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1. INTRODUCTION

Let I' < SL,(Z) be a torsion free congruence subgroup. Consider the (open) modular curve Yr = IMH and
the compactified one Xr. The Hodge decomposition provides a decomposition

HY(Xr) @ HOY (Xr) = Hig (Xr).
Recall [DS05, §3.3] that f(z) — f(z)dz defines an isomorphism

Sz(r) — HO(X,QXF) ot Hl’O(Xr).

Similarly, f(z) ~— f(z)dz defines an isomorphism S,(I') — H%!(Xr), where S,(T) := $,(T") ®c, C and o is the
complex conjugation. In particular, we obtain an isomorphism

So(TN) @ So(T) ———— HIR(Xr) = H!

sing

(XF/ C)

Let U be the intersection of Yr with a sufficiently small neighborhood of cusps in Xr. Then there is an exact
sequence

(Xr, (C) Emd H1

sing

(Yr, (C) E— H1

1
0 H sing

sing (U, (C) .
This follows from, for example, the excision and the long exact sequence for relative cohomology groups. By
deRham theorem, H!(Yr, C) = Hl;(Yr), but this time H(Yr, Qy,) — HLz(Yr) is not injective due to the non-

compactness of Yr. Nevertheless, consider the composition

Mz(r) E— HO(Y[‘,QYF) — HéR(Yr) ~ H!

sing

(Yr,C)
Then we have a commutative diagram

00— So(N) —————— My(IN) ——— My(IN)/Sy(T)

| | |

(Xr,C) —— HL_(Yr,C) —— HL (U,C).

, 1
0 H sing sing

sing

The map My(T") — H;mg(u,(C) ~ COfeusps} can be described by residues, so its kernel is exactly Sy(TI"). This
shows the rightmost arrow is injective. We already see the first vertical arrow is injective, so this implies so is

the middle. Comparing the dimension yields an isomorphism

Ma(T) @ So(T) —————— H!

sing

(YFI(C)'

The image of H},, (Xr, C) in Hy,,
Hl

inn

(Yr, C) coincides of that of H!

sing,c

(Yr,C) in H!

sing

(Yr,C); we denote it by
(Yr, C), the inner cohomology of Yr. Hence

M2 () @ S2(T) ———— Hy,, (Yr, C)

} [

S2(MN @ So(T) ——=—— HL (Yr,C)

nn

Since T is torsion free, the fundamental group of Yr is isomorphic to I' and 7 : H — Yr is the universal cover.
Then Hlp (Yr) =~ H!

sing

(Yr,C) = Homgp(T,C) = HY(T, C); explicitly, a form w is sent to the homomorphism

Y Zo
Y = f " w, where z, is a fixed base point of H. In other words, we obtain an isomorphism
20

Mo(T) @ S»(T) HY(T, C)

Y Zo Y Z0
(g — sy ﬂmm+f 9Z)dz

/) Zo
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This is the easiest case of the so-called Eichler-Shimura isomorphism. In the following this is going to be
generalized to higher weight k. The constant sheaf C played in the cohomology will be replaced by a certain
local system over Yr. Our exposition will use group cohomology exclusively. For an approach using sheaf
cohomology of local systems, see [DI95, §12.2] and [Li20, §9].

2. REVIEW ON GROUP COHOMOLOGY

(G/ M) =
G, M) := Homget(GP, M). These have natural R-module structures induced from

2.1. Inhomogeneous complexes. Fixa unital ring Rand a group G. Let M be an R[G]-module. Define C?nhom
M, and forp > 1,set CP,  (

that on M. Define the coboundary map

w:Ch (GM) — CPI (G,M)

by the formula:

ou(gi, ..., gp+1)
P .
=g1u(g2,. -, gpr1) + Y, (1) "ulg, -, Gi-1,GiGi 11, Gir1, -, Gpi1) + (1P ulgy, ..., gp)-
i=1
It is straightforward to verify that 0P o 9 = 0 for p > 0, so (C
inhomogeneous complex. As usual, put

(G, M), 0*) forms a complex, called the

L]
inhom

(G,M) — CP! (G,M))

inhom
0 ,ifp=0
Im(oP~1:CP ! (G,M) - CP,(G,M)) ,ifp>1

inhom inhom

ZP(G,M) = ker(o? : CP

inhom

BP(G,M) = {
HP(G,M) = ZP (G, M)/BP (G, M).
The group HP (G, M) is the p-th cohomology group of G with coefficients in M.

0

Let us look at the cohomology groups in low dimension. Forx e M = C , (

G, M), by definition
ox(g) = gx — x.

Therefore H’(G,M) = Z°(G,M) = MS := {x e G| gx = x forall g € G}. Forue C}

inhom (G, M),
ou(g192) = g1u(g2) — u(g192) +ulg1).
This shows that
ZYG,M) ={u:G - M |ulxy) = xuly) +ux)}.
In particular, for u e Z'(G, M), we have u(1) = 0 and u(x ') = —x~lu(x).
2.2. Derived functors. Consider a complex

. L> R[Gg} # R[Gz] d R[Gl] 13 R 0

defined as follows. For g € G, set ¢(g) = 1 € R and extend R-linearly to a map ¢ : R[G] — R. For p > 2 and
(91/--'191)) € GP,

P
d(gll-”rg‘p) = Z(_l)](g()l-”rgjfll 9j+1/~-/9p)‘
j=0
One checks quickly that d o d = 0. Fix s € G and define h : R[GP] — R[GPH] by h(gi,...,9p) = (5, 91,---,9p)-

One checks doh+hod = 1, so the above complex is in fact exact. This is a free solution of the trivial R[G]-module
R, called the bar resolution.
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For each R[G]-module M, applying Homg (-, M) to the bar resolution yields the standard resolution of M:
0 —— M —— Homg(R[G], M) —— Homg(R[G%,M) —— --- .

We put XP(G, M) = Homg (R[GP*1],M) (p = 0) and let G act on XP (G, M) by conjugation: (g.f)(x) = g.f(g~x)
for f € XP(G, M), g € G. Define the homogeneous complex

CP

hom

(G,M) = X?(G,M)® = Homg(g)(RIGP*',M)  (p >0).
We then have a sequence

0 ME el

(G,M) —— Cl

hom

(G, M) — -

An element f € CP

mined by its evaluation on elements of the form (1, g1, 9192,...,91 - - - gp). We then obtain an isomorphism

(G, M) satisfies f(sg1,...,59p+1) = sf(g1,...,gp+1), SO its values are completely deter-

Chom(GM) ————— CP

inhom

(G, M)

fo us
by the formula

uf(gll---/g‘p) :f(1/91/~--/91"'9p)-

By transferring the induced coboundary map on C! (G,M) to CP, (G, M), we see it coincides with the

hom inhom
previously defined ¢. In particular, this shows

H*(G,M) = H*(Cpom (G, M)) = H*(X*(G,M)®).

Note that since the bar resolution is a free resolution, it follows that H*(G, M) = Extgs,(R, M) as well. Since
Homg (R, M) = ME functorially, we further see that H* (G, -) =~ R*(-)€, the right derived functor of (-)€.

Lemma 2.1. The R[G]-module XP (G, M) (p = 0) is (-)S-acyclic.

Proof. Note that X°(G,XP~1(G,M)) = XP(G,M) (p > 1) as R[G]-modules. Explicitly, the maps

Homg (R[G], Homg (R[GP], M)) Homg (R[GP*1], M)
T fTi(g,gl,...,gp)r—»T(g)(gll._',gp)
Tf:g'_>[(91/-“1913)’_’f(g/glr”-/gp)] i f

are R[Gl-isomorphism. For x € G,
(xf1)(9,91,.-.,9p) = x.fT(x_lg,x_lgl,...,x_lgp) = x.T(x_lg)(x_lgl,...,x_lgp)
= (xT(x'g)(g1,---,9p) = (xT)g)(g1,--., gp) = Fx1(9, 91, -, gp)

so T — fy is G-equivariant. It is clear that the maps are inverse to each other. Hence to show the lemma it
suffices to show the R[G]-module Homg (R[G], M) is (-)G—acyclic.
Observe that for any R[G]-module N, we have an R-isomorphism

Homgr(N,M) ———  Homgg(N, Homg (R[G], M))

@ ne[g—g.o(g'n)

n— ¢(n)(le) t b,
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In particular, X*(G, M) = C}_ (G,Homg(R[G], M)) as R-modules. Furthermore, it is an isomorphism of com-
plexes. Hence

RP(-)€ (Homg (R[G], M)) = HP (G, Homg (R[G], M)) = HP(Cp, (G, Homg (R[G], M))) = HP(X*(G,M)) =0
for p > 1. This finishes the proof. O

Corollary 2.1.1. Let M be an arbitrary R[G]-module.

(i) The standard resolution X*(G, M) is a (-) ©-acyclic resolution of M.
(ii) The module Homg(R[G], M) is acyclic.

2.3. Cohomology of cyclic groups. Let R be a unital ring, let G = (o) be a finite cyclic group with order n. Let
Tr=1+0+---+ 0" eZ[G]; then (1 — 0)Tr = Tr(1 — o) = 0 in Z[G]. The complex

Tr 1-o

., RG] RG] — R[G] =% R[G] —— R 0.

is then a free resolution of R as a R[G]-module. This shows HP (G, M) = HP*2(G, M) for all p > 1.
Assume G = (o) is an infinite cyclic group. There is an isomorphism

Z'(GM) ——— M
ur—————— ufo).

Also, form > 1, we have 1 — 0™ = (1 — 0)(1 + - -+ + 0™1), implying that the image of B}(G, M) under the
above isomorphism is (1 — o)M for all G-modules M. This shows

HY(G,M) 2 M/(1 — o)M.

For the higher, consider the short exact sequence

0 —— R[G] =% RIG] —5> R 0.

This is a free resolution of R as R[G]-modules, so HP (G, M) = 0 for p > 2. This also recovers the above inter-
pretation of H! abstractly.

2.4. Functoriality. Let ¢ : H — G be a group homomorphism. Let M be an R[G]-module, which can be viewed
as an R[H]-module via ¢, and we denote it by M®. We have an inclusion M€ = (M®)". By universality of
derived functors, this extends uniquely to maps between higher cohomology modules'

(0*)P - HP(G, M) ————— HP(H,M®),

If ¢ : H — G is an inclusion, write M? = ResﬁM = M. In this case, we call (¢*)P the restriction, and write it
as
resE‘H :HP(G,M) ——— HP(H,M).

Let ¢ : M — N be an R[G]-homomorphism. It restricts to a map ¢ : M® — NS, so by universality it induces
uniquely to maps between higher cohomology modules

¢L : HP(G,M) ——— HP(G,N)

Let H < G, and for g € G put H9 := g"'Hg < G. Let M be an R[G]-module. The conjugation x > gxg~!
restricts to a group isomorphism H9 = H which makes M the R[H9] module M9 by g~'hg.m := hm. This
induces a map H*(H,M) — H*(H9, M9). The map M9 — M given by m — g 'mis H9-equivariant, where

'Maps obtained in this way automatically commute with the connecting homomorphisms of cohomology groups. The same remark
holds for all maps obtained in this way. Concisely speaking, these are called the morphisms of 5-functors.
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H9 acts on M since H9 < G. This then induces a map H*(HY9,M9) — H*(HY9,M). They are in fact both
isomorphisms, and their composition gives

conj, : H*(H,M) —————— H*(H9,M).
This is called the conjugation by g.

Lemma 2.2.
(i) The conjugation conj, : H*(G, M) — H*(G, M) is the identity map forall g € G
(ii) The image resgy : H*(G,M) — H*(H, M) lies in H*(H, M)E.
(iii) The composition
He (H, M) —% He(He, M) 2% He((H9)™, M)
is the map conj, : H*(H,M) — H*(H9", M).

Proof. For (i) and (iii), by the universality it suffices to check the degree 0 map. This is clear. (ii) is a direct
computation. O

By (iii), we see G acts on the cohomology H*(H, M). If His normal, by (i) we have H*(H, M)€ = H*(H, M) &/,
Hence by (ii) the restriction can be viewed as a map

resp , : HP(G,M) ————— HP(H,M)&/"

in the case H < G.
Suppose H<G is a normal subgroup. Then M is naturally an R[G/H]-module. If we denoteby 7 : G — G/H
the quotient map, then we have the inflation

inff,  HP(G/H, MM — " WP (G, MH) ————— HP(G,M)

Suppose H < G has finite index. Let {gi}]* ; be a system of representatives of H\G. We then have the norm
n

NG = X gi € RIG], and hence a map M" — M defined by m — Ngym. By universality, this extends
i=1

uniquely to maps between cohomology
cores]é|H :HP(H,M) —— HP(G, M)

called the corestriction. Here is a subtlety. We must show the functor M — HP (H, M) is a universal d-functor
on the category of G-modules, and we prove it is erasable’>. We have a bijection of sets H x H\G — G given by
(h, gi) — hgi. Then
Homg (R[G], M) = Homge (G, M) = Homget(H x H\G, M) = Homge(H, Homge (H\G, M))
=~ Homg (R[H], Homsget(G/H, M))

as R[H]-modules (H acts on H x H\G from the left), and such module is acyclic by Corollary 2.1.1.(ii). Also, the

map m — Ngymon M" is independent of the choice of representatives, so we can writeitasm — >, gm.
geH\G

Lemma 2.3. Let R be a unital ring and M an R[G]-module.
(i) Let H < G have finite index. Then coresg o resgy = [G : HJ.

(ii) Suppose #G < oo. If #G € R*, then HP (G, M) =0 for p > 0.

Proof. Let {gi} be as above. Then for m € MS, clearly Ng;ym = [G : HJm. This shows coresoGIH o resOG‘H =[G:
H], the multiplication by [G : H]. It then follows from universality that (i) holds for the higher. (ii) follows from
taking H = {1}. O

2Effaceable in Hartshorne.
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2.5. Hochschild-Serre spectral sequence. Let H<G and let M be an R[G]-module. Consider the first quadrant
double complex XP(G/H, X9(G, M)")S/H. The sign convention is that we twist the vertical differentials by
(—1)P. Then the Hochschild-Serre spectral sequence is the resulting spectral sequence

E)9 = HPH4(Tot* (X*(G/H, X* (G, M)H)E/H),
We compute E}'? and the limit term. By definition,
EP"d = HP(H9(X*(G/H,X*(G,M)")&/M)).
Lemma 2.4. The functor M — XP(G, M)E is exact.
Proof. This follows from Corollary 2.1.1.(i). O
In particular, applying this lemma to the group G/H, we see
HIXP(G/H, X (G, M) /M) = XP(HI(X®(G, M) /M) /T = XP (HI(H, M)/

and hence E}"Y = HP(G/H,H9(H, M)). The limit term is computed via the transpose complex. By Corollary
2.1.1.(i) again, we have

X9(G,M)¢ ,ifp=0

Hp(X'(Xq(G,M)H)G/H):{ 0 ifp>1

This shows
HP+9(Tot® (X*(G/H, X*(G,M)™)¢/H) = HPF4(G, M).
Hence the Hochschild-Serre spectral sequence now takes the form
E}9 =HP(G/H,HI(H,M)) = HPT9(G, M)
2.6. Inflation-restriction exact sequence.
Lemma 2.5. Consider the Hochschild-Serre spectral sequence.

(1) The edge map H? (G/H, MH) = EX’ — HP(G, M) coincides with the inflation infE‘H.

(2) The edge map H9(G, M) — EY9 = H9(H, M)S/H coincides with the restriction resd ;-
Proof. See [Mac95, Chapter XI9. 10.] and [NSW13, Chapter II §4]. O
Consider its associated five term exact sequence

0 E;” HY(G,M) Ey! E3° H2(G,M)

H!(G/H,MH) HY(H, M)E/H H2(G/H, M)

It follows from the previous lemma that the second and the last arrows are inflations, and the third arrow is
the restriction. In other words, we have the so-called inflation-restriction exact sequence

.l 1 s o2
infgn resg) infg)
— —

0 —— HY{(G/H,M") HY(G, M) —5 HI(H,M)S/M —— H2(G/H, M) H2(G, M).

The fourth arrow is called the transgression, and it is given by the differential of the E; page of the Hochschild-
Serre spectral sequence. For a later use, we mention some application.
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Lemma 2.6. Let G be a group, H < G a subgroup of finite index and K < G a finite normal subgroup. Let R be
a unital ring such that #K € R*, and let V be an R[H]-module. Suppose either K n H = {15}, or K < H and K
acts on V trivially. Then the inflation induces an isomorphism

infg : HY(G/K,Indy;/c V) ———— HY(G,Indf} V) .
Here H/K means H/K n H € G/K, and the induced module is defined in the next subsection.

Proof. The assumption implies V is naturally an R[H/K]-module. If Kn H = {1}, H = H/K and (Indﬁ V)K ~

Indg% V. If K € H and K acts on V trivially, then (Indjj V)X = Indﬁ?i V. The displayed isomorphism now

follows from the inflation-restriction exact sequence and Lemma 2.3.(ii).
O

Similarly, the same proof gives

Lemma 2.7. Let G be a group, H < G and let K < G be a finite normal subgroup. Let R be a unital ring with
#K € R*, and let M be an R[G]-module. Suppose either K < H and K acts on M trivially, or KnH = {1g}. Then
the inflation induces an isomorphism

infyyax : H'(H/K,M) ——— H(H,M).
Here H/K means H/K n H € G/K.
2.7. Shapiro’s lemma. Let H < G. For any R[H]-module M, define the induced module
Ind M := Homgpy; (RIG], M),

For f € Indﬁ M and x € G, define x.f € Ir1dfl by (x.f)(g) = f(gx). Then Indg M is an R[G]-module, and clearly,
M — Indjj M defines a functor.

Lemma 2.8.

(i) The functor M — Indf M is exact.
(ii) For any R[H]-module M, we have Homg (R[G], M) = Indﬁ Homg (R[H], M) as G-modules.

Proof. Note that we have functorial isomorphisms
Homg)(RIG, M) = {f: G > M | f(hg) = h.f(g)} = Homge(H\G, M)

of G-modules, where G acts on the last two set by right translation. The functor M — Homge(H\G, M) is
clearly exact. This shows (i). For (ii), using the bijection H x H/G — G, we have

{f: G - Homget(H, M) | f(hg) = hf(g)} =~ Homge:(H\G, Homget(H, M)) =~ Homge(H x H\G, M)
=~ Homget(G, M)

as G-modules, where G acts on every set above by right translation. Consider the bijection

Homge (G, M) ——————— Homge(G, M)

f i Feig— g.f(g™)

Here G acts on the domain by conjugation, while acts on the codomain by right translation. For x,g € G and
f: G — M, compute

Fas(g) = g.(x.F)(g7") = gx.f(x'g™") = Fe(gx) = (x.Ff)(g).

Hence the two different G-actions on Homg (R[G], M) are isomorphic. This proves (ii). O



EICHLER-SHIMURA ISOMORPHISM 9

The lemma shows that the functors M +— HP (G,Indfl M) (p = 0) are erasable, so H'(G,Indﬁ(~)) is a univer-
sal d-functor. Consider the functorial bijection

HY(G,IndS M) ——— H°(H,M)

f f(1).

By the universality, we obtain the so-called Shapiro’s lemma.
Lemma 2.9. The canonical bijection (Indf; M) =~ M™" extends uniquely to an isomorphism
sh )y : H*(G,Indj; M) ———— H*(H,M).

2.8. Mackey’s theory. Let H < G. For an R[G]-module M, let ResﬁM denote the module M viewed as an
R[H]-module. Let K < G be another subgroup. Then if V is an R[H]-module, there is an R[K]-isomorphism

Resg Indji V ——— [[ Indg, g 1ng(Resi kg1 Vg
geH\G/K

¢ :R[Gl >V (k= d(k))gernc/x
where for x € (Resj} g4 1 V)g and h € Hwith g7'hg € K, g7'hg.x := h.x. Indeed, the last space is
Indy 4 11g(Res}i gk g1 V)g = Homgk ng-11g) (RIK], (Resj g g1 Vg)
=~ Homg gk g—1~H] (R[gKg_l],ResEmgKg,l V)
where the last isomorphism is given by conjugation. The bijection

(gKg™' n H)\gKg™' ————— H\HgK

gkg! Hgk
implies that we have an isomorphism
Resg IndqV —~— n Homggkg-1~H] (R[gKgfl],Res':mgKg_l V)
geH\G/K
¢ : RG] - M (gkg™" — d(gkg™"))g

This proves the claimed isomorphism. Combined with Shapiro’s lemma, we have
Lemma 2.10. Let H, K < G and let M be an R[H]-module. Then we have an isomorphism

H*(K,Indj V)=~ [] H*(gKg™'nH,V).
geH\G/K

For a later use, let V be an R[H]-module, and consider the diagram

H*(H, V) res [] H(gKg™ nHV)
geH\G/K
shaim Mackey/l\
H*(G,Indf V) H* (K, Ind§} V).

Lemma 2.11. The above diagram commutes.

Proof. At degree 0, the diagram clearly commutes. Since all maps involved are morphisms of -functor, it
follows from the universality of V — H*(G, Indj} V) that the diagram commutes for all degrees. O
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2.9. Cup products. Let M, N be R[G]-modules. For p, q > 0, define the pairing

Cﬁom(G’ M) X C}?om(G’N) = CEO;?(G/MC@R N)
(u,\)) F (u' U V)(gll- --/9p+q+1) = u(gll- --/9p+1) @V(9p+1/- . '/gp+q+1)'

It is straightforward to check that
dluuv)=(ou) uv+ (=1)Puu (ov),
so it induces maps on cohomology groups
HP(G,M) x H9(G,N) ———— HP*9(G,M ®g N)

This is called the cup product. On the inhomogeneous complex, the pairing becomes

CProm(G,M) x C (G, N) = CPid (G,M®gN)
(u/v) ' (uUV)(glr---/ngrq)::u(glr---/gp)@)gl"'gp-v(9p+1/~--/9p+q)/
Lemma 2.12.

(i) The cup product on HY is the natural map M€ x N¢ — (M ®g N)©.
(ii) The cup product is functorial in M and N in an obvious sense.
(iii) The cup product is super-commutative and associative in an obvious sense.

Suppose L is another R[G]-module, and we have an R[G]-homomorphism ¢ : M®g N — L. Composing with
the cup product, we obtain another map

HP(G, M) x H9(G,N) —— HP+4(G,L)

(w,v) ¢ e I uuv)

which is sometimes also called the cup product.

2.10. Mayer-Vietoris sequence. We copy the discussion from [Bie76]. Let G be a group and let M be an R[G]-
module. A derivation® on G isamap d : G — M satisfying d(xy) = d(x) + xd(y) for x,y € G. Such a map
extends uniquely to an R-homomorphism d : R[G] — M satisfying d(xy) = e(y)d(x) +xd(y) for all x,y € R[G].
If we denote by Der(G, M) the R-module of all derivations on G, then there is a functorial isomorphism

Der(G,M) ———— Homg(g(lg, M)

d [9—1+—d(g)]

where I = @ R(g —1) < R[G].
geG
Let X be a set and let T be the free group based on X.

Lemma 2.13. The R[F]-submodule Ir is R[F]-free with a basis {x — 1 | x € X}.

Proof. Suppose Y r«(x —1) = 0, where ry € R[G] and 1 # O for finitely many x. Then > ryx = >} ry.
xeX xeX xeX
Suppose Ty # 0 for some y € X; pick y € X such that it contains an element of maximal length among those

elements in F appearing in {ry | v« # 0}. Then the left hand side of the identity contains a strictly longer
element, which is absurd. O

*This is the same as a 1-cocycle with coefficients in M.
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It follows that there is an isomorphism
Der(G,M) ——— MX
d ————— (d(x))xex-

For each x € X, define the derivation 0y : F — M by the formula 0y (y) = 8y, y € F. If d : F — M is an arbitrary
derivation, define d’ : F — M by the formula

d'(w)= > (w)d(x), weF.

xeX

This is again a derivation, as for u, v € F, we have
d'(w) = ) (auw)d(x) = . (A + udyw)d(x) = d’(u) + ud’(v).
xeX xeX
Since d'(x) = d(x) for x € X, we see d = d’ identically. Applying this identity to the derivation d : F — R[F]
given by g — g — 1, we obtain
w—e(w) =) (Aw)x—1),  weRF.
xeX

Let G be a group with generators S < G. Let F be the free group on S and let 1 : F — G be the unique map
induced from S < G. Then for any w € R[G], we have

w—1= ZT[(&SW)(S —-1)

seS

where W e R[F] is any element satisfies t(W) = w. We now can prove the following

Lemma 2.14. Let G;, G, be two groups and G = G1 * G be their free product. Then

0 R[G] —— R[G/G1]®R[G/G)] —— R —— 0
x —— (xGy, —xG»)
(xG1,0), (0,yG1) —— 1
is a short exact sequence. (See [Bro82, p. I1.7] for a topological proof.)

Proof. ¢ is clearly surjective. Let X; be a set of generators of G, F the free group on X; u X; and : F — G the
projection. Then for w € R[G], we have

w—ew)= > mW)(x—1).

xeX1uXsy

Hence wG; — e(wGi) = >, m(0xW)(x — 1)G;. Suppose w,w’ € R[G] satisfy ¢(WG1) = —e(W’G3). Then
X$Xi

o ( YW (x—1) = > (W) (x—1) + £(w61)1> = (WG, —W'Gy)
xXEXo xeXq

where W, W' are lifts of w,w’ in R[F]. This proves the exactness at the middle. For the injectivity of «, let

0 #w =3, ag9 € RG] with wG; = 0 = wG,. Clearly w ¢ R1; denote by g’ the element with ag/ # 0 with

maximal length 1(g’). Then 1(g’) > 0. Assume, by symmetry, that g’ ends with a nontrivial element in G;.

Since Y}, aggG, = 0, it follows that g’G, = hG; for some h # g'. But g” ends with Gi, we obtain g'y = h for

some y € Gy, a contradiction to maximality. O
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Applying the functor Homg (-, M) to the short exact sequence in the lemma, we obtain the short exact se-
quence
0 —— M —— Homg(R[G/G1],M) ® Homg (R[G/G,], M) —— Homg(R[G],M) —— 0 .
Recall that there is an R[G]-isomorphism

Indg. M ———— Homg(R[G/Gi],M)

fr—————— [gGi — g.f(g71)].
Hence the above sequence becomes
0 —— M —— Ind§, M@®Indg M ——— Homg(R[G, M) —— 0.
Taking cohomology, in view of Shapiro’s lemma and Corollary 2.1.1, we obtain
Corollary 2.14.1. Let G1, G, be groups and G = G *G,. If M is an R[G]-module, then we have an exact sequence
0 — M6 — MS&pM&2 —— M —— H(G,M) —— H(G;,M)®H (G, M) —— 0

and

HP (G, M) =~ HP (G, M) @ HP (G,, M) (p=2).
The maps HP (G, M) — HP(G1, M) @ HP(G,, M) are given by restrictions. We call these sequences the Mayer-
Vietoris sequences.

3. CoHOMOLOGY OF PSL,(Z)

3.1. Free product. Recall that PSL,(R) is the automorphism group of the Poincare half plane H = {z € C |
Imz > 0}, and PSL,(Z) = PSL,(R) is the discrete subgroup generated by

) b)

0 _11> , which has order 3 in PSL,(Z). Then PSL,(Z) is generated by S and ST.

Consider the element ST = (1
In fact,
Theorem 3.1. PSL»(Z) = (S) *(ST) = (x,y | x* =y® =1).

Proof. The following proof is taken from [JS97, §6.8]. Let 7t : (x,y | x* = y® = 1) — PSL,(Z) be the map defined
by sending (x,y) to (S,ST). Let W be a nonempty reduced word in x,y. In other words, W = v; - - -y, with
vi € {xy,y 1}, and vi,vii1 ¢ {x}, {y,y~'}. To show the theorem, we must show 7 is an isomorphism, and it
comes down to showing that if W is a nonempty reduced word, then (W) # 1 in PSL,(Z).

For this we use some geometry. Consider the following regions

A={zeH|Rez <0}, B={zeH]||z+1]| > |z, |z+ 1| > z}, C=AnB
We have S(A) = {zeH | Rez > 0}, so S(A) n A = (J particularly. Also, ifz € B,

[STz+ 1| = <1

z+1
50 ST(B) n B = . This implies (ST)"!B n B = & as well. Hence

S(A) c H\A € B, ST(B)cH\BS A

Let W be a nonempty reduced word. The above relation implies that 7t(W)(C) is either contained in H\A or
H\B, and hence contained in H\C. This implies (W) # 1 since PSL,(Z) acts on H faithfully. O
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For later computational convenience, we do a change of variables. Instead of PSL,(Z) = (S) = (ST), we will
use

PSL,(Z) = (S) # (TS).

This holds because TS and ST are conjugate (by S). Now we can apply Mayer-Vietoris sequence to compute the
group cohomology of PSL,(Z).

Corollary 3.1.1. Let M be an R[PSL;(Z)]-module. Then we have a long exact sequence

0 —— MPSLZ(Z) MS @ MTS M

HY(PSL,(Z), M) —— H'(¢(S), M) @ H((TS), M) — 0

and isomorphisms
HP (PSLa(Z), M) = HP((S), M) @ HP((TS), M) (p > 2).

Moreover, the connecting homomorphism M — H!(PSL,(Z), M) is given by m — f,,, where f,(S) = (1 —
S)m, fn(TS) =0.

Corollary 3.1.2. Let " < PSL,(Z) be a subgroup of finite index and R a unital ring in which all periods of elliptic
points are invertible. Let V be an R[l']-module. Then

M
1
A VEEY VIS

with M = IndII:SLZ(Z) Vand HP (T, V) =0 forall p > 2.
Proof. By Mackey’s formula, we have

HP (PSLy(Z)y, Ind "2 ® vy = [ HP(R, V).
gelM\PSLy(Z)x

By Lemma 2.3, our assumptions imply the last groups are zero. The Corollary 3.1.1 now reads

M

HY(T, V) = HY(PSL,(Z), M) = MS@MTS

The last assertion follows from another isomorphisms. O

3.2. Parabolic group cohomology. Let I' < PSL,(Z) be a subgroup of finite index and let V an be R[I']-module.

1

We define the parabolic cohomology H,,,

(T', V) by the following exact sequence
0 —— HL, (V) — HY(I, V) =5 ] H{("n{gTg™),V).
gePSL, (2)

The last group may be replaced by the product of H! (T, V) with ¢ € P1(Q). Still, if ¢ = yc’ for somec, ¢’ € P}(Q)

1

and y € T, then I, = yl.y~" and the conjugation gives an isomorphism HY(T., V) = HY(T./, V). Hence in the

exact sequence, it causes no confusion to write

0 — HL(I,V) — H!(TI, V) = I1 HY(T ~ {gTg™"), V).
gelM\PSL2(Z) /{T)
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Put G =PSL,(Z). By Lemma 2.11, we have a commutative diagram with exact rows

0 — HL (V) ——— HI(T,V) —=— 1 HY T~ (gTg™), V)

gel\PSLy(Z) /<{T)
shG[W shgr

mackeyT

0 — HL,(G,Indf V) —— HY(G,Indf V) ——=—— H!((T),Ind{ V)

IndS V

Since (T) ~ Z, the map u — u(T) defines an H'((T ,IndGV e
™ pu e u(T) (D Indf V) > e

Put

\%
F- spang{(1 —y)v|yeTl, veV}’

and define @ : Ind,g V — Vrby O(f) = Z f(g). Since (1 —T) Ind,g V lies in the kernel of @, it induces
geln\G

@ : H((T),Indf V) —— V.
By Corollary 3.1.1, we can form diagram with exact rows

0 — HL,(G,Indf V) —— H'(G,Indf V) —= H!((T),IndF V)

H m»—»fmT J/LU—)U.(T)

0 —— HL,(G,Ind¢ V) M___ mo(sim M

M
par MS @ MTS (1-T)M G 0

M

ith M = Indf Vand Mg = :
wi nér v.an ¢ spany{(1—gm|ge G, me M}

In fact, the second square is commutative:

fin(T) = fin(TSS) = fn (TS) + TS (S) =TS(1 =S m=S(1 - S)m = (S — 1)m.

Also, the map @ just introduced defines a map ® : Mg — Vr. In fact, it is an isomorphism. To see this, define
Y:V - MbyY¥(v)(g) =1r(g)v. Fory € T, compute ¥(v)(g) — ¥(yv)(g) = gv — gyv = (1 — y)¥(v)(g), so that
Y defines a map ¥ : Vi — Mg. It is easy to see that @ o V¥ is the identity. We claim V¥ is surjective, so ¥ is a

bijection, proving @ is a bijection as well. Indeed, for f e Mg, we have f = | g "W(f(g)), as
gelN\G

DT (g7Y(F(9)) () = D W(F(9))(xg™h) = xgy M (gx) = x(xgy " gx) = (%)
gelMG geln\G

where g € G with 'x = I'g,. But then

f= > g7 'W(f(g) = Y. Wflg)— Y. (1-g H¥(f(g) e Im¥inMg
gelMG geln\G geln\G

showing the surjectivity. Now we conclude that

Lemma 3.2. The sequence

0—— H%)ar(G,IndS V) —— Hl(G,IndS V) _res o H1(<T>,Ind$ V) _® Vr 0

is exact.

Remark. I don’t know a direct algebraic proof of this exact sequence without the explicit formula for m — f,.
Yet, see [Shi71, Proposition 8.2] and [Hid06, Proposition 6.1.1] for a proof using simplicial cohomology.
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3.3. Dimension formulae. LetI' < SL,(Z) be a congruence subgroup, k > 2and V = C[X, Ylx_,. If -1 e T, we
assume k is even. The goal of this subsection is the compute
dime H'(T, V), dimc H'(T, V) — dimg Hy,, (T, V).

Note that by Lemma 2.7, we can freely replace I' by its image in PSL,(Z) without altering the cohomology
groups. In the following we simply write dim for dimension over C.
Put M = IndI;SLZ #'v. On applying dimg to the isomorphism in Corollary 3.1.2, we obtain

dimH'(T, V) = dimM — dim M® — dimg M"® + dim M5k (%)
=dimM — dim M5 —dimM " + dim V',

where M = Ind?SLZ(Z) V. By Mackey’s formula, we have

dimMS= )} dimVv@seT = % dim V™
gel\PSL2(Z) /{S) xel\ PSLy (Z)i
dimM'S = D dimVOTSeTOT = 3 dim V™
geT\PSLy(Z) /{TS) x€T\PSL;, (Z) e

By Lemma 3.2, we have
dim Hp,, (T, V) = dim H'(T, V) + dimg Vr — dim H' ((T), Indf V)
=dimH' (T, V) + dim V — > H'(I A (gTg™ 1), V)
gel\PSL,(Z) /{T)

We now specialize to the representation V = R[X, Y]x_».

Lemma 3.3. Letn, N € Z>4. Suppose R is a unital ring with n!N € R*.

@) RIX, VRN = RX™ and RIX, YAV = RYn

.. RIX, Y] B RIX, Y],

(11) (R[X/ Y]n)n(N) - RX™M D - RXYn—1 and (R[X, Y]TL)n(N]t = RY™ RS Ry
(iii) RX, Y™ =0 = (RIX, Yln)r(n) if Ris a field of characteristic 0.

Proof. Wehave (n(N) —1).X'Y"— = X{(NX V)t - Xiyn—t = nz_] N (“k i) XY=k With this formula
it is direct to see (i) and (ii) hold. (iii) follows as I'(N) contains blé;lll n(N) and n(N)*. |
From the lemma we then have
(CX, Ylk—2)p =0=CIX, i,
so
dim H' (T, RIX, Y], _») = dim M — dim MS — dim M ™S + 6,
dim Hy,,, (T, C[X, Y]k _2) = dim H'(T, CIX, Yli—2) + 82 — Z HYT A (gTg™b), CIX, Y]i_2)
geM\PSLy(Z) /(T

Lemma 3.4. LetI"'=T(N), N > 3.

(i) dimHY(T,CIX, Y]x_2) = (k — 1)% + 8 = dim My (T'(N)) + dim Sy (T(N)).

(i) dim My (T) — dim Sk (T) = dim H'(T', C[X, Y} _2) — dim Hp,, (T, CIX, Y ).

Proof. T is torsion free by our assumption, so
(k = 1)[PSLy(Z) : T(N)]
2
(k — 1)[PSLy(Z) : T(N)]
3 .

dim MS = (k — 1)#(I"\ PSL,(Z)i) =

dim M TS = (k — 1)# ("\ PSLy(Z) ug) =
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Also, dim M = (k — 1)[PSL,(Z) : T(N)]. We conclude that

(k — 1)[SL2(Z) : T(N)]

dim H'(I'(N), C[X, Y]x_») = 0

+ 52,k~

By [DS05, §3.9], the last equality holds. This proves (i).
For (ii), from [DS05, §3.5-6], we see LHS equals €5, — 0, . Recall that all cusps of I'(N) are regular, so I' n
(gTg~1) =(gT"g~!) (for some 7). Hence by Lemma 3.3 we have

dimH'(I' n {gTg™"), CIX, Ylx_2) = dim(C[X, Ylx—2) g7rg-1 = 1.
The proof of (ii) is then completed in view of the formula

dim H'(T', C[X, Y]i—5) — dim HL.(I, CIX, Y], ) = > HY(T A (gTg ™), CIX, Ylx—2) — 82
gel\PSLy () /{T)

4. EICHLER-SHIMURA ISOMORPHISM
Foramap f: H — C, k€ Z>p and g € GL,(R)*, denote f|xg : H — C given by
fleg(t) = (det g)*Yi(g, 1) f(g.1), Te H.

This is of course the same notation as f[g]x used in the course.

4.1. Eichler-Shimura map. Let I' < SL,(R) be a congruence subgroup. For zp,z; € H and f € My (I") with
k > 2, consider the integral
hZo
I¢(gzo, hz) = J f(z)(Xz + Y)*2dz € C[X, Ylk_s
920
th .
Jrlgzhan) = | TI0XE+ )< 2az e CIX, Vi,

9z1

where g, h € GL,(R)". Since f is holomorphic, the integrals are independent of the choice of paths in H.
Lemma 4.1. For g,h € GL,(R)*, we have

It(zo, ghzo) = If(z0, 9z0) + I(9z0, ghzo)

)ka

I(gzo, ghzo) = det(g)™ “g.(Lf}, 4 (20, hzo))

where we let GL;(R) acts on C[X, Y]x_» by right translation.

Proof. The first is clear, and for the second

ghzg hzg 2 d(gl)

f(z)(Xz + Y)*2dz :f f(g.z)(Xg.z+ V)2 =24z

I h, =
(920, ghzo) J . 1

9zo

hzg
= J f(g.2)g.(Xz 4+ Y)*2j(g,z) "* det gdz

Zo

which is exactly what we want.

Since we are assuming f € My (T"), so for g € T, h € SL,(Z) we have

I(zo, ghzo) = It(z0, 9z0) + g.1¢(z0, hzo).



EICHLER-SHIMURA ISOMORPHISM 17

This shows I' 5 g ~ I(zg, gzo) defines an element in Z!(T", C[X, Y]x_5). If z; is another point on H, take vy €
SL,(Z) with yz; = zp and compute

I¢(z1, 921) = Le(vzo, 9v2z0) = I¢(2z0, 9v20) — L¢(20,vV20)

L¢(zo0, 9z0) + 9.1¢(2z0, Y20) — 15(20, vY20)

It(z0, 920) + (g — 1)L¢(2z0, Y2Z0)-

Hence different choices of zj differ the integral by an element in BY(T", C[X, Y]k_2), so we obtain a well-defined
C-linear map

My () ————— H'(I',CIX, Ylx2)
f —— [g — I¢(z0, 920)]
Similarly, we have a conjugate-linear map
My (I) ————— H!(T, CIX, Y]k _»)
f— [g— J5(z1, 921)] '

They together define the so-called Eichler-Shimura map

ESp: My (T) @ Sk (T) H!(T, CIX, Yl )

(f,g) [y = It(z0, v20) + Jg(z1,vZ1)].
Lemma 4.2. The induced map

1
ShSLZ @r oESr

My (M) @ Si (M) ——=21 5 H1(SL,(Z), Ind' C[X, Y]i_s).
is given by

(sthlz(Z)lr o Esr) (f, V() = [Le(v'z0, Y"v20) + Jg(v'21, ¥ v21)],
where z, z; € H are any fixed points.

Proof. First, we show v’ — I¢(v'zy,v'vz0) + Ig(v'z1,v"vz1) lies in the induced module. This follows from the
first identity in Lemma 4.1. Next, we show v — [y’ — I¢(v'z0,v'v20) + Ig(v'z1,v"v21)] is a 1-cocycle. Put
&(y) v — Le(v'z0, v v20). By Lemma 4.1 again, for y’,y1,v2 € SL,(Z) we have

d(v1v2)(v") = Le(v'z0, Y v1v220) = Le(v 20, Y'V120) + Le(Y"V120, Y V1V220)
=o(v1)(Y) + d(v2) (Y'v1) = (d(v1) + v1.d(v2)) (v').

Finally, from the definition of shgy, z)r, we see shS_Llz (zr © ESr is given by the displayed formula. O

For a pathy : [0,1] — H and a function f : H — C, one has

1 — PR
Fly(0) (1)’ (1)t = f fl2)dz.

0 0 Y

L f(z)dz = f Oy ()t = f

This implies I¢(gzo, hzo) = J7(gzo, hzo), where we let complex conjugation act on C[X, Y]x_, by acting coeffi-
cients. Define
rESr : S () ———— HY(T, RIX, Y]k_2)

f ——— [y — Re (It(z0,v20))].
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It(zo,v20) + J§(20, Y2Z0)
2

Since Re(I¢(zg,vz0)) = , we see rESr is twice the composition

Sk(I) —— SN @Sk — HY(T, CIX, Yhi—2)
f— (f,f).
where we use the identification described in the following lemma, which follows from the flatness of R — C.

Lemma 4.3. Let G be a group and M be an R[G]-module. The natural map HP (G, M) — HP (G, Mc) is injective,
and induces an isomorphism HP (G, M)¢ = HP (G, M¢).

Proof. It is clear that the inclusion C}, (G,M) — CP, (G, Mc) induces an isomorphism CP, (G, M)c
CPhom(G, Mc). It is also clear that ZP(G,M)c =~ ZP(G,Mc). For injectivity, it suffices to show ZP(G, M) n
BP (G, Mc) = BP(G, Mc), since it will imply BP (G, M)c = BP(G,M). For f € CP~1(G, Mc), if #f € CP(G, M),

of + of

12

= Of. The last statement now follows from

then of = of = df. Then % e CP71(G, M) is mapped to
the exactness of (-) Qg C. O

Lemma 4.4. ESr is twice the complexification of rESr. Precisely, the composition

= 2.rES r ®idc
s

Sk(M ® Sk (M) —— Sx(MNc HY(T, RIX, Ylx_2)c —— HY(T,CIX, Ylx_2)

coincides with ESr : Sy (T) @ Sk (T) — HY(T, CIX, Y]k_2). Similarly, the map in Lemma 4.2 is twice the complex-
ification of Shsllz(znr o rESr.

Proof. This follows from the above discussion. O
4.2. Land in parabolic cohomology.

Theorem 4.5. The kernel of the composition

I'1e resFC

My (1) @ Sy (1) — H(T,CIX, Yi—2) [T H'(CX, Via)

celMP(Q)

is exactly Sy (I") @ Sy (T").

Proof. The anti-holomorphic part is addressed in the same way as the holomorphic part, so we only consider
My (T). Let f € My(T), and fix a point zy € H. For a cusp c € P}(Q), let ¢ = yoo for some y € SL,(Z); using the
injectivity of res, we can assume I'. = (yn(x)y~!) for some x € N. Write

fhey(t) = a0+ Z anq™ = ao + g(7).
n=1
1 -1 ap -1
Then f(t) = aolky ™' (T) + gy '(v) = Sy ok gly~'(1), and

hZO
I¢(zg, hzo) = j f(z)(Xz + Y)*2dz

Zo

hZU X Y k—2 ]’LZU
=ag Kzt ¥)* - Z—t ) dz + gliy Hz)(Xz + Y)*2dz.
(v=1,2)¥
Zo J Y 4 Zo

Since g is of exponential decay near oo, the integral

T

Lgjy1(20,¥7) = vIg(y 20, 7) = . J g9(z)(Xz +Y)*2dz

v~ lzo
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converges as T — oo (within a bounded vertical strip), so the notation I 1(zg, Yyoo) makes sense. Consider a

glxy~
general element h = yn(N)y~! € I.. Then

Ly y—1 (20, hzo) = I}, y-1(20, Y00) + Ig|, -1 (YOO, hzp)
(as n(N) fixes co0) = Ig|ky 1(z0, v00) + 1), -1 (hyoo, hzg)
Iy y—1 (20, Y00) + NI, -1 (Y00, 20)
=(1- ) glv—1 (20, Y00)

where the last equality holds as gy 'h = g|xn(N)y~! = g|xy~!. This shows theimage of f in H! (I, C[X, Y]x_»)
is represented by the 1-cocycle
"2 (Xz 4 Y)k?
e 2h— qg LO =g z
It remains to shows the 1-cocycle represents zero if and only if ag = 0. We need an explicit description of
HY(T.,CIX, Y]x_>). From (2.3) we have
CIX, Ylk— N CIX, Ylk—2
(I —yn(x)y~ 1)(C X, Y-z (1 =n(x))CIX, Y]
with the isomorphisms given by u — u(yn(x)y~!) and f y_l.f. But Lemma 3.3.(ii) implies f ~— f(0,1)

H(T,, CIX, Y]k _2)

lle

b
defines an isomorphism of the last space with C. Finally, write y ! = <a d> compute (with h = yn(x)y™1!)
c

_ hzo (XZ+Y) ) ( hzg (XZ+Y)k_2 > -
1 (Xz+Y)*= _ (Xz+Y)<2 1
$ 1. S @) o | o) ey
hzg 1
‘LO [CTT

hZ(]
= J d(y~'z) =y hzo — z0) =n(x)y zg =y lzg =x # 0.

Zo

This finishes the proof. O

4.3. Eichler-Shimura isomorphism. From Theorem 4.5, we obtain a commutative diagram

M (1) @ Si(T) —— HU(T,CIX, V) —= s T]  H!(T., CIX, Yli2)

[ [ ceMP1(Q)

Sk(M @ Sk(I) —— Ha (T, CIX, Yk—2)

We can now state the main theorem of this article.

Theorem 4.6. Let I' < SL,(Z) be a congruence subgroup. Let k € Z>, and assume it is even if —1 € T'. Then the
Eichler-Shimura map

ESr : M (1) @ Sy (T) ———— HI(T, CIX, Y]x_2)

is an isomorphism, and the image of S (I") @ Sx(I') is isomorphic to Hpar(l“, CIX, Y _2).

The idea of the proof goes as follows. To show ESr is injective, by Theorem 4.5 we may restrict to the cuspidal

subspace Sx (I')@Sk (I"). The key ingredient is the non-degeneracy of the Petersson inner product on the modular
curve. We will define a pairing on the cohomology group, and hence a cup product. We show it coincides with
the Petersson inner product, and conclude the proof for injectivity. These will be completed in the subsequent
subsection.

Assuming the injectivity, we proceed to finish the proof. We reduce to the case I is torsion-free.
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Lemma 4.7. Let " < T < SL,(Z) be congruence subgroup. The inclusion S¢(I') < Sk(I'') induces an equality
Sk(T) = Sk (M), Similarly, My (T") = My (I")™/T

Proof. Fory €T, the action is given by f — flxy. If y' € I, then flx vy’ = flx(yy'y~1y) = flxy, so the action
passes to the quotient I'/T”. The identity then follows from the definition.
([l

Retain the notation in the lemma. On the other hand, since I'/T" is a finite group, from the inflation-restriction
exact sequence and Lemma 2.3.(ii), we see the restriction induces an isomorphism

respirs : HY(T, CIX, Y]i—p) —— HY(I, C[X, Y]x_o)™/"

Lemma 4.8. The diagram

My (1) @ S (1) —22 HY(T, CIX, Y]i_2)

l lresr‘r/

Mi(1) @ Si(T7) = HI(I",CIX, Yik—2)
commutes, and the bottom arrow satisfies ESr/ (f|y) =y~ L.ESr/(f) for y’ e I'".
Proof. The first is clear, where the second follows from the second identity in Lemma 4.1. O

Next we consider the parabolic cohomology. We have a commutative diagram with exact rows

0 —— HL, (I, CX,Ylk—2) — HI(T,CIX,Ylk—2) === [] H'(T,CIX, Y 2)

par
cePl(Q)
Lres res J{
res

0—— Hll)ar(l“’,(C[X,Y]k_z) —— HY(T,CIX, Y]k_n) = n Hl(Fc’,(C[X,Y}k_z)
ceP(Q)

I" acts on the bottom-right product by conjugation, and the restriction map res by its left is I'-equivariant. T’
(resp. T') acts on the factors on the upper-right (resp. bottom-right) trivially. These together implies that
ngar(r’,«:[x, Ylx_5) inherits a I'/T’-action, and res : Hlljar(l“,(C[X, Y]k_p) — ngar(r',(:[x, Ylk_») induces an iso-
morphism

H%)ar(r/ (C[X/ Y]k—2) % Hllgar(r/r (C[X/ ﬂk—Z)r/r,'

Hence, to prove that ESr is an isomorphism, we can replace I" by some I'(N) with N > 3 so that I' is torsion-
free. By Lemma 3.4, the sources and the targets have the same dimension in this case, so the injectivity implies
ESr is an isomorphism, and the image of cuspidal subspaces is exactly the parabolic cohomology. This finishes
the proof modulo the injectivity. See [Hid06] for another proof using Laplacian and spectral theory for the
unitary representation of SL;(R) on the space L?(I'\SL,(R)).

4.4. Petersson inner product. For f, g € Si(I"), denote by {f, g)pet their Petersson inner product, i.e.,

_ 1 —— dxdy
{f, goret = volvr) Lr f(Z)Q(Z)Uk?'

Let B be the standard fundamental domain of SL;(Z). Then

—— o dxd —— dxd —— L dxd
(IR e Y IR o R YN R O r oM
() Y yersLy(z) Y YB Y yer\SLy(z) B Y
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Write dx A dy = dz /;idz, then y* dXE/’\Z dy _ (Zi_)i*1 (z—2)* ?sz:ji and hence
-1 1 dz A dz
f = f _ k
E 9)ret = G vol(v (T 2 J v(R)gher(z)(z 2" =

yeF\SLz

We use Stokes’ theorem to compute the integral. The form z — (J iy (w) (uw—2z)* 2du) g|ky )dz has dif-

dz A dz -

(z—2)*

wdzAadz = k2 o
L heyl2lgha @z - 2 2257 = LB ( Lﬂw(u)(u 2) du) ghv(2)dz.

ferential f \ky(z)g|ky( (z—2)k . By Stokes’ theorem,

Let ¢ = 00~ pg and &y = p3 ~ i; then 0B = 1 + op — Sty — Ty If Cis a path and o € SL»(Z), then

| ( | fhoviwie- z)k—2du) gz = [ [ fhorwghaon - oz)* %dudﬁ

ff_] flyo(uw)glkyo(z) z)*? dudz

(JJ JJG OO) fleyo(w)gheyolz) (u—2)"* dudz

f (JZ flkv(u)(uZ)kzdu> glw(ZJdi:f r flkv(u)glkv(Z) fflwc(u)g\kw(Z)) (w—2)**dudz
C—oC oo

SO

JJ fheyo(w)gleyo(z) (u —z)* 2 dudz.

Lemma 4.9. For f, g € Sy (T'), one has*

-1
{f, et = = 1 J J fliy(z g\kY Z_Z)k 24,dz.
(21)k=Tvol(Y(I")) yer\SL "
Proof. From the last formula, we see
Soo
f J flrey(u 9|kY u-—2z) kzdudz— J f i yS(z 9|kYS fi)kfzdudi
veF\SL2 =S yeF\SLZ o
f f fliy(wgley(z)(u —2)* 2dudz
YEF\SLZ Hs3
and
Too
f f fly(wgliy(z)(z — z)dudz = j f Ly T(wW gl T(2) (u — 2)*2dudz = 0.

YEF\SL aTe yeF\SL x1

The lastintegral is zero as Too = co. In the first integral, we use that y — yoisabijection on theset "\SL,(Z). O

In the following subsections, we will equip ourselves with enough tools to compare {f, g)pet with cup prod-
ucts of group cohomology. Then we complete the proof in (4.8).

*On the right hand side of the displayed formula are two path integrals.
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4.5. Cup products.

Definition 4.10. The subgroup of parabolic 1-cocycles’ is defined by
ZL(PSLy(Z), M) := ker (Zl(PSLz(Z), M) ——— ZI((T), M)).

In other words, a 1-cocycle is u : PSL;(Z) — M parabolic if and only if u(T) = 0.

Let R be a unital ring in which 6 is invertible. Let M, N be two R[PSL;(Z)]-modules such that there is an
R[PSL;(Z)]-homomorphism 7t : M ®g N — R. Define the pairing

() St ZYPSLy(Z), M) x Z}(PSLy(Z),N) ——— R
as follows. If u,v are 1-cocycles, since H?(PSLy(Z), R)

Z*(PSLy(2),

= 0 by Corollary 3.1.2, the 2-cocycle m,(u U v) €
R) is a 2-coboundary, i.e., 74 (u U v) = 0w for some w : PSL,(Z) — R. Set

<u’v>7r =w(T).

We compute the pairing. For convenience, set p = 7, (u U v). Then

p(TS,S) =w(S) —w(T) +w(TS)
p(5,5) = () — w(l) +w(S) = 2n(S)
(TS, TS) = w(TS) — w((TS)?) +w(TS) = 2w(TS) — w((TS)?)
p(TS, (TS)%) = w((TS ) + w(TS)
and thus
W(T) = 3 (6(TS, TS) + (TS, (TS)2)) + 7p(5,5) ~ o(TS, )

As a by-product, we see the pairing is independent of the choice of the 2-coboundary w.

(i) Suppose u e ZL(PSLy(Z), M). Then u(T) = 0 and

P(TS,S) = e (W(TS) @ TSV(S)) = 7 (= TSU(S) ® TSV(S)) = —m:(u(S) @ V(S)) = p(S, S).

Here we use the identity TSS = T to obtain u(TS) = —TSu(S). Moreover, if v = dn is a 1-coboundary,
then

= 70y (u(x) @ xyn) — 7y (u(x) ® xn)
= 7 ((u(xy) — xu(y)) @ xyn) — 7y (u(x) @ xn)
=7 (—x(u(y) ®yn) + u(xy) @ xyn — u(x) @ xn).

p(x,y) = me (u(x) @x(yn — n))

c(x) = dc. It follows from the
definition that (u, v)r = ¢(T) = —7,(u(T) ® Tn) = 0. In other words, the pairing (1, v), depends only
on the class of v e H!(PSL,(Z), N) in this case.

(ii) Suppose v € ZL(PSLy(Z),N). Then p(TS,S) = p(TS, (TS)?) and (u, V), only depends on the class of
u e H(PSL,(Z), M). These are shown as (i).

If we put c(x) := —m(u(x) ® xn), then the above is x.c(y) — c(xy) +

°It is not so easy to define such a notion for general congruence subgroups, because different choice of representatives of cusps does
not yield the same parabolic cocycles. This is very different from the situation for parabolic cohomology groups in §3.2.
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4.6. Pairing. We construct a certain pairing that is useful for us. Let R be a unital ring. On R? consider an
alternating pairing o : R? x R? — R defined by

()= 3)

If we let SL,(Z) on R? by left multiplication, then the pairing o is clearly SL,(Z)-invariant. The pairing is natu-
rally extended to the tensor power T"R? of R%:

(oo @) (@)= () -1)- )

If n! is invertible in R, the symmetric power Sym™ R? can be viewed a subspace of T"R? via

Sym™" R? TR?

1
VI®  @Vn 3 Vo) @ ® Vo(n)
n o€S

QXn XN
b
so o defines a pairing on Sym™ R?. For example, if <a> , (d) € Sym™ R? (elements in the quotient), then
c
a on b on a b "
o = det .

c d c d

The following is standard, but we mention it for convenience.

Lemma 4.11. For n > 1, the map

Sym™ R? RIX, Y]n

a an o
) (2) e

Cn
is an R[SL;(Z)]-isomorphism.
Using the isomorphism, we've defined a pairing
0:R[X, Ylk_2 x RIX,Y]x_o —— R
for k > 2 with (k — 2)! € R*. Again, we have
(aX+cY)* 20 (bX+dY)* 2= (ad —bc)* 2 €eR.

In the case R = C, we have (Xz + Y)*"20 (Xz + Y)*~2 = (z — 2)*2, and this is exactly the point that this pairing
is useful for us.

Let " < SL,(Z) be of finiteindexand R =R, C. If —1 € ', we assume k > 2 is even; then —I acts on R[X, Y]x_»
trivially. Denote by T the image of I in PSL,(Z). With this assumption, R[X, Y]x_» can be always viewed as an

R[I'-module. The above pairing extends to a pairing on the induced module Ind?SLZ(Z) RIX,

f,g: PSLy(Z) — RIX, Yly,,

Ylk—2 naturally: for

fog:= >, fly)ogly).

€T\ PSL, (Z)

Consequently, using the result in the last subsection, we may define a pairing

Gri=Goo
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on Z1(PSL,(Z), Ind?SLZ(Z) CI[X, Y]lx—2). We impose the above condition on k throughout.

4.7. Comparison. For f € S ("), denote by $3° € Z!(PSL,(Z), Ind?SLZ(Z] CIX, Yly,) the 1-cocycle obtained under
the map in Lemma 4.2 with basepoint zo € H u P!(Q) postcomposed with the isomorphism in Lemma 2.6;
explicitly, fory,y’ € PSL,(Z),

P =1e(v'z0, v v20).
Denote (b%0 € Zl(PSLz(Z),Ind;SLZ(Z) CIX, Ylx,) similarly.
Theorem 4.12. For f, g € Sy ("), we have

(F, dg°) = ci,rdf, gpet
with ¢, r = (21)* L vol(Y(T)).

Proof. We compute p = o*($p° U c])gé). For o, 3 € SL,(Z), one has

ploy )= D, dF()(y) o b5 (B)(yer) = 9(z)(Xz +Y)* 20 (X2 + Y)**dzdz

YeT\PSLy (Z) ve r\ PSLy(Z) VY XHs

aPpe oo o
D) f [ foegiatEie -2 e
yel\ PSL, (Z) ¥ *Hsé o

Yo e Jvcxoo

Since ¢¢° is parabolic (while d)%6 is not), we only need to compute p for (a, ) = (S,S), (TS, TS), (TS, (TS)?)
(4.5).(3). But TS stabilizes g, so p(TS, TS) = p(TS, (TS)?) =0

0 S —
o5, = Y fff|w(z)g|w(z)(z—z)k—zdzdz

YGF\ PSL2

L s L)
yeF\PSL Hs yel\PSL, (Z
Sl.l3 Soo
JJ J J () =2 ffﬂky )glky(z)(z — 2)**dzdz
yeF\PSL H3 yeF\PSL S0 yeF\PSL H3

By (4.5) and Lemma 4.9, we find
(OF, L) = f f ey (2)ghev (@) (z — 2)% 2dzdz = (20)% vol(Y(T))(F, g)per
yeF\PSLZ Ha
|
4.8. Injectivity of Eichler-Shimura map. We use theisomorphism in Lemma 2.6 as an identify the cohomology
of PSL,(Z) and SL,(Z). We prove the injectivity first. By Lemma 4.4, it suffices to show shs_Ll2 (zr © rESr is

injective. Let f € S (T") with 25hs_L12(Z|r) (rESr(f)) = [¢P + d)%’] = 0. Since $$° is a parabolic cocycle, from (4.5).(i)
and Theorem 4.12 we have

0={(0F, dF + )= (bF,0F)  +{PF, ¢F) =¥, d5*) = ci,rdf, Hpet.
—_—
=0 by supercommutativity

Since ¢, )pet is non-degenerate, we conclude that f = 0in Sy (I').
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4.9. Hecke actions on cohomology. Let I, 5 < SLy(Z) be a congruence subgroup. Recall the double coset
operator [} «l}] defines a correspondence depicted in the following way.

a lanT % Mo alo ! Y(a 'Man ) ——2— Y(I naho?)
I I Y(I7) Y(TI1)

Ifh = || ("' n )y, then ol = | | Moy and
YEA YEA

rsz—> Z 1r10(ﬁr2 ’YT'—> Z(rlm(eroc_l)OQ/'_’ Z rloq/’
veA YEA YEA

For an R[SL,(Z)]-module M and o € GL,(Q)*®, define the operator Ty : H! (T}, M) — H! (I3, M) as

det(oc)conj

Ty : HY(T, M) = HY(T} N alba™!, M) H (o TMan M) =25 H{(T,, M)

HY((I} n ol 1)*, M)
Ifu:a ManT, - Misa l-cocycle, then

cores(u Z a”u(agagy h
acA

where a4 € A is the unique element such that ag agl € o Mo T (c.f. [NSW13, p-48]). Hence, for a 1-cocycle
u:ly - M, we see

Ta(W)(g) = Z adet(oc).conjo‘(u)(agagl) = Z (oca)‘u(ocagagloc_l).

acA acA

where for a matrix 6 € M(C), put 8* = adj 5. If we put B« = «y, then B := {B«}«ep is a set of representatives
of M\ «ly, and

= > Btu(Bgpy")

BeB
where 34 € B is the unique element such that 3g Bgl el.
Lemma 4.13. There is a commutative diagram

—_— [ 2] —_—
My (M) @S () — 22 My (1) @ Sic (1)

lEs r lEs N

H!(Iy, CIX, Yli_2) ——=—— H(T, CIX, Y]_2)

®Considering the action of such an element is needed for the definition of Hecke operators Ty . This is implicit in this note.
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Proof. The corresponding 1-cocycle for f € My (I%) is &+ : v — L¢(z0,v20). By Lemma 4.1, we have
dirarr(¥) = ) Tp(zo,vz0) = . B Ie(Bzo, Byzo)

BeB BeB

= > B (Ir(Bzo, 20) + Le(zo, BYB; ' z0) + Le (BYBy 20, BYBS ' By20))
BeB

= Tal(de)(y) + D B (I¢(Bz0,20) + BB 'Te(z0, By20))

BeB

= Toldr)(v) — (1 =) X B*Ie(zo, Bzo)-

BeB
The last term is a coboundary, so this finishes the proof. O

Let x be a Dirichlet character modulo N. Consider the usual action of Ih(N) on C[X, Y]i_, but twisted by ¥,
in the sense that

vAXY) =x(df((X,Y)y), v= (: Z) € To(N).

We denote this module by C[X,Y]¥_,. Note that the I (N)-modules Respljmg CIX, Y]¥_, are the same for all

Dirichlet characters x.

Lemma 4.14. Let G be a group and H < G be such that G/H is finite abelian. If M is a G-module, for x € CT/Ti
denote by MX the G-module defined by g.,m = x(g mod H)g.m. Then

resGg|H

®, H* (G, MX) H*(H, M)
is an isomorphism.
Proof. By the general theory, we have HP (H, M) = @, HP (H, M)X, where
HP(H,M)X ={ue HP(H,M) | conjgu =x(g mod H)u for all g € G}.
As H-modules, we have HP (H, M) = HP (H, MX). It is clear that HP (H, M )X = HP (H, MX)G/H a5 sets, so
H*(H, M) = @ H*(H, Mx)S/H,
X
Since G/H is finite, the inflation-restriction sequence shows that res : H*(G, MX) — H*(H, MX)G/H s an iso-
morphism. This finishes the proof. O

Consider the Eichler-Shimura isomorphism for I (N)

Mic(T1(N)) @ Sic(T1(N)) ———— H'(I1(N), CIX, Ylk—>)

b
Fory = (a q € To(N), we know [l (N)yI7(N)] is the diamond operator (d). On the other hand, by definition
c

the action of T, on H!(I}(N)) is conj,, SOy — T, is simply the action map of Iy(N) on H!(T7(N), C[X, Y]x_2).
Let x be a Dirichlet character modulo N. From Lemma 4.13 and Lemma 4.14, taking x-eigen part yields

Mi(N,x) ® Sk(N,x) ————— H'(TH(N),CIX, I _,)

From the definition we see T, preserves the parabolic subspace, i.e., T(X(H;;,ar(l“l, M)) c H}Dar(l}, M). Hence the

Eichler-Shimura map also induces an isomorphism

Sk(N/X) @SK(N/X) — H%)ar(ro(N)/(C[X/Y]%i_z)'
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Since the diamond operators and the Hecke operators commute, by Lemma 4.13 the above isomorphisms are
all Hecke-equivariant. We record this as a

—_

Theorem 4.15. Let N > 1 and x € (Z/N)*. Then the Eichler-Shimura map induces Hecke-equivariant isomor-
phisms

Mic(N,x) @ Si(N,x) —————— H(IH(N),CIX, YI¥_,)

< <

Sk(N/X) @SK(N/X) E— Hllgar(ro(N)/(C[X/YP]i_z)'

Also, the real Eichler-Shimura Sy (T (N)) & Hlljar(l"o(N), R([X, Y]x_2) is a Hecke-equivariant isomorphism.

4.10. Rationality of modular forms. Recall in class (c.f. [DS05, §6.5]) the Hecke algebra was defined to be the
Z-algebra of S,(I(N)) generated by all T,, and (n). Let ' = I7(N) and k > 2. Denote this time by Tz the
Z-subalgebra of Endc Sk (I') generated by all T,,, n € Z>;. Since the Eichler-Shimura isomorphism

Sk(r) @ Sk(r) E— H;)ar(r/ C[X/Y]k—Z)

is Hecke-equivariant, Tz is isomorphic to the one generated in Hll)ar (T, C[X, Ylk_2). Since Z — C is flat, we have

Hpar (T, CIX, Yl —2) = Hp, (1 ZIX, Yie—2) ®z C.

It is clear from the definition that the Hecke actions leave invariant the subspace H;,ar(r, ZIX,Y)k_2), so

T, < Endy H}gar(r,Z[x, Y]k_2).

Recall that if I is torsion-free, we can view it as the fundamental group of I'\H, which is a punctured closed sur-
face. It is known that such a group must be finite free, and in this case, the cohomology group is finitely gener-
ated. Generally, I" has a normal torsion-free subgroup, so by the inflation-restriction sequence, H! (T, Z[X, Y]}_»)
is always a finite Z-module. This proves

Lemma 4.16. T7 is a free abelian group of finite rank.
Let f € Sx(T") be an eigenform. Hence T — a;(Tf) defines an algebra homomorphism
Af: Tz ——— C.

Since T is finitely generated over Z, its image lies in a number field. Hence all Fourier coefficients of f generates
a number field. This is called the number field of f, and is denoted by Q(f).
Consider the canonical pairing

(,):Ty x Sg(IN) ——— = C
(T,f) ————— ay(T¥).
Lemma 4.17. The pairing is non-degenerate on both arguments.

Proof. The key point is a;(Taf) = an(f). If a;(Tf) = O for all f, then an(Tf) = a;1(Tn(Tf)) = ai1(T(Tnf)),
implying Tf is a constant. Since k > 1, this forces Tf = 0 for all f. Hence T = 0 as operators. On the other hand,
if a;(Tf) =0forall T, then an (f) = a;(Tnf) = 0 so that f is a constant. Again k > 1 implies f = 0. O

Consequently, there is a C-isomorphism
Sk(F) — Homg (Tz, (C)

fr— T ai(Tf),
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Since Ty is finite free, we have
Homz(Tz, (C) = Homz(Tz, Z) X7z C.

For a subring R of C, put Sx(I';R) = Homgz(Tz, R). If we consider the g-expansion at oo, i.e., an injective
homomorphism
My (T)

Clql

f

we see that the preimage of Sy (I'; Z) in Sy (T") consists of the preimage of Z[q] in Sy (I"). In particular, this shows
Corollary 4.17.1. For k > 2, S\ (I (N)) admits a basis consisting of those with integral Fourier coefficients at co.

See [Shi71, §3.5] for related statements. Note that the integral lattice Hl},ar(l",Z[X, Ylk_») is used in [Shi71,
(3.5.20) in Theorem 3.48].
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