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1 Primary Decomposition

1.1 Prime Avoidance

Lemma 1.1 (Prime avoidance). Suppose that Iy,...,1,, J are ideals of a ring A, and suppose that

J < |J I;. If A contains an infinite field or if at most two of the I; are not prime, then J is contained in
j=1
one of the ;.

Proof. First assume that A contains an infinite field k. Then this follows from the claim below.

Lemma 1.2. Let k£ be a field, V' be a k-vector space and suppose V' is the union of its proper subspace
Wi,...,W,. Then #k <n —1.

Proof. We may assume no W; is contained in the union of the other subspaces. Let u € W;\ | W; and

i
v ¢ W;. Then
(v+ku)nW;, =g

and (v + Fu) n W; contains at most one vector, for otherwise W; would contain u. Hence
Hw+ku)=#k<n-1
O]

Now suppose the latter condition, and assume each I; is not contained in the other ideals. We prove
it by induction on n, n = 1 being trivial. Suppose n =2 and J € I u . If J & [, and J & I, pick
seJ—1and x € J— I, then x + s ¢ I,. Hence x and x + s lie in I, so that s € 1, a contradiction.

When n > 2, assume that [, is a prime. Then JI;---I, 1 & I,,; take x € JIy---J,_1 — I,,. Suppose
S=J—-(1u---uUl,_1); by induction S # . Since J € Iy u--- U I,,, S is contained in [,,. But if s € S,

then s + x € S, and hence both s and s + x are in I,,, implying x € I,,, a contradiction. Il

Remark 1.3. In the case not involving a ground field, the proof above only use that J is a subring of R

without unit.

Lemma 1.4. Let A be a graded ring and J < A, be an homogeneous ideal. If Iy, ..., I, are prime ideals
of A such that all homogeneous elements of J are contained in [} U --- U [, then J is contained in some
I.

;-
Proof. The proof is almost the same as above. Assume each I; is not contained in the other ideals. We
use induction on n, n = 1 being trivial. Suppose n = 2 and J < I; U I5. Assume otherwise that there exist
homogeneous s € J — I} and x € J — I5. Lifting to large powers and keeping I, I, are primes in mind, we
may assume r and s are of the same degree. Then x + s ¢ Iy, which implies z and z + s lie in I;. Hence

s € I, a contradiction.



For n > 2, suppose otherwise. Then JI;--- I, 1 & I,,; take homogeneous x € JI; --- J,_1 —I,,. Suppose
S=J—-(I;u---ul,1); by induction S contains a homogeneous element. Since J < Iy U --- U [, S is
contained in [,,. Take a homogeneous s € S and raise z, s to a power so that they have the same degree.

But then s + x € S, and hence both s and s + x are in [I,,, implying x € I,,, a contradiction. Il

1.2 Associated Primes

Let A be a ring and M be an A-module.

Lemma 1.5. Let S a multiplicatively closed set of A, and assume that 0 ¢ S. Then there exists and ideal

of A which is maximal in the set of ideal not intersecting S, and any such ideal is prime.

Proof. The existence of such an ideal p results from Zorn’s lemma. Let p be such a maximal ideal.
Let a,b € A with ab € p and a,b ¢ p. Then (a,p) and (b,p) meet S, so there exist s,s' € S with
s€ (a,p), s €(b,p). Then S 5 ss’ € (a,p)(b,p) < p, a contradiction. O

Corollary 1.5.1. The nilradical of A is the intersection of all prime ideals in A.
Corollary 1.5.2. The radical of an ideal in A is the intersection of all prime ideals containing I.

Definition. For a submodule N of M, the ideal anng(N) := {a € A | aN = 0} is called the annihilator

of N. For x € M, the annihilator of z is the ideal anns(z) = anny(zA).
o By the first isomorphism theorem, we have
A/anny(r) —— Az

a+ anny(z) —— ax
 For a prime ideal p, (Az), # 0 if and only if anns(z) < p.
Proof. By the isomorphism above, (Ax), # 0 iff anny(z), # A,, iff anna(x) < p. O

For a € A, denote by ay; € Enda(M) the homomorphism x — az. ay; is called locally nilpotent if for

each x € M, a"x =0 for n » 1.

o If M is a finite A-module, then a,; is locally nilpotent if and only if ay; is nilpotent (as an element
of End4(M)).

The support of M is the set
supp(M) := {p € Spec A | M, # 0}

o If M is a finite A-module, then supp(M) = V(anny(M)), so that supp(M) is closed in Spec(A).
Even if M is not finite over A, we still have supp(M) < V(anny(M)).
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Proof. Say M = Azy + --- + Axz,. We have M, # 0 iff (Az;), # 0 for some i = 1,...,n, iff
anny(z;) € p, ie. pe |J V(anng(z;)) = V(anny(M)) O

=1
Proposition 1.6. Let a € A. Then ay, is locally nilpotent if and only if a € p for all p € supp(M).

Proof. Suppose ay is locally nilpotent and let p € supp(M). Then there exists x € M with (Az), # 0; let
n € N such that a"x = 0. Then a” € anny(z) < p, as wanted.

Conversely, suppose aj; is not locally nilpotent, so that there exists x € M such that a"z # 0 for
all n > 0. Apply Lemma 1.5 to S = {1,a,a? ...} to obtain a prime p of A outside S. Then a ¢ p and
(Ax), # 0, implying p € supp(M). N

Definition. A prime p is associated to M if there exists € M such that p = anna(xz). The set of

associated primes M is denoted by Ass(M).

o For a prime p, p € Assy(M) iff there is an injective A-module homomorphism A/p — M.

o If p =anny(z) for some x € M, since p # A, we have x # 0. Hence, if M = 0, then Ass,(z) = .

o For M # 0, the maximal element p among the set of ideals {anny(z) | z € M — {0}} is prime.
Proof. Let p be such in the statement and p = anny(x) for some z € M. Let a,b € A with
ab € p, a ¢ p; then ar # 0. By maximality, anns(azx) = anna(x), and since bax = 0, b € anny(ax) =
anna(x) = p. O

o In particular, if A is Noetherian and M # 0, then Asss(M) # .

Proposition 1.7. Assume A, M are Noetherian and M # 0. Then there exists a chain of submodules
M=M2>2M>---2M,=0

with each factor M;/M; 1 = A/p; for some prime p;.

Proof. Consider the set of submodules of M having the property described above; it is nonempty since for
p = anna(z) € Assa(M), Az = A/p. Then it has a maximal element, say N. If N # M, then M /N # 0,
and we can pick q = anny(x + N) € Assy(M/N) with some x € M — N; in particular, zA + N/N =~ A/q,
and this contradicts to the maximality of N. Hence M = N. [

Proposition 1.8. Let A be Noetherian and a € A. Then ay, is injective if and only if a does not lie in

any associated prime of M.

Proof. Suppose ay; is injective. Then a cannot annihilate any element of M. Conversely, suppose ay; is
not injective; say ax = 0 for some = # 0. Then Az # 0, so that Asss(Az) # 0, and thus a lies in an

associated prime of Ax, hence of M. [



Proposition 1.9. Let A be Noetherian, and let M be a module. Let a € A. TFAE:
(i) aps is locally nilpotent.
(ii) a lies in every associated prime of M.
(iii) a lies in every prime p € supp(M)
If p € supp(M), then p contains an associated prime of M.

Proof. It remains to show (ii)= (iii), which is implied by the last statement. Now let p € supp(M). Then
there exists © € M with (Ax), # 0, and there exists an associated prime q of (Az),; say q = anna(r/s),
where r € Az and s ¢ p. Then q < p, for otherwise there exists b ¢ q—p (so that b is invertible in A,) with
b(y/s) = 0, hence y/s = 0, a contradiction. Finally, let q = (by,...,b,). Since b; € anna(r/s), there exist

S1y...,8p & p with bys;r = 0. Put ¢t = s1---s,. Then q = anny(¢r) is an associated prime of M. O

Corollary 1.9.1. Let A be a Noetherian ring and M a finite A-module. Then

Vama(M) = [} p= [ »

pesupp(M) peAss(M)

Corollary 1.9.2. Let A be a Noetherian ring and M be an A-module. TFAE:
(i) #Ass(M) =1.
(i) M # 0, and for every a € A, ay is either injective or locally nilpotent.
In these conditions are satisfied, then the set {a € A | aj, is locally nilpotent} equals the associated prime.

Proof. (i)=(ii) and the last assertion are clear from the above propositions. Suppose that (ii) holds, and
suppose that there are two distinct associated primes, say anny(z) and anny(y) for some z,y € M. WLOG,
we assume ann(z) — anny(y) # J, and pick an element @ in it. In particular, a is not injective, so that

a is locally nilpotent, which implies that a € ann4(y), a contradiction. Il

Proposition 1.10. Let N be a submodule of M. Every associated prime of N is associated with M. An
associated prime of M is associated with either N or with M /N.

Proof. The first assertion is clear. Now let p = anny(z) be an associated prime of M. If Ax n N = 0,
then Az is isomorphic to a submodule of M /N, so that p € Ass(M/N). Suppose now that Az n N # 0,
say y := ax € N — {0}. Clearly, anny(y) 2 anna(x). Now let b € A with by = 0, i.e. bax = 0. Then ba €

anny(z). Since ax # 0 and anny(z) is a prime, b € annys(z) so that anny(y) = anny(z) = p € Ass(N). O

Corollary 1.10.1. Assume A and M are Noetherian. Then Ass(M) is finite.



Proof. Using Proposition above and Proposition 1.7, we have

r—1

Ass(M) < U Ass(M;/M; 1) = UASS(A/]Ji)

with p; € Spec(A). Generally, for p € Spec(A) and z € A —p,
anny(z +p)={acAlalz+p)=p}={acA|laxep}=p
so that # Ass(A/p) = 1. Hence Ass(M) is finite. O

Proposition 1.11. Let A be a Noetherian ring and M # 0 an A-module. Then for any m.c.s. S of A,
Assg14(STIM) = {S7'p|peAssa(M),pnS =@} ={S"p|peAsss(S M)}
Proof. Denote by A, B, C, respectively, the three sets from left to right.

e BS A Let pe Ass(M). Then A/p < M, so that S7'A/S™1p = S'M. Also S~'p is a prime ideal
iff p nS =, and if it is the case, we obtain S™!p € Assg-1,4(S™IM).

o A< C. Suppose q € Assg-14(S'M). Then there exists p € Spec(A) such that q = S~'p. Since q is

associated to ST1M, say q = anng-14(z) for some z € ST!M, we have p = anny(x).

o CS B. Let p=anny(m/s) € Assy(S™'M) withme M, se€ S, m/s #0. Iif pnS # &, say r belongs
to the intersection, then rm/s = 0. Then m/s = rm/rs = 0, a contradiction. Clearly, ann4(m) < p;

if it’s not an equality, pick b € p — anny(m). Then bms’ = 0 for some s’ € 5, so that
anna(m) < anny(s'm) < p
Repeating in this way, since A is Noetherian, it must be the case p = anny(s"m) for some s” € S.

o A c B. Suppose q € Spec(S™tA) that is associated to S™'M; then ¢ = S~!p for some p € Spec(A)
with p 1 S = ¢J. Then there is an injection ¢ : ST*A/S™tp — S™IM. Since p is finitely generated,
we have

Homg-14(S™tA/S p, S™'M) = S~ Homu(A/p, M)

so we can write ¢ = f/s for some f: A/p — M and s € S. Since S np = J, u is a nonzerodivisor

on A/p, so that f = sy is injective, showing that A/p is isomorphic to a submodule of M.
O

Corollary 1.11.1. Let A be a Noetherian ring and M # 0 a finite A-module. Then Asss (M) includes all

primes minimal among the primes containing ann (M ).

Proof. Let p be the prime minimal over ann4(M); in particular, M, # 0.



Method I Then Assy(M,) # J, say q € Assa(M,). By Proposition, q € Assa(M) and q < p, so

q 2 annu(M). Since p is minimal, p = ¢, as shown.

Method II Since M is finite over A, S~tanny (M) = anng-1,4(S™'M). Localizing at p, we can assume
(A,p) is a local ring. Then p is the only prime containing ann4 (M), so p € Ass4(M), as shown in Method

I. Finally use Proposition to validate that we can take localization. [

1.3 Primary Decomposition

Let A be a ring and M be an A-module.

Definition. A submodule @) of M is primary if Q # M and for every a € A, ay/q is either injective or

nilpotent.

o Viewing A itself as an A-module, an ideal q is primary iff for a,b € A with ab € q and a ¢ q, we

have b" € q for some n > 1, namely, every nonzerodivisor of A/q is nilpotent.

Proof. Let a,b e A with ab € q, a ¢ 1. Then b,/ is not injective, so 0 = b’j\/q(l + q) for some n, i.e.
b" € q. Conversely, let a € A with ay/, is not injective; let b € A — q such that ab € q. Then a” € q

for some n € N, showing that aﬁ/q = 0, i.e. ay/q is nilpotent.

The essence is that 1 € A, so being nilpotent is equivalent to being locally nilpotent. 0

 For @) primary, let p = {a € A | apr/q is nilpotent} = y/anny(M/Q). Then p is a prime, and we say
() is p-primary, or p belongs to (). In particular, if q is a primary ideal, then p = ,/q.

Proof. Let a,be A with ab e p and a ¢ p. Then a,s/q is injective, so b is nilpotent, showing b e p. [

e Forae A, x € M with ax € Q, if x ¢ @, then a € p.

o If m € mSpec(A) and q is an ideal of A with m™ < q for some n > 1, then ¢ is m-primary.
Proof. Taking radical, we have m < ,/q. Since m is maximal, we have m = ,/q, and this implies m
is the only prime containing q i.e. A/q has only one prime ideal m. This shows every element in A/q

is either a unit or nilpotent. Il

o If Qy,...,Q, are all p-primary submodules of M, then sois Q) := Q1 N --- N Q,.

Proof. Let a € p and nq,...,n, be positive integers such that a%/Qi =0 fori=1,...,r. Then
ayrg = 0 for n > max{ni,...,n,}, so that ay g is nilpotent. Now if a ¢ p, then a"x ¢ Q; for
reM—Q;,n=>=1and all 4; hence a"v ¢ Q for all x € M — @), so that ay;/q is injective. [
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Let N be a submodule of M. A primary decomposition of N is a finite collection of primary submodules
@1,...,Q, of M with

N=QinnQ

» Using the property above, after grouping we can assume each @; is p;-primary with each p; distinct.

o If each p; is distinct, and Q; P () Q; for each i, we say it’s a reduced/irredundant/minimal
j#i

primary decomposition. If N admits primary decomposition, then it also admits an irredundant one.

o For Q, N < M, @ is primary if and only if () mod N is primary, and the prime belonging to them is
the same.

e N has a primary decomposition in M if and only if (0) has a primary decomposition in M/N.
Furthermore, if N = Q; n - N Q,, then (0) = Q1 N --- N Q,, where Q; denotes the image of @; in
M /N; the decomposition of N is irredundant iff that of (0) is irredundant.

Let N = Q1 n - - n @, be an irredundant primary decomposition, and let p; belong to @);. An isolated

prime is a minimal element in the set {p1,...,p.}.

Theorem 1.12. Let N be a submodule of M, and let

N=QinnQ=QnnQ,
be irredundant primary decompositions. Then
(i) r=s.
(ii) The set of primes belonging to @Q1,...,Q, and @, ..., Q" is the same.

(iii) If {p1,...,pm} is the set of isolated primes, then @; = @} for i = 1,...,m. In other words, the

primary modules corresponding to isolated primes are uniquely determined.
Theorem 1.13. Let M be Noetherian, and N < M. Then N admits a primary decomposition.

Proposition 1.14. Let A, M be Noetherian. A submodule ) < M is primary if and only if Ass4(M/Q) =

{p} is a singleton, and in this case, @) is p-primary.

Theorem 1.15. Let A, M be Noetherian. The associated primes of M are precisely the primes which
belongs to the primary modules in a reduced primary decomposition of 0 in M. This in particular again
shows that Ass (M) is finite.



1.4 Factoriality
Lemma 1.16. For a Noetherian domain A, if every irreducible element in A is prime, then A is a UFD.

Proposition 1.17. Let A be a Noetherian domain.

1. If fe Aand f = up(* ---pSr, where u € A*, the p; are primes in A generating distinct prime ideals
(pi) € Spec(A) and e; € N, then
f=m) ()

are the minimal primary decomposition of the ideal (f).

2. Ris a UFD if and only if every prime ideal minimal over a principal ideal is itself principal.
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2 Graded rings

In this section, the words “ideal” and "proper ideal” are interchangeable.

Definition. A graded ring is a ring A together with a family of subgroups {A,},>o of the additive group
A such that

(i) A= A, as abelian groups;
n=0

(ii) A, A, € Ay for all n,m = 0.

o By definition Aq is a subring of A, and each A, is an Ag-module.

o The subgroup A, := @ A, is an ideal of A.

n=1
A graded A-module M is an A-module together with a family of subgroups {M,,},>0 of M such that

(i) M = @ M, as abelian groups;

n=0

(ii) A, M,, € M, ., for all n,m > 0.
e Each M, is an Ap-module.

An element x € M is homogeneous if x € M, for some n, and n is called the degree of x. For each
element y € M, y = y; + --- + y, for unique homogeneous elements ¥, ...,y, € M of distinct degrees.

These y; are called the homogeneous components of y.

Definition. Let A be a graded ring and M, N be graded A-module. A homomorphisms of graded
A-modules from M to N is a A-module homomorphism f: M — N with f(M,) < N, for each n > 0.

Proposition 2.1. Let A be a graded ring. Then A is Noetherian if and only if A is Noetherian and A is
a finitely generated Ag-algebra.

Proof. The only if part follows from Hilbert’s basis theorem. For the if part, immediately we see Ag = A/A,
is Noetherian. Since A, is an proper ideal of A, A, = Az, + --- + Az, for some x; € A, ; we may assume
that each z; is homogeneous. Let A" = Aglxy, ..., 2]

Now we prove by induction on n > 0 that A, < A’, the case n = 0 being trivial. For n > 0, let x € A,,.

Then x = a1z, + - - - a,x, for some a, € A.

o We may assume each a; is homogeneous. Write a; = a;; + --- + a;, With each a;; homogeneous of
distinct degrees. Since x € A,,, © equals the sum of those a,;z; with degree deg a;; + degx; = n, and
those with degree # n may offset.
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» Since each z; has positive degree, each a; is of degree strictly smaller than n. Hence by induction

hypothesis we a; € A’, and thus = € A, as wanted.

Let A be a ring, and a an ideal of A. We can form a graded ring

Bl,A=A*:=Pa"

n=0

called the blowup algebra of a in A.

o If Ais Noetherian, then a is finitely generated A-module, and hence A* is Noetherian by the previous

theorem.

Let M be an A-module. A chain of submodules of M
is called an a-filtration of M if aM, < M, for all n. Then

M* =P M,

n=0

is a graded A*-module, since a™M,, & M, .

Lemma 2.2. Let A be Noetherian, a an ideal of A, M a finitely generated A-module, and {M,},>0 an
a-filtration. TFAE:

1. M* is a finitely generated A*-module.

2. The filtration {M,},>0 is stable, i.e., aM,, = M, for n » 0.

Proof. Since M is Noetherian, each M, is finitely generated, and hence so is each @,, = @ M,. Then @,
r=0

generates an A*-submodule of M*, namely
M;i=My® - ®@M,®aM,,® - ®a"M, D

Since @), is finitely generated as an A-module, M is finitely generated as an A*-module. The submodules
M forms an ascending chain. Now, since A* is Noetherian, we see

M* is finitely generated as an A*-module < the chain {M*} stops < M = M* for some n > 0.

and it is equivalent to saying that M, ., = a"M, for all r > 0, i.e., the filtration {M,},>0 is stable. [
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2.1 Artin-Rees Lemma

Proposition 2.3 (Artin-Rees). Let A be a Noetherian ring, a an ideal of A, M a finitely generated A-
module, {M,},>o a stable a-filtration of M. If M’ is a submodule of M, then {M’' n M,},>o is a stable
a-filtration of M'.

Proof.

e Since {M,} is stable, Lemma shows that M* is a finitely generated A*-module. Since A* is Noethe-

rian, M* is Noetherian.
o {M'n M,},>0 is an a-filtration of M’. Indeed, a(M’' n M,,)) € M’ ~naM,, € M’ n M, 4.

« M™ = @ (M n M,) is a graded A*-submodule of M* so M is finitely generated. By Lemma
n=0

again, {M' n M,},>o is stable.

Specializing to the filtration {a"M },>¢, we see

Corollary 2.3.1. There exists k € N such that
"M A M =a"F((a" M) n M)

for all n > k.

2.2 Krull Intersection Theorem

Theorem 2.4 (Krull Intersection Theorem). Let A be a Noetherian ring, a an ideal, M a finitely generated

A-module. Then () a™M consists of those x € M annihilated by 1 — a for some a € a.
n=1

Proof. Put E = () a"M. By Corollary 2.3.1, we see aE = E by taking n = k + 1. Since M is finitely
n=1
generated and A is Noetherian, F is finitely generated. Using a determinant argument, from aF = E we

deduce that (1 —a)E = 0 for some a € a. Conversely, if (1 —a)z = 0 for some x € M, then

x=ax=a2x=---eﬂa”M=E
n=1
O
Corollary 2.4.1. Let A be a Noetherian domain and a an proper ideal. Then () a™ = 0.
n=1
Proof. Note that 1 —a # 0. 0

Corollary 2.4.2. If a is contained in the Jacobson radical of A, then (] a"M = 0.

n=1
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Proof. In this case, 1 —a is a unit in A, so ] a"M = 0. [

n=1

Corollary 2.4.3. Let A be a Noetherian ring and a its the Jacobson radical. Then [ a” = 0.

n=1

Corollary 2.4.4. Let (A, m) be a Noetherian local ring. Then [ m" = 0.

n=1

Corollary 2.4.5. Let A be a Noetherian ring and p € Spec(A). Then the intersection of all p-primary
ideals of A is the kernel of A — A,.

Proof. Since A is Noetherian, v/I' < I for some n € N, so I is p-primary if and only if p» = I < p for
some n € N. Note that I — IA, establishes a bijection on p-primary ideals of A and p,-primary ideals of
A,. Since A, is Noetherian local, [ py = 0 in A, and hence ker(A — A,) = (] p" O

n>=1 nx=1

2.3 Associated Graded Rings

Let A be a ring and a an ideal of A. Define

Gro(A) = @ a"/a™*!

n=0

This is a graded ring, in which the multiplication is defined as follows.

o For x € a”, denote by 7 its image in a"/a"™!. Then for x € a”, y € a™, define 7y = Ty to be the

n+m n+m/an+m+1'

image of zy € a in a

o Ty = 7y is well-defined since we take modulo a®*™*!,

Similarly, if M is an A-module and F' := {M,},>0 is an a-filtration of M, define

Grp(M) = @ Mo/ M, 4,

n=0

and denote Gry(M) = M, /M, 1. Then Grg(M) is a graded Grq(A)-module.
Proposition 2.5. Let A be a Noetherian ring and a an ideal of A. Then
1. Gry(A) is Noetherian;

2. if M is a finite A-module and F' = {M,},>0 is a stable a-filtration of M, then Grp(M) is a finite
Grq(A)-module.

Proof.
1. Write a = Azy+- -+ Ax,, and denote by 7; the image of x; in a/a?. Then Gry(A) = (A/a)[Z1, ..., 7,

(by its definition). Since A/a is Noetherian, Gry(A) is Noetherian by Hilbert’s basis theorem.
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2. Say aM, = M, for some n > 0. Then

Grp(M) = M/M &+ & M,_1/M, ®P a* M, /oM,

k=0

is generated by M /My @®---® M,,_1/ M, ® M, /M, 1. Each M, is a finite A-module, and Grl.(M) =
M, /M, is annihilated by a, so Gr}z(M) is a finite A/a-module. Hence Grp(M) is a finite Grq(M)-

module.

2.3.1 Initial forms

Let A be a ring, a an ideal of A, M an A-module and F := {M,},>0 an a-filtration of M.

o For fe M,let m =sup{ne Ny | fe M,}. Define the initial form of f by

. fmod M,,11 € Grig(M) ,if m <o
in(f) =1 g it fe () M,

n>1
Note that in : M — Grp(M) is not a homomorphism.
e For a A-submodule M’ of M, define
in(M') := {in(f) | f € M')aroa)
to be the Gry(A)-submodule of Grg(M).
Corollary 2.4.6. Let R be a Noetherian local ring and a be an ideal. If Gry(R) is a domain, then so is R.
Proof. Suppose fg =0¢€ R. Then in(f)in(g) = 0 € Gry(R), and thus either in(f) = 0 or in(g) = 0. Since

() a" = 0, this implies f = 0 or g = 0. O

n=0
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3 Dimension
Definition. Let A # 0 be a ring,.
1. A prime chain is a strictly increasing sequence
PoEP1 & &P
of prime ideals of A. Its length is defined to be n, the number of inclusions.
2. The height ht(p) of a prime p is the supremum of the lengths of all prime chains
R U e
More generally, for an proper ideal I of A, define

ht(1) := inf{ht(p) | p € V(I)} = inf{ht(p) | I < p}

3. The Krull dimension of A is defined as

dim A := sup{ht(p) | p € Spec(A)}

By definition, ht(p) = dim A, for all primes p.

o For any ideals I,
dim(A/I) + ht(/) < dim A

For M # 0 an A-module, define its dimension to be

dim M = dim(A/ann(M))

3.1 Length

Proposition 3.1. Let 0 > M’ — M — M” — 0 be an exact sequence of A-modules. Then
(i) M is Noetherian if and only if M’, M” are Noetherian.
(ii) M is Artinian if and only if M’, M" are Artinian.

Proof. A chain of M’, M" gives rise to a chain in M; this shows the only if part of both statements.
Conversely, a chain in M restricts to a chain in M’, and maps to a chain in M”; this shows the if part.
O

Corollary 3.1.1. Finite direct sums of Noetherian (resp. Artinian) A-modules are Noetherian (resp.
Artinian).
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Corollary 3.1.2. Let A be a Notherian (resp. Artinian) ring. If M is a finite A-module, then M is

Notherian (resp. Artinian).
Corollary 3.1.3. Quotients of Noetherian (resp. Artinian) rings are Noetherian (resp. Artinian).
Definition. Let A be a ring and M an A-module.

1. The length of the chain of submodules of M
M =DMy 2M 2---2M,
is defined to be n.

2. A finite chain / finite filtration of submodules of A-module M is the chain of the form

M=M2M 2---2M,=0
3. A composition series of M is a maximal finite chain of M, i.e., each successive quotient module is
a simple module.

4. The length of M is defined the be the minimal length of composition series of M, and is denoted
by length ,(M); if M does not possess a composition series, define length ,(M) = +o0.

If M has a composition, we also use the term M has finite length.

o It’s clear that every chain can be extended to a finite chain by adding 0 in the end of the chain, if
M, # 0.

Proposition 3.2. Suppose M has a composition series. Then every composition series has the same

length. Moreover, every chain can be extended to a composition series of M.
Proof.

1° N ¢ M = length,(N) < length,(M). Let M = My < M; < --- & M, = 0 be a composition series
of M. Consider the chain

N=MynN2MinN2M, 1nN2D2M,nN =0

Note that M, N - M, . the latter is simol M;nN MinN | | |
« Note tha c ; since the latter is simple, ————— = 0 or —— is simple.
Mys AN~ My, P M AN My N P
: : . MinN ..
Hence length,(N) < length, (M), and equality holds if and only if every V.o AN S simple.
i+1 M

Starting from M,, 1 = M,,_ 1 n N < M,_1 < N, we can show that M = My < N < M,ie., N =M.
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2° Every chain in M has length < length ,(N). Take a chain of length n in M
M=My2M=2---2M,

Then
length , (M) > length 4, (M) > - -+ > length 4,(M,,) = 0

and hence length (M) = n.
3° Every composition has length length ,(A/). This follows from definition and 2°.

4° A chain in M of length length ,(M) is a composition series. Firstly, such a chain must be a finite
chain. Secondly, if any successive quotient is not simple, we can insert a submodule to lengthen
the chain; taking the contrapositive, since such a chain can not be lengthened by 2°, it must be a

composition series.

5° Every chain in M can be extended to a composition series in M. This follows from 2° and 4°.

Corollary 3.2.1. M has finite length if and only if M is Artinian and Noetherian.

Proof. The only if part is clear. Suppose M is Artinian and Noetherian. Since M is Noetherian, we can

construct a descending chain of submodules of M
M=My2M=2--2M,

with the property that M, is a maximal submodule contained in M; ;. Since M is Artinian, this chain

must stop, i.e., M has a composition series. L]

Corollary 3.2.2. Let 0 > M’ — M — M"” — 0 be an exact sequence of A-modules. Then M has finite
length if and only if M’ M"” have finite length. Moreover, we have

length , (M) = length 4(M’) + length ,(M")

Proof. The first assertion follows from the previous Corollary and Proposition 3.1. It remains to show that
equality. But we can use a composition series in M’ and that in M” to produce a composition series in M,

which shows that equality. O

Corollary 3.2.3. For a k-vector space V', TFAE:
-dim, V < @ - length, (V') < . - V is Artinian. - V is Noetherian.

Proof. Tt remains to show that if V' is infinite dimensional, then V' is neither Artinian nor Noetherian. Let

{vi,v9,...,} be a k-basis for V. Form the subspaces
W, = span{vy,...,v,}, U, = span{v,, Uni1, ...}
Then {W,} is ascending and {U,} is descending, each of which is not stable. O
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We will use the following corollary to characterize all Artinian rings. First note that if M is an A-module

and I is an ideal contained in Anns(M). Then M has a natural A/I-module structure, and
M is Noetherian (resp. Artinian) as an A-module < M is Noetherian (resp. Artinian) as an A/I-module.

This is because for an subgroup N of M, being an A/I-submodule of M and being an A-submodule of M
are equivalent for N. Also, length 4 (M) = length, ,(M).

Corollary 3.2.4. Let A be a ring in which the zero ideal is a product m; - - - m,. of (not necessarily distinct)

maximal ideals. Then A is Noetherian if and only if A is Artinian.
Proof. Consider the chain of ideals
ADmommy>D---2my---m, =0

Every successive quotient has a natural structure of A/m;-vector spaces. Hence each successive quotient is
Noetherian if and only if it is Artinian. Repeated uses of Proposition 3.1 then shows that A is Noetherian
if and only if A is Artinian. m

3.1.1 Characterization of Artinian Rings
Proposition 3.3. Let A be a nontrivial Artinian ring.
1. Ais a semilocal ring, i.e., #mSpec(A4) < 0.
2. The zero ideal of A is a product of maximal ideals.
3. A is a finite product of Artinian local rings.
4. A is Noetherian.

5. Every prime is maximal.
Proof.

1. Consider the collection of finite intersections of maximal ideals of A; since A is Artinian, it contains
a minimal element, say I := m; n---nm,. Then for every m € mSpec(A), m n I = I by minimality,

and thus I € m. Since m is a prime, m; = m for some i. Hence mSpec(A) = {my,...,m,}.

2. Let J be the product of all maximal ideals of A. Consider the descending chain

JoJ?2...2J 2

Since A is Artinian, there exists m € Ny with J™ = J™*1. We show J™ = 0. Suppose J™ # 0;
consider the collection {0 # I<<R | IJ™ # 0}. This collection is nonempty for JJ™ = J™+1 = J™ 5 (),
and hence it has a minimal element, say Iy. Let f € Iy with fJ™ # 0; since [ is minimal, I = fA.
Also, (fJ)J™ = fJ™ # 0, s0 fJ = fA by minimality. Now fr = f for some r € J,ie., (1—7r)f =0.

Since J is the Jacobson radical, 1 —r € A*, implying f = 0, a contradiction. Therefore J™ = 0.

19



3. Let J =my n---nm,, where the m; are all the maximal ideals of A. Then J™ = 0 for some m by 2.
By Chinese Remainder theorem, we have A = A/J™ =~ [[ A/m!". Since A is Artinian, each A/m}" is
i=1

Artinian. Also, A/m!" is local with the maximal ideal mj;/m;”.
4. This follows from 2. and Corollary 3.2.4.

5. Let p € Spec(A). We must show for every f ¢ p, (f,p) = A. Consider the chain

fp)2ip) 220" p) 2

Then (f™,p) = (™", p) for some m € N so that f™ = rf™*! + q for some r € A, a € 1. Hence

™1 —=rf)ep;since f" #p, 1 —rfep,and thus 1 € (f,p), as wanted.

Theorem 3.4. Let A be a ring. TFAE:
1. A has a composition series as an A-module.
2. A is Artinian.
3. A is Noetherian and every prime ideal is maximal.

Proof. We prove the equivalence in the order 1. = 2. = 3. = 1. We already see 1. = 2. = 3. It
remains to show 3. = 1. Suppose otherwise that A does not have finite length; consider the collection
{I <A | length,(A/I) = oo}. This is nonempty since the zero ideal belongs to it, and hence it has a
maximal element, say p. We claim p is a prime. Let a,b € A with ab € p, a ¢ p; then we may form the
exact sequence

0 —— A/(p:a) —— Alp —— A/(a,p) —— 0

If b¢ p, then p < (p: a); since both (p : a) and (a, p) properly contain p, both A/(p : a) and A/(a,p) have
finite length by maximality, and so does A/p by Corollary 3.2.2, a contradiction. Hence b € p, and so p
is a prime; moreover, p is maximal by assumption. However, it turns out A/p is a field, which has finite
length, contradicting the definition of p. Hence A has finite length. [

Corollary 3.4.1. Let A be a Noetherian and M # 0 a finite A-module. TFAE:
1. M has finite length as an A-module.
2. The ring A/anny (M) is Artinian.

3. dim M = 0.
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3.2 Hilbert’s Polynomials

o0]
Let A = @ A, be a graded Noetherian ring; then A, is Noetherian and A = Ag[zy,..., 25| with each
n=0

x; € Ay homogeneous of degree d; > 0. Let M be a finitely generated graded A-module. Then M can be

generated by a finite number of homogeneous elements, say mq, ..., m; with degree r, ..., 7, respectively.

¢

« Each M, is a finite Ap-module. Indeed, each element in M, can be written as a sum ), f;(z)m;
i=1

with f;(z) € A homogeneous of degree n — rj, so M, is generated by all g;(x)m;, where g;(z) is a

monomial in the x; of total degree n — r;.

Let A be an additive function (with valued in Z) on all finite Ag-modules, namely, for all short exact

sequences 0 — M' — M — M” — 0 of finite Ap-modules, we have
AM") = NM)+AXM") =0

The Poincaré series P(M,t) = Py(M,t) of M is the generating function of A\(M,,)
0
P(M,t) := > A(M,)t"
n=0

Example. Let A = Ag|z1,..., 25|, where Ay is an Artinian ring and the z; are independent variables.

Then A, is a free Ap-module with generated by the monomial z7" --- 27 with my + - -+ + mg = n; they

S
. s+n—1
are in number < ), and hence

t
Theorem 3.5 (Hilbert, Serre). P(M,t) is a rational function in ¢ of the form L, where f(t) € Z[t].
(1 —th)

o

i=1

Proof. Use induction on s, the number of the generators of A over Aj.

e s=0. Then M = Agmy + - + Agmy, so M,, = 0 for n > max{ry,...,r;}. Hence P(M,t) is just a

polynomial in ¢.

e 5> 0. Multiplying M,, by zs gives an exact sequence

0 > K, y M, —= Myip, — Lpsp, — 0 (1)

Define K = @, K,,, L = @,, L,; being a submodule and a quotient of M, K and L are finite

A-module. Since they are annihilated by x,, they are graded Ag[z1, ..., zs 1]-modules.
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Applying A to (1), we get
M) — MMy) + AMysr) — MLnsr,) = 0

t"*t*s and summing over n, we obtain (for some g € Z[t])

Multiplying by
thP(K,t) — tF*P(M,t) + P(M,t) — P(L,t) = g(t)

or (1 —tk)P(M,t) = P(L,t) — t*P(K,t) + g(t). The result then follows by induction.

o Let d(M) = ord;—; P(M,t) be the order of P(M,t) at t = 1.

Corollary 3.5.1. If z € Ay is a non-zero-divisor in M, then d(M /xM) = d(M) — 1.

Proof. Replacing z, in (1) with z, we see K = 0 and L = M /xM. Hence (1 —t*)P(M,t) = P(M/xM,t) +
g(t) for some g € Z[t], so d(M) — 1 = d(M /zM). O

Corollary 3.5.2. If each k; = 1. then for n » 0, A(M,,) is a polynomial in n with rational coefficients of
degree! d — 1 (d = d(M)), called the Hilbert’s polynomial of M.

0 N
Proof. By Theorem, >. A\(M,)t" = f(t)(1—t)~%; we may assume s = d and f(1) # 0. Write f(t) = . axt*

n=0 k=0
with ay # 0. Then for n > N,

N
d+n—k—1
) = YoM
k=0

-1
with the convention ( nl) =0 for n > 0 and ( ) = 1. The leading term is

~ 1
i1
an d=1) # 0
so A(M,) (n = N) has degree d — 1. O

Proposition 3.6. Let (A, m) be a Noetherian local ring, q an m-primary ideal, M a finitely generated
A-module and F' = {M,},>0 a stable g-filtration on M. Then

1. M /M, has finite length for all n > 0;

2. for n » 0 this length is a polynomial g(n) in n of degree < s, where s is the least number of generators

of g;

3. the degree and leading coefficient of g(n) depend only on M and g, not on the chosen filtration.

'For this statement, the zero polynomial is assumed to have degree —1.
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Proof.

1.

Let Gry(4) = @ q"/q"*! and Grp(M) = @ M,/M,.1. Note that Grg(A) = A/q is Artinian
n=0 n=0

local, Gry(A) is Noetherian and Grp(M) is a finite Gry(A)-module. Each Griy(M) = M, /M, is a
Noetherian finite A-module annihilated by g, so hence a finite A/g-module. Since A/q is Artinian,
Grip(M) is Artinian; hence Griy(M) has finite length, and so does M /M,, with

Iy :=length ,(M/M,) = Z length ,(M,_1/M,.)
r=1
Say q = Azy + - - + Axzg; then Grq(A) = (A/q)[Z1, ..., T;], where Z; denotes the image of z; in q/9°.
By Corollary 3.5.2, length 4(M,,/M,+1) = f(n), where f is a polynomial in n of degree < s — 1 for

all large n. We have 1,11 — [,, = f(n), so [, itself is a polynomial g(n) of degree < s for all large n.

Let {M,}n>0 be another stable g-filtration of M, and let §(n) = length (M /M,). {M,} and {M,}
being stable, there exists ng € N such that M,,,, < ]\7[n and ]\7[n+n0 < M, for all n > 0; hence

g(n +ng) = g(n), g(n +mng) = g(n)
n
For n » 0, both g and g are polynomials in n, so lim % = 1, meaning that they have the same
n—0o0 g n

degree and the leading coefficient.

The polynomial g(n) corresponding to the filtration {q"M },~¢ is denoted by

Xéw(n) :=length (M /q"M) (n > 0)

If M = A, we write x4(n) for Xé\/[ (n), and call it the characteristic polynomial of the m-primary

ideal q.

Corollary 3.6.1. For n » 0, the length length ,(A/q") is a polynomial x4(n) of degree < s, where s is the

least number of generators of q.

Corollary 3.6.2. If A, m,q are as above, the deg xq(n) = deg xm(n).

Proof. Since A is Noetherian, m" < q € m for some r € N, and hence

for all n € N, implying for all large n

Takin

Xm(1) < Xq(n) < Xm(172)

n
gn — o, we see 1 < lim M < o0, so they have the same degree. 0

n—00 Xm (’[’L)
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« We denote by d(A) the common degree of the x4(n). Then
d(A) = d(Grn(A))
where d(Gry(A)) is defined before to be the order of the pole at ¢ = 1 of the Hilbert polynomial of

Grn(A).

3.3 Noetherian Local Rings

Let (A, m) be a Noetherian local rings. Define
d(A) = least number of the generators of an m-primary ideal of A
We will prove 6(A) = d(A) = dim(A), by proving
d(A) = d(A) = dim(A) = §(A)
By the last two Corollary, we obtain
Proposition 3.7. §(A) = d(A).

Proposition 3.8. Let A, m,q as before, M is a finite A-module, x € A a non-zero-divisor in M and
M = M/xzM. Then
degxéw < degxé‘” -1

Proof. Let N = xM; then N =~ M as A-modules, for x € A is a non-zero-divisor in M. Define N,, =

N n q"M. Then we have an exact sequence
0 —— N/N, —— M/q"M —— M'/q"M' —— 0
Hence, if g(n) = length ,(N/N,,), then
g(n) = xg"(n) +xq" (n) = 0

for n » 0. By Artin-Ree’s lemma, {N,}n>0 is a stable g-filtration of N. By Proposition 3.6 3, g and x,

have the same degree and the leading coefficient, hence proved. O
The following corollary is an analog of Corollary 3.5.1 for Noetherian local rings.
Corollary 3.8.1. If A is a Noetherian local ring, = a regular element in A, then d(A/(x)) < d(A) — 1.

Proposition 3.9. d(A) > dim A.
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Proof. Induction on d(A). When d(A) = 0, then length ,(A/m") is constant for n » 0, and hence m” =
m"*1: by Nakayama’s lemma, m" = 0, so A ~ A/m" is Artinian and thus dim A = 0.
Assume d(A) > 0, and let po S p; S -+ < p, be any prime chain in A. Let x € pi\po; put A" = A/pg

and x’ to be the image of x in A’. Then A’ is an integral domain and 2’ # 0. By above Corollary,
d(A’/(2") < d(A") -1
On the other hand, if m’ is the maximal ideal of A’, then A’/m™ is a homomorphic image of A/m™, so
length 4, (A’/m™) = length 4 (A’ /m™) < length ,(A/m")
implying d(A’) < d(A). Therefore d(A’/(z')) < d(A) — 1, and by the induction hypothesis, we have
dim A’/(2") < d(A'/(2")) < d(A) — 1

But images of py,...,p, in A'/(z’) form a prime chain of length » — 1, so r — 1 < d(A) — 1, or r < d(A);
hence dim A < d(A). O

Corollary 3.9.1. If A is a Notherian local ring, dim A is finite.

Corollary 3.9.2. In a Noetherian ring every prime has finite height. In particular, the set of prime ideals

in a Noetherian ring satisfies the descending chain condition.

Proposition 3.10. Let (A, m) be a Noetherian local ring of dimension d. Then there exists an m-primary

ideal in A generated by d elements z1, ..., x4, and therefore dim A > §(A).

Proof. We construct z1, ..., x4 inductively so that every prime ideal containing (z1, ..., x;) has height > i
for each i. Suppose i > 0 and z1, ..., z;_1 have been constructed. Let p; (1 < j < s) be the minimal prime

ideals (if any) of (z1,...,x;—1) which have height exactly i — 1. Since
i—1<d=dimA =dimA, = ht(m)

we have m # p; (1 < j < s), hence m # |J p;; choose x; € m\ |J p;. Let q be a prime ideal containing

7j=1 7j=1
(21,...,2;). Then q 2 p; for some 1 < j < s; since z; € q\p;, we have ht(q) > ht(p;) =i — 1, or ht(q) > 1,
as shown. O
Theorem 3.11. For any Noetherian local ring (A, m) the following three integers are equal:

(i) the maximum length of prime chains in A.

(ii) the degree of the characteristic polynomial xy(n) = length 4(A/m"™).

(iii) the least number of generators of an m-primary ideal of A.
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Example. Let A = k[zy,...,z,] be a polynomial ring over a field ¥ and m = (zq,...,2,). Then
Grm(Anm) = Ek[z1,...,2,], so its Poincaré series is (1 — ¢)~™ by Example in the beginning of the section.

Hence dim A,, = n.
Corollary 3.11.1. dim A < dim(m/m?), where k = A/m is the residue field.

Proof. Let xq,..., 2, be elements of m such that their images in m/m? form an k-basis. By Nakayama’s

lemma, z1,..., 7, generates m. Hence dim A < s = dimy(m/m?). O

Corollary 3.11.2. Let A be a Noetherian ring and x4, ..., z, € A. Then every minimal prime p belonging

to (x1,...,x,) has height < r.
Proof. In Ay, the ideal (xq,...,z,) becomes p-primary, so r > dim A, = ht(p). O

Corollary 3.11.3 (Krull’s PIT). Let A be a Noetherian ring and let 2 € A be neither a unit nor a

zero-divisor. Then every minimal prime p of (z) has height 1.

Proof. By above Corollary, ht(p) < 1. If ht(p) = 0, then A, is Artinian local, so p; = 0 for some n € N.
Thus 2"/1 = 0 in A, and thus az™ = 0 for some a € A — p; but this means x is a zero-divisor, a

contradiction. ]

Corollary 3.11.4. Let (A, m) be a Noetherian local ring and = € m which is not a zero-divisor. Then
dim A/(z) = dim A — 1.

Proof. Put d = dim A/(z). By Corollary 3.8.1, d < dim A—1. Conversely, let x1, ..., 24 € A that generates
an m/(z)-primary ideal in A/(x). Then (z,z1,...,x4) is m-primary in A, hence d + 1 > dim A. O

Corollary 3.11.5. Let A be a Notherian ring and p be a prime ideal of height . Then p is minimal over

an ideal generated by r elements.

Proof. Passing to (A, py), with Proposition 3.10, we can find a p,-primary ideal (z1,...,x,) of A,, where

T1,...,%, € Ap, with the property that every prime containing (x1,...,z,) has height > r; up to units
we may assume Zi,...,%, € A. Then p 2 (zq,...,2,) n A 2 p" for some n. Then p is minimal over
(x1,...,2,) N A. O

Corollary 3.11.6. A Noetherian domain A is a UFD if every height one prime ideal of A is principal.

Proof. By above corollaries, height one primes are precisely those primes minimal over principal ideals.
Then apply Proposition 1.17. [
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3.4 Systems of Parameters

Definition. If (z1,...,24) € A generates an m-primary ideal with d = dim A, we call z4,...,z,4 a system

of parameters.

Proposition 3.12. Let z1,...,x,; be a system of parameter for (A,m) and let q = (xy,...,x4) be the
m-primary ideal generated by them. Let f(¢1,...,%4) be a homogeneous polynomial of degree s with
coefficients in A, and assume that
fzy,...,xq) € q*™!
Then all the coefficients of f lie in m.
Proof. Consider the surjective homomorphism
(A/q)[t1, ... ta] ———— Gr4(A)

ti————— T, =x; mod q € Grcll(A)
The hypothesis means f(¢y,...,t;) mod q € ker a.
o All coefficients lie in m. Great.

« Some coefficient of f is a unit in A. Then f mod q is not a zero-divisor, so

d = d(Grq A) < d((A/q)[t1, . .., ta]/(f mod q))

— d((A/q)[t1, ... ta]) — 1
—d—1

by Corollary 3.5.1 and the Example in the beginning, which is a contradiction.
O

Corollary 3.12.1. If £ € A is a field mapping isomorphically onto A/m, and z1,..., 2,4 is a system of

parameters, then zy, ..., x4 are algebraically independent over k.

Proof. Assume f(xy,...,24) = 0, where f is a polynomial over k. If f # 0, write f = f; + h.o.t.,
with f; # 0 homogeneous of degree s. Then f,(x1,...,14) = 0 € ¢°™; the Proposition above implies all

coefficients of f lie in m, which implies f, = 0, a contradiction. 0

3.5 Regular Local Rings

Theorem 3.13. Let (A, m) be a Noetherian local ring of dimension d with £ = A/m. TFAE:
1. Gry(A) = k[tq,. .., tq] as graded k-modules, where the t; are independent variables.
2. dimy,(m/m?) = d.
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3. m can be generated by d elements.

If one of the above statements holds, we say A is a regular local ring.

Proof. 1. = 2. is clear since m/m? = kt; + -+ + ktg. 2. = 3. follows from Nakayama’s lemma. 3. = 1.

follows from Proposition 3.12:

o a:kl[xy,...,x4] > Gry(A) is an isomorphism as graded k-modules. It suffices to show
flzy,...;xzg) modm =0= f(x1,...,24) € M[xy,...,24]
for all homogeneous f(x1,...,2z4) over A of degree s > 0. But

0= f(x,...,24) mod m € Grj (A)

implies f(z1,...,74) € m*™1 and thus f has coefficients in m, i.e., f(z1,...,24) € Mm[xy,. .., T4q].
O
Corollary 3.13.1. A regular local ring is an integral domain.
Proof. Follow from the Theorem and Corollary 2.4.6. 0
Corollary 3.13.2. Regular local rings of dimension 1 are precisely discrete valuation rings.
Proof. Recall for a Noetherian local domain (A, m, k) of dimension 1, TFAE:
- Aisa DVR.
- A is integrally closed.
- m is principal.
- dimg(m/m?) = 1.
- Every nonzero ideal is a power of m.
- There exists x € A such that every nonzero ideal is of the form (z*), k > 0.
O
Example. Let A = k[zy,...,x,] be a polynomial ring over a field k and m = (z1,...,2,,). Then A, is a

regular local ring, for Gry(Awn) = k[z1, ..., 2]

28



3.6 Homomorphisms and Dimension

Definition. Let ¢ : A — B be a ring homomorphism. For each p € Spec A, the set
Spec(B ®4 k(p)) = Spec(B @4 Ap/pAy)

is called the fibre over p.

o There exists a canonical homeomorphism

Spec(B ®a #(p)) = Spec(¢) ™ (p)
where Spec(¢) : Spec(B) — Spec(A) is the canonical map.

« If P € Spec(B) is a prime lying over p, denote by P* the prime BB, /pB, € Spec(B ®4 k(p)). Then

By = (By)ps,

(B®a k(p))p+ = By ®a k(p) = Byp/pBy

Theorem 3.14. Let ¢ : A — B be a ring homomorphism between Noetherian rings. Let 8 € Spec(B)
and p =P n A.

1. ht(P) < ht(p) + ht(P/pB); in other words, dim(By) < dim(A,) + dim(By @4 k(p))
2. The equality holds if the going-down theorem holds for .
3. If f = Spec(¢) : Spec(B) — Spec(A) is surjective, and if the going-down theorem holds, then
(a) dim(B) > dim(A)
(b) ht(I) = ht(I/B) for any ideal I of A.
Proof.

1. Replacing A and B by A, and By, we may assume (A, p) and (B,*P) are local rings with pn A = p.
Then we must show dim(B) < dim(A) + dim(B/pB). Let a4, ...,a, be a system of parameters of
A and I be the p-primary ideal of A generated by them. Then dim(B/pB) = dim(B/IB). Indeed
if q is a prime of B containing I B, the q n A contains [. Taking radical we see ¢ n A contains
p, and thus q 2 p. If dim(B/IB) = s and {b;,...,b,} be a system of parameters of B/IB, then
{b1,...,bs,a1,...,a,} generates a ‘P-primary ideal of B. Hence dim(B) < r + s.

2. Use the notation as above. If ht(*f/pB) = s, there exists a prime chain
P=Po2FP12-2%;
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of length s such that P, 2 pB. Since p =P N A 2P, N A D p, all P, lie over p. If ht(p) = r, there

exists p 2p; 2 - 2 p, in A, and by going-down there exists a prime chain
Ps=Q 221229,
of B such that Q;n A = p,;. Hence we obtain a prime chain of length s+ in B, proving ht(*) = r+s.

3. (a) follows from (2). For (b), take a minimal prime £ over IB such that ht(Q) = ht(/B), and put
q=90n A. Then ht(Q/qB) = 0, and by (2) we have

ht(IB) = ht(Q) = ht(q) = ht(])

Conversely, let g be a minimal prime over I such that ht(p) = ht(7), and take a prime Q of B lying

above (; we may assume £ is minimal over qB. Then

Lt(1) = ht(q) = ht(Q) = ht(IB)

3.7 Finitely Generated Extensions
Theorem 3.15. For a Noetherian ring A, we have
dim A[z1,...,2,] =dim A +n

Proof. Tt suffices to show the case n = 1. Put B = A[x]. Let p € Spec(A) and B € Spec(B) that is maximal
among prime ideals lying over p. We contend ht(f/pB) = 1. We have B, /pB, = A[z] ®4 k(p) = £(p)[x]
so B,/pBy is a PID, and therefore every maximal prime has height one. Thus ht(/pB) = 1. Since A[z]
is free over A, Theorem 3.14 2. shows that ht(8) = ht(p) + 1. Since Spec(B) — Spec(A) is surjective, this
gives dim B = dim A + 1. O

Definition. A ring A is catenary if for each p < q € Spec(A),
(i) ht(q/p) < oo;
(if) ht(q) = ht(p) + ht(q/p).
o If A is Noetherian, (i) is automatically satisfied.
o For A Noetherian domain, TFAE:

- A is catenary.
- For each p < q € Spec(A), ht(q) = ht(p) + ht(q/p).
- For each p < q € Spec(A) with ht(q/p) = 1, ht(q) = ht(p) + 1.
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o If A is catenary, so are its localizations and its quotient by an ideal.

A ring A is universally catenary if A is Noetherian and every A-algebra of finite type is catenary.

o A Noetherian ring A is universally catenary iff A[zq,...,z,] is catenary for all n > 0.

o If A is universally catenary, so are its localizations, quotient rings and any A-algebra of finite type.

Theorem 3.16. Let A be a Noetherian domain and B 2 A an A-algebra of finite type that is an integral
domain. Let 8 € Spec(B) and p =P n A. Then

ht(B) < ht(p) + tr.degy B — tr. deg, ) £(F)

with equality when A is universally catenary, or if B is a polynomial ring of A. Here tr.deg, B =
tr. degpyac(a) Frac(B).

Proof. Since transcendence degree is additive in tower of fields, by induction we may assume B is generated
by single element, i.e. B = A[x]|. Replacing A, B by the localization at p, we may assume (A, p) is local.
Put k = k(p) = A/p, and define

I={f(T) e A[T]| f(x) = 0}
Then B = A[T]/I. We divide the proof into two cases.

e« [ =0. Then B = A[T] is the polynomial ring, so that tr.deg, B = 1 and B/pB = k[T]. We have

two cases.

- P 2 pB. Then ht(P/pB) = 1. Notice that B/pB = k[X] is a PID, and therefore B/pB is
_ k=]

~ P/pB
- P =pB. Then ht(P/pB) = 0, and tr. deg;, k(P) = 1.

maximal and principal, so (°g) is a finite extension of k. Thus tr. deg, k() = 0.

In either case, we have ht(/pB) = 1 — tr. deg, x(*P). By Theorem 3.14, ht(B) = ht(p) + ht(P/pB).
Combining these two equalities gives the result.

e« I # 0. Then tr.degy, B = 0, since Frac(B) = K[T]|/IK|T] is a finite extension of K = Frac(A).
Denote by P* the inverse image of B in A[T']; we have P = PB*/I and (P) = ~(P*). Since A is a
subring of B = A[T'|/1, An I = 0. Since Spec(K[T']) — Spec(A[T]) is surjective and A[T| — K[T]
is flat, by Theorem 3.14

ht(I) = ht(/K[T]) < dim K[z] =1
Since I # 0, ht(I) = 1, and hence
ht() < ht(P*) — hi(7) = ht(P7) — 1
with equality if A is universally catenary (note that [ is prime). On the other hand, we have

ht(P*) = ht(p) + 1 — tr. deg, x(P*) by the first case, and k(P) = £(P*). These imply the result at

once.

]
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4 Differentials

Definition. Let S be a ring and M an S-module. A map d : .S — M is called a derivation if it satisfies
the Leibniz rule, i.e., for all f,ge S

d(fg) = fd(g) + gd(f)
If S is an R-algebra, we say d is R-linear if it’'s an R-homomorphism.

o The set Derg(S, M) of all R-linear derivations S — M is naturally an S-module, given by
bd : f— bd(f)e M

for all be S, d € Derg(S, M).

o For any derivation d : S — M,
d(1) =d(1-1) = 1d(1) + 1d(1)

so that d(1) = 0. It follows that d is R-linear iff da = 0 for all a € R.

4.1 Kahler differentials

Definition. Let S be an R-algebra. The module of Kahler differentials of S over R is the S-module
Qg/r together with an R-derivation d : S — )g/p, called the universal R-linear derivation, that satisfies

the following universal property:
Derg(S, M) —— Homg(Qg/r, M)
e:S—>Mr——¢€od:Qgpr—M
is an isomorphism whenever M is an S-module.

e lg/r exists and is unique up to a unique isomorphism. Precisely, we can take g/ to be the S-
module generated by the symbol {df | f € S} subject to the Leibniz rules and R-linearity , and take
d:S — Qg/g to be the R-homomorphism defined by d(f) = df for each f e S.

o If S = R[filier, then Qg/p is generated by df; (i € I) as an S-module. In particular, {2g/r is finite
over S if S is an R-algebra of finite type.

Proposition 4.1. If S = R[xy,...,2,] is a polynomial ring over R, then Qg = @ Sdx; is a free
i=1

S-module. Explicitly, for f € S, we have
0
df = 9 g,

i 0@
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Proof. Clearly €g/r is generated by dr; as S-modules, so we have a surjection S" — (g/z. On the
other hand, the partial derivative 0; = % defines a map Qg/r — S by 0;(dz;) = &;;, so we have a map

(O1,...,0n) : Qg/r — S™. One can verify they are mutually inverse. O
Example. Let R be a ring and S be a localization or a quotient of R. Then Qg/r = 0.

 Say S'is a quotient of R. Since Qg/p is generated by the symbols db for all b € S subject to the Leibniz
rule and R-linearity, dr = 0 for all r € R. For b e S, say r € R is mapped to b; then db = da = 0.

e Say S = T 'R for some multiplicatively closed set T'< R. For s € S, there exists t € T with ts € R.
Then 0 = d(ts) = tds, and hence ds = 0 for ¢t € S is invertible.

We can view the assignment of Kéhler differentials as a functor. Let C be the category whose object
consists of all ring homomorphisms ¢ : R — S. A morphism from ¢ : R — S to ¢ : R' — S’ is a pair of

homomorphisms f: R — R, g : S — S’ such that the diagram commutes:

S 7 g9

@T ¢ Tw
R— I

Define the functor 2 : C — Mod by assigning to each morphism (R, .S) ?(R’ ,S") the the morphism

QS/R E— QS’/R’

1o T

S —— 9

where the bottom horizontal morphism is the given S — S’, and the upper horizontal morphism is the
unique S-module homomorphism induced from the universal property, by viewing (g /p as an S-module.

In practice, the map R — R’ will always be the identity, and the S-homomorphism Qg/z — Qg/p
is replaced by the S’-homomorphism S’ ®g Qs/r — Qg/r. We often call Q2g/r the relative cotangent

functor. It is, in the following sense, a right exact functor.

Proposition 4.2 (Relative cotangent sequence). If R — S — T are maps of rings, then we have an exact

sequence of T-modules
T®S QS/R E— QT/R E— QT/S — 0

c®db —— cdb

de —— dc

In addition, d has a left inverse if and only if any R-linear derivation S — M can be extended to a R-linear
derivation T" — M for all T-modules M.
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Proof. Only the last statement needs a proof. d has a left inverse if and only if the induced map
HOIHT(T ®S QS/R; M) <« HOHIT(QT/R, M)
is surjective for every T-module M, i.e. Derg(S, M) < Derg(T, M) is surjective. O

Proposition 4.3 (Conormal sequence). If 7 : S — T is a surjective R-algebra homomorphism with kernel

I, then there is an exact sequence of T-modules
I/ —4 T ®s Qsp 2 Qr/p — 0
f— 1Rdf
c®db —— cdb

Moreover,

1. Put Sy := S/I?. Then Qg/p ®r T = Qs,/r s, T-

2. d has a left inverse iff 0 — [/I? — S} — T — 0 splits.
Proof. Consider the map d : I — €g/g which is the restriction to I the universal derivation S — (g/g.

o Ifbe S, cel,d(bc) = bd(c)+cd(b) = bd(c) (mod I), so d induces an S-linear map I — Qg/p/Ids/r =
T ®s Qs/r-

o Take b e I as well; this shows the induced map descends to a map d : I[/I* > T ®g Qg/r.

By the right adjointness of the tensor product, we see T'®g {15/ is generated as a T-module by db for
b € S subject to the Leibniz rules and R-linearity. This is the same as the description of {07/p, except
that the elements df with f € I are replaced by d0 = 0 (for 0 € R). Thus Qp/g is the cokernel of
d:1/I* > T ®s Qg as claimed.

1. It’s an isomorphism if and only if for each T-module M,
HOIHT(QS/R ®S T, M) <« HOII]T<le/R ®51 T, M)

is an isomorphism, i.e. Derg(S, M) < Derg(S1, M) is an isomorphism for each S/I-module M. This

is clear from the computation in the beginning of the proof.

2. By 1., we can replace S and I by S/I? and I/I?, respectively, so that we may assume I* = 0. Suppose
d has a left inverse 0 : T®gQg/r — 1. Putting Db := o(1®db) for each b € S, we defines an R-linear
derivation D : S — [ such that Df = f for each f € I. Then the map 7 : S — S defined by
7 = idg —D is an R-algebra homomorphism vanishing on I, so it induces a map 7 : T' =~ S/I — S.

Now 77 = 7(idg —D) = m, for m vanishes on I, proving that the sequence splits.
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Conversely, let 7 : T'— S be a right inverse of 7 : S — T~ S/I. Define D : S — S by D =idg —77.
Define o : Qg/g — S by o(db) = D(b); since wo(db) = 7D(b) = w(b) — w(b) = 0, we see the image
of o is contained in I. Since I? = 0, I is a T-module, so we can extend ¢ to a T-homomorphism
0:T®gQg/pr — 1. Finally, for each f e I, o(df) = D(f) = f —71n(f) = f =id;(f), so o is a left

inverse of d. [

Corollary 4.3.1 (Coequalizer). If T = coequal(¢y,¢’ : S — S3) is the coequalizer in the category of

R-algebras, then there is an exact sequence of T-modules

idr ® Dy —idr @Dy’

T®51 le/R > T®52 QSQ/R E— QT/R — 0

Proof. By the conormal sequence, )7/ is the quotient of T'®g, {1g,/r by the submodule generated by the
elements 1 ® d(¢(b) — ¢/(b)). This submodules is precisely the image of idy ® Dy — idyr ® D). O

Example. If S is of finite type over R, say S = R|z1,...,z,]/] with I = (f1,..., fm), then

n

o S®r Qpay,..zn/r = P Sdu;.
i=1
« By the conormal sequence,
QS/R = coker (d . I/I2 — @Sdl’z>
i=1

m

o Writing /I? as a homomorphic image of @ Se;, where e; is sent to f;. Then the composition
i=1

J: P Se; —» I/I? —— P Sdux;
i=1 i=1
is a map of free S-modules whose matrix representation is the Jacobi matrix of the f; with respect
to the x;; the (4, j) entry of J is 0f;/0x;.

Hence, €2g/g is the cokernel of the Jacobi matrix J = (0f;/0x;).
For an explicit example, consider the ring S = R[x,y,t]/(y* — 2*(t* — x)). In the case we have

322 — 2xt?
J = 2y
—2x%t

and following the computation above we see {15/ is the S-module generated by dz, dy, dt with a single

relation
(32% — 2xt*)dz + (2y)dy — (22°t)dt = 0
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Proposition 4.4 (Base change). For any R-algebras R’ and S, we have the commutative diagram

R ®r Qs/r
1®d
R ®R S 14
Iy
Qr@rs)/R

Proof. From the morphism (R, S) — (R', R’ ®g S), we obtain a map R’ ®gr Qs/r — Qrexs)/r, sending
a’ ®db to d(a’ ®b). On the other hand, 1 ® d is an R'-linear derivation, so from the universal property we
obtain Qpe,s)/r — R ®r Qg/r, sending d(a’ ®b) to a’ ® db. O

Proposition 4.5 (Tensor product). If T = ) S; is the tensor product (coproduct) of some R-algebras
SZ', then

Qr/r = @,(T ®s, Vsr) = P, ((@R’j# S;) ®r Qs,/r)
by an isomorphism « satisfying
where b; € S; occurs in the i-th place in each expression.

Proof. The second equality is clear. Denote by {2 the middle object. Write d; : S; — (2, /g for the universal

derivation. Then we have

1®d;: T = (@J,# Sj) Qgr S; — (@j,# Sj) ®r s,/R

Only finitely many of the maps 1 ® d; are nonzero on a given element in 7', so the map e : T' — () given
by e = >}, 1®d; is well-defined. Since e is a sum of derivation, it is a derivation itself, so it gives a map
a: Qp/p — Q defined by d(®;b;) — e(®ib;).

Conversely, for each S; consider the composition S; — T" — /g; by the universal property, it gives

Bi: T ®s, Qs,)r —— Qg
All B; then produce a map 2 — Qp /g, and it’s inverse to a. ]

Corollary 4.5.1. If T = S|z, ..., x,] is a polynomial ring over an R-algebra S, then

Qr/r = (T ®s Qs/r) ® (@ Td$i>
i=1
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Proof. Put T" = R|z1,...,x,]; then T = S ®g T". By Proposition,
Qrr = (T®s Qs/r) ® (T @7 Qri/r)
The final expression results from Proposition 4.1. [

Example. Let R, S,T be as in the corollary. Let I be an ideal of T" and form 7" = T'/I. From the conormal

sequence we have an exact sequence
)P 2 T'® Qrg — Qg —— 0
with d defined by d(f) = 1 ® dr/rf. The isomorphism in the corollary is given by
Qr/r » (T ®s Qsyr) @ (D), Tdx;)

1 T

n
drjrlaxi' ---xjr) —— o' - alndgpa + Y a . )dxi
i=1 0T

Combining these two isomorphisms we obtain
(1" ®s Qs/r) ® (D2, T'dw;:)

Qrip = -
<(dP)(x) + > a—dei Pe I>
iz1 0z T

where (dP)(z) € T ®g (ds/r is a polynomial obtained by applying dg/r to each coefficient of P.

Theorem 4.6 (Colimits). Let B be a diagram in the category of R-algebras, and set T := lim B. If F
is the functor from B (identifying with its image) to the category of T-modules taking an object S to
T ®g Qg/r and a morphism ¢ : S" — S to the morphism 1 ® Dy : T'®s (S ®s Qsr/r) — T Qs Qg/r, then
Qr/p = lim F
Proposition 4.7 (Localization). If S is an R-algebra and T' < S is a multiplicatively closed set, then
Qr15/r = T7'S @5 Qgyr
in such a way that d(1/t) = —t=2dt for all t € T.

Proof.

Method 1 First suppose T' = {t" | n > 1} for a single t € S. Then TS =~ S[z]/(tz — 1). By Corollary
4.5.1 and conormal sequence

o T8O @ T Sdr  T'SQsp ® T Sda
TSR T TGA(tr — 1) TS Mtdx + dt)

Since t € T—1S is invertible, we see Qrg/p = Tflsﬂg/R with dx identified with —%dt. Thinking of = as
t=1, this reads d(1/t) = —t~2dt.

For the general case, recall that 7715 = lim S;. Hence by Theorem above, we hae
teT

Qr-1g/p = Im TS ®s, Qs,p =M T 'S ®s, 5 Qs Qsyr = TS @s Qsyr
tel teT
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Method 2 We prove there exists d' : 715 — T~ 15®gQs/ sending 1/t to —t~2dt satisfies a commutative
diagram

T7'S ®s QR
=
X‘

T-'S

Qr-1g/r

First, the composition S — 7715 — Qp1g /r 1s an R-linear derivation, and hence it gives an S-homomorphism
Qs/r — Qp-15/p, or equivalently, a T~!S-homomorphism 7S ®g Qs/r — Qr-15/r, mapping bt~ @ ds to
bt~ Lds.

Second, to get a upward map, we must verify that d’ is a well-defined R-linear derivation. Suppose
b/s =0in T~1S; then bt = 0 for some s € T. Then d(b/s) = s~?(sbd — bds). Since

t*(sbd — bds) = ts(tbd + bdt) — s(bt)dt — t(bt)ds = 0

we see d(b/s) = 0 in T7'S ®s Qg/r, so that d’' is well-defined. It’s clear a derivation , as one learnt in
calculus. Hence, by the universal property, we obtain a map Qp-1s/z — TS ®s Qg carrying cd(b/s) to

—cs™2® (sbd — bds). In this stage it is direct to see the obtained maps are mutually inverse.

Method 3 Use the relative cotangent sequence and the example preceding it. We must show Derg(S, M) «
Derg(T'S, M) is surjective for each T-'S-module M. Let D : S — M be an R-linear derivation, and

— D(b) —bD
for b/s € T1S with be S, s € T, define D(b/s) = sD(b) (s)

derivation D : T~1S — M whose restriction to S is D. This is already shown in Method 2. O

. We must show it defines a well-defined

Proposition 4.8 (Finite direct products). If Si,..., S, are R-algebras and S =[], S;, then

Qsn = | [Qsr

i=1
Proof. If e; is the idempotent of S that is the unit of S;, and D € Derg(S, M) for some S-module M, then
(2¢; — 1)D(e;) = 0. Since (2¢; — 1)? = 4e3 —4e; + 1 = 1, 2¢; — 1 is a unit, and hence De; = 0. Therefore,
D(e;f) = e;Df for all f e S. Consequently, D maps S; := ¢;S to M; = e; M, and corresponds to a unique
map g,/r — M;. It follows that S — [, Q2s,/r satisfies the universal property of Qg/p. ]

4.2 Kahler differential as a conormal module

Lemma 4.9. Let ¢ : S — S’ be a map of R-algebras, and let 6 : S — S’ be a map of abelian groups. If
§(S)? = 0, then ¢ + ¢ is a homomorphism of R-algebras if and only if ¢ is an R-linear derivation, in the
sense that

0(b1b2) = @(b1)d(b2) + ©(b2)d(b1)
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Proof. By computation,
(¢ + 0)(bib2) = @(bibg) + 6(b1b2)

(o +0)(b1) - (¢ + 0)(b2) = @(brba) + £(b1)d(b2) + £(b2)d(b1) + 0(b1)5(b2)
The last term in the second identity is zero, so they are equal if and only if
0(b1b2) = @(b1)0(b2) + ¢(b2)d(b1)
Also, for r € R, s € S, we have (¢ + §)(rs) = r(¢ + 0)(s) if and only if d(rs) = rd(s). O

Let R — S be a ring homomorphism. Consider the multiplication p : S ®zr S — S, and denote
I =kerp. Let e: S — I/I? be the map induced by b— 1®b—b® 1.

Theorem 4.10. (e, I/I?) is naturally isomorphic to (d, Qg/r).

Proof. We first show that e : S — I/I? is a derivation. Consider the exact sequence

I)I? —— (S®grS)/I? > S > 0

First, note that S acts on I/I* naturally by any section of (S ®z S)/I*> — S. Note that b — 1® b and
b — b® 1 are two homomorphic sections of S — (S ®g S)/I?, so e(T) < I/I?. By Lemma, ¢ is an
R-derivation.

By the universal property for (d,Qg/r), there exists a unique map ¢ : Qg/p — I/I? such that e = ¢d.
We shall prove ¢ is an isomorphism.

Let T = S @ Qg/r be the abelian group direct sum. For b,0" € S and u,u’ € Qg/p, define

(b, u)(b',u') := (bb',bu’ + b'u)
This is the trivial extension of S by Qg/r; S acts on T" as S @ {0}. Define the ring homomorphism
Yp:SQRrS —— T
a®b——— (ab, adb)
by 1 : S3b— (b,db) € T and ¥5 : S 3 a — (a,0) € T} 1y is clearly a ring homomorphism, and since
Yy (ab) = (ab,d(ab)) = (ab, adb + bda) = (a,da)(b,db) = 11 (a)1(b)

1y is also a ring homomorphism. Then by construction, (1) = {0} @ Qg/g; let ¥' : I — Qg given by
(a) = (0,¢'(a)) for all a € I. Since 1) is a ring homomorphism, according to the multiplication rule on T,
¥(I?) = 0, and hence ¢’ descends to a map ¢’ : I/I* — Qg/p. Finally,

e Forbe S,
V'p(db) = ' (1@b—b®1) = db

o Forz=>a,®b;€I/I?
@@D/(Z&l®bz) = @(Zazdbz) =Zaz(1®bszz®1) =T — (ZCL,Z)Z)®1 =X
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4.3

Field extensions

4.3.1 Separable generation

Definition. Let K/k be a field extension.

1.

2.

A transcendence basis (x)), of K/k is called a separating transcendence basis if K is separably

algebraic over k(z))a.

K is separably generated over k if K /k has a separating transcendence basis.

Put r(K) := rankg Q. Suppose L = K (t). We compare r(K) and r(L).

Case 1.

Case 2.

Case 3.

Case 4.

t is transcendental over K. Then by Corollary 4.5.1,
Qi = (K[t] ®k Qi) @ (K[t]dt)

and by Proposition 4.7
Qe = (L ®k Qi) @ Lt

Thus r(L) = r(K) + 1.

t is separably algebraic over K. Then L = K|[t] = K[X]/(f(X)) with f = m; x. By Example, we

see

(L @k Qi) @ LdX
df) () + f(t)dX )
Since f'(t) # 0 is invertible in L, Qp, = L ®k Qi so thus r(L) = r(K). From this we see any

derivation of K into L can be extended uniquely to a derivation of L.

Qi =

Char(k) = p, t* = ae K, t ¢ K, dgja = 0. Then L = K[t] = K[X]/(X? — a). Consider the
isomorphism in Case 2 with f(X) = X? — q; since (df)(t) + f'(t)dX = 0, we have

Qri = (L ®k Qi) ® LdX
sor(L)=r(K)+1.

Char(k) = p, t* = a e K, t ¢ K, dgja # 0. Again, but (df)(t) + f'(t)dX = —dgma # 0, so
r(L) =r(K).

Theorem 4.11.

1.

Let k be a field, K /k an extension and L/K a finitely generated extension. Then
ranky, Q0 = rankyg Qg + tr.degy L

with equality if L/K is separably generated.
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2. Let L/k be a finitely generated extension. Then
ranky, Qz, = tr.degy L

with equality if and only if L/k is separably generated over k. In particular, Q, = 0 if and only if
L/K is separably algebraic over k.

Proof.
1. This follows from the above discussion.

2. The inequality is a special case of 1. Now suppose 2z, = 0, i.e., (L) = 0. Then for k € K < L we
have r(K) = 0, so the case 1, 3, 4 above cannot occur, implying L/k is separably algebraic. Suppose
next that r(L) = tr.deg, L = r. Let @1,..., 2, € L such that dz1, ..., dz, form a basis for €, over

L. The relative cotangent sequence
L ®k(er,.zr) Qeareryk — Lok — Qrji(an,er) — 0

implies Q7 /k(@y,..z) = 0, so L/k(zy,...,x,) is separably algebraic as shown above. Since r =

77777

tr. deg,, L, the elements z1, ..., z, form a transcendence basis for L/k.

Lemma 4.12. Let K/k be an algebraic extension. TFAE:
(1) K/k is separably algebraic;
(2) The ring K ®j, k' is reduced for any extension k'/k;
(3) ditto for any algebraic extension k'/k;
(4) ditto for any finite extension £’/k.

Proof. Each property holds if and only if it holds for any finite subextension of K /k, so we may assume
that [K : k] < 0.

(1) = (2): Suppose K /k is finite separable. Then K = k(t) for some ¢t € K by the primitive element
theorem. Let f(X) = m(X) be the minimal polynomial of ¢; then K =~ k[X]/(f(X)), and thus
K ® k' = K'[X]/(f(X)). Since f(X) is separable, by Chinese Remainder theorem we see K ® k'

becomes a direct product of finite separable extensions of k', and thus K ®;, k' is reduced.

(2) = (3) = (4): Trivial.
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(4)= (1): Suppose Chark = p > 0 and K contains an inseparable element ¢ over k. Let f(X) =
mex(X); then f(X) = g(XP) for some g € k[ X]. Say ¢g(X) =ap+ a1 X -+ + a, X" and put

O3 =
3|

K :=k(al,... ak)

Then f(X) = g(X?) = h(X)? for some h(X) € K'[X], and k(t) ® k' = K'[X]/(R(X)P) has nilpotent
elements. Since k' is a field, k(t) ®y k' is a subring of K ®j k', so that the condition (4) does not
hold.

4.3.2 Separable algebra

Definition. Let k£ be a field and A a k-algebra. We say A is separable over £k if for any algebraic extension
k'/k, the ring A ®y k" is reduced.
There are some immediate consequences of the definition.

If A is separable, then so is any k-subalgebra of A.
If all finitely generated k-subalgebras of A are separable, then so is A.

If for any finite extension k'/k, the ring A ®; k' is reduced, then A is separable.

Proof. Suppose for some algebraic extensmn K'/k, the ring A ®j k' contains a nilpotent, say ¢ # 0

and t¢ = 0. Write t = Z a; ® c; and t* = Z (af,c}) in A x k' for some a;,a, € A, ¢;, ¢, € k' and form
i=1 i=1

the field k" := k(¢;, ¢ J) l<i<n. Then 0 #te AQL k" and t! = 0 in A®; k”. Thus A ®; k" is not

1<js<m

reduced. O]

Lemma 4.13. If k' /k is a separately generated extension, and if A is a reduced k-algebra, then A ® k' is

reduced.

Proof. We may assume A is finitely generated over k. Since A is reduced, the homomorphism

A—s A= [ A

p: minimal

is injective, and each A, is a field. Since A is Noetherian, the RHS is actually a finite product. (Actually,
A’ is isomorphic to Frac(A).) Since A ®y k' € A’ ®; k', we may further assume A is a field.

It suffices to consider the cases k'/k is separably algebraic and k’/k is purely transcendental. Then the
former case follows from Lemma 4.12. In the latter case, say k' = k(t1,...,t,), then AQg k" < A(t1,...,t,)
is reduced. [
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Corollary 4.13.1. If k is a perfect field, then a k-algebra A is separable if and only if it is reduced. In

particular, any extension field K of k is separable over k (as k-algebras).

Proof.

k being perfect, any algebraic extension k&’ of k is separable, so A ®y, k" is reduced by lemma above,

Conversely, if A is separable, then by definition A = A ®;, k is reduced. ]

Lemma 4.14. Let k be a field with Chark = p > 0, and K/k a finitely generated field extension. TFAE:

(1)

(i)

(iii)
where

Proof.

K is separable over k (as k-algebras);
the ring K ®j kv is reduced;
K is separably generated over k.

kv = {yek|y” ek} and k is the algebraic closure of k.

(iii) = (i) If K /k is separably generated, then k' ®; K is reduced for any extension k'/k by Lemma
4.13.

(i) = (ii) Trivial.

(ii) = (iii) Let K = k(z1,...,x,); suppose x1, . .., z, form a transcendence basis for K /k, and suppose
Tyi1,- .., T are separable over k(xy, ..., x,) while 2,41 isnot. Put y = x,41 and f(Y?) be the minimal
polynomial of y over k(zq,...,x,). Clearing the denominators of the coefficients of f we obtain a

polynomial F (X, ..., X,,Y?) irreducible in k[X,Y] such that F(zy,...,2,,y?) = 0. Then there

must be at least one X; such that # 0, for otherwise (F' is a polynomial in X?) we would has

0X;
F(X,Y?) = G(X,Y)? with G = k#[X,Y] so that
1
1 k[X,Y] 1 k»[X,Y]
[z, ..., I Ll Y- W R L
R e S O R (08 e

has a nilponent element; since k[z1, ...,z y] ®k kv is a subring of K ®j, k%, this leads to a contra-
diction to (ii). Hence, say 6(7 # 0, so that x; is separably algebraic over k(za,...,x,,y), and the
same holds for z,41,...,2, as well. Exchanging z; with y = x4, we have that x,,1,..., 2,41 are
separable over k(xy,...,x,). Now by induction on ¢ > r + 1 we see that we can choose a separating
transcendence basis for K /k from the set {z1,...,z,}.
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o (Exchanging x; and y is valid) Consider the lattice

k<x17 R 7'Ir>y)
finite sep W
kE(xo,...,xmY) k(xy,...,z,)
k(xg, ..., x.)
k
For x; (1 < i < n), since x; is algebraic over k(z1, ..., x,), it is also algebraic over k(z1, ...,z y).
Since k(x1,...,2.y)/k(xs, ..., 2., y) is finite, x; is also algebraic over k(xs,...,x,,y). This
means K is algebraic over k(xq,...,z,,y); since tr.deg, K = r, z,...,x,,y are algebraically
independent over k.
o We know z,41,...,z, are separably algebraic over k(zy,...,2z,). Let r +1 < i < ¢. Since
k(xy, ...,z y)/k(xg,. .., 2., y) is finite separable, that x; is separable over k(za,...,x,,y) is
equivalent of that x; is separable over k(x1, xs, ..., z,,y), the latter being true for x; is separable

over k(z1,...,2,).
O

Proposition 4.15. Let k be a field and A a separable k-algebra. Then for any extension & of k (algebraic
or not), the ring A ®j, &’ is reduced and is a separable k’-algebra.

Proof. Enough to prove that A ®j, k' is reduced. The statement holds for any algebraic extension of k (by
definition of a separable algebra), so we may assume &’ contains the algebraic closure k of k. (This is to
deal with the case Chark > 0.)

Since A ®y, k is reduced by assumption, and since any finitely generated extension of k is separably
generated (Lemma 4.13.1 for Chark = 0 and Lemma 4.14.(ii) for Chark > 0), the ring A ®; k' =
(A®y k) @z k' is reduced by Lemma 4.13. O

4.3.3 Linear disjointness

Definition. Let £ < L be a field and K, K’ be two subfields of L containing k. We say K, K’ are linearly

disjoint over £ if they satisfies the following equivalent conditions.
(a) If aq,...,a, € K are k-linearly independent, they are K’-linearly independent.
(b) The condition (a) holds if we interchange K and K'.

(c¢) The canonical homomorphism K ®; K’ — KK’ < L is an isomorphism.
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Proof. Tt suffices to show the equivalence (a) <(c).

(a) = (c): Say £ = >, x;®y; lies in the kernel of the homomorphism. Assume 1, ..., z, are maximal
i=1

k-linearly independent among the set {x1,...,z,} ; then we can write £ = >} z; ® y.. If £ # 0, then
i=1

y. # 0 for some ¢, while its image > x;y; = 0 € KK’ a contradiction to (a).
i=1

(¢c)=(a): (c) implies that if aq,...,, € K are k-linearly independent and f,...,08,, € K’ are
k-linearly independent, then the o;3; (1 < i < n,1 < j < m) are k-linearly independent. Indeed,
the oy ® f; € K @ K’ are k-linearly independent, so the isomorphism implies so are the o;/3;. Now

(a) is clear.

O
Theorem 4.16 (MacLane). Let k be a field with Chark = p > 0 and K /k an extension. TFAE:
(a) K is separable over k (as k-algebras);
(b) K and kP " := {x e k | 2" € k for some n > 1} are linearly disjoint over k.
(¢) K and kv are linearly disjoint over k.
Proof.
(a) = (b) Suppose a,...,a, € K are k-linearly independent and i c;a; = 0 for some ¢; € kP .

i=1
Let k' := k(ci,...,cy); the k7 < k for some £ » 0, and A := K ®;, k' is reduced. Since A
is a finite dimensional K-algebras, A is Artinian, and thus every prime ideal is maximal. Let
m; € Spec(A) (i = 1,2); then mfe c K so mfi = (; taking radical, one gets m; = my. Thus A has
only one prime ideal, and since A is reduced, it follows that A is a field, forcing that A = K[K'].

Thus > a; ® ¢; = 0 so that ¢; = 0.

=1

(b) = (c) Trivial.
(¢) = (a) Since then K ®y, kv is a field, it is reduced, and thus K is separable over k by Lemma 4.14.

]
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5 Formal Smoothness
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6 Spectral Sequences

Let C be an abelian category, and Kom(C) be the category of complexes in C. Let (K*,d*) € Kom(C) and

FPK* (p € Z) a decreasing filtration of K*. More precisely, for each p, n, we have a commutative diagram

FPK™ b0 K™

d”l l .

FpKn-H s Kn+1

and a chain

o — FPHIKY — 5 FPK" —— FPLKT o > K"
Then they induces a chain on the cohomology objects
- —— HY(FP'K*) —— H"(FPK*) —— H"(FPF'K*) —— -+ —— H"(K")
The induced morphisms are not necessarily injective. Nevertheless, define
FPH"(K®) :=Im (H"(FPK®*) - H"(K*))

which is a decreasing filtration of H"(K*®). Our goal is to understand the H"(K*). However it usually

cannot be attained. The second best is to understand its graded pieces, namely

G (H" () = g

By definition, there is an exact sequence
0 —— FPUHYK) —— FPHYK) —— Grh(H"(K)) —— 0

A general belief is that if we can understand the first and the third term, we can more or less capture the
middle term. In the following, for convenience, put K = K*® and F? = FPK*. Consider a commutative
triangle

HY(FP™Y) —— H"(K)

1

H™(F?)
What we are interested in is the quotient of the vertical image by the horizontal image. For this, we use

some algebras. Consider the short exact of complexes 0 — FP*! — K — K/FP*! — (0. Then the induced

sequence can extend the horizontal part of the triangle

HY(FP™Y) —— HY(K) —— H"(K/FP*)

~ 1

H"(F?)
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Lemma 6.1. Given a commutative diagram with the top row being exact

A2y » B
NG| A
A

the induced sequence
0 —— Imyp" —— Imy¢/ —— Imyp —— 0

is exact.

Proof. By commutativity, we see the following diagram commutes
0 — Imyp" —— Imyp/ —— Imyp —— 0
A A
This shows the exactness at Im ¢” and Im . For the second place, consider the diagram with exact rows

0 —— Imyp” > A » B

o]

Imyp" —— Imyp —— 0

Using functor of points, one can readily see that the kernel of the right-bottom map is Im ¢”, namely,

0 —— Imyp” > A » B

| o]

0 —— Imyp" —— Imy¢p/ —— Imyp —— 0
is commutative with exact rows. OJ
Return to our discussion on the diagram

H"(FP*Y) —— H"(K) —— H"(K/FP™)

~ 1

H"(F?)

By Lemma, Grh, H"(K) =~ Im (H"(F?) — H"(K/F?P™)). On the other hand, using the short exact se-
quences
0— FP/FPYt  K/FPT — K/FP — 0

0> FP > K — K/FP -0
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we can extend previous diagram to the following commutative diagram

HM(Fr+l) — 5 HY(K) —— H"(K/Fr+l)

\T/T

H™(FP) —— H™(FP/Frt)

T* I

H" (K /FP) =— H"(K/F?)

with the bottom row, middle and the rightmost column being exact. * means the morphisms are connecting

homomorphisms. We draw it in a cuter way.

H"(FP*Y) —— H"(K) —— H"(K/FPt1)

N |

H"(FP) —— H"(FP/FP1)

SN

"I/ ET)

Successive uses of Lemma give

L (H"(F7) — H"(F?/FP™))
Im(H"Y(K/FPr) 5 H'(Fr/Frl))

Gl H'(K) =~ Im (H"(F?) > H"(K/F"™)) =~

Now, put

72 = Tm(H"(F?) — H"(F?/FrtY))
Be™ = Im(H" (K /F?) 5 H"(F?/FrtY))

so what we obtain becomes Gri, H"(K) =~ gp™ = Z% /B, One may ask, suggested by our notation oo,

whether there exist any intermediate terms. The answer is positive, explained as follows. Look at the part

H™(F?) —— H"(FP/Fr+l)

T

H V(K /FP)

In fact, we have a very long triangle
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H"(Fr/Fr2)

H" (K /FP)

T

anl (prrJrl/Fp

H\(F
via the natural morphism F?/FP*™" — F?/FP! and the short exact sequence
0 —— FP/FPTY —— prortl/petl o ppertl/pe ()

With the diagram above, we define

70 = Tm(H™(F?/FP*") — H"(FP/FPth))

Br™ = Tm(H"~ Y (FP~"t/FP) 5 H"(FP/FPHY)
Hence we obtain a chain of sub-objects of H(F?/FP™!) = H(Grl. K)

780 oz 5o zp) oo ze o gr) 5. 5 B ... 2 B o g™
This strikes a resemblance to the nested intervals. Finally, define
qu,(n) _ Zzn(n) / Bf?’(”)

Next, we discuss 2™, B2™_ Consider the diagram

Hn(Fp/Fp+r+1) SN Hn(Fp/Fp+1>

\ |

H"(FP/Frer)

induced from the diagram without H. We mimic what we did before. Using the exact sequence 0 —
Frtljpetrel  pe/petr+l o fp/FPYL 5 ()] we obtain

H(Fp/Frirtly 5 Hn(Fr/Frel)y o grtl(ppetl ) prtred)

\T/

Fp/Ferr)
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Using Lemma again, we obtain an isomorphism

Im H"(FP/FP" — H™(F?/FrHl)) Z:®)
Im<Hn(Fp/Fp+r) N Hn+1(Fp+1/Fp+r+1)) ~ - - - - .
Im H»(FP/Fr+r — Hn(Fp/Fptr+l)/Fprtl)) Zf+(1)
Also, from the commutative diagrams
0 /
Fp+1/Fp+r Fp/Fp+r

0 —— FPrl/prir+l o pp/prirtl o pr/petl )

I I

0 —— Frir/ppirel o pp/prirtl s /R ()

AN

0
we obtain
H"» (Fp/Fp+r+1) s Hn(Fp/Fp+1 s Hn+1<Fp+1/Fp+r+1)
Fp/Fp—i-r ; Hn+1 Fp+r/Fp+r+1)
Hn(Fp+1/Fp+r)
Hence,

Im(Hn(Fp/Fp—i-r) > Hn+1(Fp+r/Fp+r+1)) B ij_‘{v(""‘l)

I H"(FP Fp+r _)Hn+1 Fp+1 Fp+r+1 ~ _
m( ( / ) ( / )) Im(Hn<Fp+1/Fp+'r’) ) Hn+1<Fp+'r/FP+T+1)) Bf+h(n+1)

In conclusion, there is a canonical isomorphism

s +r,(n+1
zp™ prpty
Zp+(711) Berr J(n+1)
Now, consider the composition
ZT;?,(n) X Zp ,(n) - B,{T_; J(n+1) \ . Z£+r,(n+1)
Bf’(n) Zp_é;z) B713+r (n+1) § B£+r,(n+1)
| s |
Ep,(n) y Ep+r,(n+1)
I dgv(n) T
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Note that Im d?™ = Zf’(”)/ijr(?) = Bﬁ;’(nﬂ)/B?M’(”H). Observe that @>™ o """V = ( from the

diagram

for,(nfl) . Z;ofr,(nfl) - Bfflw) \ \ Zf’(n) . Zf’(n) - ij_—;,(n-i—l) \ \ Z£+r,(n+1)
—r,(n—1 ” —r,(n—1 ’ ,(n ’ ’ ,(n ” ,(n ’ +r,(n+1 ’ ’ +r,(n+1

| 5 . |
Ef—r,(n—l) \ Ef,(n) , Ef-&-r,(n-i—l)

dfﬂ’*’rv("*l) d%}(")

so (E,d) forms a complex. Notice that kerd?™ = ZP" /B2 and Im @@ """ = BP" /B Hence

we obtain
kerdy™  Zp8/Br™ 2y
w0 BB B

p,(n)
r+1

This special structure of (Ef’(n),dff’(n)) suggests us to view r as the “page number”, and view taking
cohomology of (EZ™, %™ at p-th position as “turning to the next page and locating the same place”.

Now we make a slight change on the notation. Put ¢ = n— p, and change (p, (n)) to (p, q). Namely, we

ker dP4
now write ZP4, BP4 EPa P HPHI(FP). We call (EP?, dP?) with the isomorphisms W ~ EPY
T

a spectral sequence.

o We write EY? =, HP*9(K*) for the isomorphism

FPHY K
pr> G0 -

for each p, ¢, and say that the spectral sequence (F,d) converges to the filtered objected H"(K).

We return to the discussion on the graded pieces. By definition,

o 2y Im(HPHI(FP) — HPY(FP/FPH))
Grb HPHI(K*®) = Bf’q = — * -
0 Im(Hr+a-1 (K /FP) — Hr+a(Fr/Fr+l))

and
Era Zf’q B Im(Hp+q<Fp/Fp+r) _ Hp+q(FP/Fp+1))
" BT I(HpreoL(Feorel/Fe) 5 Heva(FrjFe))

Domains of their numerators can be obtained from the following diagrams.

.y FptrEpte-l v fptr [pta s Fptrpgptetl L.
ey FPrKPte-l s P Pta y FpRptetl o .

| l |

— Fpr+q—1/Fp+er+q—1 — FPKPH/FPITKPT Fpr+q+1/Fp+er+q+1 ...
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Suppose for each n € Z, there exists py = po(n) such that FPK™ = 0 for all p > py. Then when r » 1,
we have FPT"KP*1 = (; hence ZP? = ZB1.

Imagine another diagram that involves domain of the denominators. Suppose also for each n € Z, there
exists p; = pi(n) such that FPK™ = K" for all p < p;. Then when r » 1, we have FP~"T1KPT4 = KPH;
hence BP? = BES.

Let us combine these two situation. Then for each n € N, the filtration FPK" is finite, in the sense

that there exists integers pg, p1, depending on n such that
K'=FPK" 2 FPHIK" o . 2 FPOTIK" o FPK™ = ()

Then when r » 1, ZP? = ZB? and B?? = B, and hence EP? = Grh. HPTI(K*).
This condition seems to be very strong, but in fact in many practical examples arising from algebraic
geometry and algebraic topology, the filtrations do have this property.

Example. Consider the double complex (K, d’,d")

that is, (K?*,d") and (K*?,d’) are complexes with each square commutative. We form its total complex
tot K as follows.

o For each n e Z, (tot K)" l_[ K%

i+j=n

o For each n € Z, the differential d : (tot K)" — (tot K)"™! is given by

d= > (-1)d" +d

i+j=n
Here ¢ shall be viewed as the p-coordinate.

A decreasing filtration of tot(K) is given by the subcomplexes FP(tot K)* (p € Z), defined by

FP(tot K)" ]_[ Kb

i+j=n
i=p
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This is obtained by dropping those K% with i < p and collecting those 7 > p. From this filtration, we can

construct, as above, a spectral sequence (EP4, dP?) with

FPHP* tot(K)
Dyq ~ p p+q =
EP1 >~ Grly, HP™(tot(K)) = FrlHr+atot(K)

When K is a first quadrant double complex, that is, K?? = 0 when p < 0 or ¢ < 0, then

(tot K)" = [ K% = P K

iti=n i+j=n
and FP(tot K)™ is a finite filtration of tot K. Generally,
Proposition 6.2. Suppose that for all m € Z, K™~ =  for all but finitely many i. Then
1. For each n, F?tot(K)" = 0 and F* tot(K)" = tot(K)" for some p,p'.
2. For each p, q, we have ZP7 = ZI9 and BP? = BE? for some 7.
In particular, for each p,q € Z, if r » 2,
EPY ~ EPY = Grh, HPT(tot(K)*®)

Proof. By assumption, for each n, we can find two numbers s = s(n) < t = t(n) such that K"~ = ( for
i <sori>t Then for p <s, FF tot(K)" = tot(K)", and for p > t, we have F? tot(K)" = 0.

In computing the following images

ZP9 = Tm(HPTI(F? /FPTT) — HPYI(FP/FPHLY)
B2 = Im(HP Y (P FP) — HPYU(FP/FPELY)

we see
o if p4+7r>t(p+q), then FPT"tot(K)P? = 0, so ZP9 = Z5? in this case.
e ifp—r+1<s(p+q—1), then FP" 1 tot(K)PT? 1 = tot(K)PT?1 so BP? = By,
When r is large enough, both conditions can be satisfied, and the result follows. O

Suppose (E,d) is a spectral sequence with EY? =, HP*? where H is filtered by F*H. We say (E,d)

is biregular if
1. for each n, there exists p, p’ such that FPH" = H® and FP H" = 0;
2. for each p,q, we have ZP1 = ZB? and BP? = BR? for some r.

Corollary 6.2.1. Under the assumption of Proposition, there exists a biregular spectral sequence (F,d)

converging to H (tot K).
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6.1 the E; page

By the very definition, the numerator of the quotient

g _ 28T ISP o (Y P)
BYT Im(Hr+a-1(Fp-1/Fr) 55 Hota(Fr/Fril))

comes from the long exact sequence induced by the short exact sequence
0 — FPYL/FPt2 5 FP/FPY2 s pP/pPHl 5 ()

SO
Z57 = ker(HPYU(FP/FPHY) 5 grratl(petl  pr2y)

Consider the complex form by the connecting homomorphisms
NN HPta=Y(pr=t/[FP) * HP+a(Fp/Frl) * HPratt(pprl/pet2y X o,

Then what we do above implies

E5T = HPM(H* (Gry (K)), +)

Let us specialize to double complexes. In this situation, the graded pieces are fairly simple: we have the

following exact sequence of complexes
0 — FPtot(K)* — FPtot(K)* — (KP* 77, (—=1)?d") — 0
The rightmost term is just original double complex, but forgetting the horizontal differentials. Hence
HP*(Grl tot(K)*®) =~ HPYI(KP*P (=1)Pd") = HY(KP*,d")
Now we are in the situation

. grraY(CGrh ot (K)*) —E HPY(Gr? tot(K)*) —E— HPH+HY(Grh tot(K)*) — - -

Hq(Kp—l,o’ d”) Hq(Kp,o) d//) H4 Kp-i—l . d”)

On the other hand, since d’ can be view as chain maps between (K?*,d'), d’ induces the maps on cohomology
objects
C—— HY(KP e d") —L HY(KPe ") —Ls HI(KPHLe d') —— -

It is natural to ask whether or not this complex can be fitted into the above complex of graded pieces.

The answer is positive, and it can be proved by the definition of the connecting homomorphism.

Proposition 6.3. We have the following commutative diagram.

. grra Y (Grh  tot(K)*) —E— HPYI(Gr? tot(K)*) —— HPH+HY(Grh ! tot(K)®) —— - -

e HYKP L) —— L HI(KPe ) —— L HI(KP ) ————
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Proof. Let us focus on one block.

HPH(Gr?, tot(K)®) —— HPT1(Grb tot(K)*)

Hq(Kp,o’ d”) d Hq(Kerl’., d//)
The upper horizontal map comes from the short exact sequence of complexes
0 —— FPHY/pet2 5 pr/pet2 5 pr/prtl 5

Take x € FP tot(K)"/FP tot(K)" with d’(x) = 0. Now consider x € F? tot(K)"/FP*?tot(K)", and send
it to FPtot(K)" ™ /FPT2tot(K)"™; the result is d'(x). Since d'(x) € FP tot(K)""/FPT2 tot(K)", we
finally find that

(7 (G ot (K)*) > 501Gy tot(K)°) ) ([2]) = [ ()]

proving that commutativity. [

Corollary 6.3.1. EY? ~ HP(HI(K**,d"),d"); more beautifully

Ey® = Hy (Hg (K))

6.2 Applications I

Example (Augmented double complexes). Consider the following double complex

— s K%

0 —— F2 — K%

A A A A A

0 —— F! —— K% —— Kb

N A A A A

0O —— FO —— K% — s K10 K20 5 K30 — ...

with all rows exact. We have a natural morphism F' — tot(K). We claim this is a quasi-isomorphism,
that is,
H*(F) — H*(tot(K))
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is an isomorphism. We split it into two first-quadrant double complexes, namely,

Pl 0= 00— K B K K ——
= 0= 0= 00— K K K K —
= 0= 0= 00— Kl —— K K —— K —
F° > 0 > 0 > 0 > 0 yoee K90 — 5 KOy K20 y K30

and the original morphisms connecting F' and K are extended to a morphism between the two double com-
plexes. The induced morphism on total complexes coincides with F' — tot(K'), and it induces morphisms
between the induced spectral sequences. (Note that the construction of a spectral sequence is functorial!)

By transposing the double complexes above, we compute their Fy pages by first computing the hori-
zontal cohomology and then compute the vertical cohomology of resulting complexes (this simply means

we use a different filtration; explicitly we use

FPot(K) = [ K
i-ijj:n
Jj=p

to filter the total complex). By our assumption on exactness, we see the above complexes have the same

horizontal cohomology, all being the left one. Hence they have the same E, page:

Ep,q_{Hq<F) ,p?O,qu
5=

0 , else

This also means the filtrations on tot(F') =~ F and tot(K') have only one jump, i.e.,
H"(F) = FOH"(F) 2 F'H"(F) = 0

H"(tot(K)) = F'H"(tot(K)) 2 F*H"(tot(K)) = 0

o7



and that EY? = ER? for all p,q. Hence

H™(F) —— H"(tot(K))
O
F'H"(F) —— FYH"(tot(K))

O

) A )}

O

07” 0,n
—> )
E, ~ E,

Example (Tor functor). Let R be a ring and M, N be R-modules. We show that Tor(M,N) =
Tor® (N, M). To compute the Tor, pick

Pi"'—>P2—>P1—>P0—>0

Qi —>Qr—>Q1—>Qy—0
to be deleted free resolutions of M and N, respectively. Consider the tensor product P ® Q:

= PhR®Qy —— PIR®Qy —— Py ® Qo

= B —— PI®Q1 — R ®W

We compute the E? page of the induced spectral sequence. The vertical homology is

P,ON ,q=0

Hq(Pp®Q-):Pp®Hq(Q-):{ 0 q+0

and the horizontal homology of the resulted complex is

(P0®N) 7q:O

H
E? = H,H,(P.®Q.) = { b . 20

This then implies that Equ = B, and the filtration H?*(tot(P ® Q)) has only one nonzero piece (only
one jump). Hence

Hy(P.® N) = E}° = B3 = H(tot(P® Q))
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By transposing P ® (), we can obtain
Hy(M ®Q.) = Hp(tot(P ®Q))

Hence we obtain the desired isomorphism

Hy(P®N) = Hy(tot(P ® Q)) = H)(M ® Q)

6.3 Associated five-term exact sequences

Proposition 6.4. Suppose that we have a biregular spectral sequence (E, d) that converges to H filtered
by F'H, namely, for each p,q € N there exists r with

FPHP+a
1 g 4~ +tq _
EPY = RO~ Grb HPH = Ry

Moreover, suppose there exists n € N such that EY? = 0 if either (i) p < 0, (ii) ¢ < 0, or (iii) 0 < ¢ < n.
Then

1. EP? ~ H? for p < n.
2. there exists a functorial exact sequence

1
0 y B30 » H" —— By —— By — g+l

- (r = 2) passing through (p,0), p < 0 contain only trivial

To see 1., we know the lines with slope

EP4 (except for EP?). Hence BV’ = ... = EPO = ER° and also EY " = ... = Ep—tt — EE7Y — 0 for
t # 0. Hence

HP = = FPYUP — FPHP o FPigr — (= .
so that

p _ 0 _ 0
HP = EP — EP

Now consider the case p = n, and look at E""*; the only nontrivial terms occur at E%" and E™°. We
have
n—tt _ mn—tt __
E, = =EV""=0,t#0,n
n,0 _ _ 1m0
Ey’=...= EVY
On _ 70n _ 0n _ 0,n
Ey" =Ey" == BN = By
On 0,n n+1,0
Byl =ker(E — ER)

0,n 0,n n
En+2 :En+3: :Ego
This turns out giving the information about the filtration:
H'=...=FH"oF'H"=...= F" 'H"= F"H" 2 F""'H" = ... =0
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The case p =n + 1 gives
Hn+1 - .. = FOHn+1 - FlHn+1 - FZHnJrl . FnJrlHnJrl o Fn+2Hn+1 —...=0
and hence we have a sequence of maps

0 —— F'H —— H" = FOH" —» BY" —— E°7,

]

0,n n+1,0
En+1 En+1 En+2

n+1,0
0

Fn+1Hn+1 s \ FOHn+1

Hn+l

Therefore, we have an exact sequence

0 —— F'H" y 0" y BO? —— B0 —— gt

Plugging the values F'H" = E}’ = Ey°, EV?, = Ey" and E'T)° = EL™Y give the desired exact

sequence. This complete the proof.

Specializing to the case n = 1, we obtain
Corollary 6.4.1. Suppose we have a spectral sequence (E,d) converging to H filtered by F'H such that
(i) for each n, there exists p,q with FPH" = H™ and F1H"™ = 0,
(i) BB =0ifp<0orq<0O.

Then we have a functorial exact sequence

1,0 0,1 2,0
0 —— F, > H! > Fy y y H?

6.4 Grothendieck spectral sequence
Proposition 6.5. Let C, C’, C” be abelian categories with C, C’ having enough injective objects, and

C F\C, G\C//

be two left exact (covariant) functors. Suppose for all injective objects I € C, F'(I) is G-acyclic, namely
RG™(F(I)) = 0 for n > 0. Then for all C € C, there exists a functorial biregular spectral sequence (F,d)
such that

EP? = RPG(RF(C)) = RPT(GF)(C)
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To compute the right derived functor of F', first we pick an injective resolution of C', namely an exact
sequence in C

0 s C y IO y I! L

7

with each I™ injective. Applying F' to 0 — I® — I' — ... we obtain a complex

0 —— F(I°) —— F(I') —— F(I*) — -+

Next, to compute GF(I™), we must pick an injective resolution of each F(I™). We contend that there
exists a double complex J with each term injective and

with each column exact. In fact, we can do better.

Lemma 6.6 (Cartan-Eilenberg injective resolution). Suppose we have a complex C : C° — C! — C? —
- in C. We split it into many short exact sequences

0— Z"(C) - C" — B""(C) -0

0 — B"(C) — Z*(C) — H™(C) — 0
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Then there exists an double complex J such that

T2y Ty P
TNy sy P
T N 20—y
e e
0 0 0

with each column an injective resolution of the bottom object. Moreover, the induced complexes
0— Z"(C) - Z"(J*") - Z2"(J*') - Z2"(J*?*) — - --
0 — B"(C) — B"(J*%) - B"(J*) —» B"(J*?) — - --
0— H"(C) —» H"(J*") - H"(J*") - H"(J*?) — ---

are also injective resolutions.

Proof. Let us start with
0->2"-C"->B'-0

Pick injective resolutions of Z° and B*; then we can simultaneously resolve C° injectively, namely, we are
in the situation(left)

=
jan)

0 s Z0,0 \ J0,0 3 BIO s 0 0 N BIO \ Zl,O N HI,O s 0
0 A y 0 > Bt > () 0 > B! A s H1 s 0
0 0 0 0 0 0
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with each row exact and each column an injective resolution. Next take a simultaneous injective resolution
of 0 > B! - Z! — H' — 0 (right). The result follows by repetition of the procedure. O

Return to the proof. Now take J as in Lemma and apply G to the whole complex.

2,2

2,1

G .Jo0 s G JL0 s GJ20 — 5 ...

Since F'(I™) is G-acyclic and G is left exact, each column above is exact. By the first application in 1.2, we
have an isomorphism R"(GF)(C) = H*(GF)(I) > H"(tot(GJ)). As always, we have a biregular spectral
sequence converging to H"(tot(G.J)), with

EY? ~ HPHI(GJ)
We contend that HY(GJ) = GH?(J). Consider
0 — 7P _ jra _, grtla _,

Since Z is injective,
0— GZP — GJP — GBPH — ()

is exact, and thus
00— GBP — GZP1 — HI(GJ") -0

is exact. On the other hand, we have
0— BPY — ZP9 — HI(JP*) —> 0
Since B is exact, the complex
0> GBY - GZPT - GHI(J?*) > 0
is exact. This demonstrates the contention GH?(JP*) =~ H%(GJP*). Hence
EY?"~ HPHI(GJ) ~ H’G(HJ) =~ (RPG)(HY(F(I))) =~ (R’G)(R'F)(C)
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Corollary 6.6.1. Under the same assumption as Theorem, we have a five-term exact sequence
0 — R'G(FC) — RYGF)(C) — G(R'F(C)) — R*G(FC) — R*(GF)(C)
There are variants of Grothendieck spectral sequences.
Proposition 6.7. Let C, C’, C” be abelian categories with C, C' having enough projective, and

C F‘C/ G‘C”

be right exact functors such that for all projective objects P € C, F(P) is G-acyclic. Then for all C' € C,

there exists a functorial biregular spectral sequence (E, d) such that
Ep, = LyG(LyF(C)) = Lyi(GF)(O)

Proposition 6.8. Let C, C’, C” be abelian categories with C, C' where C has enough projective and C’ has

enough injective. Let

c o S

be such that G is contravariant left exact, F' is covariant right exact and for all projective objects P € C,

F(P) is G-acyclic. Then for all C' € C, there exists a functorial biregular spectral sequence (E, d) such that
E5t = RPG(LyF(C)) = RPT(GF)(C)

Proposition 6.9. Let C, C’, C” be abelian categories with C, C" where C has enough injective and C’ has

enough projective. Let

c o S

be contravariant left exact functors such that for all projective objects P € C, F(P) is G-acyclic. Then for

all C' € C, there exists a functorial biregular spectral sequence (E,d) such that

E. = RPG(RIF(C)) = Lyo(GF)(C)

6.5 Applications 11

Example. Let R and S be rings (not necessarily commutative). For an abelian group M which has a left
R-module structure, we write g M if it has a right R-module structure, we write Mz. We also write g Mg
if M is an (R, S)-bimodule.

Now suppose we have three modules Ag, pBgs and ¢C. Consider the functors

F=B®S—2 5MOd—> RMOd
G=A®R—Z RMOd—>Ab
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Then F' and G are right exact, and by the associativity

we can view GF = (A®g B) ®s —. To obtain a Grothendieck spectral sequence, assume that for every
projective P, Torf(A, B®g P) = 0 for all i > 1. Then

Tor’ (A, Torf (B, C)) = Tor?, (A®r B, C)
Suppose that Ag is flat. Then LHS is trivial for every p # 0, and thus
A®pr Tor? (B, C) = Torf (A, Tor? (B, C)) = Torl (A®g B, C)
Similarly, define

F = —®pr B: Modr — Modg
G=—-®sC: Modg — Ab

then GF = — ®g (B ®g C). Thus if Tor} (Q ® B,C) = 0 for all i > 1 and for all projective Qp, we have
the spectral sequence
Tor (Tor (A, B),C) = Torp+q(A,B®s )

and if ¢C' is flat, we have
Torf(A, B) ®s C = Tor’ (A, B®s C)

If RBgs is flat on either side, at least one condition listed above is satisfied, implying
TOI‘ (A@RB C) TOI‘ (A B®50)
Now we consider another situation: rA, sBgr, sC. Let

F=B®gr—: gpMod - sMod
G = Homg(—,C) : sMod — Ab

The hom-tensor adjunction
Homg(B ®r A, C) =~ Hompg(A, Homg(B, C))

gives GF = Hompg(—, Homg (B, C)). Since F is right exact covariant and G is left exact contravariant,
then if Exti(B ®g P,C) = 0 for all i > 1 and for all projective g P, then

Ext(Tor)(B, A), C) = Ext} (A, Homg(B, C))
In particular, if ¢C' is injective, then
Homg(Tor?(B, A),C) = Ext}t(A, Homg(B,C))
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On the other hand, consider

F = Homg(B,—) : sMod — gMod
G = Hompg(A,—) : gMod — Ab

Then GF = Homg(B®g A, —). Both F, G are contravariant left exact, so if Ext4(A, Homg(B,J)) = 0 for

all © > 1 and for all injective gJ, we have

Exth (A, Exty (B, C)) = Extl (B ®g A, C)
If sBg is projective on both either side, then

Exth(A, Homg(B, C))) = Ext$(B ®r A, C)
and if rA is projective, then

Hompg(A, Ext$(B,C)) = Ext(B ®r A, C)
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