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1. CLASSICAL THEORY

1.1. Riemann zeta function. Recall from the time being a toddler one learns the infinite sum
1
¢(s) := Py s
The sum is absolutely convergent for Re(s) > 1. This is the famous Riemann zeta function, first introduced and
studied by Euler as a function over reals. In his 1859 article, Riemann treats ¢(s) as a function over complexes,
and obtains a meromorphic continuation to the complex plane, with simple poles at {0, 1}. Moreover, he proves
the functional equation:

s 8 s 1—s
2 (5)¢(s) = 77 = T(——)C(1 = 5)
Here I'(s) is the usual gamma function:
1) I'(s) = J et dt = J P
0 0 t

The integral converges absolutely for Re(s) > 0; in fact, by a repeated use of integration by parts it is not hard

to see I admits a meromorphic continuation to the complex plane, with simple poles at non positive integers.
1
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1.2. Riemann’s proof. Let’s explain Riemann’s proof for the functional equation. Changing variables ¢ — n?t
in (1) for n > 1, we obtain

* dt * dt
F(S) —_ J eant(,th)si — n2sJ e " tts
0 t t

0

or

. * dt
n—251—\(8) — J —n tts

0 t
Summing over n > 1 and passing the sum into the integral, we get
C(2 )F( ) Z —QSF( ) fw Z —n2t 15 dt
S S) = n S) = e _
n>=1 0 n=1 t
The interchange is legit as t — >, et s rapidly decreasing. As a taste of aesthetics, we do a further change

n=1

of variables t — 7t and s — % to get

) W*%r(g J (Z e t) p
n=1

Notice RHS is defined for Re(s) > 0, and LHS other than ((s) is defined for any s. In particular this gives a
meromorphic continuation of ¢ to Re(s) > 0.
Now we pause and recall a famous formula in analysis:

Theorem 1.1 (Poisson summation formula). For f € S(R), one has

Mfm) = f(n)

nezZ nez

Here f denotes its Fourier transform:

() = fmﬂy)emydy.

Corollary 1.1.1. For ¢ > 0, one has

(3) Z —7n t Z —mn t_1

neZ neZ

Proof. 1t is well known that the Fourier transform of x — e~ is e~ Set f (x) := e~™"t_ Then

~

f(I) :J efﬂy2t627rizydy
R

-1y _ —my? 27rixyt_% -1
(y—yt 2)=] e e t2dy
R

= tiéeiﬂpy%:il

Now the claimed formula follows from Poisson summation formula. O



Return to RHS of (2); we split the integral into 0 < ¢ < 1and 1 < ¢ < 0. Write
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For convergence issue, we must assume 0 < Re(s) < 1 so that t= s integrable near 0. In conclusion, for
0 < Re(s) < 1 we get the expression

4) W_%F(g)g(s): J Z —mn’ty g Sdt f 2 —rn ttidt
n=1 n=1

RHS being symmetric in s and 1 — s, as a consequence we get

AT G)(s) = m T T

)¢ = s).

As a byproduct we obtain also a meromorphic continuation and the residues of ((s) from (4).

1.3. What were important? The first key step was to give an integral representation of ¢(s) like (2). The second
was to apply Poisson summation formula to a certain infinite series.

Let us explicate more on the integral representation. Integrals of the form like (1) are exactly Mellin trans-
forms which is essentially the (Fourier-)Laplace transform by a change of variables. In general, given a sequence
(an)n>1, one forms a Dirichlet series

Arguing as before, we formally get

T 2F( ) f( J <Za e ™ t) t%@.
n=1 t

In other words, Dirichlet series are nothing but a reincarnation of Mellin transforms. This has already been
used intensively along with Riemann-Stieltjes integrals in analytic number theory. For a taste, see [ ,81.2]
for example.

Poisson summation formula has also already been used in analytic number theory, especially in the point-
counting problem, to change a small gap sum into a large gap sum. Readers are referred to [ ] for this
aspect.
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1.4. Generalization. There are several generalizations to ¢(s).

(i) Dirichlet L-function. This is the Dirichlet series

L(S7X> = Z X(n)

s
n>=1 n

where x is a homomorphism (Z/NZ)* — S! for some integer N.
(i) Dedekind (-function. This is the series

1
W= N For

where K is a number field with ring of integers Ok, and for an ideal a < Ok.
(iii) Hecke L-function.
(iv) L functions of modular forms. For a modular form f of, say, full level, this is the series

an(f)
L(s, [) =
r; "
where a,,(f) is the n-th Fourier coefficient of f at the cusp.
For (iv) we refer readers to [ 1,1 1,1 ]. In this expository article we explain how people nowadays
think of (i), (ii) and (iii) via Iwasawa-Tate theory [ ], reinterpreted by Weil in [ ]and [ ]. Hecke

was able to prove a functional equation for his L-function following essentially the same proof, with numbers
replaced by ideal-theoretic stuff, due to the lack of unique factorization property for Og. See [ , §13] for
this account. Tate, in his thesis, found a way to get around nasty ideals, by doing harmonic analysis on a global
space, namely ring of adeles, and on local spaces, namely local fields.

What was missing in the Riemann’s proof is the Euler product formula:

o=

p

interpreting the series as an infinite product of local factors. These are then the contributions from primes in Z.
One should view 7~ 2T'($) in (2) as the contribution from the infinite prime in Z. One usually calls 7= 2T'(£)((s)
the completed zeta function, as it sorts of “closing the primes (or Spec Z) by adding an infinite point”. The
local theory supplied by Iwasawa-Tate interprets local factors also as Mellin transforms. Thus the Euler prod-
uct development of ((s) is a consequence of the fact that “global Mellin transforms factorize as local Mellin
transforms”.

1.5. Organization. We explain the local theory of Tate thesis in §2 and §3. We provide details in Archimedean
setting and leave the reader to mimic the arguments for non-Archimedean setting. We include a quick intro-
duction to p-adic numbers in §3.1 and §3.2 for those originated from analysis. The article focuses on the role
played by Mellin transforms. Particularly a Paley-Wiener type theorem for Schwartz spaces are discussed §2.2
and §3.5.2. In §2 we use the language of distributions. This viewpoint is, however, suppressed in the non-
Archimedean treatment in §3; see [ , §6] for this account. Finally in §4 we explain briefly the global
theory.

Due to the nature of being a mixture of algebra and (harmonic) analysis, it is hard for a non number theorist
to follow all the details presented here. In this article we opt to be more inclined to the analytic side. More
precisely, we minimize the use of algebra. Readers only need to know the definitions of a group, ring and field.
We assume, however, readers’ familiarity with real analysis and general measure theory.



2. LOCAL THEORY AT INFINITY

In this section we discuss the classical Mellin transform, viewed as a meromorphic family of tempered distri-
butions. To be precise, let

S(R) := {f e C*(R) | sup |z" f™) ()| < oo for all n,m € Z;O} .

zeR

We topologize S(R) by the seminorms f + sup |#" ("™ (x)|. It can be shown that S(R) is then a Fréchet space.

zeR

Definition. A (tempered) distribution is a continuous linear functional 7' : S(R) — C.

People interested in the world of distributions are referred to [ , §2 and §7]. However, there is no need
at all to talk distributionally to obtain the result here. This is only a personal taste.
Consider the distribution I; : S(R) — C represented by 150 - |*~! (Re(s) > 1), namely

1) = [ sord= | o],
0 0
As said, this is the Mellin transform of ¢. By integration by parts, for Re(s) > 0 one has

I,(¢) = foo @)z = T

0 S

- 1J‘ 29 @)z = — Lo (6).

o SJo

In other words,

1d
s= =T
sdt *t!
Iterating, for k € Z>; and Re(s) > —k, one has
1 d*
I, = Ry S
s(s+ 1) (s+k—1)dth *T"

For ¢ € S(R)/
Res,— il (¢) = lim (s + k)1 (o)

(s + k)(=1)**!

= li I, (k1)
e e gy vy Py g 3y oy A U
-1 1
= T h() = 260
In other words,
_ (—l)k dk
Ressmmils = 5 g0
as distributions. Here dy denotes the point mass measure at 0.
—1)k
Recall the Gamma function I'(s) := I([t — e~ !]). From the computation limk(s +E)(s) = ( k') . Hence,
the ratio '
15(¢)
— 7, =
s s(®) T(s)

extends to an entire function with

or



Let us consider the general Mellin transform on R* =R — {0}. For € € {0, 1} and Re(s) > 1, let

. . d
Z(¢,sign®, s) = fo ¢(t)51gn(t)6|t|sﬁ.

This is the Mellin transform of ¢ € S(R) evaluated at the quasi-character sign®| - |*, or the distribution repre-
sented by sign‘| - |*~!. One writes

Z(¢,sign®,s) = Ls(¢) + (=1)Ls(¢7)
where ¢V (t) := ¢(—t). Since I;(¢) has at worst simple poles at Z, it follows that so does Z(¢, sign®, s) and

1 -1 e+k
Ress—_1Z(¢,sign®, s) = %qﬁ(k)(o).
Then s — Z(¢, sign®, s) has simple poles along —¢ + 2Z <o = —(e + 2Zx¢). To kill the poles, one uses
ste_ S+ €

L(s,sign®) :=n" 2 I'(

)

The factor 7~ "% is added only to please number theorists. Hence the function

o Z(¢,sign", s)
§ L(s,sign®)

2

is entire and

Z(¢v signs, S) _ (_W)ikk! ¢(2k+e) (O)
L(S, Signe) o= (2hto) (2k‘ + 6)'

for k € Zsp and ¢ € S(R).
Definition. A quasi-character of R* is a continuous homomorphism x : R* — C*.
Lemma 2.1. A quasi-character of R* has the form ¢ — sign°|t|*°, where € € {0,1} and s¢ € C.
Proof. Refreshment. O
Definition. For a quasi-character x = sign®|t|*® of R*, define the (archimedean) local L-factor
L(s,x) = L(s + s¢, sign®).

Summarizing what we’ve obtained so far:

Z(-
Theorem 2.2. For any quasi-character x : R* — C*,themap s — L((’X’j) defines an entire family of tempered
5, X
distributions with
Z(,x,5) _ (ED )R ok
L(Sa X) s=—(so+2k+e) (2k + 6)' 0

where k € Z>¢ and x = sign®| - |*° with e € {0,1}, s € C. Moreover, L(s, x) = Z(¢, x, s) for some ¢ € S(R).
O

2.1. Functional equations.
Lemma 2.3. For ¢, ¢ € S(R), a quasi-character x and 0 < Re(s) < 1, one has
Z(¢> X5 S)Z(@v X_la 1- S) = Z((ba X_17 1- S)Z(<p7 X5 S)

Proof. By Fubini, write

"= iy — _sdx d
Zox 2@ 1= = | | [ s@n@lateeect g s

woan = [ | [ s@etaemmmc @t

The last expression is symmetric in (¢, ¢), so the lemma follows. O
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Theorem 2.4 (Local functional equations). For any quasi-character y : R* — C*, there exists a unique function
e(s, X, ¥ ) such that

Z((’b\inl:l B 3)
L(1—sx7")

Z (¢, X 5)

= 6(57X’¢oo)m-

for ¢ € S(R).
2.2. Spectral analysis.

Lemma 2.5. For ¢ € S(R), the Mellina transform Z(¢, x, s) is of rapid decay in every bounded vertical strip
away the poles, namely

sup (L4 [Im(s)))™|Z(¢, x, 5)| < 0
a<Re(s)<b
5¢BE(0)+P

forany —0 <a <b< w,e>0and N € Z>;. Here P is the set of poles of Z(¢, x, s) and
B.(0)+ P={2€eC||z—p| <eforsomepe P}.

If € CP(R), then Z(¢, x, s) is subexponential toward the positive infinity, namely, there exists A/ > 1 such
that

sup (14 |Im(s) )V M| Z (g, x, 5)| < 0
a<Re(s)
s¢B:(0)+P

forany —0 < a,e > 0and N € Z>;.

Proof. Integration by parts. O
We now prove a Paley-Wiener type theorem, describes the behavior of a Schwartz function in terms of its
Mellin transform. For a more general statement, see [ , Theorem 1.4.2].
Define H'YW (R) to be the space of meromorphic functions T : {0,1} x C — C such that for any € € {0, 1}
T
* 5 LS)E extends to an entire function, and
L(s,sign®)

e s— T(e, s) is of rapid decay on bounded vertical strips away off the poles.

The last condition is explained in Lemma 2.5. Let Hg (R) be the subspace of H™(R) consisting of those 7

satisfying the second estimate in Lemma 2.5.
Theorem 2.6. The Mellin transform establishes an isomorphism
S(R) —— H'W(R).

which restricts to an isomorphism C* (R) — Hg‘g( ). The inverse is given by sending T" to
1 d
et {%} LRT“"’ +r)sign(e) el o

for any o € R.o.

Proof. Let T € H'W(R) and define

d
f(x) f (6,0 + r)sign(z)~ E\alc|*"*’“—r,
27
eE{O 1}
€ —r d’F
X | Tlensign il

eE{O 1}



Let k € Z>¢. By the rapid decay and the residue theorem, if we shift the contour to —2k — g we get
©=3 o<e§k+165%1}Sign(x)_eReszE (T 2t ee§1} f—2k—2+zR ‘ r)sign(m)_f|x|—7‘%
Write T'(¢, z) = L(s, sign®)T I'(e, z) for some entire function T'(e, z). Then
Res.— ¢ (T(e,2)[e]") = lim (= + )L (=, sign) (e, 2) |
Recall when € = 0, the poles of L(z,1) are along 2Z, and simple with residue

Res,— o, L(2,1) = 2 (—m)™(2m)! _ 2(_7T)m.

(2m)! m! m!
Hence
1 _ 1 s
- 2 Res.—_; (T(0,z)|z|~* =3 Res.—_om (T(0,2)|z]| %)
0<0<2k+1 o<m<k
1 ~
=- Z lim (z+2m)L(z,1)T(0,2)|z|~*
2 z——2m
osms<k

When € = 1, the poles of L(z,sign) are along 2Z<, — 1 and simple with residue

2 (-m)m@m+1) _ 2(-m)"

Resz:—(2m+1) L(Z, 1) =

(2m + 1)! m! m)
SO
1 . 1 _ N
- Z sign(z)Res.—_¢ (T'(1,2)|z| %) = 3 sign(z)Res,—_ (o1 (T'(1, 2)]z]| ")
0<L<2k+1 o<ms<k
1
== sign(z)  lim  (z +2m+ 1)L(z,sign)T(1, z)|z| >

2 0 z——(2m+1)

= 3 sign(e) EE 1, —m + 1))jafpri,

o<m<k ml
Hence for each k € 27, we obtain
_\m d
fay= > ] ( 7;;) T(e, —(2m + €))sign()¢|z[>™F< + Z Lk" . (e r)sign(x)ﬂxw?’;
0<m<ke=0,1 66{0 1} +1
—m)™ A 1 d
= Z Z ( ﬂ-') T(e,—(2m + €))z>" " + = f T(e,r)sign(w)_ﬂx\_r—r,
Osm<ke=0,1 (0.1} I —2k—3+iR 2mi
In particular,
d2k+€ —1)™m(2 .
lim L py = EDCMA ot e,

x—0 dg2kte m!

and hence we can extend f to a smooth function on R. That f € S(R) follows from integration by parts.

Finally assume 7' € HEW(R), and let M > 1 be the number that satisfies the estimate

exp
sup (14 [Im(s)|)N MR T (e, 5)| < 0
a<Re(s)

s¢B. (O)+P
ee{0,1}



forany —0 < a,e > 0and N € Z>,. We claim supp f < [-M, M]. To see this, note for any o > 2 that
1
\f(m)|<f f |T(e,0 + ir)||z|~7dr
4m
EE{O 1}
«r 5 JR(l + |r[) "2 MO x| dr
& M%z|7°.

If |z| > M, then M?|z|~7 — 0 as ¢ — +oco. This proves f(z) = 0 unless |z| < M as we claim. O

Remark 2.7. A Paley-Wiener type theorem is usually referred to as a statement characterizing the image of
certain function space under certain transform. Another theorem of this sort is the Schwartz-Paley-Wiener
theorem [ , §7.3], characterizing distributions with compact support under their Fourier transforms. One
can also establishes a Paley-Wiener theorem for C(R*) or S(R*) (functions with derivatives being rapidly
decreasing toward 0 and infinity).

3. LOCAL THEORY AT FINITE PLACES

3.1. Absolute values. An absolute value on Q isamap |- | : Q — Rx¢ such that
(i) |z| =0ifand onlyif x =0,
(ii) [zy| = |=[lyl,
(iii) |z +y| < |z|+ |y|, and
(iv) |z| # 1 for some z € Q — {0}.

In particular, |- | restricts to a group homomorphism Q* — R~ . By (i) and (iii), (z,y) — |z —y| defines a metric

on Q.

Definition. An absolute value | - | on Q is non-Archimedean if |z 4+ y| < max{|z|, |y|} for z,y € Q. Otherwise
it is called Archimedean.

Definition (Euclidean absolute value). For z € Q, let || := |z| denote the usual absolute value.

Definition (p-adic absolute value). Let p be a prime. For n € Z, write n = p*n’ with ged(n,n’) = 1. Define
In|p := p~"*. In general, for r € Q — {0} write r = 2 with n # 0 and let ||, := |m/,|n|,;*.

Theorem 3.1 (Ostrowski). An absolute value on Q is equivalent' either to | - |, for some prime p or to | - |
O

To unify the notation, we write p for either a prime or co. Then p will be called a place of Q. When p is an
actual prime, we write p < o0 and say it is a finite place. Otherwise, p = o0 and is called an infinite place.

Definition. For a place p of Q, let Q, denote the metric space completion of (Q, | - |,). For p < o0, we call Q, the
field of p-adic numbers. Denote by Z,, the closure of Z in Q,; this is called the ring of p-adic integers.

Note Qq, is nothing but just R.

3.2. p-adic numbers. Let p < oo for the rest of the section. We have inclusions

/ Xer‘lse
der& A'sed

LA notion we won’t define
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Recall each positive integer n admits a unique p-adic representation:
n=ap+ap+-+app”

with a; € {0,...,p — 1} and a;, # 0. One has |n| = p~™ ifand only if ag = --- = ay,—1 = 0 and a,, # 0. For
negative integers, one also has a p-adic representation, but always infinite: for example,

“l=@-D+@-p+{@-1)p"+--

The sum is not convergent in euclidean topology, but is certainly convergent in Q,,. For n € Z with ged(n,p) =1,
it also admits a representation which can be obtained by reduction mod p*. For example, take n = 5 and p = 3.
Then5 ' =2 (mod 3),57'=2=2+0-3 (mod 9),5"'=11=2+0-3+1-9 (mod 27) and so on. In general,
one has

5'=ap+a -3+ +ap p" (modpFt)
and the p-adic representation is then be given by the infinite sum
51=240-34+1-9+2-27+---
In other words, in Q, every number that is coprime to p gets inverted. As an immediate consequence,
Lemma 3.2. Any rational number, and hence any p-adic number, r admits a unique p-adic representation
r=p "(ap+arp+asp®+--)
where n € Z and ag # 0. In addition, |r|, = p™ and ag + a1p + azp® + - - - € Z, so that
y L XLy

Here Z means the group of units in the ring Z,.

Lemma 3.3. Z, is a compact open subring of Q,. In fact,

Zp={reQy| |z, <1}
Z;:{erpHx‘p:l}

Proof. Being an open subring is a consequence of the ultrametric inequality. The last assertion follows from the
last lemma. For the compactness, let (U, ). be an open cover in Z,. Suppose for contradiction that any finite

subcollection of (U, ). does not cover Z,,. Since Z, = || a + pZ,, it follows that there exists some ag €
0<a<p-—-1
{0,1,...,p — 1} such that ay + pZ, is not covered by any finite subcollection. Iterating, we can find ag, ..., ax €

{0,1,...,p— 1} so that ag + a1p + - - - + axp® is not so. Say (ag + a1p + - - - + axp®)x — x for some z € Z,. Since
x € U, for some « and U,, is open, we can find N > 0 so that ap +a1p+--- + axp® € U, for k = N. Thisis a
contradiction, so Z,, is covered by some finite subcollection of {Uy }4. O

Corollary 3.3.1. {p"Z, | n = 0} forms a neighborhood basis of 0 € Q,, consisting of compact open sets.

As a consequence, Q, is a totally disconnected locally compact Hausdorff topological field.
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3.3. Integration on Q. Similar to the construction of the Lebesgue measure on R, one covers a general open
set in Q,, by the basic open sets ¢ + p"Z,. To define a measure it then suffices to assign consistently a positive
number to each a + p"Z,. One sets

vol(a + p"Zy,dz) ==p™"
for a € Q, and n € Z,. In particular, vol(Z,) = 1. To see this is consistent, recall

Ly = |_| a + pZy.

O0<a<p-—1

Then

1 =vol(Z,, dzx) = pvol(pZ,, dx)
so that vol(pZ,,dz) = p~! is consistent. In this way we define a translation invariant measure dz on Q,, nor-
malized so that vol(Z,, dz) = 1.

For f € C.(Q,) we can then talk about its integration

flx)dx
Q»

Example 3.4. Take f(z) = 1z, (z)|z|;. If Re(s) > 0, then

fz )dm—f |z[de = f |x|>da
J. nz>:0 P Lp—p" 1Ly, g

= Zp "svol(p"Zy, — p" 1 Z,, dz)

n=0
—1
_ ~n+ny _ (P=Dp
= D P (s
;0 1—p (s+1)

- -1 _ 1_
One notices that (p — 1)p~' =1 — & = vol(Z, dx).
We will also want to integrate over Q,'. Similar to R*, we use the measure

dx

d*x = —.
|x|p

In other words, for f € C.(Q,) we set

L@ x—jf )|z~ de.

Lemma 3.5. One has d(ar) = |a|,dz for a € Q. In particular, d*x is a multiplicatively invariant measure on

Q.
Proof. By d(ax) = |a|p,dz we actually mean
vol(aX, dz) = |a|, vol(X, dx)
for any measurable set X of Q, with finite measure. For this it suffices to show
vol(aZy, dz) = |al,.

Write a = p~"u for some u € Z,. Then vol(aZ,, dr) = vol(p™"Z,,dr) = p" = |a|, as we want. O
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3.4. Fourier analysis on Q. For z € Q, write
x=p "(ap+ap+--+)
and set
{z}p=p (a0 +arp+ - +a,_1p" ") e Q.
This is the principal part of x. Define ¢, : Q, — C* by
Up(a) 1= e
Lemma 3.6. For z € Q,, one has ¢,,(xy) = 1 for all y € Z, if and only if x € Z,,.
Proof. It amounts to showing {zy}, € Z for all y € Z if and only if x € Z,. This is clear. O

Definition. For f € L'(Q,, dz), define its Fourier transform ]? :Qp, — Cby
fia = | sty

We could proceed with general integrable functions. However as in the real case it is preferable to do analysis
with a convenient space where Fourier transform is an isomorphism.

Definition. The Schwartz space S(Q,,) of Q,, is the space of locally constant functions Q, — C with compact
support.

In the non-Archimedean case we usually refer to local constancy as smoothness. Hence S(Q),) collects all
smooth functions with compact support. One may equally writes

S(Qp) = CSO(QP)-

Theorem 3.7. Fourier transform defines an isomorphism on §(Q,), and the Fourier inversion formula holds:

One has I/Z\p =1z,.

3.5. Mellin transform on Q.
Definition. A quasi-character on Q, is a continuous homomorphism y : Q; — C*.

For a quasi-character x : Q; — C*, if we write x(p) = re? " then

nly B ),
P

n 2mind __
€ = p"[p

x(") =r
Hence for z € Q, with [z| = p™™, one has

x(z) = x(zp~")x(p") = x(zp~")|=|;

for some s € C/ lig;Z. A quasi-character is then determined by a continuous homomorphism Z; — C* and a

number in C/ ligfoZ.

Definition. For a quasi-character x, denote by wt(x) € R the unique real number such that
x(@)] = [af; 0.

This is called the weight of x.
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For a measurable function f : Q; — C, a quasi-character x : (@; — C* and s € C, we consider the Mellin
transform:

Z(f,x,9) f F@)x(@)lal*d*

whenever the integral exists.
For a Schwartz function f € S(Q,), by local constancy one always has f — f(0)1z, is zero in a neighborhood
of 0. Hence

Z(fix:8) = Z(f = f(0)1z,, X, s) + f(0)Z(1z,, x, 5).

The function f — f(0)1z, has compact support in Q,;, so the convergence is clear, and the first term on the right
is a polynomial in p*s. For the function 1z,, compute:

Z(lzp,X,S)*J Dleaa =Y, | (0)]al*d o

n>0vP" Lp—p" t1Zyp

- d*z
= j @)l

n=0

"p" f
n>0

If x is not trivial on Z,, then the last integral is trivial. Indeed, say x(u) # 1 for some u € Z,;; then

L; x(z)d*z = f x(uz)d*z = x(u) (@)d*z

zx zx

or

Now assume Y is trivial on Z;; then

Z(1z,,x.8) = Y, x(p")|p"|* vol(Z), dx).

n=0
If Re(s) + wt(x) > 0, then
vol(ZX, dx)
Z(1z, ,x,8) = —2—~.
(2 208) = 12 x(p)p~*
As said, if x is not trivial on Z,;, then
Z(1z,,x,s) = 0.

Definition. A quasi-character y is called unramified if x is trivial on Z.

Definition. For a quasi-character x, define the local L-factor

1
———— , if y is unramified
L(s,x)=1{ 1—x(p~*
1 , otherwise

Theorem 3.8. For a quasi-character x and f € S(Q,), the map
oy ZUxs)
L(s, x)
extends to an entire function on the complex plane, and is a polynomial in p**. Moreover, L(s, x) = Z(f, X, s)
for some f € S(Q,).
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3.5.1. Local functional equations. Following exactly the same proof as in the real case, one obtains

Theorem 3.9. For any quasi-character x : Q,; — C*, there exists a unique function ¢(s, x, ¢,) such that

Z(fox ' 1-s) Z(f,x;8)
L(1—s,x71) = €(#x¥) L(s,x)

for f € S(Qp).

3.5.2. Paley-Wiener. For a temporary use, let

Homropcp(Q, , C*)
denote the space of quasi-characters on Q, and

Homropcp(Z, ,C*)

the space of continuous homomorphisms Z,; — C*.
Recall there is a bijection

C

271
log p

HomTopGp (Q; s Cc* ) = HomTopGp (Z; y C* ) X

so we can equip Homropgp(Q,, C*) with a structure of complex manifolds, with infinitely many connected
components.
Define HP W(Qp) to be the space of meromorphic functions 1" : HomTOPGP(Q; ,C*) — C such that

(i) supp T only intersects with finitely many connected components of Homr,,c,(Q,, C*), and
. T(x,8)
ii
W 60

€ C[p**] for each y € Homroepgp(Z,, C*).

C
Again we identify Homropcp(Q, C*) =~ HomTopcp(Z,, C*) x ———. Since L(s, X) = 1 unless x is unramified,

so T(x,s) € C[p] for all 1 # y. When y = 1, we have L(s,x) = (1 — p~%)7}, so T(x, s) has at most a simple
poleat s = 0.

Theorem 3.10. The Mellin transform f — Z(f, x) defines an isomorphism
S(Qp) ——— H™(Qy).

The inverse is given by the Mellin inversion: for each o € R, the inverse sends 7" to the function

logp s _ . dr
X Nt - F T 1 o—r '
T e I O e
XEZy log »
. . PW . . . . % x C
Here we identify T'e H™"(Q,) in the last equation with a function on Homrepgp(Z,; , C*) X 5——.
log p

For a proof, see [my note, §7.5.1] or [ , §1.5].

4. GLOBAL THEORY

4.1. Fourier analysis on Adeles. The general idea in algebra is that fields are always easier than rings. The
ring of adeles A = Ag which we will introduce soon is to Q, pretty much like R is to Z. In particular, Q embeds
into A as a cocompact lattice. Anyway, Q is undoubtedly more flexible than Z.


https://jamesy007.github.io/note_files/harmonic_analysis.pdf#page=152
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Definition. The ring of adeles A is the set

Ag = {(xp)p € H Qy | zp € Z,, for all but finitely many p < oo}

p<0
It is equipped with the unique (abelian) group topology so that a neighborhood basis of 0 is given by [] U,
p

<0
where U, € Q, is open and U, = Z,, for all but finitely many p < oo.

Immediately from the definition we see Ag is a locally compact Hausdorff topological ring, and Q embeds
into Ag diagonally.

Lemma 4.1. The inclusion Q < Ag has discrete image, and the quotient Ag/Q is compact.

Proof. For being discrete, it suffice to show there exists an open set U of 0 such that U n Q = {0}. Take
11
U=(-573)x 11z
p<o0

For the compact quotient, it suffices to find a compact set K of Ag such that K — Ag — Ag/Q is surjective. We
claim

K=[0,1x ][]z,
p<o0

does the job. For (7)p<c0, take 7 := 3 _, {z,}p; this is a finite sum as {y}, = 0if y € Z,,. Then z;, — r € Z,, for

all p < co. Finally take n € Z so that z,, — n € [0, 1]. One checks (z,)p<o0 — (r + 1) € K. O

Now we define an invariant measure dz on A. This is easy: set

vol (H Umdm) = H vol(Up, dx,)

P00 PO

where dz), is the invariant measure on Q,, defined before, and U, < Q,, are open sets with finite measure such
that U, = Z,, for all but finitely many p < co. Symbolically we write
dx = H dz,.
P00
For f € L*(A,dz) such that f = fp with f, € LY(Q,,dz;,) and f, = 1z, for all but finitely many p < oo, we
<00

PO
then have

L f@de =[] f@p fylay)d,.

p<o

Our space of test functions, or the Schwartz space on A, is defined as

S(A) := span. { H Io | f» € S(Qy), fp = 1z, for all but finitely many p < oo} c CA)

P<O

Define ¢ : A — S! by the formula

This is well-defined as v, is trivial on Z,.

Lemma 4.2. v, is trivial on Q.



16

Proof. For r € Q, we must show

r— Z{r}peZ.

p<00

For any p < oo, note that |r — {r},|, < 1 and |{r}4|, = 1 for ¢ # p. Hence

r— Z {rtq <1
q<o0 »
for all p < oo. Readers are invited to suggest themselves that this implies r € Z. O

Corollary 4.2.1. 1, defines a continuous homomorphism 4 : A/Q — St
Proof. We leave this to the reader as an exercise to get familiar with the topology on A. O

Definition. For f € L!(A, dx), define the Fourier transform f:A>C by
fla) = | 1wwataniy.

It follows that for f = [] f, € S(A), one has

p<0

Fie =TT |, oo = T foley)

Pp<oO PO

Note the product on the right is a finite product as f,, = 1, for all but finitely many p < o0, and 1/Z\p =1gz,.
By the Fourier theory on local pieces, one immediately gets

Lemma 4.3. Fourier transform defines an isomorphism on S(A).

We now come to one of the promised ingredient in the proof of the functional equation:

Theorem 4.4 (Poisson summation formula). For f € S(A), one has
PNICEDIWIG
reQ reQ

and the sums on both sides are absolutely convergent.

One could prove this by reducing to the classical case. In the following we explain a proof based on Fourier
expansions on compact groups. For readers interested in learning the general theory of harmonic analysis and
Fourier transforms on locally compact Hausdorff abelian groups, a nice place to start is [ 1.

Proof. (of Poisson summation formula) For f € S(A), define F' : A/Q — C by
F(z):= ) f(r+a).
reQ
One checks this sum converges compactly and absolutely in « € A, so F'is a well-defined continuous function.
By Fourier theory on the compact group A/Q, one has an expansion

F@=Z<&f@mmm%mm

reQ
The proof is completed by taking « = 0 and by the equality

F(y)va(ry)dy = f(r).
A/Q
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This is a classical trick called unfolding;:

L/@ Fly)va(ry)dy = JA/@ 3 (f(s T y)alr(s + y>>)dy — [ sty = o).

reQ
O

4.2. Mellin transforms on Ideles. Let A* denote the group of invertible elements in the ring A. Set theoreti-
cally,

AX — {(xp)p € n Q, | zp € Z, for all but finitely many p < oo.}
P00

We equip A by the subspace topology given by the “twisted diagonal” A* 5 z — (z,271) € A x A. Equiv-

alently, A* is topologized by the unique (abelian) group topology so that a neighborhood basis of 1 is given

by [] U, where U, € Q, is open and U,, = Z,; for all but finitely many p < co. It is clear that A* is a locally

p<0
compact Hausdorff topological abelian group.

Definition. A~ is called the group of ideles of Q.

The inclusion A* — A is continuous, but fails to be a topological embedding, namely, A* is not topologized
using the subspace topology of A.

Clearly Q* embeds into A* diagonally. One proves as before that the image is discrete. However, the quo-
tient A /Q* fails to be compact. This is expected due to the presence of R~ .

Nevertheless, this can be fixed by restricting to the “norm 1 ideles”. For z = (x,), € A%, set

|2|a = H |plp
PO

This is a finite product as ||, = 1 for all but finitely many p < . Define
Al :={ze A*||z[p =1}

This is a closed subgroup of A*.

Lemma 4.5. One has Q* < A!, and the quotient A' /Q* is compact.

Proof. The first containment goes by the name “Artin product formula”. For r € Q*, write r = p{"* - - - p.* for
its prime decomposition. Then

k k
rla =l [ [l =10 [ [ = 1.
=1

i=1
The second results is (a special case of) a result due to Fujisaki. We must find a compact set K = A! which

surjects onto the quotient A'/Q*. Let z = (x,,), € A'. Letr = [] |x,],! € Q*; then |rz,|, = 1 forall p < oo,
pP<0

so that

lrz|a = [rTo|ox H [rzplp = |70 oo
p<a0
But |[r|s =1, s0 |rz|s = |r|a]z|a = 1 as well. Hence |[rzo|o = 1. One then takes

K:=5"x][]z.

p<a0
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To define an invariant measure on A*, note that vol(a X, dz) = |a|s vol(X,dx) foralla € A* and X < A
finite measurable sets. Indeed, it suffices to show this for X = H Up, and

p<o0
vol(aX,dz) = H vol(a,Up,dxy) = 1_[ lap|p vol(Up, dxp) = |a|a vol(X, dx)
P00 P<O0
as claimed. Hence
d*x = .
||a

is then an invariant measure on A*.
Definition. A Hecke character is a continuous group homomorphism y : A*/Q* — C*.

For a Hecke character x, one can find quasi-characters x, on Q, such that
x(@) = n Xp(Tp)-
p<0
For this to be sensical, one just checks Xp|Z; = 1 for all but finitely many p < co. This follows from a standard
“no small subgroup argument”. In particular, for all but finitely many p < oo, the quasi-character yx, is unramified.

Definition. For f € S(A) and a Hecke character x, define the Mellin transform

249 = |t
whenever the integral is absolutely convergent.

Lemma 4.6. For [ = H fp € S(A) and a Hecke character x, one has

p<o0
Z(f7X:S) = n Z(fanpvs)
PO

and the product is absolutely convergent for Re(s) large.

Proof. We must compute Z(1z,, xp, s) for x, unramified. But we have seen this is just (1 — x,(p)p~*)~*. Hence
the product on the right is

1
1—x(p)p~*

1_[ Z(fprXps8) = HZ(mepvs) H

P<0 peS pES
where S is a finite set of places such that o € S and y,, is ramified for p € S. It is standard that the product is
convergent for Re(s) > 1 (for example, take logarithm).

To see the equality, let S, = {0, ¢ | ¢ < p} which is a finite set of places. By monotone convergence theorem,
assuming s € R one has

Z(If1,1xl, s) = lim LX Ls, ()| f1(2) x| (z)]x|3d"

where 15, denotes the indicator of | |
and f, = 1z,. Then

¢S, Qy <11 oS, Zy . Take p large so that ¢ ¢ S), implies x, is unramified

| as@i@n@leids = | T] e lell |

qeSy
= H J . |fq|(Iq)|xq‘(zq)‘xq|2dxzq
qeSy Qq
= [T 20fal Ixal. 9).

qeSp
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Then

Z(I£1,1xl, s) = lim [T Z0fal Ixals o)

qu

which as we’ve seen is finite as long as s is large. Hence f(x)x(z)|z|} is integrable for Re(s) > 1. Replace | f| by
f and monotone convergence theorem by LDCT to rerun the argument. This proves the equality. O

Definition. For a Hecke character y, define the global L-function:

= H L(s,xp)-

p<0

Since L(s, x,) = (1—x,(p)p~*)~! for all but finitely many p < oo, the infinite product is absolutely convergent
over some right half plane in C. From the local theory, there exists some f € S(A) such that

L(s,x) = Z(f:x,8)
Example 4.7. Take fy(z) := e~ and fp =1z, and x = 1 the trivial character. Then
2(f1,5) = Lis,1) = 7 3 T(2)((5)
is the completed Riemann zeta function.
Theorem 4.8 (Functional equation). For f € S(A) and a Hecke character y, the Mellin transform
s Z(f,x,s)
admits a meromorphic continuation to the complex plane, and satisfies the functional equation
Z(F X 1= 5) = Z(f.x.8).

In addition, if we write x|r_, = | - |5, then Z(f, X, s) has at worst simple poles along s € {—s,,1 — s, } with
residue

Res, s, 2009 = JO) [ xteya

Resiio 209 = =0 | xeaa

Proof. For z € AX, we write x = ra’ forr = |z|s = (|z]a, 1,1,...) € Rog S Qp and 2! € AL,
We proceed formally. By unfolding, write

2609 = [ sen@lalee= [ gernaaat
Al r
a0
:f J Z flarz') | x(rz )dexﬂ.
0 Al/Qx acQx T
Split the integral:

Z(f, x> ) J Lxl/@x (GEZQ;XJFW’JJ ) rat dex— J Ll/@x (QEZQ;X f(arxl)) X(T’xl)rsdxxi—r
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Do Poisson summation for the latter one:

T (e

aeQX
* d
=[] (X saret) - 1@ ) xtratyrearaty
1 Jarex \ioo r
-] 3, Flotrs' ™) = 10) ) xtra'y ‘a2
A1/Qx |T$1|A r
' dr
(z' — (27 rs e zf f Z f aret) | x Hrat)yrt T4 d*x
o Jarjox \ 55
d
— f(0 J f rx Yyr*d*x +f f J Tl—sdxxl
Al/([))>< Al/@x r
Say x|g., = | - |5 for some s, € C. Then
dr 1 1
f J yr*d*x ! —J x(zh)d*z x f ST d Xy :J x(zh)d*z x
Al/@x T Al/Qx 0 Al/Qx —S — Sy
an
! i dr 1
J f X Hrat)yrtTtd e — = J x(zh)d*z x ———
0 JAL/QX T Al/QX 1—s5— Sx
Hence
7 dr
Z(fx:8) J J flarz') | x(ra! “dxxf J f (arz?) | x Lzttt d* 2
Al/Qx* Z Al/QX Z ( ) r

aeQx aeQx

npo o (SO o)
+JA1/@XX(:E)CZ$ <s+sx+1ssx>

and the expression is symmetric in (f, x, s) and (f,x~!,1— s). This finishes the proof modulo the convergence

issue. We leave it to the reader. O

Corollary 4.8.1 (Functional equation for Hecke L-function). For any Hecke character ¥, the global L-function
L(s, x) admits a meromorphic continuation to the complex plane and there exists an entire function (s, x, ¥4 )
such that the functional equation holds:

L(l - vail) = 6(37)(’ wA)L(&X)'

In addition,

SXawA HESXpawp

P<0

and &(s, xp, ¥p) = 1 for all but finitely many p < 0.

One can specify the poles of L(s, x) and the residues. We again leave it to the reader.
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