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1. CLASSICAL THEORY

1.1. Riemann zeta function. Recall from the time being a toddler one learns the infinite sum

ζ(s) :=
8
ÿ

n=1

1

ns
.

The sum is absolutely convergent for Re(s) ą 1. This is the famous Riemann zeta function, first introduced and
studied by Euler as a function over reals. In his 1859 article, Riemann treats ζ(s) as a function over complexes,
and obtains ameromorphic continuation to the complex plane, with simple poles at t0, 1u. Moreover, he proves
the functional equation:

π´ s
2Γ(

s

2
)ζ(s) = π´ 1´s

2 Γ(
1 ´ s

2
)ζ(1 ´ s)

Here Γ(s) is the usual gamma function:

Γ(s) =

ż 8

0

e´tts´1dt =

ż 8

0

e´tts
dt

t
(1)

The integral converges absolutely for Re(s) ą 0; in fact, by a repeated use of integration by parts it is not hard
to see Γ admits a meromorphic continuation to the complex plane, with simple poles at non positive integers.
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1.2. Riemann’s proof. Let’s explain Riemann’s proof for the functional equation. Changing variables t ÞÑ n2t

in (1) for n ě 1, we obtain

Γ(s) =

ż 8

0

e´n2t(n2t)s
dt

t
= n2s

ż 8

0

e´n2tts
dt

t

or

n´2sΓ(s) =

ż 8

0

e´n2tts
dt

t
.

Summing over n ě 1 and passing the sum into the integral, we get

ζ(2s)Γ(s) =
ÿ

ně1

n´2sΓ(s) =

ż 8

0

(
ÿ

ně1

e´n2t

)
ts
dt

t

The interchange is legit as t ÞÑ
ř

ně1
e´n2t is rapidly decreasing. As a taste of aesthetics, we do a further change

of variables t ÞÑ πt and s ÞÑ
s

2
to get

π´ s
2Γ(

s

2
)ζ(s) =

ż 8

0

(
ÿ

ně1

e´πn2t

)
t
s
2
dt

t
(2)

Notice RHS is defined for Re(s) ą 0, and LHS other than ζ(s) is defined for any s. In particular this gives a
meromorphic continuation of ζ to Re(s) ą 0.

Now we pause and recall a famous formula in analysis:

Theorem 1.1 (Poisson summation formula). For f P S(R), one has
ÿ

nPZ
f(n) =

ÿ

nPZ

pf(n)

Here pf denotes its Fourier transform:

pf(x) :=

ż

R
f(y)e2πixydy.

□

Corollary 1.1.1. For t ą 0, one has

ÿ

nPZ
e´πn2t =

1
?
t

ÿ

nPZ
e´πn2t´1

.(3)

Proof. It is well known that the Fourier transform of x ÞÑ e´πx2 is e´πx2 . Set f(x) := e´πx2t. Then

pf(x) =

ż

R
e´πy2te2πixydy

(y ÞÑ yt´
1
2 ) =

ż

R
e´πy2

e2πixyt
´ 1

2 t´
1
2 dy

= t´
1
2 e´πy2t´1

Now the claimed formula follows from Poisson summation formula. □
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Return to RHS of (2); we split the integral into 0 ă t ă 1 and 1 ă t ă 8. Write
ż 1

0

(
ÿ

ně1

e´πn2t

)
t
s
2
dt

t
=

ż 1

0

1

2

(
´1 +

ÿ

nPZ
e´πn2t

)
t
s
2
dt

t

=
´1

2

ż 1

0

t
s
2 ´1dt+

1

2

ż 1

0

(
ÿ

nPZ
e´πn2t

)
t
s
2
dt

t

by (3) = ´1

s
+

1

2

ż 1

0

(
ÿ

nPZ
e´πn2t´1

)
t
s
2 ´ 1

2
dt

t

(t ÞÑ t´1) =
´1

s
+

1

2

ż 8

1

(
ÿ

nPZ
e´πn2t

)
t
1´s
2
dt

t

Recover

1

2

ż 8

1

(
ÿ

nPZ
e´πn2t

)
t
1´s
2
dt

t
=

1

2

ż 8

1

t
1´s
2 ´1dt+

ż 8

1

ÿ

ně1

e´πn2tt
1´s
2
dt

t

=
´1

1 ´ s
+

ż 8

1

ÿ

ně1

e´πn2tt
1´s
2
dt

t

For convergence issue, we must assume 0 ă Re(s) ă 1 so that t 1´s
2 ´1 is integrable near 0. In conclusion, for

0 ă Re(s) ă 1 we get the expression

π´ s
2Γ(

s

2
)ζ(s) =

´1

s
+

´1

1 ´ s
+

ż 8

1

ÿ

ně1

e´πn2tt
1´s
2
dt

t
+

ż 8

1

ÿ

ně1

e´πn2tt
s
2
dt

t
(4)

RHS being symmetric in s and 1 ´ s, as a consequence we get

π´ s
2Γ(

s

2
)ζ(s) = π´ 1´s

2 Γ(
1 ´ s

2
)ζ(1 ´ s).

As a byproduct we obtain also a meromorphic continuation and the residues of ζ(s) from (4).

1.3. What were important? The first key step was to give an integral representation of ζ(s) like (2). The second
was to apply Poisson summation formula to a certain infinite series.

Let us explicate more on the integral representation. Integrals of the form like (1) are exactly Mellin trans-
formswhich is essentially the (Fourier-)Laplace transformby a change of variables. In general, given a sequence
(an)ně1, one forms a Dirichlet series

f(s) :=
ÿ

ně1

an
ns
.

Arguing as before, we formally get

π´ s
2Γ(

s

2
)f(s) =

ż 8

0

(
ÿ

ně1

ane
´πn2t

)
t
s
2
dt

t
.

In other words, Dirichlet series are nothing but a reincarnation of Mellin transforms. This has already been
used intensively along with Riemann-Stieltjes integrals in analytic number theory. For a taste, see [MV07, §1.2]
for example.

Poisson summation formula has also already been used in analytic number theory, especially in the point-
counting problem, to change a small gap sum into a large gap sum. Readers are referred to [IK04] for this
aspect.
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1.4. Generalization. There are several generalizations to ζ(s).

(i) Dirichlet L-function. This is the Dirichlet series

L(s, χ) :=
ÿ

ně1

χ(n)

ns

where χ is a homomorphism (Z/NZ)ˆ Ñ S1 for some integer N .
(ii) Dedekind ζ-function. This is the series

ζK(s) :=
ÿ

a�OK

1

(#OK/a)s

whereK is a number field with ring of integers OK , and for an ideal a�OK .
(iii) Hecke L-function.
(iv) L functions of modular forms. For a modular form f of, say, full level, this is the series

L(s, f) :=
ÿ

ně1

an(f)

ns

where an(f) is the n-th Fourier coefficient of f at the cusp.

For (iv) we refer readers to [DS05], [Bum97], [Gel75]. In this expository article we explain howpeople nowadays
think of (i), (ii) and (iii) via Iwasawa-Tate theory [Tat67], reinterpreted byWeil in [Wei95b] and [Wei95a]. Hecke
was able to prove a functional equation for his L-function following essentially the same proof, with numbers
replaced by ideal-theoretic stuff, due to the lack of unique factorization property for OK . See [Lan94, §13] for
this account. Tate, in his thesis, found a way to get around nasty ideals, by doing harmonic analysis on a global
space, namely ring of adeles, and on local spaces, namely local fields.

What was missing in the Riemann’s proof is the Euler product formula:

ζ(s) =
ź

p

1

1 ´ p´s

interpreting the series as an infinite product of local factors. These are then the contributions from primes in Z.
One should view π´ s

2Γ( s2 ) in (2) as the contribution from the infinite prime in Z. One usually calls π´ s
2Γ( s2 )ζ(s)

the completed zeta function, as it sorts of “closing the primes (or SpecZ) by adding an infinite point”. The
local theory supplied by Iwasawa-Tate interprets local factors also as Mellin transforms. Thus the Euler prod-
uct development of ζ(s) is a consequence of the fact that “global Mellin transforms factorize as local Mellin
transforms”.

1.5. Organization. We explain the local theory of Tate thesis in §2 and §3. We provide details in Archimedean
setting and leave the reader to mimic the arguments for non-Archimedean setting. We include a quick intro-
duction to p-adic numbers in §3.1 and §3.2 for those originated from analysis. The article focuses on the role
played by Mellin transforms. Particularly a Paley-Wiener type theorem for Schwartz spaces are discussed §2.2
and §3.5.2. In §2 we use the language of distributions. This viewpoint is, however, suppressed in the non-
Archimedean treatment in §3; see [Bum+03, §6] for this account. Finally in §4 we explain briefly the global
theory.

Due to the nature of being a mixture of algebra and (harmonic) analysis, it is hard for a non number theorist
to follow all the details presented here. In this article we opt to be more inclined to the analytic side. More
precisely, we minimize the use of algebra. Readers only need to know the definitions of a group, ring and field.
We assume, however, readers’ familiarity with real analysis and general measure theory.
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2. LOCAL THEORY AT INFINITY

In this section we discuss the classical Mellin transform, viewed as a meromorphic family of tempered distri-
butions. To be precise, let

S(R) :=
"

f P C8(R) | sup
xPR

|xnf (m)(x)| ă 8 for all n,m P Zě0

*

.

We topologize S(R) by the seminorms f ÞÑ sup
xPR

|xnf (m)(x)|. It can be shown that S(R) is then a Fréchet space.

Definition. A (tempered) distribution is a continuous linear functional T : S(R) Ñ C.

People interested in the world of distributions are referred to [Hör03, §2 and §7]. However, there is no need
at all to talk distributionally to obtain the result here. This is only a personal taste.

Consider the distribution Is : S(R) Ñ C represented by 1ě0| ¨ |s´1 (Re(s) ą 1), namely

Is(ϕ) :=

ż 8

0

ϕ(t)ts´1dt =

ż 8

0

ϕ(t)ts
dt

t
.

As said, this is the Mellin transform of ϕ. By integration by parts, for Re(s) ą 0 one has

Is(ϕ) =

ż 8

0

xs´1ϕ(x)dx =
xsϕ(x)

s

ˇ

ˇ

ˇ

ˇ

8

0

´
1

s

ż 8

0

xsϕ1(x)dx = ´
1

s
Is+1(ϕ

1).

In other words,

Is =
1

s

d

dt
Is+1.

Iterating, for k P Zě1 and Re(s) ą ´k, one has

Is =
1

s(s+ 1) ¨ ¨ ¨ (s+ k ´ 1)

dk

dtk
Is+k.

For ϕ P S(R),

Ress=´kIs(ϕ) = lim
sÑ´k

(s+ k)Is(ϕ)

= lim
sÑ´k

(s+ k)(´1)k+1

s(s+ 1) ¨ ¨ ¨ (s+ k ´ 1)(s+ k)
Is+k+1(ϕ

(k+1))

=
´1

k!
I1(ϕ

(k+1)) =
1

k!
ϕ(k)(0).

In other words,

Ress=´kIs =
(´1)k

k!

dk

dtk
δ0

as distributions. Here δ0 denotes the point mass measure at 0.

Recall the Gamma function Γ(s) := Is([t ÞÑ e´t]). From the computation lim
sÑ´k

(s+ k)Γ(s) =
(´1)k

k!
. Hence,

the ratio

s ÞÑ Is(ϕ) :=
Is(ϕ)

Γ(s)

extends to an entire function with

Is(ϕ)
ˇ

ˇ

s=´k
= (´1)kϕ(k)(0),

or

I´k =
dk

dtk
δ0
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Let us consider the general Mellin transform on Rˆ = R ´ t0u. For ϵ P t0, 1u and Re(s) ą 1, let

Z(ϕ, signϵ, s) :=

ż

Rˆ
ϕ(t)sign(t)ϵ|t|s dt

|t|
.

This is the Mellin transform of ϕ P S(R) evaluated at the quasi-character signϵ
| ¨ |s, or the distribution repre-

sented by signϵ
| ¨ |s´1. One writes

Z(ϕ, signϵ, s) = Is(ϕ) + (´1)ϵIs(ϕ
_)

where ϕ_(t) := ϕ(´t). Since Is(ϕ) has at worst simple poles at Zď0, it follows that so does Z(ϕ, signϵ, s) and

Ress=´kZ(ϕ, signϵ, s) =
1 + (´1)ϵ+k

k!
ϕ(k)(0).

Then s ÞÑ Z(ϕ, signϵ, s) has simple poles along ´ϵ+ 2Zď0 = ´(ϵ+ 2Zě0). To kill the poles, one uses

L(s, signϵ) := π´ s+ϵ
2 Γ(

s+ ϵ

2
)

The factor π´ s+ϵ
2 is added only to please number theorists. Hence the function

s ÞÑ
Z(ϕ, signϵ, s)

L(s, signϵ)

is entire and
Z(ϕ, signϵ, s)

L(s, signϵ)

ˇ

ˇ

ˇ

ˇ

s=´(2k+ϵ)

=
(´π)´kk!

(2k + ϵ)!
ϕ(2k+ϵ)(0).

for k P Zě0 and ϕ P S(R).

Definition. A quasi-character of Rˆ is a continuous homomorphism χ : Rˆ Ñ Cˆ.

Lemma 2.1. A quasi-character of Rˆ has the form t ÞÑ signϵ
|t|s0 , where ϵ P t0, 1u and s0 P C.

Proof. Refreshment. □

Definition. For a quasi-character χ = signϵ
|t|s0 of Rˆ, define the (archimedean) local L-factor

L(s, χ) := L(s+ s0, signϵ).

Summarizing what we’ve obtained so far:

Theorem2.2. For any quasi-characterχ : Rˆ Ñ Cˆ, themap s ÞÑ
Z(¨, χ, s)

L(s, χ)
defines an entire family of tempered

distributions with
Z(¨, χ, s)

L(s, χ)

ˇ

ˇ

ˇ

ˇ

s=´(s0+2k+ϵ)

=
(´1)ϵ(´π)´kk!

(2k + ϵ)!
δ
(2k+ϵ)
0

where k P Zě0 and χ = signϵ
| ¨ |s0 with ϵ P t0, 1u, s0 P C. Moreover, L(s, χ) = Z(ϕ, χ, s) for some ϕ P S(R).

□

2.1. Functional equations.

Lemma 2.3. For ϕ, φ P S(R), a quasi-character χ and 0 ă Re(s) ă 1, one has

Z(ϕ, χ, s)Z(pφ, χ´1, 1 ´ s) = Z(pϕ, χ´1, 1 ´ s)Z(φ, χ, s)

Proof. By Fubini, write

Z(ϕ, χ, s)Z(pφ, χ´1, 1 ´ s) =

ż

Rˆ

ż

Rˆ

ż

R
ϕ(x)χ(x)|x|sφ(z)e2πiyzχ´1(y)|y|1´s dx

|x|

dy

|y|
dz

(y ÞÑ xy) =

ż

Rˆ

ż

Rˆ

ż

R
ϕ(x)φ(z)e2πixyzχ´1(y)|y|1´sdx

dy

|y|
dz

The last expression is symmetric in (ϕ, φ), so the lemma follows. □
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Theorem 2.4 (Local functional equations). For any quasi-character χ : Rˆ Ñ Cˆ, there exists a unique function
ϵ(s, χ, ψ8) such that

Z(pϕ, χ´1, 1 ´ s)

L(1 ´ s, χ´1)
= ϵ(s, χ, ψ8)

Z(ϕ, χ, s)

L(s, χ)
.

for ϕ P S(R).

2.2. Spectral analysis.

Lemma 2.5. For ϕ P S(R), the Mellina transform Z(ϕ, χ, s) is of rapid decay in every bounded vertical strip
away the poles, namely

sup
aďRe(s)ďb
sRBε(0)+P

(1 + |Im(s)|)N |Z(ϕ, χ, s)| ă 8

for any ´8 ă a ď b ă 8, ε ą 0 and N P Zě1. Here P is the set of poles of Z(ϕ, χ, s) and

Bε(0) + P = tz P C | |z ´ p| ă ε for some p P P u .

If ϕ P C8
c (R), then Z(ϕ, χ, s) is subexponential toward the positive infinity, namely, there exists M ą 1 such

that

sup
aďRe(s)

sRBε(0)+P

(1 + |Im(s)|)NM´Re(s)|Z(ϕ, χ, s)| ă 8

for any ´8 ă a, ε ą 0 and N P Zě1.

Proof. Integration by parts. □

We now prove a Paley-Wiener type theorem, describes the behavior of a Schwartz function in terms of its
Mellin transform. For a more general statement, see [Igu78, Theorem 1.4.2].

Define HPW(R) to be the space of meromorphic functions T : t0, 1u ˆ C Ñ C such that for any ϵ P t0, 1u

‚ s ÞÑ
T (ϵ, s)

L(s, signϵ)
extends to an entire function, and

‚ s ÞÑ T (ϵ, s) is of rapid decay on bounded vertical strips away off the poles.
The last condition is explained in Lemma 2.5. Let HPW

exp(R) be the subspace of HPW(R) consisting of those T
satisfying the second estimate in Lemma 2.5.

Theorem 2.6. The Mellin transform establishes an isomorphism

S(R) HPW(R).

which restricts to an isomorphism C8
c (R) „

ÝÑ HPW
exp(R). The inverse is given by sending T to

x ÞÑ
1

2

ÿ

ϵPt0,1u

ż

iR
T (ϵ, σ + r)sign(x)´ϵ|x|´σ´r dr

2πi

for any σ P Rą0.

Proof. Let T P HPW(R) and define

f(x) :=
1

2

ÿ

ϵPt0,1u

ż

iR
T (ϵ, σ + r)sign(x)´ϵ|x|´σ´r dr

2πi

=
1

2

ÿ

ϵPt0,1u

ż

σ+iR
T (ϵ, r)sign(x)´ϵ|x|´r dr

2πi
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Let k P Zě0. By the rapid decay and the residue theorem, if we shift the contour to ´2k ´
3

2
we get

f(x) =
1

2

ÿ

0ďℓď2k+1

ÿ

ϵPt0,1u

sign(x)´ϵResz=´ℓ

(
T (ϵ, z)|x|´z

)
+

1

2

ÿ

ϵPt0,1u

ż

´2k´ 3
2+iR

T (ϵ, r)sign(x)´ϵ|x|´r dr

2πi

Write T (ϵ, z) = L(s, signϵ) rT (ϵ, z) for some entire function rT (ϵ, z). Then

Resz=´ℓ (T (ϵ, z)|x|z) = lim
zÑ´ℓ

(z + ℓ)L(z, signϵ) rT (ϵ, z)|x|´z.

Recall when ϵ = 0, the poles of L(z, 1) are along 2Zď0 and simple with residue

Resz=´2mL(z, 1) =
2

(2m)!

(´π)m(2m)!

m!
=

2(´π)m

m!
.

Hence
1

2

ÿ

0ďℓď2k+1

Resz=´ℓ

(
T (0, z)|x|´z

)
=

1

2

ÿ

0ďmďk

Resz=´2m

(
T (0, z)|x|´z

)
=

1

2

ÿ

0ďmďk

lim
zÑ´2m

(z + 2m)L(z, 1) rT (0, z)|x|´z

=
ÿ

0ďmďk

(´π)m

m!
rT (0,´2m)|x|2m

When ϵ = 1, the poles of L(z, sign) are along 2Zď0 ´ 1 and simple with residue

Resz=´(2m+1)L(z, 1) =
2

(2m+ 1)!

(´π)m(2m+ 1)!

m!
=

2(´π)m

m!

so
1

2

ÿ

0ďℓď2k+1

sign(x)Resz=´ℓ

(
T (1, z)|x|´z

)
=

1

2

ÿ

0ďmďk

sign(x)Resz=´(2m+1)

(
T (1, z)|x|´z

)
=

1

2

ÿ

0ďmďk

sign(x) lim
zÑ´(2m+1)

(z + 2m+ 1)L(z, sign) rT (1, z)|x|´z

=
ÿ

0ďmďk

sign(x) (´π)
m

m!
rT (1,´(2m+ 1))|x|2m+1.

Hence for each k P 2Zě0 we obtain

f(x) =
ÿ

0ďmďk

ÿ

ϵ=0,1

(´π)m

m!
rT (ϵ,´(2m+ ϵ))sign(x)ϵ|x|2m+ϵ +

1

2

ÿ

ϵPt0,1u

ż

´2k´ 3
2+iR

T (ϵ, r)sign(x)´ϵ|x|´r dr

2πi

=
ÿ

0ďmďk

ÿ

ϵ=0,1

(´π)m

m!
rT (ϵ,´(2m+ ϵ))x2m+ϵ +

1

2

ÿ

ϵPt0,1u

ż

´2k´ 3
2+iR

T (ϵ, r)sign(x)´ϵ|x|´r dr

2πi

In particular,

lim
xÑ0

d2k+ϵ

dx2k+ϵ
f(x) =

(´π)m(2m+ ϵ)!

m!
rT (ϵ,´(2m+ ϵ)),

and hence we can extend f to a smooth function on R. That f P S(R) follows from integration by parts.
Finally assume T P HPW

exp(R), and letM ą 1 be the number that satisfies the estimate

sup
aďRe(s)

sRBε(0)+P
ϵPt0,1u

(1 + |Im(s)|)NM´Re(s)|T (ϵ, s)| ă 8
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for any ´8 ă a, ε ą 0 and N P Zě1. We claim supp f Ď [´M,M ]. To see this, note for any σ ě 2 that

|f(x)| ď
1

4π

ÿ

ϵPt0,1u

ż

R
|T (ϵ, σ + ir)||x|´σdr

!T
1

2π

ż

R
(1 + |r|)´2Mσ|x|´σdr

! Mσ|x|´σ.

If |x| ą M , thenMσ|x|´σ Ñ 0 as σ Ñ +8. This proves f(x) = 0 unless |x| ď M as we claim. □

Remark 2.7. A Paley-Wiener type theorem is usually referred to as a statement characterizing the image of
certain function space under certain transform. Another theorem of this sort is the Schwartz-Paley-Wiener
theorem [Hör03, §7.3], characterizing distributions with compact support under their Fourier transforms. One
can also establishes a Paley-Wiener theorem for C8

c (Rˆ) or S(Rˆ) (functions with derivatives being rapidly
decreasing toward 0 and infinity).

3. LOCAL THEORY AT FINITE PLACES

3.1. Absolute values. An absolute value on Q is a map | ¨ | : Q Ñ Rě0 such that
(i) |x| = 0 if and only if x = 0,
(ii) |xy| = |x||y|,
(iii) |x+ y| ď |x| + |y|, and
(iv) |x| ‰ 1 for some x P Q ´ t0u.

In particular, | ¨ | restricts to a group homomorphismQˆ Ñ Rą0. By (i) and (iii), (x, y) ÞÑ |x´y| defines a metric
on Q.

Definition. An absolute value | ¨ | on Q is non-Archimedean if |x + y| ď maxt|x|, |y|u for x, y P Q. Otherwise
it is called Archimedean.

Definition (Euclidean absolute value). For x P Q, let |x|8 := |x| denote the usual absolute value.

Definition (p-adic absolute value). Let p be a prime. For n P Z, write n = pkn1 with gcd(n, n1) = 1. Define
|n|p := p´k. In general, for r P Q ´ t0u write r = m

n with n ‰ 0 and let |r|p := |m|p|n|´1
p .

Theorem 3.1 (Ostrowski). An absolute value on Q is equivalent1 either to | ¨ |p for some prime p or to | ¨ |8.
□

To unify the notation, we write p for either a prime or 8. Then p will be called a place of Q. When p is an
actual prime, we write p ă 8 and say it is a finite place. Otherwise, p = 8 and is called an infinite place.

Definition. For a place p ofQ, letQp denote the metric space completion of (Q, | ¨ |p). For p ă 8, we callQp the
field of p-adic numbers. Denote by Zp the closure of Z in Qp; this is called the ring of p-adic integers.

Note Q8 is nothing but just R.

3.2. p-adic numbers. Let p ă 8 for the rest of the section. We have inclusions
Q

Z Qp

Zp

dense

dense closed

1A notion we won’t define
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Recall each positive integer n admits a unique p-adic representation:

n = a0 + a1p+ ¨ ¨ ¨ + akp
k

with ai P t0, . . . , p ´ 1u and ak ‰ 0. One has |n| = p´m if and only if a0 = ¨ ¨ ¨ = am´1 = 0 and am ‰ 0. For
negative integers, one also has a p-adic representation, but always infinite: for example,

´1 = (p´ 1) + (p´ 1)p+ (p´ 1)p2 + ¨ ¨ ¨

The sum is not convergent in euclidean topology, but is certainly convergent inQp. For n P Zwith gcd(n, p) = 1,
it also admits a representation which can be obtained by reduction mod pk. For example, take n = 5 and p = 3.
Then 5´1 ” 2 (mod 3), 5´1 ” 2 = 2+0 ¨ 3 (mod 9), 5´1 ” 11 = 2+0 ¨ 3+1 ¨ 9 (mod 27) and so on. In general,
one has

5´1 ” a0 + a1 ¨ 3 + ¨ ¨ ¨ + ak ¨ pk (mod pk´1)

and the p-adic representation is then be given by the infinite sum

5´1 = 2 + 0 ¨ 3 + 1 ¨ 9 + 2 ¨ 27 + ¨ ¨ ¨

In other words, in Qp every number that is coprime to p gets inverted. As an immediate consequence,

Lemma 3.2. Any rational number, and hence any p-adic number, r admits a unique p-adic representation

r = p´n(a0 + a1p+ a2p
2 + ¨ ¨ ¨ )

where n P Z and a0 ‰ 0. In addition, |r|p = pn and a0 + a1p+ a2p
2 + ¨ ¨ ¨ P Zˆ

p , so that

Qˆ
p – Z ˆ Zˆ

p .

Here Zˆ
p means the group of units in the ring Zp.

□

Lemma 3.3. Zp is a compact open subring of Qp. In fact,

Zp = tx P Qp | |x|p ď 1u

Zˆ
p = tx P Qp | |x|p = 1u

Proof. Being an open subring is a consequence of the ultrametric inequality. The last assertion follows from the
last lemma. For the compactness, let (Uα)α be an open cover in Zp. Suppose for contradiction that any finite
subcollection of (Uα)α does not cover Zp. Since Zp =

Ů

0ďaďp´1
a + pZp, it follows that there exists some a0 P

t0, 1, . . . , p´ 1u such that a0 + pZp is not covered by any finite subcollection. Iterating, we can find a0, . . . , ak P

t0, 1, . . . , p´ 1u so that a0 + a1p+ ¨ ¨ ¨ + akp
k is not so. Say (a0 + a1p+ ¨ ¨ ¨ + akp

k)k Ñ x for some x P Zp. Since
x P Uα for some α and Uα is open, we can find N ě 0 so that a0 + a1p + ¨ ¨ ¨ + akp

k P Uα for k ě N . This is a
contradiction, so Zp is covered by some finite subcollection of tUαuα. □

Corollary 3.3.1. tpnZp | n ě 0u forms a neighborhood basis of 0 P Qp consisting of compact open sets.
□

As a consequence, Qp is a totally disconnected locally compact Hausdorff topological field.
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3.3. Integration on Qp. Similar to the construction of the Lebesgue measure on R, one covers a general open
set in Qp by the basic open sets a + pnZp. To define a measure it then suffices to assign consistently a positive
number to each a+ pnZp. One sets

vol(a+ pnZp, dx) := p´n

for a P Qp and n P Zp. In particular, vol(Zp) = 1. To see this is consistent, recall

Zp =
ğ

0ďaďp´1

a+ pZp.

Then

1 = vol(Zp, dx) = pvol(pZp, dx)

so that vol(pZp, dx) = p´1 is consistent. In this way we define a translation invariant measure dx on Qp, nor-
malized so that vol(Zp, dx) = 1.

For f P Cc(Qp) we can then talk about its integration
ż

Qp

f(x)dx.

Example 3.4. Take f(x) = 1Zp
(x)|x|sp. If Re(s) ą 0, then

ż

Qp

f(x)dx =

ż

Zp

|x|spdx =
ÿ

ně0

ż

pnZp´pn+1Zp

|x|spdx

=
ÿ

ně0

p´ns vol(pnZp ´ pn+1Zp, dx)

=
ÿ

ně0

p´ns(p´ 1)p´(n+1) =
(p´ 1)p´1

1 ´ p´(s+1)

One notices that (p´ 1)p´1 = 1 ´ 1
p = vol(Zˆ

p , dx).

We will also want to integrate over Qˆ
p . Similar to Rˆ, we use the measure

dˆx :=
dx

|x|p
.

In other words, for f P Cc(Qˆ
p ) we set

ż

Qˆ
p

f(x)dˆx :=

ż

Qp

f(x)|x|´1dx.

Lemma 3.5. One has d(ax) = |a|pdx for a P Qˆ
p . In particular, dˆx is a multiplicatively invariant measure on

Qˆ
p .

Proof. By d(ax) = |a|pdx we actually mean

vol(aX, dx) = |a|p vol(X, dx)

for any measurable set X of Qp with finite measure. For this it suffices to show

vol(aZp, dx) = |a|p.

Write a = p´nu for some u P Zˆ
p . Then vol(aZp, dx) = vol(p´nZp, dx) = pn = |a|p as we want. □
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3.4. Fourier analysis on Qp. For x P Qˆ
p , write

x = p´n(a0 + a1p+ ¨ ¨ ¨ )

and set

txup = p´n(a0 + a1p+ ¨ ¨ ¨ + an´1p
n´1) P Q.

This is the principal part of x. Define ψp : Qp Ñ Cˆ by

ψp(x) := e´2πitxup

Lemma 3.6. For x P Qp, one has ψp(xy) = 1 for all y P Zp if and only if x P Zp.

Proof. It amounts to showing txyup P Z for all y P Z if and only if x P Zp. This is clear. □

Definition. For f P L1(Qp, dx), define its Fourier transform pf : Qp Ñ C by

pf(x) =

ż

Qp

f(y)ψp(xy)dy.

We could proceedwith general integrable functions. However as in the real case it is preferable to do analysis
with a convenient space where Fourier transform is an isomorphism.

Definition. The Schwartz space S(Qp) of Qp is the space of locally constant functions Qp Ñ C with compact
support.

In the non-Archimedean case we usually refer to local constancy as smoothness. Hence S(Qp) collects all
smooth functions with compact support. One may equally writes

S(Qp) = C8
c (Qp).

Theorem 3.7. Fourier transform defines an isomorphism on S(Qp), and the Fourier inversion formula holds:

p

pf(x) = f(´x).

One has x1Zp = 1Zp .

□

3.5. Mellin transform on Qˆ
p .

Definition. A quasi-character on Qˆ
p is a continuous homomorphism χ : Qˆ

p Ñ Cˆ.

For a quasi-character χ : Qˆ
p Ñ Cˆ, if we write χ(p) = re2πiθ, then

χ(pn) = rne2πinθ = |pn|
´ logp r
p |pn|

´ 2πiθ
log p

p

Hence for x P Qˆ
p with |x| = p´n, one has

χ(x) = χ(xp´n)χ(pn) = χ(xp´n)|x|sp

for some s P C/ 2πi
log pZ. A quasi-character is then determined by a continuous homomorphism Zˆ

p Ñ Cˆ and a
number in C/ 2πi

log pZ.

Definition. For a quasi-character χ, denote by wt(χ) P R the unique real number such that

|χ(x)| = |x|wt(χ)
p .

This is called the weight of χ.
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For a measurable function f : Qˆ
p Ñ C, a quasi-character χ : Qˆ

p Ñ Cˆ and s P C, we consider the Mellin
transform:

Z(f, χ, s) :=

ż

Qˆ
p

f(x)χ(x)|x|sdˆx

whenever the integral exists.
For a Schwartz function f P S(Qp), by local constancy one always has f ´ f(0)1Zp

is zero in a neighborhood
of 0. Hence

Z(f, χ, s) = Z(f ´ f(0)1Zp , χ, s) + f(0)Z(1Zp , χ, s).

The function f ´ f(0)1Zp
has compact support inQˆ

p , so the convergence is clear, and the first term on the right
is a polynomial in p˘s. For the function 1Zp

, compute:

Z(1Zp
, χ, s) =

ż

Zp

χ(x)|x|sdˆx =
ÿ

ně0

ż

pnZp´pn+1Zp

χ(x)|x|sdˆx

=
ÿ

ně0

ż

pnZˆ
p

χ(x)|x|sdˆx

=
ÿ

ně0

χ(pn)|pn|s
ż

Zˆ
p

χ(x)dˆx.

If χ is not trivial on Zp, then the last integral is trivial. Indeed, say χ(u) ‰ 1 for some u P Zˆ
p ; then

ż

Zˆ
p

χ(x)dˆx =

ż

Zˆ
p

χ(ux)dˆx = χ(u)

ż

Zˆ
p

χ(x)dˆx

or

(1 ´ χ(u))

ż

Zˆ
p

χ(x)dˆx = 0.

Now assume χ is trivial on Zˆ
p ; then

Z(1Zp , χ, s) =
ÿ

ně0

χ(pn)|pn|s vol(Zˆ
p , dx).

If Re(s) +wt(χ) ą 0, then

Z(1Zp , χ, s) =
vol(Zˆ

p , dx)

1 ´ χ(p)p´s
.

As said, if χ is not trivial on Zˆ
p , then

Z(1Zp
, χ, s) = 0.

Definition. A quasi-character χ is called unramified if χ is trivial on Zˆ
p .

Definition. For a quasi-character χ, define the local L-factor

L(s, χ) =

$

&

%

1

1 ´ χ(p)p´s
, if χ is unramified

1 , otherwise

Theorem 3.8. For a quasi-character χ and f P S(Qp), the map

s ÞÑ
Z(f, χ, s)

L(s, χ)

extends to an entire function on the complex plane, and is a polynomial in p˘s. Moreover, L(s, χ) = Z(f, χ, s)

for some f P S(Qp).
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3.5.1. Local functional equations. Following exactly the same proof as in the real case, one obtains

Theorem 3.9. For any quasi-character χ : Qˆ
p Ñ Cˆ, there exists a unique function ϵ(s, χ, ψp) such that

Z( pf, χ´1, 1 ´ s)

L(1 ´ s, χ´1)
= ϵ(s, χ, ψp)

Z(f, χ, s)

L(s, χ)
.

for f P S(Qp).
□

3.5.2. Paley-Wiener. For a temporary use, let

HomTopGp(Qˆ
p ,Cˆ)

denote the space of quasi-characters on Qˆ
p and

HomTopGp(Zˆ
p ,Cˆ)

the space of continuous homomorphisms Zˆ
p Ñ Cˆ.

Recall there is a bĳection

HomTopGp(Qˆ
p ,Cˆ) – HomTopGp(Zˆ

p ,Cˆ) ˆ
C

2πi
log pZ

so we can equip HomTopGp(Qˆ
p ,Cˆ) with a structure of complex manifolds, with infinitely many connected

components.
Define HPW(Qp) to be the space of meromorphic functions T : HomTopGp(Qˆ

p ,Cˆ) Ñ C such that

(i) suppT only intersects with finitely many connected components of HomTopGp(Qˆ
p ,Cˆ), and

(ii) T (χ, s)

L(s, χ)
P C[p˘s] for each χ P HomTopGp(Zˆ

p ,Cˆ).

Again we identify HomTopGp(Qˆ
p ,Cˆ) – HomTopGp(Zˆ

p ,Cˆ)ˆ
C

2πi
log pZ

. Since L(s, χ) = 1 unless χ is unramified,

so T (χ, s) P C[p˘s] for all 1 ‰ χ. When χ = 1, we have L(s, χ) = (1 ´ p´s)´1, so T (χ, s) has at most a simple
pole at s = 0.

Theorem 3.10. The Mellin transform f ÞÑ Z(f, χ) defines an isomorphism

S(Qp) HPW(Qp).
„

The inverse is given by the Mellin inversion: for each σ P Rą0, the inverse sends T to the function

Qˆ
p Q x ÞÑ

log p
vol(Zˆ

p , dx)

ÿ

χP
yZˆ
p

ż πi
log p

´ πi
log p

T (χ, σ + r)χ´1(x)|x|´σ´r dr

2πi

Here we identify T P HPW(Qp) in the last equation with a function on HomTopGp(Zˆ
p ,Cˆ) ˆ

C
2πi
log pZ

.

□

For a proof, see [my note, §7.5.1] or [Igu78, §1.5].

4. GLOBAL THEORY

4.1. Fourier analysis on Adeles. The general idea in algebra is that fields are always easier than rings. The
ring of adeles A = AQ which we will introduce soon is toQ, pretty much like R is to Z. In particular,Q embeds
into A as a cocompact lattice. Anyway, Q is undoubtedly more flexible than Z.

https://jamesy007.github.io/note_files/harmonic_analysis.pdf#page=152
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Definition. The ring of adeles AQ is the set

AQ :=

#

(xp)p P
ź

pď8

Qp | xp P Zp for all but finitely many p ă 8

+

It is equipped with the unique (abelian) group topology so that a neighborhood basis of 0 is given by
ś

pď8

Up,

where Up Ď Qp is open and Up = Zp for all but finitely many p ă 8.

Immediately from the definition we see AQ is a locally compact Hausdorff topological ring, and Q embeds
into AQ diagonally.

Lemma 4.1. The inclusion Q Ď AQ has discrete image, and the quotient AQ/Q is compact.

Proof. For being discrete, it suffice to show there exists an open set U of 0 such that U X Q = t0u. Take

U = (´
1

2
,
1

2
) ˆ

ź

pă8

Zp.

For the compact quotient, it suffices to find a compact setK of AQ such thatK Ñ AQ Ñ AQ/Q is surjective. We
claim

K = [0, 1] ˆ
ź

pă8

Zp

does the job. For (xp)pď8, take r :=
ř

pă8txpup; this is a finite sum as tyup = 0 if y P Zp. Then xp ´ r P Zp for
all p ă 8. Finally take n P Z so that x8 ´ n P [0, 1]. One checks (xp)pď8 ´ (r + n) P K. □

Now we define an invariant measure dx on A. This is easy: set

vol
(

ź

pď8

Up, dx

)
:=

ź

pď8

vol(Up, dxp)

where dxp is the invariant measure on Qp defined before, and Up Ď Qp are open sets with finite measure such
that Up = Zp for all but finitely many p ă 8. Symbolically we write

dx =
ź

pď8

dxp.

For f P L1(A, dx) such that f =
ś

pď8

fp with fp P L1(Qp, dxp) and fp = 1Zp for all but finitely many p ă 8, we

then have
ż

A
f(x)dx =

ź

pď8

ż

Qp

fp(xp)dxp.

Our space of test functions, or the Schwartz space on A, is defined as

S(A) := spanC

#

ź

pď8

fp | fp P S(Qp), fp = 1Zp
for all but finitely many p ă 8

+

Ď C(A)

Define ψA : A Ñ S1 by the formula

ψA(x) :=
ź

pď8

ψp(xp).

This is well-defined as ψp is trivial on Zp.

Lemma 4.2. ψA is trivial on Q.
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Proof. For r P Q, we must show

r ´
ÿ

pă8

trup P Z.

For any p ă 8, note that |r ´ trup|p ď 1 and |truq|p = 1 for q ‰ p. Hence
ˇ

ˇ

ˇ

ˇ

ˇ

r ´
ÿ

qă8

truq

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď 1

for all p ă 8. Readers are invited to suggest themselves that this implies r P Z. □

Corollary 4.2.1. ψA defines a continuous homomorphism ψA : A/Q Ñ S1.

Proof. We leave this to the reader as an exercise to get familiar with the topology on A. □

Definition. For f P L1(A, dx), define the Fourier transform pf : A Ñ C by

pf(x) :=

ż

A
f(y)ψA(xy)dy.

It follows that for f =
ś

pď8

fp P S(A), one has

pf(x) =
ź

pď8

ż

Qp

fp(yp)ψp(xpyp)dyp =
ź

pď8

pfp(xp).

Note the product on the right is a finite product as fp = 1Zp
for all but finitely many p ă 8, and x1Zp

= 1Zp
.

By the Fourier theory on local pieces, one immediately gets

Lemma 4.3. Fourier transform defines an isomorphism on S(A).
□

We now come to one of the promised ingredient in the proof of the functional equation:

Theorem 4.4 (Poisson summation formula). For f P S(A), one has
ÿ

rPQ
f(r) =

ÿ

rPQ

pf(r)

and the sums on both sides are absolutely convergent.

One could prove this by reducing to the classical case. In the following we explain a proof based on Fourier
expansions on compact groups. For readers interested in learning the general theory of harmonic analysis and
Fourier transforms on locally compact Hausdorff abelian groups, a nice place to start is [DE09].

Proof. (of Poisson summation formula) For f P S(A), define F : A/Q Ñ C by

F (x) :=
ÿ

rPQ
f(r + x).

One checks this sum converges compactly and absolutely in x P A, so F is a well-defined continuous function.
By Fourier theory on the compact group A/Q, one has an expansion

F (x) =
ÿ

rPQ

(
ż

A/Q
F (y)ψA(ry)dy

)
ψA(rx)

The proof is completed by taking x = 0 and by the equality
ż

A/Q
F (y)ψA(ry)dy = pf(r).
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This is a classical trick called unfolding:
ż

A/Q
F (y)ψA(ry)dy =

ż

A/Q

ÿ

rPQ

(
f(s+ y)ψA(r(s+ y))

)
dy =

ż

A
f(y)ψA(ry)dy = pf(r).

□

4.2. Mellin transforms on Ideles. Let Aˆ denote the group of invertible elements in the ring A. Set theoreti-
cally,

Aˆ :=

#

(xp)p P
ź

pď8

Qˆ
p | xp P Zˆ

p for all but finitely many p ă 8.

+

We equip Aˆ by the subspace topology given by the “twisted diagonal” Aˆ Q x ÞÑ (x, x´1) P A ˆ A. Equiv-
alently, Aˆ is topologized by the unique (abelian) group topology so that a neighborhood basis of 1 is given
by

ś

pď8

Up, where Up Ď Qp is open and Up = Zˆ
p for all but finitely many p ă 8. It is clear that Aˆ is a locally

compact Hausdorff topological abelian group.

Definition. Aˆ is called the group of ideles of Q.

The inclusion Aˆ Ñ A is continuous, but fails to be a topological embedding, namely, Aˆ is not topologized
using the subspace topology of A.

Clearly Qˆ embeds into Aˆ diagonally. One proves as before that the image is discrete. However, the quo-
tient Aˆ/Qˆ fails to be compact. This is expected due to the presence of Rą0.

Nevertheless, this can be fixed by restricting to the “norm 1 ideles”. For x = (xp)p P Aˆ, set

|x|A :=
ź

pď8

|xp|p

This is a finite product as |xp|p = 1 for all but finitely many p ă 8. Define

A1 := tx P Aˆ | |x|A = 1u.

This is a closed subgroup of Aˆ.

Lemma 4.5. One has Qˆ Ď A1, and the quotient A1/Qˆ is compact.

Proof. The first containment goes by the name “Artin product formula”. For r P Qˆ, write r = pn1
1 ¨ ¨ ¨ pnk

k for
its prime decomposition. Then

|r|A = |r|8

k
ź

i=1

|r|p = pn1
1 ¨ ¨ ¨ pnk

k

k
ź

i=1

p´ni
i = 1.

The second results is (a special case of) a result due to Fujisaki. We must find a compact set K Ď A1 which
surjects onto the quotient A1/Qˆ. Let x = (xp)p P A1. Let r =

ś

pă8

|xp|´1
p P Qˆ; then |rxp|p = 1 for all p ă 8,

so that

|rx|A = |rx8|8

ź

pă8

|rxp|p = |rx8|8.

But |r|A = 1, so |rx|A = |r|A|x|A = 1 as well. Hence |rx8|8 = 1. One then takes

K := S1 ˆ
ź

pă8

Zˆ
p .

□



18

To define an invariant measure on Aˆ, note that vol(aX, dx) = |a|A vol(X, dx) for all a P Aˆ and X Ď A
finite measurable sets. Indeed, it suffices to show this for X =

ź

pď8

Up, and

vol(aX, dx) =
ź

pď8

vol(apUp, dxp) =
ź

pď8

|ap|p vol(Up, dxp) = |a|A vol(X, dx)

as claimed. Hence

dˆx :=
dx

|x|A

is then an invariant measure on Aˆ.

Definition. A Hecke character is a continuous group homomorphism χ : Aˆ/Qˆ Ñ Cˆ.

For a Hecke character χ, one can find quasi-characters χp on Qˆ
p such that

χ(x) =
ź

pď8

χp(xp).

For this to be sensical, one just checks χp|Zˆ
p

” 1 for all but finitely many p ă 8. This follows from a standard
“no small subgroup argument”. In particular, for all but finitelymany p ă 8, the quasi-character χp is unramified.

Definition. For f P S(A) and a Hecke character χ, define the Mellin transform

Z(f, χ, s) :=

ż

Aˆ
f(x)χ(x)|x|sAd

ˆx.

whenever the integral is absolutely convergent.

Lemma 4.6. For f =
ź

pď8

fp P S(A) and a Hecke character χ, one has

Z(f, χ, s) =
ź

pď8

Z(fp, χp, s)

and the product is absolutely convergent for Re(s) large.

Proof. We must compute Z(1Zp
, χp, s) for χp unramified. But we have seen this is just (1 ´ χp(p)p

´s)´1. Hence
the product on the right is

ź

pď8

Z(fp, χp, s) =
ź

pPS

Z(fp, χp, s)
ź

pRS

1

1 ´ χ(p)p´s

where S is a finite set of places such that 8 P S and χp is ramified for p P S. It is standard that the product is
convergent for Re(s) ą 1 (for example, take logarithm).

To see the equality, let Sp = t8, q | q ď pu which is a finite set of places. By monotone convergence theorem,
assuming s P R one has

Z(|f |, |χ|, s) = lim
pÑ8

ż

Aˆ
1Sp

(x)|f |(x)|χ|(x)|x|sAd
ˆx

where 1Sp
denotes the indicator of

ś

qPSp
Qˆ

q ˆ
ś

qRSp
Zˆ
q . Take p large so that q R Sp implies χq is unramified

and fq = 1Zq
. Then

ż

Aˆ
1Sp

(x)|f |(x)|χ|(x)|x|sAd
ˆx =

ż

Aˆ

ź

qPSp

|fq|(xq)|χq|(xq)|xq|sq

 dˆx

=
ź

qPSp

ż

Qˆ
q

|fq|(xq)|χq|(xq)|xq|sqd
ˆxq

=
ź

qPSp

Z(|fq|, |χq|, s).
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Then

Z(|f |, |χ|, s) = lim
pÑ8

ź

qPSp

Z(|fq|, |χq|, s)

which as we’ve seen is finite as long as s is large. Hence f(x)χ(x)|x|sA is integrable for Re(s) ą 1. Replace |f | by
f and monotone convergence theorem by LDCT to rerun the argument. This proves the equality. □

Definition. For a Hecke character χ, define the global L-function:

L(s, χ) :=
ź

pď8

L(s, χp).

SinceL(s, χp) = (1´χp(p)p
´s)´1 for all but finitelymany p ă 8, the infinite product is absolutely convergent

over some right half plane in C. From the local theory, there exists some f P S(A) such that

L(s, χ) = Z(f, χ, s)

Example 4.7. Take f8(x) := e´πx2 and fp = 1Zp
and χ = 1 the trivial character. Then

Z(f, 1, s) = L(s, 1) = π´ s
2Γ(

s

2
)ζ(s)

is the completed Riemann zeta function.

Theorem 4.8 (Functional equation). For f P S(A) and a Hecke character χ, the Mellin transform

s ÞÑ Z(f, χ, s)

admits a meromorphic continuation to the complex plane, and satisfies the functional equation

Z( pf, χ´1, 1 ´ s) = Z(f, χ, s).

In addition, if we write χ|Rą0
= | ¨ |

sχ
8 , then Z(f, χ, s) has at worst simple poles along s P t´sχ, 1 ´ sχu with

residue

Ress=´sχZ(f, χ, s) = f(0)

ż

A1/Qˆ
χ(x1)dˆx

Ress=1´sχZ(f, χ, s) = ´ pf(0)

ż

A1/Qˆ
χ(x1)dˆx

Proof. For x P Aˆ, we write x = rx1 for r = |x|A = (|x|A, 1, 1, . . .) P Rą0 Ď Q8 and x1 P A1.
We proceed formally. By unfolding, write

Z(f, χ, s) =

ż

Aˆ
f(x)χ(x)|x|sdˆx =

ż 8

0

ż

A1

f(rx1)χ(rx1)r´sdˆx
dr

r

=

ż 8

0

ż

A1/Qˆ

 ÿ

aPQˆ

f(arx1)

χ(rx1)rsdˆx
dr

r
.

Split the integral:

Z(f, χ, s) =

ż 1

0

ż

A1/Qˆ

 ÿ

aPQˆ

f(arx1)

χ(rx1)rsdˆx
dr

r
+

ż 8

1

ż

A1/Qˆ

 ÿ

aPQˆ

f(arx1)

χ(rx1)rsdˆx
dr

r
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Do Poisson summation for the latter one:
ż 8

1

ż

A1/Qˆ

 ÿ

aPQˆ

f(arx1)

χ(rx1)rsdˆx
dr

r

=

ż 8

1

ż

A1/Qˆ

(
ÿ

aPQ
f(arx1) ´ f(0)

)
χ(rx1)rsdˆx

dr

r

=

ż 8

1

ż

A1/Qˆ

(
1

|rx1|A

ÿ

aPQ

pf(a(rx1)´1) ´ f(0)

)
χ(rx1)rsdˆx

dr

r

(x1 ÞÑ (x1)´1, r ÞÑ r´1) =

ż 1

0

ż

A1/Qˆ

 ÿ

aPQˆ

pf(arx1)

χ´1(rx1)r1´sdˆx
dr

r

´ f(0)

ż 1

0

ż

A1/Qˆ
χ´1(rx1)r´sdˆx

dr

r
+ pf(0)

ż 1

0

ż

A1/Qˆ
χ´1(rx1)r1´sdˆx

dr

r

Say χ|Rą0
= | ¨ |

sχ
8 for some sχ P C. Then

ż 1

0

ż

A1/Qˆ
χ´1(rx1)r´sdˆx

dr

r
=

ż

A1/Qˆ
χ(x1)dˆxˆ

ż 1

0

r´s´sχdˆr =

ż

A1/Qˆ
χ(x1)dˆxˆ

1

´s´ sχ

and
ż 1

0

ż

A1/Qˆ
χ´1(rx1)r1´sdˆx

dr

r
=

ż

A1/Qˆ
χ(x1)dˆxˆ

1

1 ´ s´ sχ

Hence

Z(f, χ, s) =

ż 1

0

ż

A1/Qˆ

 ÿ

aPQˆ

f(arx1)

χ(rx1)rsdˆx
dr

r
+

ż 1

0

ż

A1/Qˆ

 ÿ

aPQˆ

pf(arx1)

χ´1(rx1)r1´sdˆx
dr

r

+

ż

A1/Qˆ
χ(x1)dˆxˆ

(
f(0)

s+ sχ
+

pf(0)

1 ´ s´ sχ

)
and the expression is symmetric in (f, χ, s) and ( pf, χ´1, 1´ s). This finishes the proof modulo the convergence
issue. We leave it to the reader. □

Corollary 4.8.1 (Functional equation for Hecke L-function). For any Hecke character χ, the global L-function
L(s, χ) admits a meromorphic continuation to the complex plane and there exists an entire function ε(s, χ, ψA)

such that the functional equation holds:

L(1 ´ s, χ´1) = ε(s, χ, ψA)L(s, χ).

In addition,

ε(s, χ, ψA) =
ź

pď8

ε(s, χp, ψp).

and ε(s, χp, ψp) = 1 for all but finitely many p ă 8.
□

One can specify the poles of L(s, χ) and the residues. We again leave it to the reader.
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