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1 Primary Decomposition

1.1 Prime Avoidance
Lemma 1.1 (Prime avoidance). Suppose that I1, . . . , In, J are ideals of a ring A, and suppose that
J Ď

n
Ť

j“1

Ij. If A contains an infinite field or if at most two of the Ij are not prime, then J is contained in

one of the Ij.

Proof. First assume that A contains an infinite field k. Then this follows from the claim below.

Lemma 1.2. Let k be a field, V be a k-vector space and suppose V is the union of its proper subspace
W1, . . . ,Wn. Then #k ď n ´ 1.

Proof. We may assume no Wi is contained in the union of the other subspaces. Let u P Wiz
Ť

j‰i

Wj and

v R Wi. Then
pv ` kuq X Wi “ H

and pv ` Fuq X Wj contains at most one vector, for otherwise Wj would contain u. Hence

#pv ` kuq “ #k ď n ´ 1

Now suppose the latter condition, and assume each Ij is not contained in the other ideals. We prove
it by induction on n, n “ 1 being trivial. Suppose n “ 2 and J Ď I1 Y I2. If J Ę I1 and J Ę I2, pick
s P J ´ I1 and x P J ´ I2, then x ` s R I2. Hence x and x ` s lie in I1, so that s P I1, a contradiction.

When n ą 2, assume that In is a prime. Then JI1 ¨ ¨ ¨ In´1 Ę In; take x P JI1 ¨ ¨ ¨ Jn´1 ´ In. Suppose
S “ J ´ pI1 Y ¨ ¨ ¨ Y In´1q; by induction S ‰ H. Since J Ď I1 Y ¨ ¨ ¨ Y In, S is contained in In. But if s P S,
then s ` x P S, and hence both s and s ` x are in In, implying x P In, a contradiction.

Remark 1.3. In the case not involving a ground field, the proof above only use that J is a subring of R
without unit.

Lemma 1.4. Let A be a graded ring and J Ď A` be an homogeneous ideal. If I1, . . . , In are prime ideals
of A such that all homogeneous elements of J are contained in I1 Y ¨ ¨ ¨ Y In, then J is contained in some
Ij.

Proof. The proof is almost the same as above. Assume each Ij is not contained in the other ideals. We
use induction on n, n “ 1 being trivial. Suppose n “ 2 and J Ď I1 Y I2. Assume otherwise that there exist
homogeneous s P J ´ I1 and x P J ´ I2. Lifting to large powers and keeping I1, I2 are primes in mind, we
may assume x and s are of the same degree. Then x ` s R I2, which implies x and x ` s lie in I1. Hence
s P I1, a contradiction.
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For n ą 2, suppose otherwise. Then JI1 ¨ ¨ ¨ In´1 Ę In; take homogeneous x P JI1 ¨ ¨ ¨ Jn´1 ´In. Suppose
S “ J ´ pI1 Y ¨ ¨ ¨ Y In´1q; by induction S contains a homogeneous element. Since J Ď I1 Y ¨ ¨ ¨ Y In, S is
contained in In. Take a homogeneous s P S and raise x, s to a power so that they have the same degree.
But then s ` x P S, and hence both s and s ` x are in In, implying x P In, a contradiction.

1.2 Associated Primes
Let A be a ring and M be an A-module.

Lemma 1.5. Let S a multiplicatively closed set of A, and assume that 0 R S. Then there exists and ideal
of A which is maximal in the set of ideal not intersecting S, and any such ideal is prime.

Proof. The existence of such an ideal p results from Zorn’s lemma. Let p be such a maximal ideal.
Let a, b P A with ab P p and a, b R p. Then pa, pq and pb, pq meet S, so there exist s, s1 P S with
s P pa, pq, s1 P pb, pq. Then S Q ss1 P pa, pqpb, pq Ď p, a contradiction.

Corollary 1.5.1. The nilradical of A is the intersection of all prime ideals in A.

Corollary 1.5.2. The radical of an ideal in A is the intersection of all prime ideals containing I.

Definition. For a submodule N of M , the ideal annApNq :“ ta P A | aN “ 0u is called the annihilator
of N . For x P M , the annihilator of x is the ideal annApxq “ annApxAq.

• By the first isomorphism theorem, we have

A{ annApxq Ax

a ` annApxq ax

„

• For a prime ideal p, pAxqp ‰ 0 if and only if annApxq Ď p.

Proof. By the isomorphism above, pAxqp ‰ 0 iff annApxqp ‰ Ap, iff annApxq Ď p.

For a P A, denote by aM P EndApMq the homomorphism x ÞÑ ax. aM is called locally nilpotent if for
each x P M , anx “ 0 for n " 1.

• If M is a finite A-module, then aM is locally nilpotent if and only if aM is nilpotent (as an element
of EndApMq).

The support of M is the set
supppMq :“ tp P SpecA | Mp ‰ 0u

• If M is a finite A-module, then supppMq “ V pannApMqq, so that supppMq is closed in SpecpAq.
Even if M is not finite over A, we still have supppMq Ď V pannApMqq.
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Proof. Say M “ Ax1 ` ¨ ¨ ¨ ` Axn. We have Mp ‰ 0 iff pAxiqp ‰ 0 for some i “ 1, . . . , n, iff
annApxiq Ď p, i.e. p P

n
Ť

i“1

V pannApxiqq “ V pannApMqq

Proposition 1.6. Let a P A. Then aM is locally nilpotent if and only if a P p for all p P supppMq.

Proof. Suppose aM is locally nilpotent and let p P supppMq. Then there exists x P M with pAxqp ‰ 0; let
n P N such that anx “ 0. Then an P annApxq Ď p, as wanted.

Conversely, suppose aM is not locally nilpotent, so that there exists x P M such that anx ‰ 0 for
all n ě 0. Apply Lemma 1.5 to S “ t1, a, a2, . . .u to obtain a prime p of A outside S. Then a R p and
pAxqp ‰ 0, implying p P supppMq.

Definition. A prime p is associated to M if there exists x P M such that p “ annApxq. The set of
associated primes M is denoted by AssApMq.

• For a prime p, p P AssApMq iff there is an injective A-module homomorphism A{p Ñ M .

• If p “ annApxq for some x P M , since p ‰ A, we have x ‰ 0. Hence, if M “ 0, then AssApxq “ H.

• For M ‰ 0, the maximal element p among the set of ideals tannApxq | x P M ´ t0uu is prime.

Proof. Let p be such in the statement and p “ annApxq for some x P M . Let a, b P A with
ab P p, a R p; then ax ‰ 0. By maximality, annApaxq “ annApxq, and since bax “ 0, b P annApaxq “

annApxq “ p.

• In particular, if A is Noetherian and M ‰ 0, then AssApMq ‰ H.

Proposition 1.7. Assume A,M are Noetherian and M ‰ 0. Then there exists a chain of submodules

M “ M1 Ě M2 Ě ¨ ¨ ¨ Ě Mr “ 0

with each factor Mi{Mi`1 – A{pi for some prime pi.

Proof. Consider the set of submodules of M having the property described above; it is nonempty since for
p “ annApxq P AssApMq, Ax – A{p. Then it has a maximal element, say N . If N ‰ M , then M{N ‰ 0,
and we can pick q “ annApx ` Nq P AssApM{Nq with some x P M ´ N ; in particular, xA ` N{N – A{q,
and this contradicts to the maximality of N . Hence M “ N .

Proposition 1.8. Let A be Noetherian and a P A. Then aM is injective if and only if a does not lie in
any associated prime of M .

Proof. Suppose aM is injective. Then a cannot annihilate any element of M . Conversely, suppose aM is
not injective; say ax “ 0 for some x ‰ 0. Then Ax ‰ 0, so that AssApAxq ‰ 0, and thus a lies in an
associated prime of Ax, hence of M .
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Proposition 1.9. Let A be Noetherian, and let M be a module. Let a P A. TFAE:

(i) aM is locally nilpotent.

(ii) a lies in every associated prime of M .

(iii) a lies in every prime p P supppMq

If p P supppMq, then p contains an associated prime of M .

Proof. It remains to show (ii)ñ (iii), which is implied by the last statement. Now let p P supppMq. Then
there exists x P M with pAxqp ‰ 0, and there exists an associated prime q of pAxqp; say q “ annApr{sq,
where r P Ax and s R p. Then q Ď p, for otherwise there exists b R q´ p (so that b is invertible in Ap) with
bpy{sq “ 0, hence y{s “ 0, a contradiction. Finally, let q “ pb1, . . . , bnq. Since bi P annApr{sq, there exist
s1, . . . , sn R p with bisir “ 0. Put t “ s1 ¨ ¨ ¨ sn. Then q “ annAptrq is an associated prime of M .

Corollary 1.9.1. Let A be a Noetherian ring and M a finite A-module. Then
a

annApMq “
č

pPsupppMq

p “
č

pPAsspMq

p

Corollary 1.9.2. Let A be a Noetherian ring and M be an A-module. TFAE:

(i) #AsspMq “ 1.

(ii) M ‰ 0, and for every a P A, aM is either injective or locally nilpotent.

In these conditions are satisfied, then the set ta P A | aM is locally nilpotentu equals the associated prime.

Proof. (i)ñ(ii) and the last assertion are clear from the above propositions. Suppose that (ii) holds, and
suppose that there are two distinct associated primes, say annApxq and annApyq for some x, y P M . WLOG,
we assume annApxq ´ annApyq ‰ H, and pick an element a in it. In particular, a is not injective, so that
a is locally nilpotent, which implies that a P annApyq, a contradiction.

Proposition 1.10. Let N be a submodule of M . Every associated prime of N is associated with M . An
associated prime of M is associated with either N or with M{N .

Proof. The first assertion is clear. Now let p “ annApxq be an associated prime of M . If Ax X N “ 0,
then Ax is isomorphic to a submodule of M{N , so that p P AsspM{Nq. Suppose now that Ax X N ‰ 0,
say y :“ ax P N ´ t0u. Clearly, annApyq Ě annApxq. Now let b P A with by “ 0, i.e. bax “ 0. Then ba P

annApxq. Since ax ‰ 0 and annApxq is a prime, b P annApxq so that annApyq “ annApxq “ p P AsspNq.

Corollary 1.10.1. Assume A and M are Noetherian. Then AsspMq is finite.
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Proof. Using Proposition above and Proposition 1.7, we have

AsspMq Ď

r´1
ď

i“1

AsspMi{Mi`1q “

r´1
ď

i“1

AsspA{piq

with pi P SpecpAq. Generally, for p P SpecpAq and x P A ´ p,

annApx ` pq “ ta P A | apx ` pq “ pu “ ta P A | ax P pu “ p

so that #AsspA{pq “ 1. Hence AsspMq is finite.

Proposition 1.11. Let A be a Noetherian ring and M ‰ 0 an A-module. Then for any m.c.s. S of A,

AssS´1ApS´1Mq “ tS´1p | p P AssApMq, p X S “ Hu “ tS´1p | p P AssApS´1Mqu

Proof. Denote by A,B, C, respectively, the three sets from left to right.

• B Ď A. Let p P AsspMq. Then A{p Ď M , so that S´1A{S´1p Ď S´1M . Also S´1p is a prime ideal
iff p X S “ H, and if it is the case, we obtain S´1p P AssS´1ApS´1Mq.

• A Ď C. Suppose q P AssS´1ApS´1Mq. Then there exists p P SpecpAq such that q “ S´1p. Since q is
associated to S´1M , say q “ annS´1Apxq for some x P S´1M , we have p “ annApxq.

• C Ď B. Let p “ annApm{sq P AssApS´1Mq with m P M, s P S, m{s ‰ 0. If pXS ‰ H, say r belongs
to the intersection, then rm{s “ 0. Then m{s “ rm{rs “ 0, a contradiction. Clearly, annApmq Ď p;
if it’s not an equality, pick b P p ´ annApmq. Then bms1 “ 0 for some s1 P S, so that

annApmq Ĺ annAps1mq Ď p

Repeating in this way, since A is Noetherian, it must be the case p “ annAps2mq for some s2 P S.

• A Ď B. Suppose q P SpecpS´1Aq that is associated to S´1M ; then q “ S´1p for some p P SpecpAq

with p X S “ H. Then there is an injection φ : S´1A{S´1p Ñ S´1M . Since p is finitely generated,
we have

HomS´1ApS´1A{S´1p, S´1Mq – S´1HomApA{p,Mq

so we can write φ “ f{s for some f : A{p Ñ M and s P S. Since S X p “ H, u is a nonzerodivisor
on A{p, so that f “ sφ is injective, showing that A{p is isomorphic to a submodule of M .

Corollary 1.11.1. Let A be a Noetherian ring and M ‰ 0 a finite A-module. Then AssApMq includes all
primes minimal among the primes containing annApMq.

Proof. Let p be the prime minimal over annApMq; in particular, Mp ‰ 0.
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Method I Then AssApMpq ‰ H, say q P AssApMpq. By Proposition, q P AssApMq and q Ď p, so
q Ě annApMq. Since p is minimal, p “ q, as shown.

Method II Since M is finite over A, S´1 annApMq “ annS´1ApS´1Mq. Localizing at p, we can assume
pA, pq is a local ring. Then p is the only prime containing annApMq, so p P AssApMq, as shown in Method
I. Finally use Proposition to validate that we can take localization.

1.3 Primary Decomposition
Let A be a ring and M be an A-module.

Definition. A submodule Q of M is primary if Q ‰ M and for every a P A, aM{Q is either injective or
nilpotent.

• Viewing A itself as an A-module, an ideal q is primary iff for a, b P A with ab P q and a R q, we
have bn P q for some n ě 1, namely, every nonzerodivisor of A{q is nilpotent.

Proof. Let a, b P A with ab P q, a R q. Then bA{q is not injective, so 0 “ bnA{qp1 ` qq for some n, i.e.
bn P q. Conversely, let a P A with aA{q is not injective; let b P A ´ q such that ab P q. Then an P q

for some n P N, showing that anA{q “ 0, i.e. aA{q is nilpotent.

The essence is that 1 P A, so being nilpotent is equivalent to being locally nilpotent.

• For Q primary, let p “ ta P A | aM{Q is nilpotentu “
a

annApM{Qq. Then p is a prime, and we say
Q is p-primary, or p belongs to Q. In particular, if q is a primary ideal, then p “

?
q.

Proof. Let a, b P A with ab P p and a R p. Then aM{Q is injective, so b is nilpotent, showing b P p.

• For a P A, x P M with ax P Q, if x R Q, then a P p.

• If m P mSpecpAq and q is an ideal of A with mn Ď q for some n ě 1, then q is m-primary.

Proof. Taking radical, we have m Ď
?
q. Since m is maximal, we have m “

?
q, and this implies m

is the only prime containing q i.e. A{q has only one prime ideal m. This shows every element in A{q

is either a unit or nilpotent.

• If Q1, . . . , Qr are all p-primary submodules of M , then so is Q :“ Q1 X ¨ ¨ ¨ X Qr.

Proof. Let a P p and n1, . . . , nr be positive integers such that ani

M{Qi
“ 0 for i “ 1, . . . , r. Then

anM{Q “ 0 for n ě maxtn1, . . . , nru, so that aM{Q is nilpotent. Now if a R p, then anx R Qi for
x P M ´ Qi, n ě 1 and all i; hence anx R Q for all x P M ´ Q, so that aM{Q is injective.
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Let N be a submodule of M . A primary decomposition of N is a finite collection of primary submodules
Q1, . . . , Qr of M with

N “ Q1 X ¨ ¨ ¨ X Qr

• Using the property above, after grouping we can assume each Qi is pi-primary with each pi distinct.

• If each pi is distinct, and Qi Ğ
Ş

j‰i

Qj for each i, we say it’s a reduced/irredundant/minimal

primary decomposition. If N admits primary decomposition, then it also admits an irredundant one.

• For Q,N ď M , Q is primary if and only if Q mod N is primary, and the prime belonging to them is
the same.

• N has a primary decomposition in M if and only if p0q has a primary decomposition in M{N .
Furthermore, if N “ Q1 X ¨ ¨ ¨ X Qr, then p0q “ Q1 X ¨ ¨ ¨ X Qr, where Qi denotes the image of Qi in
M{N ; the decomposition of N is irredundant iff that of p0q is irredundant.

Let N “ Q1 X ¨ ¨ ¨ X Qr be an irredundant primary decomposition, and let pi belong to Qi. An isolated
prime is a minimal element in the set tp1, . . . , pru.

Theorem 1.12. Let N be a submodule of M , and let

N “ Q1 X ¨ ¨ ¨ X Qr “ Q1
1 X ¨ ¨ ¨ X Q1

s

be irredundant primary decompositions. Then

(i) r “ s.

(ii) The set of primes belonging to Q1, . . . , Qr and Q1
1, . . . , Q

1
s is the same.

(iii) If tp1, . . . , pmu is the set of isolated primes, then Qi “ Q1
i for i “ 1, . . . ,m. In other words, the

primary modules corresponding to isolated primes are uniquely determined.

Theorem 1.13. Let M be Noetherian, and N ď M . Then N admits a primary decomposition.

Proposition 1.14. Let A,M be Noetherian. A submodule Q ď M is primary if and only if AssApM{Qq “

tpu is a singleton, and in this case, Q is p-primary.

Theorem 1.15. Let A,M be Noetherian. The associated primes of M are precisely the primes which
belongs to the primary modules in a reduced primary decomposition of 0 in M . This in particular again
shows that AssApMq is finite.
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1.4 Factoriality
Lemma 1.16. For a Noetherian domain A, if every irreducible element in A is prime, then A is a UFD.

Proposition 1.17. Let A be a Noetherian domain.

1. If f P A and f “ upe11 ¨ ¨ ¨ perr , where u P Aˆ, the pi are primes in A generating distinct prime ideals
ppiq P SpecpAq and ei P N, then

f “ ppe11 q X ¨ ¨ ¨ X pperr q

are the minimal primary decomposition of the ideal pfq.

2. R is a UFD if and only if every prime ideal minimal over a principal ideal is itself principal.
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2 Graded rings
In this section, the words “ideal” and ”proper ideal” are interchangeable.

Definition. A graded ring is a ring A together with a family of subgroups tAnuně0 of the additive group
A such that

(i) A “
à

ně0

An as abelian groups;

(ii) AnAm Ď An`m for all n,m ě 0.

• By definition A0 is a subring of A, and each An is an A0-module.

• The subgroup A` :“
À

ně1

An is an ideal of A.

A graded A-module M is an A-module together with a family of subgroups tMnuně0 of M such that

(i) M “
à

ně0

Mn as abelian groups;

(ii) AnMm Ď Mn`m for all n,m ě 0.

• Each Mn is an A0-module.

An element x P M is homogeneous if x P Mn for some n, and n is called the degree of x. For each
element y P M , y “ y1 ` ¨ ¨ ¨ ` yr for unique homogeneous elements y1, . . . , yr P M of distinct degrees.
These yi are called the homogeneous components of y.

Definition. Let A be a graded ring and M,N be graded A-module. A homomorphisms of graded
A-modules from M to N is a A-module homomorphism f :M Ñ N with fpMnq Ď Nn for each n ě 0.

Proposition 2.1. Let A be a graded ring. Then A is Noetherian if and only if A0 is Noetherian and A is
a finitely generated A0-algebra.

Proof. The only if part follows from Hilbert’s basis theorem. For the if part, immediately we see A0 “ A{A`

is Noetherian. Since A` is an proper ideal of A, A` “ Ax1 ` ¨ ¨ ¨ ` Axr for some xi P A`; we may assume
that each xi is homogeneous. Let A1 “ A0rx1, . . . , xrs

Now we prove by induction on n ě 0 that An Ď A1, the case n “ 0 being trivial. For n ą 0, let x P An.
Then x “ a1x1 ` ¨ ¨ ¨ arxr for some ar P A.

• We may assume each ai is homogeneous. Write ai “ ai1 ` ¨ ¨ ¨ ` airi with each aij homogeneous of
distinct degrees. Since x P An, x equals the sum of those aijxi with degree deg aij ` deg xi “ n, and
those with degree ‰ n may offset.

11



• Since each xi has positive degree, each ai is of degree strictly smaller than n. Hence by induction
hypothesis we ai P A1, and thus x P A1, as wanted.

Let A be a ring, and a an ideal of A. We can form a graded ring

BlaA “ A˚ :“
à

ně0

an

called the blowup algebra of a in A.

• If A is Noetherian, then a is finitely generated A-module, and hence A˚ is Noetherian by the previous
theorem.

Let M be an A-module. A chain of submodules of M

M “ M0 Ě M1 Ě ¨ ¨ ¨ Ě Mn Ě ¨ ¨ ¨

is called an a-filtration of M if aMn Ď Mn`1 for all n. Then

M˚ “
à

ně0

Mn

is a graded A˚-module, since amMn Ď Mm`n.

Lemma 2.2. Let A be Noetherian, a an ideal of A, M a finitely generated A-module, and tMnuně0 an
a-filtration. TFAE:

1. M˚ is a finitely generated A˚-module.

2. The filtration tMnuně0 is stable, i.e., aMn “ Mn`1 for n " 0.

Proof. Since M is Noetherian, each Mn is finitely generated, and hence so is each Qn “
n

À

r“0

Mr. Then Qn

generates an A˚-submodule of M˚, namely

M˚
n “ M0 ‘ ¨ ¨ ¨ ‘ Mn ‘ aMn ‘ ¨ ¨ ¨ ‘ arMn ‘ ¨ ¨ ¨

Since Qn is finitely generated as an A-module, M˚
n is finitely generated as an A˚-module. The submodules

M˚
n forms an ascending chain. Now, since A˚ is Noetherian, we see

M˚ is finitely generated as an A˚-module ô the chain tM˚
nu stops ô M˚

n “ M˚ for some n ě 0.

and it is equivalent to saying that Mn`r “ arMn for all r ě 0, i.e., the filtration tMnuně0 is stable.
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2.1 Artin-Rees Lemma
Proposition 2.3 (Artin-Rees). Let A be a Noetherian ring, a an ideal of A, M a finitely generated A-
module, tMnuně0 a stable a-filtration of M . If M 1 is a submodule of M , then tM 1 X Mnuně0 is a stable
a-filtration of M 1.

Proof.

• Since tMnu is stable, Lemma shows that M˚ is a finitely generated A˚-module. Since A˚ is Noethe-
rian, M˚ is Noetherian.

• tM 1 X Mnuně0 is an a-filtration of M 1. Indeed, apM 1 X Mnq Ď M 1 X aMn Ď M 1 X Mn`1.

• M 1˚ :“
À

ně0

pM 1 X Mnq is a graded A˚-submodule of M˚, so M 1˚ is finitely generated. By Lemma

again, tM 1 X Mnuně0 is stable.

Specializing to the filtration tanMuně0, we see

Corollary 2.3.1. There exists k P N such that

anM X M 1 “ an´kppakMq X M 1q

for all n ě k.

2.2 Krull Intersection Theorem
Theorem 2.4 (Krull Intersection Theorem). Let A be a Noetherian ring, a an ideal, M a finitely generated
A-module. Then

Ş

ně1

anM consists of those x P M annihilated by 1 ´ a for some a P a.

Proof. Put E “
Ş

ně1

anM . By Corollary 2.3.1, we see aE “ E by taking n “ k ` 1. Since M is finitely

generated and A is Noetherian, E is finitely generated. Using a determinant argument, from aE “ E we
deduce that p1 ´ aqE “ 0 for some a P a. Conversely, if p1 ´ aqx “ 0 for some x P M , then

x “ ax “ a2x “ ¨ ¨ ¨ P
č

ně1

anM “ E

Corollary 2.4.1. Let A be a Noetherian domain and a an proper ideal. Then
Ş

ně1

an “ 0.

Proof. Note that 1 ´ a ‰ 0.

Corollary 2.4.2. If a is contained in the Jacobson radical of A, then
Ş

ně1

anM “ 0.

13



Proof. In this case, 1 ´ a is a unit in A, so
Ş

ně1

anM “ 0.

Corollary 2.4.3. Let A be a Noetherian ring and a its the Jacobson radical. Then
Ş

ně1

an “ 0.

Corollary 2.4.4. Let pA,mq be a Noetherian local ring. Then
Ş

ně1

mn “ 0.

Corollary 2.4.5. Let A be a Noetherian ring and p P SpecpAq. Then the intersection of all p-primary
ideals of A is the kernel of A Ñ Ap.

Proof. Since A is Noetherian,
?
I
n

Ď I for some n P N, so I is p-primary if and only if pn Ď I Ď p for
some n P N. Note that I ÞÑ IAp establishes a bijection on p-primary ideals of A and pp-primary ideals of
Ap. Since Ap is Noetherian local,

Ş

ně1

pnp “ 0 in Ap, and hence kerpA Ñ Apq “
Ş

ně1

pn

2.3 Associated Graded Rings
Let A be a ring and a an ideal of A. Define

GrapAq “
à

ně0

an{an`1

This is a graded ring, in which the multiplication is defined as follows.

• For x P an, denote by x its image in an{an`1. Then for x P an, y P am, define xy “ xy to be the
image of xy P an`m in an`m{an`m`1.

• xy “ xy is well-defined since we take modulo an`m`1.

Similarly, if M is an A-module and F :“ tMnuně0 is an a-filtration of M , define

GrF pMq :“
à

ně0

Mn{Mn`1

and denote GrnF pMq “ Mn{Mn`1. Then GrF pMq is a graded GrapAq-module.

Proposition 2.5. Let A be a Noetherian ring and a an ideal of A. Then

1. GrapAq is Noetherian;

2. if M is a finite A-module and F “ tMnuně0 is a stable a-filtration of M , then GrF pMq is a finite
GrapAq-module.

Proof.

1. Write a “ Ax1`¨ ¨ ¨`Axr, and denote by xi the image of xi in a{a2. Then GrapAq “ pA{aqrx1, . . . , xrs

(by its definition). Since A{a is Noetherian, GrapAq is Noetherian by Hilbert’s basis theorem.
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2. Say aMn “ Mn`1 for some n ě 0. Then

GrF pMq “ M{M1 ‘ ¨ ¨ ¨ ‘ Mn´1{Mn ‘
à

kě0

akMn{ak`1Mn

is generated by M{M1 ‘ ¨ ¨ ¨ ‘Mn´1{Mn ‘Mn{Mn`1. Each Mr is a finite A-module, and GrrF pMq “

Mr{Mr`1 is annihilated by a, so GrrF pMq is a finite A{a-module. Hence GrF pMq is a finite GrapMq-
module.

2.3.1 Initial forms

Let A be a ring, a an ideal of A, M an A-module and F :“ tMnuně0 an a-filtration of M .

• For f P M , let m “ suptn P N0 | f P Mnu. Define the initial form of f by

inpfq :“

$

&

%

f modMm`1 P GrmF pMq , if m ă 8

0 , if f P
Ş

ně1

Mn

Note that in :M Ñ GrF pMq is not a homomorphism.

• For a A-submodule M 1 of M , define

inpM 1q :“ xinpfq | f P M 1yGrapAq

to be the GrapAq-submodule of GrF pMq.

Corollary 2.4.6. Let R be a Noetherian local ring and a be an ideal. If GrapRq is a domain, then so is R.

Proof. Suppose fg “ 0 P R. Then inpfq inpgq “ 0 P GrapRq, and thus either inpfq “ 0 or inpgq “ 0. Since
Ş

ně0

an “ 0, this implies f “ 0 or g “ 0.
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3 Dimension
Definition. Let A ‰ 0 be a ring.

1. A prime chain is a strictly increasing sequence

p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn

of prime ideals of A. Its length is defined to be n, the number of inclusions.

2. The height htppq of a prime p is the supremum of the lengths of all prime chains

p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn “ p

More generally, for an proper ideal I of A, define

htpIq :“ infthtppq | p P V pIqu “ infthtppq | I Ď pu

3. The Krull dimension of A is defined as

dimA :“ supthtppq | p P SpecpAqu

• By definition, htppq “ dimAp for all primes p.

• For any ideals I,
dimpA{Iq ` htpIq ď dimA

For M ‰ 0 an A-module, define its dimension to be

dimM “ dimpA{ annApMqq

3.1 Length
Proposition 3.1. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be an exact sequence of A-modules. Then

(i) M is Noetherian if and only if M 1, M2 are Noetherian.

(ii) M is Artinian if and only if M 1, M2 are Artinian.

Proof. A chain of M 1, M2 gives rise to a chain in M ; this shows the only if part of both statements.
Conversely, a chain in M restricts to a chain in M 1, and maps to a chain in M2; this shows the if part.

Corollary 3.1.1. Finite direct sums of Noetherian (resp. Artinian) A-modules are Noetherian (resp.
Artinian).
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Corollary 3.1.2. Let A be a Notherian (resp. Artinian) ring. If M is a finite A-module, then M is
Notherian (resp. Artinian).

Corollary 3.1.3. Quotients of Noetherian (resp. Artinian) rings are Noetherian (resp. Artinian).

Definition. Let A be a ring and M an A-module.

1. The length of the chain of submodules of M

M “ M0 Ľ M1 Ľ ¨ ¨ ¨ Ľ Mn

is defined to be n.

2. A finite chain / finite filtration of submodules of A-module M is the chain of the form

M “ M0 Ľ M1 Ľ ¨ ¨ ¨ Ľ Mn “ 0

3. A composition series of M is a maximal finite chain of M , i.e., each successive quotient module is
a simple module.

4. The length of M is defined the be the minimal length of composition series of M , and is denoted
by lengthApMq; if M does not possess a composition series, define lengthApMq “ `8.

If M has a composition, we also use the term M has finite length.

• It’s clear that every chain can be extended to a finite chain by adding 0 in the end of the chain, if
Mn ‰ 0.

Proposition 3.2. Suppose M has a composition series. Then every composition series has the same
length. Moreover, every chain can be extended to a composition series of M .

Proof.

1° N Ĺ M ñ lengthApNq ă lengthApMq. Let M “ M0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mn “ 0 be a composition series
of M . Consider the chain

N “ M0 X N Ě M1 X N Ě Mn´1 X N Ě Mn X N “ 0

• Note that Mi X N

Mi`1 X N
Ď

Mi

Mi`1

; since the latter is simple, Mi X N

Mi`1 X N
“ 0 or Mi X N

Mi`1 X N
is simple.

Hence lengthApNq ď lengthApMq, and equality holds if and only if every Mi X N

Mi`1 X N
is simple.

Starting from Mn´1 “ Mn´1 XN ô Mn´1 Ď N , we can show that M “ M0 Ď N Ď M , i.e., N “ M .
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2° Every chain in M has length ď lengthApNq. Take a chain of length n in M

M “ M0 Ľ M1 Ľ ¨ ¨ ¨ Ľ Mn

Then
lengthApMq ą lengthApM1q ą ¨ ¨ ¨ ą lengthApMnq ě 0

and hence lengthApMq ě n.

3° Every composition has length lengthApMq. This follows from definition and 2°.

4° A chain in M of length lengthApMq is a composition series. Firstly, such a chain must be a finite
chain. Secondly, if any successive quotient is not simple, we can insert a submodule to lengthen
the chain; taking the contrapositive, since such a chain can not be lengthened by 2°, it must be a
composition series.

5° Every chain in M can be extended to a composition series in M . This follows from 2° and 4°.

Corollary 3.2.1. M has finite length if and only if M is Artinian and Noetherian.

Proof. The only if part is clear. Suppose M is Artinian and Noetherian. Since M is Noetherian, we can
construct a descending chain of submodules of M

M “ M0 Ľ M1 Ľ ¨ ¨ ¨ Ľ Mn

with the property that Mi is a maximal submodule contained in Mi´1. Since M is Artinian, this chain
must stop, i.e., M has a composition series.

Corollary 3.2.2. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be an exact sequence of A-modules. Then M has finite
length if and only if M 1,M2 have finite length. Moreover, we have

lengthApMq “ lengthApM 1q ` lengthApM2q

Proof. The first assertion follows from the previous Corollary and Proposition 3.1. It remains to show that
equality. But we can use a composition series in M 1 and that in M2 to produce a composition series in M ,
which shows that equality.

Corollary 3.2.3. For a k-vector space V , TFAE:
- dimk V ă 8 - lengthkpV q ă 8. - V is Artinian. - V is Noetherian.

Proof. It remains to show that if V is infinite dimensional, then V is neither Artinian nor Noetherian. Let
tv1, v2, . . . , u be a k-basis for V . Form the subspaces

Wn “ spantv1, . . . , vnu, Un “ spantvn, vn`1, . . .u

Then tWnu is ascending and tUnu is descending, each of which is not stable.
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We will use the following corollary to characterize all Artinian rings. First note that if M is an A-module
and I is an ideal contained in AnnApMq. Then M has a natural A{I-module structure, and

M is Noetherian (resp. Artinian) as an A-module ô M is Noetherian (resp. Artinian) as an A{I-module.

This is because for an subgroup N of M , being an A{I-submodule of M and being an A-submodule of M
are equivalent for N . Also, lengthApMq “ lengthA{IpMq.

Corollary 3.2.4. Let A be a ring in which the zero ideal is a product m1 ¨ ¨ ¨mr of (not necessarily distinct)
maximal ideals. Then A is Noetherian if and only if A is Artinian.

Proof. Consider the chain of ideals

A Ě m1 Ě m1m2 Ě ¨ ¨ ¨ Ě m1 ¨ ¨ ¨mr “ 0

Every successive quotient has a natural structure of A{mi-vector spaces. Hence each successive quotient is
Noetherian if and only if it is Artinian. Repeated uses of Proposition 3.1 then shows that A is Noetherian
if and only if A is Artinian.

3.1.1 Characterization of Artinian Rings

Proposition 3.3. Let A be a nontrivial Artinian ring.

1. A is a semilocal ring, i.e., #mSpecpAq ă 8.

2. The zero ideal of A is a product of maximal ideals.

3. A is a finite product of Artinian local rings.

4. A is Noetherian.

5. Every prime is maximal.

Proof.

1. Consider the collection of finite intersections of maximal ideals of A; since A is Artinian, it contains
a minimal element, say I :“ m1 X ¨ ¨ ¨ Xmn. Then for every m P mSpecpAq, mX I “ I by minimality,
and thus I Ď m. Since m is a prime, mi “ m for some i. Hence mSpecpAq “ tm1, . . . ,mnu.

2. Let J be the product of all maximal ideals of A. Consider the descending chain

J Ě J2 Ě ¨ ¨ ¨ Ě J ℓ Ě

Since A is Artinian, there exists m P N0 with Jm “ Jm`1. We show Jm “ 0. Suppose Jm ‰ 0;
consider the collection t0 ‰ I�R | IJm ‰ 0u. This collection is nonempty for JJm “ Jm`1 “ Jm ‰ 0,
and hence it has a minimal element, say I0. Let f P I0 with fJm ‰ 0; since I is minimal, I “ fA.
Also, pfJqJm “ fJm ‰ 0, so fJ “ fA by minimality. Now fr “ f for some r P J , i.e., p1´ rqf “ 0.
Since J is the Jacobson radical, 1 ´ r P Aˆ, implying f “ 0, a contradiction. Therefore Jm “ 0.
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3. Let J “ m1 X ¨ ¨ ¨ Xmr, where the mi are all the maximal ideals of A. Then Jm “ 0 for some m by 2.

By Chinese Remainder theorem, we have A “ A{Jm –
r

ś

i“1

A{mm
i . Since A is Artinian, each A{mm

i is

Artinian. Also, A{mm
i is local with the maximal ideal mi{m

m
i .

4. This follows from 2. and Corollary 3.2.4.

5. Let p P SpecpAq. We must show for every f R p, pf, pq “ A. Consider the chain

pf, pq Ě pf 2, pq Ě ¨ ¨ ¨ Ě pfn, pq Ě ¨ ¨ ¨

Then pfm, pq “ pfm`1, pq for some m P N so that fm “ rfm`1 ` a for some r P A, a P p. Hence
fmp1 ´ rfq P p; since fm ‰ p, 1 ´ rf P p, and thus 1 P pf, pq, as wanted.

Theorem 3.4. Let A be a ring. TFAE:

1. A has a composition series as an A-module.

2. A is Artinian.

3. A is Noetherian and every prime ideal is maximal.

Proof. We prove the equivalence in the order 1. ñ 2. ñ 3. ñ 1. We already see 1. ñ 2. ñ 3. It
remains to show 3. ñ 1. Suppose otherwise that A does not have finite length; consider the collection
tI � A | lengthApA{Iq “ 8u. This is nonempty since the zero ideal belongs to it, and hence it has a
maximal element, say p. We claim p is a prime. Let a, b P A with ab P p, a R p; then we may form the
exact sequence

0 A{pp : aq A{p A{pa, pq 0a

If b R p, then p Ĺ pp : aq; since both pp : aq and pa, pq properly contain p, both A{pp : aq and A{pa, pq have
finite length by maximality, and so does A{p by Corollary 3.2.2, a contradiction. Hence b P p, and so p

is a prime; moreover, p is maximal by assumption. However, it turns out A{p is a field, which has finite
length, contradicting the definition of p. Hence A has finite length.

Corollary 3.4.1. Let A be a Noetherian and M ‰ 0 a finite A-module. TFAE:

1. M has finite length as an A-module.

2. The ring A{ annApMq is Artinian.

3. dimM “ 0.
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3.2 Hilbert’s Polynomials

Let A “
8
À

n“0

An be a graded Noetherian ring; then A0 is Noetherian and A “ A0rx1, . . . , xss with each
xi P A` homogeneous of degree di ą 0. Let M be a finitely generated graded A-module. Then M can be
generated by a finite number of homogeneous elements, say m1, . . . ,mt with degree r1, . . . , rt, respectively.

• Each Mn is a finite A0-module. Indeed, each element in Mn can be written as a sum
t

ř

i“1

fjpxqmj

with fjpxq P A homogeneous of degree n ´ rj, so Mn is generated by all gjpxqmj, where gjpxq is a
monomial in the xj of total degree n ´ rj.

Let λ be an additive function (with valued in Z) on all finite A0-modules, namely, for all short exact
sequences 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 of finite A0-modules, we have

λpM 1q ´ λpMq ` λpM2q “ 0

The Poincaré series P pM, tq “ PλpM, tq of M is the generating function of λpMnq

P pM, tq :“
8
ÿ

n“0

λpMnqtn

Example. Let A “ A0rx1, . . . , xss, where A0 is an Artinian ring and the xi are independent variables.
Then An is a free A0-module with generated by the monomial xm1

1 ¨ ¨ ¨ xms
s with m1 ` ¨ ¨ ¨ ` ms “ n; they

are in number
ˆ

s ` n ´ 1

s ´ 1

˙

, and hence

P pA, tq :“
8
ÿ

n“0

ˆ

s ` n ´ 1

s ´ 1

˙

tn “ p1 ´ tq´s

Theorem 3.5 (Hilbert, Serre). P pM, tq is a rational function in t of the form fptq
s

ś

i“1

p1 ´ tkiq
, where fptq P Zrts.

Proof. Use induction on s, the number of the generators of A over A0.

• s “ 0. Then M “ A0m1 ` ¨ ¨ ¨ ` A0mt, so Mn “ 0 for n ą maxtr1, . . . , rtu. Hence P pM, tq is just a
polynomial in t.

• s ą 0. Multiplying Mn by xs gives an exact sequence

0 Kn Mn Mn`ks Ln`ks 0
xs (1)

Define K “
À

nKn, L “
À

n Ln; being a submodule and a quotient of M , K and L are finite
A-module. Since they are annihilated by xs, they are graded A0rx1, . . . , xs´1s-modules.
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Applying λ to (1), we get

λpKnq ´ λpMnq ` λpMn`ksq ´ λpLn`ksq “ 0

Multiplying by tn`ks and summing over n, we obtain (for some g P Zrts)

tksP pK, tq ´ tksP pM, tq ` P pM, tq ´ P pL, tq “ gptq

or p1 ´ tksqP pM, tq “ P pL, tq ´ tksP pK, tq ` gptq. The result then follows by induction.

• Let dpMq “ ordt“1 P pM, tq be the order of P pM, tq at t “ 1.

Corollary 3.5.1. If x P Ak is a non-zero-divisor in M , then dpM{xMq “ dpMq ´ 1.

Proof. Replacing xs in (1) with x, we see K “ 0 and L “ M{xM . Hence p1´ tkqP pM, tq “ P pM{xM, tq `

gptq for some g P Zrts, so dpMq ´ 1 “ dpM{xMq.

Corollary 3.5.2. If each ki “ 1. then for n " 0, λpMnq is a polynomial in n with rational coefficients of
degree1 d ´ 1 (d “ dpMq), called the Hilbert’s polynomial of M .

Proof. By Theorem,
8
ř

n“0

λpMnqtn “ fptqp1´tq´s; we may assume s “ d and fp1q ‰ 0. Write fptq “
N
ř

k“0

akt
k

with aN ‰ 0. Then for n ě N ,

λpMnq “

N
ÿ

k“0

ak

ˆ

d ` n ´ k ´ 1

d ´ 1

˙

with the convention
ˆ

n

´1

˙

“ 0 for n ě 0 and
ˆ

´1

´1

˙

“ 1. The leading term is

aN
nd´1

pd ´ 1q!
‰ 0

so λpMnq pn ě Nq has degree d ´ 1.

Proposition 3.6. Let pA,mq be a Noetherian local ring, q an m-primary ideal, M a finitely generated
A-module and F “ tMnuně0 a stable q-filtration on M . Then

1. M{Mn has finite length for all n ě 0;

2. for n " 0 this length is a polynomial gpnq in n of degree ď s, where s is the least number of generators
of q;

3. the degree and leading coefficient of gpnq depend only on M and q, not on the chosen filtration.
1For this statement, the zero polynomial is assumed to have degree ´1.
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Proof.

1. Let GrqpAq “
À

ně0

qn{qn`1 and GrF pMq “
À

ně0

Mn{Mn`1. Note that Gr0qpAq “ A{q is Artinian

local, GrqpAq is Noetherian and GrF pMq is a finite GrqpAq-module. Each GrnF pMq “ Mn{Mn`1 is a
Noetherian finite A-module annihilated by q, so hence a finite A{q-module. Since A{q is Artinian,
GrnF pMq is Artinian; hence GrnF pMq has finite length, and so does M{Mn with

ln :“ lengthApM{Mnq “

n
ÿ

r“1

lengthApMr´1{Mrq

2. Say q “ Ax1 ` ¨ ¨ ¨ `Axs; then GrqpAq “ pA{qqrx1, . . . , xss, where xi denotes the image of xi in q{q2.
By Corollary 3.5.2, lengthApMn{Mn`1q “ fpnq, where f is a polynomial in n of degree ď s ´ 1 for
all large n. We have ln`1 ´ ln “ fpnq, so ln itself is a polynomial gpnq of degree ď s for all large n.

3. Let tM̃nuně0 be another stable q-filtration of M , and let g̃pnq “ lengthApM{M̃nq. tM̃nu and tMnu

being stable, there exists n0 P N such that Mn`n0 Ď M̃n and M̃n`n0 Ď Mn for all n ě 0; hence

gpn ` n0q ě g̃pnq, g̃pn ` n0q ě gpnq

For n " 0, both g and g̃ are polynomials in n, so lim
nÑ8

gpnq

g̃pnq
“ 1, meaning that they have the same

degree and the leading coefficient.

• The polynomial gpnq corresponding to the filtration tqnMuně0 is denoted by

χMq pnq :“ lengthApM{qnMq pn " 0q

• If M “ A, we write χqpnq for χMq pnq, and call it the characteristic polynomial of the m-primary
ideal q.

Corollary 3.6.1. For n " 0, the length lengthApA{qnq is a polynomial χqpnq of degree ď s, where s is the
least number of generators of q.

Corollary 3.6.2. If A,m, q are as above, the degχqpnq “ degχmpnq.

Proof. Since A is Noetherian, mr Ď q Ď m for some r P N, and hence

mrn Ď qn Ď mn

for all n P N, implying for all large n

χmpnq ď χqpnq ď χmprnq

Taking n Ñ 8, we see 1 ď lim
nÑ8

χqpnq

χmpnq
ă 8, so they have the same degree.
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• We denote by dpAq the common degree of the χqpnq. Then

dpAq “ dpGrmpAqq

where dpGrmpAqq is defined before to be the order of the pole at t “ 1 of the Hilbert polynomial of
GrmpAq.

3.3 Noetherian Local Rings
Let pA,mq be a Noetherian local rings. Define

δpAq “ least number of the generators of an m-primary ideal of A

We will prove δpAq “ dpAq “ dimpAq, by proving

δpAq ě dpAq ě dimpAq ě δpAq

By the last two Corollary, we obtain

Proposition 3.7. δpAq ě dpAq.

Proposition 3.8. Let A,m, q as before, M is a finite A-module, x P A a non-zero-divisor in M and
M 1 “ M{xM . Then

degχM
1

q ď degχMq ´ 1

Proof. Let N “ xM ; then N – M as A-modules, for x P A is a non-zero-divisor in M . Define Nn “

N X qnM . Then we have an exact sequence

0 N{Nn M{qnM M 1{qnM 1 0

Hence, if gpnq “ lengthApN{Nnq, then

gpnq ´ χMq pnq ` χM
1

q pnq “ 0

for n " 0. By Artin-Ree’s lemma, tNnuně0 is a stable q-filtration of N . By Proposition 3.6 3, g and χMq
have the same degree and the leading coefficient, hence proved.

The following corollary is an analog of Corollary 3.5.1 for Noetherian local rings.

Corollary 3.8.1. If A is a Noetherian local ring, x a regular element in A, then dpA{pxqq ď dpAq ´ 1.

Proposition 3.9. dpAq ě dimA.
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Proof. Induction on dpAq. When dpAq “ 0, then lengthApA{mnq is constant for n " 0, and hence mn “

mn`1; by Nakayama’s lemma, mn “ 0, so A – A{mn is Artinian and thus dimA “ 0.
Assume dpAq ą 0, and let p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pr be any prime chain in A. Let x P p1zp0; put A1 “ A{p0

and x1 to be the image of x in A1. Then A1 is an integral domain and x1 ‰ 0. By above Corollary,

dpA1{px1qq ď dpA1q ´ 1

On the other hand, if m1 is the maximal ideal of A1, then A1{m1n is a homomorphic image of A{mn, so

lengthA1pA1{m1nq “ lengthApA1{m1nq ď lengthApA{mnq

implying dpA1q ď dpAq. Therefore dpA1{px1qq ď dpAq ´ 1, and by the induction hypothesis, we have

dimA1{px1q ď dpA1{px1qq ď dpAq ´ 1

But images of p1, . . . , pr in A1{px1q form a prime chain of length r ´ 1, so r ´ 1 ď dpAq ´ 1, or r ď dpAq;
hence dimA ď dpAq.

Corollary 3.9.1. If A is a Notherian local ring, dimA is finite.

Corollary 3.9.2. In a Noetherian ring every prime has finite height. In particular, the set of prime ideals
in a Noetherian ring satisfies the descending chain condition.

Proposition 3.10. Let pA,mq be a Noetherian local ring of dimension d. Then there exists an m-primary
ideal in A generated by d elements x1, . . . , xd, and therefore dimA ě δpAq.

Proof. We construct x1, . . . , xd inductively so that every prime ideal containing px1, . . . , xiq has height ě i

for each i. Suppose i ą 0 and x1, . . . , xi´1 have been constructed. Let pj p1 ď j ď sq be the minimal prime
ideals (if any) of px1, . . . , xi´1q which have height exactly i ´ 1. Since

i ´ 1 ă d “ dimA “ dimAm “ htpmq

we have m ‰ pj p1 ď j ď sq, hence m ‰
s

Ť

j“1

pj; choose xi P mz
s

Ť

j“1

pj. Let q be a prime ideal containing

px1, . . . , xiq. Then q Ě pj for some 1 ď j ď s; since xi P qzpj, we have htpqq ą htppjq “ i ´ 1, or htpqq ě i,
as shown.

Theorem 3.11. For any Noetherian local ring pA,mq the following three integers are equal:

(i) the maximum length of prime chains in A.

(ii) the degree of the characteristic polynomial χmpnq “ lengthApA{mnq.

(iii) the least number of generators of an m-primary ideal of A.
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Example. Let A “ krx1, . . . , xns be a polynomial ring over a field k and m “ px1, . . . , xnq. Then
GrmpAmq – krx1, . . . , xns, so its Poincaré series is p1 ´ tq´n by Example in the beginning of the section.
Hence dimAm “ n.

Corollary 3.11.1. dimA ď dimkpm{m2q, where k “ A{m is the residue field.

Proof. Let x1, . . . , xs be elements of m such that their images in m{m2 form an k-basis. By Nakayama’s
lemma, x1, . . . , xs generates m. Hence dimA ď s “ dimkpm{m2q.

Corollary 3.11.2. Let A be a Noetherian ring and x1, . . . , xr P A. Then every minimal prime p belonging
to px1, . . . , xrq has height ď r.

Proof. In Ap, the ideal px1, . . . , xrq becomes p-primary, so r ě dimAp “ htppq.

Corollary 3.11.3 (Krull’s PIT). Let A be a Noetherian ring and let x P A be neither a unit nor a
zero-divisor. Then every minimal prime p of pxq has height 1.

Proof. By above Corollary, htppq ď 1. If htppq “ 0, then Ap is Artinian local, so pnp “ 0 for some n P N.
Thus xn{1 “ 0 in Ap, and thus axn “ 0 for some a P A ´ p; but this means x is a zero-divisor, a
contradiction.

Corollary 3.11.4. Let pA,mq be a Noetherian local ring and x P m which is not a zero-divisor. Then
dimA{pxq “ dimA ´ 1.

Proof. Put d “ dimA{pxq. By Corollary 3.8.1, d ď dimA´1. Conversely, let x1, . . . , xd P A that generates
an m{pxq-primary ideal in A{pxq. Then px, x1, . . . , xdq is m-primary in A, hence d ` 1 ě dimA.

Corollary 3.11.5. Let A be a Notherian ring and p be a prime ideal of height r. Then p is minimal over
an ideal generated by r elements.

Proof. Passing to pAp, ppq, with Proposition 3.10, we can find a pp-primary ideal px1, . . . , xrq of Ap, where
x1, . . . , xr P Ap, with the property that every prime containing px1, . . . , xrq has height ě r; up to units
we may assume x1, . . . , xr P A. Then p Ě px1, . . . , xrq X A Ě pn for some n. Then p is minimal over
px1, . . . , xrq X A.

Corollary 3.11.6. A Noetherian domain A is a UFD if every height one prime ideal of A is principal.

Proof. By above corollaries, height one primes are precisely those primes minimal over principal ideals.
Then apply Proposition 1.17.
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3.4 Systems of Parameters
Definition. If px1, . . . , xdq P A generates an m-primary ideal with d “ dimA, we call x1, . . . , xd a system
of parameters.

Proposition 3.12. Let x1, . . . , xd be a system of parameter for pA,mq and let q “ px1, . . . , xdq be the
m-primary ideal generated by them. Let fpt1, . . . , tdq be a homogeneous polynomial of degree s with
coefficients in A, and assume that

fpx1, . . . , xdq P qs`1

Then all the coefficients of f lie in m.

Proof. Consider the surjective homomorphism

pA{qqrt1, . . . , tds GrqpAq

ti xi “ xi mod q P Gr1qpAq

α

The hypothesis means fpt1, . . . , tdq mod q P kerα.

• All coefficients lie in m. Great.

• Some coefficient of f is a unit in A. Then f mod q is not a zero-divisor, so

d “ dpGrqAq ď dppA{qqrt1, . . . , tds{pf mod qqq

“ dppA{qqrt1, . . . , tdsq ´ 1

“ d ´ 1

by Corollary 3.5.1 and the Example in the beginning, which is a contradiction.

Corollary 3.12.1. If k Ď A is a field mapping isomorphically onto A{m, and x1, . . . , xd is a system of
parameters, then x1, . . . , xd are algebraically independent over k.

Proof. Assume fpx1, . . . , xdq “ 0, where f is a polynomial over k. If f ı 0, write f “ fs ` h.o.t.,
with fs ı 0 homogeneous of degree s. Then fspx1, . . . , xdq “ 0 P qs`1; the Proposition above implies all
coefficients of fs lie in m, which implies fs ” 0, a contradiction.

3.5 Regular Local Rings
Theorem 3.13. Let pA,mq be a Noetherian local ring of dimension d with k “ A{m. TFAE:

1. GrmpAq – krt1, . . . , tds as graded k-modules, where the ti are independent variables.

2. dimkpm{m2q “ d.
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3. m can be generated by d elements.

If one of the above statements holds, we say A is a regular local ring.

Proof. 1. ñ 2. is clear since m{m2 “ kt1 ` ¨ ¨ ¨ ` ktd. 2. ñ 3. follows from Nakayama’s lemma. 3. ñ 1.

follows from Proposition 3.12:

• α : krx1, . . . , xds Ñ GrmpAq is an isomorphism as graded k-modules. It suffices to show

fpx1, . . . , xdq mod m “ 0 ñ fpx1, . . . , xdq P mrx1, . . . , xds

for all homogeneous fpx1, . . . , xdq over A of degree s ě 0. But

0 “ fpx1, . . . , xdq mod m P GrsmpAq

implies fpx1, . . . , xdq P ms`1, and thus f has coefficients in m, i.e., fpx1, . . . , xdq P mrx1, . . . , xds.

Corollary 3.13.1. A regular local ring is an integral domain.

Proof. Follow from the Theorem and Corollary 2.4.6.

Corollary 3.13.2. Regular local rings of dimension 1 are precisely discrete valuation rings.

Proof. Recall for a Noetherian local domain pA,m, kq of dimension 1, TFAE:

- A is a DVR.

- A is integrally closed.

- m is principal.

- dimkpm{m2q “ 1.

- Every nonzero ideal is a power of m.

- There exists x P A such that every nonzero ideal is of the form pxkq, k ě 0.

Example. Let A “ krx1, . . . , xns be a polynomial ring over a field k and m “ px1, . . . , xmq. Then Am is a
regular local ring, for GrmpAmq – krx1, . . . , xns.
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3.6 Homomorphisms and Dimension
Definition. Let φ : A Ñ B be a ring homomorphism. For each p P SpecA, the set

SpecpB bA κppqq “ SpecpB bA Ap{pApq

is called the fibre over p.

• There exists a canonical homeomorphism

SpecpB bA κppqq – Specpϕq´1ppq

where Specpϕq : SpecpBq Ñ SpecpAq is the canonical map.

• If P P SpecpBq is a prime lying over p, denote by P˚ the prime PBp{pBp P SpecpB bA κppqq. Then

BP “ pBpqPBp

so
pB bA κppqqP˚ “ BP bA κppq “ BP{pBP

Theorem 3.14. Let φ : A Ñ B be a ring homomorphism between Noetherian rings. Let P P SpecpBq

and p “ P X A.

1. htpPq ď htppq ` htpP{pBq; in other words, dimpBPq ď dimpApq ` dimpBP bA κppqq

2. The equality holds if the going-down theorem holds for φ.

3. If f “ Specpϕq : SpecpBq Ñ SpecpAq is surjective, and if the going-down theorem holds, then

(a) dimpBq ě dimpAq

(b) htpIq “ htpIBq for any ideal I of A.

Proof.

1. Replacing A and B by Ap and BP, we may assume pA, pq and pB,Pq are local rings with PXA “ p.
Then we must show dimpBq ď dimpAq ` dimpB{pBq. Let a1, . . . , ar be a system of parameters of
A and I be the p-primary ideal of A generated by them. Then dimpB{pBq “ dimpB{IBq. Indeed
if q is a prime of B containing IB, the q X A contains I. Taking radical we see q X A contains
p, and thus q Ě p. If dimpB{IBq “ s and tb1, . . . , bsu be a system of parameters of B{IB, then
tb1, . . . , bs, a1, . . . , aru generates a P-primary ideal of B. Hence dimpBq ď r ` s.

2. Use the notation as above. If htpP{pBq “ s, there exists a prime chain

P “ P0 Ľ P1 Ľ ¨ ¨ ¨ Ľ Ps
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of length s such that Ps Ě pB. Since p “ P XA Ě Pi XA Ě p, all Pi lie over p. If htppq “ r, there
exists p Ľ p1 Ľ ¨ ¨ ¨ Ľ pr in A, and by going-down there exists a prime chain

Ps “ Q0 Ľ Q1 Ľ ¨ ¨ ¨ Ľ Qr

of B such that QiXA “ pi. Hence we obtain a prime chain of length s`r in B, proving htpPq ě r`s.

3. (a) follows from (2). For (b), take a minimal prime Q over IB such that htpQq “ htpIBq, and put
q “ Q X A. Then htpQ{qBq “ 0, and by (2) we have

htpIBq “ htpQq “ htpqq ě htpIq

Conversely, let q be a minimal prime over I such that htppq “ htpIq, and take a prime Q of B lying
above q; we may assume Q is minimal over qB. Then

htpIq “ htpqq “ htpQq ě htpIBq

3.7 Finitely Generated Extensions
Theorem 3.15. For a Noetherian ring A, we have

dimArx1, . . . , xns “ dimA ` n

Proof. It suffices to show the case n “ 1. Put B “ Arxs. Let p P SpecpAq and P P SpecpBq that is maximal
among prime ideals lying over p. We contend htpP{pBq “ 1. We have Bp{pBp “ Arxs bA κppq “ κppqrxs

so Bp{pBp is a PID, and therefore every maximal prime has height one. Thus htpP{pBq “ 1. Since Arxs

is free over A, Theorem 3.14 2. shows that htpPq “ htppq ` 1. Since SpecpBq Ñ SpecpAq is surjective, this
gives dimB “ dimA ` 1.

Definition. A ring A is catenary if for each p Ď q P SpecpAq,

(i) htpq{pq ă 8;

(ii) htpqq “ htppq ` htpq{pq.

• If A is Noetherian, (i) is automatically satisfied.

• For A Noetherian domain, TFAE:

- A is catenary.

- For each p Ď q P SpecpAq, htpqq “ htppq ` htpq{pq.

- For each p Ď q P SpecpAq with htpq{pq “ 1, htpqq “ htppq ` 1.

30



• If A is catenary, so are its localizations and its quotient by an ideal.

A ring A is universally catenary if A is Noetherian and every A-algebra of finite type is catenary.

• A Noetherian ring A is universally catenary iff Arx1, . . . , xns is catenary for all n ě 0.

• If A is universally catenary, so are its localizations, quotient rings and any A-algebra of finite type.

Theorem 3.16. Let A be a Noetherian domain and B Ě A an A-algebra of finite type that is an integral
domain. Let P P SpecpBq and p “ P X A. Then

htpPq ď htppq ` tr. degAB ´ tr. degκppq κpPq

with equality when A is universally catenary, or if B is a polynomial ring of A. Here tr. degAB “

tr. degFracpAq FracpBq.

Proof. Since transcendence degree is additive in tower of fields, by induction we may assume B is generated
by single element, i.e. B “ Arxs. Replacing A,B by the localization at p, we may assume pA, pq is local.
Put k “ κppq “ A{p, and define

I “ tfpT q P ArT s | fpxq “ 0u

Then B “ ArT s{I. We divide the proof into two cases.

• I “ 0. Then B “ ArT s is the polynomial ring, so that tr. degAB “ 1 and B{pB “ krT s. We have
two cases.

- P Ľ pB. Then htpP{pBq “ 1. Notice that B{pB “ krXs is a PID, and therefore P{pB is

maximal and principal, so κpPq “
krxs

P {pB
is a finite extension of k. Thus tr. degk κpPq “ 0.

- P “ pB. Then htpP{pBq “ 0, and tr. degk κpPq “ 1.

In either case, we have htpP{pBq “ 1´ tr. degk κpPq. By Theorem 3.14, htpPq “ htppq ` htpP{pBq.
Combining these two equalities gives the result.

• I ‰ 0. Then tr. degAB “ 0, since FracpBq “ KrT s{IKrT s is a finite extension of K “ FracpAq.
Denote by P˚ the inverse image of P in ArT s; we have P “ P˚{I and κpPq “ κpP˚q. Since A is a
subring of B “ ArT s{I, AX I “ 0. Since SpecpKrT sq Ñ SpecpArT sq is surjective and ArT s Ñ KrT s

is flat, by Theorem 3.14

htpIq “ htpIKrT sq ď dimKrxs “ 1

Since I ‰ 0, htpIq “ 1, and hence

htpPq ď htpP˚q ´ htpIq “ htpP˚q ´ 1

with equality if A is universally catenary (note that I is prime). On the other hand, we have
htpP˚q “ htppq ` 1 ´ tr. degk κpP˚q by the first case, and κpPq “ κpP˚q. These imply the result at
once.
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4 Differentials
Definition. Let S be a ring and M an S-module. A map d : S Ñ M is called a derivation if it satisfies
the Leibniz rule, i.e., for all f, g P S

dpfgq “ fdpgq ` gdpfq

If S is an R-algebra, we say d is R-linear if it’s an R-homomorphism.

• The set DerRpS,Mq of all R-linear derivations S Ñ M is naturally an S-module, given by

bd : f ÞÑ bdpfq P M

for all b P S, d P DerRpS,Mq.

• For any derivation d : S Ñ M ,

dp1q “ dp1 ¨ 1q “ 1dp1q ` 1dp1q

so that dp1q “ 0. It follows that d is R-linear iff da “ 0 for all a P R.

4.1 Kähler differentials
Definition. Let S be an R-algebra. The module of Kähler differentials of S over R is the S-module
ΩS{R together with an R-derivation d : S Ñ ΩS{R, called the universal R-linear derivation, that satisfies
the following universal property:

DerRpS,Mq HomSpΩS{R,Mq

e1 : S Ñ M e1 ˝ d : ΩS{R Ñ M

„

is an isomorphism whenever M is an S-module.

• ΩS{R exists and is unique up to a unique isomorphism. Precisely, we can take ΩS{R to be the S-
module generated by the symbol tdf | f P Su subject to the Leibniz rules and R-linearity , and take
d : S Ñ ΩS{R to be the R-homomorphism defined by dpfq “ df for each f P S.

• If S “ RrfisiPI , then ΩS{R is generated by dfi pi P Iq as an S-module. In particular, ΩS{R is finite
over S if S is an R-algebra of finite type.

Proposition 4.1. If S “ Rrx1, . . . , xns is a polynomial ring over R, then ΩS{R “
n

À

i“1

Sdxi is a free
S-module. Explicitly, for f P S, we have

df “

n
ÿ

i“1

Bf

Bxi
dxi
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Proof. Clearly ΩS{R is generated by dxi as S-modules, so we have a surjection Sn Ñ ΩS{R. On the
other hand, the partial derivative Bi “ B

Bxi
defines a map ΩS{R Ñ S by Bipdxjq “ δij, so we have a map

pB1, . . . , Bnq : ΩS{R Ñ Sn. One can verify they are mutually inverse.

Example. Let R be a ring and S be a localization or a quotient of R. Then ΩS{R “ 0.

• Say S is a quotient of R. Since ΩS{R is generated by the symbols db for all b P S subject to the Leibniz
rule and R-linearity, dr “ 0 for all r P R. For b P S, say r P R is mapped to b; then db “ da “ 0.

• Say S “ T´1R for some multiplicatively closed set T Ď R. For s P S, there exists t P T with ts P R.
Then 0 “ dptsq “ tds, and hence ds “ 0 for t P S is invertible.

We can view the assignment of Kähler differentials as a functor. Let C be the category whose object
consists of all ring homomorphisms φ : R Ñ S. A morphism from φ : R Ñ S to ψ : R1 Ñ S 1 is a pair of
homomorphisms f : R Ñ R1, g : S Ñ S 1 such that the diagram commutes:

S S 1

R R1

g

f

öφ ψ

Define the functor Ω : C Ñ Mod by assigning to each morphism pR,Sq Ñ
C

pR1, S 1q the the morphism

ΩS{R ΩS1{R1

S S 1

öd d

where the bottom horizontal morphism is the given S Ñ S 1, and the upper horizontal morphism is the
unique S-module homomorphism induced from the universal property, by viewing ΩS1{R1 as an S-module.

In practice, the map R Ñ R1 will always be the identity, and the S-homomorphism ΩS{R Ñ ΩS1{R1

is replaced by the S 1-homomorphism S 1 bS ΩS{R Ñ ΩS1{R1 . We often call ΩS{R the relative cotangent
functor. It is, in the following sense, a right exact functor.

Proposition 4.2 (Relative cotangent sequence). If R Ñ S Ñ T are maps of rings, then we have an exact
sequence of T -modules

T bS ΩS{R ΩT {R ΩT {S 0

c b db cdb

dc dc

In addition, d has a left inverse if and only if any R-linear derivation S Ñ M can be extended to a R-linear
derivation T Ñ M for all T -modules M .
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Proof. Only the last statement needs a proof. d has a left inverse if and only if the induced map

HomT pT bS ΩS{R,Mq Ð HomT pΩT {R,Mq

is surjective for every T -module M , i.e. DerRpS,Mq Ð DerRpT,Mq is surjective.

Proposition 4.3 (Conormal sequence). If π : S Ñ T is a surjective R-algebra homomorphism with kernel
I, then there is an exact sequence of T -modules

I{I2 T bS ΩS{R ΩT {R 0

f 1 b df

c b db cdb

d Dπ

Moreover,

1. Put S1 :“ S{I2. Then ΩS{R bR T – ΩS1{R bS1 T .

2. d has a left inverse iff 0 Ñ I{I2 Ñ S1 Ñ T Ñ 0 splits.

Proof. Consider the map d : I Ñ ΩS{R which is the restriction to I the universal derivation S Ñ ΩS{R.

• If b P S, c P I, dpbcq “ bdpcq`cdpbq ” bdpcq pmod Iq, so d induces an S-linear map I Ñ ΩS{R{IΩS{R “

T bS ΩS{R.

• Take b P I as well; this shows the induced map descends to a map d : I{I2 Ñ T bS ΩS{R.

By the right adjointness of the tensor product, we see T bS ΩS{R is generated as a T -module by db for
b P S subject to the Leibniz rules and R-linearity. This is the same as the description of ΩT {R, except
that the elements df with f P I are replaced by d0 “ 0 (for 0 P R). Thus ΩT {R is the cokernel of
d : I{I2 Ñ T bS ΩS{R as claimed.

1. It’s an isomorphism if and only if for each T -module M ,

HomT pΩS{R bS T,Mq Ð HomT pΩS1{R bS1 T,Mq

is an isomorphism, i.e. DerRpS,Mq Ð DerRpS1,Mq is an isomorphism for each S{I-module M . This
is clear from the computation in the beginning of the proof.

2. By 1., we can replace S and I by S{I2 and I{I2, respectively, so that we may assume I2 “ 0. Suppose
d has a left inverse σ : T bSΩS{R Ñ I. Putting Db :“ σp1bdbq for each b P S, we defines an R-linear
derivation D : S Ñ I such that Df “ f for each f P I. Then the map τ : S Ñ S defined by
τ “ idS ´D is an R-algebra homomorphism vanishing on I, so it induces a map τ : T – S{I Ñ S.
Now πτ “ πpidS ´Dq “ π, for π vanishes on I, proving that the sequence splits.
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Conversely, let τ : T Ñ S be a right inverse of π : S Ñ T – S{I. Define D : S Ñ S by D “ idS ´τπ.
Define σ : ΩS{R Ñ S by σpdbq “ Dpbq; since πσpdbq “ πDpbq “ πpbq ´ πpbq “ 0, we see the image
of σ is contained in I. Since I2 “ 0, I is a T -module, so we can extend σ to a T -homomorphism
σ : T bS ΩS{R Ñ I. Finally, for each f P I, σpdfq “ Dpfq “ f ´ τπpfq “ f “ idIpfq, so σ is a left
inverse of d.

Corollary 4.3.1 (Coequalizer). If T “ coequalpψ, ψ1 : S1 Ñ S2q is the coequalizer in the category of
R-algebras, then there is an exact sequence of T -modules

T bS1 ΩS1{R T bS2 ΩS2{R ΩT {R 0
idT bDψ´idT bDψ1

Proof. By the conormal sequence, ΩT {R is the quotient of T bS2 ΩS2{R by the submodule generated by the
elements 1 b dpψpbq ´ ψ1pbqq. This submodules is precisely the image of idT bDψ ´ idT bDψ1.

Example. If S is of finite type over R, say S “ Rrx1, . . . , xns{I with I “ pf1, . . . , fmq, then

• S bR ΩRrx1,...,xns{R “
n

À

i“1

Sdxi.

• By the conormal sequence,

ΩS{R “ coker

˜

d : I{I2 Ñ

n
à

i“1

Sdxi

¸

• Writing I{I2 as a homomorphic image of
m
À

i“1

Sei, where ei is sent to fi. Then the composition

J :
m
À

i“1

Sei I{I2
n

À

i“1

Sdxi

is a map of free S-modules whose matrix representation is the Jacobi matrix of the fj with respect
to the xi; the pi, jq entry of J is Bfj{Bxi.

Hence, ΩS{R is the cokernel of the Jacobi matrix J “ pBfj{Bxiq.
For an explicit example, consider the ring S “ Rrx, y, ts{py2 ´ x2pt2 ´ xqq. In the case we have

J “

¨

˚

˝

3x2 ´ 2xt2

2y

´2x2t

˛

‹

‚

and following the computation above we see ΩS{R is the S-module generated by dx, dy, dt with a single
relation

p3x2 ´ 2xt2qdx ` p2yqdy ´ p2x2tqdt “ 0
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Proposition 4.4 (Base change). For any R-algebras R1 and S, we have the commutative diagram

R1 bR ΩS{R

R1 bR S

ΩpR1bRSq{R1

„

1bd

d

Proof. From the morphism pR,Sq Ñ pR1, R1 bR Sq, we obtain a map R1 bR ΩS{R Ñ ΩpR1bRSq{R1 , sending
a1 b db to dpa1 b bq. On the other hand, 1 b d is an R1-linear derivation, so from the universal property we
obtain ΩpR1bRSq{R1 Ñ R1 bR ΩS{R, sending dpa1 b bq to a1 b db.

Proposition 4.5 (Tensor product). If T “
Â

R Si is the tensor product (coproduct) of some R-algebras
Si, then

ΩT {R –
à

i
pT bSi

ΩSi{Rq “
à

i

`

p
â

R,j‰i
Sjq bR ΩSi{R

˘

by an isomorphism α satisfying

α : dp¨ ¨ ¨ b 1 b bi b 1 b ¨ ¨ ¨ q ÞÑ p. . . , 0, 1 b dbi, 0, . . .q

where bi P Si occurs in the i-th place in each expression.

Proof. The second equality is clear. Denote by Ω the middle object. Write di : Si Ñ ΩSi{R for the universal
derivation. Then we have

1 b di : T “

´

â

j‰i
Sj

¯

bR Si Ñ

´

â

j‰i
Sj

¯

bR ΩSi{R

Only finitely many of the maps 1 b di are nonzero on a given element in T , so the map e : T Ñ Ω given
by e “

ř

i 1 b di is well-defined. Since e is a sum of derivation, it is a derivation itself, so it gives a map
α : ΩT {R Ñ Ω defined by dpbibiq ÞÑ epbibiq.

Conversely, for each Si consider the composition Si Ñ T Ñ ΩT {R; by the universal property, it gives

βi : T bSi
ΩSi{R ΩT {R

1 b dibi dp1 b biq

All βi then produce a map Ω Ñ ΩT {R, and it’s inverse to α.

Corollary 4.5.1. If T “ Srx1, . . . , xns is a polynomial ring over an R-algebra S, then

ΩT {R – pT bS ΩS{Rq ‘

˜

n
à

i“1

Tdxi

¸
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Proof. Put T 1 “ Rrx1, . . . , xns; then T “ S bR T
1. By Proposition,

ΩT {R – pT bS ΩS{Rq ‘ pT bT 1 ΩT 1{Rq

The final expression results from Proposition 4.1.

Example. Let R,S, T be as in the corollary. Let I be an ideal of T and form T 1 “ T {I. From the conormal
sequence we have an exact sequence

I{I2 T 1 b ΩT {R ΩT 1{R 0d

with d defined by dpfq “ 1 b dT {Rf . The isomorphism in the corollary is given by

ΩT {R pT bS ΩS{Rq ‘ p
Àn

i“1 Tdxiq

dT {Rpaxr11 ¨ ¨ ¨ xrnn q xr11 ¨ ¨ ¨ xrnn .dS{Ra `
n
ř

i“1

a
Bpxr11 ¨ ¨ ¨ xrnn q

Bxi
dxi

Combining these two isomorphisms we obtain

ΩT 1{R “
pT 1 bS ΩS{Rq ‘ p

Àn
i“1 T

1dxiq
B

pdP qpxq `
n
ř

i“1

BP

Bxi
dxi

ˇ

ˇ

ˇ
P P I

F

T 1

where pdP qpxq P T bS ΩS{R is a polynomial obtained by applying dS{R to each coefficient of P .

Theorem 4.6 (Colimits). Let B be a diagram in the category of R-algebras, and set T :“ lim
ÝÑ

B. If F
is the functor from B (identifying with its image) to the category of T -modules taking an object S to
T bS ΩS{R and a morphism φ : S 1 Ñ S to the morphism 1 b Dφ : T bS pS bS1 ΩS1{Rq Ñ T bS ΩS{R, then

ΩT {R “ lim
ÝÑ

F

Proposition 4.7 (Localization). If S is an R-algebra and T Ď S is a multiplicatively closed set, then

ΩT´1S{R – T´1S bS ΩS{R

in such a way that dp1{tq “ ´t´2dt for all t P T .

Proof.

Method 1 First suppose T “ ttn | n ě 1u for a single t P S. Then T´1S – Srxs{ptx ´ 1q. By Corollary
4.5.1 and conormal sequence

ΩT´1S{R –
T´1SΩS{R ‘ T´1Sdx

T´1Sdptx ´ 1q
“
T´1SΩS{R ‘ T´1Sdx

TS´1ptdx ` xdtq

Since t P T´1S is invertible, we see ΩT´1S{R “ T´1SΩS{R with dx identified with ´
x

t
dt. Thinking of x as

t´1, this reads dp1{tq “ ´t´2dt.
For the general case, recall that T´1S “ lim

ÝÑ
tPT

St. Hence by Theorem above, we hae

ΩT´1S{R “ lim
ÝÑ
tPT

T´1S bSt ΩSt{R “ lim
ÝÑ
tPT

T´1S bSt St bS ΩS{R “ T´1S bS ΩS{R
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Method 2 We prove there exists d1 : T´1S Ñ T´1SbSΩS{R sending 1{t to ´t´2dt satisfies a commutative
diagram

T´1S bS ΩS{R

T´1S

ΩT´1S{R

„

d1

d

First, the composition S Ñ T´1S Ñ ΩT´1S{R is anR-linear derivation, and hence it gives an S-homomorphism
ΩS{R Ñ ΩT´1S{R, or equivalently, a T´1S-homomorphism T´1S bS ΩS{R Ñ ΩT´1S{R, mapping bt´1 b ds to
bt´1ds.

Second, to get a upward map, we must verify that d1 is a well-defined R-linear derivation. Suppose
b{s “ 0 in T´1S; then bt “ 0 for some s P T . Then dpb{sq “ s´2psbd ´ bdsq. Since

t2psbd ´ bdsq “ tsptbd ` bdtq ´ spbtqdt ´ tpbtqds “ 0

we see dpb{sq “ 0 in T´1S bS ΩS{R, so that d1 is well-defined. It’s clear a derivation , as one learnt in
calculus. Hence, by the universal property, we obtain a map ΩT´1S{R Ñ T´1S bS ΩS{R carrying cdpb{sq to
´cs´2 b psbd ´ bdsq. In this stage it is direct to see the obtained maps are mutually inverse.

Method 3 Use the relative cotangent sequence and the example preceding it. We must show DerRpS,Mq Ð

DerRpT´1S,Mq is surjective for each T´1S-module M . Let D : S Ñ M be an R-linear derivation, and

for b{s P T´1S with b P S, s P T , define Dpb{sq “
sDpbq ´ bDpsq

s2
. We must show it defines a well-defined

derivation D : T´1S Ñ M whose restriction to S is D. This is already shown in Method 2.

Proposition 4.8 (Finite direct products). If S1, . . . , Sn are R-algebras and S “
ś

i Si, then

ΩS{R “

n
ź

i“1

ΩSi{R

Proof. If ei is the idempotent of S that is the unit of Si, and D P DerRpS,Mq for some S-module M , then
p2ei ´ 1qDpeiq “ 0. Since p2ei ´ 1q2 “ 4e22 ´ 4ei ` 1 “ 1, 2ei ´ 1 is a unit, and hence Dei “ 0. Therefore,
Dpeifq “ eiDf for all f P S. Consequently, D maps Si :“ eiS to Mi “ eiM , and corresponds to a unique
map ΩSi{R Ñ Mi. It follows that S Ñ

ś

iΩSi{R satisfies the universal property of ΩS{R.

4.2 Kähler differential as a conormal module
Lemma 4.9. Let φ : S Ñ S 1 be a map of R-algebras, and let δ : S Ñ S 1 be a map of abelian groups. If
δpSq2 “ 0, then φ ` δ is a homomorphism of R-algebras if and only if δ is an R-linear derivation, in the
sense that

δpb1b2q “ φpb1qδpb2q ` φpb2qδpb1q
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Proof. By computation,
pφ ` δqpb1b2q “ φpb1b2q ` δpb1b2q

pφ ` δqpb1q ¨ pφ ` δqpb2q “ φpb1b2q ` φpb1qδpb2q ` φpb2qδpb1q ` δpb1qδpb2q

The last term in the second identity is zero, so they are equal if and only if

δpb1b2q “ φpb1qδpb2q ` φpb2qδpb1q

Also, for r P R, s P S, we have pφ ` δqprsq “ rpφ ` δqpsq if and only if δprsq “ rδpsq.

Let R Ñ S be a ring homomorphism. Consider the multiplication µ : S bR S Ñ S, and denote
I “ kerµ. Let e : S Ñ I{I2 be the map induced by b ÞÑ 1 b b ´ b b 1.

Theorem 4.10. pe, I{I2q is naturally isomorphic to pd,ΩS{Rq.

Proof. We first show that e : S Ñ I{I2 is a derivation. Consider the exact sequence

I{I2 pS bR Sq{I2 S 0

First, note that S acts on I{I2 naturally by any section of pS bR Sq{I2 Ñ S. Note that b ÞÑ 1 b b and
b ÞÑ b b 1 are two homomorphic sections of S Ñ pS bR Sq{I2, so epT q Ď I{I2. By Lemma, e is an
R-derivation.

By the universal property for pd,ΩS{Rq, there exists a unique map φ : ΩS{R Ñ I{I2 such that e “ φd.
We shall prove φ is an isomorphism.

Let T “ S ‘ ΩS{R be the abelian group direct sum. For b, b1 P S and u, u1 P ΩS{R, define

pb, uqpb1, u1q :“ pbb1, bu1 ` b1uq

This is the trivial extension of S by ΩS{R; S acts on T as S ‘ t0u. Define the ring homomorphism

ψ : S bR S T

a b b pab, adbq

by ψ1 : S Q b ÞÑ pb, dbq P T and ψ2 : S Q a ÞÑ pa, 0q P T ; ψ2 is clearly a ring homomorphism, and since

ψ1pabq “ pab, dpabqq “ pab, adb ` bdaq “ pa, daqpb, dbq “ ψ1paqψ1pbq

ψ1 is also a ring homomorphism. Then by construction, ψpIq Ď t0u ‘ ΩS{R; let ψ1 : I Ñ ΩS{R given by
ψpaq “ p0, ψ1paqq for all a P I. Since ψ is a ring homomorphism, according to the multiplication rule on T ,
ψpI2q “ 0, and hence ψ1 descends to a map ψ1 : I{I2 Ñ ΩS{R. Finally,

• For b P S,
ψ1φpdbq “ ψ1p1 b b ´ b b 1q “ db

• For x “
ř

ai b bi P I{I2,

φψ1p
ÿ

ai b biq “ φp
ÿ

aidbiq “
ÿ

aip1 b bi ´ bi b 1q “ x ´ p
ÿ

aibiq b 1 “ x
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4.3 Field extensions
4.3.1 Separable generation

Definition. Let K{k be a field extension.

1. A transcendence basis pxλqλ of K{k is called a separating transcendence basis if K is separably
algebraic over kpxλqλ.

2. K is separably generated over k if K{k has a separating transcendence basis.

Put rpKq :“ rankK ΩK{k. Suppose L “ Kptq. We compare rpKq and rpLq.

Case 1. t is transcendental over K. Then by Corollary 4.5.1,

ΩKrts{k “ pKrts bK ΩK{kq ‘ pKrtsdtq

and by Proposition 4.7
ΩL{k “ pL bK ΩK{kq ‘ Ldt

Thus rpLq “ rpKq ` 1.

Case 2. t is separably algebraic over K. Then L “ Krts “ KrXs{pfpXqq with f “ mt,K . By Example, we
see

ΩL{k “
pL bK ΩK{kq ‘ LdX

xpdfqptq ` f 1ptqdXyL

Since f 1ptq ‰ 0 is invertible in L, ΩL{k – L bK ΩK{k, so thus rpLq “ rpKq. From this we see any
derivation of K into L can be extended uniquely to a derivation of L.

Case 3. Charpkq “ p, tp “ a P K, t R K, dK{ka “ 0. Then L “ Krts “ KrXs{pXp ´ aq. Consider the
isomorphism in Case 2 with fpXq “ Xp ´ a; since pdfqptq ` f 1ptqdX “ 0, we have

ΩL{k “ pL bK ΩK{kq ‘ LdX

so rpLq “ rpKq ` 1.

Case 4. Charpkq “ p, tp “ a P K, t R K, dK{ka ‰ 0. Again, but pdfqptq ` f 1ptqdX “ ´dK{ka ‰ 0, so
rpLq “ rpKq.

Theorem 4.11.

1. Let k be a field, K{k an extension and L{K a finitely generated extension. Then

rankLΩL{k ě rankK ΩK{k ` tr. degK L

with equality if L{K is separably generated.
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2. Let L{k be a finitely generated extension. Then

rankLΩL{k ě tr. degK L

with equality if and only if L{k is separably generated over k. In particular, ΩL{k “ 0 if and only if
L{K is separably algebraic over k.

Proof.

1. This follows from the above discussion.

2. The inequality is a special case of 1. Now suppose ΩL{k “ 0, i.e., rpLq “ 0. Then for k Ď K Ď L we
have rpKq “ 0, so the case 1, 3, 4 above cannot occur, implying L{k is separably algebraic. Suppose
next that rpLq “ tr. degk L “ r. Let x1, . . . , xr P L such that dx1, . . . , dxr form a basis for ΩL{k over
L. The relative cotangent sequence

L bkpx1,...,xrq Ωkpx1,...,xrq{k Ñ ΩL{k Ñ ΩL{kpx1,...,xrq Ñ 0

implies ΩL{kpx1,...,xrq “ 0, so L{kpx1, . . . , xrq is separably algebraic as shown above. Since r “

tr. degk L, the elements x1, . . . , xr form a transcendence basis for L{k.

Lemma 4.12. Let K{k be an algebraic extension. TFAE:

(1) K{k is separably algebraic;

(2) The ring K bk k
1 is reduced for any extension k1{k;

(3) ditto for any algebraic extension k1{k;

(4) ditto for any finite extension k1{k.

Proof. Each property holds if and only if it holds for any finite subextension of K{k, so we may assume
that rK : ks ă 8.

(1) ñ (2): Suppose K{k is finite separable. Then K “ kptq for some t P K by the primitive element
theorem. Let fpXq “ mt,kpXq be the minimal polynomial of t; then K – krXs{pfpXqq, and thus
K bk k

1 – k1rXs{pfpXqq. Since fpXq is separable, by Chinese Remainder theorem we see K bk k
1

becomes a direct product of finite separable extensions of k1, and thus K bk k
1 is reduced.

(2) ñ (3) ñ (4): Trivial.
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(4) ñ (1): Suppose Char k “ p ą 0 and K contains an inseparable element t over k. Let fpXq “

mt,kpXq; then fpXq “ gpXpq for some g P krXs. Say gpXq “ a0 ` a1X ¨ ¨ ¨ ` anX
n and put

k1 :“ kpa
1
p

0 , . . . , a
1
p
n q

Then fpXq “ gpXpq “ hpXqp for some hpXq P k1rXs, and kptq bk k
1 “ k1rXs{phpXqpq has nilpotent

elements. Since k1 is a field, kptq bk k
1 is a subring of K bk k

1, so that the condition (4) does not
hold.

4.3.2 Separable algebra

Definition. Let k be a field and A a k-algebra. We say A is separable over k if for any algebraic extension
k1{k, the ring A bk k

1 is reduced.
There are some immediate consequences of the definition.

• If A is separable, then so is any k-subalgebra of A.

• If all finitely generated k-subalgebras of A are separable, then so is A.

• If for any finite extension k1{k, the ring A bk k
1 is reduced, then A is separable.

Proof. Suppose for some algebraic extension k1{k, the ring A bk k
1 contains a nilpotent, say t ‰ 0

and tℓ “ 0. Write t “
n
ř

i“1

ai b ci and tℓ “
m
ř

i“1

pa1
i, c

1
iq in A ˆ k1 for some ai, a1

i P A, ci, c
1
i P k1 and form

the field k2 :“ kpci, c
1
jq 1ďiďn

1ďjďm
. Then 0 ‰ t P A bk k

2 and tℓ “ 0 in A bk k
2. Thus A bk k

2 is not
reduced.

Lemma 4.13. If k1{k is a separately generated extension, and if A is a reduced k-algebra, then Abk k
1 is

reduced.

Proof. We may assume A is finitely generated over k. Since A is reduced, the homomorphism

A A1 :“
ś

p: minimal
Ap

is injective, and each Ap is a field. Since A is Noetherian, the RHS is actually a finite product. (Actually,
A1 is isomorphic to FracpAq.) Since A bk k

1 Ď A1 bk k
1, we may further assume A is a field.

It suffices to consider the cases k1{k is separably algebraic and k1{k is purely transcendental. Then the
former case follows from Lemma 4.12. In the latter case, say k1 “ kpt1, . . . , tnq, then Abk k

1 Ď Apt1, . . . , tnq

is reduced.
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Corollary 4.13.1. If k is a perfect field, then a k-algebra A is separable if and only if it is reduced. In
particular, any extension field K of k is separable over k (as k-algebras).

Proof. k being perfect, any algebraic extension k1 of k is separable, so Abk k
1 is reduced by lemma above,

Conversely, if A is separable, then by definition A “ A bk k is reduced.

Lemma 4.14. Let k be a field with Char k “ p ą 0, and K{k a finitely generated field extension. TFAE:

(i) K is separable over k (as k-algebras);

(ii) the ring K bk k
1
p is reduced;

(iii) K is separably generated over k.

where k
1
p :“ ty P k | yp P ku and k is the algebraic closure of k.

Proof.

(iii) ñ (i) If K{k is separably generated, then k1 bk K is reduced for any extension k1{k by Lemma
4.13.

(i) ñ (ii) Trivial.

(ii) ñ (iii) Let K “ kpx1, . . . , xnq; suppose x1, . . . , xr form a transcendence basis for K{k, and suppose
xr`1, . . . , xq are separable over kpx1, . . . , xrq while xq`1 is not. Put y “ xq`1 and fpY pq be the minimal
polynomial of y over kpx1, . . . , xrq. Clearing the denominators of the coefficients of f we obtain a
polynomial F pX1, . . . , Xr, Y

pq irreducible in krX,Y s such that F px1, . . . , xr, y
pq “ 0. Then there

must be at least one Xi such that BF

BXi

‰ 0, for otherwise (F is a polynomial in Xp) we would has

F pX,Y pq “ GpX,Y qp with G “ k
1
p rX,Y s so that

krx1, . . . , xr, ys bk k
1
p –

krX,Y s

pF pX,Y pqq
bk k

1
p –

k
1
p rX,Y s

pGpX,Y qpq

has a nilponent element; since krx1, . . . , xr, ys bk k
1
p is a subring of K bk k

1
p , this leads to a contra-

diction to (ii). Hence, say BF

BX1

‰ 0, so that x1 is separably algebraic over kpx2, . . . , xr, yq, and the
same holds for xr`1, . . . , xq as well. Exchanging x1 with y “ xq`1 we have that xr`1, . . . , xq`1 are
separable over kpx1, . . . , xrq. Now by induction on q ě r ` 1 we see that we can choose a separating
transcendence basis for K{k from the set tx1, . . . , xnu.
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• (Exchanging x1 and y is valid) Consider the lattice

kpx1, . . . , , xr, yq

kpx2, . . . , xr, yq kpx1, . . . , xrq

kpx2, . . . , xrq

k

finite sep finite

For xi p1 ď i ď nq, since xi is algebraic over kpx1, . . . , xrq, it is also algebraic over kpx1, . . . , xr, yq.
Since kpx1, . . . , xr, yq{kpx2, . . . , xr, yq is finite, xi is also algebraic over kpx2, . . . , xr, yq. This
means K is algebraic over kpx2, . . . , xr, yq; since tr. degkK “ r, x2, . . . , xr, y are algebraically
independent over k.

• We know xr`1, . . . , xq are separably algebraic over kpx1, . . . , xrq. Let r ` 1 ď i ď q. Since
kpx1, . . . , xr, yq{kpx2, . . . , xr, yq is finite separable, that xi is separable over kpx2, . . . , xr, yq is
equivalent of that xi is separable over kpx1, x2, . . . , xr, yq, the latter being true for xi is separable
over kpx1, . . . , xrq.

Proposition 4.15. Let k be a field and A a separable k-algebra. Then for any extension k1 of k (algebraic
or not), the ring A bk k

1 is reduced and is a separable k1-algebra.

Proof. Enough to prove that Abk k
1 is reduced. The statement holds for any algebraic extension of k (by

definition of a separable algebra), so we may assume k1 contains the algebraic closure k of k. (This is to
deal with the case Char k ą 0.)

Since A bk k is reduced by assumption, and since any finitely generated extension of k is separably
generated (Lemma 4.13.1 for Char k “ 0 and Lemma 4.14.(ii) for Char k ą 0), the ring A bk k

1 “

pA bk kq bk k
1 is reduced by Lemma 4.13.

4.3.3 Linear disjointness

Definition. Let k Ď L be a field and K,K 1 be two subfields of L containing k. We say K,K 1 are linearly
disjoint over k if they satisfies the following equivalent conditions.

(a) If α1, . . . , αn P K are k-linearly independent, they are K 1-linearly independent.

(b) The condition (a) holds if we interchange K and K 1.

(c) The canonical homomorphism K bk K
1 Ñ KK 1 Ď L is an isomorphism.
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Proof. It suffices to show the equivalence (a) ô(c).

(a) ñ (c): Say ξ “
n
ř

i“1

xibyi lies in the kernel of the homomorphism. Assume x1, . . . , xr are maximal

k-linearly independent among the set tx1, . . . , xnu ; then we can write ξ “
r

ř

i“1

xi b y1
i. If ξ ‰ 0, then

y1
i ‰ 0 for some i, while its image

r
ř

i“1

xiy
1
i “ 0 P KK 1 a contradiction to (a).

(c) ñ (a): (c) implies that if α1, . . . , αn P K are k-linearly independent and β1, . . . , βm P K 1 are
k-linearly independent, then the αiβj p1 ď i ď n, 1 ď j ď mq are k-linearly independent. Indeed,
the αi b βj P K bk K

1 are k-linearly independent, so the isomorphism implies so are the αiβj. Now
(a) is clear.

Theorem 4.16 (MacLane). Let k be a field with Char k “ p ą 0 and K{k an extension. TFAE:

(a) K is separable over k (as k-algebras);

(b) K and kp
´8

:“ tx P k | xp
n

P k for some n ě 1u are linearly disjoint over k.

(c) K and k
1
p are linearly disjoint over k.

Proof.

(a) ñ (b) Suppose α1, . . . , αn P K are k-linearly independent and
n
ř

i“1

ciαi “ 0 for some ci P kp
´8 .

Let k1 :“ kpc1, . . . , cnq; the k1pℓ Ď k for some ℓ " 0, and A :“ K bk k
1 is reduced. Since A

is a finite dimensional K-algebras, A is Artinian, and thus every prime ideal is maximal. Let
mi P SpecpAq pi “ 1, 2q; then mpℓ

i Ď K so mpℓ

i “ 0; taking radical, one gets m1 “ m2. Thus A has
only one prime ideal, and since A is reduced, it follows that A is a field, forcing that A “ Krk1s.
Thus

n
ř

i“1

αi b ci “ 0 so that ci “ 0.

(b) ñ (c) Trivial.

(c) ñ (a) Since then K bk k
1
p is a field, it is reduced, and thus K is separable over k by Lemma 4.14.
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5 Formal Smoothness
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6 Spectral Sequences
Let C be an abelian category, and KompCq be the category of complexes in C. Let pK‚, d‚q P KompCq and
F pK‚ pp P Zq a decreasing filtration of K‚. More precisely, for each p, n, we have a commutative diagram

F pKn Kn

F pKn`1 Kn`1

dn dn

and a chain
¨ ¨ ¨ F p`1Kn F pKn F p´1Kn ¨ ¨ ¨ Kn

Then they induces a chain on the cohomology objects

¨ ¨ ¨ HnpF p`1K‚q HnpF pK‚q HnpF p´1K‚q ¨ ¨ ¨ HnpK‚q

The induced morphisms are not necessarily injective. Nevertheless, define

F pHnpK‚q :“ Im pHnpF pK‚q Ñ HnpK‚qq

which is a decreasing filtration of HnpK‚q. Our goal is to understand the HnpK‚q. However it usually
cannot be attained. The second best is to understand its graded pieces, namely

GrpF pHnpKqq :“
F pHnpKq

F p`1HnpKq

By definition, there is an exact sequence

0 F p`1HnpKq F pHnpKq GrpF pHnpKqq 0

A general belief is that if we can understand the first and the third term, we can more or less capture the
middle term. In the following, for convenience, put K “ K‚ and F p “ F pK‚. Consider a commutative
triangle

HnpF p`1q HnpKq

HnpF pq

What we are interested in is the quotient of the vertical image by the horizontal image. For this, we use
some algebras. Consider the short exact of complexes 0 Ñ F p`1 Ñ K Ñ K{F p`1 Ñ 0. Then the induced
sequence can extend the horizontal part of the triangle

HnpF p`1q HnpKq HnpK{F p`1q

HnpF pq
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Lemma 6.1. Given a commutative diagram with the top row being exact

A2 A B

A1

φ2

φ1

ψ

the induced sequence
0 Imφ2 Imφ1 Imψ 0

is exact.

Proof. By commutativity, we see the following diagram commutes

0 Imφ2 Imφ1 Imψ 0

A A1

This shows the exactness at Imφ2 and Imψ. For the second place, consider the diagram with exact rows

0 Imφ2 A B

Imφ1 Imψ 0

Using functor of points, one can readily see that the kernel of the right-bottom map is Imφ2, namely,

0 Imφ2 A B

0 Imφ2 Imφ1 Imψ 0

is commutative with exact rows.

Return to our discussion on the diagram

HnpF p`1q HnpKq HnpK{F p`1q

HnpF pq

By Lemma, GrpF H
npKq – Im pHnpF pq Ñ HnpK{F p`1qq. On the other hand, using the short exact se-

quences
0 Ñ F p{F p`1 Ñ K{F p`1 Ñ K{F p Ñ 0

0 Ñ F p Ñ K Ñ K{F p Ñ 0
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we can extend previous diagram to the following commutative diagram

HnpF p`1q HnpKq HnpK{F p`1q

HnpF pq HnpF p{F p`1q

Hn´1pK{F pq Hn´1pK{F pq

˚˚

with the bottom row, middle and the rightmost column being exact. ˚ means the morphisms are connecting
homomorphisms. We draw it in a cuter way.

HnpF p`1q HnpKq HnpK{F p`1q

HnpF pq HnpF p{F p`1q

Hn´1pK{F pq

˚
˚

Successive uses of Lemma give

GrpF H
npKq – Im

`

HnpF pq Ñ HnpK{F p`1q
˘

–
ImpHnpF pq Ñ HnpF p{F p`1qq

ImpHn´1pK{F pq
˚

Ñ HnpF p{F p`1qq

Now, put

Zp,pnq
8 :“ ImpHnpF pq Ñ HnpF p{F p`1qq

Bp,pnq
8 :“ ImpHn´1pK{F pq

˚
Ñ HnpF p{F p`1qq

Ep,pnq
8 :“ Zp

8

L

Bp
8

so what we obtain becomes GrpF H
npKq – E

p,pnq
8 “ Zp

8

L

Bp
8

. One may ask, suggested by our notation 8,
whether there exist any intermediate terms. The answer is positive, explained as follows. Look at the part

HnpF pq HnpF p{F p`1q

Hn´1pK{F pq

˚
˚

In fact, we have a very long triangle
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HnpF p{F p`2q

HnpF p{F p`rq

HnpF pq HnpF p{F p`1q

Hn´1pK{F pq

Hn´1pF p´r`1{F pq

Hn´1pF 2{F pq

˚
˚

˚

˚

via the natural morphism F p{F p`r Ñ F p{F p`1 and the short exact sequence

0 F p{F p`1 F p´r`1{F p`1 F p´r`1{F p 0

With the diagram above, we define

Zp,pnq
r :“ ImpHnpF p{F p`rq Ñ HnpF p{F p`1qq

Bp,pnq
r :“ ImpHn´1pF p´r`1{F pq

˚
Ñ HnpF p{F p`1qq

Hence we obtain a chain of sub-objects of HpF p{F p`1q “ HpGrpF Kq

Z
p,pnq

2 Ě Z
p,pnq

3 Ě ¨ ¨ ¨ Ě Zp,pnq
r Ě ¨ ¨ ¨ Ě Zp,pnq

8 Ě Bp,pnq
8 Ě ¨ ¨ ¨ Ě B8

r Ě ¨ ¨ ¨ Ě B
p,pnq

3 Ě B
p,pnq

2

This strikes a resemblance to the nested intervals. Finally, define

Ep,pnq
r “ Zp,pnq

r {Bp,pnq
r

Next, we discuss Zp,pnq
r , B

p,pnq
r . Consider the diagram

HnpF p{F p`r`1q HnpF p{F p`1q

HnpF p{F p`rq

induced from the diagram without H. We mimic what we did before. Using the exact sequence 0 Ñ

F p`1{F p`r`1 Ñ F p{F p`r`1 Ñ F p{F p`1 Ñ 0, we obtain

HnpF p{F p`r`1q HnpF p{F p`1q Hn`1pF p`1{F p`r`1q

HnpF p{F p`rq

˚
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Using Lemma again, we obtain an isomorphism

ImpHnpF p{F p`rq Ñ Hn`1pF p`1{F p`r`1qq –
ImHnpF p{F p`r Ñ HnpF p{F p`1qq

ImHnpF p{F p`r Ñ HnpF p{F p`r`1q{F p`1qq
“
Z
p,pnq
r

Z
p,pnq

r`1

Also, from the commutative diagrams

0

F p`1{F p`r F p{F p`r

0 F p`1{F p`r`1 F p{F p`r`1 F p{F p`1 0

0 F p`r{F p`r`1 F p{F p`r`1 F p{F p`r 0

0

we obtain
HnpF p{F p`r`1q HnpF p{F p`1q Hn`1pF p`1{F p`r`1q

HnpF p{F p`rq Hn`1pF p`r{F p`r`1q

HnpF p`1{F p`rq

˚

˚

˚

Hence,

ImpHnpF p{F p`rq Ñ Hn`1pF p`1{F p`r`1qq –
ImpHnpF p{F p`rq

˚
Ñ Hn`1pF p`r{F p`r`1qq

ImpHnpF p`1{F p`rq
˚

Ñ Hn`1pF p`r{F p`r`1qq
“
B
p`r,pn`1q

r`1

B
p`r,pn`1q
r

In conclusion, there is a canonical isomorphism

Z
p,pnq
r

Z
p,pnq

r`1

–
B
p`r,pn`1q

r`1

B
p`r,pn`1q
r

Now, consider the composition

Z
p,pnq
r

B
p,pnq
r

Z
p,pnq
r

Z
p,pnq

r`1

B
p`r,pn`1q

r`1

B
p`r,pn`1q
r

Z
p`r,pn`1q
r

B
p`r,pn`1q
r

E
p,pnq
r E

p`r,pn`1q
r

„

d
p,pnq
r

ö
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Note that Im d
p,pnq
r “ Z

p,pnq
r

L

Z
p,pnq

r`1
– B

p`r,pn`1q

r`1

L

B
p`r,pn`1q
r . Observe that dp,pnq

r ˝ d
p´r,pn´1q
r “ 0 from the

diagram

Z
p´r,pn´1q
r

B
p´r,pn´1q
r

Z
p´r,pn´1q
r

Z
p´r,pn´1q

r`1

B
p,pnq

r`1

B
p,pnq
r

Z
p,pnq
r

B
p,pnq
r

Z
p,pnq
r

Z
p,pnq

r`1

B
p`r,pn`1q

r`1

B
p`r,pn`1q
r

Z
p`r,pn`1q
r

B
p`r,pn`1q
r

E
p´r,pn´1q
r E

p,pnq
r E

p`r,pn`1q
r

„ „

d
p´r,pn´1q
r

ö

d
p,pnq
r

ö

so pE, dq forms a complex. Notice that ker d
p,pnq
r “ Z

p,pnq

r`1 {B
p,pnq
r and Im d

p´r,pn´1q
r “ B

p,pnq

r`1 {B
p,pnq
r . Hence

we obtain
ker d

p,pnq
r

Im d
p´r,pn´1q
r

“
Z
p,pnq

r`1 {B
p,pnq
r

B
p,pnq

r`1 {B
p,pnq
r

–
Z
p,pnq

r`1

B
p,pnq

r`1

“ E
p,pnq

r`1

This special structure of pE
p,pnq
r , d

p,pnq
r q suggests us to view r as the “page number”, and view taking

cohomology of pE
p,pnq
r , d

p,pnq
r q at p-th position as “turning to the next page and locating the same place”.

Now we make a slight change on the notation. Put q “ n´ p, and change pp, pnqq to pp, qq. Namely, we
now write Zp,q

r , Bp,q
r , Ep,q

r , dp,qr , Hp`qpF pq. We call pEp,q
r , dp,qr q with the isomorphisms ker dp,qr

Im dp´r,q`r´1
r

– Ep,q
r`1

a spectral sequence.

• We write Ep,q
2 ñp H

p`qpK‚q for the isomorphism

Ep,q
8 – GrpF pHnpKqq :“

F pHnpKq

F p`1HnpKq

for each p, q, and say that the spectral sequence pE, dq converges to the filtered objected HnpKq.

We return to the discussion on the graded pieces. By definition,

GrpF H
p`qpK‚q “

Zp,q
8

Bp,q
8

“
ImpHp`qpF pq Ñ Hp`qpF p{F p`1qq

ImpHp`q´1pK{F pq
˚

Ñ Hp`qpF p{F p`1qq

and
Ep,q
r “

Zp,q
r

Bp,q
r

“
ImpHp`qpF p{F p`rq Ñ Hp`qpF p{F p`1qq

ImpHp`q´1pF p´r`1{F pq
˚

Ñ Hp`qpF p{F p`1qq

Domains of their numerators can be obtained from the following diagrams.

¨ ¨ ¨ F p`rKp`q´1 F p`rKp`q F p`rKp`q`1 ¨ ¨ ¨

¨ ¨ ¨ F pKp`q´1 F pKp`q F pKp`q`1 ¨ ¨ ¨

¨ ¨ ¨ F pKp`q´1{F p`rKp`q´1 F pKp`q{F p`rKp`q F pKp`q`1{F p`rKp`q`1 ¨ ¨ ¨
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Suppose for each n P Z, there exists p0 “ p0pnq such that F pKn “ 0 for all p ě p0. Then when r " 1,
we have F p`rKp`q “ 0; hence Zp,q

r “ Zp,q
8 .

Imagine another diagram that involves domain of the denominators. Suppose also for each n P Z, there
exists p1 “ p1pnq such that F pKn “ Kn for all p ď p1. Then when r " 1, we have F p´r`1Kp`q “ Kp`q;
hence Bp,q

r “ Bp,q
8 .

Let us combine these two situation. Then for each n P N, the filtration F pKn is finite, in the sense
that there exists integers p0, p1, depending on n such that

Kn “ F p1Kn Ě F p1`1Kn Ě ¨ ¨ ¨ Ě F p0´1Kn Ě F p0Kn “ 0

Then when r " 1, Zp,q
r “ Zp,q

8 and Bp,q
r “ Bp,q

8 , and hence Ep,q
r “ GrpF H

p`qpK‚q.
This condition seems to be very strong, but in fact in many practical examples arising from algebraic

geometry and algebraic topology, the filtrations do have this property.

Example. Consider the double complex pK, d1, d2q

...
...

¨ ¨ ¨ Kp,q`1 Kp`1,q`1 ¨ ¨ ¨

¨ ¨ ¨ Kp,q Kp`1,q ¨ ¨ ¨

...
...

d1

d1

öd2 d2

that is, pKp,‚, d2q and pK‚,q, d1q are complexes with each square commutative. We form its total complex
totK as follows.

• For each n P Z, ptotKqn :“
ź

i`j“n

Ki,j

• For each n P Z, the differential d : ptotKqn Ñ ptotKqn`1 is given by

d “
ÿ

i`j“n

p´1qid2 ` d1

Here i shall be viewed as the p-coordinate.

A decreasing filtration of totpKq is given by the subcomplexes F pptotKq‚ pp P Zq, defined by

F pptotKqn :“
ź

i`j“n
iěp

Ki,j
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This is obtained by dropping those Ki,j with i ă p and collecting those i ě p. From this filtration, we can
construct, as above, a spectral sequence pEp,q

r , dp,qr q with

Ep,q
8 – GrpF H

p`qptotpKqq “
F pHp`q totpKq

F p`1Hp`q totpKq

When K is a first quadrant double complex, that is, Kp,q “ 0 when p ă 0 or q ă 0, then

ptotKqn “
ź

i`j“n

Ki,j “
à

i`j“n

Ki,j

and F pptotKqn is a finite filtration of totK. Generally,

Proposition 6.2. Suppose that for all m P Z, Ki,m´i “ 0 for all but finitely many i. Then

1. For each n, F p totpKqn “ 0 and F p1

totpKqn “ totpKqn for some p, p1.

2. For each p, q, we have Zp,q
r “ Zp,q

8 and Bp,q
r “ Bp,q

8 for some r.

In particular, for each p, q P Z, if r " 2,

Ep,q
r – Ep,q

8 “ GrpF H
p`qptotpKq‚q

Proof. By assumption, for each n, we can find two numbers s “ spnq ă t “ tpnq such that Ki,n´i “ 0 for
i ă s or i ą t. Then for p1 ă s, F p1

totpKqn “ totpKqn, and for p ą t, we have F p totpKqn “ 0.
In computing the following images

Zp,q
r :“ ImpHp`qpF p{F p`rq Ñ Hp`qpF p{F p`1qq

Bp,q
r :“ ImpHp`q´1pF p´r`1{F pq Ñ Hp`qpF p{F p`1qq

we see

• if p ` r ą tpp ` qq, then F p`r totpKqp`q “ 0, so Zp,q
r “ Zp,q

8 in this case.

• if p ´ r ` 1 ă spp ` q ´ 1q, then F p´r`1 totpKqp`q´1 “ totpKqp`q´1, so Bp,q
r “ Bp,q

8 .

When r is large enough, both conditions can be satisfied, and the result follows.

Suppose pE, dq is a spectral sequence with Ep,q
2 ñp H

p`q, where H is filtered by F ‚H. We say pE, dq

is biregular if

1. for each n, there exists p, p1 such that F pHn “ Hn and F p1

Hn “ 0;

2. for each p, q, we have Zp,q
r “ Zp,q

8 and Bp,q
r “ Bp,q

8 for some r.

Corollary 6.2.1. Under the assumption of Proposition, there exists a biregular spectral sequence pE, dq

converging to HptotKq.
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6.1 the E2 page
By the very definition, the numerator of the quotient

Ep,q
2 “

Zp,q
2

Bp,q
2

“
ImpHp`qpF p{F p`2q Ñ Hp`qpF p{F p`1qq

ImpHp`q´1pF p´1{F pq
˚

Ñ Hp`qpF p{F p`1qq

comes from the long exact sequence induced by the short exact sequence

0 F p`1{F p`2 F p{F p`2 F p{F p`1 0

so
Zp,q

2 – kerpHp`qpF p{F p`1q
˚

Ñ Hp`q`1pF p`1{F p`2qq

Consider the complex form by the connecting homomorphisms

¨ ¨ ¨ Hp`q´1pF p´1{F pq Hp`qpF p{F p`1q Hp`q`1pF p`1{F p`2q ¨ ¨ ¨
˚ ˚ ˚ ˚

Then what we do above implies
Ep,q

2 – Hp`qpH‚pGr‚´q
F pKqq, ˚q

Let us specialize to double complexes. In this situation, the graded pieces are fairly simple: we have the
following exact sequence of complexes

0 Ñ F p`1 totpKq‚ Ñ F p totpKq‚ Ñ pKp,‚´p, p´1qpd2q Ñ 0

The rightmost term is just original double complex, but forgetting the horizontal differentials. Hence

Hp`qpGrpF totpKq‚q – Hp`qpKp,‚´p, p´1qpd2q “ HqpKp,‚, d2q

Now we are in the situation

¨ ¨ ¨ Hp`q´1pGrp´1
F totpKq‚q Hp`qpGrpF totpKq‚q Hp`q`1pGrp`1

F totpKq‚q ¨ ¨ ¨

HqpKp´1,‚, d2q HqpKp,‚, d2q HqpKp`1,‚, d2q

˚ ˚ ˚ ˚

On the other hand, since d1 can be view as chain maps between pKp,‚, d1q, d1 induces the maps on cohomology
objects

¨ ¨ ¨ HqpKp´1,‚, d2q HqpKp,‚, d2q HqpKp`1,‚, d2q ¨ ¨ ¨
d1 d1

It is natural to ask whether or not this complex can be fitted into the above complex of graded pieces.
The answer is positive, and it can be proved by the definition of the connecting homomorphism.

Proposition 6.3. We have the following commutative diagram.

¨ ¨ ¨ Hp`q´1pGrp´1
F totpKq‚q Hp`qpGrpF totpKq‚q Hp`q`1pGrp`1

F totpKq‚q ¨ ¨ ¨

¨ ¨ ¨ HqpKp´1,‚, d2q HqpKp,‚, d2q HqpKp`1,‚, d2q ¨ ¨ ¨

˚ ˚ ˚ ˚

d1 d1
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Proof. Let us focus on one block.

Hp`qpGrpF totpKq‚q Hp`q`1pGrp`1
F totpKq‚q

HqpKp,‚, d2q HqpKp`1,‚, d2q

˚

d1

The upper horizontal map comes from the short exact sequence of complexes

0 F p`1{F p`2 F p{F p`2 F p{F p`1 0

Take x P F p totpKqn{F p`1 totpKqn with d2pxq “ 0. Now consider x P F p totpKqn{F p`2 totpKqn, and send
it to F p totpKqn`1{F p`2 totpKqn`1; the result is d1pxq. Since d1pxq P F p`1 totpKqn`1{F p`2 totpKqn`1, we
finally find that

´

Hp`qpGrpF totpKq‚q
˚

Ñ Hp`q`1pGrp`1
F totpKq‚q

¯

prxsq “ rd1pxqs

proving that commutativity.

Corollary 6.3.1. Ep,q
2 – HppHqpK‚,‚, d2q, d1q; more beautifully

Ep,q
2 – Hp

d1pH
q
d2pKqq

6.2 Applications I
Example (Augmented double complexes). Consider the following double complex

...
...

...
...

...

0 F 3 K0,3 K1,3 K2,3 K3,3 ¨ ¨ ¨

0 F 2 K0,2 K1,2 K2,2 K3,2 ¨ ¨ ¨

0 F 1 K0,1 K1,1 K2,1 K3,1 ¨ ¨ ¨

0 F 0 K0,0 K1,0 K2,0 K3,0 ¨ ¨ ¨

with all rows exact. We have a natural morphism F Ñ totpKq. We claim this is a quasi-isomorphism,
that is,

H‚pF q Ñ H‚ptotpKqq
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is an isomorphism. We split it into two first-quadrant double complexes, namely,

...
...

...
...

...

F 3 0 0 0 0 ¨ ¨ ¨

F 2 0 0 0 0 ¨ ¨ ¨

F 1 0 0 0 0 ¨ ¨ ¨

F 0 0 0 0 0 ¨ ¨ ¨

...
...

...
...

K0,3 K1,3 K2,3 K3,3 ¨ ¨ ¨

K0,2 K1,2 K2,2 K3,2 ¨ ¨ ¨

K0,1 K1,1 K2,1 K3,1 ¨ ¨ ¨

K0,0 K1,0 K2,0 K3,0 ¨ ¨ ¨

and the original morphisms connecting F and K are extended to a morphism between the two double com-
plexes. The induced morphism on total complexes coincides with F Ñ totpKq, and it induces morphisms
between the induced spectral sequences. (Note that the construction of a spectral sequence is functorial!)

By transposing the double complexes above, we compute their E2 pages by first computing the hori-
zontal cohomology and then compute the vertical cohomology of resulting complexes (this simply means
we use a different filtration; explicitly we use

F p totpKqn “
ź

i`j“n
jěp

Ki,j

to filter the total complex). By our assumption on exactness, we see the above complexes have the same
horizontal cohomology, all being the left one. Hence they have the same E2 page:

Ep,q
2 “

#

HqpF q , p ě 0, q “ 0

0 , else

This also means the filtrations on totpF q – F and totpKq have only one jump, i.e.,

HnpF q “ F 0HnpF q Ě F 1HnpF q “ 0

HnptotpKqq “ F 0HnptotpKqq Ě F 1HnptotpKqq “ 0
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and that Ep,q
2 “ Ep,q

8 for all p, q. Hence

HnpF q HnptotpKqq

F 0HnpF q F 0HnptotpKqq

E0,n
8 E0,n

8

E0,n
2 E0,n

n

ö

ö

„

ö

Example (Tor functor). Let R be a ring and M,N be R-modules. We show that TorRn pM,Nq “

TorRn pN,Mq. To compute the Tor, pick

P : ¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ 0

Q : ¨ ¨ ¨ Ñ Q2 Ñ Q1 Ñ Q0 Ñ 0

to be deleted free resolutions of M and N , respectively. Consider the tensor product P b Q:

¨ ¨ ¨ P2 b Q0 P1 b Q0 P0 b Q0

¨ ¨ ¨ P2 b Q1 P1 b Q1 P0 b Q1

¨ ¨ ¨ P2 b Q2 P1 b Q2 P0 b Q2

...
...

...

We compute the E2 page of the induced spectral sequence. The vertical homology is

HqpPp b Q‚q “ Pp b HqpQ‚q “

#

Pp b N , q “ 0

0 , q ‰ 0

and the horizontal homology of the resulted complex is

E2
p,q “ HpHqpP‚ b Q‚q “

#

HppP‚ b Nq , q “ 0

0 , q ‰ 0

This then implies that E2
p,q “ E8

p,q, and the filtration Hp`qptotpP b Qqq has only one nonzero piece (only
one jump). Hence

HppP‚ b Nq “ Ep,0
2 “ Ep,0

8 “ HpptotpP b Qqq
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By transposing P b Q, we can obtain

HppM b Q‚q “ HpptotpP b Qqq

Hence we obtain the desired isomorphism

HppP b Nq “ HpptotpP b Qqq “ HppM b Qq

6.3 Associated five-term exact sequences
Proposition 6.4. Suppose that we have a biregular spectral sequence pE, dq that converges to H filtered
by FH, namely, for each p, q P N there exists r with

Ep,q
r “ Ep,q

8 – GrpF H
p`q “

F pHp`q

F p`1Hp`q

Moreover, suppose there exists n P N such that Ep,q
2 “ 0 if either (i) p ă 0, (ii) q ă 0, or (iii) 0 ă q ă n.

Then

1. Ep,0
2 – Hp for p ă n.

2. there exists a functorial exact sequence

0 En,0
2 Hn E0,n

2 En`1,0
2 Hn`1

To see 1., we know the lines with slope 1 ´ r

r
pr ě 2q passing through pp, 0q, p ă 0 contain only trivial

Ep,q
r (except for Ep,0

r ). Hence Ep,0
2 “ ¨ ¨ ¨ “ Ep,0

r “ Ep,0
8 , and also Ep´t,t

2 “ ¨ ¨ ¨ “ Ep´t,t
r “ Ep´t,t

8 “ 0 for
t ‰ 0. Hence

Hp “ ¨ ¨ ¨ “ F p`1Hp “ F pHp Ě F p´1Hp “ 0 “ ¨ ¨ ¨

so that
Hp “ Ep,0

8 “ Ep,0
2

Now consider the case p “ n, and look at En´t,t
r ; the only nontrivial terms occur at E0,n

r and En,0
r . We

have
En´t,t

2 “ ¨ ¨ ¨ “ En´t,t
8 “ 0, t ‰ 0, n

En,0
2 “ ¨ ¨ ¨ “ En,0

8

E0,n
2 “ E0,n

3 “ ¨ ¨ ¨ “ E0,n
n “ E0,n

n`1

E0,n
n`2 “ kerpE0,n

n`1 Ñ En`1,0
n`1 q

E0,n
n`2 “ E0,n

n`3 “ ¨ ¨ ¨ “ E0,n
8

This turns out giving the information about the filtration:

Hn “ ¨ ¨ ¨ “ F 0Hn Ě F 1Hn “ ¨ ¨ ¨ “ F n´1Hn “ F nHn Ě F n`1Hn “ ¨ ¨ ¨ “ 0
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The case p “ n ` 1 gives

Hn`1 “ ¨ ¨ ¨ “ F 0Hn`1 Ě F 1Hn`1 Ě F 2Hn`1 “ ¨ ¨ ¨ “ F n`1Hn`1 Ě F n`2Hn`1 “ ¨ ¨ ¨ “ 0

and hence we have a sequence of maps

0 F 1H Hn “ F 0Hn E0,n
8 E0,n

n`2

E0,n
n`1 En`1,0

n`1 En`1,0
n`2

En`1,0
8

F n`1Hn`1 F 0Hn`1

Hn`1

Therefore, we have an exact sequence

0 F 1Hn Hn E0,n
n`1 En`1,0

n`1 Hn`1

Plugging the values F 1Hn “ En,0
8 “ En,0

2 , E0,n
n`1 “ E0,n

8 and En`1,0
n`1 “ En`1,0

8 give the desired exact
sequence. This complete the proof.

Specializing to the case n “ 1, we obtain

Corollary 6.4.1. Suppose we have a spectral sequence pE, dq converging to H filtered by FH such that

(i) for each n, there exists p, q with F pHn “ Hn and F qHn “ 0;

(ii) Ep,q
2 “ 0 if p ă 0 or q ă 0.

Then we have a functorial exact sequence

0 E1,0
2 H1 E0,1

2 E2,0
2 H2

6.4 Grothendieck spectral sequence
Proposition 6.5. Let C, C 1, C2 be abelian categories with C, C 1 having enough injective objects, and

C C 1 C2F G

be two left exact (covariant) functors. Suppose for all injective objects I P C, F pIq is G-acyclic, namely
RGnpF pIqq “ 0 for n ą 0. Then for all C P C, there exists a functorial biregular spectral sequence pE, dq

such that
Ep,q

2 “ RpGpRqF pCqq ñ Rp`qpGF qpCq
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To compute the right derived functor of F , first we pick an injective resolution of C, namely an exact
sequence in C

0 C I0 I1 I2 ¨ ¨ ¨

with each In injective. Applying F to 0 Ñ I0 Ñ I1 Ñ ¨ ¨ ¨ we obtain a complex

0 F pI0q F pI1q F pI2q ¨ ¨ ¨

Next, to compute GF pInq, we must pick an injective resolution of each F pInq. We contend that there
exists a double complex J with each term injective and

...
...

...

J0,2 J1,2 J2,2 ¨ ¨ ¨

J0,1 J1,1 J2,1 ¨ ¨ ¨

J0,0 J1,0 J2,0 ¨ ¨ ¨

F pI0q F pI1q F pI2q ¨ ¨ ¨

0 0 0

with each column exact. In fact, we can do better.

Lemma 6.6 (Cartan-Eilenberg injective resolution). Suppose we have a complex C : C0 Ñ C1 Ñ C2 Ñ

¨ ¨ ¨ in C. We split it into many short exact sequences

0 Ñ ZnpCq Ñ Cn Ñ Bn`1pCq Ñ 0

0 Ñ BnpCq Ñ ZnpCq Ñ HnpCq Ñ 0
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Then there exists an double complex J such that

...
...

...

J0,2 J1,2 J2,2 ¨ ¨ ¨

J0,1 J1,1 J2,1 ¨ ¨ ¨

J0,0 J1,0 J2,0 ¨ ¨ ¨

C0 C1 C2 ¨ ¨ ¨

0 0 0

with each column an injective resolution of the bottom object. Moreover, the induced complexes

0 Ñ ZnpCq Ñ ZnpJ‚,0q Ñ ZnpJ‚,1q Ñ ZnpJ‚,2q Ñ ¨ ¨ ¨

0 Ñ BnpCq Ñ BnpJ‚,0q Ñ BnpJ‚,1q Ñ BnpJ‚,2q Ñ ¨ ¨ ¨

0 Ñ HnpCq Ñ HnpJ‚,0q Ñ HnpJ‚,1q Ñ HnpJ‚,2q Ñ ¨ ¨ ¨

are also injective resolutions.

Proof. Let us start with
0 Ñ Z0 Ñ C0 Ñ B1 Ñ 0

Pick injective resolutions of Z0 and B1; then we can simultaneously resolve C0 injectively, namely, we are
in the situation(left)

...
...

...

0 Z0,2 J0,2 B1,2 0

0 Z0,1 J0,1 B1,1 0

0 Z0,0 J0,0 B1,0 0

0 Z0 C0 B1 0

0 0 0

...
...

...

0 B1,2 Z1,2 H1,2 0

0 B1,1 Z1,1 H1,1 0

0 B1,0 Z1,0 H1,0 0

0 B1 Z1 H1 0

0 0 0
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with each row exact and each column an injective resolution. Next take a simultaneous injective resolution
of 0 Ñ B1 Ñ Z1 Ñ H1 Ñ 0 (right). The result follows by repetition of the procedure.

Return to the proof. Now take J as in Lemma and apply G to the whole complex.

...
...

...

GJ0,2 GJ1,2 GJ2,2 ¨ ¨ ¨

GJ0,1 GJ1,1 GJ2,1 ¨ ¨ ¨

GJ0,0 GJ1,0 GJ2,0 ¨ ¨ ¨

GpF pI0qq GpF pI1qq GpF pI2qq ¨ ¨ ¨

0 0 0

Since F pInq is G-acyclic and G is left exact, each column above is exact. By the first application in 1.2, we
have an isomorphism RnpGF qpCq “ HnpGF qpIq

„
Ñ HnptotpGJqq. As always, we have a biregular spectral

sequence converging to HnptotpGJqq, with

Ep,q
2 – HpHqpGJq

We contend that HqpGJq – GHqpJq. Consider

0 Ñ Zp,q Ñ Jp,q Ñ Bp`1,q Ñ 0

Since Z is injective,
0 Ñ GZp,q Ñ GJp,q Ñ GBp`1,q Ñ 0

is exact, and thus
0 Ñ GBp,q Ñ GZp,q Ñ HqpGJp,‚q Ñ 0

is exact. On the other hand, we have

0 Ñ Bp,q Ñ Zp,q Ñ HqpJp,‚q Ñ 0

Since B is exact, the complex

0 Ñ GBp,q Ñ GZp,q Ñ GHqpJp,‚q Ñ 0

is exact. This demonstrates the contention GHqpJp,‚q – HqpGJp,‚q. Hence

Ep,q
2 – HpHqpGJq – HpGpHqJq – pRpGqpHqpF pIqqq – pRpGqpRqF qpCq
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Corollary 6.6.1. Under the same assumption as Theorem, we have a five-term exact sequence

0 Ñ R1GpFCq Ñ R1pGF qpCq Ñ GpR1F pCqq Ñ R2GpFCq Ñ R2pGF qpCq

There are variants of Grothendieck spectral sequences.

Proposition 6.7. Let C, C 1, C2 be abelian categories with C, C 1 having enough projective, and

C C 1 C2F G

be right exact functors such that for all projective objects P P C, F pP q is G-acyclic. Then for all C P C,
there exists a functorial biregular spectral sequence pE, dq such that

E2
p,q “ LpGpLqF pCqq ñ Lp`qpGF qpCq

Proposition 6.8. Let C, C 1, C2 be abelian categories with C, C 1 where C has enough projective and C 1 has
enough injective. Let

C C 1 C2F G

be such that G is contravariant left exact, F is covariant right exact and for all projective objects P P C,
F pP q is G-acyclic. Then for all C P C, there exists a functorial biregular spectral sequence pE, dq such that

Ep,q
2 “ RpGpLqF pCqq ñ Rp`qpGF qpCq

Proposition 6.9. Let C, C 1, C2 be abelian categories with C, C 1 where C has enough injective and C 1 has
enough projective. Let

C C 1 C2F G

be contravariant left exact functors such that for all projective objects P P C, F pP q is G-acyclic. Then for
all C P C, there exists a functorial biregular spectral sequence pE, dq such that

E2
p,q “ RpGpRqF pCqq ñ Lp`qpGF qpCq

6.5 Applications II
Example. Let R and S be rings (not necessarily commutative). For an abelian group M which has a left
R-module structure, we write RM ; if it has a right R-module structure, we write MR. We also write RMS

if M is an pR,Sq-bimodule.
Now suppose we have three modules AR, RBS and SC. Consider the functors

F “ B bS ´ : SMod Ñ RMod
G “ A bR ´ : RMod Ñ Ab
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Then F and G are right exact, and by the associativity

A bR pB bS Cq – pA bR Bq bS C

we can view GF “ pA bR Bq bS ´. To obtain a Grothendieck spectral sequence, assume that for every
projective SP , TorRi pA,B bS P q “ 0 for all i ě 1. Then

TorRp pA,TorSq pB,Cqq ñ TorSp`qpA bR B,Cq

Suppose that AR is flat. Then LHS is trivial for every p ‰ 0, and thus

A bR TorSnpB,Cq “ TorR0 pA,TorSnpB,Cqq – TorSnpA bR B,Cq

Similarly, define

F “ ´ bR B : ModR Ñ ModS
G “ ´ bS C : ModS Ñ Ab

then GF “ ´ bR pB bS Cq. Thus if TorSi pQ bR B,Cq “ 0 for all i ě 1 and for all projective QR, we have
the spectral sequence

TorSp pTorRq pA,Bq, Cq ñ TorRp`qpA,B bS Cq

and if SC is flat, we have
TorRn pA,Bq bS C – TorRn pA,B bS Cq

If RBS is flat on either side, at least one condition listed above is satisfied, implying

TorSnpA bR B,Cq – TorRn pA,B bS Cq

Now we consider another situation: RA, SBR, SC. Let

F “ B bR ´ : RMod Ñ SMod
G “ HomSp´, Cq : SMod Ñ Ab

The hom-tensor adjunction

HomSpB bR A,Cq – HomRpA,HomSpB,Cqq

gives GF “ HomRp´,HomSpB,Cqq. Since F is right exact covariant and G is left exact contravariant,
then if ExtiSpB bR P,Cq “ 0 for all i ě 1 and for all projective RP , then

ExtpSpTorRq pB,Aq, Cq ñ Extp`q
R pA,HomSpB,Cqq

In particular, if SC is injective, then

HomSpTorRn pB,Aq, Cq – ExtnRpA,HomSpB,Cqq
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On the other hand, consider

F “ HomSpB,´q : SMod Ñ RMod
G “ HomRpA,´q : RMod Ñ Ab

Then GF “ HomSpB bR A,´q. Both F,G are contravariant left exact, so if ExtiRpA,HomSpB, Jqq “ 0 for
all i ě 1 and for all injective SJ , we have

ExtpRpA,ExtqSpB,Cqq ñ Extp`q
S pB bR A,Cq

If SBR is projective on both either side, then

ExtnRpA,HomSpB,Cqqq – ExtnSpB bR A,Cq

and if RA is projective, then

HomRpA,ExtnSpB,Cqq – ExtnSpB bR A,Cq
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