu

and let T := tI(W ) | W P Su. If S is nonempty, since k[An] is Noetherian, T has an maximal
element, and thus S has a minimal element, say W . In particular, W is not irreducible, say W =

V1 YV2 with V1, V2 Ĺ W . Since V1, V2 are proper, V1, V2 R S, so they’re unions of irreducible algebraic
sets, and so is W , a contradiction. Hence S is empty.

Now write V = V1 Y ¨ ¨ ¨ Y Vm; we may assume Vi Ę Vj if i ‰ j. Now suppose

V = V1 Y ¨ ¨ ¨ Y Vm = U1 Y ¨ ¨ ¨ Y Uℓ

with Vi Ę Vj and Ui Ę Uj if i ‰ j. Consider the intersection

V1 = V1 X V = (V1 X U1) Y ¨ ¨ ¨ Y (V1 X Uℓ)

Since V1 is irreducible, V1 X Uj = V1 for some j, i.e, V1 Ď Uj. Symmetrically, we have Uj Ď Vj1 for
some j1, so

V1 Ď Uj Ď Vj1

and thus 1 = j1 and V1 = Uj by our conditions imposed on Vj. Continuing in this way, we conclude
m = ℓ and tV1, . . . , Vmu = tU1, . . . , Uℓu.
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Corollary 2.7.18.1. Let V be an affine algebraic set. Then V is irreducible if and only if k[V ] is an
integral domain.

Proof. By Proposition above, V is irreducible ô I(V ) is a prime ô k[V ] := k[An]/I(V ) is an integral
domain.

Definition. Let V be an irreducible affine algebraic set. The fraction field Frac k[V ] is called the rational
functions of V and is denoted by k(V ).

• The dimension of V , denoted by dimV , is defined to be tr.degkk(V ).

Primary decomposition

Definition. A proper ideal Q of R is called primary if whenever ab P Q and a R Q, then b P
?
Q.

• Equivalently, Q is primary if and only if the zero divisors of R/Q are nilpotent.

Property 2.7.19.

1. Prime ideals are primary.

2. If Q is primary, then
?
Q is a prime and is the smallest prime containing Q.

3. If Q is an ideal such that
?
Q is maximal, then Q is primary.

4. If M is a maximal ideal and Q is an ideal with Mn Ď Q Ď M for some n ě 1, then Q is primary and
?
Q =M .

Proof.

2. If ab P
?
Q, then anbn P Q for some n P N. Since Q is primary, an P Q or b P

?
Q, i.e, a P

?
Q or

b P
?
Q. The second assertion follows from Proposition 2.7.9.9.

3. Let ab P Q but a R Q. We must show b P
?
Q. If not, then (b,

?
Q) = 1, i.e, tb+ q = 1 for some t P R

and q P
?
Q, so tab + qa = a Thus Q Q (qa)n = (a ´ tab)n for some n. Expanding, since ab P Q, we

see a P Q, a contradiction.

4. Taking radicals, we see M =
?
Mn Ď

?
Q Ď

?
M =M so that

?
Q =M . By 3., Q is primary.
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Definition. If Q is a primary ideal, then the prime ideal P =
?
Q is called the associated prime of Q,

and we say Q is P -primary.

Proposition 2.7.20. If Q1, . . . , Qm are P -primary, then so is Q1 X ¨ ¨ ¨ X Qm.

Proof. By Property 2.7.9.4, we have
a

Q1 X ¨ ¨ ¨ X Qm =
a

Q1 X ¨ ¨ ¨ X
a

Qm = P

Example 2.7.21.

1. In Z, the primary ideals are 0 and (pm) for p a prime and m ě 1.

2. For any field k, (x) is an primary ideal of k[x, y] since it’s prime, and (x, y)m is primary since (x, y)

is maximal.

3. Q = (x2, y) in k[x, y] is primary since (x, y)2 Ď Q Ď (x, y) and (x, y) is maximal.

4. In general, however, powers of a prime might not be primary. For instance, R = k[x, y, z]/(xy ´ z2).
Let P = (x, z) Ď R. P is a prime since R/P – k[y] is an integral domain. But

P 2 = (x2, xz, xy) = x(x, y, z)

is not primary for xy P P 2 but x R P 2 and yn R P for all n ě 1.

5. Also, Q need not be primary when
?
Q is only a prime. For instance, consider the ideal I = (x2, xy)

in k[x, y]. We have (x)2 Ď I Ď (x) so
?
I = (x). But I is not primary: xy P I but x R I and yn R I

for all n ě 1.

Though (x2, xy) is not primary, (x2, xy) = (x) X (x, y)2 is an intersection of primary ideals.

6. Let R be a UFD and π an irreducible element of R. Then the (π) is a prime and (πn) is primary for
each n P N. Conversely, let Q be a (π)-primary ideal, and n P N be the largest integer with Q Ď (πn)

(n exists since
?
Q = (π).) If q P Qz(πn+1), then q = rπn for some r P R and r R (π). Since Q is

(π)-primary and r R (π), we see πn P Q, and thus Q = (πn). This generalizes 1.

Definition.

1. An ideal I in R has a primary decomposition if it may by written as a finite intersection of
primary ideals, that is,

I =
m
č

i=1

Qi

with Qi being primary.
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2. A primary decomposition is minimal/irredundant/reduced if
Ş

j‰i

Qj Ę Qi and
?
Qi ‰

a

Qj if

i ‰ j.

• If I has primary decomposition, then by Proposition 2.7.20, the decomposition can be made minimal
by eliminating the superfluous primary ideals involved.

Definition. A proper ideal I is irreducible if I cannot be written as an intersection of two ideals strictly
containing I.

Example 2.7.22.

1. A prime ideal P is irreducible: suppose P = I X J for some P Ĺ I, J . Then pick a P IzP, b P JzP ;
thus

ab P IJ Ď I X J = P

Since P is a prime, a P P or b P P , a contradiction.

2. The notion of irreducible ideals is related to that of irreducible affine algebraic sets as follows: If V
is an irreducible affine algebraic set, then I(V ) is a prime ideal, and hence irreducible. Conversely,
when k is algebraically closed, if I is irreducible, then Z(I) is irreducible.

Proof. By Proposition 2.7.18.1, it suffices to show I(Z(I)). By Hilbert’s Nullstellensatz, I(Z(I)) =
?
I. By Lemma 2.7.24, I is primary, and thus

?
I is a prime.

3. The above is not true when k isn’t algebraically closed. For instance, when k = R, consider f(x, y) =
(x2 ´ 1)2 + y2 and its zero locus Z(f). We see f is irreducible over k[x, y] so that (f) is prime by
Proposition 2.3.22. By 1., (f) is irreducible. Also,

Z(f) = Z((x ´ 1)2 + y2) Y Z((x+ 1)2 + y2)

so Z(f) is not irreducible. (One can see Z(f) is even not connected.)

4. Being irreducible is not necessarily prime. For instance, for p a prime in Z, (pn) is irreducible but
not a prime: say (pn) = (a) X (b) = (lcm(a, b)). Then one of (a), (b) is (pn).

5. Being primary is not necessarily irreducible. For instance, (x, y)2 Ď k[x, y] is (x, y)-primary but not
irreducible since (x, y)2 = (x2, y) X (x, y2).

Lemma 2.7.23. If R is Noetherian, then every ideal is a finite intersection of irreducible ideals of R.
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Proof. Suppose otherwise, then the collection

S = tI �R | I is not a finite intersection of irreducible idealsu

is nonempty, so S admits a maximal element, say I. Since I cannot be irreducible, I = J X K for some
J,K Ľ I. The maximality implies J,K can be written as finite intersections of irreducible ideals, and so
is I, a contradiction.

Lemma 2.7.24. If R is Noetherian, then every irreducible ideal is primary.

Proof. Let I �R be irreducible. Suppose ab P I and a R I. We must show b P
?
I. Consider the ascending

chain of ideals
(I : b) Ď (I : b2) Ď ¨ ¨ ¨

Since R is Noetherian, there’s an integer n such that (I : bn) = (I : bN) for all N ě n.

Claim. (a, I) X (bn, I) = I (so that bn P I since I is irreducible.)

Let v P (a, I) X (bn, I). Then v = ax+ y = bnz + w for some x, z P R, y, w P I. Multiplying b gives

vb = abx+ by + bn+1z + wb

so bn+1z = abx+ by ´ wb P I, i.e, z P (I : bn+1) = (I : bn). Thus v = bnz + w = w P I.

Lemma 2.7.25. Let Q be a P -primary ideal and x P R. Then

1. x P Q ñ (Q : x) = (1).

2. x R Q ñ (Q : x) is P -primary.

3. x R P ñ (Q : x) = Q.

Proof.

2. If y P (Q : x), then xy P Q. Since x R Q, we have y P
?
Q = P . Hence Q Ď (Q : x) Ď P . Taking

radicals gives P =
a

(Q : x). Now if ab P (Q : x) and a R (Q : x), then abx P Q, i.e, anbnxn P P for
some n ě 1. Since x R P, a R (Q : x) Ď P , we see bn P P , so b P P .

3. If a P (Q : x), then ax P Q. Since x R
?
Q = P , a P Q.

Theorem 2.7.26. Let I has a minimal primary decomposition I = Q1 X ¨ ¨ ¨ X Qm. Let Pi =
?
Qi for

i = 1, . . . ,m. Then the Pi are precisely the prime ideals occurring in the set t
a

(I : x) | x P Ru, so that
the Pi are independent of the particular decomposition of I.
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Proof. For x P R, we have (I : x) = (
Ş

Qi : x) =
Ş

(Qi : x) so that by Lemma 2.7.25 we have
a

(I : x) =
Ş

Pi. If
a

(I : x) is a prime, then
a

(I : x) = Pi for some i. Conversely, for each i there exists xi P
Ş

j‰i

QjzQi

since the decomposition is minimal, and thus (Qi : x) is Pi-primary by Lemma again.

Corollary 2.7.26.1. Let R be Noetherian. Then every proper ideal admits a minimal primary decom-
position, and is unique in the following sense: let I =

m
Ş

Qi =
n
Ş

Q1
j be minimal primary decompositions.

Then
n = m and

!

a

Qi

)

=
!

a

Qj

)

and for prime ideals P that are minimal in the set above, the P -primary components of the decomposition
are the same.

Proof. All assertions result from the above Lemma and Theorem except for the last one, which will be
proved by localization in the follow section.

Definition. The prime ideals Pi are called the associated primes of I. The minimal elements of the set
tP1, . . . , Pmu are called the isolated primes of I and the others are called embedded primes.

• The isolated primes of I � k[An] correspond to the irreducible components of Z(I), maximal irre-
ducible subspaces, and the embedded primes are irreducible subspaces of these components.

Proposition 2.7.27. Let I be a proper ideal in R. Suppose I has a minimal decomposition.

1. A prime ideal P contains I if and only if P contains one of the associated primes of I.

2. The isolated primes of I are precisely the minimal elements of the set of all primes containing I. In
particular, there are only finitely many minimal prime ideals containing I.

3.
?
I =

Ş

P :ass. primes of I
P =

Ş

P :iso. primes of I
P .

4. If R is Noetherian, then there are primes P1, . . . , Pm of R containing I such that P1 ¨ ¨ ¨Pm Ď I.

Proof. Let I = Q1 X ¨ ¨ ¨ X Qn be a minimal primary decomposition of I and Pi =
?
Qi for i = 1, . . . , n.

1. I Ď P ô Q1 X ¨ ¨ ¨ X Qn Ď P ô P1 X ¨ ¨ ¨ X Pn Ď P ô Pi Ď P for some i.

2. These are clear.

3. This follows from 1., 2, and Property 2.7.9.4 and 9.

4. By Proposition 2.7.10,
?
I
ℓ

Ď I for some ℓ ě 1. Then P ℓ
1 ¨ ¨ ¨P ℓ

n Ď I.
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2.7.3 Integral extensions and Hilbert’s Nullstellensatz
Definition. Let R Ď S be commutative rings with 1R = 1S.

1. s P S is said to be integral over R if there exists a monic polynomial f P R[x] such that f(s) = 0.

2. S is an integral extension of R if every element in S is integral over R.

3. The integral closure of R in S is the set ts P S | s is integral over Ru.

4. R is integrally closed in S if the integral closure of R in S is R itself.

5. When R is an integral domain, we say R is integrally closed/normal if R is integrally closed over
its fraction field FracR.

Example 2.7.28. R = Z[
?

´3] is not normal; ´1 +
?
3i

2
R R but it’s a root of x2 + x+ 1.

Proposition 2.7.29. Let R Ď S as before. TFAE:

1. s P S is integral over R.

2. R[s] is a finitely generated R-module.

3. s P T and R Ď T Ď S for some subring T of S that is also a finitely generated R-module.

Proof. The direction 1 ñ 2 ñ 3 is clear. For 3 ñ 1, let T = xv1, . . . , vnyR. Since T is a ring, svi P T and
thus

svi =
n
ÿ

j=1

aijvj, i = 1, . . . , n

for some aij P R. Hence

0 =
n
ÿ

j=1

(sδij ´ aij)vj, i = 1, . . . , n

i.e, 0 = (sδij ´ aij)ijv, where v = (v1 ¨ ¨ ¨ vn)
t. Multiplying by the adjoint of (sδij ´ aij)ij to both sides, we

obtain det(sδij ´ aij)v = 0. Since 1 P T , 1 is a R-combination of the vi so that det(sδij ´ aij) = 0. Hence
s is a root of the monic polynomial det(xδij ´ aij) P R[x].

Corollary 2.7.29.1. Let R Ď S as above.

1. If s, t P S are integral over R, then so are s+ t, as.

2. The integral closure of R in S is a subring of S.
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3. If R Ď S Ď T with S integral over R and T integral over S, then T is integral over R.

Proof.

1. Since R[s], R[t] are finitely generated R-modules, so are R[s+ t] and R[st].

2. This follows from 1.

3. Let t P T . Then tn + an´1t
n´1 + ¨ ¨ ¨ + a1t + a0 = 0 for some ai P S. Since S is integral over R,

R[an´1, . . . , a0] is a finitely generated R-module, and thus R[t, an´1, . . . , a0] is a finitely generated
R-module. Since R Ď R[t, an´1, . . . , a0] Ď T , the above Proposition shows t P T is integral over R.

Corollary 2.7.29.2. The integral closure of R is S is integrally closed in S.

Proof. Let R1 be the integral closure of R in S and R2 the one of R1 in S. Now we have R Ď R1 Ď R2.
Corollary above shows R2 is integral over R so that R2 Ď R1, and thus R1 = R2.

Example 2.7.30. A finite field extension K of Q is called a number field. Then the ring of integers OK

of K over Q is integrally closed. For example, when K = Q[
?

´3], OK = Z[´1+
?

´3
2

]. (c.f. Example 2.1.8)

Example 2.7.31. Let R Ď S as above.

1. If R,S are fields, then S is integral over R if and only if S/R is an algebraic extension.

2. If S is integral over R and I � S is an ideal, then S/I is integral over R/R X I.

3. If R is a UFD, then it’s integrally closed. (Proposition 2.4.9.)

• Since Z[
?

´3] is not integrally closed, Z[
?

´3] is not a UFD.

• By Gauss’ lemma, k[x1, . . . , xn] is a UFD, so it’s integrally closed.

• k[x, y]/(y2 ´ x3) is not integrally closed, though it’s an integral domain: (y/x)2 ´ x = 0 but
y/x R k[x, y]/(y2 ´ x3).

Definition. Let φ : R Ñ S be a ring homomorphism of commutative rings with 1.

1. If I �R, then Ie := φ(I)S � S is called the extension of I to S.

2. If J � S, then J c := φ´1(J)�R is called the contraction of J in R.

• When R Ď S and φ : R Ñ S is the inclusion, we have Ie = IS and J c = J X R.
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Property 2.7.32. Let I, I1, I2 be ideals of R and J, J1, J2 ideals of S.

1. I Ď Iec, J Ě J ce.

2. I = Iece, J = J cec.

3. The set C of contracted ideals in R is tI | Iec = Iu and the set E of extended ideals in R is
tJ | J ce = Ju. Moreover, I ÞÑ Ie is a bijective map of C onto E , with inverse J ÞÑ J c.

4.

(I1 + I2)
e = Ie1 + Ie2 (J1 + J2)

c Ě J c1 + J c2
(I1 X I2)

e Ď Ie1 X Ie2 (J1 X J2)
c = J c1 X J c2

(I1I2)
e = Ie1I

e
2 (J1J2)

c Ě J c1J
c
2

(I1 : I2)
e Ď (Ie1 : Ie2) (J1 : J2)

c Ď (J c1 : J c2)?
I
e

Ď
?
Ie

?
J
c
=

?
J c

Proof.

1. φ(I) Ď Ie so that I Ď φ´1(φ(I)) Ď Iec. Since J Ě φ(J c) and J is an ideal, J Ě J ce.

2. This follows from 1.

3. If I P C, say I = J c, then Iec = J cec = J c = I. If J P E , say J = Ie, then J ce = Iece = Ie = J . If
I1, I2 P C are such that Ie1 = Ie2 , then I1 = Iec1 = Iec2 = I2. For J P E , J c P C such that (J c)e = J .
This shows the bijectivity of I ÞÑ Ie of C onto E .

4.

• Let φ(r)s P (I1 : I2)
e with r P (I1 : I2), s P S. Then φ(r)sIe2 Ď φ(r)φ(I2)S Ď φ(I1)S = Ie1 . If

r P (J1 : J2)
c, then φ(r)J2 Ď J1. Taking inverse image gives rJ c2 Ď J c1 .

• Let φ(r)s P
?
I
e with r P

?
I, s P S. Then rn P I for some n ě 1 and φ(rn)sn P φIS = Ie.

Taking radicals gives φ(r)s P
?
Ie. If r P

?
J c, then rn P J c for some n ě 1 and φ(r)n P J .

Taking radicals gives φ(r) P
?
J , and thus r P

?
J
c. For the reverse inclusion, let r P

?
J
c.

Then φ(r)n P J for some n ě 1, i.e, rn P J c. Hence r P
?
J c. (the essence is that φ is a ring

homomorphism.)

Example 2.7.33. The above inclusion can be strict. Here are some examples.

1. Z Ď Q, I = nZ, n ‰ 0. Then nZ = I Ĺ IQ X Z = Z. Also, when n = p, IQ is either a prime ideal
nor a maximal ideal.
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2. Z Ď Z[i], J = (1 + i). We have J X Z = (2) so that (J X Z)Z[i] = 2Z[i]. We see J Ĺ 2Z[i] is proper.

Lemma 2.7.34. Let R Ď S be commutative rings with 1S = 1R and S be integral over R. If D is
multiplicatively closed set in R containing 1, then D´1S is integral over D´1R.

Proof. Let x
y

P D´1S. Since x P S, xn + an´1x
n´1 + ¨ ¨ ¨ + a1x+ a0 = 0 for some ai P R. Then

(
x

y

)n
+
an´1

y

(
x

y

)n´1

+ ¨ ¨ ¨ +
a1
yn´1

(
x

y

)
+
a0
yn

= 0

so that x
y

P D´1S is integral over D´1R.

Theorem 2.7.35. Let R Ď S be commutative rings with 1S = 1R and S be integral over R.

1. If S is an integral domain, then S is a field if and only if R is a field.

2. For P a prime in R, there exists a prime Q in S such that Q X R = P . Moreover, P is maximal if
and only if Q is maximal.

3. (Going-up) If P1 Ď P2 are primes of R and Q1 is a prime of S such that Q1 XR = P1, then there’s a
prime Q2 of S such that Q1 Ď Q2 and Q2 X R = P2.

4. (Going-down) Suppose S is an integral domain and R is integrally closed in R. If P1 Ď P2 are primes
of R and Q2 is a prime of S such that Q2 XR = P2, then there’s a prime Q1 of S such that Q1 Ď Q2

and Q1 X R = P1.

Proof.

1. Let r P Rzt0u. Then r´1 P S so that (r´1)n + an´1(r
´1)n´1 + ¨ ¨ ¨ + a1r

´1 + a0 = 0 for some ai P R.
Multiplying by rn´1 gives r´1 = ´(a0r

n´1 + ¨ ¨ ¨ + an´1) P R. Conversely, let s P Szt0u. Then
sn + an´1s

n´1 + ¨ ¨ ¨ + a1s + a0 = 0 for some ai P R; assume that a0 ‰ 0 (it’s the step that being an
integral domain matters). Then s ¨

´1

a0
(sn´1 + ¨ ¨ ¨ + a1) = 1 so that s is invertible.

2. We first prove the second part. Since Q is a prime, S/Q is an integral domain, and since S is integral
over R, S/Q is integral over R/Qc = R/P . By 1., S/Q is a field if and only if R/P , i.e, Q is maximal
if and only if P is maximal. For the first part, let D = R zP . Consider the commutative diagram

D´1R D´1S

R S

α β
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By Lemma, D´1S is integral over D´1R. Let M be a maximal ideal of D´1S. Then M c =MXD´1R

is also maximal by the second part. Since D´1R is a local ring, M c = D´1P is the unique maximal
ideal. Then the prime ideal β´1(M) has the property that β´1(M) XR = α´1(M c) = P , as wanted.

3. S/Q1 is integral over R/P1 and P2/P1 is a prime of R/P1. The result follows from 2.

4. (...)

Remark 2.7.36. The prime ideal in 2. is not unique. For example, R = Z, S = Z[i], P = 5Z. Then Q

can be (1 + 2i) or (1 ´ 2i).

Theorem 2.7.37. Let R Ď S be commutative rings with 1S = 1R and assume S is integral over R and is
a finitely generated R-algebra. If P is maximal, then

0 ă #tQ� S | Q is maximal, Q X R = P u ă 8

Proof. The nonzero part follows from 2. of the Theorem above. Now if Q is maximal in S such that
Q X R = P , then R/P Ď S/Q is a field extension. Since S/Q is integral over R/P , it’s also algebraic.
Denote by R/P an algebraic closure of R/P . Each maximal ideal Q of S such that Q X R = P gives rise
to a distinct pair (K,ϕ), where K Ď R/P is a subfield and ϕ : S Ñ K is a ring homomorphism such that
ϕ|R = modP , pictorially

R S S/Q =: K Ď R/P

P = Q X R Q

ϕ

so that

#tQ� S | Q is maximal, Q X R = P u ď #t(K,ϕ) | K Ď R/P, ϕ P Hom(Ring)(S,K) with ϕ|R = modP u

Let F = t(K,ϕ) | K Ď R/P , ϕ P Hom(Ring)(S,K) with ϕ|R = modP u. We contend F is a finite set.
Assume S = R[s1, . . . , sm]. Since S is integral over R, there are monic polynomial fj = xnj+¨ ¨ ¨+aj,0 P R[x]

such that fj(sj) = 0. If (K,ϕ) P F , then 0 = ϕ(fj(sj)) = ϕ(sj)
nj + ¨ ¨ ¨ + aj,0 (here aj,i := aj,i modP ).

This means ϕ(sj) is a root of fj(x) in R/P . Since there are only finitely many roots of fj, we conclude
#F ă 8.

Example 2.7.38. Given a prime P in R, we make use of the proof above to find primes Q in S lying over
P .
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1. R = Z, S = Z[i], P = 5Z, R/P = F5, f(x) = x2 + 1. Then ϕ(i) P troots of x2 + 1 in F5u = t2,´2u.

• ϕ(i) = 2 so that ϕ(i ´ 2) = 0. This means i ´ 2 P Q, and thus Q = (5, i ´ 2) = (1 + 2i).

• ϕ(i) = ´2 ; Q = (5, i+ 2) = (1 ´ 2i).

2. R = Z, S = Z[i], P = 2Z, R/P = F2, f(x) = x2 + 1 = (x´ 1)2 in F2. Then Q = (2, i´ 1) = (1 + i).
(Note that 2Z[i] = (1 + i)2). If P = 7Z, x2 + 1 has not root in F7 but in F49. We then see Q = (7).

3. R = Z, S = Z[ 3
?
2], f(x) = x3 ´ 2, P = 5Z. We have x3 ´ 2 = (x ´ 3)(x2 ´ 2x ´ 1) in F3. Thus

Q = (5, 3
?
2 ´ 3) = ( 3

?
4 + 1) or Q = (5, 3

?
4 ´ 2 3

?
2 ´ 1) = ( 3

?
4 ´ 2 3

?
2 ´ 1).

Algebraic integers

Proposition 2.7.39. An element α in some field extension of Q is an algebraic integer if and only if it’s
algebraic over Q and mα,Q P Z[x].

Proof. The if part is clear. For the converse, let g(x) P Z[x] be a monic polynomial such that g(α) = 0;
suppose g has the minimal degree. If g is reducible over Q, then by Gauss’ lemma, g is reducible over
Z, contradicting to the minimality of g. Hence g is irreducible over Q. Since mα,Q | g, we conclude
g = mα,Q.

Proposition 2.7.40. Let K be a number field.

1. As a vector space over Q, K has a basis consisting of elements in O.

2. Let I Ă OK be a non-trivial ideal. Then as an abelian group, it is of rank [K : Q]. In particular,
OK is Noetherian.

3. OK is a Dedekind domain, i.e, Noetherian, integrally closed and of Krull dimension 1.

Proof.

1. Let α P KzQ and mα,Q(x) = anx
n + ¨ ¨ ¨ + a1x+ a0. Consider the polynomial

(anx)
n + an´1(anx)

n´1 + ¨ ¨ ¨ + an´2
n a1(anx) + an´1

n a0

From this, we see that anx is a root of the monic polynomial

yn + an´1y
n´1 + ¨ ¨ ¨ + an´2

n a1y + an´1
n a0

implying that anx P O. We’ve proved that for any α P K, mα P O for some m P Qˆ. Now given any
basis tα1, . . . , αnu for K/Q, tmiαi | i = 1, . . . , nu is a basis for K/Q, where mi P Qˆ is such that
miαi P O.
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2. Let tv1, . . . , vnu Ď O be a basis of K/Q; this exists by (a). Put Emb(K/Q) = tσ1, . . . , σnu. For
x P O, write

x = a1v1 + ¨ ¨ ¨ + anvn

where ai P Q is to be determined. Applying σi gives a system a equations
$

’

’

’

’

&

’

’

’

’

%

σ1(x) = a1σ1(v1) + ¨ ¨ ¨ + anσ1(vn)

σ2(x) = a1σ2(v1) + ¨ ¨ ¨ + anσ2(vn)
...

σn(x) = a1σn(v1) + ¨ ¨ ¨ + anσn(vn)

Put D = det(σivj) and Di to be the determinant of the matrix obtained by replacing the i-th column
of the matrix (σivj) by (σ1(x) ¨ ¨ ¨ σn(x))

t. By Cramer’s rule, we have ai = Di/D for i = 1, . . . , n,
i.e, aiD2 = DiD. Since x, vj P O, so are σi(x), σi(vj) P O, and thus Di, D P O. Also, note
that (σivj)(σivj)

t = (trK/Q(vivj)) and trK/Q(vivj) P Q, so that D2 = det(trK/Q(vivj)) P Q. Hence
aiD

2 = DiD P A X Q = Z.

So far we’ve shown that for each x P O, there exist mi P Z such that

x =
1

D2
(m1v1 + ¨ ¨ ¨ +mnvn)

equivalently, O Ď
1

D2
Zxv1, . . . , vny. On the other hand, we have Zxv1, . . . , vny Ď O. Combining these

gives
Zxv1, . . . , vny Ď O Ď

1

D2
Zxv1, . . . , vny

Both RHS and LHS are free abelian groups of rank n, forcing O itself to be a free abelian group of
rank n, as wanted.

For each α P I, we have αO Ď I Ď O. Again, RHS and LHS are free abelian groups of rank n, and
thus so is I. In particular, I is finitely generated Z-module. Hence O is Noetherian.

3. Let α P P zt0u. Then m := NK/Z(α) = αβ P Z for some β P OK , so m P P , and thus OK/P Ď

OK/(m). Since OK has rank n, #OK/(m) = mn ă 8, and thus OK/P is a finite integral domain,
i.e, a field. Hence P is a prime.

It remains to show OK is integrally closed. Since OK is the integral closure of Z in K, OK is integrally
closed in K. Since K = FracOK , we are done.

Definition. A Z-basis for OK is called an integral basis for OK (or K).
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Example 2.7.41.

1. Let D ‰ 1 be square-free. Then an integral basis for Q[
?
D] is t1, ωu, where

ω =

$

&

%

?
D , if D ” 2, 3 (mod 4)

1 +
?
D

2
, if D ” 1 (mod 4)

(c.f. Example 2.1.8.)

2. An integral basis for Q(ζ) = Q(e2πi/n) is 1, ζ, . . . , ζϕ(n)´1.

Hilbert’s Nullstellensatz

Theorem 2.7.42 (Noether’s normalization lemma). Let A = k[r1, . . . , rm] be a finitely generated k-
algebra. Then there exist y1, . . . , yd P A (0 ď d ď m) such that the yi are algebraically independent and A
is integral over k[y1, . . . , yd].

Proof. We prove this by induction on m.

1° m = 1 : Suppose A = k[r]. If r is algebraically independent over k, pick y1 = r. Otherwise, r is
algebraic over k so that A is integral over k.

2° m ą 1 : If r1, . . . , rm is algebraically independent over k, then done. Otherwise, there’s a nonzero
f P k[x1, . . . , xm] such that f(r1, . . . , rm) = 0. Renumbering the subscripts, if necessary, we assume
f(x1, . . . , xm) is not a constant in the variable xm. Let d = deg f , the maximum of the total monomial
degrees. For j = 1, . . . ,m ´ 1, define

Xj := xj ´ x(1+d)
j

m

For each monomial xe11 ¨ ¨ ¨ xemm , we have

xe11 ¨ ¨ ¨ xemm = (X1 + x1+dm )e1 ¨ ¨ ¨ (Xm´1 + x(1+d)
m´1

m )em´1xemm

= xem+e1(1+d)+¨¨¨+em´1(1+d)m´1

m + ¨ ¨ ¨

Note that different (e1, . . . , em) give polynomials in X1, . . . , Xm´1, xm with the different highest de-
grees of xm.

Now write

g(X1, . . . , Xm´1, xm) = f(X1 + xe1(1+d)
1

m , . . . , xemm ) = cxNm +
N´1
ÿ

j=0

h(X1, . . . , Xm´1)x
j
m
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for non-zero c P k. For j = 1, . . . ,m ´ 1, let sj = rj ´ r
(1+d)j

m . Then 1

c
g(s1, . . . , sm´1, rm) =

1

c
f(r1, . . . , rm) = 0, i.e, rm is integral over B := k[s1, . . . , sm´1]. By induction hypothesis, there

exists y1, . . . , yd, (0 ď d ď m ´ 1) such that y1, . . . , yd are algebraically independent over k and B is
integral over k[y1, . . . , yd] and thus A is integral over k[y1, . . . , yd].

Corollary 2.7.42.1 (Zariski’s lemma). Let K/k be a field extension. If K is finitely generated as k-
algebras, it’s a finite field extension.

Proof. By normalization lemma, k Ď k[y1, . . . , yd] Ď K with K integral over k[y1, . . . , yd] for some alge-
braically independent elements y1, . . . , yd over k. Since K is a field, Theorem 2.7.35.1 implies k[y1, . . . , yd]
is a field, and thus d = 0, i.e, K is algebraic over k. Since K is finitely generated as k-algebra, [K : k] is
finite.

Theorem 2.7.43 (Hilbert’s Nullstellensatz - Weak form). Let k be an algebraically closed field. Then
M�k[x1, . . . , xn] is a maximal ideal if and only if M = (x1 ´a1, . . . , xn´an) for some ai P k. Equivalently,
we have the bijection

tpoints in Anu tmaximal ideals in k[An]u
I

Z

Moreover, if I is any proper ideal of k[x1, . . . , xn], then Z(I) ‰ H.

Proof. Clearly, M = (x1 ´ a1, . . . , xn ´ an) is a maximal ideal. Conversely, let M be any maximal ideal of
k[x1, . . . , xn]. Then K := k[x1, . . . , xn]/M is a field of finite degrees. By Noether’s normalization lemma,
there exist y1, . . . , yd P K, (0 ď d ď n) being algebraically independent over k such that K is integral over
k[y1, . . . , yd]. Since K is a field, so is k[y1, . . . , yd], and thus d = 0, i.e, K is algebraic over k. Since k is
algebraically closed, K = k, i.e, k[x1, . . . , xm]/M – k. Then for each j, xi ´aj P M for some aj P k. Hence
M = (x1 ´ a1, . . . , xn ´ an). The moreover part is clear.

Theorem 2.7.44 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. Then I(Z(I)) =
?
I

for every ideal of I � k[x1, . . . , xn]. Moreover, we have the bijection

taffine algebraic setsu tradical ideals in k[An]u
I

Z

Proof. It remains to show I(Z(I)) Ď
?
I. Assume g P I(Z(I)) and I = (f1, . . . , fm). Introduce a new

indeterminate xm+1, and consider the ideal

I 1 = (f1, . . . , fm, gxm+1 ´ 1)� k[x1, . . . , xn, xn+1]
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Then Z(I 1) = H. By the weak form, (f1, . . . , fm, gxm+1 ´ 1) = k[x1, . . . , xn, xn+1]. In particular, 1 =

a1f1 + ¨ ¨ ¨ + amfm + am+1(gxm+1 ´ 1) for some aj P k[x1, . . . , xm+1]. Let y =
1

xm+1

. Then

yN = b1f1 + ¨ ¨ ¨ + bmfm + bm+1(g ´ y)

for N ąą 0 and bi P k[x1, . . . , xm, y]. Substituting g for y gives gN P I Ď k[x1, . . . , xn], i.e, g P
?
I.

Corollary 2.7.44.1. If k is a field with algebraic closure k and I � k[x1, . . . , xn], the Ik(Zk(I)) =
?
I,

where Zk(I) is the zero locus of I in k
n and Ik(Zk(I)) is the defining ideal of Zk(I) in k[x1, . . . , xn].

Moreover, I = (1) if and only if there are no common zeros in kn of I.

Proof. It follows from Theorem 2.7.35.2 and Property 2.7.9.9 that if R Ď S are commutative rings with
1S = 1R and S is integral over R, then

S

?
IS X R =R

?
I

Since k[x1, . . . , xn] is integral over k[x1, . . . , xn], the result follows from the Nullstellensatz.

2.7.4 Localization
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Chapter 3

Field theory and Galois theory
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3.1 Field Extensions
Definition. The characteristic of a ring R with 1 is defined to be the smallest positive p, denoted by
CharR such that 1 + 1 + ¨ ¨ ¨ + 1

looooooomooooooon

p

= 0. If no such integer exists, we define the characteristic to be 0.

Proposition 3.1.1. If R is an integral domain with 1 ‰ 0, then CharR = 0 or a prime. Moreover, if
CharR = p, then pα = 0 for all α P R. (HW. 14)

Proposition 3.1.2. Let F be a field. If CharF = 0, then F contains a subfield isomorphic to Q. If
CharF = p, then F contains a subfield isomorphic to Z/pZ. (HW. 15)

Definition. In the preceding proposition, Q or Z/pZ is called the prime field of F .

Notation 3.1.3. We denote Z/pZ as Fp, a field of order p.

Definition. If K is a field containing a subfield F , we say K is an extension field of F and denote it
by K/F (not confused with the quotient). Sometimes we call F the base field of the extension.

Definition. Given K/F and α, β, γ, . . . P K, the smallest subfield of K containing α, β, γ, . . . is called the
subfield generated by α, β, γ, . . . over F , and is denoted by F (α, β, γ, . . .).

• If K = F (α) for some α P K, we say K is a simple extension of F and α is the primitive
element for the extension K/F .

• Note that we may regard K as a vector space over F , and we call dimF K the degree of the
extension, and denote it by [K : F ].

• We say K/F is a finite extension if [K : F ] ă 8.

Proposition 3.1.4. If φ : F Ñ F 1 is a field homomorphism, i.e, a ring homomorphism that sends 1 to 1,
then either φ ” 0 or φ is injective. Hence, either φ(F ) = 0 or φ(F ) – F .

Theorem 3.1.5. Let p P F [x] be irreducible. Then there exists an extension field K/F such that p has a
root in K. More precisely, there’s a field K containing a subfield F̃ – F and p̃ has a root in K, where p̃
is the image of p under the natural isomorphism F [x] – F̃ [x].

Proof. Let K = F [x]/(p(x)). Then x+ (p(x)) is a root of p in K.

Definition. Given K/F , an element α P K is called algebraic over F if α is a root of some nonzero
polynomial in F [x]. Otherwise, α is called transcendental over F.

• If all elements of K are algebraic over F , then we say K is an algebraic extension of F .
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• When speaking of algebraic numbers, we always refer to those that are algebraic over Q.

Example 3.1.6. 1. π is transcendental over Q. (Lindemann)

2. e is transcendental over Q. (Hermite)

3.
?
π is algebraic over Q(π).

Proposition 3.1.7. Let α be algebraic over F . Then there’s a unique monic irreducible polynomial,
denoted as mα,F , in F [x] such that α is a root of it. Moreover, if α is a root of f P F [x], then mα,F | f .

Proof. Let Iα = tf P F [x] | f(α) = 0u. Clearly Iα � F [x], and thus there’s a unique monic polynomial
mα,F such that Iα = (mα,F (x)). That mα,F is irreducible follows from the uniqueness.

Definition. The polynomial mα,F in the preceding proposition is called the minimal polynomial of α
over F .

• The degree of α over F is defined to be degF α := degmα,F .

Theorem 3.1.8. Let α be algebraic over F and n := degF α. Then

1. F (α) – F [x]/(mα,F (x)).

2. 1, α, . . . , αn´1 form a basis for F (α) over F . In particular, [F (α) : F ] = n.

Proof. Consider the homomorphism

ϕ : F [x] Q f(x) ÞÑ f(α) P F (α)

Note kerϕ = (mα,F (x)), so F [x]/(mα,F (x)) – Imϕ. Also, Imϕ contains F and α, so ϕ is surjective,
implying that F [x]/(mα,F (x)) – Imϕ = F (α). For the second statement, it’s clear that every element in
F [x]/(mα,F (x)) can be represented by some polynomial of degree ď n ´ 1. In view of the isomorphism
F [x]/(mα,F (x)) – F (α), this means 1, α, . . . , αn´1 spans F (α). To show the linear independence, let
a0 + a1α + ¨ ¨ ¨ + an´1α

n´1 = 0 for aj P F . Then mα,F
loomoon

deg=n

| a0 + a1x+ ¨ ¨ ¨ + an´1x
n´1

looooooooooooooomooooooooooooooon

degďn´1

, and thus aj = 0.

Example 3.1.9. 1. R[x]/(x2 + 1) – C, deg = 2

2. Q[x]/(x2 ´ 2) – Q(
?
2), deg = 2

3. Q[x]/(x3 ´ 2) – Q( 3
?
2) – Q( 3

a

(e2πi/3)) – Q( 3
a

(e´2πi/3)), deg = 3

4. F2/(x
2 + x+ 1) is a field of 4 elements since the degree of the extension over F2 is 2.
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Proposition 3.1.10. α is algebraic over F ô [F (α) : F ] ă 8.

Proof. The only if part follows from Theorem 3.1.8. If α is transcendental, then 1, α, α2, . . . are linearly
independent over F , implying that [F (α) : F ] = 8.

Corollary 3.1.10.1. If [K : F ] ă 8, then K/F is an algebraic extension.

Theorem 3.1.11. For extensions L K F , it satisfies [L : F ] = [L : K][K : F ].

Proof. The cases [L : K] or [K : F ] is infinity are trivial. Suppose that [L : K] = m and [K : F ] = n, say
tα1, . . . , αmu is a basis for L over K and tβ1, . . . , βnu for K over F .

Claim. S = tαiβj | i = 1, . . . ,m, j = 1, . . . , nu is a basis for L over F .

Example 3.1.12. 1. 3
?
2 R Q[

?
2] since degQ 3

?
2 = 3 but [Q(

?
2) : Q] = 2.

2.

Q( 6
?
2)

Q(
?
2)

Q

6

2

, and thus [Q( 6
?
2) : Q(

?
2)] = 3 ñ degQ(

?
2)

6
?
2 = 3 and m 6?2,Q(

?
2)(x) = x3 ´

?
2

Theorem 3.1.13. An extension K/F is finite ô K is generated by a finite number of algebraic numbers
over F . Moreover, a field generated by α1, . . . , αk of degree n1, . . . , nk over F has degree ď n1 ¨ ¨ ¨nk over
F .

Proof. Consider field extensions

F Ď F (α1) Ď F (α1, α2) Ď ¨ ¨ ¨ Ď F (α1, α2, . . . , αk) = K

By Theorem 3.1.11,

[K : F ] = [F (α1) : F ][F (α1, α2) : F (α1)] ¨ ¨ ¨ [K : F (α1, α2, . . . , αk´1)] ď n1n2 ¨ ¨ ¨nk ă 8

Corollary 3.1.13.1. If α, β are algebraic over F , so are α˘ β, αβ,
α

β
(β ‰ 0). In particular, given K/F ,

the set of elements in K algebraic over F forms a subfield of K.
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Example 3.1.14. Let Q be the set of all algebraic numbers in C. Then Q is an algebraic extension of Q
but not a finite extension of Q since, for instance, Q contains n

?
2 for any n P N.

Theorem 3.1.15. If L/K and K/F are algebraic, so is L/F .

Proof. Let α P L and put mα,K(x) = xn + an´1x
n´1 + ¨ ¨ ¨ + a0. Then degF (α,a0,...,an´1)

α = n, and thus

[F (α), F ] ď [F (α, a0, . . . , an´1) : F ]

ď [F (α, a0, . . . , an´1) : F (a0, . . . , an´1)][F (a0, . . . , an´1), F ]

ď n
n´1
ź

j=0

degF aj ă 8 since aj P K and K/F is algebraic

Definition. Let K1, K2 be subfields of K. The composite of K1 and K2, denoted by K1K2, is the
smallest subfield of K containing K1, K2.

Proposition 3.1.16. Let K1, K2 be subfields of K containing F . Then [K1K2 : F ] ď [K1 : F ][K2 : F ].
Moreover, the equality holds when gcd([K1 : F ], [K2 : F ]) = 1.

Proof. Put m = [K1 : F ] and n = [K2 : F ]. Let tα1, . . . , αmu and tβ1, . . . , βnu be bases for K1 and K2 over
F , respectively.

Claim. tαiβj | 1 ď i ď m, 1 ď j ď nu spans K1K2.

If gcd([K1 : F ], [K2 : F ]) = 1, m,n | [K1K2 : F ] implies mn | [K1K2 : F ], and hence mn ď [K1K2 : F ].

3.1.1 Constructible numbers
Definition. A real number is constructible if it can be constructed using a straightedge and a compass.

• The three geometric problems of ancient Greek mathematics

1. Doubling a cube ; whether 3
?
2 is constructible.

2. Trisecting an angle ; whether cos θ
3

is constructible given any cos θ.

3. Squaring a cube ; whether
?
π is constructible.

• Note that if a, b are constructible, so are a ˘ b, ab,
a

b
and

?
a.

Proposition 3.1.17. α is constructible ô [Q(α) : Q] = 2k for some k P N.
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Example 3.1.18. The minimal polynomial for e2πi/7 over Q is x6+x5+¨ ¨ ¨+1, and thus [Q(e2πi/7) : Q] = 6.
Also, [Q(e2πi/7) : Q(cos 2π

7
)] = 2 since 2 cos 2π

7
= e2πi/7 + e´2πi/7. Hence [Q(cos 2π

7
) : Q] = 3, implying

that cos 2π
7

is not constructible by Proposition 3.1.17.

Question 3.1.19. For which n can we draw a regular n-gon using a straightedge and a compass? Equiv-
alently, for which n is cos 2π

n
constructible, i.e, [Q(cos 2π

n
) : Q] a power of 2, i.e,

for which n is [Q(e2πi/n) : Q] a power of 2?

We’ll see that
[Q(e2πi/n) : Q] = ϕ(n)

and clearly, ϕ(n) = 2k ô n = 2mp1 . . . pk with pi ´ 1 = 2mi , mi ě 1.

Definition. A prime of the form 2k + 1 is called a Fermat prime.

Observation 3.1.20. If k is divisible by any odd integer ě 3, then 2k+1 is composite, via the factorization
xm + 1 = (x+ 1)(xm´1 ´ xm´2 + ¨ ¨ ¨ + 1).

• Hence, a Fermat prime is necessarily of the form 22
k
+ 1, which we will denote by Fk.

• F0 = 3, F1 = 5, F2, F3 = 257, F4 = 65537 are primes.

• Fermat conjectured that all Fk are primes; however, this conjecture is way off. In fact, now it’s
believed that those above are the only Fermat primes.

3.1.2 Splitting Fields and Algebraic Closures
Definition. Let f P F [x]. If K is an extension field of F such that f splits completely in K[x] and no
proper subfield of K possesses this property, we say K is a splitting field of f over F .

Theorem 3.1.21. A splitting field for f P F [x] exists.

Proof. We prove this by induction on n = deg f for each polynomial over any field. The case n = 1

is trivial. In general, let g be an irreducible factor of f over F . By Theorem 3.1.5, there exists an
extension E/F such that g admits a root α1 in E. Write f(x) = (x ´ α1)f1(x) for some f1 P E[x]. Now
deg f1 = deg f ´ 1 ă deg f , so by the induction hypothesis, there exists an extension E 1/E such that E 1

is a splitting field for f1 over E. Hence, f splits completely in E 1[x]. Let K be the smallest subfield of E 1

containing all roots of f and F . Such K is what we desire.

Proposition 3.1.22. If K is a splitting field for f P F [x], then [K : F ] ď n!, where n = deg f .
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Remark 3.1.23. The bound is in general the best. Consider x3 ´ 2 P Q[x]. Its splitting field is

Q(
3

?
2,

3
?
2e2πi/3,

3
?
2e´2πi/3) = Q(

3
?
2, e2πi/3)

Then

Q( 3
?
2, e2πi/3)

Q( 3
?
2)

Q

3

6

2

, and thus [Q( 3
?
2, e2πi/3) : Q] = 6 = 3!.

Example 3.1.24. Let p be a prime. A splitting field of xp´1 + ¨ ¨ ¨ + 1 =
xp ´ 1

x ´ 1
over Q is Q(e2πi/p) since

all roots are of the form e2πik/p, k = 1, . . . , p ´ 1, and thus [Q(e2πi/p),Q] = p ´ 1.

Definition. If K/F is an algebraic extension such that K is a splitting field for a collection of polynomial
in F [x], then we say K is a splitting field, or normal field, of F .

Lemma 3.1.25. Assume that F –ϕ F
1, let p be an irreducible polynomial in F [x] and put p1 = ϕ(p) P F 1[x].

Let α, α1 be roots of p, p1 in some extension fields, respectively. Then ϕ can be extended to an isomorphism
from F (α) to F 1(α1).

Proof. Consider the isomorphism

Φ : F (α) – F [x]/(p(x)) –ϕ F
1[x]/(p1(x)) – F 1(α1)

where the first and the third isomorphisms are as in Theorem 3.1.8. Then Φ is an extension of ϕ.

Theorem 3.1.26. Assume that F –ϕ F
1 and extend ϕ to F [x] naturally. Let f P F [x] and put f 1 := ϕ(f).

Let E,E 1 be splitting fields of f, f 1 over F, F 1, respectively. Then ϕ can be extended to an isomorphism
from E to E 1.

Proof. We prove this by induction on n = deg f for each polynomial over any field. The case n = 1 is
simply Lemma 3.1.25. For the general case, let g be an irreducible factor of f in F [x] and put g1 = ϕ(g).
Then g1 is an irreducible factor of f 1 in F 1[x]. Let α, α1 be roots of g, g1 in E,E 1, respectively. By Lemma
3.1.25, ϕ can be extended to an isomorphism, denoted by ϕ1, from F1 := F (α) to F 1

1 := F 1(α1). Now
write f(x) = (x ´ α)h(x) and f 1(x) = (x ´ α1)h1(x) for some h P F1[x] and h1 P F 1

1[x]. Note that
degh = deg f ´ 1 ă deg f and h1 = ϕ1(h). By the induction hypothesis, ϕ1 can be extended to an
isomorphism, denoted by Φ, from E, a splitting field of h, to E 1, a splitting field of h1. Then Φ : E Ñ E 1

is an isomorphism extending ϕ.

111



Corollary 3.1.26.1. Any splitting fields for f P F [x] are isomorphic, and the isomorphism may be chosen
so that it fixes F pointwise.

Proof. This follows from Theorem 3.1.26 with ϕ = idF .

Definition. An algebraic closure of a field F , denoted by F , is an algebraic extension of F such that
each polynomial over F splits completely over F .

Definition. A field K is algebraically closed if each polynomial over K admits a root in K.

Proposition 3.1.27. An algebraic closure of a field is algebraically closed.

Proof. Let F be a field, f(x) =
n
ř

i=0

aix
i P F [x] and α be a root of f in some extension of F . Then α is

algebraic over K = F (a0, . . . , an), and K is algebraic over F , so α is algebraic over F . Hence α P F .

Example 3.1.28. 1. Q = talgebraic numbersu is an algebraic closure of Q.

2. The Fundamental theorem of algebra states that C is algebraically closed.

Theorem 3.1.29. Let F be a field. Then an algebraic closure of F exists. Moreover, if K,K 1 are two
algebraic closures of F , then there exists a field isomorphism between K and K 1 that fixes F pointwise.

Proof. Let S := talgebraic extensions of F u, partially ordered by set-theoretic inclusion. By the Zorn’s
lemma S has a maximal element, say, K. Then K is an algebraic closure of F , which can be shown by an
argument similar to the proof of Proposition 3.1.27. For the moreover part, we let

T := t(E,ψ) | E is a subfield of K, ψ : E – E 1 for some subfield E 1 of K 1u

and define a partial order on T by

(E1, ψ1) ď (E2, ψ2) ô E1 Ď E2 ^ ψ2|E2 = ψ1

Let C be a chain in T . Let E0 =
Ť

(E,ψ)PC
E, E 1

0 =
Ť

(E,ψ)PC
E 1 and define ψ0 : E0 Ñ E 1

0 by for all x P E0,

ψ0(x) := ψ(x) for some ψ whose associated subfield E contains x.

• ψ0 is well-defined by the definition of ď on T .

• ψ0 is clearly an isomorphism from E0 to E 1
0.

• (E,ψ) ď (E0, ψ0) for each (E,ψ) P C.

Hence (E0, ψ0) P T is an upper bound for C. By the Zorn’s lemma, T has a maximal element, say, (K0, ϕ0).
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Claim. K0 = K and Imϕ0 = K 1.

• Suppose otherwise that K0 Ĺ K. Pick α P K zK0 and put p := mα,K0 P K0[x]. Also, put p1 := ϕ0(p)

and let α1 be a root of p1 in K 1. Then by Lemma 3.1.25 we can extend ϕ0 to an isomorphism from
K0(α) Ľ K0 to K 1

0(α
1) Ď K 1, a contradiction to the maximality of (K0, ϕ0).

• Note that Imϕ0 Ď K 1 is also an algebraic closure of F , which forces that Imϕ0 = K 1 since it cannot
be extended algebraically.

3.1.3 Separable and Inseparable Extensions
Example 3.1.30. x2 ´ 2 P Q[x] defines an extension Q(

?
2) of degree 2 over Q, and has two distinct roots

˘
?
2 in Q(

?
2). On the other hand, x2 ´t P F2(t)[x] also defines an extension F2(t)(

?
t) = F2(

?
t) of degree

2 over F2(t); however, x2 ´ t = (x ´
?
t)t has a (and the only) repeated root

?
t in F2(

?
t).

Definition. A polynomial over a field is separable if it has no repeated roots in its splitting field. A
polynomial which is not separable is called inseparable.

Definition. Let f(x) =
n
ř

i=0

aix
i P F [x]. The formal derivative Df of f is Df :=

n
ř

i=1

iaix
i´1 P F [x].

Property 3.1.31. Let f, g P F [x].

1. D(f + g) = Df +Dg

2. D(fg) = fDg + gDf

Proposition 3.1.32. f P F [x] has a repeated root α ô Df(α) = 0. In particular, f is separable if and
only if f and Df are relatively prime.

Corollary 3.1.32.1. Every irreducible polynomial over a field of characteristic 0 is separable.

Corollary 3.1.32.2. An irreducible polynomial f over a field F of characteristic p is inseparable if and
only if f(x) = g(xp) for some g P F [x].

Example 3.1.33. In F2(t)[x], D(x2 ´ t) = 2x = 0. Thus x2 ´ t has a repeated root.

Proposition 3.1.34. Let F be a field of characteristic p. Then F Q a ÞÑ ap is a field endomorphism on F .

Corollary 3.1.34.1. If F is a finite field of characteristic p, then F Q a ÞÑ ap is a field automorphism on
F .
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Definition. The function F Q a ÞÑ ap is called the Frobenius endomorphism of F .

Example 3.1.35. The Frobenius endomorphism on F2(
?
t), which has image F2(t), is not surjective. This

also gives us an example that a field is isomorphic to its proper subgroup.

Proposition 3.1.36. Every irreducible polynomial over a finite field F (of characteristic p) is separable.

Proof. If f P F [x] is inseparable, by Corollary 3.1.32.2, f(x) = g(xp) for some g P F [x], say g(x) =

anx
n + ¨ ¨ ¨ + a0. Since x ÞÑ xp is an automorphism, ai = bpi for some bi for each i. Hence

f(x) = anx
np + ¨ ¨ ¨ + a1x

p + a0 = (bnx
n)p + ¨ ¨ ¨ + (b1x)

p + bp0 = (bnx
n + ¨ ¨ ¨ + b1x+ b0)

p

and thus f isn’t irreducible over F .

Definition. A field is said to be perfect is every irreducible polynomial over it is separable.

Example 3.1.37. Fields of characteristic 0 and field of characteristic p such that x ÞÑ xp is an automor-
phism are perfect.

Theorem 3.1.38. Let p be a prime. Then for each positive integer n there exists a finite field of pn

elements. Moreover, any two finite fields of pn elements are isomorphic, which will be denoted by Fpn .
Precisely, F := tα P Fp | αp

n
´ α = 0u is a finite field of pn elements.

Proof. Since D(xp
n

´ x) = ´1, xpn ´ x has no repeated roots, i.e, #F = pn. Also, for all a, b P F ,
a˘ b, ab P F and a

b
P F if b ‰ 0, so F is a field. Suppose F 1 is another field of pn elements, then xpn´1 = 1

for each 0 ‰ x P F , and thus each element of F 1 is precisely a root of xpn ´ x. Therefore, F and F 1 are
splitting fields of xpn ´ x, and hence, by Corollary 3.1.26.1, F – F 1.

Proposition 3.1.39. Let f be an irreducible polynomial over a field F of characteristic p. Then there exist
a unique integer k ě 0 and a unique separable irreducible polynomial fsep P F [x] such that f(x) = fsep(x

pk).

Proof. If f is separable, we are done with k = 0 and fsep = f . Otherwise, by Corollary 3.1.32.2, f(x) =
f1(x

p) for some f1 P F [x]. If f1 is separable, we are done with k = 1 and fsep = f1. Otherwise, continuing
this way, and since deg f ă 8, this must stop in a finite stage.

Definition. In the preceding proposition, the integer pk, denoted by degi f , is called the inseparable
degree of f , and the integer deg fsep, denoted by degs f , is called the separable degree.

Remark 3.1.40. Clearly, deg f = (degi f)(degs f). Note that we only define these degrees over irreducible
polynomials. For example, we cannot say what they should be for f(x) = (xp ´ t)(xp

2
´ t).

Example 3.1.41.
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1. p(x) = xp ´ t is irreducible over Fp(t) by the Eisenstein’s criterion, and is separable since it has zero
derivative. Hence psep(x) = x ´ t, degs = 1 and degi = p.

2. p(x) = xp
n

´ t is irreducible over Fp(t) with psep = x ´ t and degi p = pn.

Definition. An algebraic extension K/F is said to be a separable extension if mα,F is separable for
each α P K.

Example 3.1.42. Each algebraic extension of a perfect field is separable. In particular, any finite extension
of either Q or a finite field is separable.

3.1.4 Cyclotomic Polynomials and Extensions
Definition. Let n be a positive integer.

1. ζn := e2πi/n.

2. µn := tζkn | k = 0, . . . , n ´ 1u is the group of n-th roots of unity over Q.

3. ζ P µn is a primitive if µn = xζy, i.e, gcd(k, n) = 1.

4. Φn(x) =
ś

gcd(k, n) = 1

1 ď k ď n

(x ´ ζkn) is called the n-th cyclotomic polynomial.

Lemma 3.1.43. xn ´ 1 =
ź

d|n

Φd(x).

Proof.

xn ´ 1 =
n
ź

k=1

(
x ´ e2kπi/n

)
=
ź

d1|n

ź

gcd(k, n) = d1

1 ď k ď n

(
x ´ e2kπi/n

)

(Let d =
n

d1
, k1 =

k

d1
) =

ź

d|n

ź

k1P(Z/dZ)ˆ

(
x ´ e2k

1πi/d
)
=
ź

d|n

Φd(x)

Lemma 3.1.44. Φn P Z[x] is monic of degree ϕ(n).

Proof. That Φn is monic of degree ϕ(n) is clear. We prove it by induction on n. The result is clear when
n = 1. Suppose Φk P Z[x] when 1 ď k ă n. By Lemma 3.1.43 we have xn ´ 1 = f(x)Φn(x), where
f(x) =

ś

d|n, d‰n

Φd(x). Since f P Z[x] by the induction hypothesis and is monic, Φn P Z[x] by the division,

and thus the induction stage is completed.
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Definition. For each n ě 2, we write n = pe11 ¨ ¨ ¨ pekk , where each pi is prime and ei ě 1. We define the
Möbius function µ : N Ñ t´1, 0, 1u by setting

µ(n) =

$

’

&

’

%

1 , if n = 1

(´1)k , if ei = 1 for each i
0 , if ei ą 1 for some i

Proposition 3.1.45. Let G := tf : N Ñ R | f(1) ‰ 0u. Define the operation ˚ on G by setting

(f ˚ g)(n) :=
ÿ

d|n

f(d)g(
n

d
)

for each f, g P G. Then (G, ˚) is an abelian group with identity δ1n.

Proposition 3.1.46. Let f, g : N Ñ R with f(1), g(1) ‰ 0. TFAE:

1. f(n) =
ř

d|n

g(d)

2. g(n) =
ř

d|n

µ(
n

d
)f(d)

Equivalently, µ ˚ 1 = δ1n, where 1 : N Q n ÞÑ 1.

Proposition 3.1.47. Φn(x) =
ś

d|n

(xd ´ 1)µ(
n
d
).

Proof. This follows from Lemma 3.1.43 and Proposition 3.1.46, by exponentiating.

Remark 3.1.48. This also gives a proof for Lemma 3.1.44.

Theorem 3.1.49. Φn is irreducible over Q.

Proof. Suppose that Φn(x) = f(x)g(x), where f, g P Q[x]. By the Gauss’ lemma, we may assume that
f, g P Z[x]. We also assume f = mζn,Q.

Claim. If p is a prime such that gcd(p, n) = 1, then f(ζpn) = 0.

Note that ζpn is also a root of Φn. Suppose otherwise f(ζpn) ‰ 0. Then g(ζpn) = 0, implying that
f(x) = mζn,Q(x) | g(xp), say g(xp) = f(x)h(x) for some h P Q[x]. Since f is monic, h P Z[x]. Consider the
reduction modulo p. We have g(x)p = g(xp) = f(x) ¨ h(x). Since Fp[x] is a UFD, f, g have common factor
of degree ě 1 in Fp[x]. This implies that Φn has a repeated irreducible factor in Fp[x], so does xn ´ 1,
which leads to a contradiction since xn ´ 1, D(xn ´ 1) = (xn ´ 1, nxn´1) = (1) in Fp with gcd(n, p) = 1.
Hence the proof of the claim is completed.
Now for all a P N such that gcd(a, n) = 1, write a = p1 ¨ ¨ ¨ pk, where each pi is prime. Then the claim
implies that ζn, ζp1n , . . . , ζp1¨¨¨pk

n = ζan are roots of f(x). Hence f = Φn, i.e, Φn = mζn,Q.
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3.1.5 Wedderburn’s theorem
Theorem 3.1.50 (Wedderburn’s). Every finite division ring is a field.

Proof. Let R be a finite division ring. For any a P R, denote

C(a) := tr P R | ar = rau

and
Z(R) :=

č

aPR

C(a).

Note that Z(R) is a finite commutative division ring, so Z(R) is a field. Put F = Z(R) and q = |F|. Also
note that R and C(a) are both vector spaces over F. Since R and C(a) are finite, R – Fn and C(a) – Fna

for some n, na P N.

• Rˆ = Rzt0u is a multiplicative group, so we may consider the class equation:

|Rˆ| = |Z(Rˆ)| +
ÿ

|[a]|‰1

|Rˆ|

|CRˆ(a)|

i.e,
qn ´ 1 = (q ´ 1) +

ÿ

|[a]|‰1

qn ´ 1

qna ´ 1

The last term on the RHS implies that na | n since qna ´ 1
ˇ

ˇ qn ´ 1.

• On the other hand,
qn ´ 1 =

ź

d|n

Φd(q) = Φn(q)
ź

d|na

Φd(q)

loooomoooon

qna´1

ź

naăd|n,d‰n

Φd(q)

loooooooomoooooooon

=:APZ

and hence qn ´ 1

qna ´ 1
= AΦn(q), implying |Φn(q)|

ˇ

ˇ |
qn ´ 1

qna ´ 1
|.

Hence, we must have |Φn(q)|
ˇ

ˇ (q ´ 1). Thus

q ´ 1 ě |Φn(q)| = |
ź

kP(Z/nZ)ˆ

(
x ´ exp 2kπi

n

)
| ě

ź

kP(Z/nZ)ˆ

(|q| ´ 1) = (|q| ´ 1)φ(n)

If q = 2, then all inequalities turn out being equalities, and thus n = 1. Otherwise, we have φ(n) = 1,
implying that n = 1, 2 and hence n = 1 for Φ2(q) = q + 1. Hence, we have R – Fn = F is commutative,
and thus a field.
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3.2 Galois Theory

3.2.1 Separable extensions
Let F be a field and α P F . Recall that we have F (α) – F [x]/(mα,F (x)). If β is another root of mα,F ,
then F (β) – F [x]/(mα,F (x)) – F (α). This gives the isomorphism

ϕα,β : F (α) F (β)

α β

Definition. For α, β P F , we say α and β are conjugates over F if mα,F = mβ,F .

Proposition 3.2.1. ϕ : F (α) ãÑ F be an isomorphism from F is a subfield of F such that ϕ fixes F
pointwise. Then ϕ(α) is a conjugate of α over F .

Definition. Let F Ď E Ď F be fields.

1. An embedding of E into F is a nontrivial (injective) field homomorphism from E to F .

2. Emb(E/F ) := tembeddings of E into F that fix F pointwiseu.

3. tE : F u := # Emb(E/F )

Corollary 3.2.1.1. Let F be a field and α P F . Then tF (α) : F u = # of distinct roots of mα,F =

degsmα,F .

Theorem 3.2.2. Let F Ď K Ď E and [E : F ] ă 8, then tE : F u = tE : KutK : F u.

Proof. Note that if τ P Emb(E/F ), then τ |K P Emb(K/F ).

Claim. For all σ P Emb(K/F ), there are tE : Ku embeddings τ P Emb(E/F ) such that τ |K = σ.

In fact, we will prove a stronger statement:

Claim.

For all σ1, σ2 P EmbK/F , # of τ1 P Emb(E/F ) such that τ1|K = σ1

= # of τ2 P Emb(E/F ) such that τ2|K = σ2

= # of τ P Emb(E/F ) such that τ |K = idK = tE : Ku

Let σi : K Ñ Ki, i = 1, 2. Extend them to isomorphisms σi : F Ñ F by Zorn’s lemma, as in the proof of
Theorem 3.1.29. Let λ = σ2 ˝ σ´1

1 . Then for any τ1 P Emb(E/F ) such that τ1|K = σ1, (λ ˝ τ1)|K = σ2.
Conversely, for any τ2 P Emb(E/F ) such that τ2|K = σ2, (λ´1 ˝ τ2)|K = σ1. Thus λ induces a bijection
from tτ1 P Emb(E/F ) | τ1|K = σ1u to tτ2 P Emb(E/F ) | τ2|K = σ2u.
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Definition. Let F be a field and α P F .

1. α is separable over F is tF (α) : F u = [F (α) : F ], i.e, mα,F is separable over F .

2. Let F Ď E Ď F . E/F is a separable extension if each element in E is separable over F .

3. Let F Ď E Ď F . E/F is a purely inseparable extension if mβ,F has only one root for all β P E.

• In the case E/F is finite, E/F is separable if and only if tE : F u = [E : F ].

• If α is separable over F , then F (α)/F is a separable extension. Indeed, let β P F (α), then

tF (β) : F u =
tF (α) : F u

tF (α) : F (β)u
=

[F (α) : F ]

[F (α) : F (β)]
= [F (β) : F ]

in which the second equality holds since if α is separable over F , it remains separable over any
intermediate field of F Ď F (α).

• If F has characteristic 0, then every algebraic extension of F is separable (see Corollary 3.1.32.1).
In general, any algebraic extension of a perfect field is separable.

Corollary 3.2.2.1. Let F be a field and α, β P F are separable over F , then F (α, β)/F is separable. In
particular, α ˘ β, αβ, 1/α are separable.

Definition. Let F Ď E Ď F be fields.

1. Es := tα P E | α is separable over F u is a subfield of E, called the separable closure of F in E.

2. [Es : F ] is called the separable degree of E/F , denoted as degsE/F .

3. [E : Es] is called the inseparable degree of E/F , denoted as degiE/F .

Proposition 3.2.3. Let E/F be an inseparable algebraic extension and p = CharE. Then Es/F is
separable and E/Es is purely inseparable.

Proof. The first is clear by definition. Let α P E. By Proposition 3.1.39, there’s a k ě 0 and an irreducible
separable polynomial f P F [x] such that mα,F (x) = f(xp

k
), and thus αpk is separable over F , i.e, αpk P Es.

Hence mα,Es has only one root, and thus E/Es is purely inseparable.

Corollary 3.2.3.1. Let E/F be algebraic and p = CharF . Then E/F is purely inseparable if and only
if for each element α P E, αq is separable over F for some q = pk, k ě 0.

Proof. This can be seen from the proof above.
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Traces and norms

Definition. Let L/K be a finite field extension. For each x P L we associate it with a translation
Tx : L Ñ L defined by y ÞÑ xy; Tx is a K-linear map.

1. The trace TrL/K(x) is defined to be the trace of Tx.

2. The norm NL/K(x) is defined to be the determinant of Tx.

• One can see the trace is additive and the norm is multiplicative.

Proposition 3.2.4. Let L be a finite separable extension of K of degree n. Let α be an element of L.
(HW. 1)

1. The minimal polynomial for α over K is the same as the minimal polynomial for the linear transfor-
mation Tα. (Moreover, the characteristic polynomial of Tα is a power of its minimal polynomial.)

2. TrL/K(α) =
ř

σPEmb(L/K)

σ(α) P K

3. NL/K(α) =
ś

σPEmb(L/K)

σ(α) P K

Proof.

1. Let f(x) = mα,K(x) and g(x) be the minimal polynomial of Tα; by definition g(x) P K[x]. By
definition, we have g(Tα)β = 0 for all β P K, and thus g(α) = 0, implying f(x) | g(x). Conversely,
f(α) = 0 implies f(α)β = 0 for all β P K, i.e, f(Tα) = 0. Hence g(x) | f(x). To sum up, we obtain
f = g.

2. Let d = degK α. Clearly, we have d | n. Let t(α) and n(α) be the sum and product of conjugates of
α over K, respectively. Obviously, we have

TrL/F (α) =
n

d
t(α)

NL/F (α) = n(α)n/d

Let tβ1, . . . , βdu be a basis for L/K(α). Then β := tαiβj | 0 ď i ď d ´ 1, 1 ď j ď du is a basis for
L/K. Ordering β appropriately, we have [Tα]β = A ‘ ¨ ¨ ¨ ‘ A P Mn(K), where

A =



0 0 ¨ ¨ ¨ 0 ´a0

1 0 0 ´a1
. . .

...
. . .

...

1 ´ad´1


P Md(K)
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and g(x) = xd + ad´1x
d´1 + ¨ ¨ ¨ + a1x+ a0. Thus

tr(Tα) =
´ad´1n

d
=
n

d
t(α) = TrL/K(α)

3. As in 2., we have
det(Tα) = ((´1)da0)

n/d = n(α)n/d = NL/K(α)

Proposition 3.2.5. Let L/K be a finite extension and V a finite dimensional vector space over L. Let
φ : V Ñ V be an L-linear map. Then

trK(φ) = TrL/K(trL(φ))

detK(φ) = NL/K(detL(φ))

Proof.

1. Let tv1, . . . , vnu be an L-basis for V . By linearity of the first asserted identity, assume φ(vt) = avs

and φ(vi) = 0 for i ‰ t. Let tα1, . . . , αmu be a K-basis for L. Then φ(αivj) = δtjaαivs = δtjTa(αi)vs,
and hence

trK(φ) = trK Ta = TrL/K(a) = TrL/K(trL(φ))

when t = s and
trK(φ) = 0 = TrL/K(0) = TrL/K(trL(φ))

when t ‰ s.

2. We may assume φ is invertible. Also, by multiplicativity, we may assume φ is an elementary matrix.

• Assume φ(vt) = vt + avs and φ(vi) = vi for i ‰ t. Then φ(αivj) = αivj + δtjTa(αi)vs so that

detK(φ) = 1 = NL/K(1) = NL/K(detL(φ))

• Assume φ(vt) = avt and φ(vi) = vi for i ‰ t. Then φ(αivt) = aαivt = Ta(αi)vt so that
[φ] = [Ta] ‘ I in terms of the basis tαivju, and thus

detK(φ) = detK Ta = NL/F (a) = NL/K(detL(φ))

Definition. Let L/K be a finite extension of degree n and tx1, . . . , xnu be elements of L. The discrimi-
nant disc(x1, . . . , xn) is the determinant of the matrix (TrL/K(xixj))ij.
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• Suppose L/K is separable. Let Emb(L/K) = tσ1, . . . , σnu. Then disc(x1, . . . , xn) = det(σi(xj))2.

Theorem 3.2.6. Let L/K be a finite extension of degree n. TFAE:

1. L/K is separable.

2. TrL/K is not identically zero.

3. The pairing Q = TrL/K : L ˆ L Ñ K is nondegenerate.

Proof.

1. (3 ñ 2) This is clear.

2. (2 ñ 3) Pick y P L such that TrL/K(y) ‰ 0. Then for all x ‰ 0, Q(x, y/x) ‰ 0. This shows Q is
nondegenerate.

3. (2 ñ 1) Suppose L/K is inseparable. Say CharK = p for some prime p. By Proposition 3.2.3, Ls/K
is separable and and L/Ls is purely inseparable. By Proposition 3.2.5, the trace is identically zero
since L/Ls is purely inseparable.

4. (1 ñ 2) Suppose L/K is separable. Use induction on n we show the trace map is not identically zero.
By Proposition 3.2.5 we may assume L = K(α) for some α P L. Let α1, . . . , αn be the conjugates
of α over K; they’re distinct by separability. Note also that they are the eigenvalues of the linear
transformation induced by α. Consider the map πi : r ÞÑ αri ; this is a character from the group Z to
Lˆ. Proposition 3.2.9 shows π1(e) + ¨ ¨ ¨ + πn(e) ‰ 0 for some e P Z, i.e, TrL/K(αe) ‰ 0.

3.2.2 Galois extensions
Definition. Let F be a field.

1. An algebraic extension E/F is normal if σ(E) = E for all σ P Emb(E/F ); equivalently, for any
α P E, conjugates of α over F all lie in E.

2. If E/F is an extension, let

Aut(E) := tσ : E Ñ E | σ is a field isomorphismu

and let
Aut(E/F ) := tσ P Aut(E) | σ fixes F (pointwise)u
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• Note that Fp Ď E if CharE = p. Since σ(1) = 1 for all σ P Aut(E), σ fixes Fp. Hence Aut(E) =
Aut(E/Fp). Likewise, Aut(E) = Aut(E/Q) if CharE = 0.

• An algebraic extension E/F is normal if and only if Emb(E/F ) = Aut(E/F ).

• The splitting field of a collection of polynomials of F [x] over F is a normal extension of F .

Proposition 3.2.7. Let E be the splitting filed of a collection of polynomials in F [x] over F . Then E/F
is normal.

Proof. Note Emb(E/F ) Ď Aut(E/F ), so Emb(E/F ) = Aut(E/F ). Now if α P E and β is a conjugate
of α over F , there exists a field isomorphism ϕ : F (α) Ñ F (β) sending α to β. Extend ϕ to an element
σ P Emb(E/F ) = Aut(E/F ). Thus β = ϕ(α) = σ(α) P E.

Definition. Let F be a field. If E/F is separable and normal, we say E/F is a Galois extension . In
this case, we write Gal(E/F ) := Aut(E/F ), and call it the Galois group of E/F .

• In the case E/F is finite, E/F is Galois if and only if # Aut(E/F ) = [E : F ].

• If f P F [x] is separable, ”the Galois group of f” refers to the Galois group of the splitting field of f
over F .

Example 3.2.8. 1. Quadratic extensions of a field of characteristic ‰ 2 are Galois.

2. Q( 3
?
2)/Q is not Galois (not normal), but Q( 3

?
2, e2πi/3) is; it’s the splitting field of x3 ´ 2 over Q.

3. A Galois extension of a Galois extension may not be Galois. For instance, Q Ď Q(
?
2) Ď Q( 4

?
2).

4. Fpn/Fp is Galois since it’s the splitting field of xpn ´ x over Fp. Let σ : a ÞÑ ap be the Frobenius
automorphism on Fpn . Clearly, σn = idFpn

. On the other hand, xpk ´ x has at most pk roots, so σk

cannot fix every element of Fpn if k ă n. This means the order of σ = n = [Fpn : Fp] = # Gal(Fpn/Fp).
Thus Gal(Fpn/Fp) = xσy.

3.2.3 The fundamental theorem of Galois theory
Definition. Let K be a field and S be a subset of Aut(K). Then the set

KS := tα P K | σα = α for all σ P Su

is a subfield of K, called the fixed field of S.
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Definition. Let G be a group and K be a field. A character of G with values in K is a group homomor-
phism χ : G Ñ Kˆ.

• Each homomorphism from E ot K may be viewed as a character of Eˆ with values in Kˆ. In
particular, embeddings and automorphism of a field are characters.

Proposition 3.2.9. Let G be a group and K be a field. If χ1, . . . , χn are distinct characters of G with
values in K, they’re K-linearly independent.

Corollary 3.2.9.1. Let K/F be a finite separable field extension. Then the trace TrK/F : K Ñ F is
surjective.

Theorem 3.2.10. Let K be a field and G = tσ1 = idK , σ2, . . . , σnu ď Aut(K) be a finite subgroup. Then
[K : KG] = #G.

Proof. Let m = [K : KG] and let α1, . . . , αm be a basis for K/F .

1. n ą m: consider the system of equations

(˚) :

$

’

’

’

’

&

’

’

’

’

%

σ1(α1)x1 + ¨ ¨ ¨ + σn(α1)xn = 0

σ1(α2)x1 + ¨ ¨ ¨ + σn(α2)xn = 0
...

σ1(αm)x1 + ¨ ¨ ¨ + σn(αm)xn = 0

Since n ą m, (˚) has a nontrivial solution (β1, . . . , βn) P Kn. Since the αi form a basis for K/F , we
have

(˚˚) : σ1(α)β1 + ¨ ¨ ¨ + σn(α)βn = 0, @α P K

WLOG, suppose (β1, . . . , βn) is a solution of all nontrivial solutions of (˚) such that the number
of nonzero entries is minimal; say β1, . . . , βr ‰ 0 and βr+1, . . . , βn = 0. Pick α0 P Kˆ so that
σ1(α0) ‰ σr(α0). Replacing α by α0α in (˚˚), we obtain

σ1(α)σ1(α0)β1 + ¨ ¨ ¨ + σr(α)σr(α0)βr = 0

On the other hand, by multiplying σr(α0) to both side of (˚), we obtain

σ1(α)σn(α0)β1 + ¨ ¨ ¨ + σr(α)σr(α0)βr = 0

Subtracting the latter from the former, we have

σ1(α)[σ1(α0) ´ σr(α0)]β1 + ¨ ¨ ¨ + σr´1(α)[σr´1(α0) ´ σr(α0)]βr´1 = 0

which contradicts to the minimality of r.
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2. m ą n: consider the system of equations:
$

’

’

’

’

&

’

’

’

’

%

σ1(α1)x1 + ¨ ¨ ¨ + σ1(αm)xm = 0

σ2(α1)x1 + ¨ ¨ ¨ + σ2(αm)xm = 0
...

σn(α1)x1 + ¨ ¨ ¨ + σn(αm)xm = 0

Again, since m ą n, it has a nontrivial solution (β1, . . . , βm) P Km; WLOG, suppose the number of
its nonzero entries is minimal, and say β1, . . . , βr ‰ 0 and βr+1, . . . , βm = 0. Furthermore, replace βj
by βj/βr so that βr = 1. Thus

(˚ ˚ ˚) : σj(α1)β1 + ¨ ¨ ¨ + σj(αr´1)βr´1 + σj(αr) = 0, j = 1, . . . , n

Note that β1, . . . , βr cannot all lie in F , for otherwise the αi wouldn’t be linearly independent, by
taking j = 1 in (˚ ˚ ˚); WLOG, say β1 R F . Let σi P G so that σi(β1) ‰ β1. Applying σi to (˚ ˚ ˚),
we obtain

σiσj(α1)σi(β1) + ¨ ¨ ¨ + σiσj(αr´1)σi(βr´1) + σiσj(αr) = 0, j = 1, . . . , n

i.e,
σj(α1)σi(β1) + ¨ ¨ ¨ + σj(αr´1)σi(βr´1) + σj(αr) = 0, j = 1, . . . , n

Subtracting (˚ ˚ ˚) from the latter, we have

σj(α1)[σi(β1) ´ β1] + ¨ ¨ ¨ + σj(αr´1)[σi(βr´1) ´ βr´1] = 0, j = 1, . . . , n

which contradicts to the minimality of r.

Hence, we must have n = m.

Corollary 3.2.10.1. Under the notations of above theorem, we have K/KG is Galois with Galois group
G.

Proof. By the definition of KG, we have G ď Aut(K/KG). The preceding theorem shows that #G =

[K : KG], and this forces G = Aut(K/KG); in the mean while, this shows [K : KG] = # Aut(K/KG), i.e,
K/KG is Galois.

Corollary 3.2.10.2 (Hilbert theorem 90). Let K be a Galois extension of F with cyclic Galois group of
order n generated by σ. If α P K has NK/F (α) = 1, then α = σ´1(β)β for some β P Kˆ.
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Proof. Since 1, σ, σ2, . . . , σn´1 are linearly independent over K, we have

1 + ασ + (ασα)σ2 + ¨ ¨ ¨ + (ασα ¨ ¨ ¨ σn´2α)σn´1 ‰ 0

Thus
β = θ + ασθ + (ασα)σ2θ + ¨ ¨ ¨ + (ασα ¨ ¨ ¨ σn´2α)σn´1θ ‰ 0

for some θ P K. Then

β

σβ
=

θ + ασ(θ) + (ασ(α))σ2(θ) + ¨ ¨ ¨ + (ασ(α) ¨ ¨ ¨ σn´2(α))σn´1(θ)

σ(θ) + σ(α)σ2(θ) + (σ(α)σ2(α))σ3(θ) + ¨ ¨ ¨ + (σ(α)σ2(α) ¨ ¨ ¨ σn´1(α))σn(θ)

=
θ + ασ(θ) + (ασ(α))σ2(θ) + ¨ ¨ ¨ + (ασ(α) ¨ ¨ ¨ σn´2(α))σn´1(θ)

σθ + σ(α)σ2(θ) + (σ(α)σ2(α))σ3(θ) + ¨ ¨ ¨ + α´1θ

= α

where the second equality results from the assumption 1 = NK/F (α) = ασ(α) ¨ ¨ ¨ σn´2(α)σn´1(α).

Corollary 3.2.10.3 (Additive Hilbert theorem 90). Let K be a Galois extension of F with cyclic Galois
group of order n generated by σ. If α P K has TrK/F (α) = 0, then α = β ´ σ(β) for some β P K.

Proof. The linear independence of 1, σ, σ2, . . . , σn´1 shows that

TrK/F (θ) = θ + σ(θ) + σ2(θ) + ¨ ¨ ¨ + σn´1(θ) ‰ 0

for some θ P K. Now let

β :=
1

TrK/F (θ)
(ασ(θ) + (α + σ(α))σ2(θ) + ¨ ¨ ¨ + (α + σ(α) + ¨ ¨ ¨ + σn´2(α))σ(θ))

Then

β ´ σβ =
1

TrK/F (θ)
(α(σ2(θ) + ¨ ¨ ¨ + σn´1(θ)) ´ (σ(α) + ¨ ¨ ¨ + σn´1(α))θ)

=
1

TrK/F (θ)
(α(σ2(θ) + ¨ ¨ ¨ + σn´1(θ)) + αθ)

=
1

TrK/F (θ)
(α(θ + σ2(θ) + ¨ ¨ ¨ + σn´1(θ)))

= α

where the second equality comes from the assumption 0 = TrK/F (α) = α + σ(α) + ¨ ¨ ¨ + σn´1(α).

Theorem 3.2.11 (Fundamental theorem for Galois theory). Let K/F be a finite Galois extension.
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1. If F Ď E Ď K, then K/E is Galois with Gal(K/E) ď Gal(K/F ) and # Gal(K/E) = [K : E], i.e,
[E : F ] = [Gal(K/F ) : Gal(K/E)].

2. There’s a one-to-one inclusion-reversing correspondence

tE | F Ď E Ď Ku tH | 1 ď H ď Gal(K/F )u

E λ(E) := Gal(K/E)

KH H

where the mappings above are mutually inverses.

3. If F Ď E1 Ď E2 Ď K, then λ(E1 X E2) = xλ(E1), λ(E2)y and λ(E1E2) = λ(E1) X λ(E2).

4. For F Ď E Ď K,

E/F is Galois ô Gal(K/E)� Gal(K/F )

If it occurs, Gal(E/F ) – Gal(K/F )/Gal(K/E).

Proof.

1. Since K/F is normal separable, K/E is automatically normal and separable, and hence Galois. The
remaining is clear.

2. Let F Ď E Ď K and H := λ(E) = Gal(K/E). Clearly, E Ď KH . 1. and the previous theorem show
that [K : E] = #H = [K : KH ], so E = KH . Vice versa.

3. This is clear.

4. Note that E/F is clearly separable, so it suffices to show E/F is normal if and only if λ(E)� λ(F ).
Nevertheless,

E/F is normal ô σ(E) = E for all σ P Emb(E/F ) = Aut(E/F )

Note that for all σ P Emb(E/F ), σ(E) is the fixed field of σGal(K/E)σ´1. The results follows.

Example 3.2.12.

1. Q(
?
2)/Q :
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Q(
?
2) 1

Q xσy σ :
?
2 ÞÑ ´

?
2

2. Q( 3
?
2, ρ)/Q, where ρ = e2πi/3 : Let

σ :

#

3
?
2 ÞÑ

3
?
2ρ

ρ ÞÑ ρ
τ :

#

3
?
2 ÞÑ

3
?
2

ρ ÞÑ ρ´1

Then στ = τσ2; this shows Gal(Q( 3
?
2, ρ)/Q) – S3.

xσ, τy Q

xσy Q( 3
?
2)

xτy Q(ρ) xστy Q( 3
?
2ρ2) xσ2τy Q( 3

?
2ρ)

1 Q( 3
?
2, ρ)

3. Q(
?
2,

?
3)/Q : Let

σ :

# ?
2 ÞÑ ´

?
2

?
3 ÞÑ

?
3

τ :

# ?
2 ÞÑ

?
2

?
3 ÞÑ ´

?
3

Then

xσ, τy Q

xσy Q(
?
3) xτy Q(

?
2) xστy Q(

?
6)

1 Q(
?
2,

?
3)

4. Let K be the splitting field of x4 ´ 2 over Q; K = Q( 4
?
2, i). Let

σ :

#

4
?
2 ÞÑ

4
?
2i

i ÞÑ i
τ :

#

4
?
2 ÞÑ

4
?
2

i ÞÑ ´i
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Then στ = τσ3; this shows Gal(K/Q) – D8.

xσ, τy Q

xσ2, τy Q(
?
2)) xσy Q(i) xσ2, στy Q(

?
´2)

xτy Q( 4
?
2) xσ2τy Q( 4

?
2i) xσ2y Q(

?
2, i) xστy Q( 4

?
2(1 + i)) xσ3τy Q( 4

?
2(1 ´ i)

1 K

We elaborate how to find the fixed field of xστy. A technique is to find α P K such that στ(α)+α ‰ 0.
Then clearly, στ(α) + α is fixed by στ .

5. Let K be the splitting field of x4 ´ 2x2 ´ 1 over Q; K = Q(
a

1 +
?
2,
a

1 ´
?
2) = Q(

a

1 +
?
2, i).

Let

σ :

#
a

1 +
?
2 ÞÑ

a

1 ´
?
2

i ÞÑ i
τ :

#
a

1 +
?
2

a

1 +
?
2

i ÞÑ ´i

Then στ = τσ3. This shows K – D8.

xσ, τy Q

xσ2, τy Q(
?
2)) xσy Q(i) xσ2, στy Q(

?
´2)

xτy Q(
a

1 +
?
2) xσ2τy Q(

a

1 ´
?
2) xσ2y Q(

?
2, i) xστy Q(

?
2 + 2i) xσ3τy Q(

?
2 ´ 2i)

1 K

• Since σ2τ = στσ´1, the fixed field of xσ2τy is σ(fixed field of xτy) = σ(Q(
a

1 +
?
2)) =

Q(
a

1 ´
?
2).

• To find the fixed field of xστy, let α =
a

1 +
?
2. Then στα + α ‰ 0 is fixed by στ ; note that

a

1 +
?
2 +

a

1 ´
?
2 =

?
2 + 2i. Counting the degree, we see Q(

?
2 + 2i) is the fixed field of

xστy.
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6. Let K be the splitting field of x8 ´ 2 over Q; K = Q( 8
?
2, e2πi/8) = Q( 8

?
2, i). Let ω = e2πi/8 and

define

σ :

#

8
?
2 ÞÑ

8
?
2ω

i ÞÑ i
τ :

#

8
?
2 ÞÑ

8
?
2

i ÞÑ ´i

Then τστ = σ3. It’s easy to see that

Gal(Q(
8

?
2, i)/Q) = tσ, τ | σ8 = τ 2 = 1, τστ = σ3u

xσ, τy Q

xσ2, τy Q(
?
2) xσy Q(i) xσ2, τσ3y Q(

?
´2)

xσ4, τσ6y Q( 4
?
2i) xσ4, τy Q( 4

?
2) xσ2y Q(

?
2, i) xτσ3y Q((1 + i) 4

?
2) xτσy Q((1 ´ i) 4

?
2)

xτσ2y Q( 8
?
2ω) xτσ6y Q( 8

?
2ω7) xτσ4y Q( 8

?
2i) xτy Q( 8

?
2) xσ4y Q( 4

?
2, i)

1 K

• The fixed field of xτy can be sought out easily. Note that στσ´1 = τσ2, so its fixed field can be
obtained by applying σ to that of xτy. Similar for xτσ6y and xτσ4y.

• Once the fixed fields of degree 2 are determined, it’s not hard to determine those of xσ4, τσ6y

and xσ4, τy, by the fundamental theorem.

• It’s not so easy to determine the fixed fields of xτσ3y and xτσy; but once one of them is found,
the other can be determined easily, since σ(τσ)σ´1 = τσ3. We strive to seek the fixed field of
xτσy. Let H = xτσy; it’s a cyclic group of order 4. The lattice above shows xσ4y is a normal
subgroup of H of index 2, with representatives 1, τσ for the cosets. Consider the element

α := (1 + τσ)
4
?
2 = (1 ´ i)

4
?
2

Then α is fixed by σ4. Also, α is fixed by τσ:

τσα = (τσ + (τσ)2)
4

?
2 = (τσ + σ4)

4
?
2

= (τσ + 1)
4

?
2

the last equality holds since σ4 fixes 4
?
2. This shows that α is in the fixed field of H. However,

τσ3α = τσ3((1 ´ i)
4

?
2) = (1 + i)

4
?
2ω ‰ α
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which means the fixing subgroup of Q(α) is not larger than H, and thus is H. In conclusion,
the fixed field of H is Q(α) = Q((1 ´ i) 4

?
2)

7. Fpn/Fp : We have seen that Gal(Fpn/Fp) = xσy, where σ is the Frobenius automorphism. We draw
its lattice when n = 12:

xσy Fp

xσ2y Fp2

xσ3y Fp3

xσ4y Fp4

xσ6y Fp6

1 Fp12

3.2.4 Simple extensions and composite extensions
Proposition 3.2.13. Let K/F be a finite extension. Then K/F is simple if and only if there are only
finitely many subfields of K containing F .

Proof. (ñ) Say K = F (α). Let F Ď E Ď K; then mα,E | mα,F . Let E 1 = F (coefficients of mα,E).

Claim. E = E 1

Clearly, we have E 1 Ď E. On the other hand, mα,E P E 1[x] is irreducible over E 1, which implies
mα,E = mα,E1 . Thus [K : E] = [K : E 1], and hence E 1 = E.
This means E is the subfield generated by F and coefficients of some monic irreducible factor of mα,F .
The result follows.
(ð) If F is a finite field, K/F is of course simple. Now suppose F is infinite. By virtue of the finiteness of
K/F , write K = F (α1, . . . , αn) for some α1, . . . , αn. By induction, it suffices to show the case K = F (α, β).
Consider the field F (α+cβ), c P F . Since F is infinite and there are only finitely many intermediate fields,
F (α + c1β) = F (α + c2β) for some distinct c1, c2 P F . This means F (α, β) = F (α + c1β).

Example 3.2.14. Let F = Fp(xp, yp) and K = Fp(x, y). We have [K : F ] = p2. For any c P Fp,
[F (x + cy) : F ] = p, since (x + cy)p = xp + cpyp P F . Thus F (x + cy) ‰ K. Also, different choices of c
gives different fields. The previous proposition then shows that K/F is not simple. (HW. 20)

Theorem 3.2.15 (Primitive element theorem, PET). If K/F is finite separable, then K/E is simple.
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Proof. Since K/F , K = F (α1, . . . , αn). Let L be the splitting field of mα1,F , . . . ,mαn,F . Then L/F is
separable normal, and hence Galois. Since L/F is finite Galois, each intermediate fields corresponds to a
subgroup of Gal(L/E), so they’re in finite number. The previous proposition shows thatK/F is simple.

Proposition 3.2.16. Let K/F be a finite Galois extension and F 1/F be any field extension. Then KF 1/F 1

is Galois and Gal(KF 1/F 1) – Gal(K/K X F 1).

Proof. PET shows that K = F (α) for some α P K. Then KF 1 is the splitting field of mα,F 1 , which is
separable. Hence KF 1/F 1 is Galois. Consider the map

Φ : Gal(KF 1/F 1) Gal(K/F )

σ σ|K

Note that kerΦ = tσ | σ|K = idKu = idKF 1 ; Φ is injective. Let H = ImΦ. Clearly, we have K XF 1 Ď KH .
On the other hand, KHF 1 is fixed by Gal(KF 1/F 1), so KHF 1 Ď F 1, implying KH Ď F 1. Since KH Ď K,
KH = K X F 1. In conclusion, KH = K X F 1. Hence H – Gal(K/K X F 1).

Corollary 3.2.16.1. Let K,F 1 as above. Then [KF 1 : F ] =
[K : F ][F 1 : F ]

[K X F 1 : F ]
.

Remark 3.2.17. The condition imposed above is not superfluous. For instance, consider K = Q( 3
?
2),

F 1 = Q( 3
?
2e2πi/3) and F = Q. Then KF 1 = Q( 3

?
2), [KF 1 : F ] = 6, but [K : F ][F 1 : F ]

[K X F 1 : F ]
= 9.

Proposition 3.2.18. Let Ki/F be finite Galois, i = 1, 2. Then

1. K1 X K2 is Galois over F .

2. K1K2 is Galois over F , with

Gal(K1K2/F ) – t(σ, τ) P Gal(K1/F ) ˆ Gal(K2/F ) | σ|K1XK2 = τ |K1XK2u

Proof.

1. This is clear.

2. That K1K2 is Galois over F is clear. Consider the map

Φ : Gal(K1K2/F ) Gal(K1/F ) ˆ Gal(K2/F )

σ (σ|K1 , σ|K2)
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Note that kerΦ = tσ | σ|Ki
= idKi

, i = 1, 2u = 1; Φ is injective. Put H := t(σ, τ) P Gal(K1/F ) ˆ

Gal(K2/F ) | σ|K1XK2 = τ |K1XK2u. It’s clear that ImΦ ď H. We count their cardinality. # ImΦ =

[K1K2 : F ] and

#H =
ÿ

σPGal(K1/F )

#tτ P Gal(K2/F ) | σ|K1XK2 = τ |K1XK2u

= [K1 : F ][K2 : K1 X K2] =
[K1 : F ][K2 : F ]

[K1 X K2 : F ]

where the second equality holds as in the proof of Theorem 3.2.2. The previous corollary shows
#H = # ImΦ, and thus ImΦ = H.

Corollary 3.2.18.1. With the same condition above, if K1 XK2 = F , then Gal(K1K2/F ) – Gal(K1/F )ˆ

Gal(K2/F ). Conversely, if Gal(K/F ) = G1 ˆ G2 for some G1, G2 � Gal(K/F ), then K = KG1KG2 with
KG1 X KG2 = F .

Corollary 3.2.18.2. Let E/F be finite separable. Then
č

E Ď K Ď F

K/F : Galois

K

is Galois over F , which is the smallest Galois extension of F containing E, called the Galois closure of
E/F .

3.2.5 Cyclotomic extensions and abelian extensions
Definition. Let ζn be a primitive n-th root of unity. We call Q(ζn) the n-th cyclotomic field.

• It’s Galois over Q since all conjugates of ζn over Q have the form ζdn, (d, n) = 1.

• Gal(Q(ζn)/Q) – (Z/nZ)ˆ, where the isomorphism is given by (Z/nZ)ˆ Q a ÞÑ [σa : ζn ÞÑ ζan].

• Consequently, if n = pa11 ¨ ¨ ¨ pakk is the prime decomposition of n, then

Gal(Q(ζn)/Q) – Gal(Q(ζa1p1 )/Q) ˆ ¨ ¨ ¨ ˆ Gal(Q(ζakpk )/Q)

Example 3.2.19. n = 5 : (Z/5Z)ˆ = (2). Let σ = σ2. Note that
?
5 = ζ5 + σ2ζ5 is fixed by σ2.
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xσy Q

xσ2y Q(
?
5)

1 Q(ζ5)

xσy Q

xσ2y Q(
?

´7)

xσ3y Q(cos 2π
7
)

1xσy Q(ζ7)

Example 3.2.20. n = 7 : (Z/7Z)ˆ = (3). Let σ = σ3. Note 2 cos 2π
7

= ζ7 + σ3ζ7 = ζ7 + ζ´1
7 is fixed by

σ3.
Let’s find the minimal polynomial of 2 cos 2π

7
. The conjugates of ζ7 + ζ´1

7 over Q are σ(ζ7 + ζ´1
7 ) and

σ2(ζ7 + ζ´1
7 ). Thus m2 cos(2π/7),Q(x) = x3 + x2 ´ 2x ´ 1.

Exercise. Let p be an odd prime. Then Q(ζp) contains
#

Q(
?
p) if p ” 1 (mod p)

Q(
?

´p) if p ” 3 (mod p)

Definition. An extension E/F is called an abelian extension if E/F is Galois and Gal(E/F ) is abelian.

Proposition 3.2.21. Let G be a finite abelian group. Then there exists a Galois extension K/Q with
Galois group isomorphic to G.

Proof. By FTFGAG, say G – Cn1 ˆ¨ ¨ ¨ ˆCnk
. By Dirichlet’s theorem on primes in arithmetic progression,

there are primes pj such that pj ” 1 (mod n)j. Now (Z/pjZ)ˆ is cyclic of order pj ´ 1, so it contains a
subgroup of index nj, and thus Q(ζpj) contains a subfield Kj of degree nj over Q. Then the composite
K = K1 ¨ ¨ ¨Kk satisfies that K/Q is Galois and Gal(K/Q) – G, since Ki X Kj = Q if i ‰ j.

Theorem 3.2.22 (Kronecker-Weber). Any abelian extension of Q is a subfield of some cyclotomic field.

Exercise. Let D be a squarefree integer. We know Q(
?
D) is contained in some cyclotomic field. Find

one.

Remark 3.2.23. 1. The Kronecker-Weber theorem basically says tabelian extensions of Qu corresponds
to tsubgroups of (Z/nZ)ˆu. More generally, the class field theory says that if F is a number field
and O is its ring of integers, then tabelian extensions of F u corresponds to t(O/(nonzero ideal))ˆ

u.

2. ζn is a value of analytic function e2πix at torsion points of R/Z, i.e, Q/Z. Thus, every abelian
extension of Q can be obtained by adjoining special values of some analytic functions to Q.
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Kronecker’s Jugendtraum (Youth dream in English), aka Hilbert’s twelfth problem, asks given a
number field F , find analytic functions such that every abelian extension of F can be obtained by
adjoining some special values of these functions to F . For example, F = Q(

?
D) (D ą 0) can be

obtained by adjoining elliptic functions and modular functions. For general F , only for CM field
case we know such functions exist (but not constructive).

Example 3.2.24. Recall that a regular 17-gon is constructible. Let σ = σ3.
xσy Q

xσ2y Q(
?
17)

xσ4y K

xσ8y Q(cos 2π
17

)

1 Q(ζ17)

Let η1 = ζ + σ2ζ + σ4ζ + ¨ ¨ ¨ = ζ + ζ9 + ζ13 + ζ15 + ζ16 + ζ8 + ζ4 + ζ2 and
η2 = ση2 = ζ3 + ζ10 + ¨ ¨ ¨ . Then η1 + η2 = ´1 and η1η2 = ´4; to determine the
value of η1, note that
............. η1 = (ζ + ζ´1) + (ζ2 + ζ´2) + (ζ4 + ζ´4) + (ζ8 + ζ´8) „ 1.562 ą 0

............. η2 = (ζ3 + ζ´3) + (ζ5 + ζ´5) + (ζ6 + ζ´6) + (ζ7 + ζ´7) „ ´2.562 ă 0

thus
.......................................... η1 =

´1 +
?
17

2
and η2 =

´1 ´
?
17

2

This shows the fixed field of xσ2y is Q(
?
17).

In general, for a Fermat prime n = 22
N
+ 1, N ě 1, we consider the periods of ζ = ζn: first,

choose a generator of Fˆ
n ; we may pick 3 as a generator since 3 is not a quadratic residue mod n, for(

3

n

)
=
(n
3

)
=

(
2

3

)
= ´1, and Fˆ

n has order a power of 2. Let σ = σ3, n = kℓ, and for 0 ď r ď k ´ 1,
put

ηr = (1 + σk + ¨ ¨ ¨ + σk(ℓ´1))σrζ = ζ3
r

+ ζ3
r+k

+ ¨ ¨ ¨ + ζ3
r+k(ℓ´1)

Let Hℓ = xσky ď Gal(Q(ζ)/Q) be the subgroup of order ℓ, and let Kℓ = Q(ζ)Hℓ be its fixed field. Then
the ηr are fixed by σk and we see tη0, η1, . . . , ηk´1u is a basis for Kℓ/Q, and we call them the periods of
ℓ terms. Also, we define η(t) := ζt + ζt3

k
+ ¨ ¨ ¨ + ζt3

k(ℓ´1) for η a period of ℓ term, for 0 ď t ď n ´ 1; note
that η(t) is the ηr in which ζt appears.

We resume our work on finding fixed fields of subgroups. As the terminology above, we establish the
periods of 8 terms (k = 2)

η0 = ζ3
0
+ ζ3

0+2
+ ζ3

0+4
+ ¨ ¨ ¨ + ζ3

0+14
= ζ + ζ9 + ζ13 + ζ15 + ζ16 + ζ8 + ζ4 + ζ2

η1 = ζ3
1
+ ζ3

1+2
+ ζ3

1+4
+ ¨ ¨ ¨ + ζ3

1+14
= ζ3 + ζ10 + ζ5 + ζ11 + ζ14 + ζ7 + ζ12 + ζ6

Then η0 + η1 = ´1 and

η0η1 = η(4) + η(11) + η(6) + η(12) + η(15) + η(8) + η(13) + η(7) = 4η0 + 4η1 = ´4

As shown in above, we have

η0 =
´1 +

?
17

2
and η1 =

´1 ´
?
17

2
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Next, consider the period of 4 terms (k = 4)

η1
0 = ζ3

0
+ ζ3

0+4
+ ζ3

0+8
+ ζ3

0+12
= ζ + ζ13 + ζ16 + ζ4

η1
1 = ζ3

1
+ ζ3

1+4
+ ζ3

1+8
+ ζ3

1+12
= ζ3 + ζ5 + ζ14 + ζ12

η1
2 = ζ3

2
+ ζ3

2+4
+ ζ3

2+8
+ ζ3

2+12
= ζ9 + ζ15 + ζ8 + ζ2

η1
3 = ζ3

3
+ ζ3

3+4
+ ζ3

3+8
+ ζ3

3+12
= ζ10 + ζ11 + ζ7 + ζ6

We have η1
0 + η1

2 = η0, η1
1 + η1

3 = η1

η1
0η

1
2 = η1(10) + η1(16) + η1(9) + η1(3) = η1

0 + η1
1 + η1

2 + η1
3 = ´1

η1
1η

1
3 = η1(13) + η1(14) + η1(10) + η1(9) = η1

0 + η1
1 + η1

2 + η1
3 = ´1

Also,
η1
0 = ζ + ζ13 + ζ16 + ζ4 = 2(cos 2π

17
+ cos 8π

17
) ą 0

η1
1 = ζ3 + ζ5 + ζ14 + ζ12 = 2(cos 6π

17
+ cos 10π

17
) ą 0

η1
2 = ζ9 + ζ15 + ζ8 + ζ2 = 2(cos 4π

17
+ cos 16π

17
) ă 0

η1
3 = ζ10 + ζ11 + ζ7 + ζ6 = 2(cos 12π

17
+ cos 14π

17
) ă 0

Thus

η1
0 =

η0 +
a

η20 + 4

2
=

´1 +
?
17 +

a

34 ´ 2
?
17

4

η1
2 =

η0 ´
a

η20 + 4

2
=

´1 +
?
17 ´

a

34 ´ 2
?
17

4

η1
1 =

η1 +
a

η21 + 4

2
=

´1 ´
?
17 +

a

34 + 2
?
17

4

η1
3 =

η1 +
a

η21 + 4

2
=

´1 ´
?
17 ´

a

34 + 2
?
17

4

This shows K = Q(
a

34 ´ 2
?
17). Last, consider two period of 2 terms (k = 8)

η2
0 = ζ3

0
+ ζ3

0+8
= ζ + ζ16 = 2 cos 2π

17

η2
4 = ζ3

0+4
+ ζ3

0+12
= ζ13 + ζ4 = 2 cos 8π

17

Clearly, η2
0 + η2

4 = η1
0 and η2

0η
2
4 = η14 + η12 + η5 + η3 = η1

1. We finally arrive at the expression

cos 2π
17

=
η2
0

2
=
η1
0 +

a

η12
0 ´ 4η1

1

4

=
´1 +

?
17 +

a

34 ´ 2
?
17 + 2

b

17 + 3
?
17 ´

a

34 ´ 2
?
17 ´ 2

a

34 + 2
?
17

16
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3.2.6 Galois groups of polynomials
Let f(x) be a separable polynomial over F of degree n, α1, . . . , αn be its roots, and K its splitting field
over F . Clearly, we can embed Gal(K/F ) into Sn.

• If f is irreducible over F , then Gal(K/F ) ď Sn is transitive.

Example 3.2.25. n = 4 : The Galois group of an irreducible separable polynomial over F can only be
S4, A4, D8, C4, V4.

We consider a general setting : Let x1, . . . , xn be indeterminates, and put L = F (x1, . . . , xn). Let

s1 =
n
ř

i=1

xi = x1 + ¨ ¨ ¨ + xn

s2 =
ř

iăj

xixj = x1x2 + x1x3 + ¨ ¨ ¨ + xn´1xn

s3 =
ř

iăjăk

xixjxk

...

sn = x1 ¨ ¨ ¨ xn

Equivalently, let f(X) :=
n
ś

i=1

(X ´ xi) = Xn ´ s1X
n´1 + s2X

n´2 + ¨ ¨ ¨ + (´1)nsn P L[X]; the si are called

the i-th elementary symmetric function of x1, . . . , xn, and f(X) is called the general polynomial
of degree n.

Put K = F (s1, . . . , sn). Then clearly, L/K is Galois since L is the splitting field of f(X) over K; this
shows [L : K] ď n!. On the other hand, every automorphism on L may be viewed as a permutation on
subscripts of the xi, so Sn ď Aut(L). The symmetry makes K lie in the fixed field LSn of Sn. By Galois
theory, [L : K] ě [L : LSn ] = n!. Thus, we conclude that [L : K] = n!, that is, Gal(L/K) – Sn.

Theorem 3.2.26. The fixed field of Sn acting on the field F (x1, . . . , xn) of rational functions in n variables
is the field F (s1, . . . , sn) of rational functions in elementary symmetric functions.

Corollary 3.2.26.1. Any symmetric function in x1, . . . , xn is a rational function in s1, . . . , sn.

In fact, we have a stronger statement:

Theorem 3.2.27. Let A be a commutative ring with 1 and R = A[x1, . . . , xn]. Regard Sn as a subgroup
of Aut(R). Then RSn = A[s1, . . . , sn].

Proof. We define the lexicographical order on R by

1. x1 ą x2 ą ¨ ¨ ¨ ą xn
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2. xa11 ¨ ¨ ¨ xann ą xb11 ¨ ¨ ¨ xbnn if and only if there exists k P t1, . . . , nu such that ai = bi for i ă k and ai ą bi.

Let f P RSn , let xa11 ¨ ¨ ¨ xann be its leading monomial and c P R be its coefficient. By symmetric, we may
assume a1 ě ¨ ¨ ¨ ě an. Consider the polynomial h = f ´ asa1´a2

1 sa2´a3
2 ¨ ¨ ¨ s

an´1´an
n´1 sann . Then h has order

less than f . The result follows by induction on order of f .

Proposition 3.2.28. Let A be a UFD of characteristic ‰ 2, R = A[x1, . . . , xn] and let

d =
ź

iăj

(x1 ´ xj)

Let An act on R by σ(xi) = xσ(i); thus, we may regard An as a subgroup of Aut(R). Then RAn = RSn [d] =

A[s1, . . . , sn, d].

Proof. Let f P RAn and fix σ P SnzAn. Consider the expression

f =
f + σf

2
+
f ´ σf

2

If τ P An, then
τ

(
f ˘ σf

2

)
=
τf ˘ σ(σ´1τσ)f

2
=
f ˘ σf

2

if τ P SnzAn, then

τ

(
f ˘ σf

2

)
=
σ(σ´1τ)f ˘ τσf

2
=
σf ˘ f

2
= ˘

(
f ˘ σf

2

)
Hence the former is in RSn , so it suffices to deal with the latter. Let h P RAn and σ(h) = ´h for all
σ P SnzAn. We claim h = dg for some g P RSn . Note (1 2)h(x1, x2, . . . , xn) = h(x2, x1, . . . , xn), but since
(1 2) R An, (1 2)h = ´h; thus h(x1, x2, . . . , xn) + h(x2, x1, . . . , xn) = 0, which implies x1 ´ x2 | h. Similarly,
xi ´xj | h for all i ‰ j. Since R is a UFD and each xi ´xj, i ă j is relatively prime, d | h, and thus h = dg

for some g P R. Since σ(h/d) = h/d for all σ P Sn, we have g P RSn .

For i ě 0, we consider pi =
n
ř

j=1

xij = xi1 + ¨ ¨ ¨ + xin, the sum of the i-th powers. For convenience, we let

si = 0 for i ą n. Then we have the Newton formulas:

Theorem 3.2.29.

sk(x1, ¨ ¨ ¨ , xn) =
1

k

k
ÿ

i=1

(´1)i´1sk´i(x1, ¨ ¨ ¨ , xn)pi(x1, ¨ ¨ ¨ , xn),

pk(x1, . . . , xn) = (´1)k´1ksk(x1, ¨ ¨ ¨ , xn) +
k´1
ÿ

i=1

(´1)k´1+isk´i(x1, . . . , xn)pi(x1, . . . , xn),
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Proof. Let R = Z[x1, . . . , xn]. We may view f(X) =
n
ś

i=1

(1 ´ xiX) =
n
ř

k=0

(´1)kskX
k P R[[X]], the ring of

formal power series. Formally differentiating f(X) with respect to X and multiplying X, one obtain

n
ÿ

k=0

(´1)kkskX
k = X

n
ÿ

i=1

[
´xi

ź

j‰i

(1 ´ xjX)

]

= ´

(
n
ÿ

i=1

xiX

1 ´ xiX

)
n
ź

i=1

(1 ´ xiX)

= ´

(
n
ÿ

i=1

8
ÿ

k=1

(xiX)k

)(
n
ÿ

k=0

(´1)kskX
k

)

=

(
8
ÿ

k=1

pkX
k

)(
n
ÿ

k=0

(´1)k´1skX
k

)

which is what we want.

Definition. Define the discriminant ∆ of x1, . . . , xn to be the product

∆ =
ź

iăj

(xi ´ xj)
2

For f P F [x], we define disc(f) to be the discriminant of its roots.

• By Corollary 2.4.29.1, we see Rf,f 1 =
n
ś

i=1

f 1(xi). Hence ∆ = (´1)
n(n´1)

2 Rf,f 1 .

Proposition 3.2.30. Let F be a field of characteristic ‰ 2 and f P F [x] be a separable polynomial of
degree n. Then the Galois group of f over F is contained in An if and only if disc(f) is a square in F .

Proof. This is a consequence of Proposition 3.2.28.

Example 3.2.31.

1. f(x) = x2 + ax+ b, disc(f) = a2 ´ 4b.

2. f(x) = x3 + ax2 + bx+ c, disc(f) = a2b2 ´ 4b3 ´ 4a3c ´ 27c2 + 18abc

(i) x3 ´ 2, disc = ´108, which is not a square in Q ñ Gal – S3

(ii) m2 cos(2π/7),Q(x) = x3 + x2 ´ 2x ´ 1, disc = 49 = 72 ñ Gal – A3

Let F be a field with Char(F ) ‰ 2. Let f P F [x] and K be its splitting field over F . Let θ P K be a
root of f and put G = Gal(K/F ).
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• If f is reducible, the G is either trivial or C2.

• If f is irreducible and disc(f) is a square in F , then G = A3 = C3 and K = F (θ); otherwise, if
disc(f) is not a square in F , then G = S3 and K = F (θ,

a

disc(f)).

3. f(x) = x4 + ax3 + bx2 + cx + d. Let α1, . . . , α4 be its roots, and K be its splitting field over Q.
Suppose f is irreducible; this implies Gal(K/Q) ď S4 is transitive. We list all transitive subgroups
of S4 below:

S4

A4

D
(1)
8 D

(2)
8 D

(3)
8

V4 C
(1)
4 C

(2)
4 C

(3)
4

where
D

(1)
8 = x(1 3 2 4), (1 2)y

D
(2)
8 = x(1 2 3 4), (1 3)y

D
(3)
8 = x(1 2 4 3), (1 4)y

are Sylow 4-subgroups and V4 = t1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)u.

Consider the elements

θ1 = (α1 + α2)(α3 + α4) P KD
(1)
8

θ2 = (α1 + α3)(α2 + α4) P KD
(2)
8

θ3 = (α1 + α4)(α2 + α3) P KD
(3)
8

Any symmetric sum of the θi is invariant under S4, so

g(x) = (x ´ θ1)(x ´ θ2)(x ´ θ3) P F [x]

= x3 ´ 2bx2 + (b2 + ac ´ 4d)x+ (c2 ´ abc+ a2d)

called the resolvent cubic of f . Equivalently, we may consider the elements

θ1
1 = α1α2 + α3α4 P KD

(1)
8

θ1
2 = α1α3 + α2α4 P KD

(2)
8

θ1
3 = α1α4 + α2α3 P KD

(3)
8
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and similarly define the resolvent cubic

(x ´ θ1
1)(x ´ θ1

2)(x ´ θ1
3) = x3 ´ bx2 + (ac ´ 4d)x+ (4bd ´ c2 ´ a2d) P F [x]

The relation of two different resolvent is that θi + θ1
i = b (i = 1, 2, 3). Notice that

θ1 ´ θ2 = ´(α1 ´ α4)(α2 ´ α3)

θ1 ´ θ3 = ´(α1 ´ α3)(α2 ´ α4)

θ2 ´ θ3 = ´(α1 ´ α2)(α3 ´ α4)

so disc(g) = disc(f). Thus

disc(f) = ´ 128b2d2 ´ 4a3c3 + 16b4d ´ 4b3c2 ´ 27a4d2 + 18abc3

+ 144a2bd2 ´ 192acd2 + a2b2c2 ´ 4a2b3d ´ 6a2c2d

+ 144bc2d+ 256d3 ´ 27c4 ´ 80ab2cd+ 18a3bcd

Let E be the splitting field of the resolvent cubic g over Q. We have E Ď K, so the Galois group
of g is a quotient of that of f . Hence knowing the action of Galois group on the roots of g gives
information above the Galois group of f . Let G = Gal(K/F ).

• If g is irreducible over F , this means 3 | G ñ 12 | G. If disc(f) is not a square in F , then
G = S4; otherwise, G = A4.

• If g splits completely in F , this means θ1, θ2, θ3 P F , and thus G Ď D
(1)
8 XD

(2)
8 XD

(3)
8 = V4. The

only possible is G = V4.

• If g has only one root in F , say θ1 P F , we have G Ď D
(1)
8 but G Ę V4, so whether G = D

(1)
8

or G = C
(1)
4 . To distinguish them, recall that F (

a

disc(f)) is the fixed field of A4 and that
D8 X A4 = V4, C4 X A4 = C2; the former group is transitive, while the latter is not. This
indicates that is f is irreducible over F (

a

disc(f)), then G = D
(1)
8 ; otherwise, G = C

(1)
4 .

The criteria for D8 and C4 are hard to verify. However, when Char(F ) ‰ 2, we have an alternative,
which is quite elementary. Assume θ1 P F and θ2, θ3 R F . Consider the polynomial

h(x) = (x2 + ax+ θ1)(x
2 ´ (b ´ θ1)x+ d) P F [x]

in which the quadratic factors are picked so that the former has roots α1 + α2, α3 + α4 and the
latter has roots α1α2, α3α4. If G = C4, then E = F (

a

disc(f)) is the only quadratic extension of F
contained in K, so the quadratic factors of h(x) splits in E. Conversely, if h(x) splits completely in
E, consider the quadratic polynomial x2 ´ (α1 + α2) + α1α2 P E[x], and let M be its splitting field
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over E. We have α1, α2 P M , and since α3+α4 = ´a´α1 ´α2 and α3α4 = d/α1α2, α3, α4 P M ; this
shows M = K. Thus

#G = [K :M ][M : E][E : F ] ď 1 ¨ 2 ¨ 2 = 4 ă #D(1)
8

and this forces G = C
(1)
4 , and E = F (

a

disc(f)).

(i) x4 + x3 + x2 + x + 1. disc = 125. resolvent cubic = x3 ´ 2x2 ´ 2x + 1 = (x + 1)(x2 ´ 3x + 1).

Also, x4 + x3 + x2 + x + 1 = (x2 +
1 +

?
5

2
x + 1)(x2 +

1 ´
?
5

2
x + 1) is reducible in Q(

?
5), so

the Galois group is C4.

(ii) x4 ´ 2x2 ´ 1. disc = ´1024. resolvent cubic = x(x2 + 4x+ 8). Also, x4 ´ 2x2 ´ 1 is irreducible
over Q(i), so the Galois group is D8.

(iii) In general, the polynomial f(x) = x4+ax2+ b P F [x] has its resolvent cubic g(x) = x3 ´2ax2+

(a2 ´ 4b)x = x(x2 ´ 2ax + (a2 ´ 4b)) splits in F , so its possible Galois group G is V4, D8, C4.
The discriminant of f(x) is disc(g) = 16b(a2 ´ 4b)2, so G = V4 if and only if b is a square in F .
Assume Char(F ) ‰ 2 so that our criteria above apply. The remaining cases automatically satisfy
that b is not a square in F . Let h(x) = x2(x2 ´ ax+ b) be the associated polynomial as above.
Then G = C4 if and only if a2 ´ 4b is a square in F (

?
b), if and only if F (

?
b) = F (

?
a2 ´ 4b),

if and only if b(a2 ´ 4b) is a square in F . Thus G = D8 if and only if neither b(a2 ´ 4b) nor b is
a square in F .

4. Let p be a prime and f P Q[x] be an irreducible polynomial of degree p. Assume f has p ´ 2

distinct real roots and two non-real roots. Then Gal(f/Q) – Sp. Indeed, the irreducibility shows
that Gal(f/Q) ď Sp is transitive, and thus p | Gal(f/Q). Cauchy’s theorem indicates Gal(f/Q) has
a p-cycle. The two non-real roots of f makes the complex conjugation lies in Gal(f/Q), so Gal(f/Q)

has a 2-cycle. By conjugating, Gal(f/Q) admits all 2-cycles, and thus Gal(f/Q) = Sp.

For instance, let p ě 5 and pick p ´ 2 distinct even integers n1 ă ¨ ¨ ¨ ă np´2 and m a positive even
integer. Form the polynomial

f(x) = (x2 +m)(x ´ n1) ¨ ¨ ¨ (x ´ np´2) ´ 2

If ℓ is any odd integer in some interval (ni, ni+1), then

|(k2 +m)(k ´ n1) ¨ ¨ ¨ (k ´ np´2)| ě k2 +m ě 3

and therefore f has at least p ´ 2 distinct real roots. We will pick appropriate m so that f has
exactly p ´ 2 real roots. Let

(x ´ α1) ¨ ¨ ¨ (x ´ αp) = (x2 +m)(x ´ n1) ¨ ¨ ¨ (x ´ np´2) ´ 2
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Comparing the coefficients of xp´1 and xp´2, we have
ř

i

αi =
ř

i

ni and
ř

iăj

αiαj = m+
ř

iăj

ninj, so

ÿ

i

α2
i = (

ÿ

i

αi)
2 ´ 2

ÿ

iăj

αiαj = (
ÿ

i

ni)
2 ´ 2

ÿ

iăj

ninj ´ 2m =
ÿ

i

n2
i ´ 2m

Pick 2m ą
ř

i

n2
i so that

ř

i

α2
i ă 0; this will make some αi non-real. We may pick m =

ř

i

n2
i , and

thus (
x2 +

ÿ

i

n2
i

)
(x ´ n1) ¨ ¨ ¨ (x ´ np´2) ´ 2 P Q[x]

is a polynomial with Galois group Sp, p ě 5.

Computation of Galois group over Q

Let f P Z[x]. Consider the reduction f of f modulo p, p a prime. The Galois group of f over Fp will give
us some information about the Galois group of f over Q.

Theorem 3.2.32. For p ∤ disc(f), the Galois group of f over Fp is isomorphic to a subgroup of that of f
over Q.

Example 3.2.33.

1. x3 ´ 2. Consider p = 5. Then x3 ´ 2 ” (x´ 3)(x2 ´ 2x´ 1) (mod 5), so the Galois group over F5 is
C2. This means there’s a 2-cycle in the Galois group of Q, and thus it’s S3.

2. x5 ´ x´ 1. disc = 19 ¨ 151. For p = 2, we have x5 ´ x´ 1 = (x2 + x+ 1)(x3 + x2 + 1), whose Galois
group over F2 is C6. This means the Galois group G of x5 ´ x´ 1 over Q has an element of order 6.
In S5, it must has form (¨ ¨)(¨ ¨ ¨). Raising this element to the 3-rd power, we get a transposition, so
G contains a 5-cycle and a 2-cycle, and thus is S5.

More precisely, assume f P Z[x] is irreducible over Q and of degree n. Let K be its splitting field
over Q and OK be its ring of integers. Assume p ∤ disc(f). Pick a prime ideal Q of OK containing p,
which is always available since OK is a Dedekind domain. Then there’s a unique σ P Gal(K/Q) such that
σ(a) ” ap (mod Q) for all a P OK and Gal(f/Fp) – xσy. Different choices of Q yield conjugates of σ.
Moreover, consider σ as an element of Sn and assume it has cycle type n1, n2, . . . , nk, including 1-cycles.
Then the irreducible factors of f over Fp has degrees n1, . . . , nk. Note that if Gal(K/Q) is abelian, then
the condition σ(a) ” ap (mod Q) reduces to σ(a) ” ap (mod pOK). The correspondence Q ÞÑ σ is called
the Artin map.

Example 3.2.34.
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1. x2 + 1.

• p ” 1 (mod 4), we have ip = i and σ = id; x2 + 1 = (x ´ a)(x+ a) for some a P Fp

• p ” 3 (mod 4), we have ip = ´i and σ = ´ id; x2 + 1 is irreducible over Fp.

2. Let a P Z be squarefree and p a prime. Consider x2 ´ a. σ(
?
a) ” (

?
a)p (mod p). We have

σ = id ô
?
a ” (

?
a)p (mod p)

ô a
p´1
2 ” 1 (mod p)

ô a is a quadratic residue mod p

This shows that the Artin map is a generalization of the Legendre symbol.

3. x3 ´ 2. disc = ´108. Let p be a prime ‰ 2, 3.

Gal –

$

&

%

1 or A3 if
(

´108

p

)
= 1 ô p ” 1 (mod 3)

S3 if p ” 2 (mod 3)

If p ” 2 (mod 3), the map a ÞÑ a3 is an automorphism on Fˆ
p . This means x3 ´ 2 always has a

solution a in Fp. Then x3 ´ 2 ” (x ´ a)(x2 + bx+ c) (mod p), with x2 + bx+ c irreducible over Fp.

Theorem 3.2.35 (Chebatarev’s). Let f P Z[x] be irreducible over Q of degree n. Given a partition π if
n, say n = n1+ ¨ ¨ ¨+nk with ni ě ni+1. Let Nπ be the number of elements in Gal(f/Q) ď Sn having cycle
type π. Then the ratio

#tp ď X | f(x) ” g1(x) ¨ ¨ ¨ gk(x) mod p, gi is irreducible over Fp of degree ni = 1, . . . , ku

#tp ď Xu

tends to Nπ

# Gal(f/Q)
as X Ñ 8.

Example 3.2.36. x3 ´ 2. The Galois group over Q is S3, which has one 1-cycle, three 2-cycles and two
3-cycle. Let X be the 10000-th prime. Then we have

Type Number
(x ´ a)(x ´ b)(x ´ c) 1634

irreducible 3354

(x ´ a)(x2 + bx+ c) 5010

which demonstrates the above theorem.
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Example 3.2.37. x5 + 15x+ 12. It’s Eisenstein at 3, so it’s irreducible. disc = 210 ¨ 34 ¨ 55. Let X be the
10000-th prime.. Recall that all transitive subgroup of S5 are S5, A5, F20, D10, C5.

Cycle type Number
5 1979

4 + 1 5022

3 + 2 0

3 + 1 + 1 0

2 + 2 + 1 2488

2 + 1 + 1 + 1 0

1 + 1 + 1 + 1 + 1 508

Note that 508

10000
„

1

20
. We guess its Galois group is F20.

Exercise. Prove the Galois group of x5 + 15x+ 12 over Q is F20.

3.2.7 Solvable and radical extensions
By F we mean a field.

Definition. If K = F ( n
?
a) for some a P F and n P N, we say K/F is a simple radical extension.

• K/F is Galois if and only if (˚) :
#

all n-th roots of unity are contained in F
Char(F ) ∤ n

Proposition 3.2.38. Assume (˚) holds and a P F . Then Gal(F ( n
?
a)/F ) is cyclic of order dividing n.

Proof. By our assumption, F ( n
?
a)/F is Galois. Denote by µn the group of n-th roots of unity. For each

σ P Gal(F ( n
?
a)/F ), σ( n

?
a) = ζσ( n

?
a) for some ζσ P µn. We thus obtain a map

Gal(F ( n
?
a)/F ) µn

σ ζσ

Note that µn Ď F by assumption, so the map above is a homomorphism. Its kernel consists of automor-
phisms fixing n

?
a, which turn out being identity; this means the kernel is trivial. This shows Gal(F ( n

?
a)/F )

can be embedded into µn, and this makes it a cyclic group of order dividing n = #µn.

Definition. We say K/F is a cyclic extension if K/F is Galois with cyclic Galois group.

Proposition 3.2.39. Assume (˚) holds and that K/F is cyclic of degree n. Then K = F ( n
?
a) for some

a P F .
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Proof. Say Gal(K/F ) = xσy. Let ζ be a primitive n-th roots of unity in F . Proposition 3.2.9 guarantees
the existence of an element α P F such that

β := α + ζσ(α) + ζ2σ2(α) + ¨ ¨ ¨ + ζn´1σ(n ´ 1)(α) ‰ 0

where the form on the RHS is called the Lagrange resolvent. Applying σ to both sides, we obtain
σ(β) = ζ´1α, and thus the smallest integer i such that σi(β) = β is n, which implies β is not contained in
any proper intermediate field of K/F , i.e, degF β = n; this shows K = F (β).

Now consider σ(β)n = (ζ´1β)n = βn, so a := βn P K. Thus K = F ( n
?
a).

Remark 3.2.40.

1. Albeit Q(cos 2π
7
)/Q is cyclic, it’s not a simple radical extension.

2. By the same token, assume (˚) holds, then K = F ( n
?
a1, . . . , n

?
ak) is a Galois extension over F with

Gal(K/F ) abelian and of exponent n. Conversely, assume (˚) holds, and K/F is an abelian extension
with Gal(K/F ) of exponent n. Then K = F ( n

?
a1, . . . , n

?
ak) for some aj P F . Such an extension

is called a Kummer extension, and one can show there’s an one-to-one correspondence between
Kummer extensions of F and finitely generated subgroups of Fˆ/(Fˆ)n. See also Artin-Schreier
extensions.

Definition.

1. We say K/F is a radical extension if there is a tower of extensions

F = K0 Ď K1 Ď ¨ ¨ ¨Ks´1 Ď Ks = K

such that Ki+1/Ki is simple radical for i = 0, 1, . . . , s ´ 1.

2. α P F is said to be expressible by radicals if α P K for some radical extension K/F .

3. A polynomial f P F [x] can be solved by radicals if all its roots can be expressible by radicals.

Lemma 3.2.41. Assume Char(F ) = 0 and α P F is expressible by radicals, say α P K, where K/F is
radical. Then there’s a Galois radical extension K 1/F containing K with

F = K 1
0 Ď K 1

1 Ď ¨ ¨ ¨K 1
s´1 Ď K 1

s = K 1

such that K 1
i+1/K

1
i is cyclic. In particular, Gal(K 1/F ) is solvable.

Proof. We will use the fact (which can be verified easily):
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♠ If E1, E2 are radical over F , so is E1E2/F .

Assume F = K0 Ď K1 Ď ¨ ¨ ¨ Ď Kt´1 Ď Kt = K such that each Ki+1/Ki is simple radical. Let L/F be the
Galois closure of K/F . Recall that L is the composite of all σ(K), σ P Emb(K/F ); by applying σ to the
tower, we see σ(K)/F is also a radical extension. By ♠, L/F is radical, say

F = L0 Ď L1 Ď Ln´1 Ď Ln = L

with each Li+1/Li simple radical. Note that those quotients might not be Galois; to make it so, consider
F 1 = F (all ni-th roots of unity), where ni = [Li+1 : Li] for 0 ď i ď n ´ 1. Establish the tower

F Ď F 1 = F 1L0 Ď F 1L1 Ď F 1Ln´1 Ď F 1Ln = F 1L

By Proposition 3.2.38, each F 1Li+1/F
1Li is cyclic (it is the place that Char(F ) = 0 matters). Since

Gal(F 1/F ) is abelian, it’s solvable, so one may find a composition series of Gal(F 1/F ) with each composition
factor being cyclic; thus there’s tower of extensions

F = F0 Ď F1 Ď ¨ ¨ ¨ Ď Fm´1 Ď Fm = F 1

such that Fi+1/Fi is cyclic. Hence, K 1 := F 1L has the desired property.

Theorem 3.2.42. Assume Char(F ) = 0. The polynomial f P F [x] can be solved by radicals if and only
if its Galois group over F is solvable.

Proof. (ñ) Let K/F be the splitting field of f . By Lemma above, there’s a radical extension K 1/F

containing F such that Gal(K 1/F ) is solvable. Then Gal(K/F ) – Gal(K 1/F )/Gal(K 1/K) is solvable.
(ð) Let K/F be the splitting field of f . Say 1 = Gt �Gt´1 � ¨ ¨ ¨ �G1 �G0 = Gal(K/F ). Let

F = K0 Ď K1 Ď ¨ ¨ ¨ Ď Kt´1 Ď Kt = K

be the corresponding tower such that each Ki+1/Ki is cyclic of order ni. As in the proof of Lemma, consider
F 1 = F (all ni-th roots of unity) and the tower

F Ď F 1 = F 1K0 Ď F 1K1 Ď ¨ ¨ ¨ Ď F 1Kt´1 Ď F 1Kt = F 1K

The result ensues by following the proof of the previous lemma.

Corollary 3.2.42.1. The general polynomial of degree n ě 5 cannot be solved by radicals.

Proof. This follows from the previous theorem and the fact that Sn is not solvable for n ě 5 (see Example
1.7.8).
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Remark 3.2.43. If K/F is Galois with Galois group being solvable, we say K/F is a solvable extension.
It should be noted that a solvable extension may not be radical, but it’s always contained in some radical
extension of F . (This can be seen in the proof of the theorem above)

For instance, let f(x) = x3 + x2 ´ 2x ´ 1 P Q[x] and K its splitting field over Q; f is the minimal
polynomial of 2 cos 2π

7
, and Gal(K/Q) = A3, which is solvable and implies all roots of f are real. Suppose,

for contradiction, K = Q(a) for some a P K with an P Q. Consider the polynomial xn ´ an. We have
f(x) | xn ´ an, since [K : Q] = 3 = degQ a, and a is a root of f . Let r be another root of f . Then r

a
is a

real root of unity, implying r = ˘a, a contradiction for this shows f has at most two roots. Hence K/Q
is not a radical extension.

Cardano’s formulas
Let F be a field with characteristic 0. We consider the irreducible cubic f(x) = x3 + ax2 + bx+ c P F [x].
By virtue of substitution x ÞÑ x ´ a/3, we only need to deal with the case

g(x) = x3 + px+ q

Let ∆ := disc(g) be the discriminant. Over F (
?
∆), the Galois group of g is A3 = C3. By adjoining a

primitive 3-rd root of unity ω, F (
?
∆, ω)/F (ω) becomes a radical extension, with a generator of Galois

group being a Lagrange resolvent, as in Proposition 3.2.39. Therefore, consider the elements

α + β + γ = 0

θ1 = α + ωβ + ω2γ

θ2 = α + ω2β + ωγ

where α, β, γ are the three roots of g(x). Since ω2 + ω + 1 = 0, we have

θ1 + θ2 = 3α

ω2θ1 + ωθ2 = 3β

ωθ1 + ω2θ2 = 3γ

As shown in Proposition 3.2.39, the cube of these resolvents lies in F (
?
∆, ω). We compute them in terms

of roots: one has
?
∆ = (α ´ β)(α ´ γ)(β ´ γ)

= (α2β + β2γ + γ2α) ´ (αβ2 + βγ2 + γα2)
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so

θ31 = (α + ωβ + ω2γ)3

= α3 + β3 + γ3 + 3ω(α2β + β2γ + γ2α) + 3ω2(αβ2 + βγ2 + γα2) + 6αβγ

=
(
α3 + β3 + γ3 ´ 3αβγ

)
+

3
?

´3

2

[
(α2β + β2γ + γ2α) ´ (αβ2 + βγ2 + γα2)

]
+

´3

2

[
(α2β + β2γ + γ2α) + (αβ2 + βγ2 + γα2)

]
+ 9αβγ

= (α + β + γ)(. . . . . .) +
3
?

´3

2

?
∆+

´3

2
[(α + β + γ)(αβ + βγ + γα) ´ 3αβγ] + 9αβγ

= ´
27

2
q +

3

2

?
´3

?
∆

Similarly (by interchanging β and γ), we have

θ32 = ´
27

2
q ´

3

2

?
´3

?
∆

Also, we have
θ1θ2 = α2 + β2 + γ2 + ω(αγ + βα + γβ) + ω2(αβ + γα + βγ) = ´3p

At last, recall we have ∆ = ´4p3 ´ 27q2, and let

A =
3

c

´
27

2
q +

3

2

?
´3

?
∆ B =

3

c

´
27

2
q ´

3

2

?
´3

?
∆

where the cubic roots are chosen so that AB = ´3p. Then we have

α =
A+B

3
β =

ω2A+ ωB

3
γ =

ωA+ ω2B

3

Casus irreducibilis
Example 3.2.44. Consider the equation x3+x2 ´ 2x´ 1 = 0, the minimal polynomial of 2 cos 2π

7
. Under

substitution x = y ´
1

3
, it becomes y3 ´

7

3
y ´

7

27
= 0. Multiplying by 27 and letting z = 3y, it becomes

z3 ´ 21z ´ 7 = 0

which has discriminant ´4(´21)3 ´ 27(´7)2 = 36 ¨ 72. We apply the Cardano’s formula to solve the cubic;
let

A = 3
3

c

7

2
+

21

2

?
´3 B =

3

c

7

2
´

21

2

?
´3

Then the roots can be expressed by combinations of A,B using the formula above.
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Let f(x) = x3 ´ 21x ´ 7. It has Galois group A3, and thus all roots of f(x) are real; however, we see
that the expressions of roots involves non-real numbers. We shall see, in fact, this always happens in the
case ∆ ą 0, called the casus irreducibilis (Latin for ”the irreducible case”).

Lemma 3.2.45. Let L be the Galois closure of the finite extension Q(α)/Q. For any prime p dividing
# Gal(L/Q), there’s subfield F of L with [L : F ] = p and L = F (α).

Proof. By Cauchy’s theorem, there’s subgroup P of Gal(L/Q) of order p; let F 1 be the corresponding
subfield by Galois theory. If for all σ P Gal(L/Q), σ(α) P F 1, then F 1 = L, a contradiction. Hence
σ1(α) R F 1 for some σ1 P Gal(L/Q), and F 1(σ1(α)) = L. Now put F := σ´1(F 1). Then F (α) = L and
[L : F ] = p.

Lemma 3.2.46. Let F be a subfield of R. Let a P F and K = F ( n
?
a), where n

?
a denotes a real n-th root

of a. Then any Galois extension L/F contained in K has degree [L : F ] ď 2.

Proof. Put [K : F ] = d ď n. Let F Ď E Ď K with [E : F ] = ℓ. Consider the norm NK/E
n
?
a P E;

since the only roots of unity in R are ˘1, we have NK/E
n
?
a = ˘a

dℓ
n . Note that degF a

d
nℓ = ℓ, so we have

E = F (a
d
nℓ ), by degree considerations.

Hence, all subextensions of K/F have the form E = F (a
d
nℓ ) for some ℓ P N. To make it Galois, F must

possess enough roots of unity. Since ˘1 is the only roots of unity in F , we conclude that the only way to
make it Galois is that [E : F ] ď 2.

Theorem 3.2.47. If all roots of the irreducible polynomial f P Q[x] are real, and one of these roots can
be expressed by real radicals, then its Galois group is a 2-group.

Proof. Say α is the root of f that can be expressed by real radicals, i.e, there’s a radical extension of real
fields

Q = K0 Ď K1 Ď ¨ ¨ ¨ Ď Km Ď R

with α P Km and each Ki+1/Ki being simple radical. Let L Ď R be the Galois closure of Q(α)/Q.
Suppose, for contradiction, that [L : Q] is divisible by some odd prime p. By Lemma 3.2.45, let F be

a subfield of L with [L : F ] = p and L = F (α). Consider the composites K 1
i = FKi, i = 0, 1, . . . ,m; each

K 1
i+1/Ki is again real simple radical. We may assume each [K 1

i+1 : K 1
i] is prime by inserting more simple

radical extensions between any two successive subfields. Since α R F = FK0, there’s an integer s such
that α R K 1

s´1 but α P K 1
s. Since the extensions are of prime degree, we have K 1

s = Ks´1(α), and K 1
s/K

1
s´1

is Galois of degree p, contradicting to Lemma 3.2.46.

Corollary 3.2.47.1 (casus irreducibilis). For an irreducible cubic equation over Q, if it has the positive
discriminant, then the expressions of the roots must involve radicals of non-real numbers.

Proof. Note that the positive discriminant indicates that all the roots are real.
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Quartic equations
Consider a quartic polynomial f(x) = x4 + ax3 + bx2 + cx + d P F [x]; under the substitution x = y ´

a

4
,

we may consider
h(y) = y4 + py2 + qy + r

Let

θ1 = (α1 + α2)(α3 + α4)

θ2 = (α1 + α3)(α2 + α4)

θ3 = (α1 + α4)(α2 + α3)

and form the resolvent cubic

g(x) = (x ´ θ1)(x ´ θ2)(x ´ θ3) P F [x]

= x3 ´ 2px2 + (p2 ´ 4r)x+ q2

With the condition α1 + α2 + α3 + α4 = 0, we have

α1 + α2 =
a

´θ1 α3 + α4 = ´
a

´θ1

α1 + α3 =
a

´θ2 α2 + α4 = ´
a

´θ2

α1 + α4 =
a

´θ3 α2 + α3 = ´
a

´θ3

where the square roots are chosen so that
?

´θ1
?

´θ2
?

´θ3 = ´q. (Any two determines the third.)
Therefore,

2α1 =
?

´θ1 +
?

´θ2 +
?

´θ3

2α2 =
?

´θ1 ´
?

´θ2 ´
?

´θ3

2α3 = ´
?

´θ1 +
?

´θ2 ´
?

´θ3

2α4 = ´
?

´θ1 ´
?

´θ2 +
?

´θ3
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3.3 Transcendental extensions

3.3.1 Dependence relations
Definition. Let X be a nonempty set and let ∆ Ď X ˆ 2X be a binary relation. We write x ă S if
(x, S) P ∆ and S ă T if s ă T for all x P S. We say ∆ is a dependence relation if it satisfies the
following properties, for all S, T, U P 2X :

(I) (reflexivity) S ă S

(II) (compactness) x ă S ñ x ă S0 for some finite subset S0 of S

(III) (transitivity) S ă T ^ T ă U ñ S ă U

(IV) (Steinitz exchange axiom) x ă S ^ x ć Sztsu ñ s ă (Sztsu) Y txu

We say x is dependent on S if x ă S; otherwise, we say x is independent of S.

Definition. A subset S Ď X is dependent if s ă Sztsu for some s P S. Otherwise, S is independent.

Property 3.3.1. 1. If S ă T , then S ă T0 for all supersets T0 of T .

2. Any superset of a dependent set is dependent.

3. Any subset of an independent set is independent.

4. If S is dependent set, then some finite subset of S is dependent. Equivalently, if every finite subset
of T is independent, then T is independent.

Proof.

1. By (I), we have T0 ă T0, i.e, t ă T0 for all t P T0; in particular, t ă T0 for all t P T , i.e, T ă T0. By
(III), we have S ă T0.

2. Let S be dependent and T Ě S. Since S dependent, s ă Sztsu for some s P S. By 1. we have
s ă T ztsu.

3. This follows from 2.

4. Say s ă Sztsu for some s P S. By (II), s ă S0 for some finite subset S0 of S. Then S0 Y tsu Ď S is
finite and dependent.
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Proposition 3.3.2. If S is independent and x ć S, then S Y txu is independent.

Proof. If s ă SY txuztsu for some s P SY txu, by (V), we have x ă Sztsu. By Proposition 3.3.1.1, x ă S,
a contradiction. Hence S Y txu is independent.

Proposition 3.3.3. If S is dependent, then S ă Sztuu for some u P S.

Proof. The dependence of S shows that u ă Sztuu for some u. By (I), we have Sztuu ă Sztuu, and thus
S ă Sztuu.

Definition. A subset B Ď X is called a base for X if B is independent and X ă B.

Theorem 3.3.4. Let X be a nonempty set with a dependence relation ă. For B Ď X, TFAE:

1. B is a base.

2. B is a maximal independent set in X.

3. B is a minimal set with respect to the property set X ă B.

Proof.

1. 1. ñ 2. : Pick x P XzB. Since x ă B, we have B Y txu is dependent.

2. 2. ñ 3. : Take x P B. If X ă Bztxu, then, in particular, x ă Bztxu, contradicting to the fact B is
independent. Hence, B is minimal.

3. 3. ñ 1. : Take x P B. If B is dependent, then X ă B ă Bztxu by Proposition 3.3.3. Hence B is
independent.

Theorem 3.3.5. Let X be a nonempty set with a dependence relation ă. Let S Ď T Ď X such that S is
independent and X ă T . Then there exists a base B for X such that S Ď B Ď T .

Proof. Put A = tI Ď X | S Ď I Ď T ^ I is independentu, partially ordered by inclusion. Let tInunPN be
a chain in A. By Property 3.3.1.3 and .4, we see

Ť

n In is also independent. By Zorn’s lemma, A has a
maximal element, say B. We claim X ă B. Since B Ď T , the maximality forces T ă B, by Proposition
3.3.2; (III) implies X ă B.

Lemma 3.3.6. Let S be a finite dependent set and let A Ď S be an independent subset of S. Then there
exists u P SzA such that S ă Sztuu.
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Proof. By Theorem 3.3.5, let B be a base such that A Ď B Ď S. If u P SzB, then u ă B ă Sztuu by
Property 3.3.1.1. (I) and (III) show S ă Sztuu.

Theorem 3.3.7. 1. If B is a finite set for which X ă B and if C is independent in X, then #C ď #B.

2. Any two bases with respect to ă for a set X have the same cardinality.

Proof.

1. Let B = tb1, . . . , bmu. Pick c1 P C and consider the set C1 = B Y tc1u. By Lemma 3.3.6, with
A = tc1u, we have, say, X ă C1 ă tc1, b1, . . . , bm´1u. Picking c2 P Cztc1u and repeating the
procedure above, we must exhaust the element of C first, for otherwise X ă C0 for some proper
subset C0 Ď C, contradicting to the independence of C. Hence #C ď #B.

2. Let B,C be two bases for X. If they are finite, 1. indicates that #B = #C. Assume B,C are
infinite. For each c P C, we have c ă B, and by (II), c ă Bc for some finite subset Bc Ď B. It
follows B =

Ť

cPC

Bc, for otherwise b ă C ă
Ť

cPC

Bc ă Bztbu for b P Bz
Ť

cPC

Bc, contradicting to the

independence of B. Hence
#B = #

ď

cPC

Bc ď #(C ˆ N) = #C

Reversing the roles of B and C, we conclude #B = #C.

3.3.2 Transcendence extensions
In this section, F Ď E always denotes a field extension.

Definition. α P E is transcendental over F if t is not algebraic over F .

Definition. Let S Ď E. α P E is algebraically dependent on S over F , written α ă S, if α is
algebraic over F (S). Otherwise, α is algebraically independent of S over F , written α ć S.

• α ă S if and only if F (S) Ď F (S, α) is algebraic. Also, the class of algebraic extensions is closed
under any composite. Thus, for A, S Ď E, A ă S if and only if F (S) Ď F (S,A) is algebraic, i.e, A
is algebraic over F (S).

• S is algebraically dependent over F if s ă Sztsu for some s P S. Otherwise, S is algebraically
independent over F .
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Definition. A subset S Ď E is said to have a nontrivial polynomial relationship over F if p(s1, . . . , sn) =
0 for some nonzero polynomial p P F [x1, . . . , xn] and distinct s1, . . . , sn P S.

Theorem 3.3.8. Let S Ď E. S is algebraically dependent if and only if S has a nontrivial polynomial
relationship over F .

Proof. (ñ) Let s P S such that s ă Sztsu, i.e, s is algebraic over F (Sztsu). Hence, f(s) = 0 for some
polynomial f P F (Sztsu)[x] of degree n ą 0, say

f(x) =
n
ÿ

i=1

pi(s1, . . . , sm)

qi(s1, . . . , sm)
xi

for distinct s1, . . . , sm P Sztsu. Multiplying by the product of the denominators gives a nonzero polynomial
satisfied by s.
(ð) Let s1, . . . , sm P S such that p(s1, . . . , sm) = 0 for some nonzero polynomial p P F [x1, . . . , xn]; WLOG,
say m is the smallest number having such a property. Write

p(x1, . . . , xm) =
n
ÿ

i=1

pi(x2, . . . , xm)x
i
1

where pn ‰ 0. By the minimality, pn(s2, . . . , sm) ‰ 0. Hence, s1 satisfies the nonzero polynomial p(x) :=
p(x, s2, . . . , sm), i.e, s1 ă Szts1u.

Theorem 3.3.9. Algebraic dependence is a dependence relation.

Proof. The reflexivity holds trivially. Let α ă S and mα,F (S)(x) = anx
n + ¨ ¨ ¨ + a1x + a0 P F (S)[x]. Put

C = ta0, . . . , anu. Then α ă C, which proves the compactness. For the transitivity, let α P S. Then the
tower F (U) Ď F (U, T ) Ď F (U, T, α) is algebraic, proving that F (U) Ď F (U, α) is algebraic, i.e, α ă U .
Finally, we verify the exchange axiom. Suppose t ă S but t ć Sztsu. Then t satisfies a polynomial
f P F (S)[x]zF (Sztsu)[x] of degree n ą 0; write

f(x) =
n
ÿ

i=1

pi(s1, . . . , sm)

qi(s1, . . . , sm)
xi

for distinct s1, . . . , sm P S with, WLOG, s = s1. Multiplying by the product of the denominators and
setting x = t gives a nonzero polynomial over F (Sztsu, t) satisfied by s, and thus s ă (Sztsu) Y ttu

Property 3.3.10. 1. Any superset of an algebraically dependent set is algebraically dependent.

2. Any subset of an algebraically independent is algebraically independent.
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3. If S is algebraically independent over F and α is transcendental over F (S), then S Y tαu is alge-
braically independent over F .

Definition. A transcendence basis for E over F is a subset B Ď E which is algebraically independent
over F and for which F (B) Ď E is algebraic.

Theorem 3.3.11. Let B Ď E. TFAE:

1. B is a transcendental basis for E over F .

2. B is a maximal algebraically independent subset of E over F .

3. B is a minimal set with respect to the property that F (B) Ď E is algebraic.

Theorem 3.3.12. Let F Ď S Ď T Ď E, where S is algebraically independent over F and F (T ) Ď E is
algebraic. Then there exists a transcendental basis B for E over F satisfying S Ď B Ď T .

Theorem 3.3.13. Any two transcendental bases for E over F have the same cardinality, called the
transcendental degree of E over F and denoted by tr.degFE.

Theorem 3.3.14. Let F Ď K Ď E.

1. If S Ď K is algebraically independent over F and T Ď E is algebraically independent over K, then
S Y T is algebraically independent over F .

2. If S is a transcendental bases for K over F and T is a transcendental bases for E over K, then SYT

is a transcendental bases for E over F .

3. The transcendence degree is additive in towers.

Proof.

1. Let s1, . . . , sm P S, t1, . . . , tn P T and let p P F [x1, . . . , xm, y1, . . . , yn] such that p(s1, . . . , sm, t1, . . . , tn) =
0, where si, ti are distinct. Write

p(x1, . . . , xm, y1, . . . , yn) =
ÿ

e

(
ÿ

f

afx
f1
1 ¨ ¨ ¨ xfmm

)
ye11 ¨ ¨ ¨ yenn

where af = af1,...,fm P F and each e = (e1, . . . , en) is distinct and for each e, each f = (f1, . . . , fm)

is distinct. Consider the polynomial q(y1, . . . , yn) = p(s1, . . . , sm, y1, . . . , yn). Since T is algebraically
independent over K, we obtain

ÿ

f

afs
f1
1 ¨ ¨ ¨ sfmm = 0

Again, since S is algebraically independent over F , we obtain af = 0. In conclusion, p ” 0, i.e, SYT

is algebraically independent over F .
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2. We must show F (S Y T ) Ď E is algebraic. Since F (S) Ď K and K(T ) Ď E are algebraic, each step
in the tower F (S Y T ) Ď K(T ) Ď E is algebraic, and thus F (S Y T ) Ď E is algebraic.

Definition. F Ď E is totally transcendental if every element of EzF is transcendental over K.

• If E = F (t) for some transcendence t over F , we say E/F is a simple transcendental extension.

Proposition 3.3.15. Let t be a transcendence over F . Let s =
p(t)

q(t)
P F (t)zF , where (p, q) = 1. Then

[F (t) : F (s)] = maxtdeg p, deg qu. (HW. 19)

Proof. Consider the polynomial g(x) = q(x)s ´ p(x) P F (s)[x]. Then t is a root of g(x), so F (t)/F (s) is
algebraic; this forces F (s)/F to be transcendental. Regard s as an independent variable y. To show g(x) is
irreducible over F (s), it suffices to show g(x)y´f(x) P F (y)[x] is irreducible over F (y). By Gauss’ lemma,
we only need to show h(y, x) = g(x)y ´ f(x) P F [y][x] is irreducible in F [y][x] = F [x, y] = F [x][y], which
holds trivially since (g, f) = 1. Thus [F (t) : F (s)] = deg p = maxtdeg p, deg qu. The left is clear.

Corollary 3.3.15.1. Let F (t)/F be a simple transcendental extension. Then

Aut(F (t)/F ) =
#

σA : t ÞÑ
at+ b

ct+ b

ˇ

ˇ

ˇ

ˇ

ˇ

A =

(
a b

c d

)
P GL2(F )

+

Furthermore, A ÞÑ σA is a surjective homomorphism from GL2(F ) to Aut(F (t)/F ), with kernel equal to
the group of all nonzero scalar matrices in GL2(F ), i.e, Aut(F (t)/F ) – PGL2(F ). (HW2. 1)

Proof. An automorphism f of F (t)/F is uniquely determined by it action on t; suppose f(t) = p(t)

q(t)
, where

p, q P F [x], q ‰ 0 and (p, q) = 1. Since it’s an automorphism F (t) = F (f(t)), so [F (t) : F (f(t))] = 1. By
Proposition 3.3.15, maxtdeg p, deg qu = 1; say p(x) = ax+ b and q(x) = cx+ d. If c = 0, then a, d ‰ 0 and

thus ad ‰ 0. If c ‰ 0, since (p, q) = 1, we have ad ´ bc ‰ 0. Hence
(
a b

c d

)
P GL2(F ).

Theorem 3.3.16 (Lüroth). Let t be transcendental over F . If F Ď K Ď F (t), then K = F (s) for some
s P F (t).

Proof. Assume K ‰ F . By Proposition 3.3.15, for each s P KzF , the tower F (s) Ď K Ď F (t) is algebraic;
in particular, F (t)/K is algebraic. Consider

p(x) = mt,K(x) = xn +
a1(t)

b1(t)
xn´1 + ¨ ¨ ¨ +

an(t)

bn(t)
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where ai(t), bi(t) P F (t) are relatively prime; note that none of ai(t)/bi(t) P F thanks to the transcendence

of t over F . We claim each s = ak(t)

bk(t)
is the desired element such that K = F (s).

Consider the polynomial h(x) = ak(x) ´
ak(t)

bk(t)
bk(x) P K[x]. Since s R F , we have h(x) ‰ 0. But

h(t) = 0, we have p | h over K, i.e, there exists q P K[x] so that

ak(x) ´
ak(t)

bk(t)
bk(x) = q(x)p(x)

or
ak(x)bk(t) ´ ak(t)bk(x) = bk(t)q(x)p(x)

Multiplying both sides by r(t) = b1(t) ¨ ¨ ¨ bn(t) gives

r(t)[ak(x)bk(t) ´ ak(t)bk(x)] = bk(t)q(x)r(t)p(x)

where
r(t)p(x) = b1(t) ¨ ¨ ¨ bn(t)x

n +
m
ÿ

i=1

[b1(t) ¨ ¨ ¨ bi´1ai(t)bi+1(t) ¨ ¨ ¨ bn(t)]x
n´i

Let g(t) be the greatest common factor of the coefficients on the RHS. Since g(t) | b1(t) ¨ ¨ ¨ bn(t) and
(bi, ai) = 1, we have

g(t) | b1(t) ¨ ¨ ¨ bk´1(t)bk+1(t) ¨ ¨ ¨ bn(t)

for all k. Factoring out g(t) gives
r(t)p(x) = g(t)p1(t, x)

where p1 P F [t, x] is not divisible by any nonconstant polynomial in t (˚). Thus

degt p1(t, x) ě maxtdeg ak(t), deg bk(t)u = [F (t) : F (s)]

and
r(t)[ak(x)bk(t) ´ ak(t)bk(x)] = bk(t)q(x)g(t)p

1(t, x)

Multiplying both sides by a polynomial u(t) that clear all of the denominators of q(x), we obtain

u(t)r(t)[ak(x)bk(t) ´ ak(t)bk(x)] = bk(x)q
1(t, x)p1(t, x)

where q1 P F [t, x]. By (˚), we have ak(x)bk(t)´ak(t)bk(x) | p1(t, x), i.e, there exists q2(t, x) P F [t, x] so that

ak(x)bk(t) ´ ak(t)bk(x) = q2(t, x)p1(t, x)
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Note that the degree of RHS with respect to t is at least [F (t) : F (s)] and the RHS is at most maxtdeg ak(t), deg bk(t)u =

[F (t) : F (s)]. Hence degt q2(t, x) = 0, i.e,

ak(x)bk(t) ´ ak(t)bk(x) = q2(x)p1(t, x)

for some q2 P F [x]. Since the RHS is not divisible by any nonconstant polynomial of t, neither is the LHS.
But the LHS is symmetric in x, t, so it cannot divisible by any nonconstant polynomial of x either. Hence
q2(x) P F , i.e,

ak(x)bk(t) ´ ak(t)bk(x) = q2p1(t, x)

for some q2 P F . Finally, since the degree w.r.t. x and that w.r.t. t of the LHS agree, this holds for the
RHS. Hence

n = degx p1(t, x) = degt p1(t, x) ě [F (t) : F (s)] ě n

and thus [F (t) : F (s)] = n = degmt,K(x), i.e, K = F (s), completing the proof.

Proposition 3.3.17. Every field extension is a totally transcendental extension of an algebraic extension.

Proof. Let F Ď E be any field extension. Let A := tα P E | α is algebraic over F u, which is a subfield of
E containing F . If α P E is algebraic over A, then A Ď A(α) is algebraic, and thus F Ď A(α) is algebraic,
i.e, α P A. Thus A Ď E is totally transcendental.

Example 3.3.18. F ((xi)iPI) is totally transcendental over F with transcendence degree n over F .

Proof. First we show that F (x) is totally transcendental over F . For clarity, we prove F (π) – F (x) is

totally transcendental over F , where π is a transcendence over F . Let α P F (π)zF , so that α =
p(π)

q(π)
for

some p, q P F [x]. Then π satisfies 0 ‰ αq´p P F (α)[x], i.e, π is algebraic over F (α), i.e, [F (π) : F (α)] ă 8.
It forces that [F (α) : K] = 8, i.e, α is transcendental over F . Now F (x1, . . . , xn) is totally transcendental
over F follows by induction on n. Finally, let α P f/g P F ((xi)iPI) be algebraic over K. Since f, g have
finitely nonzero zeros, α P F ((xi)iPJ) for some finite subset J Ď I. Hence α P F .

3.3.3 Purely transcendental extension
Definition. A extension F Ď E is purely transcendental if E admits a transcendental base S over F
such that E = F (S).

• It’s equivalent to saying that E is F -isomorphic to some K((xi)iPI).

Proposition 3.3.19. If E/F is purely transcendental, then every α P EzF is transcendental over F .
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Proof. Let B be a transcendence base for E/F such that E = F (B). Assume α P L := F (t1, . . . , tn) for
some finite subset tt1, . . . , tnu Ď B, and also assume that α R K := F (t1, . . . , tn´1). Then L = K(tn) is a
simple transcendental extension of K with α P LzK. By Proposition 3.3.15, α is transcendental over K,
and thus over F .

Example 3.3.20. Let n ě 3 and F be a field with Char(F ) ∤ n. Let u be transcendental over F and let
v be a root of p(x) = xn + un ´ 1. Put E = F (u, v). Clearly, E/F is nor algebraic. We claim that E/F is
not purely transcendental.

Proof. Since F (u, v)/F (u) is algebraic, tr.degFF (u, v) = 1. Suppose otherwise E = F (t) for some tran-

scendence t over F . Write u =
a(t)

b(t)
and v =

c(t)

d(t)
where a, b, c, d P F [x]. Then

a(t)n

b(t)n
+
c(t)n

d(t)n
= 1

or
(ad)n + (bc)n = (bd)n

We rewrite it as
f(t)n + g(t)n = h(t)n

where f, g, h P F [x]zF are, say, pairwise relatively prime. Assume deg f ď deg g; then degh ď deg g.
Dividing by hn and taking the derivative with respect to t, we obtain

fn´1(f 1h ´ fh1) + gn´1(g1h ´ gh1) = 0

Since (f, g) = 1, we have gn´1 | f 1h ´ fh1. While this implies

(n ´ 1) deg g ď deg(fh) ´ 1 = 2 deg(g) ´ 1

which is impossible for n ě 3. Hence E/F is not purely transcendental.

Example 3.3.21. If t is transcendental over Q then Q(t,
?
t3 ´ t) is not a purely transcendental extension

of Q.

Proof. Since Q(t) Ď Q(t,
?
t3 ´ t) is algebraic, we see tr.degQQ(t,

?
t3 ´ t) = 1. Suppose, for contradiction,

that Q(u) = Q(t,
?
t3 ´ t) for some transcendence u over Q. Then t = f(u),

?
t3 ´ t = g(u) for some

f, g P Q(x)zQ; let us identify Q(u) with Q(x) for clarity. Thus, we have

g(x)2 = f(x)3 ´ f(x)
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Write f =
a

b
, g =

c

d
for some a, b, c, d P Q[x] with (a, b) = (c, d) = 1; we assume a, b, c, d P Z[x]. Then we

have
c2b3 = d2a(a2 ´ b2)

Since (a, b) = 1 and (c, d) = 1, we have b3 | d2 and d2 | b3, thus, say, b3 = d2. Since Z[x] is a UFD, there’s
w P Z[x] such that w6 = b3 = d2; let b = w2 and d = w3. Now we have f =

a

w2
and g = c

w3
. Consider the

rational function ϕ(x) = f 1(x)

g(x)
. We have

ϕ(x) =
f 1(x)

2g(x)
=
a1w ´ 2aw1

2c

=
g1(x)

3f(x)2 ´ 1
=
c1w ´ 3cw1

3a2 ´ w4

where the first equality in the second row results from the fact 2g(x)g1(x) = 3f(x)2f 1(x) ´ f 1(x), obtained
from differentiating the identity in f, g above. We contend that ϕ(x) is in fact a polynomial. Suppose
that x ´ α is a factor of the denominator of ϕ. Then c(α) = 0 = 3a(α)2 ´ w(α)4. w(α) ‰ 0 for otherwise
(w3, a) ‰ 1, a contradiction. Thus g(α) = 0 = 3f(α)2 ´ 1, together with g(α)2 = f(α)3 ´ f(α), which is
impossible. Hence ϕ(x) is a polynomial.

Replace f(x) and g(x) by f(1/x) and g(1/x), respectively; by the same token, we may show

φ(x) :=
´x´2f 1(1/x)

2g(1/x)
=

´x´2g1(1/x)

3f(1/x)2 ´ 1

is a polynomial. On the other hand, we have ´x´2ϕ(1/x) = φ(x), which is impossible while both ϕ(x) and
φ(x) are polynomials at the same time. Hence Q(t,

?
t3 ´ t) is not purely transcendental.

Lemma 3.3.22. Let E,E 1 be two field and K Ď E, K 1 Ď E 1 be subfield. Let I be an index set and
X = (xi)iPI Ď E (resp. X 1 = (x1

i)iPI Ď E 1) be algebraically independent over E (resp. over E 1). If
u : K Ñ K 1 is a field isomorphism, then there’s a unique field isomorphism v : K(X) Ñ K 1(X 1) extending
u and sending xi to x1

i for each i P I.

Proof. The uniqueness is clear. For the existence, note the algebraic independence means that there is a ring
isomorphism w : K[X] Ñ K[X 1] sending xα1

i1
¨ ¨ ¨ xαn

in
to x1α1

i1
¨ ¨ ¨ x1αn

in
for i1, . . . , in P I, αj P N, n P N. Passing

to their fraction fields we obtain a field isomorphism v : K(X) Ñ K 1(X 1) with desired properties.

Proposition 3.3.23. Let K Ď E,F Ď Ω be fields with Ω being algebraically closed. Then any K-
isomorphism between E and F can be extended to some K-automorphism on Ω if and only if tr.degEΩ =

tr.degFΩ.

Proof. The necessity is clear. The converse holds by Lemma above.

161



Chapter 4

Module theory
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4.1 Module theory
Definition. Let R be a ring.

1. A left R-module is an abelian group M on which R acts on the left by endomorphisms on M .

2. An R-submodule N of M is a subgroup of M stable under the action on R, i.e, rN Ď N for all
r P R. In this case, we write N ď M .

• Similarly, we may define a right R-module.

• If R has identity 1, we assume 1m = m for all m P M . In this case, we say M is a unital R-module.

• Let S be a ring. An (S,R)-bimodule is a left S-module M that is also a right R-module at
the same time on which two ring actions are compatible in the sense that (sm)r = s(mr) for all
m P M, s P S, r P R.

• Unless indicated otherwise, by R-modules we mean left R-modules.

Example 4.1.1.

1. If R = F is a field, then R-modules are simply F -vector spaces, and R-submodules are subspaces.

2. If R = Z, unital R-modules are abelian groups, and R-submodules are subgroups.

3. R itself is an R-module, and R-submodules are left ideals.

4. More generally, Rn := t(a1, . . . , an) | ai P Ru is an R-module.

5. If S is a subring of R, then an R-module is automatically an S-module.

6. If M is an R-module and I is a left ideal of R such that IM = 0, then M is an (R/I)-module, with
the (R/I)-action on M given by (x+ I)m := xm for all x P R. For example, if A is an abelian group
of exponent m, i.e, (mZ)A = 0, then A is a Z/mZ-module. In particular, if m = p is a prime, then
A is a Fp-vector space. For example, V4 is a F2-vector space of dimension 2.

7. Let F be a field. We consider the F [x]-module V . In particular, V is a F -vector space. Then the
action of x defines a linear map T : v ÞÑ xv, and determines the F [x]-action on V . Conversely, given
a F -vector space V and T P End(V ), let F [x] act on V by p(x)v := p(t)v for all p P F [x].

In conclusion, an F [x]-module corresponds to a F -vector space with an endomorphism T .
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Definition. Let R be a commutative ring with 1R. An R-algebra is a ring A with identity 1A together
with a ring homomorphism f : R Ñ A such that f(R) Ď Z(A) and f(1R) = 1A.

• Equivalently, anR-algebra is anR-module that is also a ring with identity such that the multiplication
is R-bilinear.

Example 4.1.2.

1. Any commutative ring with 1 is a Z-algebra.

2. If A is a ring with 1 and R is a subring of the center of A containing the same 1, then A is an
R-algebra.

4.1.1 Module homomorphisms and quotient modules
Definition. Let R be a ring and M,N be R-modules.

1. A map ϕ :M Ñ N is an R-module homomorphism is ϕ is an abelian group homomorphism that
respects the R-action on M and N , i.e ,ϕ(rm) = rϕ(m) for all r P R, m P M .

2. If ϕ is bijective, we say it’s an R-module isomorphism, and write M – N .

3. kerϕ := tm P M | ϕ(m) = 0u and Imϕ := ϕ(M).

4. HomR(M,N) := tϕ :M Ñ N | ϕ is an R -module homomorphismu.

Example 4.1.3.

1. Z-module homomorphisms are just abelian group homomorphisms.

2. When F is a field, F -module homomorphisms are simply F -linear transformations.

Property 4.1.4. Let R be a ring and M,N be R-modules.

1. HomR(M,N) is an abelian group and a Z(R)-module. In particular, if R is commutative, it’s an
R-module.

2. EndR(M) := HomR(M,M) is a ring with identity, with multiplication being function composition.
If R is commutative with 1, then it’s an R-algebra.

Property 4.1.5. Let R be a ring and N,M be R-modules with N Ď M . Then the quotient group M/N

is an R-module on which R acts by r(x + N) := rx + N for all r P R. Also, the map M Q x ÞÑ x + N is
an R-module homomorphism with kernel N .
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Definition. Let R be a ring and M be an R-module. For submodules A,B of M , define A+B := ta+ b |

a P A, b P Bu, which is the smallest submodule containing A and B.

Proposition 4.1.6. Let R be a ring and N,M be R-modules.

1. ϕ P HomR(M,N) ñ M/ kerϕ – Imϕ.

2. M +N/N – M/M X N

3. A ď B ď M ñ
M/A

B/A
– M/B

4. If N ď M , then there’s a bijection between submodules of M/N and submodules of M containing
N .

4.1.2 Generation of modules, direct sums and free modules.
Definition. Let R be a ring and M be an R-module.

1. Let A Ď M be a subset. Define RA := tr1a1 + ¨ ¨ ¨ + rnan | n P N, ri P R, aj P Au to be the module
generated by A. In this case, we say A is a generating set.

2. If N ď M such that N = RA for some A Ď M with #A ă 8, we say N is finitely generated.

3. If N = Ra for some a P M , we say N is the cyclic module generated by a.

• If A = ta1, . . . , anu, we write RA = Ra1 + ¨ ¨ ¨ +Ran.

Example 4.1.7.

1. If R = Z, then Za is just the cyclic group generated by a.

2. If M = R is a ring, then cyclic submodules are precisely principal left ideals of R.

3. V is a cyclic F [x]-modules means precisely that V is a T -cyclic subspace generated by v for some
T P End(V ), v P V .

Definition. Let R be a ring and M1, . . . ,Mn be R-modules. Define an action of R on M1 ˆ ¨ ¨ ¨ ˆ Mn

componentwise. The resulting R-module is called the (external) direct sum of M1, . . . ,Mn, denoted as
M1 ‘ ¨ ¨ ¨ ‘ Mn.

Proposition 4.1.8. Let R be a ring and N1, . . . , Nn ď M be R-modules. TFAE:
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1.
ϕ : N1 ˆ ¨ ¨ ¨ ˆ Nk N1 + ¨ ¨ ¨ +Nk

(a1, . . . , ak) a1 + ¨ ¨ ¨ + ak

is an isomorphism.

2. Nj X
ř

i‰j

Ni = 0 for any j.

3. Every element x P N1 + ¨ ¨ ¨ +Nk can be written uniquely as x = a1 + ¨ ¨ ¨ + ak for aj P Nj.

Definition. If any of the above holds, we say N1 + ¨ ¨ ¨+Nk is the (internal) direct sum of the Nj, also
denoted as N1 ‘ ¨ ¨ ¨ ‘ Nn.

Remark 4.1.9. Let (Mi)iPI be a family of R-modules. The direct product of the Mj is the set
ś

iPI

Mi

on which R acts componentwise, making it an R-module. The direct sum of the Mj is defined by the
restricted product

ź̊

iPI

Mi =

#

(ai)iPI P
ź

iPI

Mi | ai = 0 for all but finitely many i P I

+

on which R acts componentwise.
The direct product has the following universal property. Let πj :

ś

iPI

Mi Ñ Mj be the j-th projec-

tion. Then given any family of R-module homomorphisms fj P HomR(A,Mj), there exists a unique
f P HomR(A,

ś

iMi) such that πj ˝ f = fj for all j P I.
The direct sum has the dual universal property. Let ιj :Mj Ñ

À

iPI

Mi be the j-th inclusion. Then given

any family of R-module homomorphisms fj P HomR(Mj, A), there exists a unique f P HomR(
ś

iMi, A)

such that f ˝ ιj = fj for all j P I.

Definition. An R-module F is said to be free on a subset A if every x P I can be expressed uniquely
as x = r1a1 + ¨ ¨ ¨ + rnan with unique aj P A, rj P R. We say A is a basis or a set of free generators of
F . When R is commutative, #A is called the rank of F .

• Let R be commutative with 1 and let I be a maximal ideal. Let f : Rn Ñ Rm be an isomorphism.
Then id b f : R/I bR R

n Ñ R/I bR R
m is an isomorphism between vector spaces. Hence n = m.

Proposition 4.1.10. Let R be a ring and A be a set. Then there’s a free R-module F (A) on the set
A satisfying the universal property: for any R-module M with a map ϕ : A Ñ M , there’s a unique
Φ P HomR(F (A),M) such that Φ ˝ ι = ϕ, where ι : A Ñ F (A) is the inclusion.

Proof. It’s clear that F (A) :=
À

iPA

R is the desired free module on A. Equivalently, one can construct it as

F (A) = tf : A Ñ M | f(x) = 0 for all but finitely many x P Au
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4.1.3 Tensor products of modules
Question 4.1.11. Suppose R,S are rings with R Ď S. Then any S-module is automatically an R-module.
How above the converse? That is, given an R-module, can we make it a nontrivial S-module. The answer
is generally negative. For example, Z is a Z-module but fails to be a Q-module.

How best can we do? Let M be an R-module. Consider the free abelian group Z(S ˆ M). To make
it an S-module, we need to identify (s1 + s2,m) ´ (s1,m) ´ (s2,m), (s,m1 +m2) ´ (s,m1) ´ (s,m2) and
(sr,m)´ (s, rm) with 0 for all s, s1, s2 P S, m,m1,m2 P M and r P R; let H be the subgroup of Z(S ˆM)

generated by the above identification. Define the tensor product of S and M over R to be the quotient

S bRM = Z(S ˆ M)/H

and denote the coset of (s,m) by s b m. Elements of S bR M are called tensors, and those of the form
s b m are called a simple tensor.

Proposition 4.1.12. Define the S-action on S bR M by s(
ř

i si ˆ mi) :=
ř

i ssi b mi. Then S bR M

becomes an S-module.

Example 4.1.13.

1. Q bZ Z/aZ = 0.

2. More generally, if A is a torsion abelian group, then Q bZ A = 0.

3. Q bZ Z = Q.

Theorem 4.1.14. Let R Ď S be rings with 1 and let N be an R-module. Let ι : N Ñ SbRN be defined by
ι(n) = 1bn. Suppose L is an S-module and ϕ P HomR(N,L), then there’s a unique Φ P HomS(SbRN,L)

such that ϕ = Φ ˝ ι.

Corollary 4.1.14.1. Under the condition above, then ker ι Ď kerϕ.

Corollary 4.1.14.2. Under the condition above, we have the bijection

HomS(S bR N,L) – HomR(N,ResR(L))

where ResR : (S-Mod) Ñ (R-Mod) is the forgetful functor.

Remark 4.1.15. The process of obtaining the S-module S bR N from N is called the extension of
scalars.
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We next consider the tensor products of two modules. Let R be a ring, N be a left R-module and
R a right R-module. Consider the free abelian group Z(M ˆ N) and let H ď Z(M ˆ N) generated by
(m1+m2, n)´(m1, n)´(m2, n), (m,n1+n2)´(m,n1)´(m,n2) and (mr, n)´(m, rn) for all m,m1,m2 P M ,
n, n1, n2 P N and r P R. Then

M bR N := Z(M ˆ N)/H

is called the tensor product of M and N over R. Note that M bR N is, in general, just an abelian
group, unless M is given the structure of some left module.

If M is an (S,R)-bimodule, then M bR N can become a left S-module, where the S-action is given by
s(
ř

imi bni) :=
ř

i smi bni. In particular, if R is commutative, then we can make M an (R,R)-bimodule
by setting rm = mr for all r P R, m P M , and M bR N is automatically an R-module.

Example 4.1.16.

1. Let m,n P N and d = gcd(m,n). Then Z/mZ bR Z/nZ – Z/dZ and is cyclic generated by 1 b 1.

2. R[x] bR R[y] – R[x, y].

Definition. Let R be a ring, N a left R-module, R a right R-module and L an abelian group. A map
ϕ : M ˆ N is R-balanced, or R-middlelinear, if it’s bilinear as groups and ϕ(mr, n) = ϕ(m, rn) for all
m P M, n P N, r P R.

Theorem 4.1.17. Let M,N,L, ϕ as above and ι : M ˆ N Ñ M bR N be an R-balanced map defined by
ι(m,n) := m b n. Then there’s a unique Φ P HomZ(M bR N,L) such that ϕ = Φ ˝ ι.

Corollary 4.1.17.1. Let R,S be rings, M a right R-module, N an (R,S)-bimodule and L a right S-
module. Then there’s a bijection

Hom(Mod-S)(M bR N,L) – Hom(Mod-R)(M,Hom(Mod-S)(N,L))

Corollary 4.1.17.2. Let R be a commutative ring and M,N,L be R-modules. Then there’s a bijection

tϕ :M ˆ N Ñ L | ϕ is R-bilinearu – HomR(M bR N,L)

Example 4.1.18.

1. Let f : R Ñ S be a ring homomorphism. This map induces a right R-module structure on S, given
by sr := sf(r) for all s P S, r P R. Then for any left R-module N , S bR N changes the base from R

to S.

2. If f : R Ñ S is a ring homomorphism with f(1R) = 1S, then S bR R – S via the map sb r ÞÑ sf(r)

with inverse s ÞÑ s b 1.
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3. Let R be a ring, I �R a two-sided ideal and N an R-module. Then (R/I) bR N – N/IN .

4. A abelian group G is divisible if for all n P N and g P G, ny = g for some y P G. Then for any
divisible abelian group A and torsion abelian group B, we have A bZ B = 0.

More generally, given a ring R with 1, we say an R-module M is divisible if for every non zero-divisor
r P R, the map r ÞÑ rm is a surjective endomorphism on M .

5. Let M,M 1 be right R-modules and N,N 1 be left R-modules. Let φ : M Ñ M 1 and ψ : N Ñ N 1 be
R-module homomorphisms. Then we can define a group homomorphism φbψ :MbRN Ñ M 1 bRN

1

in a natural way, and this is unique. Furthermore, if M,M 1 are (S,R)-bimodules for some ring S
and φ is an S-module homomorphism, then φ b ψ is an S-module homomorphism.

Proposition 4.1.19. Let R,S be rings, M a right R-module, N an (R,S)-bimodule and L a right S-
module. Then there’s a bijection

(M bR N) bS L – M bR (N bS L)

Proposition 4.1.20. Let R be a ring, M,M 1 be right R-modules and N,N 1 be left R-modules. Then

(M ‘ M 1) bR N – (M bR N) ‘ (M 1 bR N)

M bR (N ‘ N 1) – (M bR N) ‘ (M bR N
1)

Corollary 4.1.20.1. Let R Ď S be rings with the same 1 and n,m P N. Then

S bR R
n – Sn

and
Rn bR R

m – Rnm

Proposition 4.1.21. Let R be a commutative ring and M,N be R-modules. Then

M bR N – N bRM

Proposition 4.1.22. Let R be a commutative ring and A,B be R-algebra. Then the tensor product of
modules A bR B has a structure of R-algebra, given by (a b a1)(b b b1) := (ab b a1b1).
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4.1.4 Exact sequences
Definition.

1. A pair of group/ring/module homomorphisms X α
Ñ Y

β
Ñ Z is exact if ker β = Imα.

2. A sequence ¨ ¨ ¨ Ñ Xi´1 Ñ Xi Ñ Xi+1 Ñ ¨ ¨ ¨ is exact if it’s exact at each Xi.

3. An exact sequence of the form 0 Ñ X Ñ Y Ñ Z Ñ 0 is called a short exact sequence. Here 0

denotes the additive identity; if X,Y, Z are multiplicative groups, we write 1 instead.

• 0 Ñ X
α

Ñ Y is exact ô α is injective.

• Y
β

Ñ Z Ñ 0 is exact ô β is surjective.

• 0 Ñ X
α

Ñ Y
β

Ñ Z Ñ 0 is a short exact sequence ô Y /α(X) – Z.

Remark 4.1.23. We have the following short exact sequences:

0 Z/2Z (Z/2Z)3 (Z/2Z)2 0

0 x(2, 0)y Z/4Z ˆ Z/2Z (Z/4Z ˆ Z/2Z)/x(2, 0)y 0

1 xσ2y D8 = xσ, τy D8/xσ2y 1

1 x´1y Q8 Q8/x´1y 1

Those in the second column are isomorphic to Z/2Z and those in the fourth column are isomorphic to
(Z/2Z)2, but those in the middle column are not isomorphic.

This is a part of the classification of finite groups, which consists of

(i) classification of all finite simple groups

(ii) given any groups A,B, find all exact sequences 1 Ñ N Ñ G Ñ G/N Ñ 1 such that A – N and
B – G/N .

Proposition 4.1.24. Consider the commutative diagram of modules with exact rows

A B C

A1 B1 C 1

α

ψ

β

φ

γ

ψ1 φ1

1. If φ, α are surjective and β is injective, then γ is injective.
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2. If ψ1, γ are injective and β is surjective, then α is surjective.

3. If ψ1, α, γ are injective, then β is injective.

4. If φ, α, γ are surjective, then β is surjective.

Proposition 4.1.25 (five lemma). Consider the commutative diagram of modules

A B C D

A1 B1 C 1 D1

α β γ δ

1. If β, δ are injective and α is surjective, then γ is injective.

2. If α, γ are surjective and δ is injective, then β is surjective.

Corollary 4.1.25.1. Consider the commutative diagram of modules

A B C D E

A1 B1 C 1 D1 E 1

α β γ δ ϵ

If β, δ are isomorphisms, α is surjective and ϵ is injective, then γ is an isomorphism.

Proposition 4.1.26 (snake lemma). Consider the commutative diagram of modules

A B C D E

A1 B1 C 1 D1 E 1

α

f

β

g

γ

h

ϵ

j

η

f 1 g1
h1 j1

with α surjective, η injective and two rows being exact. Then it induces a long exact sequence

ker f 1α ker β ker γ ker ϵ

A B C D E

A1 B1 C 1 D1 E 1

coker β coker γ coker ϵ coker ηj.

δ
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in which the map δ is called a connecting homomorphism.

Corollary 4.1.26.1. Consider the commutative diagram with exact rows

A B C 0

0 A1 B1 C 1

β

g h

γ ϵ

g1
h1

Then it induces a long exact sequence

ker β ker γ ker ϵ coker β coker γ coker ϵδ

Proposition 4.1.27 (3 ˆ 3 lemma). Consider the commutative diagram of modules

0 0 0

0 A1 A A2 0

0 B1 B B2 0

0 C 1 C C2 0

0 0 0

with all columns being exacts.

1. If the bottom two rows are exact, then the top row is exact.

2. If the top two rows are exact, then the bottom row is exact.

3. If the top and bottom rows are exact and the middle row is a complex, then the middle row is exact.

Definition. A short sequence 0 Ñ A
ψ
Ñ B

φ
Ñ C Ñ 0 is said to split if B = ψ(A) ‘ C 1 for some C 1 ď B

with C 1 – C by φ, that is, B – A ‘ C.

• We say B is a split extension of C by A.

Lemma 4.1.28. Let R be a ring and M an R-module. If π P EndR(M) is idempotent, i.e, π2 = π, then
M – kerπ ‘ Im π.
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Proof. Note that for all m = π(m1) P Im π, we have m ´ π(m) = π(m1) ´ π2(m1) = 0, since π2 = π.
Conversely, if m P ker(idM ´π), then m = π(m) P Im π. Hence, ker(idM ´π) = Im π.

For each m P M , we may write m = π(m) + (idM ´π)(m), so M = kerπ + Im π. If x P ker π X Im π,
say x = π(y), then 0 = π(x) = π2(y) = π(y) = x. Hence M = ker π ‘ Im π.

Proposition 4.1.29. Let 0 Ñ A
ψ
Ñ B

φ
Ñ C Ñ 0 be an exact sequence. TFAE:

1. It splits.

2. There exists a µ P Hom(C,B) such that φ ˝ µ = idC .

3. There exists a λ P Hom(B,A) such that λ ˝ ψ = idA.

If this is the case, we call µ a splitting homomorphism.

Proof. Assume 1, and let B = ψ(A) ‘ C 1 with C 1 – C by φ. Then pick µ = (φ|1
C)

´1 : C Ñ C 1 Ď B and
λ : B Ñ ψ(A) – A be the projection.

Conversely, let f = µ ˝ φ and g = ψ ˝ λ. Both of them are idempotent endomorphisms on B, so by
Lemma 4.1.29, B – ker f ‘ Im f = kerφ‘ Imφ – A‘C, since µ is injective. Similarly, B – ker g‘ Im g –

B/A ‘ A – C ‘ A.

Example 4.1.30. 0 Ñ Z ˆn
Ñ Z mod n

Ñ Z/nZ Ñ 0 does not split since HomZ(Z/nZ,Z) = 0.

Projective modules
Proposition 4.1.31. Let R be a ring with 1 and A,B,C an R-module. TFAE:

1. 0 Ñ A Ñ B Ñ C is exact.

2. 0 Ñ HomR(D,A) Ñ HomR(D,B) Ñ HomR(D,C) is exact for all R-modules D.

Proposition 4.1.32. Let R be a ring with 1 and P an R-module. TFAE:

1. Hom(P,´) is an exact functor.

2. Hom(P,´) is a right exact functor.

3. Every exact sequence 0 Ñ A Ñ B Ñ P Ñ 0 splits.

4. P is a direct summand of some free module.

Definition. An R-module P satisfies any of the above equivalent conditions is called projective.

173



Corollary 4.1.32.1. Let R be a ring with 1.

1. Free R-modules are projective.

2. Every R-module is a quotient of some projective R-module.

Example 4.1.33.

1. If R = F is a field, then any R-module is a F -vector space, which is free and thus projective.

2. If A is a nontrivial torsion abelian group, then it cannot be a projective Z-module.

3. Q is not a projective Z-module. In general, a divisible abelian group is not a projective Z-module.

Theorem 4.1.34 (Dual basis lemma). Let R be a ring and P be an R-module. TFAE:

1. P is projective.

2. There exist tai | i P Iu Ď P and tfi | i P Iu Ď HomR(P,R) such that for any a P P , fi(a) = 0 for all
but finitely many i, and a =

ř

i fi(a)ai.

Proof.

2.ñ1. Let F =
À

iRei and consider projection g : F Ñ P given by g(ei) = ai. Also, consider f : P Ñ F

given by f(a) =
ř

fi(a)ei. Then g ˝ f = idP , and P is a direct summand of F .

1.ñ2. Let F =
À

iRei be the free module and g : F Ñ P be the projection. Let ai = g(ei). Since P is
projective, there exists h : P Ñ F such that a =

ř

i fi(a)ei and h ˝ g = idP . Then taiu and tfiu are
the desired collection.

Definition. The associated right R-module HomR(M,R) of an R-module M is called the dual module
of M , and is denoted by M˚.

• The R-action on M˚ is given by (φr)(m) := φ(m)r.

• If M is a finitely generated free left R-module, then M˚ is a free right R-module of the same rank.
In particular, if M is finitely generated projective, then M˚ is projective.
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Injective modules
Proposition 4.1.35. Let R be a ring with 1 and A,B,C be R-modules. TFAE:

1. A Ñ B Ñ C Ñ 0 is exact.

2. 0 Ñ HomR(C,D) Ñ HomR(B,D) Ñ HomR(A,D) is exact for all R-modules D.

Proposition 4.1.36. Let R be a ring with 1 and J be an R-modules. TFAE:

1. HomR(´, J) is an exact functor.

2. HomR(´, J) is a right exact functor.

3. Every exact sequence 0 Ñ J Ñ B Ñ C Ñ 0 splits.

Definition. An R-module P satisfies any of the above equivalent conditions is called injective.

Example 4.1.37. Z is not an injective Z-module. Consider
0 Z Z

Z

ˆn

id . If n ‰ ˘1, then id

cannot be lifted to a homomorphism nZ Ñ Z.

Proposition 4.1.38 (Baer’s criterion). Let R a ring with 1 and J an R-module.

1. J is an injective R-modules ô for all left ideals I �R, any R-module homomorphism g : I Ñ J can
be extended to some R-module homomorphism f : R Ñ J .

2. If R is a PID, then J is injective ô rJ = J for all r P Rzt0u, i.e, J is a divisible R-module.

Proof.

1. Consider

0 A B

J

ψ

g

and let S := t(B1, g1) | Imψ Ď B1 Ď B^g1 P HomR(B
1, J) such that g1ψ = gu; this is nonempty since

(Imψ, gψ´1) P S. Partially ordered S as usual and by Zorn’s lemma, S admits a maximal element
(B0, f0).

Suppose for contradiction that B0 Ĺ B, say b P BzB0. Consider I = (B0 : b) � R and define
f1 : I Ñ J by f 1(r) := f0(rb). By assumption, f1 can be extended to some f 1 : R Ñ J . Put
B1 = B0 + Rb Ľ B0 and define f 1 : B1 Ñ J by f 1(b0 + rb) = f0(b0) + f1(r) for b0 P B0, r P R; this is
well-defined and (B1, f 1) P S is larger than (B0, f0), a contradiction.
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2. Let I = (r) be a nonzero ideal of R, and for each q P J define g : I Ñ J such that g(r) = q; this
is well-defined and unique. g can be extended to a homomorphism G : R Ñ J if and only if there
exists q1 P J with G(1) = q1 such that q1r = G(r) = g(r) = q, if and only if J = rJ . The result
follows from 1.

Corollary 4.1.38.1. A Z-module is injective if and only if it’s divisible.

Corollary 4.1.38.2. If R is a PID, then any quotient of an injective R-module is again injective.

Corollary 4.1.38.3. Every Z-module is a submodule of some injective module.

Proof. Let A be a Z-module and let φ : Z(A) Ñ A be the canonical projection. Consider Q := QbZZ(A);
this is an injective Z-module since it’s a direct sum of Q and thus divisible, Corollary 4.1.38.1 applies.
Then A – Z(A)/ kerφ ď Q/ kerφ and Q/ kerφ is injective over Z by Corollary 4.1.38.2.

Theorem 4.1.39. If R is a ring with 1, then every left R-module M is submodule of some injective
module.

Proof.

1° Show that HomZ(R,M) is a left R-module under the action (rφ)(s) = φ(sr).

2° Show that if Q is an injective R-module then HomZ(R,Q) is also an injective R-module.

3° View M as an Z-module any thus it’s contained in some injective Z-module Q.

4° Note that HomR(R,M) Ď HomZ(R,M) Ď HomZ(R,Q) and use the R-module isomorphism
M – HomR(R,M) to conclude the theorem.

We elaborate on 2°. Given that 0 ÝÑ A
φ

ÝÑ B is an exact sequence of R-modules and now since Q is
injective,

HomZ(B,Q)
φ˚

ÝÑ HomZ(A,Q) Ñ 0

is exact. Given f 1 P HomR(A,HomZ(R,Q)), consider

0 A B a

HomZ(R,Q) f 1(a)

M f 1(a)(1R)

φ
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Hence f := f 1(´)(1R) P HomR(A,Q). By our assumption, there’s a g P HomZ(B,Q) such that f = g ˝ φ.
Define g1(b)(r) := g(rb) for b P B and r P R; clearly g1(b) P HomZ(R,Q), and g1 P HomZ(B,HomZ(R,Q)).
We contend f 1 = g1 ˝ φ. Indeed, for each a P A and r P R,

g1(φ(a))(r) = g(rφ(a)) = g(φ(ra)) = f(ra) = f 1(a)(r)

so g1 ˝ φ = f 1.

Remark 4.1.40. Among all injective modules containing M , a minimal one the called the injective hull
E of M . ”The” injective hull E has the universal property: if Q is an injective R-module such that M Ď Q,
then M Ď E Ď Q.

For instance, Q is the injective hull of the Z-module Z and any injective hull of a field F is F itself.

Flat modules
Proposition 4.1.41. Let R be a ring with 1 and A,B,C be R-modules. TFAE:

1. A Ñ B Ñ C Ñ 0 is exact.

2. D bR A Ñ D bR B Ñ D bR C Ñ 0 is exact for all R-modules D.

Definition. An R-module D is such that D bR ´ is a left exact functor is called a flat R-module.

Proposition 4.1.42. Let R be a ring with 1. Then projective R-modules are flat.

Proof. Let P be a projective R-module and F a free R-module such that F = P ‘M for some R-module
M . Let ϕ : A Ñ B be injective. Consider

(P b A) ‘ (M b A) (P ‘ M) b A = F b A F b B (P b B) ‘ (M b B)„ id bϕ „

To show P b A Ñ P b B is injective, it suffices to show id bϕ is injective. Indeed, write F =
À

R and
consider the commutative diagram

À

(R b A) (
À

R) b A (
À

R) b B
À

(R b B)

À

A
À

B

„ „

„ „

The result follows once we note that the bottom arrow is injective.

Proposition 4.1.43 (Flatness criterion). Let R be a ring with 1 and D an R-module. TFAE:

1. D is flat.
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2. For every finitely generated left ideal I � R, the map D bR I Ñ D bR R induced by the inclusion
I Ď R is injective.

Proof. Let D be an R-module satisfying 2. We break our proof into some steps.

1° We show D b I Ñ D bR is injective for every left ideal I of R. Indeed, every element in D b I is a
finite sum of simple tensors, and hence is contained in some D b I 1 for some finitely generated left
ideal I 1 of R. Hence if it’s sent to zero, by our assumption it’s itself zero in Db I 1 and thus in Db I.
This shows the injectivity.

2° We show if K is a submodule of some finitely generated free module F , then M b K Ñ M b F is
injective. Write F = K +Rv1 + ¨ ¨ ¨ +Rvn and Fi = K +Rv1 + ¨ ¨ ¨ +Rvn. We show each step in

M b K M b F1 M b F2 ¨ ¨ ¨ M b Fn =M b F

is injective. For convenience, put K = F0. For i = 0, 1, . . . , n ´ 1, we have the short exact sequence

0 Fi Fi+1 Fi+1/Fi – R/Ii 0

where Ii := ta P R | avi+1 P Fiu and – follows from some isomorphism theorem; Ii is an ideal of R
since Fi is an R-module. Then we have the induced long exact sequence

¨ ¨ ¨ TorR1 (M,R/Ii) M b Fi M b Fi+1 M b R/Ii 0

We contend TorR1 (M,R/Ii) = 0. For each i = 0, . . . , n ´ 1, 0 Ñ Ii Ñ R Ñ R/Ii Ñ 0 induces the
exact sequence

0 = TorR1 (M,R) TorR1 (M,R/Ii) M b Ii M M b R/Ii 0

By our assumption, M b Ii Ñ M b R is injective, and thus TorR1 (M,R/Ii) = 0. Hence

0 M b Fi M b Fi+1 M b R/Ii 0

and thus M b Fi Ñ M b Fi+1 is injective.

3° Now we show if K is a submodule of some free module F , then M bK Ñ M bF is injective. Indeed,
every element of M b K is a finite sum of simple tensors, and thus is contained in some finitely
generated free submodule of F . Then this follows directly from 2°.
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4° Let A,B be R-modules and A
g

Ñ B be injective. Write B = F/Q for some free module F and
submodule Q. Then we have a short exact sequence

0 Q F B 0
f

Put J = f´1(g(A)) and ι : J Ñ F to be the inclusion, then we have the commutative diagram with
exact rows

0 Q J A 0

0 Q F B 0

id ι g

f

Apply the functor D b ´, we obtain a commutative diagram with exact rows

D b Q D b J D b A 0

D b Q D b F D b B 0

id id b ι id b g

id b f

By 2°, we know id b ι is injective, and by Proposition 4.1.24.1, id b g is injective.

Proposition 4.1.44. Let R be a PID and D an R-module. Then D is flat ô D is torsion free.

Proof. (ð) Let I = (a) ‰ 0 be an ideal of R. Consider the composition of maps

D D bR R D bR I D bR R D

mr m b r m b ra m b ra mra

„ „ id b ι „

where ι : I Ñ R is the inclusion. Since D is torsion free, this composition is injective, and thus id b ι is
injective. By flatness criterion, D is flat.

(ñ) Let a P Rzt0u and consider the exact sequence 0 R R
ˆa . Since N is flat, we have

the exact sequence

0 D bR R D bR R

D D

m ma

id ˆa

„ „

The injectivity gives AnnM(a) = tm P M | ma = 0u = 0, and thus Tor(M) =
Ť

aPR

AnnM(a) = 0.
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We consider the following table. (HW. 6)

Projective Injective Flat
submodule
quotient

finite direct sum
direct sum

direct product
direct summand
tensor product

(assuming R is comm.)
extension of scalars

Each (i, j) blank corresponds to the question whether any i of j module is j. For instance, the (1, 2) black
corresponds to whether any submodule of an injective modules is injective. We will not complete this table,
but we only discuss some of them.

submodules and quotients.

Definition. A ring R is left hereditary if all left ideal of R is a projective left R-modules.

Theorem 4.1.45. Let R be a hereditary ring. Then any submodule P of a free R-module F =
À

iPI

Rei is

isomorphic to a direct sum of left ideals of R. In particular, P is projective over R.

Proof. By virtue of AC, let ă be a well-ordering on I. For each i P I, let Fi =
À

jďi

Rej and Gi =
À

jăi

Rej.

Let pi : F Ñ R be the i-th projection. Put Ji := pi(P X Fi); this is a left ideal of R. Since Ji is projective
over R, the exact sequence

0 P X Gi P X Fi Ji 0
pi

splits, and thus P XFi = (P XGi)‘Ai for some submodule Ai – Ji as R-modules. We contend P =
À

iPI

Ai.

Suppose a1+ ¨ ¨ ¨+an = 0 for some ai P Aαi
; WLOG, say α1 ă ¨ ¨ ¨ ă αn. Then an = ´(a1+ ¨ ¨ ¨+an´1) P

Gαn XFαn = 0, so an = 0; by induction, ai = 0. Finally, we show P =
ř

iPI

Ai. If not, then there would exist

a smallest j (since ă is a well ordering) such that P X Fj contains an element a that is not belonging to
ř

iPI

Ai. Write a = b+ c where b P P XGj and c P Aj. Then b P P X Fk for some k ă j; the minimality of j

shows b P
ř

iPI

Ai. But a = b+ c P
ř

iPI

Ai, a contradiction.
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Corollary 4.1.45.1. A ring R is hereditary if and only if all R-submodules of a projective R-module are
projective.

Proposition 4.1.46. Let R be a commutative ring. Then R is a PID ô all R-submodules of a free
R-module are free.

Proof. (ð) Let a P Rzt0u. Then Ra is free, say ra is a basis, for some r ‰ 0. If ba = 0 for some b P R,
then b(ra) = 0, hence b = 0. This shows R is an integral domain. On the other hand, any x ‰ y in Rzt0u

cannot be R-linearly independent since yx+ (´x)y = 0. Hence if I is a nonzero ideal of R, since it’s free,
it must have a basis consisting of one element of I, and thus I is principal.
(ñ) This follows from the fact that a PID is hereditary and Theorem 4.1.45.

Proposition 4.1.47. A ring R is left hereditary ô all quotient of injective modules are injective.

direct sum.

Proposition 4.1.48. Let R be a ring and A,B be R-module. Then

A ‘ B is projective/injective/flat ô A,B are projective/injective/flat.

This can be sharpen, for the flatness and projectivity.

Proposition 4.1.49. A direct sum of R-modules is flat/projective over R ô each direct summand is flat/
projective over R.
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4.2 Modules over PID
Definition. Let R be a ring and M be a left R-module. M is a Noetherian module if it satisfies any
of the three equivalent conditions

1. Every submodule is finitely generated.

2. It satisfies the ascending chain condition on submodules.

3. Every nonempty set of submodules has a maximal element.

• A left Noetherian ring R is noetherian as left R-modules.

Example 4.2.1. Albeit R = F [x1, x2, . . .] is a finitely generated R-module, namely, generated by 1,
I = tf P R | f(0) = 0u is not finitely generated as R-module.

Proposition 4.2.2. Let R be an integral domain and M be a free R-module of rank n. Then any n + 1

element in M are R-linearly dependent.

Proof. Let F = FracR and consider the embedding M ãÑ F bRM – F n.

Definition. Let R be an integral domain. The rank of an R-module is defined to be the maximum number
of R-linearly independent elements of M .

Theorem 4.2.3. Let R be a PID and M be an free R-module of rank n. Let N ď M be a submodule.
Then

1. N is free of rank m ď n.

2. There is an R-basis y1, . . . , yn for M and aj P R (j = 1, . . . ,m) with a1 | a2 | ¨ ¨ ¨ | am such that
a1y1, . . . , amym is an R-basis for N .

Proof.

1. This follows from Proposition 4.1.46 and 4.2.2.

2. Let x1, . . . , xn be a basis for M and pick w1, . . . , wk to be a generating set of N . Now we write
w1

...

wk

 =


b11 ¨ ¨ ¨ b1n
...

...

bk1 ¨ ¨ ¨ bkn


looooooooomooooooooon

:=B


x1
...

xn



for some B = (bij) P Mkˆn(R).
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Claim. We will show there exist U P GLk(R) and V P GLn(R) such that

UBV =


a1

. . . O

am

O O


This means

U´1


w1

...

wk

 =


a1

. . . O

am

O O



y1
...

yn

 ,where


y1
...

yn

 = V


x1
...

xn


and implies N is a free module with basis a1y1, . . . , amym.

We devise an algorithm to construct what we desire. We set some global variables.
Let m = 0. For i = 0, . . . ,min(k, n) ´ 1, let di = 0. For i = 0, . . . , k ´ 1, let Ui = Ik´i and for
i = 0, . . . , n ´ 1 let Vi = In´i. Let k0 = k, n0 = n and for 1 ď i ď min(k, n), let ki = ni = 0.

Algorithm.

1° Find j such that b1j ‰ 0. Let S be the matrix corresponding to swapping the 1-st column and
the j-th column, and let Vm = VmS, B = BS.

2° For j = 2 to km. Find α, β such that αb11 + βbj1 = gcd(b11, bj1). Put γ =
´bj1

gcd(b11, bj1)
and

δ =
b11

gcd(b11, bj1)
. Let A be the matrix with

A11 = α, A1j = β, Aj1 = γ, Ajj = δ

Aii = 1 for i ‰ 1, j and Aiℓ = 0 else. For example, when j = 2, we have

A =

 α β

γ δ

I


Now let Um = AUm and B = AB. If Bi1 = 0 for each i = 2, . . . , km, go to 3°.
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3° For j = 2 to nm. Find α, β such that αb11 + βb1j = gcd(b11, b1j). Put γ =
´b1j

gcd(b11, b1j)
and

δ =
b11

gcd(b11, b1j)
. Let A be the matrix with

A11 = α, Aj1 = β, A1j = γ, Ajj = δ

Aii = 1 for i ‰ 1, n and Aiℓ = 0 else. For example, when j = 2, we have

A =

 α γ

β δ

I


Now let Vm = VmA and B = BA. If B1i = 0 for each i = 2, . . . , nm, go to 4°.

4° If Bi1 ‰ 0 for some i = 2, . . . , km, go to 2°.
If B1i ‰ 0 for some i = 2, . . . , nm, go to 3°.

• This terminates at a finite stage since R is Noetherian.

5° For j = 2, . . . , km, let D = gcdtbj2, . . . , djnmu. If b11 ∤ D, let S the matrix corresponding to
adding the j-th row to the 1-st row. Let Um = SUm, B = SB and go to 3°.

• This terminates at a finite stage since R is Noetherian.

6° Let dm = B11 and let B1 P M(km´1)ˆ(nm´1) be the submatrix in

B =

(
dm O

O B1

)

If B1 = O or mintkm, nmu = 2, break. Let km+1 = km ´ 1, nm+1 = nM ´ 1, m = m + 1 and
B = B1. Go to 1°.

Now, let U0 = (Im ‘ Um) ¨ ¨ ¨ (I0 ‘ U0) and V0 = (I0 ‘ V0) ¨ ¨ ¨ (Im ‘ Vm), where Ii is the iˆ i identity
matrix. Hence, we have obtained that

U0BV0 =


d0

. . . O

dm

O O


with d0 | d1 | ¨ ¨ ¨ | dm by 5°.
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Definition. Let R be a PID and A P Mnˆm(R). A smith normal form of A is a diagonal matrix
D P Mnˆm(R) of the form 

a1
. . . O

aℓ

O O


in which a1 | ¨ ¨ ¨ | aℓ such that D = UAV for some U P GLn(R), V P GLm(R).

• The diagonal element a1, . . . , aℓ are called the invariant factors of A.

• Note that ℓ is the rank of the matrix A.

Definition. Let A be a n ˆ m matrix. For each i ď mintn,mu, an i ˆ i minor of A is the determinant
of a matrix obtaining by eliminating n ´ i rows and m ´ i columns of A.

• For each i ď mintn,mu, there are at most
(
m

i

)(
n

i

)
i ˆ i minors of A.

Corollary 4.2.3.1. Let R be a PID, A P Mnˆm(R) and r be the rank of A.

1. A admits a smith normal form, with invariant factors d1 | ¨ ¨ ¨ | dr.

2. For each i ď r, let ∆i be a GCD of all i ˆ i minors of A. Then d1 = ∆1 and di = ∆i∆
´1
i´1 for each

2 ď i ď r, up to units.

3. The invariant factors of A are unique up to units.

Proof. It remains to show the second assertion. Let Q P Mn(R). Since the jk-entry of QA is a linear
combination of entries of the j-column of A, this indicates that iˆ i minors of QA is a linear combination
of those of A, and thus the GCD of i ˆ i minors of A is a divisor of that of QA. Similar for the case AP
when P P Mm(R). Hence, any two similar matrices have the same GCD of i ˆ i minors. Now the second
assertion is crystal clear.

Theorem 4.2.4. Let R be a PID and M a finitely generated R-module. Then

M – Rr ‘ R/(a1) ‘ ¨ ¨ ¨ ‘ R/(am)

in which r ě 0, aj P R with a1 | ¨ ¨ ¨ | am.

Proof. Let M =
n
ř

i=1

Rxi and let F be the free R-module on te1, . . . , enu. Then we have the natural
homomorphism
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φ : F M

ei xi

and thus M – F/ kerφ. By Theorem 4.2.3, there’s a basis ty1, . . . , ynu for F and aj P R with a1 | ¨ ¨ ¨ | am

such that a1y1, . . . , amym is a basis for kerφ. Then

M –
Ry1 ‘ ¨ ¨ ¨ ‘ Rym ‘ ¨ ¨ ¨ ‘ Rym

Ra1y1 ‘ ¨ ¨ ¨ ‘ Ramym
– Rn´m ‘ R/(a1) ‘ ¨ ¨ ¨ ‘ R/(am)

Example 4.2.5. Let G = Z3 and H be the subgroup of G generated by

w1 = (12, 6,´6) w2 = (´16,´4, 12) w3 = (´24,´6, 18) w4 = (4, 4, 6)

Let’s find the structure of G/H. Put te1, e2, e3u to be the standard basis of G. Then
w1

w2

w3

w4

=


12 6 ´6

´16 ´4 12

´24 ´6 18

4 4 6


e1e2
e3


We apply our algorithm in Theorem 4.2.3 to find the basis for H.
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
12 6 ´6

´16 ´4 12

´24 ´6 18

4 4 6




4 4 6

´16 ´4 12

´24 ´6 18

12 6 ´6



4 4 6

0 12 36

0 18 54

0 ´6 ´24




2 4 0

36 12 72

54 18 108

´24 ´6 ´48




2 0 0

36 ´60 72

54 ´90 108

´24 42 ´48



2 0 0

0 ´60 72

0 ´90 108

0 42 ´48




2 0 0

0 ´60 72

0 6 ´12

0 0 ´36



2 0 0

0 6 ´12

0 0 ´48

0 0 ´36



2 0 0

0 6 0

0 0 ´48

0 0 ´36




2 0 0

0 6 0

0 0 12

0 0 0


Definition. Let the notation be as in Theorem 4.2.4.

1. The number r is called the (free) rank of M .

2. a1, . . . , am are called the invariant factors of M .

• r = dimF F bRM , where F = FracR is the fraction field of R.

• Tor(M) = R/(a1) ‘ ¨ ¨ ¨ ‘ R/(am) called the torsion part of M .

• AnnR(Tor(M)) = (am) Ď R.

Theorem 4.2.6. Let R be a PID and M a finitely generated R-module. Then

M – Rr ‘ R/(pe11 ) ‘ ¨ ¨ ¨ ‘ R/(pekk )

for some prime powers pejj (pj may not be distinct).
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Proof. Let a P R and let a = upf11 ¨ ¨ ¨ pfnn be its prime factorization, where u is a unit and p1, . . . , pn are
distinct primes. For i ‰ j, (pfii ) + (p

fj
j ) = 1; thus, by Chinese remainder theorem, we have

R/(a) – R/(pf11 ) ˆ ¨ ¨ ¨ ˆ R/(pfnn )

Now the theorem follows from Theorem 4.2.4.

Definition. Let the notation be as in Theorem 4.2.6.

1. The prime power pejj are called the elementary divisors of M .

2. Let
Mp := tm P M | pkm = 0 for some k P Nu =

à

pj=p

R/(p
ej
j )

We call Mp the p-primary component of M .

Theorem 4.2.7. Let R be a PID. Any two finitely generated R-modules are isomorphic ô they have the
same rank and the same list of invariant factors / elementary divisors.

Proof. (ñ) Suppose M1 – M2. Note that an isomorphism must send p-primary components to p-primary
components. Thus it suffices to show that the ranks are equal and the p-primary components have the
same decomposition.

• M1/Tor(M1) – M2/Tor(M2), so the ranks are equal.

• Let
M1p = R/(pe1) ‘ ¨ ¨ ¨ ‘ R/(pem)

M2p = R/(pf1) ‘ ¨ ¨ ¨ ‘ R/(pfn)

be the p-primary component of M1,M2, respectively.

Claim. For each k P N, #tei | ei ě ku = #tfj | fj ě ku. (ñ teiu1ďiďm = tfiu1ďiďn as multisets.)

Observe that pi(R/(pj)) = (pi) + (pj)

(pj)
=

#

0 , if i ě j

(pi)/(pj) , if i ď j
, so

pi´1(R/(pj))

pi(R/(pj))
=

#

(pi´1)/(pi) – R/(p) , if i ď j

0 , if i ą j

Since M1p – M2p,
pi´1M1p

piM1p

–
pi´1M2p

piM2p

as R/(p)-vector spaces, having dimension #tek | ek ě iu = #tfk | fk ě iu.

188



4.2.1 Application to vector spaces
Rational canonical forms

In this subsection, unless otherwise stated, by F we always means a (fixed) field and by V we always means
a (fixed) finite dimensional F -vector space.

As we’ve seen in Example 4.1.1.7, via an endomorphism T P EndF (V ) we may regard V as an F [x]-
module, denoted as VT , the action given by x ¨v := T (v) for each v P V . Since F [x] is a PID, the preceding
fundamental theorem is available, i.e,

V – F [x]r ‘ Tor(V ) – F [x]r ‘ F [x]/(a1) ‘ ¨ ¨ ¨ ‘ F [x]/(am)

where the ai P F [x] are monic and have degree at least 1, such that a1(x) | ¨ ¨ ¨ | am(x) over F [x]. Since V
is finite dimensional as F -vector space, it must be the case that r = 0, for F [x] is an infinite dimensional
F -vector space. Hence, V turns out to be torsion, i.e,

V = Tor(V ) – F [x]/(a1) ‘ ¨ ¨ ¨ ‘ F [x]/(am)

Below we let T P EndF (V ) be a (fixed) endomorphism of V . Recall the annihilators of V

Ann(V ) := tf P F [x] | @ v P V [f ¨ v = 0]u

This is an ideal of F [x]. Since F [x] is a PID, there’s a unique monic polynomial, denoted by mT (x),
generates Ann(V ).

Definition. The unique monic polynomial mT (x) P F [x] is called the minimal polynomial of T .

A direct consequence of the fundamental theorem is that

Proposition 4.2.8. mT (x) = am(x) is the largest invariant factor of V .

For the completeness, we recall

Definition. charT (x) := det(xI ´ T ) is called the characteristic polynomial of T .

Now consider a(x) = xk + bk´1x
k´1 + ¨ ¨ ¨ + b1x + b0 P F [x] and the F -vector space F [x]/(a(x)). Pick

t1, x, ¨ ¨ ¨ , xk´1u as a basis for F [x]/(a(x)) over F , then the linear transformation [v ÞÑ x ¨ v] has the matrix
representation

Ca(x) :=



0 0 0 ´b0

1 0 ¨ ¨ ¨ 0 ´b1

0 1 0 ´b2
. . .

...

0 0 1 ´bk´1


P Mk(F )

This is called the companion matrix of a(x).
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Definition.

1. Ca1 ‘ ¨ ¨ ¨ ‘ Cam is called the rational (canonical) form of T .

2. Let A P Mn(F ). We say A is in rational (canonical) form if

A = Cb1 ‘ ¨ ¨ ¨ ‘ Cbk

for some nonconstant monic polynomials b1, . . . , bk P F [x] such that b1 | ¨ ¨ ¨ | bk over F [x].

Theorem 4.2.9.

1. There exist a basis for V over F such that T is in rational form.

2. The rational form is unique.

Proof. Let b1, . . . , bt P F [x] be nonconstant monic with b1 | ¨ ¨ ¨ | bt over F [x] such that there’s an ordered
basis β for V such that [T ]β = Cb1 ‘ ¨ ¨ ¨ ‘ Cbt . Let βi Ď β be the corresponding ordered basis such that
[T |Di

]βi = Cbi , where Di is the T -invariant subspace spanned by βi. By definition, β = β1 \ ¨ ¨ ¨ \ βt, and

V = D1 ‘ ¨ ¨ ¨ ‘ Dt

Let ei be the first element in βi. Clearly, Di is a cyclic F [x]-module generated by ei and has annihilator
(bi(x)). This means Di – F [x]/(bi(x)), and thus

V – F [x]/(b1(x)) ‘ ¨ ¨ ¨ ‘ F [x]/(bt(x))

with b1 | ¨ ¨ ¨ | bt. Hence b1, . . . , bt are the invariant factors of V as F [x]-modules, and Theorem 4.2.7 then
shows tb1, . . . , btu = ta1, . . . , amu as multisets. Therefore, the rational form is unique.

Theorem 4.2.10. Let S, T P EndF (V ). TFAE:

1. S „ T , i.e, S = UTU´1 for some U P AutF (V ).

2. VS – VT as F [x]-modules.

3. S, T have the same rational form.

Proof.

1. We claim that U P HomF [x](VS, VT ). Indeed, U(x ¨ v) = UT (v) = SU(v) = s ¨ U(v) for each v P V .
Hence U : VS Ñ VT is an F [x]-module isomorphism.
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2. The isomorphism guarantees that they have the same invariant factors, so they have the same rational
form.

3. Let β, γ be the bases for V over F such that [S]β, [T ]γ are in rational form. Then

[S]β = [id]γβ[T ]β[id]βγ

Let U : V Ñ V be the linear transformation induced by [id]γβ. Precisely, write β = tβiu, γ = tγiu

and v = a1γ1 + ¨ ¨ ¨ + akγk; then

U(v) :=
(
β1 ¨ ¨ ¨ βk

)
[id]γβ

a1

¨ ¨ ¨

ak


Then U P AutF (V ) and S = UTU´1.

Corollary 4.2.10.1. Let A,B P Mn(F ). Then A „ B over F if and only if they have the same rational
form over F .

Theorem 4.2.11. Let A,B P Mn(F ) and K Ě F be a field. Then

A „ B in F ô A „ B in K.

Proof. Let M be the rational form of A computed over F . Since M is clearly satisfies the definition the
rational form of A computed over K, the uniqueness shows that M is also the rational form of A over K,
which implies the invariant factors of A are the same whether it’s viewed over F or over K.

A „ B over K whenever A „ B over F . Now if A „ B over K, then they have the same invariant
factors over K, thus over F , by the first paragraph. Hence A „ B over F .

Corollary 4.2.11.1. Let A P Mn(F ).

1. the minimal polynomial mA is unchanged when A is viewed over a field extension of F .

2. charA(x) equals the product of invariant factors of A.

3. mA(x) | charA(x) over F [x].

4. mA and charA have the same roots, not counting multiplicities.

Assume that dimF V = n and let e = te1, . . . , enu be an order basis of V over F . Consider the free
F [x]-module

n
À

i=1

F [x]ei on te1, . . . , enu. Then we have the projection
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π : F [x]n V

ei ei

The relations of ei in V is that x ¨ ei = T (ei), i.e, (xI ´ T )ei = 0. Hence we have the exact sequence

F [x]n F [x]n V 0
xI´T π

We know coker(xI ´ T ) = V – F [x]/(a1) ‘ ¨ ¨ ¨ ‘ F [x]/(am), so ker π = F [x]n´m ‘ (a1) ‘ ¨ ¨ ¨ ‘ (am). Let
A = (aij) = [T ]e and put vj = (xI ´ T )ej = x ¨ ej ´

n
ř

i=1

aijei. Then v1, . . . , vn generates ker(xI ´ T ) and

(
v1 v2 ¨ ¨ ¨ vn

)
=
(
e1 e2 ¨ ¨ ¨ en

)

x ´ a11 ´a12 ¨ ¨ ¨ ´a1n

´a21 x ´ a22 ¨ ¨ ¨ ´a2n
...

. . .  
´an1 ´an2 ¨ ¨ ¨ x ´ ann


By Theorem 4.2.3 there are P,Q P GLn(F [x]) such that

P (xI ´ T )Q = A =


I O

a1

O
.. .

am


Thus (

v1 v2 ¨ ¨ ¨ vn

)
=
(
e1 e2 ¨ ¨ ¨ en

)
P´1AQ´1

Let (
ξ1 ξ2 ¨ ¨ ¨ ξn

)
=
(
e1 e2 ¨ ¨ ¨ en

)
P´1

Now identifying ei with π(ei) P V gives ξ1 = ¨ ¨ ¨ = ξn´m = 0. Put fj := ξn´m+j for j = 1, . . . ,m. From the
matrix A we see

V – F [x]f1 ‘ F [x]f2 ‘ ¨ ¨ ¨ ‘ F [x]fm

as F [x]-modules, with F [x]fi – F [x]/(ai). Now put βi = tfi, T fi, T
2fi, . . . , T

deg ai´1fiu. Then β :=

β1 \ ¨ ¨ ¨ \ βm is the desired basis for V over F such that

[T ]β =


Ca1

Ca2
. . .

Cam


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Jordan canonical forms

Let the notation be as in the previous subsection. Assume that invariant factors a1, . . . , am split completely
in F , i.e, F contains all eigenvalues of T . Then each elementary divisor has the form (x´λ)k. By Theorem
4.2.6, V is a direct sum of finitely many cyclic F [x]-modules of the form F [x]/(x´ λ)k, where λ P F is an
eigenvalue of T .

Consider the elements (x ´ λ)k´1, . . . , x ´ λ, 1 in the quotient F [x]/(x ´ λ)k; this is an F -basis for
F [x]/(x´λ)k. With respect to this basis, the linear transformation [x ÞÑ x¨v] has the matrix representation

λ 1

λ
. . .

. . . 1

λ 1

λ


P Mk(F )

Such matrix is called a Jordan block corresponding to λ.

Definition.

1. A matrix is in Jordan (canonical) form if it’s a block diagonal matrix with Jordan blocks along
its diagonal.

2. A Jordan (canonical) form of the linear transformation T is a matrix representation of T that is
in Jordan form.

• “The” Jordan form is unique up to permutation of the blocks along its diagonal by Theorem 4.2.7.

Theorem 4.2.12.

1. There’s an F -basis for V such that T is in Jordan form.

2. The Jordan form of T is unique up to a permutation of the Jordan blocks along its diagonal.

Corollary 4.2.12.1. Let A P Mn(F ) and F contain all eigenvalues of A. Then A is similar to a matrix J
in Jordan form, i.e, J = P´1AP for some P P GLn(F ).

Corollary 4.2.12.2. Let A P Mn(F ) and F contain all eigenvalues of A.

1. A is similar to a diagonal matrix D, then D is its Jordan form.

2. Two diagonal matrices are similar if and only if their diagonal entries are the same up to a permu-
tation.
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3. A is diagonalizable if and only if its minimal polynomial mA is separable over F .

We now convert a rational form to a Jordan form. For each invariant factor a(x) of VT , write a(x) =
(x ´ λ1)

α1 ¨ ¨ ¨ (x ´ λs)
αs . By Chinese Remainder theorem, we have an isomorphism

F [x]/(a(x)) F [x]/(x ´ λ1)
α1 ‘ ¨ ¨ ¨ ‘ F [x]/(x ´ λs)

αs

f ( f mod (x ´ λk)
αk)k

Let f be the F [x]-generator of the cyclic module F [x]/(a(x)). Then the elements

a(x)

(x ´ λ1)α1
f,

a(x)

(x ´ λ2)α2
f, . . . ,

a(x)

(x ´ λs)αs
f

are F [x]-generators of cyclic modules F [x]/(x´ λ1)
α1 , F [x]/(x´ λ2)

α2 , . . . , F [x]/(x´ λs)
αs , respectively.

Put gi =
a(x)

(x ´ λj)αj
f . Then

(T ´ λjI)
αj´1gj, . . . , (T ´ λjI)gj, gj

form an F -basis for F [x]/(x ´ λj)
αj , so that the restriction of T is in Jordan form with this basis.
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4.3 Linear representations of finite groups
Definition. Let G be a group, F a field and V an F -vector space. A (linear) representation (ρ, V ) of
G on V is a group homomorphism ρ : G Ñ GL(V ).

• dimF V is called the degree of ρ.

• ρ is faithful if ρ is injective.

• If W Ď V is an F -subspace such that for all g P W we have ρ(g)W Ď W , then we say W is a
G-invariant/stable subspace of V , and (ρ|W ,W ) is a subrepresentation of (ρ, V ).

• If an F -basis for V is chosen, we may realize ρ as a group homomorphism ρ : G Ñ GLn(F ).

Example 4.3.1.

1. If V = F and ρ(g) := idV for all g P G, we say ρ is the trivial representation.

2. Define ρ(h) : FG Ñ FG by ρ(h)(
ř

gPG

cgg) :=
ř

gPG

cg(hg) for all h P G. Then ρ : G Ñ GL(FG) is a

representation of G, called the left regular representation. Here FG is an F -algebra, called a
group algebra.

3. Let V :=
n
À

i=1

Fvi andG ď Sn. Define ρ(σ)(vi) := vσ(i). Then ρ : G Ñ GL(V ) is called a permutation
representation of G

4. G = D8 = xσ, τ | σ4 = τ 2 = 1, τστ´1 = σ´1y. Define

ρ : σiτ j ÞÑ

(
0 ´1

1 0

)i(
1 0

0 ´1

)j

One can check ρ is an representation of G. In general, for G = D2n, the group homomorphism

ρ : σiτ j ÞÑ

cos 2π
n

´ sin 2π

n

sin 2π

n
cos 2π

n


i(

1 0

0 ´1

)j

is a faithful representation of D2n.

5. For G = Q8 = t˘1,˘i,˘j,˘ku, the map

ρ : i ÞÑ

(
0 ´1

1 0

)
, j ÞÑ

(?
´1 0

0 ´
?

´1

)
is a representation of Q8.
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If ρ : G Ñ GL(V ) is a representation of G, then V becomes an FG-module, on which FG acts by
(
ř

gPG

cgg)v :=
ř

gPG

cgρ(g)v P V . Conversely, if V is an FG-module, then we may define ρ : G Ñ GL(V ) by

ρ(g)v := gv. Thus, we obtain a bijection

trepresentations of G over F u tFG-modulesu

Moreover, subrepresentations of a given representation correspond to FG-submodules of its corresponding
FG-module. Via this connection, we say an FG-module is a trivial/regular/permutation FG-module
if the corresponding representation is.

Example 4.3.2.

1. If #G ă 8, tc
ř

gPG

g | c P F u is an FG-submodule of FG. In fact, this is a trivial FG-module.

2. The augmentation ideal t
ř

gPG

cgg |
ř

gPG

cg = 0 P F u is an FG-submodule of FG.

3. The group algebra FG, as FG-modules, corresponds to the left regular representation of G.

Definition. Let (ρ, V ), (φ,W ) be two representations of G. We say ρ and φ are isomorphic/similar/
equivalent if there exists an F -vector space isomorphism T : V Ñ W such that φ(g)(Tv) = T (ρ(g)v) for
all g P G, v P V , i.e, the diagram commutes for all g P G:

V W

V W

T

ρ(g) φ(g)

T

Equivalently, ρ, φ are isomorphic if V – W as FG-modules, i.e, there exists an FG-module isomorphism
T : V Ñ W .

• A homomorphism S : V Ñ W is said to intertwine ρ, φ if φ(g)(Tv) = T (ρ(g)v) for all g P G, v P V ,
or equivalently, if it’s also an FG-module homomorphism.

Definition. Let R be a ring and M a nonzero R-module.

1. M is simple/irreducible if M has no proper nontrivial submodule.

2. M is indecomposible if M cannot be written as a direct sum of some proper nontrivial submodule
of M . Otherwise, it’s decomposible.

3. M is semisimple/completely reducible if it’s a direct sum of irreducible submodules of M .
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• We usually use the term ”irreducible” when discussing FG-modules. In general, people tend to use
”simple”.

• An irreducible module is indecomposible and completely reducible.

• We say a representation is irreducible/indecomposible/decomposible/completely reducible
if the corresponding FG-module is.

Example 4.3.3. G = Z/pZ, F = Fp. Let ρ : G Ñ GL2(F ) defined by ρ(k) =
(
1 k

0 1

)
. Then ρ is reducible

but indecomposible, and not completely reducible.

Theorem 4.3.4 (Maschke’s). Let #G ă 8, CharF ∤ #G and V be an FG-module. If U is an FG-module,
then U is a direct summand of V .

Proof. We construct a π P HomFG(V, V ) such that Im π = U and π2 = π. Then by Lemma 4.1.28,
V = U ‘ ker π as FG-modules.

Let π0 P HomF (V, U) be the projection. Define π : V Ñ U by

π(v) :=
1

#G
ÿ

gPG

g´1π0(gv)

Then

• For v P V , π(v) P U since Im π0 = U and U is an FG-submodule.

• For g1 P G,
π(g1v) =

1

#G
ÿ

gPG

g´1π0(g
1gv) =

1

#G
ÿ

hPG

g1h´1π0(hv) = g1π(v)

That is, π P HomFG(V, V )

• For u P U ,
π(u) =

1

#G
ÿ

gPG

g´1π0(gu) =
1

#G
ÿ

gPG

g´1 ¨ gu = u

This shows π|U = idU , and thus π2 = π.

Corollary 4.3.4.1. If #G ă 8 and CharF ∤ #G, then any finite dimensional FG-module/representation
is semisimple.

Below we assume all groups are finite and all FG-modules are finite dimensional.
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Theorem 4.3.5 (Schur’s lemma). Let V,W be irreducible FG-modules.

1. If ϕ P HomFG(V,W ), then either ϕ = 0 or ϕ is an isomorphism.

2. If F is algebraically closed and ϕ P EndFG(V, V ), then there exists a P F such that ϕ = a ¨ idV .

Corollary 4.3.5.1. Let V,W be two non-isomorphic irreducible FG-submodules of FG. Then vw = 0 for
all v P V, w P W .

Proof. For w P W , the map [v ÞÑ vw] is an FG-modules homomorphism from V to W . By Schur’s lemma,
it’s a zero map, since V, W are non-isomorphic by assumption.

Theorem 4.3.6. Assume CharF ∤ #G. Then any irreducible FG-module is isomorphic to some irreducible
submodule of FG.

Proof. Let V be an irreducible FG-module and let v ‰ 0 in V . Define ϕ : FG Ñ V by ϕ(x) = xv. Clearly,
Imϕ ‰ 0, and by irreducibility it forces Imϕ = V . Hence V – FG/ kerϕ. Since FG = kerϕ‘ U for some
U Ď FG, we conclude U – V .

Proposition 4.3.7. Assume F is algebraically closed. Given two irreducible FG-modules V, W , we have

dimF HomFG(V,W ) =

#

1 , if V – W

0 , if V fl W

Proof. By Schur’s lemma, dimF HomFG(V,W ) = 0 when V fl W . If ϕ : V Ñ W is an isomorphism and
ψ : V Ñ W is another, then ψ´1 ˝ ϕ P AutFG(V ), and by Schur’s lemma again, ψ´1 ˝ ϕ = a ¨ idV , i.e,
ϕ = aψ for some a P F . Hence dimF HomFG(V,W ) = 1 when V – W .

Proposition 4.3.8. Assume V = U1 ‘ ¨ ¨ ¨ ‘ Un is a decomposition of V into a direct sum of irreducible
FG-modules. If U is an irreducible FG-submodules of V , then U – Ui for some i.

Proof. The composition U ãÑ V ↠ Ui is nonzero for some i, and the irreducibility shows it’s an isomor-
phism.

Corollary 4.3.8.1. Assume F is algebraically closed and suppose V = U1 ‘ ¨ ¨ ¨ ‘ Un is a decomposition
of V into a direct sum of irreducible FG-modules. Let U be an irreducible FG-module. Then

#tUi | Ui – Uu = dimF HomFG(V, U) = dimF HomFG(U, V )

Proof. This follows from Proposition 4.3.7, 4.3.8 and the universal property of finite direct sum of modules.
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Corollary 4.3.8.2. If CharF ∤ #G and F is algebraically closed, then the number of irreducible FG-
modules, up to isomorphisms, is finite.

Proof. This follows from Proposition 4.3.6, 4.3.8 and 4.3.7.

Corollary 4.3.8.3. Assume CharF ∤ #G and F is algebraically closed. Let FG = U1 ‘ ¨ ¨ ¨ ‘ Un be a
decomposition of V into a direct sum of irreducible FG-modules, and tV1, . . . , Vku is a complete set of
irreducible FG-modules. Then

#tUi | Ui – Vju = dimF Vj

In particular, #G =
k
ř

j=1

(dimF Vj)
2.

Proof. By Corollary above, #tUi | Ui – Vju = dimF HomFG(FG, Vj) = dimF Vj. The second assertion
follows by observing #G = dimF FG =

n
ř

i=1

dimF Ui.

4.3.1 Characters
Definition. Let ρ : G Ñ GL(V ) be a representation. The character χ : G Ñ F is defined by χ(g) :=

tr(ρ(g)).

• We call χ is trivial/regular/irreducible if its representation is.

• We say χ is linear if its representation is one dimensional.

• The character χ of an FG-module V is defined by

χ(
ÿ

gPG

cgg) :=
ÿ

gPG

cg tr(ρ(g))

where ρ is the associated representation on V .

Example 4.3.9.

1. For the trivial character χ, we have χ(g) = 1 for all g P G.

2. For the regular character χreg, we have χreg(g) =
#

#G , if g = 1

0 , if g ‰ 1

3. Let G ď Sn and ρ : G Ñ GL(V ) be the permutation representation. Then its character χ satisfies
χ(σ) = fix(σ) := #ti P t1, . . . , nu | σ(i) = iu.
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4. Let G, V be as above. Say V =
n
À

i=1

Fvi. V has a submodule U = FG(v1 + ¨ ¨ ¨ + vn), which is the
trivial FG-module. By Maschke’s theorem, V = W ‘U for some submodule W . Then the character
of W is [σ ÞÑ fix(σ) ´ 1].

5. Let G = D8 = xσ, τ | σ4 = τ 2 = 1, τστ´1 = σ´1y and

ρ : σiτ j ÞÑ

cos 2π
n

´ sin 2π

n

sin 2π

n
cos 2π

n


i(

1 0

0 ´1

)j

Then its character χ satisfies χ(g) =

$

’

&

’

%

2 , if g = 1

´2 , if g = σ2

0 , else

6. Let G ď Sn. Then χ : σ ÞÑ

#

1 , if σ P An

´1 , if σ R An
is a character.

Proposition 4.3.10. Let V, V1, V2 be FG-modules and χ, χ1, χ2 be their characters.

1. V1 – V2 ñ χ1 = χ2.

2. g1, g2 P G are conjugates ñ χ(g1) = χ(g2).

3. V = V1 ‘ V2 ñ χ = χ1 + χ2

Proof. For 1, 2, one note that tr(AB) = tr(BA) for A,B P Mn(F ).

Definition. We say f : G Ñ F is a class function if f(g) = f(hgh´1) for each g, h P G.

• For g P G, we denote by gG the conjugacy class of g in G.

Below we assume F = C, for the sake of algebraically closedness, characteristic 0 and the existence of
inner product.

Proposition 4.3.11. Let ρ : G Ñ GL(V ) be a representation and χ its character.

1. χ(1) = dimC V

2. ord g = m P N ñ χ(g) is a sum of some m-th roots of unity.

3. χ(g´1) = χ(g).

4. g´1 P gG ñ χ(g) P R.
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Proof.

2. Note that ρ(g)m = I implies the minimal polynomial of ρ(g) divides xm ´1, which is separable. This
means ρ(g) is diagonalizable, and all eigenvalues are distinct m-th roots of unity.

3. Let β be a basis for V such that

[ρ(g)]β =


ωk1

. . .

ωkn


where ω = e2πi/m and ki P Z. Then

[ρ(g´1)]β =


ω´k1

. . .

ω´kn

 = [ρ(g)]β

so that χ(g´1) = χ(g).

Corollary 4.3.11.1. Let G be a finite group. Then there are finitely many irreducible characters of G
over C, and they satisfy

ř

χ: irr.
χ(1)2 = #G.

Proof. This is a reformulation of Corollary 4.3.8.3.

Proposition 4.3.12. Let ρ : G Ñ GL(V ) be a representation of G and χ its character.

1. |χ(g)| ď χ(1), and the equality holds ô ρ(g) = a ¨ idV for some a P C.

2. ker ρ = tg P G | χ(g) = χ(1)u.

Proof.

1. Assume g P G has order m and put ω = e2πi/m. Then ρ(g) has eigenvalue ωa1 , . . . , ωan for some
0 ď a1 ď m ´ 1, so

|χ(g)| = |ωa1 + ¨ ¨ ¨ + ωan | ď |ωa1 | + ¨ ¨ ¨ + |ωan | = n = χ(1)

The equality holds iff ωa1 = λiω
ai for some λi ą 0. Since each of them has norm 1, λi = 1 for each

i, and thus ρ(g) = ωa1 ¨ idV .

2. If χ(g) = χ(1), by 1 we obtain ρ(g) = idV , and thus g P ker ρ.

Definition. We define the kernel of a character to be the kernel of its representation.
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4.3.2 Orthogonality relations
Definition. Let θ, φ : G Ñ C be two functions. Define their inner product to be

xθ, φy =
1

#G
ÿ

gPG

θ(g)φ(g)

• If χ1, χ2 are characters of G, then

xχ1, χ2y =
1

#G
ÿ

gPG

χ1(g)χ2(g
´1) =

1

#G
ÿ

gPG

χ1(g
´1)χ2(g) = xχ2, χ1y

so xχ1, χ2y P R.

Definition. Let V be an FG-module. The composition factor of U is an irreducible FG-module V
that is isomorphic to some submodule of V .

Proposition 4.3.13. Let CG = V1‘V2 and V1, V2 have no common composition factor. Write 1G = e1+e2

with ei P Vi, i = 1, 2. Then

1. eivj = δijvj, i, j = 1, 2. In particular, e2i = ei, i.e, ei is idempotent.

2. Let χ1 be the character of V1. We have

e1 =
1

#G
ÿ

gPG

χ1(g
´1)g

Proof.

1. This follows from Corollary 4.3.5.1.

2. Put e1 =
ř

gPG

cgg and let χreg be the regular character of G. For h P G, consider the left translation

ϕh : x ÞÑ h´1e1x on CG. Then

tr(ϕh) = χreg(
ÿ

gPG

cgh
´1g) = ch ¨ #G

Here recall the corresponding representation of CG is the regular representation.

On the other hand, tr(ϕh) = tr(ϕh|V1) + tr(ϕh|V2).

• For all v1 P V1, h´1e1v1 = h´1v1, so tr(ϕh|V1) = χ1(h
´1).

• For all v2 P V2, h´1e1v2 = 0, so tr(ϕh|V2) = 0.
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Thus ch ¨ #G = χ1(h
´1), i.e, ch =

1

#Gχ1(h
´1) for each h P G.

Theorem 4.3.14 (Orthogonality relations). Let V1 and V2 be two irreducible CG-modules and χ1, χ2 be

their characters, respectively. Then xχ1, χ2y =

#

1 , if V1 – V2

0 , if V1 fl V2

Proof. WLOG, we assume V1, V2 Ď CG. (Theorem 4.3.6.) Let CG = U1 ‘ ¨ ¨ ¨ ‘ Uk be a decomposition of
CG into a direct sum of irreducible submodules. Let

W1 =
à

j:Uj–V1

Uj, W2 =
à

j:Uj–V2

Uj

and let ϕ1, ϕ2 be the characters of V1, V2, respectively; note that ϕi = (dimVi)χi, i = 1, 2.
Write 1G = e1 + e2 with ei P Wi, i = 1, 2. By Proposition 4.3.13, e1 =

1

#G
ř

gPG

ϕ1(g
´1)g. Then

(dimV1)
2xχ1, χ1y = xϕ1, ϕ1y =

1

#G
ÿ

gPG

ϕ1(g
´1)ϕ1(g) = ϕ1(e1)

On the other hand, e1w1 = w1 for all w1 P W1. Thus

ϕ1(e1) = tr(W1 Q w1 ÞÑ e1w1) = dimW1 = (dimV1)
2

Hence xχ1, χ1y = 1. Similarly,

0 = tr(W2 Q w2 ÞÑ e1w2) = ϕ2(e1) = dimV1 dimV2xχ1, χ2y

and thus xχ1, χ2y = 0.

Example 4.3.15. G = S3. Let χ1 be the trivial character, χ2 : σ ÞÑ

#

1 , if σ is even
´1 , if σ is odd

. Since S3 has

three conjugacy classes and 6 = 12+12+22, there is a 2-dimensional irreducible character, denoted by χ3.
By orthogonality relations, we may complete the following table

e (1 2) (1 2 3)

|gSn | 1 3 2

χ1 1 1 1

χ2 1 ´1 1

χ3 2 0 ´1
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• χ3(e) = 2 since χ3 has dimension 2.

• χ1(e)χ1((1 2)) + χ2(e)χ2((1 2)) + χ3(e)χ3((1 2)) = 0, so χ3((1 2)) = 0.

• χ1(e)χ1((1 2 3)) + χ2(e)χ2((1 2 3))) + χ3(e)χ3((1 2 3))) = 0, so χ3((1 2 3))) = ´1.

• xχ3, χ3y =
1

6
[1 ˆ 22 + 3 ˆ 02 + 2 ˆ (´1)2] = 1, which demonstrates the irreducibility of χ3.

Corollary 4.3.14.1. Let tV1, . . . , Vnu be a complete set of irreducible CG-modules up to isomorphisms
and χ1, . . . , χn be their characters, respectively.

1. Let V be a CG-module and V =
n
À

i=1

V di
i be its decomposition into irreducible CG-modules. Let

θ be its characters. Then θ =
n
ř

i=1

xχi, θyχi, i.e, di = xχi, θy for each i, and xθ, θy =
n
ř

i=1

d2i . If

θ1 = e1χ1 + ¨ ¨ ¨ + enχn, then xθ, θ1y =
n
ř

i=1

diei.

2. A character χ is irreducible if and only if xχ, χy = 1.

3. χ1, . . . , χn are C-linearly independent.

Corollary 4.3.14.2. Let V1 and V2 be two CG-modules and χ1, χ2 be their characters, respectively.

1. dimC HomCG(V1, V2) = xχ1, χ2y.

2. V1 – V2 ô χ1 = χ2.

Proposition 4.3.16. For each conjugacy class C of G, define eC =
ř

gPC

g. Then teCuC form C-basis of

Z(CG), the center of CG.

Proof.

x =
ÿ

cgg P Z(CG) ô @h P G []h(
ÿ

cgg)h
´1 =

ÿ

cgg]

ô @h, g, g1 P G [g1 = hgh´1 ñ cg = c1
g]

ô cg = c1
g if g, g1 are conjugates.

ô x P spanteCu

Theorem 4.3.17. #tirreducible characters of CGu = #tconjugacy classes of Gu.
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Proof. Let χ1, . . . , χn be distinct irreducible characters of G and C1, . . . , Cm be distinct conjugacy classes
of G. We must show m = n.

1° Since the χj are linearly independent class functions, they are linearly independent elements in
HomC(Z(CG),C), and hence n ď m.

2° Let V1, . . . , Vn be CG-modules corresponding to χ1, . . . , χn, respectively. Write CG = U1 ‘ ¨ ¨ ¨ ‘ Uk

be a decomposition of CG into a direct sum of irreducible submodules and put Wi =
À

j:Uj–Vi
Uj for

each i. Write e = e1 + ¨ ¨ ¨ + en with ei P Wi for each i.

Claim. Z(CG) Ď spante1, . . . , enu (ñ m ď n)

Since the Vi are irreducible, for all x P Z(CG), there exists ai P C such that for all vi P Vi, we have
xvi = aivi. In fact, for all wi P Wi, we have xwi = aiwi (explicitly, ai = χi(x)/χi(e)). Consequently

x = xe = x(e1 + ¨ ¨ ¨ + en) = a1e1 + ¨ ¨ ¨ + anen

Corollary 4.3.17.1. Let G be a finite group. Then G is abelian if and only if every complex irreducible
character of G is linear.

Character tables
Definition. Let χ1, . . . , χn be the irreducible characters of G and g1, . . . , gn be the representatives of
conjugacy classes of G. The n ˆ n matrix (χi(gj))ij is called a character table of G.

• Non-isomorphic groups may have the same character table, as shown in the following example.

Example 4.3.18.

(i) D8 = xσ, τ | σ4 = τ 2 = 1, τστ´1 = σ´1y : Let χ1 be the trivial character. Let

H1 = xσy, H2 = xσ2, τy, H3 = xσ2, στy

these are the subgroups of index 2. For i = 1, 2, 3, define χi+1 : g ÞÑ

#

1 , if g P Hi

´1 , else
. Also, define

ρ5 : σ ÞÑ

(
0 ´1

1 0

)
, τ ÞÑ

(
1 0

0 ´1

)
and let χ5 be its character.
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e tσ2u tσ, σ2u tτ, σ2τu tστ, σ3τu

χ1 1 1 1 1 1

χ2 1 1 1 ´1 ´1

χ3 1 1 ´1 1 ´1

χ4 1 1 ´1 ´1 1

χ5 2 ´2 0 0 0

Since xχ5, χ5y =
1 ˆ 22 + 1 ˆ 22

8
= 1, χ5 is irreducible.

(ii) Q8 = t˘1,˘i,˘j,˘ku : define χ1, . . . χ4 in a similar way as above and define

ρ5 : i ÞÑ

(
0 ´1

1 0

)
, j ÞÑ

(?
´1 0

0 ´
?

´1

)

and χ5 be its character; it’s irreducible by a direct computation of its inner product. Then

t1u t´1u t˘iu t˘ju t˘ku

χ1 1 1 1 1 1

χ2 1 1 1 ´1 ´1

χ3 1 1 ´1 1 ´1

χ4 1 1 ´1 ´1 1

χ5 2 ´2 0 0 0

Theorem 4.3.19 (Orthogonality relations). Let χ1, . . . , χn and g1, . . . , gn be as usual. Then

1.
n
ř

k=1

χ(gk)χj(gk)

#CG(gk)
=

#

1 , if i = j

0 , else

2.
n
ř

k=1

χk(g)χk(h) =

#

#CG(g) , if h P gG

0 , else

Sometimes 1. is referred to as the row orthogonality relations and 2. is referred to as the column
orthogonality relations for the irreducible characters.

Proof. This is a reformulation of Theorem 4.3.14.

Example 4.3.20. G = S4.
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1 2 3 22 4

#gG 1 6 8 3 6

#CG(g) 24 4 3 8 4

χ1 1 1 1 1 1

χ2 1 ´1 1 1 ´1

χ3 3 1 0 ´1 ´1

χ4 3 ´1 0 ´1 1

χ5 2 0 ´1 2 0

• Note kerχ5 = t1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)u, which implies that it’s a normal subgroup of S4.

4.3.3 Galois property of characters
Let ρ : G Ñ GL(V ) be a complex representation. Assume that g P G has order m. Then there’s a basis
for V such that ρ(g) is diagonal with respect to this basis, and all diagonal entries are m-th roots of unity,
say

ρ(g) =


ωi1

. . .

ωin


where ω = e2πi/m and i1, . . . , in P N Y t0u. Then χ(g) = ωi1 + ¨ ¨ ¨ + ωin . Now for j with (j,m) = 1, let
σj P Gal(Q(ω)/Q) such that ω ÞÑ ωj. Then

σj(χ(g)) = ωi1j + ¨ ¨ ¨ + ωinj = tr


ωi1

. . .

ωin


j

= χ(gj)

Lemma 4.3.21. For j with (j,m) = 1, σj(χ(g)) = χ(gj).

Corollary 4.3.21.1. Suppose g P G has order m. If gj P gG for all j with (j,m) = 1, then χ(g) P Z for
all characters χ.

Proof. By Lemma, we have σj(χ(g)) = χ(gj) = χ(g) for all j with (j,m) = 1. By Galois theory, χ(g) P Q.
Since χ(g) is an algebraic integer, χ(g) P Z.

Example 4.3.22. When G = Sn, the hypothesis of Corollary above is satisfied so that χ(g) P Z for all
g P Sn and characters χ.

Theorem 4.3.23. Let χ be an irreducible character and V a CG-module corresponding to χ. Then
χ(1) | #G.
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Proof. Let g1, . . . , gn P G be the representatives of conjugacy classes of G. For each j, define

ej :=
ÿ

gPgGj

g P CG

Recall, in fact, ej P Z(ZG) (Proposition 4.3.16), so there exists aj P C such that ejv = ajv for all v P V ,
and thus χ(ej) = ajχ(1).

Claim. aj is an algebraic integer.

Note that aj is an eigenvalue of the linear map CG Q x ÞÑ ejx. Now with respect to its standard basis
tg | g P Gu, the entries of its matrix are all integers, which precisely shows that aj is an algebraic integer.

We resume our proof. Since

1 = xχ, χy =
1

#G

n
ÿ

j=1

#gGj χ(gj)χ(gj)

and
χ(ej) =

ÿ

gPgGj

χ(g) = #gGj χ(gj)

we have
1 =

χ(1)

#G

n
ÿ

j=1

#gGj
χ(1)

χ(gj)χ(gj) =
χ(1)

#G

n
ÿ

j=1

ajχ(gj)

i.e,
#G
χ(1)

=
n
ÿ

j=1

ajχ(gj)

Since the RHS is an algebraic integer, so is the LHS; since the LHS is also a rational number, it’s an
integer, i.e, χ(1) | #G.

Example 4.3.24. G = S5.

1 2 22 23 3 4 5

#gG 1 10 15 20 20 30 24

#CG(g) 120 12 8 6 6 4 5

χ1 1 1 1 1 1 1 1

χ2 1 ´1 1 ´1 1 ´1 1

χ3 4 2 0 ´1 1 0 ´1

χ4 4 ´2 0 1 1 0 ´1

χ5 5 1 1 1 ´1 ´1 0

χ6 5 ´1 1 ´1 ´1 1 0

χ7 6 0 ´2 0 0 0 1
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• χ3 = fix(σ) ´ 1. Check it’s irreducible.

• The values of χ5, χ6, χ7 are determined by orthogonality relations, Theorem 4.3.23 and Example
4.3.22.

• χ4 = χ2χ3 and χ6 = χ2χ5. These will be shown to be representations of G by Proposition 4.3.31.

• 2χ5(1)
2 + χ7(1)

2 = 86 and χ5(1), χ7(1) | 120, so that χ5(1) = χ6(1) = 5 and χ7(1) = 6.

4.3.4 Method of constructing characters
Lifts

Assume N �G and ρ : G/N Ñ GL(V ) is a representation. By the universal property of quotient group, ρ
lifts to a unique homomorphism ρ̃ : G Ñ GL(V ), defined by g ÞÑ ρ(gN). ρ̃ is a representation of G, called
the lift of ρ.

Proposition 4.3.25. If ρ is irreducible, then so is ρ̃.

Proof. Let χ be the character of ρ. Then χ is also the character of ρ̃. Since ρ is irreducible, we have

1 =
#N
#G

ÿ

gPG/N

χ(g)χ(g) =
1

#G
ÿ

gPG

χ(g)χ(g)

so that χ is an irreducible character of G, i.e, ρ̃ is irreducible.

Corollary 4.3.25.1. The number of the distinct linear characters of G equals #(G/[G,G]).

Example 4.3.26. G = A4, [G,G] = t1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)u so that G/[G,G] = C3. Put
ζ = e2πi/3.

1 (1 2 3) (1 3 2) (1 2)(3 4)

#gG 1 4 4 3

#CG(g) 12 3 3 4

χ1 1 1 1 1

χ2 1 ζ ζ2 1

χ3 1 ζ2 ζ 1

χ4 3 0 0 ´1

• The up-left 3ˆ3 matrix is the character table of C3. The values of χ1, χ2, χ3 for (1 2)(3 4) are 1 since
(1 2)(3 4) P [G,G].
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• χ4 = fix(σ) ´ 1. Check it’s irreducible.

Proposition 4.3.27. A group G is simple ô kerχ = 1 for all nontrivial irreducible characters χ.

Proof. The only if part is clear since kerχ � G. For the if part, suppose G is not simple, say N is a
nontrivial proper normal subgroup of G. Consider the quotient group G/N . Since G/N ‰ 1, G/N has a
conjugacy class other than t1u, so G/N admits a nontrivial irreducible representation, and by Proposition
4.3.25 it lifts to a nontrivial irreducible representation of G whose kernel contains N .

Galois conjugates

Proposition 4.3.28. Let N be a positive integer such that gN = 1 for all g P G. Let χ be a character. For
σ P Gal(Q(e2πi/N)/Q), define χσ : g ÞÑ σ(χ(g)). Then χσ is also a character. Moreover, χσ is irreducible
whenever χ is irreducible.

Proof. Let ρ : G Ñ GL(V ) be a complex representation of G with character χ.

Method I. By Proposition 3.3.23, σ extends to an automorphism σ1 on C. Then σ1 ˝ ρ : G Ñ GL(V ) is
a representation of G with character being χσ. The moreover part holds by a direct computation.

Method II. Note that the complex irreducible characters of G are exactly the Q irreducible characters
of G, so every complex representation is isomorphic to some Q-representation. Hence we may regard ρ

as a Q-representation. Now extend σ to an automorphism σ1 on Q. Then σ1 ˝ ρ is a representation with
character χσ.

Proposition 4.3.29. Assume g P G has order m. For j with (j,m) = 1, let σj be the element of
Gal(Q(e2πi/m)/Q) that maps e2πi/m to e2πij/m.

1. The set tj P (Z/mZ)ˆ | gj P gGu is a subgroup of (Z/mZ)ˆ.

2. Let K be the fixed field of tσj | j P Au. Then χ(g) P K for all characters χ of G.

3. Let B ď (Z/mZ)ˆ and L the fixed field of tσj | j P Bu. If χ(g) P L for all characters χ of G, then
gj P gG for all j P B.

Proof.

1. Let j, k P A, ℓ = k´1 P (Z/mZ)ˆ and h, h1 P G such that gj = hgh´1, gℓ = h1gh1´1. Then

gjℓ = hℓgkg´ℓ = hℓh1gh1´1h´ℓ = hℓh1g(hℓh1)´1 P gG

so that jℓ P A. Hence A ď (Z/mZ)ˆ.
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2. It suffices to show σjχ(g) = χ(g) for each j P A. Recall we have σjχ(g) = χ(gj), and since characters
are class functions and j P A, we have χ(gj) = χ(g), as wanted.

3. We prove a stronger result:

Lemma 4.3.30. g, g1 P G are conjugates if and only if χ(g) = χ(g1) for all characters χ of G.

Proof. The only if part holds since each character is a class function. For the if part, recall the
orthogonality relations

ÿ

χ

χ(g)χ(g1) =

#

#CG(g) , if g1 P gG

0 , else

To show g, g1 are conjugates, it suffices to show
ř

χ

χ(g)χ(g1) ‰ 0. This holds since
ř

χ

χ(g)χ(g1) =
ř

χ

χ(g)2 ą 0.

Since χ(g) P L, χ(g) = σjχ(g) = χ(gj) for all j P B and χ. Hence, it follows from Lemma that
gj P gG, as desired.

Tensor products

Proposition 4.3.31. Let V,W be two CG-module. Let G act on V bCW by g(v bw) := gv b gw. Then
V bC W is a CG-module, and its character is the product of those of V and W .

Consider V bCV . We have an involution T P EndC(V bCV ) (i.e, T 2 = id) given by T (v1bv2) = v2bv1.
Since T 2 = id, V bC V is the direct sum of 2 eigenspaces corresponding to eigenvalues 1 and ´1. One
corresponding to 1 is called the symmetric square S(V bC V ) of V and to ´1 is called the alternating
square A(V bC V ) of V .

Proposition 4.3.32. S(V b V ) and A(V b V ) are CG-modules. Let χ, χS, χA be the characters of V ,
S(V b V ), A(V b V ), respectively. Then

χS(g) =
1

2
(χ(g)2 + χ(g2))

χA(g) =
1

2
(χ(g)2 ´ χ(g2))
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Proof. That they’re CG-modules is clear. For the rest part, let g P G and pick a basis tv1, . . . , vnu for V
so that the matrix of [v ÞÑ gv] is diag(λ1, . . . , λn). Note that tvi b vj + vj b vi | 1 ď i ď j ď nu is a basis
for S(V b V ) and tvi b vj ´ vj b vi | 1 ď i ă j ď nu is that for A(V b V ). We have

g(vi b vj + vj b vi) = λiλj(vi b vj + vj b vi)

g(vi b vj ´ vj b vi) = λiλj(vi b vj ´ vj b vi)

and hence

χS(g) =
ÿ

1ďiďjďn

λiλj =
ÿ

1ďiďn

λ2i +
ÿ

1ďiăjďn

λiλj

=
ÿ

1ďiďn

λ2i +
1

2
((
ÿ

i

λi)
2 ´

ÿ

i

λ2i )

=
1

2
((
ÿ

i

λi)
2 ´

ÿ

i

λ2i ) =
1

2
(χ(g)2 + χ(g2))

χA(g) =
ÿ

1ďiăjďn

λiλj =
1

2
((
ÿ

i

λi)
2 ´

ÿ

i

λ2i ) =
1

2
(χ(g)2 ´ χ(g2))

Example 4.3.33. G = S5.

1 2 3 22 4 23 5 Inner product
#gG 1 10 20 15 30 20 24

#CG(g) 120 12 6 8 4 6 5

gG 1 1 3 1 22 3 5

χ1 1 1 1 1 1 1 1 1

χ2 1 ´1 1 1 ´1 ´1 1 1

χ3=fix(g) ´ 1 4 2 1 0 0 ´1 ´1 1

χ4 = χ2χ3 4 ´2 1 0 0 1 ´1 1

χ3,S 10 4 1 2 0 1 0 3

χ3,A 6 0 0 ´2 0 0 1 1

χ3,S ´ χ1 ´ χ3 5 1 ´1 1 ´1 1 0 1

χ2(χ3,S ´ χ1 ´ χ3) 5 ´1 ´1 1 1 ´1 0 1

• χ3,S and χ3,A are the symmetric square and the alternating square induces by χ3.

• xχ3,S, χ1y = 1 = xχ3,S, χ3y so χ3,S ´ χ1 ´ χ3 is irreducible.
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Remark 4.3.34. Note that
χ(5) ” χ(1) (mod 5)

χ(3) ” χ(1) (mod 3)

χ(2), χ(4) ” χ(1) (mod 2)

In general, when the order of g P G is a prime power pk, if χ(g) P Z, we must have χ(g) ” χ(1) (mod p).

Proof. Pick a basis such that the matrix of ρ(g) is diagonal, say

ρ(g) =


ωi1

. . .

ωin


where ω = e2πi/p

k
, ij are integers. Then χ(g) ´ χ(1) =

ř

(ωij ´ 1) P (1 ´ ω)Z[ω]. By algebraic number
theory, (1 ´ ω)Z[ω] is a prime ideal of Z[ω] and (1 ´ ω)Z[ω] X Z = pZ, so χ(g) ” χ(1) (mod p).

Restriction

If H ď G and ρ : G Ñ GL(V ) is a representation of G, then ρ|H : H Ñ GL(V ) is a representation of H.
If χ is the character of ρ, we denote by ResGH χ the character of ρ|H .

Proposition 4.3.35. Let H be a subgroup of G. Let χ be an irreducible character of G and ψ1, . . . , ψk

be irreducible characters of H. Decompose ResGH χ as ResGH χ = d1ψ1 + ¨ ¨ ¨ + dkψk. Then
k
ÿ

i=1

d2i ď [G : H]

and the equality holds if and only if χ(g) = 0 for all g R H.

Proof.

1 = xχ, χyG =
1

#G
ÿ

gPG

χ(g)χ(g) =
1

#G
ÿ

hPH

χ(h)χ(h) +
1

#G
ÿ

gPGzH

χ(g)χ(g)

=
#H
#G

k
ÿ

i=1

d2i +
1

#G
ÿ

gPGzH

χ(g)χ(g)

ě
1

[G : H]

k
ÿ

i=1

d2i

Since χ(g)χ(g) ą 0 for each g P G zH, we may easily see the equality holds if and only if χ(g) = 0 for each
g P G zH.
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Example 4.3.36. G = S5, H = A5.

1 2 3 22 4 23 5

#gG 1 10 20 15 30 20 24

#CG(g) 120 12 6 8 4 6 5

χ1 1 1 1 1 1 1 1

χ2 1 ´1 1 1 ´1 ´1 1

χ3 4 2 1 0 0 ´1 ´1

χ4 4 ´2 1 0 0 1 ´1

χ5 5 1 ´1 1 ´1 1 0

χ6 5 ´1 ´1 1 1 ´1 0

χ7 6 0 0 ´2 0 0 1

;

1 3 22 51 52

#gG 1 20 15 12 12

#CG(g) 60 3 4 5 5

ResGH χ1 1 1 1 1 1

ResGH χ3 4 1 0 ´1 ´1

ResGH χ5 5 ´1 1 0 0

ψ1 3 0 ´1
1 +

?
5

2

1 ´
?
5

2

ψ2 3 0 ´1
1 ´

?
5

2

1 +
?
5

2

• For χ1, . . . , χ6, there are odd permutations on which characters do not vanish. By Proposition above,
xResGH χi,ResGH χiyH ă [G : H] = 2, i.e, xResGH χi,ResGH χiyH = 1 so that the ResGH χi are irreducible
for i = 1, . . . , 6.

• For χ7, xResGH χ7,ResGH χ7yH = 2 and xResGH χ7,ResGH χiyH = 0 for i = 1, . . . , 6.

• ψ1(1)
2 + ψ2(1)

2 = 18 = 9 + 9 so that ψ1(1) = ψ2(1) = 3.

• By column orthogonality relations we have
#

ψ2
1(22) + ψ2

2(22) = 2

ψ1(22) + ψ2(22) = ´2

so ψ1(22) = ψ2(22) = ´1.

• By column orthogonality relations again we have
#

ψ2
1(3) + ψ2

2(3) = 0

ψ1(3) + ψ2(3) = 0

so ψ1(3) = ψ2(3) = 0.

• The down-right block can be filled in the same manner as above.

• The down-right block gives an example of the Galois property. Since (1 2 3 4 5) is conjugate to
(1 5 4 3 2) = (1 2 3 4 5)´1 in H, by Proposition 4.3.29, the value of (1 2 3 4 5) must lie in the fixed field
of xσ : e2πi/5 ÞÑ e´2πi/5y, i.e, Q(

?
5).
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• ResGH χ7 = ψ1 + ψ2.

• By Proposition 4.3.27, A5 is simple.

Proposition 4.3.37. Let N be a normal subgroup of G. Let V be an irreducible CG-module. Assume
that U is an irreducible CN -submodule of ResGN V . Then

1. for all g P G, the set gU is an irreducible CN -submodule of V .

2. V is a direct sum of some gU (as CN -modules), and

3. if g1U and g2U are isomorphic CN -modules, then gg1U and gg2U are isomorphic CN -modules.

In particular, every irreducible CN -submodule of V has the same degree as U and every CN -composition
factor has the same multiplicity.

Proof.

1. Let n P N ; since N � G, ng = gn1 for some n P N . For each u P U , ngu = gn1u P gU since U is a
CN -module. gU is clearly a C-vector subspace of V , so gU is thus a CN -submodule of V . Now if
W is a CN -submodule of gU , then g´1U is a CN -submodule of U . Since U is irreducible, g´1W = 0

or g´1W = U , and thus W = 0 or W = gU ; this shows gU is irreducible.

2. We have V =
ř

gPG

gU . The results follows from the general fact below.

Lemma 4.3.38. Let tNiuiPI be a family of simple modules. If M =
ř

iPI

Ni, then M =
À

iPI 1

Ni for some

subset I 1 Ď I.

3. Let ϕ : g1U Ñ g2U be a CN -module isomorphism. We show gϕg´1 : gg1U Ñ gg2U is a CN -module
homomorphism with inverse gϕ´1g´1, and hence an isomorphism. It’s clear a C-linear transformation,
so it remains to show it’s an N -homomorphism. Let n P N and u P U . Then

(gϕg´1)(ngg1u) = gϕ(g´1ngg1u) = gg´1ngϕ(g1u) = n(gϕg´1)(gg1u)

showing that gϕg´1 is an N -homomorphism. That gϕ´1g´1 and gϕg´1 are mutually inverses is clear,
and the proof is completed.

Example 4.3.39. In the above example, since A5 � S5, we see ResGH χ7 = ψ1 + ψ2 and ψ1(1) = ψ2(1).
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Induction

Definition. Let H ď G and U a FH-module. The FG-module FG bFH U is called the induced FG-
module of U , denoted by IndGH U . If χ is the character of U , denote by IndGH χ the character of IndGH U .

• Let g1, . . . , gm be representatives of left cosets of H in G. Then

FG bFH U = (g1 b U) ‘ ¨ ¨ ¨ ‘ (gm b U)

as F -vector spaces.

• For each i, there exists a unique i1 and hi P J such that ggi = gi1hi. Then for all u P U ,

ggi b u = gi1hi b u = gi1 b hiu

Let u1, . . . , un be a basis of U . Then

tg1u1, . . . , g1un, g2u1, . . . , g2u2, . . . , gmunu

is a basis for FG bFH U . Then the matrix of g with respect to this basis if
A11 ¨ ¨ ¨ Am1

...
...

Am1 Amm


where Aij P Mn(F ) such that Aij = δi1jHi and Hi is the matrix of hi with respect to tu1, . . . , unu.
Thus

(IndGH χ)(g) =
ÿ

i:i=i1

trHi =
ÿ

i:i=i1

χ(hi) =
ÿ

i:i=i1

χ(g´1
i ggi) =

ÿ

i:g´1
i ggiPH

χ(g´1
i ggi)

Proposition 4.3.40.

(IndGH χ)(g) =
ÿ

i:g´1
i ggiPH

χ(g´1
i ggi) =

1

#H
ÿ

xPG:x´1gxPH

χ(x´1gx)

Example 4.3.41. H = S4, G = S5, gi = (1 2 3 4 5)i.

1 2 3 22 4

χ1 1 1 1 1 1

χ2 1 ´1 1 1 ´1

χ3 3 1 0 ´1 ´1

χ4 3 ´1 0 ´1 1

χ5 2 0 ´1 2 0
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• For 2, say (1 2), we need to count how many gi are there such that (gi(1) gi(2)) = gi(1 2)g
´1
i P S4,

i.e, gi(1), gi(2) ‰ 5. We have

#tg P S5 | g(1 2)g´1 P S4u = (4 ˆ 3) ˆ 3 ˆ 2 ˆ 1 = 72

so that
(IndGH χ)((1 2)) =

1

24
ˆ 72 ˆ χ((1 2)) = 3χ((1 2))

• Similarly,

(IndGH χ)((1 2 3)) =
χ((1 2 3))

24
ˆ #tg P S5 | g(1 2 3)g´1 P S5u

=
χ((1 2 3))

24
ˆ 4 ˆ 3 ˆ 2 ˆ 2 ˆ 1 = 2χ((1 2 3))

• In general, for g P Sn´1, we have

(IndSn
Sn´1

χ)(g) = χ(g)
#tσ P Sn | σgσ´1 P Sn´1u

#Sn´1

= χ(g)fix(g)

where fix(g) = #ti P t1, . . . , nu | gi = iu. Note that g P SnzSn´1 makes no sense for the RHS, but
fix(g) = 0 in this situation. Then

1 2 3 22 4 23 5

IndGH χ1 5 3 2 1 1 0 0

IndGH χ2 5 ´3 2 1 ´1 0 0

IndGH χ3 15 3 0 ´1 ´1 0 0

IndGH χ4 15 ´3 0 ´1 1 0 0

IndGH χ5 10 0 ´2 2 0 0 0

One can check they’re linear sums of irreducible characters of S5 with non-negative integral coeffi-
cients.

Example 4.3.42. G = PSL2(F7) = SL2(F7)/center = SL2(F7)/t2-th roots of unityu

4.3.5 An application to group theory
Theorem 4.3.43 (Burnside’s). Let p, q be two primes. Then any group of order paqb, a, b ě 0 is solvable.

Proof.
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1. Reduction : It suffices to show that the only simple group of order paqb are cyclic.

2. Let G be a simple group of order paqb. Then G has either a nontrivial center or has a conjugacy
class of size pr, 1 ď r ď a.

3. If G has a nontrivial center, then G is simple abelian, i.e, G is cyclic.

4. If G has a conjugacy class of size pr, show that there exists a nontrivial irreducible character χ
such that |χ(g)| = χ(1) for some nonidentity element g P G.

5. Let ρ be a representation with character χ. Since G is simple, ρ is injective. Also, by Proposition
4.3.12, |χ(g)| = χ(1) implies ρ(g) is a scalar matrix, i.e, ρ(g) P Z(Im ρ), and thus g P Z(G). So
Z(G) is nontrivial center, reducing to 3.

1. Recall if N �G is a normal subgroup, then G is solvable if and only if both G/N and N are solvable.

2. If b = 0, then G is a p-group, so by class equation it must have a nontrivial center. If b ‰ 0, let
Q P Sylq(G) and g P Z(Q)zt1u. We have CG(g) Ě Q, so

#gG =
#G

#CG(g)
=
paqb

pxqb
= pq´x

for some x. If x = a, i.e, CG(g) = G, then g P Z(G). If x ă a, then good!

3. Let χ1, . . . , χn be the irreducible characters of G, with χ1 being the trivial character. Let g P G be
in the conjugacy class of size pr mentioned. By column orthogonality,

1 +
n
ÿ

i=1

χi(1)χ(g) = 0

so there exists χj such that p ­‰ χj(1) and χj(g) ‰ 0 (if not, then 1 + p(algebraic integers) = 0,
a contradiction.) Since p ∤ χj(1), we have gcd(#gG, χj(1)) = 1, i.e, a#gG + bχj(1) = 1 for some
a, b P Z. Then

a#gGχj(g)
χg(1)

+ bχj(g) =
χj(g)

χj(1)

so that χj(g)
χj(1)

is an algebraic integer (Proposition 4.3.23) with absolute value ď 1. Let m = ord g

and ζ = e2πi/m. We have NQ(ζ)/Q

(
χj(g)

χj(1)

)
P QX talgebraic numbersu = Z. Since it also has absolute

value ď 1, we conclude χj(g) = 0 or |χj(g)| = χj(1).
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