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1 Glossary

1.1 Purposes. In this section we collect some definitions that will be used in the sequel. We also serve this section as indexes.

1.1 From category

1.2 Abelian category.

1.3 Projector. Let C be a category. A projector in C is a morphism p : A Ñ A such that p ˝ p = p for some object A. We also
say p is idempotent.

1.3.1 Splitting. A projectorp : A Ñ A is said to split if there exists another objectB and two morphismsq : A Ñ B, s : B Ñ A

such that

s ˝ q = p, q ˝ s = idB .

Such a triple (B,q, s) is called a splitting of p.

1.4 Pseudo-abelian category. A pseudo-abelian category is an additive category C such that all projectors split.

1.4.1 Pseudo-abelian envelop. Let C be an additive category. The pseudo-abelian envelop of C is the category C7 defined
as follows.

— Objects : all pairs (A,p : A Ñ A) such that A is an object in C and p is a projector.

— Morphisms :

HomC7((A,p), (B,q)) := tf P HomC(A,B) | q ˝ f = f = f ˝ pu = q ˝ HomC(A,B) ˝ p

1.5 Strictly full subcategory. A subcategory D of a category C is strictly full if it is a full subcategory and closed under
isomorphism.

1.6 Serre subcategory. A nonempty full subcategory D of an abelian category C is a Serre subcategory whenever given
any exact sequence A Ñ B Ñ C in C with A,C P Ob(D), we have B P Ob(D).

1.7 Weak Serre subcategory. A nonempty full subcategory D of an abelian category C is a weak Serre subcategory whenever
given any exact sequence A Ñ B Ñ C Ñ D Ñ E in C with A,B,D,E P Ob(D), we have C P Ob(D).
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2 Local-ringed spaces

2.1 Generalities on sheaves

2.1 Presheaf. Let X be a topological space. Define a category Top(X) as follows.

— An object of Top(X) is an open set in X.

— For two objects U,V of Top(X), set

HomTop(X)(U,V) =

#

tιUV : U Ñ Vu , if U Ď V , where ιUV : U Ñ V denotes the inclusion,
H , otherwise.

Let C be a category. A C-presheaf on X is just a contravariant functor F : Top(X) Ñ C. When C is Set (resp. Ab, Ring, ModR),
we say F is a presheaf of sets (resp. abelian groups, rings, R-modules). A morphism between two presheaves is a natural
transformation. We denote by Cpre

X the category of all C-presheaves on X. For U Ď V , the morphism F(ιUV) : F(V) Ñ F(U)

is usually called a restriction map. An element in F(X) is called a global section of F , and we usually write Γ(X, F) = F(X).

2.2 Sheaf. In the following we assume C is either Set, Ab,Ring or ModR. A C-valued presheaf F is called a sheaf if for
every open U and every open cover tUiuiPI of U there is an equalizer diagram

F(U)
ź

iPI

F(Ui)
ź

i,jPI
F(Ui XUj)

We denote by CX the full subcategory of Cpre
X consisting of all C-sheaves on X.

It follows from the definition that the empty product is the final object in C. By the sheaf axiom, we see that F(H) is the
final object in C as long as F is a sheaf.

2.3 Sheaf on a basis. Let B be a basis of open sets ofX. We can view B as a full subcategory of Top(X). We define a C-presheaf
on the basis B to be a contravariant functor B Ñ C. A C-presheaf F on the basis B is called a sheaf if for any B P B and its
open cover tBiuiPI Ď B, there exists an equalizer diagram

F(B)
ź

iPI

F(Bi)
ź

i,jPI

ź

B1ĎBiXBj

B1PB

F(B 1)

Clearly, every sheaf on X restricts to a sheaf on B. What’s more, the converse is also true. Let F denote a sheaf on B. For
U P Top(X), define

F 1(U) := lim
Ð−

BQBĎU

F(B).

Note that when U = B P B, the canonical projection F 1(B) Ñ F(B) is an isomorphism. For opens V Ď U, clearly we have
F 1(U) Ñ F 1(V) given by projections. This shows F 1 defines a presheaf on X. To show it is a sheaf, letU P Top(X) and tUiuiPI

be an open cover of U. We must show

F 1(U)
ź

iPI

F 1(Ui)
ź

i,jPI
F 1(Ui XUj)

is an equalizer diagram. A possible way to show this is to express inverse limit as a equalizer of certain arrows, and do some
easy diagram chasing ; we omit the proof. In fact, F is unique up to isomorphism, which is easy to see.
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If B is closed under finite intersection, then for a presheaf F on B, it is a sheaf if and only if for any B P B and its open
cover tBiuiPI Ď B, there exists an equalizer diagram

F(B)
ź

iPI

F(Bi)
ź

i,jPI
F(Bi X Bj) (‹)

This is easily checked from the definition.
Let B,B, tBiuiPI be as above. Suppose, in addition, that B P B is compact. Then to show the exactness of (‹), it suffices to

show the exactness of
F(B)

ź

iPJ

F(Bi)
ź

i,jPJ
F(Bi X Bj)

for all finite subsets J of I with B =
Ť

iPJ

Bi. Indeed, the injectivity is clear, and to show the exactness in the middle, consider

the diagram

F(B)
ź

iPI

F(Bi)
ź

i,jPI
F(Bi X Bj)

ź

JĎI

F(B)
ź

JĎI

ź

iPJ

F(Bi)
ź

JĎI

ź

i,jPJ
F(Bi X Bj)

An easy diagram chasing and argument then shows the exactness of the above sequence.

2.3.1 Let X be a topological space and B an open basis of the topology on X. Let F and G be two sheaves on X. Suppose
for any B P B, there exists a map F(B) Ñ G(B) that is compatible with restriction. Then there exists a unique morphism
F Ñ G of sheaves extending those maps on B. This is easy to construct and see its uniqueness once we regard F and G as
constructed from sheaves on B, just like we do in 2.3.

If we denote by CX,B the category of C-sheaves on the basis B, then our discussion shows that the restriction defines a
natural equivalence

CX CX,B
„

2.4 Stalk and Sheafification. Let F be a C-presheaf. For each point x of X, the stalk of F at x P X is the direct limit

Fx := lim−Ñ
Top(X)QUQx

F(U)

where the open neighborhoods of x are directed by inclusions. The étale space of F is the set-theoretic disjoint union

Et F =
ğ

xPX

Fx

If s P F(U), we use either sx, s|x or lim−Ñ
UĚVQx

s|V to denote its image in Fx. For each s P F(U), define sU : U Ñ Et F by

sU(x) := (x, sx). On Et F we install the final topology with respect to the collection of maps tsU | U P Top(X), s P F(U)u.
With this topology the natural projection π : Et F Ñ X becomes a local homeomorphism.

Denote by F: the sheaf of continuous section of π : Et F Ñ X. If F is a C-presheaf, then F: is a C-sheaf. This sheaf F: is
called the sheafification of the presheaf C. Clearly (¨): defines a functor from Cpre

X to CX. The map s ÞÑ sU defines a morphism
ιF : F Ñ F:. This morphism ιF enjoys the universal property : there is a bifunctorial bĳection

HomCpre
X
(F , G) HomCX

(F:, G)

8



whose inverse is given by pre-composing with ιF . Here G is a C-sheaf, and we view it as a C-presheaf on the left. In other
words, the sheafification functor is left adjoint to the forgetful functor CX Ñ Cpre

X . In particular, this shows if F is already a
sheaf, then ιF : F Ñ F: is an isomorphism of sheaves.

2.4.1 A categorical caveat. The category of Ring is not well-behaved compared to Ab and ModR. One point that deserves
an attention is that the forgetful functor Ring Ñ Set does not preserve arbitrary colimit : it only preserves filtered colimit.
Nevertheless, the set-theoretic filtered colimit of rings has a unique structure of a ring so that it is a colimit in Ring. In
particular, the stalk of a (pre)sheaf of rings is indeed a ring.

2.4.2 Retain the notation in (2.4). Since each section s P F:(U) is necessarily injective, we obtain a canonical injection

F:(U)
ź

xPU

Fx

f (f(x))xPU.

It is easy to describe the image in
ź

xPU

Fx :

F:(U) =

#

(fx)xPU P
ź

xPU

Fx

ˇ

ˇ

ˇ

ˇ

ˇ

for any x P U there exist an open neighborhood V Ď U of x
and s P F(V) such that fy = s|y for all y P V

+

.

2.4.3 For any presheaf F and x P X, the canonical morphism ι = ιF : F Ñ F: induces a map ιx : Fx Ñ F:
x on the stalk.

This is in fact an isomorphism in C. To see this, an element fx P F:
x is represented by some f P F:(U), where U is a small

neighborhood of x in X. By shrinkingU further we can assume f(U) = t(x, sx) | x P Uu for some s P F(U). Then sU = f since
they are sections of a homeomorphism π|Uf(U), and thus (sU)x = fx. This proves surjectivity, and injectivity can be proved in
a similar way.

2.5 Define a category EtX as follows. An object is a pair (Y,pY : Y Ñ X) consisting of a topological space Y and a local
homeomorphism pY : Y Ñ X. A morphism between objects is a continuous map compatible with their projections to the
base X. Taking sheaf of continuous sections defines a functor from EtX to SetX (operations between sections are defined
stalk-wise). In fact, this establishes an equivalence of categories

EtX SetX

with inverse given by associating a sheaf F with its étale space Et F Ñ X.

2.6 Example : constant sheaf. Let X be a topological space andA a set. The presheafU ÞÑ A, H ÞÑ t˚u is called the constant
presheaf Apre

X , which is usually not a sheaf. Its sheafification is called the constant sheaf, and is denoted by AX. There is an
explicit description of AX : for any open U in X

AX(U) = tf : U Ñ A | f locally constantu.

This is clear from the construction of sheafification (2.4). It can be shown that if #A ě 2, then Apre
X is already a sheaf if and

only if X is irreducible (3.34).

2.7 Example : skyscraper sheaf. Let X be a topological space and A a set. Let x P X be a point. Then the presheaf

U ÞÑ

#

A , if x P U

t˚u , if x R U

9



is a sheaf, and is called the skyscraper sheaf at x with value A. It is so named as if we denote this sheaf by F , then

Fy =

#

A , if y P txu

t˚u , if y R txu

Particularly, if txu = txu (e.g. if X is a T1 space), then x is the only point at which F has nontrivial stalk.
If we view A as a sheaf on the one point space txu and denote by ιx : txu Ñ X the inclusion, then F = (ιx)˚A (2.9).

2.8 Example : locally constant sheaf. Let X be a topological space. A sheaf F is called a locally constant sheaf if there exists
an open cover U of X such that F |U is isomorphic to a constant sheaf for each U P U . Here for a presheaf G and an open set
U of X, the presheaf G|U is a presheaf on U defined by V ÞÑ F(V). Clearly, if G is a sheaf on X, then G|U is a sheaf on U.

2.1.1 Adjunction between f´1 and f˚.

2.9 Let f : X Ñ Y be a continuous map. For a C-presheaf F on X, define the direct image presheaf (or the push-forward
presheaf) f˚F on Y by the formula

f˚F(V) = F(f´1(V))

where V P Top(Y). If F is a C-sheaf, then f˚F is also a C-sheaf. If G is a C-presheaf on Y, define the inverse image presheaf
(or pull-back presheaf) fpreF on X by

fpreF(U) = lim−Ñ
Top(Y)QVĚf(U)

F(V)

where U P Top(X). When F is a sheaf, fpreF may still fail to be a sheaf. Nevertheless, for a sheaf F , we define the inverse
image sheaf f´1F of F to be the sheafification of fpreF .

We compute the stalk of fpreF . For x P X,

(fpreF)x = lim−Ñ
Top(X)QUQx

lim−Ñ
Top(Y)QVĚf(U)

F(V) – lim−Ñ
VQf(x)

F(V) = Ff(x)

There is no formula for (f˚F)y in general. Nevertheless, if X is a subspace of Y and f is the inclusion, we have (f˚F)y = Fy
if y P X. If X is closed, then (f˚F)y = 0 for y R X.

2.10 Adjunction between f´1 and f˚. Define a category Cpre
Top as follows.

— An object in Cpre
Top is a topological space X together with a C-presheaf F . We denote an object by (X, F).

— For two objects (X, F) and (Y, G), a morphism between them is a continuous map f : X Ñ Y together with a collection
of maps

!

G(V)
TU,V
Ñ F(U)

)

f(U)ĎV
UPTop(X),VPTop(Y)

Ď Mor(C) compatible with the restriction.

Let us have a careful look at the condition imposed on a morphism in Cpre
Top. If f(U) Ď V , thenU Ď f´1(V), the latter being open

inX since f is continuous. Since a morphism is compatible with inclusions, we see that for a fixedV P Top(Y), the subcollection
tTU,Vu f(U)ĎV

UPTop(X)
is completely determined by a distinguished element, namely Tf´1(V),V : G(V) Ñ F(f´1(V)). On the other

hand, for a fixed U P Top(X), the subcollection tTU,Vu f(U)ĎV
VPTop(Y)

is packed to a map from the direct limit lim−Ñ
VĚf(U)

G(V) Ñ F(U).

To draw a conclusion, let us consider the forgetful functor Cpre
Top Ñ Top. For objects (X, F) and (Y, G) in CTop, the forgetful

functor gives a projection map

Φ : HomCpre
Top
((X, F), (Y, G)) HomTop(X, Y)
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The above consideration implies the preimage under Φ of a continuous map f : X Ñ Y has two interpretations, that is,

HomCpre
Y
(G, f˚F) Φ´1(f) HomCpre

X
(fpreG, F)

„ „

Ignoring the “bridge”, we obtain the adjunction of f˚ and fpre. If we consider the full subcategory CTop of Cpre
Top consisting of

(X, F) with F a C-sheaf on X, by composing with the sheafification we obtain the adjunction of f˚ and f´1 :

HomCY
(G, f˚F) HomCX

(f´1G, F)
„

For two appropriate continuous map f and g, we clearly have (fg)˚ = f˚g˚. The adjunction then shows that (fg)´1 and
g´1f´1 are “naturally isomorphic”.

2.10.1 Saying that f˚ and f´1 are adjoint to each other in the categorical sense requires them to be functors. For a continuous
map f : X Ñ Y, define the direct image functor f˚ : Cpre

X Ñ Cpre
Y as follows. If F is a C-presheaf, put f˚F as in (2.9), and for a

morphism T : F Ñ G in Cpre
X , define f˚T : f˚F Ñ f˚G by assigning to each open set V P Top(Y) a morphism (f˚T)V = Tf´1(V).

Clearly such a definition makes f˚ into a functor, and it sends C-sheaves on X to those on Y. It also yields a functorial map

HomCX
(F , G) HomCY

(f˚F , f˚G). (♠)

Next, define the inverse image functor fpre : Cpre
Y Ñ Cpre

X as follows. For a C-presheaf F on Y, define fpreF as in (2.9), and
for a morphism T : F Ñ G in Cpre

Y , define fpreT : fpreF Ñ fpreG by assigning to each open set U P Top(X) a morphism

(fpreT)U = lim−Ñ
Top(Y)QVĚf(U)

TV : lim−Ñ
Top(Y)QVĚf(U)

F(V) Ñ lim−Ñ
Top(Y)QVĚf(U)

G(V).

This morphism is obtained by the universal property of the direct limit, applied to the morphisms F(V) Ñ G(V) Ñ

lim−Ñ
Top(Y)QVĚf(U)

G(V). Since taking direct limit is functorial, fpre is really a functor. Restricting to the full subcategory CY and

post-composing with the sheafification functor defines the inverse image functor f´1 : CY Ñ CX on sheaves. Again, we have
a functorial map

HomCY
(F , G) HomCX

(f´1F , f´1G). (♣)

2.10.2 Adjunction and stalks Let θ : G Ñ f˚F be a morphism of sheaves on Y, and let θ7 : f´1G Ñ F be the morphism
obtained by adjunction. Let’s compare the induced maps on stalks. Let x P X and y = f(x) P Y. The stalk map of θ at y is

Gy Ñ (f˚F)y = lim−Ñ
Top(Y)QVQy

F(f´1(V))

while by (2.9) the stalk map of θ7 at x is

Gy = (f´1G)x Ñ Fx = lim−Ñ
Top(X)QUQx

F(U).

By the universal property of direct limits, these two are related in a diagram

Gy (f˚F)y

Fx

θ
7
x

θy

It follows from the very construction of adjunction that this is a commutative triangle.
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2.11 Let us analyze the adjunction (2.10) further in the case C = Mod. By definition an objective in C is a pair A ñ M,
where A is a ring and M is an A-module. A morphism A ñ M Ñ B ñ N in Mod is a ring homomorphism r : A Ñ B and
an abelian group homomorphism f :M Ñ Nwith compatible ring action ; that is, there is a commutative diagram.

AˆM M

BˆN N

rˆf f

Let (X, A ñ M) and (Y, B ñ N ) be in Modpre
Top. Forgetful functors gives a chain of projections

HomModpre
Top
((X, A ñ M), (Y, B ñ N )) HomRingpre

Top
((X, A), (Y, B)) HomTop(X, Y)

Let f : X Ñ Y be a continuous map. As in (2.10), consider the following diagram.

HomModpre
Top
((X, A ñ M), (Y, B ñ N ))

HomRingpre
X
(fpreB, A) HomRingpre

Top
((X, A) HomRingpre

Y
(B, f˚A)

The fibre of f in the middles gives a bĳection between the leftmost set and the rightmost set. Let θ : B Ñ f˚A be in the
rightmost and that θ7 be the corresponding element in the leftmost ; they map to the same element (f, θ) in the middle. We
ask what is the fibre of (f, θ) in the upper set. A moment consideration gives the answer :

HomModpre
A
(A bfpreB f

preN , M) HomModpre
Top
((X, A ñ M), (Y, B ñ N )) HomModpre

B
(N , (f˚M)[θ])

tθ7 : fpreB Ñ Au HomRingpre
Top
((X, A) tθ : B Ñ f˚Au

We need to explain the notations used here.
— For a presheaf (resp. sheaf) of rings A on X, a presheaf (resp. sheaf) M of abelian groups on X is called a presheaf

of A-modules (resp. sheaf of A-modules) if M(U) is an A(U)-module for any open U and the module structure is
compatible with the restriction of A. A morphism between presheaves of A-modules is a morphism of presheaves
T such that T(U) is an OX(U)-module homomorphism for every open U. We denote by Modpre

A the category of
presheaves of A-modules, and when A is sheaf, we denote by ModA the full subcategory of Modpre

A consisting of
sheaves of A-modules.

— For M, N P Modpre
A , define their tensor product M b

p
A N P Modpre

A by the assignmentU ÞÑ M(U)bA(U) N (U). When
in ModA, we define M bA N P ModA by (M b

p
A N ):.

— (f˚M)[θ]) means we use θ : B Ñ f˚A to view f˚M as a B-module.
— On the left-upper corner, A is viewed as a fpreB-module via θ7.

Let us replace everything by sheaves. Suppose that (X, A ñ M) and (Y, B ñ N ) are actually in ModTop. Passing to
sheafification, the upper part of the diagram above gives a bĳection

HomModA

(
(A bfpreB f

preN ): , M
)

HomModB(N , (f˚M)[θ])
„

The same consideration, but with each fpre replaced by f´1, gives a bĳection

HomModA

((
A bf´1B f

´1N
): , M

)
HomModB(N , (f˚M)[θ])

„

12



As a by-product, we see (A bfpreB f
preN ): and

(
A bf´1B f

´1N
): are naturally isomorphic. We give it a new notation :

f˚N := (A bfpreB f
preN ):

P ModA. This is called the inverse image of N by (f, θ). Also, we simply put f˚M = (f˚M)[θ], and
call it the direct image of N by (f, θ). In this way, the adjunction takes the form

HomModA (f˚N , M) HomModB(N , f˚M)
„

It is easy to see f˚ : ModA Ñ ModB and f˚ : ModB Ñ ModA define functors, and the bĳection above is bifunctorial in M
and N . Concisely, this bĳection says that f˚ is left adjoint to f˚.

2.12 We compute the stalk of f˚M and f˚N . For the former, the stalk is the same as the one for the usual direct image,
since computing stalk has nothing to do with the module structure. For the latter, by (2.4.3) we only need to compute(

A b
p
fpreB N

)
x

It follows from the following lemma and (2.9) that this is naturally isomorphic to

Ax bBf(x)
Nf(x)

Lemma. Let (Aα)α be a directed system of rings, (Mα)α and (Nα)α be directed systems of abelian groups with Mα and
Nα being Aα-modules and the transition maps being compatible with the ring homomorphisms Aα Ñ Aβ. Then there is a
natural bĳection

lim−Ñα
Mα bAα

Nα –

(
lim−Ñα

Mα

)
blim−Ñα

Aα

(
lim−Ñα

Nα

)
.

HereMαbAα
Nα is directed by the natural mapMαbAα

Nα Ñ MβbAβ
Nβ, which exists either by the explicit construction

of tensor products or by the universal property.

Proof. It suffices to show lim−Ñα
Mα bAα

Nα satisfies the obvious universal property that
(

lim−Ñα
Mα

)
blim−Ñα

Aα

(
lim−Ñα

Nα

)
enjoys. For brevity, let A,M,N stand for the limit objects lim−Ñα

Aα, lim−Ñα
Mα, lim−Ñα

Nα. Let H be an A-module, and let
T : M ˆ N Ñ H be an A-bilinear map. Precomposing with Mα ˆ Nα Ñ M ˆ N, we obtain an Aα-bilinear map Tα :

Mα ˆ Nα Ñ H, which by the universal property induces an Aα-linear map Mα bAα
Nα Ñ H. From construction it is

clear that (Mα bAα
Nα Ñ H)α is a cocone, so it gives a map lim−Ñα

Mα bAα
Nα Ñ H, as wanted. The uniqueness (resp.

functoriality) of this map follows from the uniqueness (resp. functoriality) at each step. This finishes the proof.

2.12.1 We extend the comparison done in (2.10.2) to this case. Let θ : N Ñ f˚M be a morphism in ModA, and let
θ7 : f˚N Ñ M be the corresponding morphism obtained by adjunction. Let x P X and y = f(x) P Y. The stalks maps fits into
a diagram

Ny (f˚M)y

Ax bBy
Ny – (f˚N )x Mx

θy

θ
7
x

where the left-vertical arrow is f ÞÑ 1 b f, and the right-vertical arrow is the one in (2.10.2). It follows from (2.10.2) that this
diagram commutes.

2.1.2 Gluing process

2.13 Gluing sheaves Let Xi (i P I) be a collection of topological space. On each Xi is a sheaf Fi of sets. Suppose for any i P I

there exist open subspaces Xij Ď Xi and Xji Ď Xj and an isomorphism fij : (Xij, Fi
ˇ

ˇ

Xij
) Ñ (Xji, Fj

ˇ

ˇ

Xji
) in SetTop. Assume

these fij satisfy
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(a) fii = idXi
for any i P I ;

(b) fik = fjk ˝ fij on Xij X Xik for any i, j,k P I

Then there exists a topological space X containing each Xi as an open subspace with Xi X Xj = Xij, a sheaf of sets F on X
and isomorphisms fi : F |Xi

Ñ Fi of sheaves on Xi (i P I) satisfying fi = fij ˝ fj on Xi X Xj.
Moreover, the data (F , tfiuiPI) is unique up to a unique isomorphism, in the sense that if (F 1, tf 1

iuiPI) is another such data,
then there exists a unique isomorphism f : F Ñ F 1 of sheaves on X such that fi = f 1

i ˝ f|Xi
for any i P I.

2.13.1 This can be phrased in the language of representable functors. Define a functor F : SetTop Ñ Set by

F(Y, G) :=

#

(gi)iPI P
ź

iPI

HomSetTop((Xi, Fi), (Y, G)) |
gi|Xij

= gj|Xji
˝ fij for all i, j P I

gk ˝ fik|XijXXik
= gi ˝ fji|XijXXjk

˝ fij|XijXXij
for all i, j,k P I

+

Then any topological space X containing each Xi as an open subspace with Xi X Xj = Xij and a sheaf of sets F on X and
isomorphisms fi : F |Xi

Ñ Fi of sheaves on Xi (i P I) satisfying fi = fij ˝ fj on XiXXj represents the functor. Moreover, such
a pair (X, F) exists.

2.13.2 Proof. We claim if X is a scheme along with open subschemes isomorphic to the Xi respecting the gluing data, then X
represents the functor F. We denote by ιi : Xi Ñ X the open embedding. Note that our assumption implies (ιi)iPI P F(X). Let
Y be a scheme and (gi)iPI P F(Y). Define a map g : X Ñ Y as follows. For x P X, if x P ιi(Xi), then set g(x) = gi(ι´1

i (x)). This is
well-defined, as ifx P ιj(Xj) as well, thenx P ιi(Xi)Xιj(Xj) = ιi(Xij) = ιj(Xji) and sogi(ι´1

i (x)) = gj(fij(ι
´1
i (x))) = gj(ι

´1
j (x)).

We must show g : X Ñ Y is continuous. Let U Ď Y be an open subset. It suffices to show g´1(U) X ι(Xi) is open in Xi for
each i P I, and we prove this by showing g´1(U) X ιi(Xi) = ιi(g

´1
i (U)) ; this is sufficient as the g´1

i (U) is open in Xi and ιi is
an open map. If x P ιi(g

´1
i (U)), then gi(ι´1

i (x)) P U. Since gi(ι´1
i (x)) = g(x), this implies x P g´1(U), or x P g´1(U) X ιi(Xi).

Conversely, if x P g´1(U) X ιi(Xi), then U Q g(x) = gi(ι
´1
i (x)) so x P ιi(g

´1
i (U)).

We now turn to sheaves. We must define a sheaf map θ : OY Ñ g˚OX. What we have now is gi : OY Ñ (gi)˚OXi
.

By assumption the inclusion ιi induces an isomorphism ι
ι(Xi)
i : OX|ιi(Xi) – (ιi)˚OXi

. Since gi = g ˝ ιi, we obtain a map
θi := (g˚ ˝ ι

ι(Xi)
i )´1 ˝ gi : OY Ñ (gi)˚OXi

= g˚(ιi)˚OXi
– g˚

(
OX|ιi(Xi)

)
. We claim the maps (g|ιi(Xi), θi) : ιi(Xi) Ñ Y glue.

Let V Ď Y be an open set. Then the (θi)V : OY(V) Ñ OX(ιi(Xi) X g´1(V)) defines ψV : OY(V) Ñ
ź

iPI

OX(ιi(Xi) X g´1(V)).

To show OY(V) maps to OX(g´1(V)), by the universal property of equalizer it suffices to show two arrows

OY(V)
ź

iPI

OX(ιi(Xi) X g´1(V))
ź

i,jPI
OX(ιi(Xi) X ιj(Xj) X g´1(V))

ψV

are the same. This follows from the condition gi|Xij
= gj|Xji

˝ fij. This finishes the construction, and defines a map

F(Y) HomSch(X, Y)

(gi)iPI (g, θ).

The whole construction is functorial in Y, so this defines a natural transformation. It has an obvious inverse : if g P

HomSch(X, Y), then (g ˝ ιi)iPI P F(Y) maps to g under the above map. Hence it is a natural isomorphism, proving that X
represents F. In particular, this proves the uniqueness.

It remains to show the existence of such X. This is straightforward. Let X 1 =
Ů

iPI

Xi be the disjoint union of the spaces Xi,

equipped with the final topology given by the inclusions ιi : Xi Ñ X 1. Define a relation „ on X 1 be declaring (i, x) „ (j,y) iff
x P Xij, y P Xji and fij(x) = y. This is reflexive and symmetric by the third bullet, and is transitive by the cocycle condition.
Let X = X 1/ „ and equip it with the quotient topology given by π : X 1 Ñ X. We show π ˝ ιi : Xi Ñ X is an open embedding.
This is continuous by construction, and is injective as „ does not collapse ιi(Xi). Let U Ď Xi be open, Then (π ˝ ιi)(U) is
open if and only if π´1(π ˝ ιi)(U) is open, if and only if ι´1

j π
´1(π ˝ ιi)(U) is open in Xj. The latter set is exactly fij(UX Xij),
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which is open in Xj. Observe also (π ˝ ιi)(Xij) = (π ˝ ιj)(Xji) for i, j P I. To ease the notation, we identify Xi with its image in
X ; under this identification, the previous observation tells that Xi X Xj = Xij = Xji as topological spaces.

Our final work is to glue together the sheaves OXi
. We leave it to the next paragraph.

2.13.3 Let X be a topological with an open cover U = tUiuiPI. Suppose that on eachUi there is a sheaf Fi of abelian groups.
For any i, j P I, suppose there is an isomorphism θij : Fi|UiXUj

Ñ Fj|UiXUj
of sheaves on Ui XUj. Assume these θij satisfy

(a) θii is the identity map for any i P I ;
(b) θik|UiXUjXUk

= θjk|UiXUjXUk
˝ θij|UiXUjXUk

.
Then there exists a unique sheaf of abelian groups F on X and isomorphisms θi : F |Ui

Ñ Fi of sheaves on Ui such that
θj|UiXUj

= θij ˝ θi|UiXUj
for any i, j P I.

Proof. Define a presheaf F on X by setting

F(V) =

#

(si)iPI P
ź

iPI

Fi(V XUi) | (θij)VXUiXUj
(si|

VXUi

VXUiXUj
) = sj|

VXUj

VXUiXUj
for any i, j P I

+

By (b), this really defines a presheaf on X. We can show F is a sheaf of abelian groups by a way similar to (2.3).

2.13.4 Let X, Y be two topological spaces, and F and G be sheaves on X and Y, respectively. Suppose there are an open cover
tUiuiPI and a collection of morphisms fi : (Ui, F |Ui

) Ñ (Y, G) in AbTop such that fi|UiXUj
= fj|UiXUj

for any i, j P I. Then
there exists a unique morphism f : (X, F) Ñ (Y, G) in AbTop extending the fi.

2.14 Let us mention some categorical limit and colimit objects in Cpre
X and CX.

— Direct product. If tFiuiPI is a family of presheaves (resp. sheaves), then U ÞÑ
ź

iPI

Fi(U) defines a presheaves (resp.

sheaves), and is the categorical product in either category.
— Finite direct sum. Suppose C = Ab. Then finite direct sum coincides with finite direct product.
— Inverse limit. Let tFiuiPI be an inverse system of presheaves (resp. sheaves). Then the assignment U ÞÑ lim

Ð−
iPI

Fi(U)

defines a presheaf (resp. sheaf), and is the categorical limit in either category.
— Direct limit. Let tFiuiPI be a direct system of presheaves (resp. sheaves). Then U ÞÑ lim−Ñ

iPI

Fi(U) is a presheaf, but fails to

be a sheaf even if each Fi is a sheaf. For this, for a direct system of sheaves, we denote by lim−Ñ
iPI

Fi the sheafification of

the above direct limit presheaf. Both are categorical directed limit in respective category.

2.15 Let C be either Ab, Ring or ModR. If φ : F Ñ G is a morphism of presheaves (resp. sheaves), then U ÞÑ kerφ(U)
defines a presheaves (resp. sheaves), called the kernel of φ : F Ñ G, and is denoted by kerφ. When C is Ab or ModR, the
assignment U ÞÑ G(U)/F(U) = cokerφ(U) only defines a presheaf, so if we are discussing in CX, we define the cokernel
cokerφ of φ : F Ñ G to be the sheafification of the previously mentioned presheaf. Similarly, we define the image Imφ to
be the sheafification of U ÞÑ Imφ(U). Both kernel and cokernel in Cpre

X (resp. CX) satisfy the usual universal properties.

2.15.1 Lemma. Let X be a topological space and A a sheaf of rings. The categories Modpre
A and ModA are abelian. In

particular, Abpre
X = Modpre

ZX
and AbX = ModZX

are abelian.

2.16 By (2.15.1) we can talk about exactness in Abpre
X and AbX. Explicitly, a sequence F α

Ñ G β
Ñ H is exact in Abpre

X (resp.
AbX) if the natural map Imα Ñ kerβ is an isomorphism. Thus a sequence of sheaves may be exact in AbX while fails to be
exact in Abpre

X . A useful criterion for exactness is the following :

Lemma. A sequence F α
Ñ G β

Ñ H of sheaves of abelian groups is exact if and only if the induced map on the stalk
Fx

αx
Ñ Gx

βx
Ñ Hx for every x P X.

15



2.16.1 As a consequence, we see the sheafification functor (¨): : Abpre
X Ñ AbX is exact, in the sense that it sends short exact

sequences to short exact sequences. To see this, let 0 Ñ F Ñ G Ñ H Ñ 0 be a short exact sequence in Abpre
X . By (2.4.3) and

(2.16), we only need to show 0 Ñ Fx Ñ Gx Ñ Hx Ñ 0 is exact in Ab for every x P X. This is indeed the case, which can be
seen from the proof of (2.16).

2.16.2 Let us split the proof of Lemma 2.16 into several lemmas.

Lemma. Let ϕ : F Ñ G be a sheaf of sets. Then ϕ is an isomorphism in SetX if and only if ϕx : Fx Ñ Gx is an isomorphism
for all x P X.

Proof. Only if part is clear as taking stalks is functorial. For the if part, it suffices to show ϕU : F(U) Ñ G(U) is an
isomorphism for every open U Ď X, for various inverses must glue to an inverse of ϕ. Consider the commutative diagram

F(U) G(U)

ź

xPU

Fx
ź

xPU

Gx

ϕU

ś

xϕx

We see ϕU is injective at once. Let s P G(U) and denote by (sx)x its image in the product of stalks. Since the bottom map is
an isomorphism, we can find (tx)x P

ś

xPU

Fx such that
ś

xϕx(tx)x = (sx)x. For each x P U pick an open neighborhood Ux
of x and tUx

P F(Ux) such that (tUx
)x = tx. Since ϕUx

(tUx
)x = ϕx(tx) = sx = (s|Ux

)x, shrinking Ux if necessary, we can
assume ϕUx

(tUx
) = s|Ux

. For x,y P U, the injectivity of ϕUxXUy
implies tUx

|UxXUy
= tUy

|UxXUy
, so there exists t P F(U)

with t|Ux
= tUx

. Then ϕU(t) = s, proving the surjectivity.

2.16.3 Lemma. Let ϕ,ψ : F Ñ G be two morphisms of sheaves of sets. Then ϕ = ψ if and only if ϕx = ϕx for all x P X.

Proof. The only if part is evident, and the if part follows from the commutative diagram

F(U) G(U)

ź

xPU

Fx
ź

xPU

Gx

ϕU

ψU

ś

xϕx

ś

xψx

.

2.16.4 Lemma. Let ϕ : F Ñ G be a sheaf of sets. Then ϕ is an epimorphism (resp. monomorphism) in SetX if and only if
ϕx : Fx Ñ Gx is surjective (resp. injective) for all x P X.

Proof. This follows from a direct verification of the definition by using (2.16.3). Also, we use the fact that (f ˝ g)x = fx ˝ gx,
which is clear.

2.16.5 Lemma. Let I be a directed set andA : I Ñ Ring a directed system of rings. SupposeM, N, L : I Ñ Mod are directed
systems of A-modules such thatM f

Ñ N
g

Ñ L is exact. Then lim−Ñ
M Ñ lim−Ñ

N Ñ lim−Ñ
L is exact.

Proof. This is immediate if one realizes lim−Ñ
M as equivalence classes in the disjoint union. For the proof when one realizes

it as a quotient of the direct sum, see [AM94, Exercise 2.19].

2.16.6 Corollary. Let f : F Ñ G be a morphism in AbX. Then (ker f)x = ker fx and (coker f)x = coker fx for all x P X.
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2.16.7 Proof. The lemma follows at once from we have proved.

2.17 Let f : (X, F) Ñ (Y, G) be a morphism in AbTop. Suppose Y admits an open cover U such that the induced morphism
f|U
f´1(U)

: (f´1(U), F |f´1(U)) Ñ (U, G|U) is an isomorphism for anyU P U . Then f is an isomorphism. The map on topological
spaces are clearly a homeomorphism. For the sheaf map, one can use (2.16) to show G Ñ f˚F is an isomorphism.

2.2 Local-ringed spaces

2.18 Ringed space. An object in RingTop is called a ringed space. For simplicity, put RS = RingTop. Explicitly, a ringed
space morphism from (X, OX) to (Y, OY) consists of a continuous map f : X Ñ Y and a morphism f5 : OY Ñ f˚OX of sheaves
of rings on Y.

2.19 The morphism f5 induces maps of stalks. To be precise, for x P X and V an open neighborhood of y = f(x) in Y,
we have a map f5

V : OY(V) Ñ f˚OX(V) = OX(f´1(V)). Post-composing with inclusion into direct limit, we obtain a map
OY(V) Ñ lim−Ñ

Top(X)QUQx

OX(U) = OX,x. Letting V varying and passing to limit, we obtain a map f5
x : OY,y Ñ OX,x.

On the other hand, write f7 : f´1OY Ñ OX to be the morphism obtained via (2.10). Let x P X. By (2.9) and (2.4.3), we have
a map

lim−Ñ
Top(X)QUQx

f7 : OY,f(x) Ñ OX,x.

By (2.10.2), this map coincides with f5
x.

2.20 Local-ringed space. A ringed space (X, OX) is called a local-ringed space (or locally ringed space) if each stalk OX,x

is a local ring. A morphism between local-ringed spaces is a morphism of ringed spaces such that each stalk map is a local
homomorphism of local rings, which is to be explained. For a ring homomorphism φ : (A,mA) Ñ (B,mB) of local rings, we
say it is a local homomorphism when φ´1(mB) = mA. Note that in general we only have φ´1(mB) Ď mA. The category of
local-ringed spaces is denoted by LRS.

2.20.1 Let k be a field. A ringed space over k is a ringed space (X, OX) such that OX is a sheaf of k-algebras. The category
RSk of ringed spaces is the full subcategory of (Algk)Top whose objects consist of ringed spaces over k. A local-ringed space
over k is a local-ringed space (X, OX) that is also a ringed-space over k, and a morphism of local-ringed spaces of k is both
a morphism of local-ringed spaces and ringed space over k. Denote by LRSk the category of local-ringed space over k.

2.21 Let (X, OX) be a local-ringed space. For a point x P X, the quotient κ(x) = OX,x/mx is called the residue field at x. For
open U, x P U and f P OX(U), we sometimes write f(x) to denote the class of f in the residue field κ(x). For an open subset
U of X and f P OX(U), put

Uf := tx P U | f(x) ‰ 0 in κ(x)u

= tx P U | fx P Oˆ
X,xu.

Then Uf is an open set in U. For if fx P Oˆ
X,x, then we can find some neighborhood V of x and g P OX(V) such that fxgx = 1.

But this means fg = 1 in OX(W) for a smaller neighborhood W Ď V of x, and thus x P U XW Ď U. Note that since OX is
a sheaf, for f P OX(X), we in fact have f P OX(Xf)ˆ. To construct an inverse, we do it locally and patch them together to a
section over Xf.

2.22 Topological embedding. Let X be a topological space and Y Ď X an subspace. We denote by ι : Y Ñ X the inclusion
map. For a sheaf F on X, we denote the inverse image sheaf ι´1F by F |Y . From the adjunction we also have a morphism
ρ : F Ñ ι˚ (F |Y). We call the morphism (ι, ρ) : (Y, F |Y) Ñ (X, F) the topological embedding. It enjoys the following
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universal property similar to that of the subspace topology : if (f, f7) : (T , G) Ñ (X, F) is a morphism with f(T) Ď Y, then
there exists a unique morphism (T , G) Ñ (Y, F |Y) making the following triangle commute

(T , G) (X, F)

(Y, F |Y)

(f,f7)

(ι,ρ)

The only candidate for the map on topological spaces are f|Y . The morphism between sheaves is best defined using the very
definition of a morphism in Cpre

Top (2.10) then passing to sheafification. In this way the uniqueness is also evident. Another
way is to define it via adjunction. To be specific, the morphism f7 : F Ñ f˚G = ι˚(f|

Y)˚G induces, by adjunction, another
morphism ι˚F Ñ (f|Y)˚G, which is what we want. The commutativity is proved using functoriality of adjunction.

Let G be a sheaf on Y. By adjunction the identity morphism ι˚G Ñ ι˚G induces a morphism ι´1ι˚G Ñ G. This is in fact
an isomorphism as long as ι is an embedding. It is enough to check on the stalks, and this follows from (2.9).

2.22.1 Let us consider the above situation in LRS. Let (X, OX) be a local-ringed space and Y Ď X a subspace. We check
(Y, OX|Y) is also a local-ringed space, and the topological embedding (Y, OX|Y) Ñ (X, OX) is a morphism in LRS. The first
is easy, for we have

(OX|Y)y = lim−Ñ
Top(X)QUĚW

lim−Ñ
Top(Y)QWQy

OX(U) = OX,y.

To see the stalk map is a local homomorphism, since the stalk of a presheaf coincides with that of its sheafification (2.4.3),
we can replace (Y, OX|Y) by (Y, ιpreOX), and the computation above indicates the stalk map is simply the identity map.

Now let (ψ, θ) : (X 1, OX1) Ñ (X, OX) be a morphism in LRS and let Y be a subspace of X. Put Y 1 = ψ´1(Y) and give it
subspace topology of X 1. Then we have a cartesian square in LRS

(Y 1, OX1 |Y 1) (Y, OX|Y)

(X 1, OX1) (X, OX)
(ψ,θ)

The two vertical morphisms are the canonical embedding, and the upper horizontal map follows from the universal property
for (Y, OX|Y) ; to see the so obtained map is a morphism in LRS, one can argue as in (2.22).

2.23 Ideal sheaf. Let (X, OX) be a ringed space. An ideal sheaf J of OX is a sheaf on X such that J (U) is an ideal of OX(U)
for any openU. Symbolically we write J �OX. The ringed space (X, OX/J ) is called the ringed space associated to J . Note
that OX/J means the sheafification of the presheaf U ÞÑ OX(U)/J (U).

The natural map ιJ : (X, OX/J ) Ñ (X, OX) enjoys the following universal property : if (f, f7) : (T , G) Ñ (X, OX) is a
morphism in RS with J Ď ker f7, then there exists a unique morphism (T , G) Ñ (X, OX/J ) making the following triangle
commute

(T , G) (X, OX)

(X, OX/J )

(f,f7)

ιJ

18



2.23.1 Let (f, θ) : (Y, OY) Ñ (X, OX) be a morphism in RS and J an ideal sheaf of OX. Note that f˚OX = OY (2.11). For each
OY-module N , define

JN = im (f˚J bOY
N Ñ f˚OX bOY

N – N ) P ModOY

When N = OY , we see JOY = Im(f˚J Ñ OY). Put θ7 : f´1OX Ñ OY . Then θ7 induces a map

f´1 (OX/J ) – f´1OX/f´1J Ñ OY/JOY

By adjunction we obtain a morphism θ : OX/J Ñ f˚ (OY/JOY). In sum, we obtain a map

(f, θ) : (Y, OY/JOY) −Ñ (X, OX/J )

in RS. In fact, it fits into a Cartesian square in RS

(Y, OY/JOY) (X, OX/J )

(Y, OY) (X, OX)

(f,θ)

(f,θ)

2.24 Let (X, OX) be a local-ringed space and J � OX an ideal ideal. For x P X, it may happen that the stalk (OX/J )x is not
a local ring. Taking stalk is exact, so (OX/J )x – OX,x/Jx. Thus it is not a local ring if and only if it is zero, or equivalently,
OX,x = Jx. Define

V(J ) = tx P X | Jx Ĺ OX,xu

This is a closed subset of X, for if x R V(J ), then OX,x = Jx, so there is a neighborhood U of x and f P J (U) such that
fx = 1 P OX,x. Shrinking U further shows that f|U = 1 P J (U), so U Ď XzV(J ).

Let j : V(J ) Ñ X denote the inclusion. Then V(J ) together with the sheaf of rings j´1 (OX/J ) = OX/J
ˇ

ˇ

V(J )
becomes a

local-ringed space, called the closed local-ringed subspace of (X, OX) associated to the ideal sheaf J .
Denote by iJ : (V(J ), j´1 (OX/J ))

ιJ
Ñ (X, OX/J ) Ñ (X, OX) the composition (2.23). This morphism in LRS enjoys the

following universal property : if (f, f7) : (T , G) Ñ (X, OX) is a morphism in LRS with J Ď ker f7, then there exists a unique
morphism (T , G) Ñ (V(J ), j´1 (OX/J )) making the following triangle commute

(T , G) (X, OX)

(V(J ), j´1 (OX/J ))

(f,f7)

iJ

We first show f(t) P V(J ). Since taking stalk at f(t) is exact, we see (ker f7)f(t) = ker(OX,f(t) Ñ Gt). Since the stalk map is
a local homomorphism, we see (ker f7)f(t) is contained in the maximal ideal of OX,f(t), whence Jf(t) Ĺ OX,f(t). Similar to
(2.23), we have a morphism OX/J Ñ f˚G = j˚

(
f|V(J )

)
˚

G, so adjunction gives j´1 (OX/J ) Ñ
(
f|V(J )

)
˚

G. The resulting
map is a morphism in LRS and makes this triangle commutative, as one can argue as in (2.22).

2.24.1 Let (f, θ) : (Y, OY) Ñ (X, OX) be a morphism in LRS. Let N P ModOY
and J �OX an ideal sheaf. By definition there

exists a commutative diagram

f˚J bB N = f´1J bf´1OX
OY bOY

N N

JN
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Taking stalk at y P Y gives (c.f. (2.12))

Jf(y) bOX,f(y)
OY,y bOY,y Ny Ny

(JN )y

This proves that

(JN )y = Im
(

Jf(y) bOX,f(y)
Ny Ñ Ny

)
= Jf(y)Ny.

2.24.2 Lemma. V(JOY) = f´1(V(J )).

Proof. Recall that for y P Y, (OY/JOY)y – OY,y/Jf(y)OY,y. Let mf(y) and my be the maximal ideals of OX,f(y) and Oy
respectively ; note that fy(mf(y)) Ď my.

— If y P V(JOY), then Jf(y)OY,y Ĺ OY,y. A fortiori we have Jf(y) Ĺ OX,x, so y P f´1(V(J )).

— If y P f´1(V(J )), then Jf(y) Ď mf(y). But

Jf(y)OY,y Ď mf(y)OY,y Ď my Ĺ OY,y

so y P V(JOY).

As as corollary, we see from (2.24) and this lemma that a morphism (Y, OY) Ñ (X, OX) in LRS induces a morphism

(V(JOY), (OY/JOY)
ˇ

ˇ

V(JOY)
) Ñ (V(J ), (OX/J )

ˇ

ˇ

V(J )
)

Moreover, it fits into a Cartesian square in LRS.

(V(JOY), (OY/JOY)
ˇ

ˇ

V(JOY)
) (V(J ), (OX/J )

ˇ

ˇ

V(J )
)

(Y, OY) (X, OX)

This follows from (2.23.1) and (2.24).

2.24.3 Let F be an OX-module. Let us compute the pullback sheaf j˚F . By definition (2.11)

j˚F :=
(

OV(J ) b
p
jpreOX

jpreF
):

=
(
jpre (OX/J ) b

p
jpreOX

jpreF
):

Define jpre (OX/J ) b
p
jpreOX

jpreF Ñ jpre(OX/J bOX
F) as follows. For any open set U Ď V(J ), we have

jpre (OX/J ) b
p
jpreOX

jpreF(U) – lim−Ñ
j(U)ĎVPTop(X)

(
(OX/J ) (V) bOX(V) F(V)

)
.

Here we use the fact that direct limit commutes with tensor product. Consider the sheafification map

lim−Ñ
j(U)ĎVPTop(X)

(
(OX/J ) (V) bOX(V) F(V)

) (2.4)−Ñ lim−Ñ
j(U)ĎVPTop(X)

(OX/J bOX
F)(V)

The right hand side is precisely jpre(OX/J bOX
F). This finishes our definition. Passing to sheafification (2.4), we obtain a

morphism of OV(J )-modules

j˚F −Ñ j´1(OX/J bOX
F) – j´1(F/JF).
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The last isomorphism is the obvious one. From the construction above, we see this is in fact an isomorphism (check on
stalks).

2.25 Definition. Let (X, OX) be a local-ringed space.

1. For open U in X, (U, OX
ˇ

ˇ

U
) is called an open local-ringed subspace of (X, OX).

2. For J � OX, (V(J ), (OX/J )
ˇ

ˇ

V(J )
) is called a closed local-ringed space of (X, OX) associated to J .

3. For open U and J� OX
ˇ

ˇ

U
, (V(J ), (OX

ˇ

ˇ

U
/J )

ˇ

ˇ

V(J )
) is called a locally closed local ringed subspace of (X, OX).

A morphism f : (Y, OY) Ñ (X, OX) in LRS is called an open immersion / closed immersion / immersion if there exists
an open / closed / locally closed local-ringed subspace (Z, OZ) of (X, OX) and an isomorphism (Y, OY) Ñ (Z, OZ) of LRS
making the following diagram commute

(Y, OY) (X, OX)

(Z, OZ)

f

„

2.26 Proposition. Let f : (Y, OY) Ñ (X, OX) be a morphism in LRS.

1. f is an open immersion if and only if f is a topological open embedding and for any y P Y, the stalk map fy : OX,f(y) Ñ

OY,y is an isomorphism.

2. f is a closed immersion if and only if f is a topological closed embedding and for any y P Y, the stalk map fy : OX,f(y) Ñ

OY,y is surjective.

3. f is an immersion if and only if f is a topological locally closed embedding and for any y P Y, the stalk map
fy : OX,f(y) Ñ OY,y is surjective.

Proof.

1. The only if part is clear. For the if part, let U be the image of f. It suffices to consider (U, OX
ˇ

ˇ

U
).

2. To show the only if part, say

(Y, OY) (X, OX)

(V(J ), (OX/J )
ˇ

ˇ

V(J )
)

f

„

Taking stalk at y P Y gives
OY,y OX,f(y)

OX,f(y)/Jf(y)

„

and this proves the surjectivity.
Now we consider the if part. Let J be the kernel of the morphism OX Ñ f˚OY . By the universal property 2.24 there
exists a morphism (Y, OY) Ñ (V(J ), (OX/J )

ˇ

ˇ

V(J )
) making the triangle commute

(Y, OY) (X, OX)

(V(J ), (OX/J )
ˇ

ˇ

V(J )
)

f
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We claim that f(Y) = V(J ), and OY – (OX/J )
ˇ

ˇ

V(J )
. For x P X, since f is a closed embedding, we have

(f˚OY)x =

#

OY,y , if x = f(y)
0 , otherwise

For convenience, we write supp f˚OX to denote the set of those points in X at which the stalk of f˚OX does not vanish.
Then we see supp f˚OY = f(Y).
On the other hand, since f is an embedding (and by the fact mentioned in the last part of (2.22)), we have an exact
sequence

0 f´1J f´1OX f´1f˚OY – OY

We contend the last morphism is surjective. This follows from our assumption once we look at the stalks. Hence

(f˚OY)x = (f´1f˚OY)x =

#

(OX/J )x , if x = f(y)
0 , otherwise

and this shows supp f˚OY Ď V(J ) = supp OX/J Finally, taking stalk directly to the exact sequence 0 Ñ J Ñ OX Ñ

f˚OY Ñ 0 gives (f˚OY)x Ď (OX/J )x, showing that V(J ) Ď supp f˚OY . Hence the equality f(Y) = V(J ) is proved.
The above computation of stalks also proves the assertion for sheaves.

3. This follow from 1. and 2. (and perhaps their proofs).

2.27 The definition of locally closed subspaces seems to depend on the choice of open sets we choose. In fact it does not, in
the following sense. LetU be an open subspace of X and J �OX

ˇ

ˇ

U
. Denote by (Y, OY) the associated locally closed subspace.

Let U0 be the largest open subspace of X containing Y as a closed subset and let j : U Ñ U0 be the inclusion. Let ιU and ιU0

be the inclusion of Y into U and U0, respectively. Let us write OU and OU0 for brevity to mean the sheaves of rings for their
open local-ringed subspace structures. By definition we have an exact sequence

0 J OU (ιU)˚OY 0

Applying j˚ this sequence (j˚ is exact in this case), we obtain an exact sequence

0 j˚J j˚OU j˚(ιU)˚OY = (ιU0)˚OY 0

OU0 (ιU0)˚OY

The middle vertical arrow is surjective, and hence so is the lower horizontal one. Denote by I the kernel of the lower
horizontal arrow. Then we have a commutative diagram with exact rows.

0 j˚J j˚OU j˚(ιU)˚OY 0

0 I OU0 (ιU0)˚OY 0

We claim V(I) = V(J ) = Y and the chain on the bottom induces an isomorphism (OU0/I)
ˇ

ˇ

V(I) – OY . The first is easy, as
taking stalks we see V(I) = supp(ιU0)˚OY , and for x P U0,

((ιU0)˚OY)x =

#

OY,x , if x P V(J )

0 , otherwise
.

So V(I) = V(J ). Now the assertion for sheaves is clear.
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3 Schemes

3.1 Affine schemes

3.1 Let A be a (unital commutative) ring. The set of all prime ideals of A is called the spectrum of A, and is denoted by
SpecA. For a subset S Ď A, put V(S) = tp P SpecA | S Ď pu. One checks easily that for ideals I, J and Iα, we have

(i)
Ş

α V(Iα) = V (
Ť

α Iα),

(ii) V(I) Y V(J) = V(IX J) = V(IJ),

(iii) V(A) = H, V((0)) = SpecA,

(iv) V(I) = V(
?
I),

(v) V(S) = V(xSy), where S Ď A is a subset and xSy denotes the ideal generated by S.

(vi) V(I) Ď V(J) if and only if J Ď
?
I.

In particular, by (i), (ii), (iii), the V(S) define a topology of closed sets on SpecA. For each f P A, the open set D(f) =

SpecAzV((f)) = tp | f R pu is called a principal open set. The collection of all principal open sets form a basis for this
topology.

The topological space SpecA is compact. More generally, each principal open set D(f) is compact. To see this, say
D(f) =

Ť

iD(gi). Taking complement, we see V((f)) =
Ş

i V((gi)) = V((gi)iPI). By (vi), this means f P
a

(gi)iPI. Thus we
can find i1, . . . , in P I such that f P

a

(gi1 , . . . ,gin), and by (vi) again we see V((f)) Ě V((gi1 , . . . ,gin)). Taking complements,

we see D(f) Ď
n
Ť

k=1
D(gik), and hence D(f) =

n
Ť

k=1
D(gik).

3.2 Affine schemes. For a principal open set D(f), define

OA(D(f)) = OSpecA(D(f)) = Af.

If D(f) Ď D(g), i.e., f P
a

(g) by (3.1).(vi), then fn = gh for some n P N and h P A. This gives rises to a map Ag Ñ Af, by

sending 1
g

to h

fn
. The resulting map is easily seen to be independent of the choice of n and h. This independence also shows

that OA defines a presheaf of rings on the principal open sets. To show this is a sheaf, since D(f) XD(g) = D(fg), by (2.3)
and (3.1) we need to check to exactness of the following sequence

0 Af

n
ź

i=1
Afi

n
ź

i,j=1
Afifj (‹)

where f, fi P AwithD(f) =
n
Ť

i=1
D(fi). The argument is the same as the one in the next paragraph, so we defer our proof. By

(2.3) we then obtain a sheaf of rings OA = OSpecA defines on the whole SpecA. The ringed space (SpecA, OSpecA) is called
the affine scheme. If no confusion will occur, we write SpecA to denote the pair (SpecA, OSpecA).

We compute the stalk of OSpecA at a prime p. Since the D(f) form a basis, we have

OSpecA,p = lim−Ñ
Top(SpecA)QUQp

OA(U) = lim−Ñ
D(f)Qp

OA(D(f)) = lim−Ñ
fRp

Af = Ap.

The last isomorphism is given by the natural maps Af Ñ Ap. Hence SpecA is in fact a local-ringed space.

3.3 Affine tilde. Let A be a ring and (X, OX) = (SpecA, OSpecA). For an A-module M, we construct an OX-module ĂM as
follows. For each principal open set D(f), define

ĂM(D(f)) =Mf =MbA Af.
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This defines a presheaf on principal open sets. To show this really defines a sheaf on them, and hence on X, by (2.3) we must
show the sequence

0 Mf

n
ź

i=1
Mfi

n
ź

i,j=1
Mfifj (♡)

is exact for every f, f1, . . . , fn P A with D(f) = D(f1) Y ¨ ¨ ¨ YD(fn). Since D(f) = D(f1) Y ¨ ¨ ¨ YD(fn), V(f) = V((f1, . . . , fn)),

so there exist some k ě 0 and a1, . . . ,an P A such that fk =
n
ÿ

i=1
aifi. Raising to arbitrary powers, we see for each m P N we

can findM ě 0 and a1, . . . ,an P A such that

fM =
n
ÿ

i=1
aif

m
i

We first show the exactness at the first place. Suppose a

fℓ
P Mf is mapped to zero in each Mfi . By definition this means

frii a = 0 in M for some ri ě 0. If we take m ě maxtr1, . . . , rnu, we see fmi a = 0 in M. Choose M ě 0 and a1, . . . ,an P A

corresponding tom as above. Then

0 = a(a1f
m
1 + ¨ ¨ ¨ + anf

m
n ) = afM,

and this means a
fℓ

= 0 inMf.

Next we show the exactness at the middle place. Suppose
(
bi

fℓii

)
P

n
ś

i=1
Mfi satisfies bi

fℓii
´
bj

f
ℓj
j

= 0 in Mfifj for all

1 ď i, j ď n ; we may assume each ℓi is the same, say equal to ℓ. A similar argument as above show that we can find m ě 0
such that

(bif
ℓ
j ´ bjf

ℓ
i)(fifj)

m = 0 inM

for all i, j. If we put b 1
i = bif

m
i , the above identities become b 1

if
ℓ+m
j = b 1

if
ℓ+m
j . Take M ě 0 and a1, . . . ,an P A with respect

to ℓ+m. We claim a1b
1
1 + ¨ ¨ ¨ + anb

1
n

fM
is mapped to

(
bi

fℓi

)
=

(
b 1
i

fℓ+mi

)
P
n
ś

i=1
Mfi . Indeed,

(a1b
1
1 + ¨ ¨ ¨ + anb

1
n)f

ℓ+m
j =

n
ÿ

i=1
aib

1
if
ℓ+m
j =

n
ÿ

i=1
aib

1
jf
ℓ+m
i =

(
n
ÿ

i=1
aif

ℓ+m
i

)
b 1
j = f

Mb 1
j.

This show ĂM is really a sheaf on X. In fact, as one easily can see, ĂM is an OX-module, and M ÞÑ ĂM defines a functor
ModA Ñ ModOX

. The computation of stalks in (3.2) implies that ĂMp – MbAp =Mp for all primes p.

3.4 Lemma. For a complexM Ñ N Ñ L in ModA, it is exact if and only if ĂM Ñ rN Ñ rL is an exact sequence in ModOX
.

Proof. SupposeM Ñ N Ñ L is exact. Since localization is an exact functor, for each p P SpecA, there exists an exact sequence
Mp Ñ Np Ñ Lp. Moreover, this is the same as the sequence ĂMp Ñ rNp Ñ rLp, so by (2.16) we see ĂM Ñ rN Ñ rL is exact. For
the converse, it suffices to show M

α
Ñ N

β
Ñ L is exact if each localization sequence Mp Ñ Np Ñ Lp is exact. That is, we

must show kerβ/ Imα = 0 if (kerβ/ Imα)p = 0 for all p P SpecA. If D := kerβ/ Imα is nontrivial, take m P D ´ t0u with
annA(m) Ĺ A and consider a maximal ideal m containing annA(m). The image of m in Dm is then nonzero, for otherwise
ma = 0 for some a P A´ m, a contradiction to our choice of m. Hence D = 0, and the sequenceM Ñ N Ñ L is exact.

3.5 Definition. A scheme is a local-ringed space (X, OX) admitting an open cover U such that for any U P U , there is an
isomorphism (U, OX|U) – (SpecAU, OSpecAU

) in LRS for some ring AU.
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3.6 Let (X, OX) and (Y, OY) be local-ringed spaces. There exists a canonical map

HomLRS(X, Y) HomRing(OY(Y), OX(X)).

Moreover, this map is bifunctorial in X and Y. More generally, there is a bifunctorial map

HomModLRS((X, F), (Y, G)) HomMod(OY(Y) ñ G(Y), OX(X) ñ F(X)).

3.7 Theorem. Let A be a ring and (X, OX) P LRS. Then the map in 3.6

HomLRS(X, SpecA) HomRing(A, OX(X)).

is a bĳection.

Proof. Let (f, f7) P HomLRS(X, SpecA). Then for any x P X, if we put y = f(x) = p P SpecA, then we have a commutative
diagram

OX(X) A

OX,x Ap

res

f
7
SpecA

fx

Write mx the unique maximal ideal of OX,x. Then since fx is a local homomorphism, we see p = (f7
SpecA)

´1 res´1(mx). On
the other hand, for any g P A, there is a commutative diagram

OX(X) A

f˚OX(D(g)) Ag

res

f
7
SpecA

f
7
D(g)

The right vertical arrow is localization, so f7

D(g) is in fact uniquely determined by res ˝f
7
SpecA. Since the D(g) form an open

basis for SpecA, this shows f7 is uniquely determined by f7
SpecA. This proves the injectivity.

For the surjectivity, let θ P HomRing(OX(X),A). We define a map f : X Ñ SpecA by setting f(x) = θ´1(resXx )´1(mx),
where resXx : OX(X) Ñ OX,x is the restriction and mx is the maximal ideal of OX,x. To show this is continuous, we claim

f´1(D(g)) = Xθ(g)

Indeed, x P f´1(D(g)) ô f(x) P D(g) ô g R f(x) = θ´1(resXx )´1(mx) ô resXx (θ(g)) R mx ô x P Xθ(g).
For g P A, consider the diagram

OX(X) A

f˚OX(D(g)) Ag

resXXθ(g)

θ

To construct a morphism in the bottom so that the square is commutative, we use the universal property of localization. To
this end, we need to show resXXθ(g)

(θ(g)) P (f˚OX(D(g)))ˆ = OX(Xθ(g))ˆ. But this is the content of (2.21), thus there exists a
unique arrow f˚OX(D(g)) Ð Ag making the above square commuting. For arbitrary U, the map can be defined using (2.3).
Finally, by construction we see each stalk map is a local homomorphism.
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3.7.1 Corollary. Let A be a ring,M an A-module. and (X, OX) P LRS. Then the map in (3.6)

HomModLRS((X, F), (SpecA,ĂM)) HomRing(A ñ M, OX(X) ñ F(X)).

is a bĳection.

3.7.2 Corollary. Let A be a ring. ThenM ÞÑ ĂM defines a fully faithful exact functor ModA Ñ ModOSpecA .

3.8 Denote by Sch (resp. AffSch) the full subcategory of LRS whose objects are schemes (resp. affine schemes). Then the
bĳection in (3.7) implies that the functor Spec : Ring Ñ AffSch defines an equivalence of categories

Spec : Ringop AffSch

A SpecA

OX(X) X

3.8.1 Associated affine schemes. For a local-ringed space (X, OX), the identity idOX(X) defines via (3.7) a canonical map

(X, OX) −Ñ Spec OX(X)

universal in all arrows in LRS from (X, OX) into affine schemes. We will see if X is an affine scheme, then this is an
isomorphism. In general, this is neither surjective nor injective.

For example, let k be a ring and n ě 2. Consider the affine n-space X = Ank := Speck[x1, . . . , xn] but minus the origin :

Ank ´ t0u := Ank zV(x1, . . . , xn) = D(x1) Y ¨ ¨ ¨ YD(xn).

Let’s compute OX(Ank ´ t0u). It is the kernel of the map
ź

iP[n]

k[x1, . . . , xn]xi −Ñ
ź

1ďi,jďn
k[x1, . . . , xn]xi,xj .

Let (fi)iP[n] be in the kernel. Pick N " 0 so that gi := (x1 ¨ ¨ ¨ xn)
Nfi P k[x1, . . . , xn]. Since (gi)iP[n] also lies in the kernel

and k[x1, . . . , xn] embeds into every localization in the scene, it follows that g1 = ¨ ¨ ¨ = gn. Since xN1 f1, xN2 f2 P k[x1, . . . , xn]
already, it follows that f1 = ¨ ¨ ¨ = fn P k[x1, . . . , xn]. In sum

OX(X) = k[x1, . . . , xn] −Ñ OX(Ank ´ t0u)

is an isomorphism, so the universal map is

Ank ´ t0u Ñ Speck[x1, . . . , xn] = Akn

and it coincides with the open embedding. In particular, it cannot be surjective.
On the other hand, let X := P1

k denote the projective 1-space, which is the scheme obtained by glueing Ux := Speck[x]
and Uy := Speck[y] along k[x, x´1] – k[y,y´1] where x ÞÑ y´1. We compute OX(X). It is the kernel of the map

k[x] ˆ k[y] k[x, x´1] ˆ k[y,y´1]

(f,g) (f(x) ´ g(x´1),g(x) ´ f(x´1))

But f(x) ´ g(x´1) = 0 only happens when f and g are constant, so

OX(X) = k.
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The universal map is then P1
k Ñ Speck, which is far from being injective.

3.9 The bifunctorial maps in (3.6) fit into the commutative diagram

HomModLRS((X, F), (Y, G)) HomMod(OY(Y) ñ G(Y), OX(X) ñ F(X))

HomLRS(X, Y) HomRing(OY(Y), OX(X)).

Choosing f P HomLRS(X, Y) and taking its preimages of vertical maps we obtain a functorial bĳection

HomModOSpecA
(G, f˚F) HomOY(Y)(G(Y), F(X)[f

7
SpecA])

where F(X)[f
7
Y ] means that we are regarding F(X) as an OY(Y)-module via the map f7

Y : OY(Y) Ñ OX(X). By 3.7 and 3.7.1,
we know when (Y, G) = (SpecA,ĂM), this is a bĳection :

HomModOSpecA
(ĂM, f˚F) HomA(M, F(X)[f

7
SpecA])

3.10 Let φ : A Ñ B be a ring homomorphism. Then it induces a continuous map Specφ : SpecB Ñ SpecA between affine
schemes. We list some properties of Specφ. For brevity, we write f = Specφ.

(i) f´1(D(f)) = D(φ(f)) for any f P A.

(ii) f´1(V(I)) = V(IB) for any ideal I of A.

(iii) f(V(J)) = V(JXA) for any ideal J of B.

(iv) f(SpecB) is dense in SpecA if and only if kerφ Ď
?

0.

(v) f is a homeomorphism onto its image if for all b P B there exists some u P Bˆ such that ub P f(A).

Proof.

(v) For b P B, we can find u P Bˆ and a P A such that ub = φ(a). Thus

D(b) = D(ub) = D(φ(a)) = f´1(D(a)).

Thus we are left to prove the injectivity of f. Let p ‰ q P SpecB. Say we can pick b P pzq. Choose a P A with
D(b) = f´1(D(a)). Then q P D(b) S p, and thus f(q) P D(a) S f(p).

3.11 Let S be a multiplicatively closed subset of A. As a consequence of (3.10).(v), we see the map Spec S´1A Ñ SpecA
induced by the canonical mapA Ñ S´1A is a homeomorphism onto its image. Recall from algebra the image of Spec S´1A Ñ

SpecA is tp P SpecA | p X S = Hu.
If we consider the case S = tfnuně0, we then obtain a homeomorphism h : SpecAf Ñ D(f). For D(g) Ď D(f), we have a

map Af Ñ Ag. Denote by g its image in Af ; we then have an isomorphism (Af)g Ñ Ag given by the universal property of
localization. Then

OA(D(g)) = Ag – (Af)g = OSpecAf
(D(g))

(3.10).(i)
= h˚OSpecAf

(D(g))

This isomorphism is compatible with the restriction of principal open sets, so by (2.3.1) we obtain an isomorphism
OSpecA

ˇ

ˇ

D(f)
– h˚OSpecAf

. In sum, the natural homomorphism A Ñ Af induces an open immersion SpecAf Ñ SpecA
of LRS with image being the principal open set D(f).
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In fact, the above computation shows that ĂM|D(f) – h˚
ĄMf, where in the right hand side,Mf is viewed as anAf-module.

3.11.1 The morphism D(f) Ñ SpecAf is in fact the same as the morphism coming from the bĳection (3.7) and idAf
. To be

specific, we have a bĳection
HomLRS(D(f), SpecAf) HomRing(Af,Af).

Then the morphism corresponds to the identity map id : Af Ñ Af is exactly the same as the one we construct in (3.11).
Indeed, this follows from the construction of the bĳection (3.7).

3.11.2 The morphismD(f) Ñ SpecAf is compatible with the restriction. SupposeD(g) Ď D(f), so we have a mapMf Ñ Mg.
Then we have a commutative diagram

D(f) SpecAf

D(g) SpecAg

The map on topological spaces are clearly commutative. For sheaves, letD(h) Ď D(g). Then we have a commutative diagram

ĂM(D(h)) =Mh (Mf)h

ĂM(D(h)) (Mg)h

each arrow given by the localization. This tells us the commutativity of the sheaf maps.

3.12 Closed subscheme of SpecA defind by ideals. Let A be a ring and I an ideal. Then the morphism

ι : Spec(A/I) Ñ SpecA

induced by the quotient map A Ñ A/I is a closed immersion in the sense of (2.25). Indeed, the map on topological spaces is
obviously a homeomorphism onto the closed subset V(I) of SpecA. To see it is a closed immersion, we compute the kernel
I of the sheaf map OSpecA Ñ ι˚OSpec(A/I). Let f P A. On the open set D(f), this map is Af Ñ (A/I)fmod I. By a similar
argument as above, we see the kernel is If, so that I(D(f)) = If. Therefore, I is the affine tilde rI, and ι factor through the
inclusion V(I) Ď SpecA, yielding a unique isomorphism Spec(A/I) – (V(I), OSpecA/rI)|V(I)) by (2.24).

3.1.1 Quasi-coherent sheaves

3.13 Definition. Let (X, OX) be a ringed space and F P ModOX
.

(i) F is quasi-coherent if every point in X admits an open neighborhood U such that there exists an exact sequence

(
OX

ˇ

ˇ

U

)‘I (
OX

ˇ

ˇ

U

)‘J F |U 0

for some index sets I and J, depending on x.

(ii) F is locally free if every point in X admits an open neighborhood U such that F |U = (OX|U)
‘I for some index set I,

depending on x.

(iii) F is locally free of rank n if the index set I in the (ii) can be chosen to be [n] for any x P X.

(iv) An invertible sheaf is a locally free sheaf of rank 1.
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3.13.1 Denote by QcohOX
the full subcategory of ModOX

consisting of all quasi-coherent OX-modules. If (X, OX) is a
scheme, we write QcohX = Qcoh(X) := QcohOX

instead, if no confusion arises.

3.14 Lemma. Let A,B be rings and f : SpecB Ñ SpecA be any morphism. We know f = (φa,φ7) for a unique ring
homomorphism φ : A Ñ B.

1. f˚
rN = ĆN[φ] for any B-module N.

2. f˚
ĂM = ČBbAM for any A-moduleM.

Proof.

1. Let h P A. By (3.10), we have

f˚
rN(D(h)) = rN(f´1(D(h))) = rN(D(φ(h))) = Nφ(h) = (N[φ])h = ĆN[φ](D(h))

Now 1. follows from (2.3.1).

2. For any OB-module F , by adjunction and (3.9)

HomModOB
(f˚

ĂM, F) = HomModOA
(ĂM, f˚F) – HomModA

(M, F(SpecB)[φ]) – HomModB
(MbA B, F(SpecB))

– HomModOB
( ČMbA B, F).

3.15 Theorem. Let F be a quasi-coherent sheaf on X = SpecA. Then F – ĂM for some A-moduleM.

Proof. Let U = D(f) be an open set such that there exist I, J and an exact sequence

(
OX

ˇ

ˇ

U

)‘I (
OX

ˇ

ˇ

U

)‘J F |U 0

ĂAf
‘I

ĂAf
‘J

F |U 0

where r̈ is taken from ModAf
. Consider the corresponding map A‘I

f Ñ A‘J
f of A-modules and let K denote its cokernel.

Then rK – F |U as they are the cokernels of the same map.
Since X is compact, we can find D(f1), . . . ,D(fn) such that X = D(f1) Y ¨ ¨ ¨ YD(fn) and

(D(fi), F |D(fi)) – (SpecAfi , ĂMi)

for someMi P ModAfi
, where the isomorphism here is as in (3.11). For each open U, we have an exact sequence

0 F(U)
n
ś

i=1
F(UXD(fi))

n
ś

i,j=1
F(UXD(fi) XD(fj))

0 F(U)
n
ś

i=1
(ιD(fi))˚

(
F |D(fi)

)
(U)

n
ś

i,j=1
(ιD(fi)XD(fj))˚

(
F |D(fi)XD(fj)

)
(U)

where for an open U, ιU : U Ñ X denotes the inclusion, so we have an exact sequence

0 F
n
ś

i=1
(ιD(fi))˚

(
F |D(fi)

) n
ś

i,j=1
(ιD(fi)XD(fj))˚

(
F |D(fi)XD(fj)

)
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Now Lemma 3.14 implies the latter two OX-modules arise from someA-modules, which in turns says that F arises from the
A-module.

3.15.1 Corollary Let A be a ring. The affine tilde r̈ : ModA Ñ QcohSpecA is an equivalence of categories with inverse
F ÞÑ F(SpecA).

Proof. This follows immediately from Theorem 3.15 and (3.7.2).

3.15.2 From (3.7.1), for F P ModOA
we have a canonical morphism α : ČF(SpecA) Ñ F in ModOA

induced by the identity
map idF(X). The content of Theorem 3.15 can be made more formal. That is,

Lemma. α : ČF(SpecA) Ñ F is an isomorphism if F is OA-quasi-coherent.

Proof. Let U = D(f) be a principal affine open subset of SpecA. By construction, αU is given by the localization. Precisely,
we have a commutative triangle

F(X)

F(X)f F(D(f))
αU

each map being canonical. We claim αU is an isomorphism. This amounts to show that

(i) If s P F(X) restricts to 0 in F(D(f)), then fns = 0 for some n ą 0.

(ii) Given t P F(D(f)), there exists some n such that fnt P F(X).

Note that (i) and (ii) imply injectivity and surjectivity, respectively. We first show (i). Let s P F(X) with s|D(f) = 0. Let D(fi)

be as in the proof of Theorem 3.15. Then

0 = s|D(fi)XD(f) P F(D(fi) XD(f)) = F |D(fi)(D(fif)) – (Mi)f

(note that fi acts invertibly on Mi). This means fni(s|D(fi)) = 0 in Mi for some ni ě 1, and hence an n ě 1 such that
(fns)|D(fi) = 0 for each i. But this means fns = 0.

For (ii), let t P F(D(f)). Then t|D(ffi) P F(D(ffi)) – (Mi)f, so we can find ti P Mi – F(D(fi)) and ni ě 1 such that
fnit = ti on D(ffi). Again pick n " 0 so that fnt = ti on D(ffi) for each i. On the intersection D(fi) XD(fj) = D(fifj), we
have

ti|D(ffifj) = (fnt)|D(ffifj) = tj|D(ffifj)

so by (i) (applied to X = D(fifj)) we can find mij ě 1 such that fmij(ti ´ tj) = 0. Again we can take m " 0 such that
fm(ti ´ tj) = 0 for any i, j. Now fmti P F(D(fi)) patches to a global section s P F(X) whose restriction to D(f) is fn+mt.

3.15.3 Corollary. Let X be a scheme and F P ModOX
. TFAE :

1. F is quasi-coherent.

2. For any affine open U Ď X, F |U – ĂM for some OX(U)-moduleM.

3. There exists an affine open cover U of X such that for any U P U , F |U – ĂM for some OX(U)-moduleM.

3.15.4 Corollary. Let X be a scheme and f : F Ñ G be a morphism in ModOX
. If F and G are OX-quasi-coherent modules,

then so are ker f, coker f and Im f.
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3.16 Theorem Let X be a scheme. Then QcohX is a weak Serre abelian subcategory of ModOX
. 1

3.17 Let f : X Ñ Y be a morphism of schemes. If F is an OY-quasi-coherent module, then the pullback f˚F is also OX-
quasi-coherent. Indeed, this follows from the definition and the fact that tensor product is right exact. For the pushforward,
we have the following

Lemma. Let F be an OX-quasi-coherent module. Then f˚F is OY-quasi-coherent if there exist
(i) an affine open cover U = tUiuiPI of Y, and

(ii) for each i P I, a finite affine open cover tXi,jujPJi of f´1(Ui) such that Xi,j X Xi,j1 is compact for every j, j 1 P J2i.

Proof. For each i P I, put fi : f´1(Ui) Ñ Ui to be the map induced by f. Then (f˚F)|Ui
= (fi)˚(F |f´1(Si)). Since quasi-

coherence is a local property, we may then assume that Y = SpecA for some ring A and X is covered by finite affine opens
Xj (j P J) with Xj X Xj1 compact for any j, j 1 P J.

For any j, j 1 P J by compactness we may fix a finite affine open cover Xj,j1,k (k P Kj,j1) ; let ιj : Xj Ñ X and ιj,j1,k : Xj,j1,k Ñ X

be the inclusions. Then we have an exact sequence

0 F
ź

jPJ

(ιj)˚

(
F |Xj

) ź

j,j1PJ

ź

kPKj,j1

(ιj,j1,k)˚

(
F |Xj,j1 ,k

)
Since f˚ is left exact, we have the following exact sequence

0 f˚F
ź

jPJ

(f ˝ ιj)˚

(
F |Xj

) ź

j,j1PJ

ź

kPKj,j1

(f ˝ ιj,j1,k)˚

(
F |Xj,j1 ,k

)
Note that f ˝ ιj and f ˝ ιj,j1,k are morphisms between affine schemes, so by Lemma 3.14, the last two sheaves above are
OY-quasi-coherent. Thus by Corollary 3.15.4 f˚F is OY-coherent as well.

3.18 Let X be a local ringed space. Recall in (2.21) for any g P OX(X) we defined the open subset Xg of X. Then by patching
we can construct an inverse of g|Xg

, so we actually have g|Xg
P OX(Xg)ˆ. Let F P ModOX

. Then g acts on F(Xg) in an
invertible manner, so the universal property of localization gives rise to a commutative triangle

F(X)

F(X)g F(Xg)

Now let f : X Ñ S be a morphism in LRS with S affine. Let h P OS(S) and g = f
7
S(h) P OX(X). Suppose f˚F is OS-quasi-

coherent, then the above map
F(X)g F(Xg)

is in fact an isomorphism. The first step to see this is the equality

Xg = f´1(Sh).

For x P Xg if and only if gx ‰ 0 in κ(x). But gx = fx(hf(x)) and fx : κ(f(x)) ãÑ κ(x), so this is equivalent to saying that
hf(x) ‰ 0 in κ(f(x)), which is the same as saying that x P f´1(Sh). Since S is affine, by 3.15 we know f˚F = ĂM for some
OS(S)-module. We have a similar commutative triangle

(f˚F)(S)

(f˚F)(S)h (f˚F)(Sh)

1. This is not true for a general ringed space.
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In this time the lower horizontal arrow is an isomorphism, for they are in fact bothMh. But

(f˚F)(S)h = F(X)h = F(X)g

where h acts on F(X) via f7
S : OS(S) Ñ OX(X). Thus the horizontal arrow becomes the arrow that we focus on, and this

proves it is an isomorphism.

3.19 We apply (3.18) to the case F = OA for some scheme X. We now prove X is affine if and only if α : X Ñ Spec OX(X) (cf.
(3.8.1)) is an isomorphism in LRS. Only “only if” part needs a proof. For the map on topological space, we easily see from
the construction that there is a commuting square

X Spec OX(X)

SpecA SpecA

„

α

„

where A is a ring such that X – SpecA as LRS, so α is a homeomorphism. For the sheaf map, for each g P OX(X),
α˚O(D(g)) Ð OSpec OX(X)(D(g)) is induced by the localization OX(Xg) Ð OX(X)g (here we use α´1(D(g)) = Xg), and thus
by (3.18) it is an isomorphism. Since the D(g) form a basis of the topology on Spec OX(X), so α˚OX Ð OSpec OX(X) is an
isomorphism.

3.20 For another application of (3.18), we introduce

Definition. A morphism f : X Ñ S of schemes is called affine if it satisfies the following equivalent conditions.

(i) S admits an affine open cover V such that f´1(V) is affine for each V P V .

(ii) For any affine open V Ď S, f´1(V) is affine.

Clearly (ii) implies (i). To see (i) implies (ii), first note that if we write V = tViuiPI to be a cover satisfying (i) for f, then
the preimage of principal affine open subsets of each Vi is also affine. This means f admits an open basis consisting of affine
opens whose preimages under f are affine. This means for any affine open V , the induced morphism f´1(V) Ñ V again
satisfies (i). Thus we may replace S by V – SpecA and X by f´1(V), and we must show, in this case, that X is affine. By (3.7)
we have a commuting square

X Spec OX(X)

S Spec OS(S)

f

αX

Spec(f7
S)

αS

where the horizontal arrows are canonical ; note that αS is an isomorphism by (3.19). As said above, we can find thiuiPI Ď A

such that Xgi
= f´1(D(hi)) is affine, where gi = f

7
S(hi). We see the D(gi) = (Spec f7

S)
´1(D(hi)) covers Spec OX(X) and

(αX)
´1(D(gi)) = f

´1(D(hi)) = Xgi
. Hence

(αX)
´1(D(gi)) = Xgi

Spec OX(Xgi
) Spec OX(X)gi

– D(gi)
αXgi

„ „

(3.18)

Note that this is simply αX|
D(gi)
Xgi

by (3.11), so this proves αX is an isomorphism (2.17).

3.21 Closed subscheme. Let X be a scheme, and let I be an ideal sheaf of OX. Following (2.24), we may construct a
closed local-ringed subspace (V(I), (OX/I)|V(I)) of (X, OX). Since we are discussing schemes, a natural question is whether
(V(I), (OX/I)|V(I)) is itself a scheme.
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Suppose Y = (Y, OY) = (V(I), (OX/I)|V(I)) is a scheme. Pick y P Y and let U 1 be an affine open neighborhood of y in X.
Since we assume Y is a scheme, we can find an affine open neighborhood V 1 of y in Y contained in U 1 X Y. The topology on
Y is given by subspace topology, so we can find f P OX(U 1) with D(f) X Y Ď V 1. Note that we can restrict f to Y XU 1, and

D(f) X Y = (U 1)f X Y = (U 1 X Y)f|YXU1 = (V 1)f|V 1

which is still affine in Y. In sum we find an affine neighborhood U of y in X such that U X Y remains affine in Y. In other
words, the closed immersion Y Ñ X is an affine morphism (3.20).

SupposeU = SpecA, UXY = SpecB and letϕ : A Ñ B be the homomorphism corresponding toUXY Ď U. We contend
that I|U – Ćkerϕ. In fact, for any f P A,

Ćkerϕ(Uf) = (kerϕ)f – ker(Af Ñ Bf) – ker(OX(Uf) Ñ OY(Y XUf)) = I(Uf).

The isomorphisms involved are functorial in Uf, so this proves our contention. In particular, this shows I is quasi-coherent
at y P Y. Furthermore, the inclusion I|XzY Ñ OX|XzY is an isomorphism, which shows that I is in fact quasi-coherent on the
whole X.

Conversely, suppose I is quasi-coherent. Let U be an affine open set of X. Then I|U is an quasi-coherent ideal sheaf of
OX|U. Clearly, V(I) XU = V(I|U), and

(OX/I)|V(I)|V(I)XU – (OX/I)|V(I)XU – (OX|U/I|U)|V(I|U).

Thus we can assumeX = SpecA is affine. By (3.15.2), there is a commutative diagram with vertical arrows being isomorphisms

I OX

ĆI(X) rA

so that OX/I – ČA/I(X). A easy computation shows that the closed subset V(I(X)) of SpecA coincides with V(I). From
(3.12) we can conclude that (V(I), (OX/I)|V(I)) is isomorphic to the affine scheme SpecA/I(X). We summarize what we
obtain and give some consequences in the following theorem.

3.21.1 Theorem. Let X be a scheme and I an ideal sheaf of X.

(i) Every closed immersion of schemes is an affine morphism.

(ii) The closed local-ringed subspace (V(I), (OX/I)|V(I)) is a scheme if and only if I is OX-quasi-coherent. In this case,
we say (V(I), (OX/I)|V(I)) is a closed subscheme of X.

(iii) If X = SpecA is affine, then every closed subscheme of X has the form (V(I), ĄA/I|V(I)) for some ideal I of A.

3.22 Let A be a ring. For an ideal I, we can equip the closed subset Z := V(I) with a scheme structure, making it the
image of the closed immersion SpecA/I Ñ SpecA. However, there are many possible closed subscheme structures on Z. For
instance, if J is another ideal such that

?
J =

?
I, then V(J) = Z, so we can also equip Zwith the scheme structure defined by

J. Nevertheless, among all possible closed subscheme structures on Z we see the one determined by
?
I is the most natural

one. Moreover, any ideal with V(J) = Z has a inclusion J Ď
?
I, which induces a closed immersion

(Z, ČA/
?
I|Z) (Z, ĄA/J|Z)

of schemes.
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For an ideal I, there is an ideal sheaf IOSpecA defined by U ÞÑ IOSpecA(U). The ideal sheaf
?
IOSpecA has the following

description :
?
IOSpecA(U) = ts P OSpecA(U) | s|x = 0 for all x P UX Zu.

Indeed, this follows as
?
IAf =

?
IAf for any f P A.

3.1.2 Invertible sheaves

3.23 Sheaf hom Let (X, OX) be a ringed space and F , G P Modpre
OX

. We define the hom sheaf as follows. For any openU Ď X,
let

HomOX
(F , G)(U) = HomOX|U(F |U, G|U)

and for any V Ď U, the restriction is given by the obvious arrow HomOX|U(F |U, G|U) Ñ HomOX|V (F |V , G|V). This makes
HomOX

(F , G) a presheaf of abelian groups on X. We also write EndOX
F = HomOX

(F , F).
When G is a sheaf, we easily check that HomOX

(F , G) is a sheaf of abelian groups. Also, HomOX
(F , G) is naturally, as in

the case of modules, a (left) EndOX
G-module and a right EndOX

F -module.

3.24 Adjunction between f˚ and f˚ : sheafified version Let f : (X, OX) Ñ (Y, OY) be a morphism of ringed spaces. We saw
in (2.11) that there is a functorial bĳection

HomOX
(f˚F , G) HomOY

(F , f˚G)„

Let V Ď Y be an open subset and view it as an open ringed subspace (V , OV = OY |V) ; a similar notation works for the
open subset f´1(V) Ď X. The morphism f restricts to fV := f|V

f´1(V)
: (f´1(V), Of´1(V)) Ñ (V , OV = OY |V), and we obtain a

functorial bĳection
HomO

f´1(V)
((fV)

˚F , G) HomOV
(F , (fV)˚G)„

for F in ModOV
and G in ModO

f´1(V)
.

Now let F be an OY-module and G an OX-module. We have (f˚F)|f´1V = (fV)
˚(F |V) and (f˚G)|V = (fV)˚(G|f´1(V)).

Various adjunctions are clearly compatible, so they give rise to an isomorphism of OY-modules

f˚HomOX
(f˚F , G) HomOY

(F , f˚G).„

3.25 Let (X, OX) be a ringed space and F be an OX-module. Define its dual module

F_ := HomOX
(F , OX)

For any index set I and F P ModOX
, one has

HomOX
((OX)‘I, F) – F(X)‘I.

the map being given by evaluation at (ei)iPI, where ei P OX(X)‘I is ei = δij(j). In particular, EndOX
OX = OX, and L_ is

thus an OX-module.
There is a natural morphism

F bOX
F_ OX

given by the evaluation. Explicitly, for any open U,

F(U) bOX(U) HomOX|U(F |U, OX|U) OX(U)

(f, T) TU(f).
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This defines a morphism F bp F_ Ñ OX (2.11), and hence a morphism F b F_ Ñ OX by passing to sheafification.

3.25.1 Lemma Let L be an invertible sheaf (3.13).

(i) If L1 and L2 are invertible sheaves, so is L1 bOX
L2, and L1 bOX

L2 – L2 bOX
L1.

(ii) L bOX
OX – L – OX bOX

L.

(iii) L_ is also an invertible sheaf.

(iv) L bOX
L_ – OX.

Proof.

(iv) We claim the above morphism L bOX
L_ Ñ OX is an isomorphism. It suffices to check that (‹) is an isomorphism for

arbitrary small open set. Let U be an open set such that L|U – OX|U. Then we have a commutative diagram

L(U) bOX(U) HomOX|U(L|U, OX|U) OX(U) ab

(f, T) OX(U) bOX(U) HomOX|U(OX|U, OX|U)

(f, TU(1)) OX(U) bOX(U) OX(U)

(a,b)

„
„

(this is commutative since T is an OX|U-module homomorphism). The arrow (a,b) ÞÑ ab is an isomorphism, hence so
is the arrow on the top.

3.26 Picard group. The previous lemma shows the isomorphism classes of invertible sheaves on X form an abelian group
(multiplication being tensor product). We denote by this group Pic(X), called the Picard group of the ringed space X.

3.26.1 Let f : X Ñ Y be a morphism in RS. If L is an invertible sheaf on Y, then f˚L is an invertible sheaf on X. Indeed, if U
is an open set in Y such that L|U – OY |U, we have

(f˚L)|f´1(U) –
(
f´1L

) ˇ
ˇ

f´1(U)
b(f´1OY)|

f´1(U)
OX

ˇ

ˇ

f´1(U)

If we put g = f|U
f´1(U)

, then the above is isomorphic to

g´1(L|U) bg´1(OY |U) OX|f´1(U) – OX|f´1(U).

Thus f˚ induces a map Pic(Y) Ñ Pic(X). Moreover, since b commutes with lim−Ñ
, we see f˚ : Pic(Y) Ñ Pic(X) is a group

homomorphism.

3.27 Twists. Let (X, OX) be a ringed space. For an invertible sheaf L and n ě 0, denote Ln = Lbn, and for n ď 0, denote
L´n = (L_)bn. Then for n,m P Z, we have Ln b Lm – Ln+m.

For any open U, by definition we have a canonical bilinear map Ln(U) ˆ Lm(U) Ñ (Ln b Lm)(U) – Ln+m(U). This
makes

Γ˚(U) :=
à

nPZ
Ln(U)

a graded ring, and U ÞÑ Γ˚(U) is a presheaf of graded rings on X.
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3.27.1 Suppose (X, OX) is a local-ringed space. For each g P L(X), define

Xg = XL
g = tx P X | gx R mxLxu

If U is an open set such that L|U – OX|U, and if g|U corresponds to a P OX(U), then Xg XU = Ua in the sense of (2.21). In
particular, this shows Xg is an open subset of X. If U Ď Xg is an open set such that L|U – OX|U, then Xg XU = Ua and we
can find a unique h P L_|U such that under the isomorphism L_|U – OX|U, it corresponds to the inverse of a. This means
g|Uh = 1 P OX(U) ; let us denote h = (g|U)

´1. If V is another open set trivializing L and intersecting withU nontrivially, and
U X V also trivializes L, then clearly (g|V)

´1 = (g|UXV)
´1 = (g|U)

´1, so the (g|U)
´1 patch to a section (g|Xf

)´1 P L_(Xf),
satisfying g(g|Xf

)´1 = 1 P OX(Xf). If there is no confusion, we simply put g´1 = (g|Xf
)´1.

Moreover, the multiplication
OX|Ug

L|Ug

a ag

is an isomorphism. Indeed, for b P L|Ug
, we have bb g´1 P L|Ug

b L|´1
Ug

– OX|Ug
. If c is the image of bb g´1, then cg = b.

3.27.2 For any F P ModOX
and any open U, define

Γ˚(F , L)(U) =
à

nPZ
(F bOX

Ln)(U)

This is naturally a graded Γ˚(U)-module, and Γ˚(F , L) is a presheaf of S-modules. Note that every g P Ln(U) acts on
Γ˚(F , L)(Ug) invertibly, for the presence of g´1 P L´n(Ug). Thus we have a canonical commuting triangle

Γ˚(F , L)(U)

Γ˚(F , L)(U)g Γ˚(F , L)(Ug)

restrictionlocalization

α(g)

3.27.3 Lemma. Let X be a scheme, L an invertible sheaf and F a OX-quasi-coherent sheaf. Then for any g P Ld(X), we have
the following.

(1) If X is compact, then α(g) is injective.
(2) If X admits a finite affine open cover tUiuiPI such that L|Ui

– OX(Ui) andUiXUj is compact for any i, j P I, then α(g)
is surjective.

Proof. This is a generalization of Lemma 3.15.2, and can be proved in a similar way. Here we use a slightly different way
which is essentially the same. Cover X be a family of affine open subsets Ui (i P I) such that

(Ui, L|Ui
, F |Ui

, g|Ui
) – (SpecAi, ĂAi, ĂMi, ai)

for some ring Ai, ai P Ai andMi P ModAi
. Consider the following commutative diagram

0 0

Γ˚(F , L)(X)g Γ˚(F , L)(Xg)

ź

iPI

Γ˚(F , L)(Ui)g
ź

iPI

Γ˚(F , L)(Xg XUj)

ź

i,jPI
Γ˚(F , L)(Ui XUj)g

ź

i,jPI
Γ˚(F , L)(Xg XUi XUj)

α(g)

ś

jα(g|Ui
)

ś

i,jα(g|UiXUj
)

(‹)
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Note that the middle horizontal arrow is bĳective, since there exists a commutative diagram

Γ˚(F , L)(Ui)g Γ˚(F , L)(Xg XUi)

Γ˚(ĂMi, ĂAi)(SpecAi)a Γ˚(ĂMi, ĂAi)(D(ai))

à

nPZ
(Mi bAi

Abn
i )ai

à

nPZ

(
(Mi)ai

b(Ai)ai
(Ai)

bn
ai

)
„

α(g|Ui
)

„

„ „

„

For (1), since X is compact, we can assume #I ă ∞. In this case, there exists an exact sequence

0 Γ˚(F , L)(X)
ź

iPI

Γ˚(F , L)(Ui)
ź

i,jPI
Γ˚(F , L)(Ui XUj)

To be specific, this is obtained by taking direct sum of exact sequences

0 Ñ (F bOX
Ln)(X) Ñ

ź

i

(F bOX
Ln)(Ui) Ñ

ź

i,j
(F bOX

Ln)(Ui XUj).

The finiteness of I is used here for then the product and direct sum commute. In particular, this means the two vertical
sequences in (‹) are exact. In particular, the left middle arrow in (‹) is injective, so α(g) is injective.

For (2), we can still assume #I ă ∞ so the above discussion is valid. Moreover, since Ui X Uj is compact, the middle
bottom arrow in (‹) is injective by (1). As this stage, the surjectivity of α(g) follows from a simple diagram chasing.

3.27.4 Let X be a scheme, L an invertible sheaf, F an OX-quasi-coherent module and g P L(X). Define

Γ˚(F , L)(U)(g) F(Ug)

xg´n x|Ug
b g|´nUg

.
(♠)

where Γ˚(F , L)(U)(g) is the degree 0 part of the localization Γ˚(F , L)(U)g (c.f (3.108)). Note this is simply the degree 0 part
of the map

Γ˚(F , L)(U)g Γ˚(F , L)(Ug)
α(g)

modulo the identification OX|Ug
– L|Ug

made in (3.27.1). Hence from (3.27.3) we deduce

Corollary.
1. If X is compact, then the map (♠) is injective.
2. If X admits a finite affine open cover tUiuiPI such that L|Ui

– OX(Ui) and Ui XUj is compact for any i, j P I, then the
map (♠) is surjective.

3.1.3 Coherent sheaves

3.28 Definition. Let (X, OX) be a ringed space and let F P ModOX
.

(i) F is finitely generated if every point in X admits an open neighborhood U such that there exists an n P Zě1 and a
surjection (OX|U)

‘n
Ñ F |U.

(ii) F is finitely presented if every point in X admits an open neighborhood U such that there exists an exact sequence(
OX

ˇ

ˇ

U

)‘m (
OX

ˇ

ˇ

U

)‘n F |U 0

for some n,m P Zě1, depending on x.
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(iii) F is coherent if it is finitely generated and for any open set U Ď X, n P Zě1 and OX|U-morphism
(
OX

ˇ

ˇ

U

)‘n
Ñ F |U,

its kernel is of finite type.

3.28.1 Directly from the definition we see OX is finitely generated and finitely presented. But it is not true that OX is
OX-coherent.

3.28.2 Denote by CohOX
the full subcategory of ModOX

consisting of OX-coherent modules. If X is a scheme, we write
CohX = Coh(X) = CohOX

instead, if no confusion arises.

3.29 Lemma. Let (X, OX) be a ringed space and let F P QcohOX
.

(i) F finitely presented ñ F quasi-coherent.

(ii) F coherent ñ F finitely presented ñ F finitely generated

(iii) If OX is OX-coherent, then F finitely presented ñ F coherent.

3.30 Theorem. Let (X, OX) be a ringed space. CohOX
is a weak Serre subcategory of ModOX

.

3.31 Lemma. Let (X, OX) be a ringed space and let F P QcohOX
. Then F is finitely presented if any only if for any open

U Ď X, n P Zě1 and any surjection φ :
(
OX

ˇ

ˇ

U

)‘n
Ñ F , the kernel kerφ is finitely generated

Proof. The if part is clear. For the only if part assume F is finitely presented. Replacing any open set U by X, it suffices to
show that if there exist an exact sequence

O‘m
X O‘n

X F 0

for some n,m P Zě1, then for any p P Zě1 and any surjection φ : O‘p
X Ñ F , the kernel kerφ is finitely generated

3.32 Definition. Let X be a scheme.

(i) X is locally Noetherian scheme if X admits an affine open cover U such that each OX(U) is a Noetherian ring for each
U P U .

(ii) X is a Noetherian scheme if X is locally Noetherian and compact.

3.33 Lemma. Let A be a ring. Then SpecA is a Noetherian scheme if and only if A is a Noetherian ring.

Proof. The if part is clear. For the only if part, assume SpecA is a Noetherian scheme. In other words, we can find f1, . . . , fn P A

such that A = (f1, . . . , fn) = A and Afi is Noetherian. Suppose that I1 Ď I2 Ď I3 Ď ¨ ¨ ¨ is an increasing sequence of ideals
in R. Since each Afi is Noetherian, we can find N " 0 such that (IN)fi = (IN+m)fi for all m ě 0 and i P [n]. To prove the
result, we must show if I, J are two ideals such that Ifi = Jfi for i P [n], then I = J. This follows from the exact sequence
0 Ñ J Ñ

ź

iP[n]

Jfi Ñ
ź

i,jP[n]
Jfifj .

3.33.1 Corollary. A scheme X is locally Noetherian if and only if OX(U) is Noetherian for all affine opens U Ď X.

3.33.2 Corollary. Let X be a locally Noetherian scheme and F P QcohX. Then F coherent ô F finitely presented ô F
finitely generated.

3.1.4 Irreducibility, reducedness and integrability.

3.34 Definition. Let X be a topological space.
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1. X is called irreducible if it is nonempty and for any closed subspaces C1, C2 of X, if C1 YC2 = X, then either C1 = X or
C2 = X. Equivalently, X is irreducible if every nonempty open subspace is dense in X.

2. If Z is an irreducible closed subset of X, a generic point of Z is a point η P Z such that Z = tηu.

3. An irreducible component of X is a maximal irreducible subset in Xwith respect to inclusion.

3.34.1 It is easy to see that the closure of an irreducible subset is again irreducible. It follows that an irreducible component
is a closed subset in X. Also, a continuous image of an irreducible subset is irreducible.

3.34.2 Lemma. For a topological space X, TFAE :

(i) X is irreducible.

(ii) There exists an open cover U of X consisting of irreducible open subspaces such that UX V ‰ H for all U,V P U .

Proof. (i)ñ(ii) follows from definition. To see (ii)ñ(i), let U be such an open cover. We claim any nonempty open set is dense.
Let V1,V2 Ď X be two nonempty open subsets and let U1, U2 P U such that Ui XVi ‰ H. By assumption U1 XU2 ‰ H, so by
irreducibility U1 XU2 X V1 ‰ H. Again, by irreducibility of U2,

H ‰ (U1 XU2 X V1) X (U2 X V2) = U1 XU2 X V1 X V2

so V1 X V2 ‰ H particularly.

3.34.3 Corollary. Let X be a topological space and U Ď X an open subset. Then there is a bĳection

tirreducible closed subsets of Uu tirreducible closed subsets of X that meet Uu

Z Z

where closure on the right is taken in X.

Proof.

3.35 Lemma. Let X be an irreducible topological space. Then the constant presheaf defined in (2.6) is already a sheaf.

3.36 Lemma. Let X be a scheme and let Z be an irreducible closed subset of X. Then Z admits a unique generic point. In
particular, this establishes a bĳection

X tirreducible closed subsets of Xu

x txu.

Proof. Assume first that X = SpecA is affine. Then Z = V(I) for some ideal I, and by irreducibility I = p is a prime ideal.
Then V(p) = tpu. Indeed, if p 1 P V(p), then for any V(J) containing p, we have J Ď p Ď p 1, so p 1 P V(J). This proves p 1 P tpu,
so V(p) = tpu.

Now consider the general case. Let U be an affine open set that meets Z nontrivially. Then UX Z is an irreducible closed
subset ofU, so by the preceding caseUXZ admits a generic point η. SinceUXZ is an open dense subset of Z, it follows that
η = UX Z = Z. Let η 1 be another generic point of Z and pick an affine open neighborhood W of η 1 in X. Then W X Z is a
nontrivial open set in Z, so η P W X Z as tηu is dense in Z. The uniqueness in the preceding case then implies that η 1 = η.

3.37 Definition. Let X be a scheme.

1. X is call reduced if OX,x is a reduced ring for every x P X.
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2. X is called irreducible if the underlying topological space is irreducible.

3. X is called integral if it is both reduced and irreducible.

3.38 Associated reduced scheme. Let X be a scheme. Define the nilradical nil(OX) of OX to be the ideal sheaf defined by

nil(OX)(U) = tf P OX(U) | f|x P
a

0OX,x for all x P Uu.

We claim that for x P X, the equality

nil(OX)x =
a

0OX,x

holds. To see this we can assume X = SpecA is affine, and we need to show nil(OSpecA)p =
a

0Ap
for every prime ideal p of

A. If a P Ap is nilpotent, then an = 0 for some n ě 1 ; take f R p such that a = a 1|p for some a 1 P Af ; then (a 1)n|p = 0 so
(a 1)nr = 0 in Af for some r R pAf. This means (a 1)n = 0 in (Af)r = Afr, so that a 1 P

a

0Afr
. By definition, we have

nil(OSpecA)p – lim−Ñ
fRp

nil(OSpecA)(D(f)).

If we can show nil(OSpecA)(D(f)) =
a

0Af
Ď Af, we then may conclude a P nil(OSpecA)p. Therefore we are led to show that

nil(OSpecA)(A) =
a

0A.

One direction is clear. For the other way around, let f P A satisfy f|p P
a

0Ap
for any prime ideal p of A. Recall that

a

0Ap
=

Ş

qPSpecAp

qAp =
Ş

qĎp
qAp. Fix q Ď p P SpecA. Then f P qAp implies p 1(fp ´ q) = 0 for some p,p 1 R p, q P q, so that

fpp 1 = p 1q P q. Since pp 1 P Azp Ď Azq, it forces that f P q. In sum, f P
Ş

qĎpPSpecA
q =

?
0A, as we want.

We still need to show nil(OSpecA)p Ď
a

0Ap
. If a P nil(OSpecA)p, then a = a 1|p for some a 1 P nil(OSpecA)(D(f)) for some

f R p. But we have shown nil(OSpecA)(D(f)) =
a

0Af
, so (a 1)n = 0 for some n ě 1, implying an = 0, i.e., a is nilpotent.

In the above discussion we also show that nil(OX)(U) =
a

0OX(U) � OX(U) for every affine open U Ď X, so the ideal
sheaf nil(OX) is OX-quasi-coherent. By (3.21), together with an easy fact that V(nil(OX)) = X, we conclude the ringed space
(X, OX/nil(OX)) is a closed subscheme of X. What we showed above implies the local ring (OX,x/nil(OX))x – OX,x/

a

0OX,x

is reduced. The so constructed scheme is denoted by Xred, and is called the reduced scheme associated to X.

3.38.1 The construction X ÞÑ Xred is clearly functorial, so it defines a functor (¨)red : Sch Ñ redSch from the category of
schemes to the full subcategory of reduced schemes. It is the left adjoint and left inverse of the inclusion functor redSch Ñ Sch.

3.38.2 Lemma. Let X be a scheme and Z a closed subset of X. Then there is a unique scheme structure on Z making it a
reduced closed subscheme of X.

Proof. We begin by showing the uniqueness. If U Ď X is affine open, then (Z X U, OZ|U) is a closed subscheme of U, so
(3.21.1).(iii) says that ZXU – V(I) as schemes for some ideal I of OX(U). Then OZ(ZXU) – OX(U)/I. Since Z is reduced, the
quotient ring OX(U)/I is reduced by (3.39).(i) so that I =

?
I. To conclude, it suffices to note that

?
I is completely determined

by V(I) – ZXU, as
?
I =

Ş

pPV(I)

p.

For the existence, we first recollect that in (3.22) there is a natural way to equip V(I) a scheme structure for an ideal I
of a ring A. Moreover, one easily sees that the description there makes V(I) a reduced closed subscheme of SpecA. Now
take an affine open cover U of X. For each U P U , let IU � OX(U) be such that V(IU) = Z X U, and equip Z X U with the
reduced scheme structure defined in (3.22). The structure sheaves for the Z X U’s glue by uniqueness of such structure on
the intersection, as proved in the first paragraph. This earns Z a desired structure.

3.39 Lemma. Let A be a ring and let X be a scheme.
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(i) SpecA is reduced if and only if A is reduced.

(ii) SpecA is irreducible if and only if the nilradical
?

0 of A is a prime.

(iii) SpecA is integral if and only if A is an integral domain.

(iv) X is reduced if and only if OX(U) is a reduced ring for any open set U of X. If it is the case, OX(U) is reduced for any
open U in X.

(v) X is integral if and only if OX(U) is an integral domain for any open set U of X.

Proof.

(i) For n ě 1, define [n] : A Ñ A by [n](a) = an. Then
?

0A =
Ť

ně1
ker[n], and

a

0A bA Ap =

(
ď

ně1
ker[n]

)
bA Ap =

ď

ně1
(ker[n] bA Ap) =

b

0Ap

for all p P SpecA. Hence
?

0A = 0 if and only if
a

0Ap
= 0 for all p P SpecA.

(ii) First note that for f P A, we have D(f) = H if and only if f P p for any p P SpecA, i.e., f P
?

0. Assume SpecA is
irreducible. Let f,g P A with fg P

?
0 and f R

?
0. Then D(f) X D(g) = D(fg) = H, and since D(f) is dense (by

irreducibility), this forces that D(g) = H, i.e., g P
?

0. Conversely, assume
?

0 is a prime. Let f R
?

0. We must show
D(f) is dense. If g R

?
0, then fg R

?
0 as

?
0 is assumed to be a prime, which implies D(f) XD(g) = D(fg) ‰ H. This

proves that D(f) is dense.

(iii) This follows from (i) and (ii).

(iv) This follows from the local natural of being reduced and (i). The last assertion follows from the sheaf axiom and the
fact that a product of reduced rings is reduced.

(v) By (iv) we may assume in the first place that X is reduced. If X is irreducible, then every nonempty open set U of X
is itself irreducible, and hence reduced. Replacing U by X, it suffices to prove OX(X) is integral. Let f,g P OX(X) with
fg = 0. Let U be an affine open set in X. Then V(f|U) Y V(g|U) = V((fg)|U) = U, so by irreducibility we have, say
V(f|U) = U. Let V be any other affine open set in X. Then V X U Ď V(f|V) with V X U dense in V , so V(f|V) = V , or
f|V = 0. This implies f = 0 in OX(X). Conversely, assume that OX(U) is an integral domain for any open in X. Let U,V
be two nonempty open set in X. If UX V = H, then the sheaf axiom implies that

OX(UY V) – OX(U) ‘ OX(V)

as rings, which is a contradiction as this is not an integral domain.

3.1.5 Cartier divisors

3.40 Localization. Let (X, OX) be a ringed space. A subsheaf S of OX is called multiplicatively closed if S(U) Ď OX(U)
is a submonoid for any U P Top(X). In this situation, any restriction OX(U) Ñ OX(V) naturally gives rises to a ring
homomorphism S(U)´1OX(U) Ñ S(V)´1OX(V). We denote by S´1OX the sheafification of the presheafU ÞÑ S(U)´1OX(U).

It is clear that for any x P X, the stalk Sx is a multiplicatively closed subset of OX,x, so we can form the localization
S´1
x OX,x. The natural map

S(U)´1OX(U) Ñ S´1
x OX,x

then induces a ring isomorphism (S´1OX)x – S´1
x OX,x.
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3.41 Total quotient sheaf. For a ring A, an element r P A is regular if the multiplication A Ñ A by r is injective. Denote
by Areg the set of all regular elements in A, which is a submonoid of A. The localization FracA := A´1

regA is called the total
quotient ring of A.

Let (X, OX) be a ringed space. For any U P Top(X), define

OX,reg(U) := ts P OX(U) | s|x P (OX,x)reg for any x P Uu.

It is clear from its local nature that OX,reg is a multiplicatively closed subsheaf of OX. The sheaf

KX = Frac OX := O´1
X,regOX

defined as in (3.40) is called the total quotient sheaf of OX, or called the sheaf of rational functions of X.

3.41.1 Lemma. The map OX Ñ KX is injective. Hence we can view OX as a subsheaf of KX.

Proof. We must show the natural map OX,x Ñ KX,x
(3.40)
– Frac OX,x is injective. If x P OX,x is zero in Frac OX,x, then sx = 0

for some s P (OX,x)reg. Since s is regular, it follows that x = 0.

3.42 Example : integral schemes. Let X be an integral scheme. By (3.36), X admits a unique generic point η. Let U be an
affine open subset of X ; note that η P U. The natural map OX(U) Ñ OX,η induces an isomorphism

Frac(OX(U)) – OX,η – κ(η).

Indeed, if we write U = SpecA, then η corresponds to the zero ideal, and FracA is by definition A(0) – OX,η – κ(η). This
implies that KX is isomorphic to the constant sheaf κ(η)

X
. In this case, we call K(X) := κ(η) the (rational) function field of X.

Generally, if U is an arbitrary open subset of X, as η P U, we still have a natural map OX(U) Ñ OX,η. This is injective as it
is injective for every affine U (and by sheaf axiom). Moreover, if we view OX(U) as well as every OX,x (x P U) as subrings of
OX,η, we have the equality

OX(U) =
č

xPU

OX,x.

It suffices to show the equality for affine U. Let f P Frac OX(U) lie in the right hand side. Then the ideal I = tg P OX(U) |

gf P OX(U)u is not, by definition, contained in any prime ideal of OX(U). Hence I = OX(U), so f = 1.f P OX(U) particularly.

3.43 Definition. A morphism f : X Ñ Y of schemes is called dominant if the set-theoretic image f(X) is dense in Y.

3.43.1 Suppose f : X Ñ Y is a morphism between irreducible schemes. By (3.36), X (resp. Y) admits a unique generic point
ηX (resp. ηY). Then f is dominant if and only if f(X) is dense in Y. Since X = tηXu and f is continuous, the latter happens if
and only if tf(ηX)u = Y. By uniqueness, it is equivalent to saying that f(ηX) = ηY , or equivalently ηY P f(X).

3.43.2 Assume further that X, Y are integral. If X = SpecB and Y = SpecA, then f : X Ñ Y is dominant if and only
if the corresponding ring homomorphism A Ñ B is injective. This is clear for the generic point corresponds to the zero
ideal. It follows that for arbitrary integral schemes X, Y, the morphism f : X Ñ Y is dominant if and only if the sheaf map
f7 : OY Ñ f˚OX is injective. Note that sinceX is integral, by reducing to the affine cases, the restriction map OX(U) Ñ OX(U 1)

is injective. Thus f7 is injective implies that OY(V) Ñ OX(U) is injective for any open V Ď Y and open U Ď f´1(V). It follows
that if f is dominant, the sheaf map f7 extends to a field homomorphism κ(ηY) Ñ κ(ηX), or KY Ñ f˚KX.

3.44 Flat morphisms. Let f : (X, OX) Ñ (Y, OY) be a morphism of ringed spaces.

(i) A ring homomorphism φ : A Ñ B is flat if B[φ] a flat A-module.

(ii) f is flat at x P X if the induced stalk map OY,f(x) Ñ OX,x is flat.
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(iii) f is flat if it is flat at every point of X.

3.44.1 Flatness and Exactness of f˚ Let f : (X, OX) Ñ (Y, OY) be a flat morphism between ringed spaces. Then the inverse
image functor f˚ : ModOY

Ñ ModOX
is exact. To see this, let 0 Ñ F Ñ G Ñ H Ñ 0 be a short exact sequence of OY-module.

To show 0 Ñ f˚F Ñ f˚G Ñ f˚H Ñ 0 is exact, we check this stalkwise (2.16). If x P X, then the induced stalk map is

0 Ñ Ff(x) bOY,f(x)
OX,x Ñ Gf(x) bOY,f(x)

OX,x Ñ Hf(x) bOY,f(x)
OX,x Ñ 0

One easily sees that this is the stalk map induced by 0 Ñ F Ñ G Ñ H Ñ 0 tensored by OX,x over OY,f(x). Since f is flat, OX,x

is flat over OY,f(x). This proves the exactness.

3.45 In (3.43.2) we see if f : X Ñ Y is a dominant morphism between integral schemes, then the sheaf map OY Ñ f˚OX
extends to a morphism of KY Ñ f˚KX. In particular, they fit into a commutative diagram

OY f˚OX

KY f˚KX.

It is natural to ask whether such extension can be defined for other types of morphisms. It is the case for any flat morphism
f : X Ñ Y between arbitrary schemes, which we now prove. It suffices to show for any affine open V = SpecA in Y and
affine open U = SpecB in X with f(U) Ď V , the corresponding homomorphism φ : A = OY(V) Ñ OX(U) = B sends
regular elements to regular elements. Let a P Areg. The multiplication B Ñ B by φ(a) is obtained by tensoring with B the
multiplication A Ñ A by a. Since φ is flat, this shows φ(a) P Breg.

3.46 Definition. Let (X, OX) be a ringed space. A global section

Γ(X, Kˆ
X/O

ˆ
X ) = (Kˆ

X/O
ˆ
X )(X)

of the quotient sheaf Kˆ
X/O

ˆ
X is called a Cartier divisor on X. Here for a sheaf of rings A, we denote by Aˆ the sheaf

U ÞÑ A(U)ˆ of invertible elements.
Unwinding the definition (c.f. (2.4.2)), we see a Cartier divisor is represented by a collection of pairs t(fU,U)uUPU , where

U is an open cover of X and fU P K(U)ˆ such that for any U,V P U with U X V ‰ H, we have fUf´1
V P OX(U X V)ˆ. Two

such collections t(fU,U)uUPU and t(gV ,V)uVPV represent the same Cartier divisor if and only if fUg´1
V P OX(UX V) for any

U P U , V P V with UX V ‰ H.
This gives an alternative way to define a Cartier divisor : it is a maximal collection of pairs t(fU,U)uUPU , in the sense that if

(g,V)withV Ď
open

X, g P K(V)ˆ satisfies fUg´1 P OX(UXV)ˆ for anyU P U withUXV ‰ H, then in fact (g,V) P t(fU,U)uUPU .

3.46.1 Cartier class group. Taking global sections of the exact sequence

0 Oˆ
X Kˆ

X Kˆ
X/O

ˆ
X 0

we obtain
0 OX(X)ˆ KX(X)ˆ (Kˆ

X/O
ˆ
X )(X).

An element in the image of the last arrow is called a principal Cartier divisor. A Cartier divisor is called effective if it lies
in the image of Γ(X, OX X Kˆ

X) Ñ Γ(X, Kˆ
X/O

ˆ
X ). We write D ě 0 if D is an effective Cartier divisor.

There is an obvious abelian group structure on Γ(X, Kˆ
X/O

ˆ
X ), which we will write additively. We say two Cartier divisors

D1, D2 on X is linearly equivalent if D1 ´D2 is principal. Denote by CaCl(X) the group of Cartier divisors on X modulo
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the linear equivalence relation. Equivalently, it is the quotient group of Γ(X, Kˆ
X/O

ˆ
X ) mod out the group of principal Cartier

divisor. The group CaCl(X) is called the Cartier class group of X.

3.46.2 Invertible sheaf associated to a Cartier divisor. Let (X, OX) be a ringed space and let D be a Cartier divisor on X.
Define the subsheaf OX(D) of KX as follows. Let t(fU,U)uUPU be the maximal collection of compatible pairs that represents
D. We take OX(D)|U = f´1

U OX|U Ď KX|U. This is well-defined, as on UX V , we have

(OX(D)|U)|UXV = f´1
U (OX|U)|UXV = f´1

V (fVf
´1
U )OX|UXV = f´1

V (OX|V)|UXV = (OX(D)|V)|UXV .

The sheaf OX(D) is an invertible sheaf of X. If E be a principal Cartier divisor defined by g P Γ(X, Kˆ
X), then there is an

isomorphism OX(D) – OX(D+ E) given by multiplication by g´1. Precisely, on any open U of X such that D is represented
by fU, the isomorphism is given by s ÞÑ s(g|U)

´1. This isomorphism is independent of the choice of g representing E, so this
gives a well-defined map

CaCl(X) Pic(X)

D OX(D).

If A is a ring and f,g P Areg, then the multiplication gives an isomorphism fA bA gA Ñ fgA of A-modules. This shows
D ÞÑ OX(D) is also a group homomorphism (c.f. (3.25)).

3.46.3 Lemma. Let (X, OX) be a ringed space. The homomorphism CaCl(X) Ñ Pic(X) is injective. Moreover, the image
consists of classes of invertible subsheaves of KX.

Proof. Let t(fU,U)uUPU be the maximal collection of compatible pairs that representsD. Say OX(D) – OX is trivial. By (3.25)
there exists f P Γ(X, OX(D)) such that fOX = OX(D) in KX. Then fOX|U = f´1

U OX|U for any U P U . Hence f|U P KX(U)ˆ for
any U P U , so that f P KX(X)ˆ. This shows D is principal.

Let L Ď KX be an invertible subsheaf, and let U be an affine open cover such that for each U P U (c.f. (3.25)) there exists
fU P KX(U) such that L|U = fUOX|U – OX|U. Since then fU is regular in the local ring of points in U, we see fU P KX(U)ˆ.
Hence L is the invertible sheaf associated to the Cartier divisor t(fU,U)uUPU .

3.46.4 Effective Cartier divisors as closed subspaces. Suppose (X, OX) is a local-ringed space, and let D be an effective
Cartier divisor on X. Then OX(´D) is an invertible ideal sheaf of OX, so it corresponds to a closed local-ringed subspace

j : (D, OD) := (V(OX(´D)), OX/OX(´D)|V(OX(´D))) −Ñ (X, OX)

and there is a short exact sequence

0 OX(´D) OX j˚OD 0.

Upshot : effective Cartier divisors are those closed subspaces locally cut by a single regular function.

3.47 Lemma. For an integral scheme X, the map CaCl(X) Ñ Pic(X) is an isomorphism.

Proof. We must show each invertible sheaf L on X has the form OX(D) for some Cartier divisor D. Let U be an affine
open cover of X such that L is trivial on each U P U . For U P U , we have an isomorphism φU : OX|U – L|U ; for any
other V P U with U X V ‰ H, by (3.25) the isomorphism φUV : φ´1

V ˝ φU : OX|UXV – OX|UXV corresponds to an element
φUV P OX(UX V)ˆ.

Since X is integral, the function field KX is the constant sheaf K(X)
X

. For each open U, we view OX(U) as a subring of
K(X) ; if V Ď U, then OX(U) Ď OX(V) Ď K(X) (3.42). Fix an U0 P U . We then have a compatible collection t(φU0U,U)uUPU ,
which then defines an Cartier divisor D.

Define a map OX(D) Ñ L as follows. For U P U , let OX(D)|U = φUU0 OX|U Ñ L|U be the morphism defined by

φUU0 OX|U(V) Q φUU0x ÞÑ φU(x) P L|U(V).
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Note that this is an isomorphism. For U,V P U , we have a commutative diagram

φUU0 OX|UXV L|UXV

φVU0 OX|UXV L|UXV .

φVU0φ
´1
UU0 φV˝φ

´1
U

Vertical arrows are transition maps of OX(D) and L respectively, so they glue to an isomorphism OX(D) – L. This proves
the surjectivity.

3.1.6 Rational maps

3.48 Definition. Let X be a scheme. For two open dense sets U,V of X, the intersection UX V is again open dense. Partially
ordered by inclusion, the collection UX of dense open sets in X forms a directed set. For Y another scheme, the collection
tHomSch(U, Y)uUPUX

is directed by the restriction HomSch(U, Y) Ñ HomSch(V , Y) with V Ď U P UX. An element in the direct
limit lim−Ñ

UPUX

HomSch(U, Y) is called a rational map. A rational map is usually written with dashed arrow f : X 99K Y.

By definition, two morphisms f : U Ñ Y and g : V Ñ Y with U,V P UX determine the same rational map if and only if
there exists W Ď U X V with W P UX such that f|W = g|W . In this case we write f „ g, and use either f or g to denote the
corresponding rational map.

3.49 Composition. Let f : X 99K Y and g : Y 99K Z be rational maps. We want to define the composition g ˝ f, but it is
not always possible. For example, we certainly cannot do so if f : U Ñ Y hits to the subset that g is not defined. Say g is
represented by g : V Ñ Z for some V P UY . What we need is the nonemptyness of the subset V X f(X) Ď Y. To fix this, we
need some density constraint.

3.49.1 Lemma. If f : X 99K Y is a dominant rational map, then every representative of f is dominant.

Proof. Let U,V P UX and f : U Ñ Y, g : V Ñ Y with f „ g. Take W Ď U X V with W P UX such that f|W = g|W . Since f is
continuous, we have f(W) Ď f(W). By density, we have W = U, and since f(U) is dense, we see Y = f(U) Ď f(W) so that
f(W) is dense as well. This shows g is also dominant.

3.49.2 Composition of dominant rational maps. We continue the discussion in (3.49). Instead of consider the composition
of two rational maps, we define the composition of two dominant rational maps. Let X, Y,Z be schemes, U P UX and V P UY ,
and f : U Ñ Y, g : V Ñ Z be dominant morphisms. Pictorially,

X Y Z

U V

UX f´1(V)

f
g

Since f(U) is dense, V X f(U) Ď Y, and hence U X f´1(V) Ď X, is nonempty. We then can well-defined the composition
g ˝ f|UXf´1(V) : U X f´1(V) Ñ Z. But here is still an issue : U X f´1(V) may not be dense ! Nevertheless, if we assume X is
irreducible, then everything goes well, i.e., g ˝ f|UXf´1(V) : U X f´1(V) Ñ Z represents a rational map, which we denote by
g ˝ f : X 99K Z. It is direct to see this does not depend on the representatives of f and g.

3.49.3 Definition. By the previous discussion, it makes sense to define the category IrrSch of irreducible schemes with
morphisms being dominant rational maps.

45



(i) A birational map is an isomorphism in IrrSch.

(ii) Two irreducible schemes are birational if there is a birational map between them.

Put IntSch to be the full subcategory of IrrSch consisting of integral schemes.

3.50 Lemma. Two irreducible schemes X, Y are birational if and only if there exist open dense subsets U Ď X and V Ď Y

such that U – V as schemes.

Proof. The if part is clear. For the only if part, suppose there are f : X 99K Y and g : Y 99K such that g˝ f „ idX and f˝g „ idY .
Say X1 (resp. Y1) is the domain of definition of f (resp. g).

3.2 Functor of points

3.51 Yoneda. For a scheme X, we can associate it with a functor hX : Sch Ñ Set by hX(T) := HomSch(T ,X). It is the content
of Yoneda’s lemma that there is a functorial bĳection

Hom(hX,hY) HomSch(X, Y)

T TX(idX).

From this we see that X – Y if and only if hX – hY as functors. This more or less says that the scheme X is uniquely
determined by the family tHomSch(T ,X)uTPSch. In fact, we have more.

3.51.1 Lemma. For a scheme X, let hX : Ring Ñ Set be the functor defined by hX(R) = HomSch(SpecR,X). There is a
bĳection

HomSch(X, Y) – Hom(hX,hY)

natural in X, Y P Sch. This is an incarnation of the local nature of a scheme.

Proof. Let F P Hom(hX,hY). Let U be an affine open cover of X. For each U P U , let ιU : U = SpecAU Ñ X be the inclusion.
Then ιU P hX(AU), so applying FU we obtain fU = FU(ιU) P hY(AU). We claim the fU : U Ñ Y glue to a global morphism
X Ñ Y. Let U,V P U , and letW = SpecB Ď UX V be an affine open set. Put α :W = SpecB Ñ X be the inclusion. Applying
F to the diagram

U = SpecAU

W = SpecB X

V = SpecAV

ιUinclusion

α

inclusion

ιV

we obtain
U = SpecAU

W = SpecB Y

V = SpecAV

fUinclusion

FW(α)

inclusion

fV

In particular, this shows fU|W = FW(α) = fV |W . Hence we obtain a well-defined morphism f : X Ñ Y extending the fU’s.
It is easy to see the resulting f is independent of the choice of U ; in fact, we can use all the affine open sets in X in the first
place. This defines a map Hom(hX,hY) Ñ HomSch(X, Y). The map the other way around is defined by composition.
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We claim they are mutually inverse. One direction is clear. For the other, let F P Hom(hX,hY) and let fbe the corresponding
morphism X Ñ Y. Let R be a ring and g P hX(R). Let U be an affine open set in X and pick W Ď SpecR an affine open set
such that g(W) Ď U. Then

(f ˝ g)|W = FV(ιV) ˝ g|VW = FW(ιV ˝ g|VW) = FW(g|W) = FU(g)|W ,

where the second equality follows from naturality of F. Hence f ˝ (¨) = F.

3.52 Definition. Let S be a scheme. A scheme X together with a morphism X Ñ S, called the structure morphism, is called
a S-scheme / scheme over S. A morphism between S-schemes is a morphism of schemes that commutes with the structure
morphisms to S. Such a morphism is called an S-morphism. Denote by SchS the category of S-schemes. If S = SpecA, we
write SchS = SchA, and simply call an S-morphism as an A-morphism.

3.53 Example. The ring Z is the initial object in Ring, so by (3.7) the affine scheme SpecZ is the final object in Sch. In
particular, the categories Sch and SchZ are isomorphic.

3.54 Let A be a ring. Using the forgetful functors AlgA Ñ Ring and AffSchA Ñ AffSch, we deduce from the equivalence
of categories Spec : Ringop

Ñ AffSch in (3.8) gives rise to the equivalence of categories

Spec : Algop
A AffSchA

R SpecR

3.55 Let S be a scheme. Let X be an S-scheme and denote by f : X Ñ S the structure morphism of X. For an open set U of S,
we sometimes use X|U to denote the U-scheme f|U

f´1(U)
: f´1(U) Ñ U so as to prevent ourselves from cumbersome notation.

3.56 Let S be a scheme and Y,X be two S-schemes. Denote by f : Y Ñ S and g : X Ñ S the structure morphisms. Consider
the commutative diagram

HomSch(Y,X) HomRing(OX(X), OY(Y))

HomSch(Y,S) HomRing(OS(S), OY(Y))

g˝(´) (´)˝θS

where θ : OS Ñ f˚OX is the sheaf map of f. Taking the preimage of f along the vertical maps we obtain

HomSchS
(Y,X) HomAlgOS

(OX(X), OY(Y)).

By (3.7), this is an isomorphism if S and X are affine.

3.57 Functor of points. Let S be a scheme and let X be an S-scheme. For another S-scheme T , put

X(T) := HomSchS
(T ,X)

and call its element a T -valued point of X/S. If T = SpecR (where R is an S-algebra), we call it an R-valued point, and simply
write X(T) =: X(R).

3.58 Example. Let f1, . . . , fm P Z[x1, . . . , xn] and let X = SpecZ[x1, . . . , xn]/(f1, . . . , fm). Let R be a ring. Then there is a
natural bĳection

X(R) ta = (a1, . . . ,an) P Rn | f1(a) = ¨ ¨ ¨ = fm(a) = 0u.„

Indeed, by (3.7) we have

HomSch(SpecR,X) – HomRing(Z[x1, . . . , xn]/(f1, . . . , fm),R)
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There is a canonical inclusion

HomRing(Z[x1, . . . , xn]/(f1, . . . , fm),R) ˝p−Ñ HomRing(Z[x1, . . . , xn],R) – Rn

where p : Z[x1, . . . , xn] Ñ Z[x1, . . . , xn]/(f1, . . . , fm) is the quotient map. The last isomorphism is the evaluation at x1, . . . , xn.
The image of the first set in Rn is then the common zeros of f1, . . . , fm in Rn.

Inspired by this bĳection, we can understand the R-valued points of a scheme as a generalization of solving equations in
the ring R. In this way the functor of points is quite a natural concept.

3.59 Example. Let k be a field and V a finite dimensional vector space over k. Consider the affine scheme V := Spec SymV_,
where SymV_ means the symmetric algebra of V_. By the universal property of symmetric algebras, we have functorial
bĳections

V(k) = HomSchk
(Speck,V) – HomAlgk

(SymV_,k) – Homk(V
_,k) = (V_)_ – V

Hence we can always think of a finite dimensional vector spaceV over k as the k-valued points of the affine spaceV – Adimk V
k

(non-canonically) over k.

3.60 Points in local rings. Denote by LocRing the category of local rings. By definition, a morphism of local rings is a local
homomorphism (2.20). Let A be a local ring and m be the unique maximal ideal. We show that there is a bĳection

HomSch(SpecA,X)
ğ

xPX

HomLocRing(OX,x,A).

First, let f : SpecA Ñ X be a morphism of scheme and put x = f(m). Choose an affine open neighborhoodU = SpecB of x in
X, and let p P SpecB be the point corresponding to x. Then f(SpecA) Ď U. Indeed, f´1(U) is an open set in SpecA containing
m, and there exists h P A such that f´1(U) Ě D(h) Q m, which implies h R m and, thus, D(h) = SpecA. In fact, this shows
that f(SpecA) is contained in any open neighborhood of x in X. The map f then factors through f|U : SpecA Ñ U = SpecB,
so it gives a map (f|U)7 : B Ñ A with ((f|U)7)´1(m) = p. This means it factors through the localization B Ñ Bp, giving a
commutative triangle

B A

Bp

(f|U)7

Since Bp – OX,x, we have a homomorphism θf : OX,x Ñ A. Taking spec gives a morphism rθf : SpecA Ñ Spec OX,x. At the
same time, we obtain another morphism φx : Spec OX,x Ñ SpecB = U Ñ X.

The constructions of rθf and φx depend on the choice of U. Nevertheless, the morphisms themselves do not, which we
now prove. Let V = SpecC be another affine open neighborhood of x and let W = SpecD Ď U X V be still another affine
open neighborhood of x. To distinguish, let pW , pU, pV denote the corresponding primes of x in D,B,C. Now we have ring
homomorphism B,C Ñ D Ñ A, and since m ÞÑ pW ÞÑ pV , pU, the natural diagram

A

DpW

CpV
D BpU

C B

„
„
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commutes everywhere. Taking spec gives

SpecA

SpecDpW

SpecCpV
Spec OX,x SpecBpU

SpecD

SpecC SpecB

X

„

„
„

„
„

This tells the independence. Hence f : SpecA Ñ X admits a canonical factorization

SpecA X

Spec OX,x

Ăθf

f

φx

Recall that rθf corresponds to the homomorphism θf : OX,x Ñ A.
Finally we can define the maps

HomSch(SpecA,X)
ğ

xPX

HomLocRing(OX,x,A)

f θf : OX,x Ñ Awith x = f(m)

φx ˝ Spec θ θ : OX,x Ñ A

By checking on any affine open neighborhood of x, we easily see that these are mutually inverse.

3.60.1 Example - points in a field. Let X be a scheme over a field k. Then there is a bĳection

X(k) = HomSchk
(Speck,X) tx P X | κ(x) = ku

f f(pt)

„

Here pt denotes the unique point in Spec k. Note that a scheme over k is the same as a scheme that is a local-ringed space
over k (2.20.1). Each κ(x) is naturally a k-algebra, so the equality κ(x) = kmakes sense.

More generally, if K/k is a field extension, then there is a bĳection

X(K)
Ů

xPX

HomAlgk
(κ(x),K).„

This follows from (3.60) : the kernel of a local k-homomorphism OX,x Ñ K is precisely its unique maximal ideal, so such a
map is the same as a k-algebra homomorphism κ(x) Ñ K.

3.61 Galois action. Let X be a scheme over a field k. Let K/k be a Galois extension with Galois group G. If s : SpecK Ñ X

and σ P G, it is clear that s ˝ Specσ is again a morphism of k-scheme, so that s ˝ Specσ P X(K). This defines a (left) G-action
on X(K).
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Consider the (set-theoretic) map
ϕ : X(K) X

s s(SpecK).

By (3.60.1), the fibre of each point x P X is identified as

ϕ´1(x) – HomAlgk
(κ(x),K).

It follows from the construction this bĳection isG-equivariant, whereG acts on HomAlgk
(κ(x),K) naturally. As K/k is Galois,

it follows that the G-action on ϕ´1(x) is transitive, and hence ϕ induces an injective map

GzX(K) ãÑ X.

On the other hand, since the bĳection

X(K)
Ů

xPX

HomAlgk
(κ(x),K).„

is also G-equivariant, taking invariants gives

X(K)G
Ů

xPX

HomAlgk
(κ(x),K)G =

Ů

xPX

HomAlgk
(κ(x),k) X(k).„ „

To summarize,

Lemma. Let X be a scheme over a field k and let K/k be a Galois extension with Galois group G.

(i) The natural map X(K) Ñ X induces an injection GzX(K) Ñ X.

(ii) The injection X(k) Ñ X(K) gives a bĳection X(k) – X(K)G.

3.2.1 Zariski sheaves

3.62 Definitions in this subsubsection are from Tag 01JF.

3.63 Definition. A functor F : Schop
Ñ Set is called a Zariski sheaf if for any scheme X and any open cover U of X, the

sequence

F(X)
ź

UPU

F(U)
ź

U,VPU

F(UX V)

is a equalizer diagram.

3.64 Definition. Let F : Schop
Ñ Set be a functor.

(i) A functor H : Schop
Ñ Set is called a subfunctor of F if H(X) Ď F(X) for each scheme X and for each f P HomSch(X, Y),

the map F(f) : F(Y) Ñ F(X) restricts to H(f) : H(Y) Ñ H(X).

(ii) A subfunctorH Ď F said to be represented by open immersions if for any scheme X and ξ P F(X), there exists an open
subscheme Uξ of X satisfying the following :

a morphism f P HomSch(Y,X) maps into Uξ if and only if F(f)(ξ) P H(Y).

(iii) A collection (Hi)iPI of subfunctors of F is said to cover F if for every scheme X and ξ P F(X), there exists an open cover
U of X such that F(U Ñ X)(ξ) P Hi(U) for each U P U .
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3.65 Theorem A functor F : Schop
Ñ Set is representable if it is a Zariski sheaf and there exists a collection (Fi)iPI of

subfunctors of F such that

(a) each Fi is representatble,

(b) each Fi Ď F is represented by open immersions, and

(c) (Fi)iPI covers F.

3.3 Fibre products

3.66 Let S be a scheme. Let f : X Ñ S and g : Y Ñ S be two schemes over S. A fibre product of f and g is a scheme XˆS Y

together with two morphisms XˆS Y Ñ X and XˆS Y Ñ Y that represents the functor

T ÞÑ HomSch(T ,X) ˆHomSch(T ,S) HomSch(T , Y).

By universal property nonsense, if a fibre product exists, it is unique up to a unique isomorphism.

3.67 Let C be a ring and let A,B be two C-algebras. The tensor product ring AbC B is the fibre coproduct of A Ð C Ñ B

in the category of rings. This means we have a bĳection

HomRing(AbC B,D) HomRing(A,D) ˆHomRing(C,D) HomRing(B,D)
„

functorial in D P Ring. It then follows from (3.7) that SpecA bC B is the fibre product of SpecA and SpecB over SpecC in
the category of schemes (in fact, also in LRS).

3.68 Base change and functor of points. Let S be a scheme and X, Y be two S-schemes. By (3.66), for any S-scheme Z, there
is a canonical bĳection

HomSchS
(Z,XˆS Y) HomSchS

(Z,X) ˆ HomSchS
(Z, Y)„

By taking Z = Y, we obtain

HomSchS
(Y,XˆS Y) HomSchS

(Y,X) ˆ HomSchS
(Y, Y)

HomSchS
(Y,X) ˆ tidYu.

„

Taking preimage of the subset HomSchS
(Y,X) ˆ tidYu, we see this induces a bĳection

HomSchY
(Y,XˆS Y) HomSchS

(Y,X)„

3.3.1 Weil restriction

3.69 Restriction of scalars. Let X Ñ T Ñ S be morphisms of schemes. Define a contravariant functor ResT/S X : SchS Ñ Set
as follows. For any S-scheme Z, set

ResT/S X(Z) = X(T ˆS Z) = HomSchT
(T ˆS Z,X),

and for any morphism f : Y Ñ Z of S-schemes,

ResT/S X(f) = HomSchT
(idT ˆSf,X) : ResT/S X(Y) Ñ ResT/S X(Z).

Here idT ˆSf : T ˆS Y Ñ T ˆS Z denotes the obvious morphism. The functor resT/S X is called the Weil restriction (of
scalars). If T = SpecR and S = SpecA are affine, we write ResR/A = ResT/S for simplicity.
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3.70 Example : Affine spaces Let k 1/k be a field extension, finite of degree d. For a k-algebra R, we have

Resk1/k Ank1(SpecR) = HomSchk1 (Speck 1 ˆSpeck SpecR,Ank1)

– HomAlgk1 (k
1[x1, . . . , xn],k 1 bk R) – (k 1 bk R)

n

– Rnd – HomAlgk
(k[tyijui=1,...,n

j=1,...,d
],R) – HomSchk

(SpecR,Andk ).

Concretely, one can understand the above bĳections as follows. Let a1, . . . ,ad be a k-basis for k 1 and consider the substitutions

xi = yi1a1 + ¨ ¨ ¨ + yidad

for i = 1, . . . ,n. Then

Resk1/k Ank1 = Resk1/k Speck 1[x1, . . . , xn]

is represented by the affine scheme Speck[tyijui=1,...,n
j=1,...,d

].

3.71 Example : Tori. If A is a ring, put Gm,A = SpecA[x,y]/(xy ´ 1) = SpecA[x, x´1]. If R is any A-algebra, we have
set-theoretic bĳections

HomSchA
(SpecR,Gm,A)

(3.54)
– HomAlgA

(A[x, x´1],R) – Rˆ.

In other words, the scheme Gm,A represents the functor R ÞÑ Rˆ that takes a ring to its group of units.
Consider the case R = C and A = R. For each R-algebra R, we compute

ResC/R Gm,C(SpecR) = HomSchC(SpecC ˆSpecR SpecR,Gm,C)
(3.67)

– (C bR R)
ˆ –

(
R[x]/(x2 + 1)

)ˆ .

Of course, we use the natural identification C – R[x]/(x2 + 1). To compute the last group, note that for a,b P R, one always
has

(a+ bx)(a´ bx) = a2 ´ bx2 ” a2 + b2 (mod x2 + 1).

Thus ifa2+b2 P Rˆ, thena+bx mod x2 + 1
(
R[x]/(x2 + 1)

)ˆ with inverse (a2+b2)´1(a´bx). Conversely, ifa+bx mod x2 + 1 P(
R[x]/(x2 + 1)

)ˆ with inverse c+ dx mod x2 + 1, then

1 ” (a+ bx)(c+ dx) ” (ac´ bd) + (ad+ bc)x (mod x2 + 1)

and hence

(a´ bx)(c´ dx) = ac´ (ad+ bc)x+ bdx2 ” (ac´ bd) ´ (ad+ bc)x ” 1 (mod x2 + 1).

so that a ´ bx mod x2 + 1
(
R[x]/(x2 + 1)

)ˆ. In particular, a2 + b2 ” (a + bx)(a ´ bx) is also a unit. This establishes a first
bĳection of the following :(

R[x]/(x2 + 1)
)ˆ

– t(a,b) P R2 | a2 + b2 P Rˆu – HomAlgR
(R[x,y, (x2 + y2)´1],R).

Therefore, the functor ResC/R Gm,C is represented by the affine scheme SpecR[x,y, (x2 + y2)´1]. A more intrinsic way to
express this scheme is

SpecR[x,y, (x2 + y2)´1] = Spec (Sym HomModR(C,R))NC/R

where NC/R : C Ñ R is the norm given by NC/R(z) = zz.

3.72 LetA be a ring and R a finiteA-algebra which is also a projectiveA-module. Write R_ := HomModA
(R,A) for itsA-linear

dual. We are going to show ResR/A SpecB is represented by an A-scheme for each R-algebra B by an explicit construction.
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3.3.2 Separated morphisms

3.73 Graph. Let f : X Ñ Y be a morphism of S-schemes. By the universal property (3.66), the morphisms X idX
Ð X

f
Ñ Y

defines a morphism Γf : X Ñ XˆS Y fitting into the commutative diagram

X

XˆS Y Y

X Y

f

Γf

idX

pr2

pr1

The morphism Γf : X Ñ XˆS Y is called the graph of f.

3.73.1 Lemma. The diagonal Γf : X Ñ XˆS Y is an immersion.

Proof. Let pr1 : XˆS Y Ñ X and pr2 : XˆS Y Ñ Y be the canonical projection. By Proposition 2.26.3, it suffices to show the
restriction Γ´1

f (pr´1
1 (U)X pr´1

2 (V)) = UX f´1(V) Ñ pr´1
1 (U)X pr´1

2 (V) is a closed immersion for any affine opensU Ď X and
V Ď Y, lying over some affine open T Ď S ; by further shrinking, we may assumeU Ď f´1(V). LetU = SpecA, V = SpecB, T =

SpecC ; then pr´1
1 (U) X pr´1

2 (V) together with the projections to U and V , respectively, represents the fibre product of U
and V over T , so that it is isomorphic to SpecA bC B. The restriction f|pr´1

1 (U)Xpr´1
2 (V)

UXf´1(V)
: U X f´1(V) Ñ pr´1

1 (U) X pr´1
2 (V)

now takes the form SpecA Ñ SpecA bC B, the morphism corresponding to the C-algebra map A bC B Ñ A defined by
ab b ÞÑ aφ(b), where φ : B Ñ A corresponds to f|VU : U Ñ V . The algebra map is surjective, so SpecA Ñ SpecAbC B is a
closed embedding. This finishes the proof.

3.73.2 Diagonal. Let X Ñ S be an S-scheme. The above construction applied to the identity morphism idX : X Ñ X yields a
morphism ∆X/S : X Ñ XˆS X. This is called the diagonal morphism of X/S.

3.74 Definition. Let f : X Ñ Y be a morphism.

(i) f is called quasi-compact if for all open compact subsets U Ď Y, the preimage f´1(U) is compact.

(ii) f is called separated (resp. quasi-separated) if the diagonal ∆X/Y : X Ñ X ˆY X is a closed immersion (resp. quasi-
compact).

Finally, a scheme X is called separated (resp. quasi-separated) if the natural morphism X Ñ SpecZ is separated (resp.
quasi-separated).

3.75 Base change and morphisms. Let P be a property about morphisms of schemes that holds for all isomorphisms (in
Sch). Consider the following statements.

(i) P holds for all closed immersions.

(ii) For X j
Ñ Y

g
Ñ Zwith j an immersion, if g verifies P, then g ˝ j verifies P.

(iii) For X j
Ñ Y

g
Ñ Zwith j a closed immersion, if g verifies P, then g ˝ j verifies P.

(iv) If f : X Ñ Y verifies P, then fred : Xred Ñ Yred verifies P.

(v) Local on the base
If f : X Ñ Y verifies P, then for every affine open V Ď Y, the morphism f|V

f´1(V)
: f´1(V) Ñ V verifies P.

(vi) If f P HomSchS
(X,X 1) and g P HomSchS

(Y, Y 1) verify P, then (f,g) : XˆS Y Ñ X 1 ˆS Y
1 verifies P.
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(vii) Stable under base change
If f : X Ñ Y verifies P and Y 1 Ñ Y is a morphism, then the base change XˆY Y

1 Ñ Y verifies P.

(viii) Stable under fibre product
If X Ñ S and Y Ñ S verify P, then XˆS Y Ñ S verifies P.

(ix) For X f
Ñ Y

g
Ñ Z, if g ˝ f verifies P, then f verifies P.

(x) For X f
Ñ Y

g
Ñ Zwith g separated, if g ˝ f verifies P, then f verifies P.

(xi) Stable under composition
For X f

Ñ Y
g

Ñ Z, if f,g verify P, then g ˝ f verifies P.

3.3.3 Scheme-theoretic fibre

3.76 In (3.11) we see that if A is a ring and S is a submonoid of A, the natural map f : SpecS´1A Ñ SpecA is a
homeomorphism onto its image. In fact, this is also a topological embedding (2.22). To start with, put

Y = tp P SpecA | p X S = Hu

to be the image. By the universal property (2.22), we then have a commutative triangle

(SpecS´1A, OSpecS´1A) (SpecA, OSpecA)

(Y, OSpecA|Y)

f|Y

f

We need to show the morphism on the left is an isomorphism in LRS, and it remains to show the sheaf map

OSpecA|Y Ñ (f|Y)˚OSpecS´1A

is an isomorphism. This is clear.

3.77 Let us talk a little more about the morphism Spec OX,x Ñ X constructed in (3.60). Pick an affine open subsetU = SpecA
that covers the image of Spec OX,x. Then the morphism Spec OX,x Ñ SpecA corresponds to the ring homomorphism
A Ñ Ap – OX,x, where p is the prime corresponding to the point x. By (3.76), the morphism Spec OX,x Ñ SpecA is then a
topological embedding in LRS. Hence the morphism Spec OX,x Ñ X identifies Spec OX,x with (Y, OX|Y), where

Y = tx 1 P X | x P tx 1uu

3.78 Definition. Let (A,m) be a local ring. An ideal I � A is called a defining ideal if there exists n P Zě1 such that
mn Ď I Ď m.

In other words, I is an defining ideal if and only if the I-adic topology on A is the same as the m-adic topology on A.

3.79 Let f : X Ñ S be a morphism of schemes, s P S, and I a defining ideal of OS,s. Consider the fibre squares :

X XˆS Spec OS,s XˆS Spec OS,s/I

S Spec OS,s Spec OS,s/I

f
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By (2.22.1) and (3.77) we see that XˆS Spec OS,s is identified with (Y, OX|Y), where

Y = f´1
(

ts 1 P S | s P ts 1uu

)
.

Note that Spec OS,s/I is the singleton tm/Iu, for if p is a prime containing I, then since I is an defining ideal, taking radicals
gives m Ď p Ď m. This implies that XˆS Spec OS,s/I Ñ X is a homeomorphism onto its image which is f´1(s), the set-theoretic
fibre.

3.80 Definition. For a morphism f : X Ñ S of schemes and s P S, we call the fibre product

XˆS Spec κ(s)

the scheme-theoretic fibre of f at s. In (3.79), we see that as a topological space it is homeomorphic to the set-theoretic fibre
f´1(s).

From now on we regard f´1(s) as a scheme by identifying f´1(s) with XˆS Spec κ(s). In this way there is always a fibre
square

X f´1(s)

S Spec κ(s)

f

3.81 Underlying space of a fibre product. We can describe the underlying set of X ˆS Y as follows. Let s P S and let
x P X, y P Y lie over s. Then we have fibre squares

Spec κ(x) Spec κ(x) ˆS Y Spec(κ(x) bκ(s) κ(y))

X XˆS Y XˆS Spec κ(y)

S Y Spec κ(y).

πX

πY

For a scheme T , denote by T the underlying topological space. The universal property of X ˆS Y, the fibre product in Top,
gives a continuous map

XˆS Y Ñ XˆS Y.

The above fibre squares read that each fibre at (s, x,y) P XˆS Y is homeomorphic to Spec(κ(x) bκ(s) κ(y)).

3.4 Dimension

3.82 Krull dimension - topology. Let X be a topological space. For us a chain of irreducible closed subsets of X is a
sequence

Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn Ď X

of strictly increasing irreducible closed subsets Z0, . . . ,Zn of X, and we call the integer n the length of the chain. The (Krull)
dimension of X is defined as

dimX := sup tn | Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn Ď X is a chain of irreducible closed subsets of Xu ď ∞
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if X is nonempty, and dim H := ´∞ by convention.

3.83 Example. Consider the euclidean space Rn. If n = 0, then R0 is a singleton, so dimR0 = 0. For n ě 1, we claim that a
closed subset C Ď Rn is irreducible if and only if #C = 1. The if part is clear. For the other way around, suppose x ‰ y P C.
Let r ą 0 such that |x ´ y| ą 2r. Then the open subspace Br(x) X C has closure contained in Br(x), while |x ´ y| ą 2r ě r.
This shows Br(x) X C is not dense in C. Hence we conclude dimRn = 0 for all n P Zě0.

3.84 Example. Let A be a ring. Any irreducible closed subset of SpecA has the form V(p) for some prime ideal p P SpecA.
Indeed, if V(p) = V(I) Y V(J) = V(IJ) for some ideals I, J of A, then IJ Ď

?
p = p. Since p is prime, this shows either I Ď p or

J Ď p, so that V(p) Ď V(I) or V(p) Ď V(J). On the other hand, if V(I) is irreducible, then SpecA/I – V(I) is irreducible. By
Lemma 3.39, we see

?
I is a prime in A. But V(I) = V(

?
I).

Hence, any chain of irreducible closed subsets in SpecA has the form

V(p0) Ĺ V(p1) Ĺ ¨ ¨ ¨ Ĺ V(pn) Ď SpecA.

which in turn gives an strictly decreasing sequence

pn Ĺ ¨ ¨ ¨ Ĺ p1 Ĺ p0 Ĺ A

of prime ideals in A.

3.85 Krull dimension - ring. LetA be a ring. The (Krull) dimension dimA ofA is defined the dimension of the topological
space SpecA. In other words,

dimA := suptn | pn Ĺ ¨ ¨ ¨ Ĺ p1 Ĺ p0, pi P SpecAu

For a prime ideal p P SpecA, the height is defined as

ht p := dimAp = suptn | pn Ĺ ¨ ¨ ¨ Ĺ p1 Ĺ p, pi P SpecAu.

With this definition, we see that

dimA = sup
pPSpecA

ht p = sup
mPmSpecA

Am.

3.86 Example. A field has dimension 0. Any PID which is not a field has dimension 1, as any nonzero prime ideal is
maximal. In number theory, one usually study the arithmetic of a Dedekind domain, which is by definition a Noetherian
integrally closed domain of dimension 1. For example, the ring of integer OF of a number field F, i.e. the integral closure of
Z in a finite extension F of Q, is a Dedekind domain. That dim OF = 1 can be seen from the following lemma.

3.87 Going-up. Let A,B be rings and φ : A Ñ B be an integral homomorphism, i.e., every element in B is integral over the
subring φ(A) Ď B. Then

(i) For q P SpecB, we have ht q ď htφ´1(q). In particular, this shows dimB ď dimA.

(ii) Suppose in addition that φ is injective. Then Specφ : SpecB Ñ SpecA is surjective and dimA = dimB.

Proof. For (i) it suffices to show if q2 Ĺ q1 P SpecB, thenφ´1(q2) Ĺ φ´1(q1) P SpecA. By replacingφ : A Ñ B by the induced
map φ : A/φ´1(q2) Ñ B/q2, we may assume A,B are integral domains with A Ď B as subrings, and we only need to show if
q ‰ 0, then q XA ‰ 0.

Let 0 ‰ b P q. Since B is integral over A, we can find a monic f P A[x] with f(0) ‰ 0 such that f(b) = 0. But then
f(0) P AX q.

Next we show the first assertion of (ii). We begin with another lemma.
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3.87.1 Lying-over. Let A Ď B be integral domains with B integral over A. Then A is a field if and only if B is a field.

Proof. By (3.87).(i), we have dimB ď dimA, so if A is field, then dimB = 0, i.e., the zero ideal is the only prime ideal,
so that B is a field. Conversely, suppose B is a field. Let 0 ‰ a P A and let b P B be its inverse in B. Taking any monic

f = xn +
n´1
ř

i=0
aix

i P A[x] with a0 ‰ 0 and f(b) = 0. Define g(x) = xnf(1/x) ; then g(a) = anf(b) = 0 so that

0 = g(a) = a(a0a
n´1 + ¨ ¨ ¨ + an´1) + 1.

Hence b = ´(a0a
n´1 + ¨ ¨ ¨ + an´1) P A.

3.87.2 Resume the proof of (3.87).(ii). By the above lemma we see Specφ : SpecB Ñ SpecA maps closed points to closed
points, and is surjective on closed point. Now let p P SpecA, and consider the induced mapAp Ñ Bp := BbAAp ; pictorially,
we have

A B

Ap Bp

By clearing the denominators, the bottom-horizontal arrow is again an integral homomorphism. Since p is maximal in Ap,
by (3.87.1) we can find a maximal ideal q in Bp lying over p. It is then easy to see q X B P SpecB lies over p P SpecA. This
proves the surjectivity.

For the last assertion, in view of (i), it remains to show dimA ď dimB. Let p2 Ă‰ p1 be prime ideals in A. By surjectivity
pick any q2 P SpecB lying over p2. By surjectivity again, but this time applied to the map A/p2 Ñ B/q2, we can find a prime
ideal q1 P SpecB lying over p1 with q2 Ĺ q1. This shows dimA ď dimB.

3.88 Remark. A ring homomorphism A Ñ B satisfies the going up property if for any prime ideals p1 Ĺ p2 in A and
q1 P SpecB with q1 X A = p1, we can find q2 P SpecB with q2 X A = p2 and q1 Ĺ q2. We say A Ď B satisfies the
incomparability property when for any prime ideal p P SpecA, if q, q P SpecB are two prime ideals lying over p, then q Ę q 1

and q 1 Ę q.
In the proof of (3.87), we actually show that if A Ď B is an integral extension, then it satisfies the going up property and

incomparability property.

3.88.1 Lemma. Letφ : A Ñ B be a ring homomorphism (not necessarily injective) that satisfies the going up property. Then
Specφ : SpecB Ñ SpecA is a closed map.

Proof. Let I � B be an ideal. It suffices to show φ´1(V(I)) = V(φ´1(I)). The containment Ď is obvious. For the other way
around, we must show if φ´1(I) Ď p Ď A, then we can find I Ď q Ď B with φ´1(q) = p. It suffices to apply the going-up
property to the extension A/φ´1(I) Ñ B/I.

3.89 Definition. Let X be a topological space and Z an irreducible closed subset. The codimension of Z in X is

codimX Z := suptn | Z Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn Ď X, Zi is irreducible closed in Xu

For a closed subspace Y Ď X, define the codimension of Y in X as

codimX Y := inf tcodimX Z | Z Ď Y : irreducible component of Yu .

3.89.1 If X = SpecA and Z = V(p), then by definition

codimX Z = ht p = dimAp.
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If Y = V(I) for some ideal I�A, then

codimX Y = inftht p | I Ď p P SpecAu.

3.89.2 Lemma. Let X be a topological space and Z an irreducible closed subset. IfU Ď X is an open set such thatUXZ ‰ H,
then

codimX Z = codimUUX Z.

3.90 Lemma. Let X be a topological space and Y a closed subspace of X. Then

dim Y + codimX Y ď dimX.

Proof. Let Z be an irreducible component of Y. Clearly from the definition, we have dimZ + codimX Z ď dimX, so
dimZ+ codimX Y ď dimX. Since every chain of irreducible closed subsets of Y is contained in an irreducible component of
Y, varying Z gives dim Y + codimX Y ď dimX.

3.91 Definition. A topological space is called catenary if

1. codimY Z ă ∞ for all irreducible closed subsets Z Ď Y, and

2. for every triple of irreducible closed subsets Z2 Ď Z 1 Ď Z, we have

codimZ Z
2 = codimZ Z

1 + codimZ1 Z2.

3.91.1 Lemma. A topological space is catenary if and only if for any pair of irreducible closed subsets Z Ď Y, we have
codimY Z ă ∞ and every maximal chain Z = Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn = Y has the same length.

Proof.

3.91.2 Lemma. Let X be a topological space.

1. If X is catenary, then any locally closed subset of X is catenary.

2. X is catenary if and only if X has an open cover consisting of catenary spaces.

3.92 Codimension and local ring Let X be a scheme and let Z be an irreducible closed subset with generic point z (3.36).
Let Z 1 Ě Z be any irreducible closed subset of X, with generic point, say z 1. LetU = SpecA be any affine open neighborhood
of z. In (3.36) we saw that z 1 P U. Let p (resp. p 1) be the corresponding prime ideal of z (resp. z 1) in A. Then z P tz 1u implies
p P V(p 1), or p 1 Ď p, meaning that z 1 actually corresponds to a prime ideal p 1 in the local ring OX,z. Since z 1 lies in any affine
open neighborhood of z, the prime ideal p is independent of the choice of U. This establishes an inclusion reversing map

tirreducible closed subsets Z 1 Ě Zu Spec OX,z

Conversely, if p 1 P Spec OX,z, take any affine openU = SpecA containing z and identify p 1 as a prime ideal ofA contained in
z. The closure Z 1 := tp 1u is then an irreducible closed subset containing Z = tzu. The subset Z 1 is independent of the choice
of U, as the affine opens form a basis for the topology of X. This association p 1 ÞÑ Z 1 is clearly inverse to the the above map,
so that it is an inclusion reversing bĳection. In particular, we see

codimX Z = dim OX,z.
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3.93 Dimension and open cover. Let X be a topological space and U be an open cover. If U P U and Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn is
a chain of irreducible closed in U, then taking closure in X gives a chain of irreducible closed

Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn

of X. Indeed, we must have Zi ‰ Zj for otherwise Zi = Zi X U = Zj X U = Zj, a contradiction. In particular, this shows
dimU ď dimX. Conversely, if Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ Zn is a chain of irreducible closed in X, let U P U be such that UX Z0 ‰ H ;
then

Z0 XU Ĺ Z1 XU Ĺ ¨ ¨ ¨ Ĺ Zn XU

is a chain of irreducible closed ; if Zi XU = Zj XU, then Zi = Zi XU = Zj XU = Zj, a contradiction. From this we conclude
that

dimX = sup
UPU

dimU.

In fact, our argument also shows that dim Y ď dimXwhenever Y is a subset of X, equipped with subspace topology.

3.94 Lemma. Let X be a topological space and Y a subspace of X. Then

dim Y + codimX Y ď dimX.

3.95 Lemma. Let X be a scheme, and let U, V be two affine opens in X. Then there exists f P OX(U) and g P OX(V) such
that Uf = Vg.

Proof. Take α P OX(U) such that Uα Ď UX V . Take P OX(V) such that Vg Ď Uα. Then

Vg = Vg XUα = (V XUα)β|VXUα
= (Uα)β|Uα

Take f 1 P OX(Uα) = OX(U)α such that f 1 = β|Uα
, and choose N " 0 such that f := f 1αN P OX(U). Then

(Uα)β|Uα
= (Uα)f1 = (Uα)f = Uf

3.4.1 Artinian rings

3.96 Length. Let A be a ring andM an A-module. A finite descending chain ofM has the form

0 =Mn Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mn Ĺ M0 =M

We say such a filtration has length n. We define the length of the A-moduleM as

lengthM = lengthAM = sup tlength of all descending chain ofMu P Zě0 Y t∞u.

We sayM is a simple A-module ifM ‰ 0 and the only A-submodules ofM are 0 and itself ; in other words, lengthAM = 1.
A composition series ofM is a descending chain ofM

0 =Mn Ĺ Mn´1 Ĺ ¨ ¨ ¨ Ĺ M1 Ĺ M0 =M

such that each consecutive subquotientMn/Mn+1 is simple.

3.96.1 Lemma.
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(i) If N is an A-submodule ofM, then lengthAN+ lengthAM/N = lengthAM.

(ii) IfM has a composition series, then lengthAM ă ∞.

(iii) If lengthAM ă ∞, then every composition series has the same length.

(iv) If lengthAM ă ∞, every finite descending chain ofM can be refined into a composition series.

Proof.

(i) If lengthAN or lengthAM/N is infinite, then clearly so is lengthAM, and the equality holds trivially. Suppose now
both lengthAN and lengthAM/N are finite. Clearly lengthAN+ lengthAM/N ď lengthAM. Conversely, let

0 =Mn Ĺ Mn´1 Ĺ ¨ ¨ ¨ Ĺ M1 Ĺ M0 =M

be a finite descending chain ofM. Intersecting each term with N gives

0 =Mn XN Ď Mn´1 XN Ď ¨ ¨ ¨ Ď M1 XN Ď M0 XN = N

Adding N to each term gives

N =Mn +N Ď Mn´1 +N Ď ¨ ¨ ¨ Ď M1 +N Ď M0 +N =M

To show n ď lengthAN+ lengthAM/N, it suffices to show that

Mi+1 XN =Mi XN, Mi+1 +N =Mi +N

cannot happen simultaneously. Assume these both happen to hold at the same time. Take x P Mi ; then there exists
y P Mi+1 and n P N such that y = x + n, or y ´ x = n P Mi X N = Mi+1 X N. This implies x P Mi+1, and hence
Mi =Mi+1, which is absurd.

(ii) Let

0 =Mn Ĺ Mn´1 Ĺ ¨ ¨ ¨ Ĺ M1 Ĺ M0 =M

be a composition series ofM. By (i) we have

lengthAM =
n´1
ÿ

i=0
lengthAMi/Mi+1 =

n´1
ÿ

i=0
1 = n ă ∞.

(iii) Say 0 =Mn Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mn Ĺ M0 =M is a composition series. By (i)

lengthAM =
n´1
ÿ

i=0
lengthAMi/Mi+1 =

n´1
ÿ

i=0
1 = n.

(iv) If N Ď N 1 Ď M are A-submodules, by (i) lengthAN 1/N ă ∞, so there is a sequence N Ĺ N1 Ĺ ¨ ¨ ¨ Ĺ Nn = N 1 with
each consecutive subquotient simple. Now given a finite descending chain, if we refine each consecutive subquotient
in this way, we get a composition series.

3.96.2 Corollary. lengthAM ă ∞ if and only ifM is both an artinian and Noetherian A-module

Proof. Length of ascending chains and descending chains are bounded by lengthAM. For the if, since M is Noetherian
we can choose a maximal proper submodule M1 of M. Doing the same this for M1, we then get a descending chain
M Ĺ M1 Ĺ M2 Ĺ ¨ ¨ ¨ . SinceM is artinian, this process must stop, yielding a composition series ofM.

60



3.97 Lemma. Let A be an Artinian ring. Then # SpecA ă ∞, dimA = 0 and the zero ideal is a product of maximal ideals.

Proof. Consider the collection of all finite intersections of maximal ideals. Since A is Artinian, it has a minimal element, say
m1 X ¨ X mn. If m a maximal ideal, by minimality m1 X ¨ X mn X m = m1 X ¨ X mn, so m Ď mi for some i P [n]. This shows
#mSpec A ă ∞. If p P SpecA and f R p, consider the descending chain

(f, p) Ě (f2, p) Ě (f3, p) Ě ¨ ¨ ¨ .

Since A is artinian, it follows that fn P (fn+1, p) for n " 0, so fn = fn+1x + y for some x P A, y P p. But then fn(1 ´ fx) = y

and f R p, so 1 ´ fx P p. It follows that (f, p) = (1) = A.
Finally, let J denote the product of all maximal ideals. Since A is artinian, the chain J Ě J2 Ě J3 Ě ¨ ¨ ¨ stabilizes, and

hence Jn = Jn+1 for n " 0. We claim Jn = 0 ; otherwise, consider the collection t0 ‰ I � A | IJn ‰ 0u. This is nonempty as
JJn = Jn+1 = Jn ‰ 0. Since A is artinian, it has a minimal element, and by minimality it must be principal, say, generated by
0 ‰ f P A. Then fJn = fJn+1 = (fJ)Jn, so by minimality again fJ = (f). It follows that f = fr for some r P J, or f(1 ´ r) = 0.
Note that 1 ´ r P Aˆ ; for otherwise it is contained in some maximal ideal, which is absurd. Hence f = 0, which is another
contradiction. This proves Jn = 0.

3.97.1 Lemma. For an exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 of A-modules,M is Noetherian (resp. Artinian) if and only
ifM 1 andM2 are Noetherian (resp. Artinian).

3.97.2 Characterization of artinian rings. For a ring A, TFAE :

(i) lengthAA ă ∞.

(ii) A is artinian.

(iii) A is Noetherian and dimA = 0.

Proof. (i)ñ(ii) is (3.96.2). Assume (ii). Then dimA = 0 by (3.97). Again by (3.97), m1 ¨ ¨ ¨mn = 0 for some maximal ideals mi
of A. Consider the filtration

A Ě m1 Ě m1m2 Ě ¨ ¨ ¨ Ě m1 ¨ ¨ ¨mn1 Ě m1 ¨ ¨ ¨mn´1mn = 0.

Each successive subquotient is an A/mi-module, i.e., a vector space over A/mi. This quotient has finite length, so the
dimension (as vector spaces) over A/mi must be finite, which then implies it is Noetherian. By (3.97.1) this tells A is
Noetherian.

Finally assume (iii). Suppose lengthAA = ∞, and consider the collection tI�A | lengthA(A/I) = ∞u. This is nonempty
as lengthAA/0 = ∞. SinceA is Noetherian, there exists a maximal element m. We claim m is a prime. Say xy P m with y R m.
Form the short exact sequence

0 A/(p : y) A/p A/(y, p) 0ˆy

where (p : y) = tf P A | fy P pu. If x R p, then both (p : y) and (y, p) strictly contain p. By maximality the corresponding
quotient has finite length. By (3.96.1) this impliesA/m has finite length, a contradiction. Hence x P m and m is a prime. Since
dimA = 0, m is maximal. But thenA/m is a field, so it has finite length asA-module, which is absurd. Hence lengthAA ă ∞.

3.4.2 Hilbert polynomials

We follow the exposition in [AM94, Chapter 11].

3.98 Lemma. Let A =
à

ně0
An be a graded ring. Then A is a Noetherian ring if and only if A0 is a Noetherian ring and A is

of finite type over A0.
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Proof. The if part follows from Hilbert basis theorem. For the only if part, suppose A is a Noetherian ring. Note A+ �A, so
(3.97.1) A0 = A/A+ is a Noetherian ring. Since A is Noetherian and A+ is a proper ideal of A, it is finite over A. By (3.116), it
follows that A is of finite type over A0.

3.99 Lemma. Let A be a Noetherian graded ring andM a finite graded A-module. ThenMn is a finite A0-module for each
n ě 0.

Proof. Say A = A0[x1, . . . , xm] with xi P A+ homogeneous, and M = Ay1 + ¨ ¨ ¨ + Ayℓ for homogeneous yi P M. Then

each element in M has the form
ℓ
ÿ

i=1
fi(x1, . . . , xm)yi with fi P A0[X1, . . . ,Xm]. From this we see Mn is generated by the

g(x1, . . . , xm)yi where 1 ď i ď ℓ and g P A0[X1, . . . ,Xm] runs over all homogeneous polynomials of degree n´ degyi.

3.100 Poincaré series. Let A be a graded Noetherian ring. Let λ be a Z-valued function on all finite A0-modules that is
additive, in the sense if

0 M 1 M M2 0

is a short exact sequence of finite A0-modules, then

λ(M) = λ(M 1) + λ(M2).

For a finite graded A-moduleM, the Poincaré series ofMwith respect to λ is the generating function of (λ(Mn))ně0 :

P(M, t) = Pλ(M, t) =
∞
ÿ

n=0
λ(Mn)t

n P Z[[t]]

3.100.1 Example. Let A be an artinian ring and R = A[x1, . . . , xm] be the polynomial ring in m variables over A. Take
M ÞÑ lengthAM to be our additive function. Then

lengthA Rn =

(
n+m´ 1

n

)
is the number of the degree nmonomials, so

PlengthA
(A[x1, . . . , xm], t) =

∞
ÿ

n=0

(
n+m´ 1

n

)
tn = (1 ´ t)´m

3.101 Theorem. (Hilbert ; Serre) Let A be a Noetherian graded ring with A = A0[x1, . . . , xs] and xi P A+ homogeneous, and
letM be a finite graded A-module. Let λ be an additive function as in (3.100). Then

P(M, t) = f(t)
s
ź

i=1
(1 ´ tdegxi)´1,

for some f P Z[t].

Proof. We do induction on s. When s = 0, thenM = A0m1 + ¨ ¨ ¨ +A0mt for somemi P M, so thatMn = 0 for n " 0. Hence
P(M, t) is a polynomial in this case. Assume s ě 1. For each n ě 0 multiplication by xs yields an exact sequence

0 Kn Mn Mn+degxs Ln+degxs 0.ˆxs

Define K =
À

n Kn and L =
À

n Ln (where Lk = 0 for 0 ď k ă deg xs). By (3.97.1) K and L are finite graded A-modules.
Since L and K are annihilated by xs, we can treat them as A[x1, . . . , xs´1]-modules. Applying λ to the above sequence we get

λ(Kn) ´ λ(Mn) + λ(Mn+degxs) ´ λ(Ln+degxs) = 0.
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Multiplying by tn+degxs and summing over n ě 0, we see

tdegxsP(K, t) ´ tdegxsP(M, t) +

P(M, t) ´

degxs´1
ÿ

n=0
λ(Mn)t

n

´

P(L, t) ´

degxs´1
ÿ

n=0
λ(Ln)t

n

 = 0

or

P(M, t)(1 ´ tdegxs) = P(L, t) ´ tdegxsP(K, t) + g(t)

for some g P Z[t]. By induction this completes the proof.

3.101.1 Since P(M, t) is then a rational function, we can put

d(M) = ´ mint0, ordt=1 P(M, t)u = order of pole of P(M, t) at t = 1.

This will be an important quantity in studying the dimension.

3.101.2 Corollary. If x P A+ is homogeneous and is not a zero-divisor ofM, then d(M) = d(M/xM) + 1.

Proof. For each n ě 0 consider the exact sequence

0 Mn Mn+degx Mn+degx/xMn = (M/xM)n+degx 0.ˆx

Multiplying by tn+degx and summing over n ě 0, we see

P(M/xM, t) = g(t) + (1 ´ tdegx)P(M, t)

for some g P Z[t]. Since g has no pole, P(M/xM, t) has a pole if and only if (1 ´ tdegx)P(M, t) has a pole, and have the same
order. This finishes the proof.

3.101.3 Corollary. If in (3.101) deg xi = 1, then λ(Mn) is a polynomial in n with rational coefficients for n " 0, of degree
d(M) ´ 1. Here the zero polynomial has ´1 degree.

Proof. By (3.101),

P(M, t) = f(t)(1 ´ t)´s =

deg f
ÿ

i=0
fit
i

( ∞
ÿ

j=0

(
j+ s´ 1

j

)
tj

)
.

Cancelling out powers of (1 ´ t), we assume s = d(M) and f(1) ‰ 0. For n ě deg f, we have

λ(Mn) =

deg f
ÿ

i=0
fi

(
n´ i+ s´ 1

n´ i

)
.

This is a rational polynomial with leading term f(1)
(s´ 1)!n

s´1 when n " 0.

3.4.3 Noetherian local rings

3.102 I-filtration. Let A be a ring, I an ideal andM an A-module. A descending filtration

¨ ¨ ¨ Ď Mn Ď ¨ ¨ ¨ Ď M1 Ď M0 Ď M
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is said to be an I-filtration if IMn Ď Mn+1 for n ě 0. Consider the auxiliary graded module

M˚ :=
à

ně0
Mn.

If we denote BlIA = A˚ :=
à

ně0
In, thenM˚ is a graded BlIA-module. On the other hand, there is another common associated

graded module

GrFM =
à

ně0
Mn/Mn+1.

This is a GrIA = GL(In)ně0 A-module.

3.102.1 Lemma. Let A be a Noetherian ring, I an ideal,M a finite A-module and F = (Mn)ně0 an I-filtration. TFAE :
(i) M˚ is a finite BlIA-module.

(ii) The filtration F is stable, i.e., IMn =Mn+1 for n " 0.

Proof. SinceM is Noetherian, eachMn is finite over A. Let Qn =
n
À

k=0
Mk ; then Qn is finite over A, and generates the finite

BlIA-submodule

M˚
n =M0 ‘ ¨ ¨ ¨ ‘Mn ‘ IMn ‘ I2Mn ‘ ¨ ¨ ¨

of M˚. Then L0 Ď L1 Ď ¨ ¨ ¨ is an ascending chain which unions to M˚. Since BlIA is Noetherian, we see M˚ is finite over
BlIA if and only if the chain stops, i.e.M˚ =M˚

n for n " 0. The last condition is the same as saying F is stable.

3.102.2 Corollary. (Artin-Rees) Let A be a Noetherian ring, I an ideal, M a finite A-module and F = (Mn)ně0 a stable
I-filtration. If N Ď M is an A-submodule, then (Mn XN)ně0 is a stable I-filtration of N.

Proof. Since BlIA is Noetherian, by (3.102.1) we see M˚ is a Noetherian BlIA-module, and we only need to show N˚ =
à

ně0
(Mn XN) is also a finite BlIA-module. But this is clear, as N˚ is a BlIA-submodule ofM˚ andM˚ is Noetherian.

3.103 Lemma. Let (A,m) be a Noetherian local ring, and q a m-primary ideal. Suppose M is a finite A-module, and
F = (Mn)ně0 is a stable q-filtration. Then

(i) EachM/Mn has finite length as an A-module.
(ii) There exists some polynomial g of degree ď s such that g(n) = lengthAM/Mn for n " 0, where s is the least number

of generators of q.
(iii) The degree and the leading coefficient of g do not depend on the filtration F, but only onM and q.

Proof. Since q is finite over A, GrqA is Noetherian and GrFM is a finite GrqA-module. Since GrnF M =Mn/Mn+1 is killed
by q, it is a finite A/q-module. Since A/q is artinian, it follows that Mn/Mn+1 is Noetherian and artinian, whence of finite
length (3.96.2). Now by (3.96.1).(i)

lengthAM/Mn =
n´1
ÿ

i=0
lengthAMi/Mi+1 ă ∞.

This proves (i). For (ii), say q = Ax1 + ¨ ¨ ¨ + Axs ; then GrqA = (A/q)[x1, . . . , xs]. By (3.101.3), lengthA(Mn/Mn+1) is then a
polynomial in nwhen n " 0, of degree ď s´ 1. In particular, lengthAM/Mn is a polynomial in nwhen n " 0 of degree ď s.

Finally, for (iii) it suffices to compare with the filtration (qnM)ně0. Since F is stable, qnM Ď Mn for all n ě 0. Now take
N " 0 so that qMn =Mn+1 for all n ě N. ThenMn+N = qnMN Ď qnM, and qn+NM Ď Mn+N Ď Mn. But then

lengthAM/Mn+N ě lengthAM/q
nM, lengthAM/q

n+NM ě lengthAM/Mn
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for all n ě 0. By (ii) they are polynomials when n " 0, so this implies they has the same leading term, proving (iii).

3.103.1 Characteristic polynomial. We denote the polynomial in (3.103) associated to the filtration (qnM)ně0 by

χMq (n) = lengthAM/q
nM n " 0.

WhenM = A, we simply write

χq(n) = χ
A
q (n) = lengthAA/q

n, n " 0

and call it the characteristic polynomial of the m-primary ideal q. The degree of χq(n) gives a lower bound of the number
of the generators of q.

3.103.2 Lemma. Let A,m, q be as in (3.103). Then degχq(n) = degχm(n).

Proof. Since A is Noetherian, that ?
q = n implies mr Ď q Ď m for some r " 0, and hence

lengthAA/m
n ď lengthAA/q

n ď lengthAA/m
r+n

for all n ě 0. This proves the lemma.

3.103.3 In view of the previous lemma, we denote by d(A) the common degree of the χq(n). By (3.101.3), in fact

d(A) = d(GrmA),

where the right hand side is defined as in (3.101.1).

3.104 Let (A,m) be a Noetherian local ring and q an m-primary ideal. Denote by

δ(A) = δq(A) = the least number of generators of q.

By (3.103) we see δ(A) ě d(A). Our goal is to show

δ(A) = d(A) = dimA.

For this we are going to prove δ(A) ě d(A) ě dimA ě δ(A).

3.4.4 Weil divisors

3.105 Cycles. Let X be a topological space. An irreducible closed subset of codimension r is called a codimension r prime
cycle. Denote by Zr(X) the free abelian group on all codimension r prime cycles. Similarly, an irreducible closed subset of
dimension k is called a dimension k prime cycle. Denote by Zk(X) the free abelian group on all dimension k prime cycles.

3.105.1 Weil divisors. Let X be a Noetherian scheme. An element in Z1(X) is called a Weil divisor on X. For brevity we call
a codimension 1 prime cycle a prime divisor.

3.5 Proj

3.106 Let S =
À

ně0
S0 be a graded ring, i.e., Sn ¨ Sm Ď Sn+m for any n,m ě 0 and each Sn is an abelian subgroup of S. An

element f in Sn (n ě 0) is said to be homogeneous of degree n, and in this case we put n = deg f. For an element x P S, we
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can write x =
ř

ně0
xn with xn P Sn in a unique way ; the xn are called the homogeneous parts of x. An ideal I of S is called

homogeneous if it is generated by its homogeneous elements, i.e.,

I =
ÿ

ně0
(IX Sn)

Put S+ =
À

ně1
S0. This is the ideal of elements of positive degrees. Now define

ProjS := tp P SpecS | p Ğ S+, p is homogeneousu

For a subset T Ď S, define V+(T) := tp P ProjS | T Ď pu. By definition we have V+(T) = V(T) X ProjS. We equip Proj S with
the subspace topology inherited from SpecS. Note that V+(T) = V+(I), where I is the homogeneous ideal generated by the
homogeneous part of all x P T . Thus all closed sets of ProjS have the form V+(I) for some homogeneous ideals I of S. For
any homogeneous f, define the principal open set

D+(f) = tp P ProjS | f R pu = D(f) X ProjS = ProjSzV+(f).

The principal open sets form a basis for the topology on Proj S. In fact, homogeneous elements of positive degree suffices to
produce a basis. Indeed, for f P S0, one has

D+(f) =
ď

ně1

ď

gPSn

D+(fg)

Ě is clear. To see Ď it suffices to recall p P ProjS do not contain whole S+ by definition. Because of this fact, in the following
by a principal open set we always refer to the one given by homogeneous of positive degree.

3.107 Lemma. For an homogeneous ideal I, we have
?
I =

č

pPV+(I)

p

Proof. Ď is clear. For the another containment, suppose f R
?
I. Choose from the family

tJ : homogeneous | J Ě I, fn R J for all n ě 1u

a maximal element q by Zorn’s lemma. Then q is a homogeneous prime not containing f.

3.108 Let S =
À

ně0
Sn be a graded ring and let M =

À

nPZ
Mn be a Z-graded S-module, i.e., Sn ¨ Mm Ď Mn+m for any

n ě 0,m P Z. For a multiplicatively closed subset T of S consisting of homogeneous elements, the localization T´1S is
naturally a Z-graded ring, and T´1M is naturally a Z-graded T´1S-module, i.e.,

(T´1M)n =
!x

t
| x P Mm+n, t P T X Sm for somem ě 0

)

.

For any homogeneous f P S+ of positive degree, put

M(f) = (Mf)0

to be the degree 0 part of the localizationMf.

3.109 OProjS and projective tilde. For a graded ring S and homogeneous f of positive degree, define

OProjS(D+(f)) = S(f).
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If D+(f) Ě D+(g), then V+((f)) Ď V+((g)), and (g) Ď
a

(f) by Lemma 3.107. This means gn = sf for some n ě 1 and

s P S ; in particular s is homogeneous. The map Sf Ñ Sg given by 1
f

ÞÑ
s

gn
is independent of the choice of n and s, and is

degree-preserving, so it gives a map S(f) Ñ S(g). This shows OProjS defines a presheaf of rings on the principal open sets. To
show it is a sheaf, we use (2.3), and prove more generally that there is an exact sequence

0 M(f)

n
ź

i=1
M(gi)

n
ź

i,j=1
M(gigj).

where M is a Z-graded S-module, and f,gi P S+ are homogeneous with D+(f) =
n
Ť

i=1
D+(gi). We use the isomorphism

φ : D+(f) Ñ SpecS(f) in the next paragraph (3.110). The identity D+(fgi) = φ
´1(D(g

deg f
i f´ deggi)) then implies

SpecS(f) =
n
ď

i=1
D(g

deg f
i f´ deggi) (♠)

The natural mapMf Ñ Mg induces a mapM(f) Ñ M(g), and an isomorphism (M(f))gdegf

i f´ deggi
– M(gi), where we regard

them all as S(f)-modules. Similarly (M(f))(gigj)degff
´ deggigj – M(gigj). So the sequence we are concerning becomes

0 M(f)

n
ź

i=1
(M(f))gdegf

i f´ deggi

n
ź

i,j=1
(M(f))(gigj)degff

´ deggigj .

In view of (♠), this reduces to (3.3).(♡) (with A = S(f), M =M(f), f = 1, fi = g
deg f
i f´ deggi ). This finishes the proof.

For a Z-graded S-algebraM, we define

ĂM(D+(f)) =M(f)

Then we have showed that this defines a sheaf on principal open sets, and hence a sheaf on the ringed space (ProjS, OProjS).

3.110 We prove that for homogeneous f P S+ there exists an isomorphism in RingTop

(D+(f), OProjS|D+(f)) (SpecS(f), OSpecS(f)
).

In particular, this shows Proj S is a scheme.
We first construction a continuous map on topological spaces. Recall in (3.11) we have a homeomorphismD(f) Ñ SpecSf.

We claim the compositionφ : D+(f) Ď D(f) Ñ SpecSf Ñ SpecS(f) is again a homeomorphism. Explicitly,φ(p) = pSfXS(f).
We define an inverse map ψ : SpecS(f) Ñ D+(f) by

ψ(p 1) =
à

ně0

"

a P Sn |
adeg f

fn
P p 1

*

Each summand is an abelian subgroup of Sn, for if adeg ff´n, bdeg ff´n P p 1, then (a ´ b)2 deg f/f´2n P p 1, and thus (a ´

b)deg f/f´n P p 1 as p 1 is a prime. This is an homogeneous ideal for if adeg ff´n P p 1 and s P Sm, then (as)deg ff´(n+m) =

(adeg ff´n)(sdeg ff´m) P p 1. This is a prime ideal, for if a P Sn and b P Sm with (ab)deg ff´(n+m) P p 1, then either adeg ff´n P p 1

or bdeg ff´m P p 1 as the fractions are of degree 0 and p 1 is a prime. Lastly, f R ψ(p 1) for otherwise we would have
1 = fdeg ff´ deg f P p 1, which is absurd ; in particular ψ(p 1) Ě S+ We must show φ and ψ are mutually inverses. For
g P Sn, we have

g P ψ(φ(p)) ô gdeg ff´n P φ(p) Ď pSf ñ g P pSf X S = p ñ gdeg ff´n P pSf X S(f) = φ(p) ô g P ψ(φ(p))
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so ψ(φ(p)) = p. For g P S(f), if g P φ(ψ(p 1)), we can write g =
a

fn
for some homogeneous a P ψ(p 1) with dega = ndeg f.

But these imply p 1 Q adeg ff´ dega = gdeg f, so g P p 1.
Conversely, if g P p 1, write g =

a

fn
for some homogeneous a P S with dega = ndeg f. The above argument shows

a P ψ(p 1), so g P ψ(p 1)Sf X S(f) = φ(ψ(p 1)). To show φ is a homeomorphism, note that for gdeg ff´ degg P S(f) with g P S+

homogeneous, we have

φ´1(D(gdeg ff´ degg)) = D+(gf). (‹)

For if gdeg ff´ degg R φ(p), then gdeg ff´ degg R pSf, so g R p. This implies gf R p. Note that is gdeg ff´ degg P pSf, then
gdeg ff´ degg = af´m for some homogeneous a P p, so g P p since p is a prime. Thus the above argument is reversible, so this
proves the equality. To conclude our assertion, it suffices to note thatD+(gf) forms an open basis ofD+(f) when g runs over
S+ and is homogeneous.

To show OSpecS(f)
– φ˚OProjS|D+(f), we check there are compatible isomorphisms on basis elements of the form (‹). One

has

OSpecS(f)
(D(gdeg ff´ degg)) = (S(f))gdegff´ degf – S(gf) = OProjS(D+(gf)) = φ˚OProjS(D(gdeg ff´ degg)),

the isomorphism being given by the universal property of localization. This isomorphism is compatible with the restriction,
so by (2.3.1) it patches to an isomorphism OSpecS(f)

Ñ φ˚

(
OProjS|D+(f)

)
.

In fact, the same argument also shows that ĆM(f) – φ˚

(
ĂM|D+(f)

)
, so in fact we have an isomorphism in ModLRS

(D+(f), OProjS|D+(f),ĂM|D+(f)) (SpecS(f), OSpecS(f)
, ĆM(f)).

Be aware of the difference of two tildes : one is projective, and another is affine.

3.110.1 For a graded ring S, define the category GrModS of graded S-modules as follows. The objects of GrModS consist
of all graded S-modules. A morphism in GrModS is an S-module homomorphism φ :M Ñ N satisfying φ(Mn) Ď Nn for
each n P Z. With this terminology, from the last isomorphism in the previous paragraph, we see the projective tilde defines
a functor

Ă(¨) : GrModS QcohX

3.110.2 The mapD+(f) Ñ SpecS(f) in (3.110) is compatible with the restriction, as one can argue as in (3.11.2). Composing
with SpecS(f) Ñ SpecS0 (coming from the natural map S0 Ñ S(f)), we obtain a family of morphisms D+(f) Ñ SpecS0,
compatible with the restriction. By (2.13.4) they give rises to a morphism Proj S Ñ SpecS0.

Similarly, letAbe a ring and letSbe a gradedA-algebra. Here we assume the image ofA lies inS0. With this assumption, the
homomorphism A Ñ S Ñ Sf stabilizes S(f), making S(f) an A-algebra, which gives rise to a morphism Spec S(f) Ñ SpecA.
Composing with D+(f) Ñ SpecS(f) and gluing, we obtain Proj S Ñ SpecA so that Proj S is naturally an A-scheme.

3.110.3 LetM be a graded S-module and f P Sd. Note that there is a canonical homomorphism

M0 M(f) = ĂM(D+(f))

m
m

1 .

The homomorphisms obtained by varying f P S+ are compatible, so this yields an S0-homomorphism

M0 ĂM(ProjS).

In particular, there is a canonical ring homomorphism S0 Ñ rS(ProjS),
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3.111 Let S and S 1 be two graded rings and φ : S Ñ S 1 a ring homomorphism such that φ(Sn) Ď S 1
nd for any n P Z and a

fixed d P N. For any p 1 P ProjS 1, we have

φ´1(p 1) P ProjS ô S+ Ę φ´1(p 1) ô φ(S+) Ę p 1

or p 1 P ProjS 1 zV+(φ(S+)). If we put G(φ) = ProjS 1 zV+(φ(S+)), we see φ induces a continuous map

Φ : G(φ) ProjS

p 1 φ´1(p 1).

Note that G(φ) =
Ť

tD+(φ(f)) | f P Sd, d ě 1u and Φ´1(D+(f)) = D+(φ(f)) for homogeneous f P S+. Observe that φ
induces a homomorphism Sf Ñ S 1

φ(f) of graded rings, i.e., φ((Sf)n) Ď (S 1
φ(f))n for any n ě 0, so it further induces a ring

homomorphism S(f) Ñ S 1
(φ(f)). This gives a morphismD+(φ(f)) Ñ D+(f) of schemes (3.110). For any homogeneous g P S+,

it is easy to see there is a commuting square

S 1
φ(f) S(f)

S 1
φ(fg) S(fg)

so theD+(φ(f)) Ñ D+(f) glue to a morphismG(φ) Ñ ProjS of schemes. We denote this morphism by Projφ. By construction
we see Projφ is an affine morphism (3.20).

3.112 Lemma. Let A be a ring, B a graded A-algebra and C an A-algebra. Then there is a canonical isomorphism

Proj(BbA C) – ProjBˆSpecA SpecC

Here BbA C is graded via BbA C =
∞
À

n=0
(Bn bA C).

Proof. Put E = BbA C. The canonical A-algebra homomorphism ι : B Ñ E satisfies ι(Bn) Ď En = Bn bA C for every n, so
ι(B+) Ď E+ ; in fact, ι(B+)E = E+. Then V+(ι(B+)) = V+(E+) = H. By (3.111) and (3.110.2) we thus obtain an A-morphism
ψ : ProjE Ñ ProjB. Also, by (3.110.2) the natural map C Ñ E gives an A-morphism ProjE Ñ SpecC. From the definition of
fibre product these two morphisms give

φ : ProjE Ñ ProjBˆSpecA SpecC

For homogeneous f P B+, we have

φ´1(D+(f) ˆSpecA SpecC) = ψ´1(D+(f)) = D+(ι(f))

so we only need to show D+(ι(f)) Ñ D+(f) ˆSpecA SpecC is an isomorphism for every such f. Back to algebra, we need to
show B(f) bA C Ñ E(ι(f)) is an isomorphism. Clearly, this map is given by

b

fn
b c ÞÑ

bb c

ι(f)n

which is clearly surjective. To show the injectivity, we only need to show B(f) bA C Ñ Bf bA C Ñ Eι(f) is injective. This is
clear.

3.113 LetA be a ring, S be a gradedA-algebra and f P A ; again we assume the image ofA is contained in S0. The localization
S Ñ Sf preserves degree, so by (3.111) we have a morphism ProjSf Ñ ProjS. Moreover, by (3.110.2) we have a diagram

ProjSf ProjS

SpecAf SpecA
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By checking affine locally, this is a commutative diagram. We claim this is a fibre square. This is clear from the proof of
Lemma 3.112.

3.114 Closed subschemes of Proj defined by homogeneous ideals. Let S be a graded ring and I� S a homogeneous ideal.
Then rI� OProjS is an ideal sheaf, so we can form the closed local-ringed space

(
V(rI), OProjS/rI|V(rI)

)
. We claim that

V(rI) = V+(I) = tp P ProjA | I Ď pu.

For each homogeneous f P S+,

V(rI) XD+(f) = tp P D+(f) | rIp Ĺ OProjS,pu – tp P SpecS(f)) | (I(f))p Ĺ (S(f))pu = V(I(f))

We must show the image of V+(I) X D+(f) under the isomorphism D+(f) – SpecS(f) is also V(I(f)). One containment is
clear. For the other way around, let p 1 P V(I(f)). We must check ψ(p 1) Ě I, where ψ is defined as in (3.109). If a P In, then
adeg ff´n P I(f) Ď p 1. Hence In Ď ψ(p 1))n for each n ě 0, or I Ď ψ(p 1) as claimed.

Let φ : S Ñ S/I be the natural projection. Then φ preserves degree, so by (3.111) there is a natural map Φ : ProjS/I Ñ

ProjS. From the construction we see the image of Φ lies in V+(I). The sheaf map OProjS Ñ Φ˚OProjS/I is defined by gluing
the spec of the maps S(f) Ñ (S/I)(φ(f)) (f P S+), which has kernel I(f), so ker(OProjS Ñ Φ˚OProjS/I) is exactly rI. By (2.24) Φ
factors through the closed immersion

(
V(rI), OProjS/rI|V(rI)

)
Ñ ProjS, yielding a unique isomorphism

ProjS/I –

(
V(rI), OProjS/rI|V(rI)

)
.

3.115 Closed subschemes of ProjS (I). Let S be a graded ring. Let I � OProjS be an ideal sheaf. By (3.21.1) the closed
local-ringed subspace (V(I), OX/I)|V(I)) is a closed subscheme if and only if I is OProjS-quasi-coherent.

Assume I is OProjS-quasi-coherent. Let f P S+ be homogeneous. Then the canonical map ČI(D+(f)) Ñ I|D+(f) is an
isomorphism. Define

Jf =
à

ně0

"

a P Sn |
adeg f

fn
P I(D+(f))

*

.

By construction I(D+(f)) = (Jf)(f). Indeed, for x P I(D+(f)) Ď S(f), we can find n P Zě1 so that xfn P Sndeg f. Hence
(xfn)deg ff´nd = xdeg f P I(D+(f)), so that xfn P Jf, or x P (Jf)(f).

If g P S+ is another homogeneous element, we get a similar ideal Jg. Replacing (f,g) by (fdegg,gdeg f), we assume
deg f = degg =: d. We claim

(Jf X Jg)(f) = (Jf)(f)

and similarly for g. The containment Ď is evident. Now let a P (Jf)(f) ; then b := afn P Snd X Jf for some n P Zě0 and hence
bdeg ff´nd P I(D+(f)). On I(D+(fg)), we have

bdeg f

fnd
=
bdegg

gnd
¨
gnd

fnd
.

Since S(gf) = (S(g))fg´1 and I(D+(fg)) = I(D+(g)) bS(g)
(S(g))fg´1 , we see b

degg

gnd
¨
fm

gm
P I(D+(g)) for somem P Zě1, and

hence (bfm)deggg´nd´mdegg P I(D+(g)). This implies bfm P Jg, and hence bfm X Jg X Jf with a =
bfm

fn+m
.

Suppose ProjS is compact, i.e., Proj S = D+(f1) Y ¨ ¨ ¨D+(fn) for some homogeneous f1, . . . , fn P S+ ; raising each fi to
some power we can assume deg f1 = ¨ ¨ ¨ = deg fn ą 0. By the argument as above, we obtain several homogeneous ideals
Jf1 , . . . , Jfn and I := Jf1 X ¨ ¨ ¨ X Jfn such that

I(fi) = (Jfi)(fi), i P [n].

70



In other words,rI(D+(fi)) = (Jfi)(fi) = I(D+(fi)). By gluing we seerI – I . We summarize the result in the next subparagraph.
We will discuss this result in (3.125) in a functorial way.

3.115.1 Lemma. Let S be a graded ring and suppose Proj S is compact. Every closed subscheme of Proj S has the form
ProjS/I for some homogeneous ideal I of S.

3.5.1 Quasi-coherent sheaves on Proj.

3.116 Let S be a graded ring. Then S can be viewed as an S0-algebra. Let E Ď S+ be a subset consisting of homogeneous
elements.

Lemma. S+ = SE if and only if S = S0[E].

Proof. Considering the grading, we see if part holds obviously. For the only if part, we prove Sn Ď S0[E] inductively on

n ě 1. For s P Sn, write s =
m
ř

i=1
siei, where si P S and ei P EXSni

for some ni ě 1. Writing si as the sum of its homogeneous

part, we can assume si P Sn´ni
. Since n´ ni ă n, we can apply induction hypothesis to see s P S0[E].

3.117 Suppose S be a graded ring that is generated by S1 as an S0-algebra. Concisely, S = S0[S1]. Then ProjS is covered

by those principal open sets of the form D+(f) with f P S1. Indeed, for any f P Sd, write f =
m
ř

i=1
sifi, where fi is a product

of elements in S1. Then (f) Ď (f1, . . . , fm), so V+(f) Ě V+(f1) X ¨ ¨ ¨ X V+(fm), and hence D+(f) Ď D+(f1) Y ¨ ¨ ¨ Y D+(fm).
But D+(fi) Ď D+(gi) if gi P S1 is any element appearing in the product fi, so D+(f) is covered by those principal open sets
given by elements in S1. Since the D+(f) form a basis of topology of Proj S, this proves the assertion.

In fact, the above argument shows that if E Ď S+ consists of homogeneous elements such that S = S0[E], then S can be
cover by those principal open sets given by elements in E.

3.118 O(n). Let S be a graded ring and X = ProjS. For each n P Z, denote by S(n) the Z-graded S-module whose graded
pieces are given by

S(n)d = Sn+d.

We call this a twist of S byn. The OX-module ĆS(n) is denoted by OX(n). Particularly, the sheaf OProjS(1) is called the twisting
sheaf of Serre. For any OX-module F , we denote by F(n) = F bOX

OX(n), and called this F twisted by n. By (3.110.3) there
are canonical S0-homomorphism

Sn = S(n)0 Γ(X, OX(n))

Taking direct sum, we obtain
S

À

ně0
Γ(X, OX(n))

3.118.1 For f P Sd, the sheaf OX(nd)|D+(f) is in fact trivial. To see this, recall that by (3.110), there is an isomorphism

(D+(f), OX(nd)|D+(f)) (SpecS(f), ČS(nd)(f)).

Consider the S(f)-module isomorphism
S(f) S(nd)(f)

s fns

This is well-defined for any n since f is inverted and S(nd)(f) consists of elements of degree nd in Sf. This proves that
S(nd)(f) is free of rank 1 over S(f).
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3.118.2 LetM be a graded S-module and f P Sd. Note that the natural isomorphism

Mf bSf
Nf (MbS N)f

m

fa
b
n

fb
mb n

fa+b

is grading preserving. In particular, this induces M(f) bS(f)
N(f) Ñ (M bS N)(f). Moreover, for any other homogeneous

g P S+, we have a commutative diagram

M(f) bS(f)
N(f) (MbS N)(f)

M(fg) bS(fg)
N(fg) (MbS N)(fg)

This implies we have a morphism ĂMbOX
rN Ñ ČMbS N in ModOX

. In particular, we obtain a morphism

OX(n) bOX
OX(m) OX(n+m)

and by tensoring with an arbitrary OX-module F , we obtain

OX(n) bOX
F(m) F(n+m)

3.118.3 Taking global section, we obtain a canonical bilinear map

Γ(X, OX(n)) ˆ Γ(X, OX(m)) Ñ Γ(X, OX(n+m)).

This defines a graded ring structure on
À

ně0
Γ(X, OX(n)), making the homomorphism

S
À

ně0
Γ(X, OX(n))

a graded ring homomorphism (c.f. 3.27). Similarly, we have
À

ně0
Γ(X, OX(n)) ˆ

À

nPZ
Γ(X, F(n))

À

nPZ
Γ(X, F(n))

so that
À

nPZ
Γ(X, F(n)) is equipped with a graded

À

ně0
Γ(X, OX(n))-module structure, and hence a graded S-module structure.

3.118.4 LetM be a graded S-module. Consider the homomorphism

ĂM(n) := ĂMbOX
OX(n) Ñ ČMbS S(n) = ČM(n).

Taking global sections, we have

Mn Ñ Γ(X,ĂM(n)) Ñ Γ(X, ČM(n))

and by taking direct sum, we obtain

M Ñ
à

nPZ
Γ(X,ĂM(n)) Ñ

à

nPZ
Γ(X, ČM(n)).

Clearly these are S-graded module homomorphism.
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3.118.5 In sum, we have three natural homomorphisms

OX(n) bOX
OX(m) OX(n+m)

OX(n) bOX
F(m) F(n+m)

ĂM(n) ČM(n)

Let d ą 0 and f P Sd. Consider their restrictions to D+(f) :

OX(nd)|D+(f) bOX|D+(f)
OX(m)|D+(f) OX(nd+m)|D+(f)

OX(nd)|D+(f) bOX|D+(f)
F(m)|D+(f) F(nd+m)|D+(f)

ĂM(nd)|D+(f)
ČM(nd)|D+(f)

In fact, these are all isomorphisms. The first follows from (3.118.1), and the second follows from the first. For the third, it
suffices to note that the mapM Ñ M(nd) defined bym ÞÑ fnm induces an isomorphism S(nd)(f) bS(f)

M(f) – M(nd)(f).

3.119 Lemma. Let S be a graded ring and X = ProjS. Assume that X is covered by the principal open sets D+(f) given by
f P S1 (e.g. S = S0[S1] by (3.117)).

(i) OX(n) is an invertible sheaf, and OX(n) b OX(m) – OX(n+m).

(ii) For any graded S-moduleM, ĂM(n) – ČM(n).

Proof. These follows from (3.118.5).

3.120 Let φ : S Ñ T be a homomorphism of graded rings. Let U = G(φ) and f = Projφ : U Ñ ProjS be the morphism
associated with φ (3.111). We have an analog of Lemma 3.14, namely

(i) f˚
ĂM –

(
ČMbS T

)
ˇ

ˇ

U
for any graded S-moduleM.

(ii) f˚(rN|U) – ĆN[φ] for any graded T -module N.

In particular, if we put X = ProjS and Y = Proj T , this shows that f˚(OX(n)) – OY(n)|U and f˚(OY(n)|U) – (f˚(OX|U))(n).

Proof. Let g P S+ be homogeneous. Then f|D+(g)
D+(φ(g)) : D+(φ(g)) Ñ D+(g) is the spec of the ring homomorphism S(g) Ñ

Tφ(g). By Lemma 3.14 we have

(f˚
ĂM)|D+(φ(g)) = (f|

D+(g)
D+(φ(g)))

˚(ĂM|D+(g)) – ČM(g) bS(g)
T(φ(g)) =

(
ČMbS T

)
ˇ

ˇ

U
(D+(φ(g))).

where the tilde in the last second place is affine with respect to T(φ(g)). Now (i) follows from (2.3.1). (ii) is proved similarly.

3.121 Let A be a ring, B a graded A-algebra and C an A-algebra. We then have a fibre square

ProjBˆSpecA SpecC ProjB

SpecC SpecA

g

By (3.112) there is a canonical isomorphism

Proj(BbA C)
„
Ñ ProjBˆSpecA SpecC.
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In fact, it gives an isomorphism

(Proj(BbA C), OProjBbAC(n))
„
Ñ (ProjBˆSpecA SpecC,g˚OProjB(n))

in ModLRS for each n P Z.

3.122 Quasi-coherent sheaves on Proj Let S be a graded ring, X = ProjS and F be an OX-module. Define

Γ˚(F) =
à

nPZ
Γ(X, F(n))

We already see this S-graded module in (3.27).

3.122.1 Example-Lemma. Let A be a ring, n P Zě1, S = A[x0, . . . , xn] and X = ProjS. The map S Ñ Γ˚(OX) in (3.118) is an
isomorphism.

Proof. Cover X be the affine open D+(xi) (3.117). For any m P Z, by (3.110) we have a commutative diagram with the first
row exact

0 OX(m)(X)
n
ź

i=0
OX(m)(D+(xi))

n
ź

i,j=0
OX(m)(D+(xixj))

n
ź

i=0
S(m)(xi)

n
ź

i,j=0
S(m)(xixj)

n
ź

i=0
Sxi(m)

n
ź

i,j=0
Sxixj(m)

„ „

Since the xi are non-zero divisors in S, the localization maps S Ñ Sxi and Sxi Ñ Sxixj are injective, and these rings can be

viewed as subrings of Sx0¨¨¨xn . Hence the above diagram reads OX(m)(X) =
n
Ş

i=0
Sxi(m), and thus by degree consideration

Γ˚(OX) =
n
č

i=0
Sxi in Sx0¨¨¨xn .

It remains to show this intersection is precisely S. An element in Sx0¨¨¨xn can be written uniquely as xα0
0 ¨ ¨ ¨ xαn

n f(x0, . . . , xn)
with αj P Z and f P S homogeneous. Such an element lies in Sxi if and only if αj ě 0 for any j ‰ i. Now the result follows.

3.123 When F is quasi-coherent, there is a natural homomorphism

ČΓ˚(F) F

which we now describe. Let f P Sd. Recall that by (3.110), there is an isomorphism

(D+(f), ČΓ˚(F)|D+(f)) (SpecS(f), ČΓ˚(F)(f)).

Define
Γ˚(F)(f) F(D+(f))

m/fn m|D+(f) b (f|D+(f))
´n
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Here we implicit use the isomorphism in (3.118.5) (perhaps also (3.118.1)). Since F is quasi-coherent andD+(f) is affine, by
(3.15.1) this gives a homomorphism

ČΓ˚(F)|D+(f) F |D+(f).

Since all maps in (3.118.5) are functorial, the homomorphisms above, when f P Sd, d ą 0 vary, glue, yielding

ČΓ˚(F) F .

3.123.1 Example. We claim ČΓ˚OProjS Ñ OProjS is right inverse to the tilde of the map S Ñ Γ˚OProjS defined in (3.118). Indeed,
for homogeneous f P S+ the former map is

Γ˚(OProjS)(f) OProjS(D+(f)) S(f)

m/fn m|D+(f) b (f|D+(f))
´n m|D+(f)/f

n

while the latter map
S(f) Γ˚(OProjS)(f)

is given by sending s/fn to s 1/fn, where s 1 is the image of s under Sndeg f = S(ndeg f)0 Ñ Γ(X, ČS(ndeg f)) given in (3.110.3).
By construction,m|D+(f)/f

n is mapped tom/fn by the latter map, which proves our claim.

3.123.2 When X = ProjS is compact, we contend that

ČΓ˚(F) F .

is an isomorphism. Since X is compact, we can find homogeneous elements f1, . . . , fn of positive degree such that X =
n
Ť

i=1
D+(fi) (3.106). Let d be the least common multiple of those degrees ; by raising fi to suitable power, which does not alter

D+(fi), we may assume all fi have the same degree d. From the discussions in (3.118) and its subparagraphs, we see OX(d)
is an invertible sheaf such that the multiplication maps

OX(ad) bOX
OX(bd) OX((a+ b)d)

are isomorphisms for any a,b P Z. Recall the map Sd Ñ Γ(X, OX(d)) stated in (3.118). Denote by si the image of fi in
Γ(X, OX(d)). By construction (3.110.3), one has (by restricting to the affine pieces)

D+(fi) = Xsi = tp P X | si R mpOX(d)pu.

Now we have

Γ˚(F)(fi) =
à

nPZ
Γ(X, F(n))(fi) –

à

nPZ
Γ(X, F(nd))(fi)

=
à

nPZ
Γ(X, F bOX

OX(d)bn)(fi)
(3.27)
= Γ˚(F , OX(d))(X)(fi)

= Γ˚(F , OX(d))(X)(si)
(3.27.4)

– F(Xsi) = F(D+(fi))

The unlabelled isomorphism in the first line is given by multiplication by fi, as fi has degree d, and the equality in the
third line results from the definition of S-action (3.118.3). Unwinding all homomorphisms, one easily checks the above
isomorphism is precisely the homomorphism Γ˚(F)(f) Ñ F(D+(f)) defined in (3.122). This finishes the proof.
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3.124 Let S be a graded ring and X = ProjS. Let F , G be two OX-modules. For any n P Z, by twisting and taking global
section, to each homomorphism F Ñ G we may construct homomorphisms Γ(X, F(n)) Ñ Γ(X, G(n)). Taking direct sum
then yields

Γ˚(F) Γ˚(G).

The construction being natural, this means Γ˚ really defines a functor

Γ˚ : ModOX
GrModΓ˚(S).

The graded ring homomorphism S Ñ Γ˚(S) in (3.118.3) yields a forgetful functor ω : GrModΓ˚(S) Ñ GrModS, so we also
have a functor

ω ˝ Γ˚ : ModOX
GrModS.

Since localization and restrictions to open sets are exact, we see Ă(¨) is an exact functor.

3.124.1 Adjunction. LetM,N be two graded S-modules, and let g1, . . . ,gℓ P S+ be homogeneous such that S =
ℓ
Ť

i=1
D+(gi).

Suppose tφi : M(gi) Ñ N(gi)u
n
i=1 be a compatible set of homomorphisms, in the sense that (φi)gigj

= (φj)gjgi
for any

i, j = 1, . . . , ℓ. Then they join the exact sequences in (3.109) forM,N, i.e.,

0 M
ℓ
ś

i=1
M(gi)

ℓ
ś

i,j=1
M(gigj)

0 N
ℓ
ś

i=1
N(gi)

ℓ
ś

i,j=1
N(gigj).

ś

iφi

ś

i,j(φi)gigj

Hence there exists a unique graded S-module homomorphism φ :M Ñ N such that φgi
= φi for i = 1, . . . , ℓ. This defines a

bĳection from HomGrModS
(M,N) to the set

$

’

’

&

’

’

%

(φf)f P
ź

fPS+:
homogeneous

HomModS
(M(f),N(f)) | (φf)g = φg for all homogeneous f,g P S+ with D+(g) Ď D+(f)

,

/

/

.

/

/

-

.

But by construction, such compatible homomorphism (φf)f defines an OX-module homomorphism ĂM Ñ rN, and vice versa.
Hence there is a natural bĳection

HomGrModS
(M,N) HomModOX

(ĂM, rN).

This means the projective tilde Ă(¨) : GrModS Ñ QcohX is a fully faithful functor.
Now assume X is compact. If F is quasi-coherent, then (3.123.2) says that there is an natural isomorphism ČωΓ˚(F)

„
Ñ F .

Hence there is a bĳection

HomGrModS
(M,ωΓ˚(F)) HomModOX

(ĂM, ČωΓ˚(F)) HomQcohX
(ĂM, F).„

functorial inM and F . Equivalently, this meansωΓ˚ is right adjoint to the Ă(¨), when X = ProjS is compact. In particular,ωΓ˚

and Γ˚ are left exact.
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3.125 Closed subschemes of ProjS (II). Let S be a graded ring, X = ProjS and let j : Z Ñ X be a closed subscheme. Let
I := ker(OX Ñ j˚OZ). We then have an exact sequence

0 Γ˚(I) Γ˚(OX) Γ˚(j˚OZ).

By (3.123.1) and (3.123.2), the tilde of the natural map S Ñ Γ˚(OX) is an isomorphism. Let I � S be the homogeneous ideal
fitting into the pullback diagram

Γ˚(I) Γ˚(OX)

I S

.

Taking tilde we obtain an isomorphismrI – ČΓ˚(I). By (3.123.2) again we deduce thatrI – I . This recovers (3.115.1) ; moreover,
the ideal I is given explicitly by the kernel of the canonical map

S Γ˚(OX) Γ˚(j˚OZ) =
à

ně0
Γ(X, (j˚OZ)(n)).

3.126 Theorem (Serre). Let S be a graded ring and suppose X = ProjS is compact. For a finitely generated quasi-coherent
sheaf F on X, there exists n0 P Zě0 and d P Zą0 such that for all n ě n0, the sheaf F(nd) is generated by finitely many global
sections. If S = S0[S1], then d can be chosen as 1.

Proof. As in (3.123.2) take homogeneous elements f1, . . . , fn of positive degree d such that X =
n
Ť

i=1
D+(fi) ; we can take d = 1

if S = S0[S1]. By (3.15.1), F(D+(fi)) is finite over OX(D+(fi)) ; let tsij P F(D+(fi))ujP[mi] Ď F(D+(fi)) be a finite generating
set. By Lemma 3.27.3, applied to L = OX(1), there exists n0 such that fn0

i sij P Γ(X, F(n0d)) for i P [n] and j P [mi]. Then for
n ě n0, the set tfni siju Ď Γ(X, F(nd)) generates F(nd).

3.126.1 Corollary Let S be a graded ring and suppose X = ProjS is compact If F is a finitely generated quasi-coherent sheaf
on X, then there exists a finite S-submodule N of Γ˚(F) such that F – rN.

Proof. By Theorem 3.126 there exists some n P Zě0 such that F(n) is generated by finitely many global sections. Let N be
the S-submodule of Γ˚(F) generated by these sections. Then N Ď Γ˚(F) induces an injection rN ãÑ ČΓ˚(F) – F . Twisting by
n gives rN(n) ãÑ F(n), which is an isomorphism by construction. Twisting back gives rN – F .

3.5.2 Projective spaces

3.127 Let A be a ring. For an integer n ě 1, we can form the polynomial ring S = A[x0, x1, . . . , xn] with n-variables and
coefficient in A. If we view each variable xi as a degree one element in S, it naturally becomes a Zě0-graded ring generated
by all degree one elements. The scheme

PnA = ProjA[x0, x1, . . . , xn]

is called the n-dimensional projective space over A. By (3.117), we have

PnA = D+(x0) YD+(x1) Y ¨ ¨ ¨ YD+(xn)

and each D+(xi) is isomorphic to the affine scheme (3.110)

(D+(xi), OPn
A

|D+(xi)) – (SpecA[x0, . . . , xn]xi , OSpecA[x0,...,xn]xi
)

The variables x0, . . . , xn are called the homogeneous coordinates of PnA.
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3.127.1 Let k be a field and V a finite dimensional k-vector space. Define

P(V) := Proj SymV_.

Upon picking a k-basis for V , we can identify SymV_ with the polynomial ring over k with dimk V variables, so P(V) –

Pdimk V´1
k non-canonically. The scheme P(V) is called the projectivization of V . (compare with (3.59).)

3.128 Definition. Let (X, OX) be a ringed space and F be a OX-module.
1. F is generated by global sections at x P X if F(X) bOX(X) OX,x Ñ Fx is surjective.
2. F is generated by global sections if it is so at every point of X.
3. Let S Ď F(X) be a subset. F is generated by S if SbOX(X) OX,x Ñ Fx is surjective for any x P X.
4. F is finitely generated at x P X if there exists an open neighborhood U of x, an integer n ě 0, and an exact sequence

(OX|U)
n F |U 0

3.129 Let f : (X, OX) Ñ (Y, OY) be a morphism of ringed spaces. If F is an OY-module, by adjunction applied to the identity
f˚F Ñ f˚F , we obtain a canonical map F Ñ f˚f

˚F ; by abuse of notation, we denote this morphism by

f˚ : F Ñ f˚f
˚F .

Now for a section s P F(U), its image f˚s P (f˚f
˚F)(V) = (f˚F)(f´1(V)) is called the pullback section of s along f. In

particular, if s P F(Y) is a global section, then f˚s P (f˚F)(X) is a global section.
A careful computation using the construction in (2.10) and (2.12) shows that if s P F(Y), then

(f˚s)|x = s|y b 1 P Fy bOY,y OX,x – (f˚F)x

for any x P X and y = f(x) P Y. In particular, this implies Xf˚s = f
´1(Ys). Furthermore, we have

f˚s = lim−Ñ
U

s|U b 1 P (f˚F)(X)

3.130 The homogeneous coordinates x0, . . . , xn of PnA, by (3.122.1), give rise to elements in OPn
A
(1)(PnA). In fact, the sheaf

OPn
A
(1) is generated by the xi’s. To see this, note that OPn

A
(1)(D+(xi)) = S(1)(xi) = xiS(xi) is a free S(xi)-module of rank 1.

Then for any p = p P SpecS(xi) – D+(xi), the stalk at p is xi(S(xi))p = xiOPn
A,p, which is generated by xi over OPn

A,p, as said.

3.130.1 Let A be a ring and X be a scheme over A. Let f : X Ñ PnA be a morphism. By (3.26.1), the pullback sheaf f˚OPn
A
(1)

is an invertible sheaf ; let us put L = f˚(OPn
A
(1)). For 0 ď i ď n, let si := f˚xi P L(X) (3.129). The last assertion in (3.129)

implies that the si’s generate the sheaf L. In fact, the datum (L, s0, . . . , sn) characterizes the morphism f.

3.130.2 Theorem. Let A be a ring and X be a scheme over A.
(i) If f : X Ñ PnA is an A-morphism, then f˚(OPn

A
(1)) is an invertible sheaf on X generated by the global sections

f˚xi (0 ď i ď n).
(ii) If L is an invertible sheaf onX generated by the global sections s0, . . . , sn P L(X), then there exists a uniqueA-morphism

f : X Ñ PnA with L – f˚(OPn
A
(1)) as OX-modules and si = f˚xi (0 ď i ď n) under this isomorphism.

Proof. It remains to prove (ii). Let Xi = XL
si

be the open set defined as in (3.27). Since the si’s generate L, it follows at once
that (Xi)ni=0 covers X. Define the morphism f : X Ñ PnA as follows. Define an A-algebra homomorphism

Ai := A

[
x0

xi
, . . . xi´1

xi
, xi+1

xi
, . . . , xn

xi

]
OX(Xi)

xj

xi

sj

si
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This is well-defined as on Xi, there exists s´1
i P L_(Xi) and so sjs´1

i := (sj|Xi
) b s´1

i P (L b L_)(Xi) – OX(Xi) (3.27). By
(3.56), this gives anA-morphism fi : Xi Ñ D+(xi) Ď PnA. These morphisms glue for an obvious reason, so we obtain a global
A-morphism f : X Ñ PnA. By construction and (3.129), we have

(f˚(OPn
A
(1)))|Xi

= f˚
i (OPn

A
(1))|D+(xi)) – f˚

i (xiOPn
A

|D+(xi)) = (f˚xi)f
˚
i (OPn

A
|D+(xi)) = (f˚xi)OX|Xi

On the other hand, we have L|Xi
– siOX|Xi

(see the fourth line of the proof). By viewing OPn
A
(1)|XiXXj

as subsheaves of
OPn

A
(1)|D+xi and OPn

A
(1)|D+(xj) respectively, we obtain a transition map

xi

xj
: xiOPn

A
|D+(xixj) xjOPn

A
|D+(xixj)

xi xj

On the other hand, the transition map for L|Xi
and L|Xj

is si
sj

: siOX|XiXXj
Ñ sjOX|XiXXj

. This implies the isomorphisms

(f˚xi)OX|Xi
Ñ siOX|Xi

defined by f˚xi ÞÑ si glue to an isomorphism f˚(OPn
A
(1)) – L.

For the uniqueness, let g : X Ñ PnA be an A-morphism satisfying (ii). By (3.129), the morphism gi = g|
D+(xi)
Xi

is well-
defined. It suffices to show the corresponding homomorphism θi : Ai Ñ OX(Xi) satisfies θi(xjx´1

i ) = sjs
´1
i . Restricting,

we have L|Xi
– (g˚OPn(1))|Xi

= g˚
i (OPn

A
(1)|D+(xi)), and obtain an OPn

A
|D+(xi)-module morphism G : OPn

A
(1)|D+(xi) Ñ

(gi)˚L|Xi
. Recall in (2.11) the latter is viewed as an OPn

A
|D+(xi)-module via the homomorphism θi, so

GD+(Xi)(xj) = GD+(Xi)

(
xi ¨

xj

xi

)
= θi

(
xj

xi

)
GD+(Xi)(xi).

Our claim will follow once we prove GD+(Xi)(xj) = f
˚xi P L(Xi) for any 0 ď j ď n. This is clear from the definition (3.129).

3.131 Functor of projective spaces. Let A be a ring and R an A-algebra. The last theorem describes the R-points of the
projective n-space PnA. Precisely, there is a bĳection

PnA(R) –
␣

(L,Rn+1 � L) | L is an R-module of locally free of rank 1
(

/ „

where „ is an equivalence relation : two pairs (L,Rn+1 � L) and (M,Rn+1 �M) are equivalent if there is an R-isomorphism
L Ñ M fitting into the commutative diagram

Rn+1 L 0

Rn+1 M 0

„

with exact rows.
If R Ñ S is a ring homomorphism, the resulting map PnA(R) Ñ PnA(S) is given by tensoring S :

PnA(R) PnA(S)

(L,Rn+1 � L) (LbR S,Sn+1 � LbR S).

This can be seen by (3.130.2).(i). Note this is well-defined as tensor is right exact.

3.132 Example : projection from puncture affine space to projective space. Let A be a ring, and put

An+1
A zt0u := D(t0, . . . , tn) = An+1

A zV(t0, . . . , tn).
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The structure sheaf OAn+1
A

is generated by the global section t0, . . . , tn at each point except along V(t0, . . . , tn). Indeed, each

ti acts a unit on D(ti), so this follows from the fact that An+1
A zt0u =

n
Ť

i=0
D(ti). Hence by (3.130.2).(ii), there is a unique

A-morphism
π : An+1

A zt0u PnA = ProjA[x0, . . . , xn]

such that π˚OPn
A
(1) – OAn+1

A zt0u and ti = π˚xi for 0 ď i ď n. By (3.26.1) it follows that

π˚OPn
A
(m) – OAn+1

A zt0u

for allm P Z. This will be useful in the computation of cohomology of O(m)’s.

3.133 Example : Segre embedding Let A be a ring and n,m P Zě0. Consider the projections

PnA ˆSpecA PmA

PnA PmA
pr1

pr2

and the invertible sheaf pr˚
1 OPn

A
(1)b pr˚

2 OPm
A
(1) on the product PnA ˆSpecA PmA . We will see in (8.21) that this invertible sheaf

is generated by txiyju0ďiďn, 0ďjďm, so by (3.130.2) it determines an A-morphism

φ : PnA ˆSpecA PmA Pmn+m+n
A .

We claim this is an closed embedding. Say z00, . . . , zij, . . . , znm is the coordinates of Pmn+m+n
A and φ˚zij = xiyj. By

construction, on D+(zij) the map φ is given by the spec of

A[zkℓz
´1
ij ] OX(D+(xiyj)) = A[xkx

´1
i ] bA A[yℓy

´1
j ]

zkℓz
´1
ij xkx

´1
i b yℓy

´1
j .

Since this is surjective, φ is a closed embedding over D+(zij). Hence φ is a closed embedding. This is called the Segre
embedding.

3.133.1 Lemma. The image of φ is given by the V+ of all the 2 ˆ 2 minors of (zij)0ďiďn, 0ďjďm.

Proof. Suppose f P A[zij]hom satisfies f(xiyj) = 0. We must show f lies in the ideal generated by all the 2 ˆ 2 minors of
(zij)0ďiďn, 0ďjďm. This follows from a simple induction.

3.134 Example : Veronese embedding Let A be a ring, n P Zě0 andm P Zě1. We will see in (8.21) that the invertible sheaf
OPn

A
(m) is generated by global sections which are A[x0, . . . , xn]deg=m. By (3.130.2) this defines an A-morphism

ψ : PnA P(
n+m

m
)´1

A .

We claim this is a closed embedding. Forα = (α0, . . . ,αn) P (Zě0)
n+1, write xα = xα0

0 ¨ ¨ ¨ xαn
n . Let (zα)|α|=m be the coordinates

of P(
n+m

m
)´1

A and ψ˚zα = xα. On D+(zα) the map ψ is given by the spec of

A[zβz
´1
α ] OPn

A
(D+(x

α))

zβz
´1
α xβ(xα)´1.
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Here

OPn
A
(D+(x

α)) = A[x0, . . . , xn](xα) = A[x
β(xα)´1]

so this ring homomorphism is surjective. Henceψ is a closed embedding. This is called the degreemVeronese embedding.

3.135 Nakayama’s lemma Let F be a finitely generated quasi-coherent sheaf over a scheme X. If x P X and the images of
s1, . . . , xn P Fx in Fx b κ(x) generate the κ(x)-vector space Fx b κ(x), then there exists an open neighborhood U of x in X
such that the si extends to U and define a surjection

(OX|U)
n F |U

(x1, . . . , xn) x1s1 + ¨ ¨ ¨ + xnsn.

In other words, s1, . . . , sn generates F on U.

Proof. This immediately reduces to the affine case : letA be a ring, p a prime ideal andM a finiteA-module. If s1, . . . , sn P M

spans Mp bAp
κ(p) over κ(p), then there exists f P Azp such that s1, . . . , sn generate Mf over Af. To show this, let x1, . . . , xl

be a generating set forM and write

xi ” ri1s1 + ¨ ¨ ¨ rinsn (mod p)

with rij P Ap, so clearing the denominators we see

aixi =
n
ÿ

j=1
bijsj +

l
ÿ

j=1
cijxj

for some ai P Azp, bij P A and cij P p. In matrix form, we see

(aiδij ´ cij)ij


x1
...
xl

 = (bij)


s1
...
sn


Multiplying both sides by adj (aiδij ´ cij)ij and expanding, we obtain

fxi =
n
ÿ

j=1
dijsj

where f = det(aiδij ´ cij)ij P Azp and dij P A. This f does the job.

3.136 Let A be a ring and X be a scheme over A. Let L be an invertible sheaf over X and s0, . . . , sn P L(X) be some global
section. Put

U := tx P X | s0|x, . . . , sn|x generate the stalk Lx as OX,x-moduleu

This is an open subset of X by Nakayama’s lemma (but possibly empty). By Theorem 3.130.2 applied to the A-scheme U and
the invertible sheaf L|U together with the sections s0|U, . . . , sn|U P L(U), we obtain a unique A-morphism g : U Ñ PnA with
L|U = g˚OPn

A
(1) and si|U = f˚xi.

3.137 Let us discuss on some consequences of Nakayama’s lemma. For a quasi-coherent sheaf F on a scheme X and x P X,
define

rankxF := dimκ(x)

(
Fx bOX,x κ(x)

)
P Zě0 Y t∞u.
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We also recall that for a topological space X, a map f : X Ñ R is called upper (resp. lower) semicontinuous if for all c P R,
the preimage f´1((´∞, c)) (resp. f´1((c,∞))) is open in X.

3.137.1 If F is a finitely generated quasi-coherent sheaf, then the rank function

rank F : X Zě0

x rankxF

is upper semicontinuous. Explicitly, we must show for n ě 0, the set

tx P X | rankxF ď nu

is an open set in X. This is clear, as by Nakayama’s lemma, we see if Fx b κ(x) has dimension n, then there is an open
neighborhood U of x such that for each y P U, the κ(y)-vector space Fy b κ(y) has a generating set of size n. Hence
rankyF ď n for all y P U. This finishes the proof.

3.137.2 If F is locally free (of finite rank), then trivially rank F : X Ñ Zě0 is locally constant. Conversely, assume rank F is
locally constant. Say n = rankxF and U is an open neighborhood of x such that n = rankyF . By Nakayama’s lemma there
is an surjection

T : (OX|U)
n F |U

The constancy condition onU implies that TybOX,y idκ(y) : κ(y)n Ñ Fybκ(y) is an isomorphism for all y P U. In particular,
(ker Ty) = ker Ty Ď mX,yOnX,y for each y P U.

3.5.3 Grassmannian

3.138 Let k be a field and V a finite dimensional k-vector space. For 0 ď m ď n := dimk V , the set

Gr(m,V) :=
"

W Ď
subspace

V | dimkW = m

*

is called the Grassmannian ofm-dimensional subspaces of V . There is an injection

Gr(m,V) Gr (1,
Źm

V)

W
Źm

W

3.6 Relative spec

3.139 Let X be a scheme and R a quasi-coherent sheaf of OX-algebras. We are going to construct a scheme SpecXR, called
the relative spectrum of R over X, along with a morphism π : SpecXR Ñ X and an isomorphism R – π˚OSpecXR of
OX-algebras satisfying the following universal property : for any morphism f : Y Ñ X of local-ringed spaces and a morphism
α : R Ñ f˚OY of OX-algebras, there exists a unique morphism

g : Y Ñ SpecXR

of schemes fitting into a commutative triangle

Y SpecXR

X

f

g

π
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so that α factors as
R – π˚OSpecXR f˚OY

g˚ .

3.139.1 As an example, let X be a scheme and consider OX, which is itself a quasi-coherent OX-algebra. It is tautological
that the morphism id : X Ñ X and the equality OX = OX satisfies the universal property in (3.139). Hence X = SpecXOX as
schemes.

3.139.2 Let X and R be as in (3.139). For a local-ringed space Y, define

F(Y) =
!

(f,β) | f P HomLRS(Y,X), β P HomAlgOX
(R, f˚OY)

)

= HomAlgLRS
((Y, OY), (X, R))

If Y Ñ Y 1 is a morphism in LRS by composition we obtain a map F(Y 1) Ñ F(Y). Thus F defines a contravariant functor
F : LRS Ñ Set. A part of (3.139) says that F is a representable functor that is represented by the scheme SpecXR. If we fix
some f P HomLRS(Y,X), we then obtain the isomorphism

HomAlgOX
(R, f˚OY) – HomLRSX

(Y, SpecXR).

where LRSX is the subcategory of LRS consisting of local-ringed spaces over X (obviously defined). We will see in (3.140)
that this generalizes the isomorphism (3.7). In particular, if we take Y = SpecXT for some quasi-coherent OX-algebra T and
f to be the canonical morphism π 1 : Y Ñ X, we have

HomAlgOX
(R, T ) – HomAlgOX

(R,π 1
˚OSpecXT ) – HomSchX

(SpecXT , SpecXR)

By restricting to affine opens in X (3.143), this is the same as the anti-equivalence between affine schemes and commutative
rings. From this we see SpecX defines a fully faithful functor from the category of quasi-coherent OX-algebras to SchX.

3.140 Affine case. We start our construction of SpecXR by first considering the case X being affine. We claim that

SpecXR = Spec R(X)

does the job. Say X = SpecA and R = rR for some A-algebra R. By (3.7.1), for any local-ringed space Y

HomAlgLRS
((Y, OY), (X, R)) – HomAlg(A ñ R, OY(Y) ñ OY(Y))

Since R and OY(Y) are unital, the last set is simply HomRing(R, OY(Y)), and hence

F(Y) = HomAlgLRS
((Y, OY), (X, R)) – HomRing(R, OY(Y)) – HomLRS(Y, SpecR).

by (3.7). Now for any local-ringed space Y and (f,α) P F(Y), there is a commutative diagram

(f,α) rf

F(Y) HomLRS(Y, SpecR)

F(SpecR) HomLRS(SpecR, SpecR)

(π,γ) idSpecR

„

˝rf

„

˝rf

From construction we see π : SpecR Ñ X is the map obtained by taking spec of the structure map OX(X) Ñ R. Also, the map
γ : R Ñ π˚OSpecR is just the one induced by idR : R Ñ R. This is an isomorphism by (3.15.2).
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3.141 Local nature of SpecX. Let U be an open subset of X, and let f : Y Ñ X be a morphism with image in U.
Then the morphism g : Y Ñ SpecXR goes into π´1(U). Moreover, we have α|U : R|U Ñ (f˚OY)|U = (f|U)˚OY and
(π˚OSpecXR)|U = (π|π´1(U))˚(OSpecXR|π´1(U)), which means π|π´1(U) : π´1(U) Ñ X solves the universal property for
SpecUR|U. Therefore π´1(U) – SpecUR|U, and in the notation (3.55) it reads

(SpecXR) |U – SpecUR|U

If U is affine, by (3.140) this is Spec R(U). This suggests us to construct SpecXR by patching Spec R(U) together.

3.142 Lemma. Let Z be a local-ringed space representing the functor F in (3.139.2).

(i) There is a natural morphism π : Z Ñ X.

(ii) For any open U Ď X, the open local-ringed subspace π´1(U) represents Y ÞÑ HomAlgLRS
((Y, OY), (U, R|U)).

(iii) Z is naturally a scheme and π˚OZ – R canonically.

In particular, Z solves the universal property in (3.139).

Proof. Since Z is representing F, we have F(Z) = HomAlgLRS
((Z, OZ), (X, R)) – HomSch(Z,Z) ; let (π,γ) P HomSch(Z,X) ˆ

HomAlgOX
(R,π˚OZ) be the pair corresponding to idZ P HomSch(Z,Z). Then π : Z Ñ X is the map in (i), and the map

γ : R Ñ π˚OZ is the map in (iii), which will be shown to an isomorphism.
We turn to (ii). Let G be the functor in the statement, and let ι : U Ñ X be the open immersion. For (f,β) P G(Y),

post-composing it with ι gives an element in F(Y), which corresponds to a morphism rf : Y Ñ Z. Then π ˝ rf = ι ˝ f, so
rf(Y) Ď π´1(U). By (2.22) there exists a unique f 1 : Y Ñ π´1(U) which rf factors through. This establishes a natural map
G(Y) Ñ HomSch(Y,π´1(U)) with an obvious inverse. Hence π´1(U) represents G.

It remains to show (iii). IfU is an affine open subspace of X, by (ii) and (3.140) π´1(U) – Spec R(U) as local-ringed spaces,
and γ|U : R|U Ñ (π|U

π´1(U)
)˚OZ|π´1(U) is an isomorphism. These together show (iii).

3.143 Construction. For any U P U , let πU : Spec R(U) Ñ U be the map as in (3.140). For any U,V P U , we must construct
an isomorphism θUV : π´1

U (UX V) – π´1
V (UX V) satisfying the conditions in (2.13). By (3.15.2) and (3.14), we have

R|U – (πU)˚OSpec R(U), (♡)

and thus R(U X V) – OSpec R(U)((πU)
´1(U X V)). Thus from the restriction R(V) Ñ R(U X V) we obtain a morphism

π´1
U (UX V) Ñ Spec R(V). This morphism fits into a commutative diagram

π´1
U (UX V) Spec R(V)

UX V Ď V

πU πV

(which, as V is affine, follows easily from taking global sections), implying the image lies in π´1
V (U X V) ; denote by

θUV : π´1
U (UX V) Ñ π´1

V (UX V) the resulting morphism. Note that the inclusion π´1
U (UX V) Ď Spec R(U) corresponds to

the restriction R(U) Ñ R(UXV) as well, and from this we easily deduce that θUV is an isomorphism and θ´1
UV = θVU. Also,

this shows the θUV ’s satisfy the cocycle condition in (2.13), so we obtain a well-defined scheme, which is of course denoted
by SpecXR. By (2.13.4), the πU’s patch together to a morphism π : SpecXR Ñ X. The way we glue Spec R(U) and π also
glue the isomorphisms (♡) together to obtain a global isomorphism R – π˚OSpecXR.

3.143.1 Finish of construction. We still need to show that π : SpecXR Ñ X and R – π˚OSpecXR satisfy the universal
property in (3.139). Let f : Y Ñ X be a morphism in LRS and α : R Ñ f˚OY a morphism of OX-algebras. Let U be an affine
open cover of X. Put fU = f|U

f´1(U)
: f´1(U) Ñ U for any U P U . Note that (f˚OY)|U = (fU)˚(OY |f´1(U)). Then as in (3.140),

we have a morphism gU : f´1(U) Ñ Spec R(U), which is, in the level of rings, induced by α(U) : R(U) Ñ OY(f´1(U)). The
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gU’s patch together, as for any U,V P U , we can cover UX V by affine open subsets W’s, and both gU|f´1(W) and gV |f´1(W)

are then given by R(W) Ñ OY(f´1(W)). Thus we obtain a well-defined morphism g : Y Ñ SpecXR. Finally, α factors as
R – π˚OSpecXR

g˚−−Ñ f˚OY since it does on every affine open U P U . The morphism g is unique as the restriction g|
π´1(U)

f´1(U)

must equal gU, which is unique as shown in (3.140).

3.144 Lemma. Let X be a scheme and R a quasi-coherent OX-algebra. Let g : X 1 Ñ X be a morphism of schemes. By (3.17),
g˚R is a quasi-coherent OX1 -algebra. Then there exists a canonical isomorphism

SpecX1(g
˚R) – X 1 ˆX SpecXR

Proof. Let F be the functor in (3.139.2) represented by SpecXR, and let G be that of represented by SpecX1(g˚R). It suffices
to construct a natural bĳection

G(T) – hX1(T) ˆhX(T) F(T),

where T P LRS. But this is more than tautological : giving f 1 : T Ñ X 1 with a β 1 : g˚R Ñ (f 1)˚OT is the same as giving
f : T Ñ X with β : R Ñ f˚OT and f = g ˝ f 1. Here we use adjunction (2.11) to replace β by f˚R Ñ OT and replace β 1 by
(f 1)˚g˚R Ñ OT .

3.145 Proposition. Let f : Y Ñ X be a morphism of schemes. TFAE :

(a) f is an affine morphism (3.20).

(b) There exists a quasi-coherent OX-algebra R such that Y – SpecXR as X-schemes.

Proof. (b)ñ(a) follows from the discussion in (3.143). For (a)ñ(b), note that an affine morphism f : Y Ñ X satisfies the
conditions in Lemma 3.17, so f˚OY is a quasi-coherent OX-algebra. At this stage, it suffices to show that Y – SpecXf˚OY
as X-schemes. By the last isomorphism in (3.139.2), the identity morphism on f˚OY induces a canonical morphism g : Y Ñ

SpecXf˚OY . To see this is an isomorphism, letU be an affine open subset ofX such that f´1(U) is affine. We only need to show
g|
π´1(U)

f´1(U)
is an isomorphism, where π : SpecXf˚OY Ñ X is the canonical morphism. From construction (3.143.1) g|

π´1(U)

f´1(U)
is

built from the isomorphism idf´1(U) : f˚OY(U) Ñ OY(f´1(U)), so g|
π´1(U)

f´1(U)
is an isomorphism as well.

Note that the proof also gives another way to see the equivalence in (3.20). Further, the claim in (3.19) also follows from
the proposition.

3.146 Let X be a scheme. Put QcohAlgX = QcohX X AlgOX
in the obvious sense. Recall in (3.139.2) we see that SpecX

defines a fully faithful functor :
SpecX : QcohAlgX SchX

(3.145) shows that the essential image of SpecX is the full subcategory of SchX consisting of X-schemes with structure
morphism being affine ; we say such an X-scheme is affine over X. Hence SpecX establishes an anti-equivalence from
QcohAlgX to the category of schemes affine over X.

3.147 Lemma. Let X be a scheme and A a quasi-coherent OX-algebra. Then an A-module F is A-quasi-coherent if and only
if it is OX-quasi-coherent.

3.148 Let f : X Ñ S be an affine morphism. By (3.17) we see f˚OX is OS-quasi-coherent. Recall by construction if F is an
OX-module, then f˚F is viewed as an OS-module via the homomorphism OS Ñ f˚OX (c.f. see the end of (2.11)). By (3.17)
again we see f˚ defines a functor f˚ : QcohX Ñ QcohS. But (3.147) implies it actually factors through Qcohf˚OX

Ñ QcohS,
defining a functor

f˚ : QcohX Ñ Qcohf˚OX
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3.148.1 We claim f˚ is a fully faithful functor. Let F , G be OX-quasi-coherent. Note that there is an equality

Homf˚OX
(f˚F , f˚G) = HomOS

(f˚F , f˚G)

as OS acts on f˚F , f˚G via f˚OX. If V Ď S is affine open, together with the above identity we have

Homf˚OX
(f˚F , f˚G)(V) = Homf˚OX|V (f˚F |V , f˚G|V)

(3.15.1)
– HomOX(f´1(V))(F(f´1(V)), G(f´1(V)))

(3.15.1)
– HomOX|

f´1(V)
(F |f´1(V), G|f´1(V)) = f˚HomOX

(F , G)(V)

3.6.1 Inverse limit of schemes

3.149 Example. Let (Ai)iPI be a direct system of rings, and put A = lim−Ñi
Ai. Then the affine scheme SpecA is the (inverse)

limit of the schemes (SpecAi)i in the category LRS. Indeed, by Theorem 3.7, we have

HomLRS(X, SpecA) – HomRing(A, OX(X)) – lim
Ð−
i

HomRing(Ai, OX(X)) – lim
Ð−
i

HomLRS(X, SpecAi).

Hence this shows SpecA – lim
Ð−i SpecAi in LRS. Of course this is not precise unless we specify the canonical maps

tSpecA Ñ SpecAiui, which are those induced by tAi Ñ Aui

3.150 Generally, let (Xi, fij)iějPI be an inverse system of schemes such that
♣ the transition maps fij : Xi Ñ Xj are affine for all i ě j P I.

Fix an index i0 P I. Then (Xi, fij)iějěi0 defines an inverse system in the category of schemes affine over Xi0 . To define
lim
Ð−iěi0 Xi, by (3.146), it suffices to show that QcohAlgXi0

admits direct limits. We show this in the following subparagraph.

3.150.1 Lemma. QcohXi0
admits direct limits.

Proof. The question is local, so we may assume Xi0 = SpecA is affine. This then follows from (3.15.1), which says that
ModA – QcohSpecA.

3.150.2 Put X = lim−Ñiěi0
Xi ; by construction this is again a scheme affine over Xi0 , and there are natural maps fi : X Ñ

Xi (i ě i0) compatible with the transition maps. For general j P I, pick any i ě j, i0 and define fj = fij ˝ fi : X Ñ Xj ; the
definition does not depend on the choice of i by compatibility. We claim (X, fi)iě0 is the inverse limit of (Xi, fij)iějPI in Sch.

Let gi : Y Ñ Xi (i P I) be a cone over (Xi, fij)iějPI. Let y P Y and choose an affine open neighborhood Uy of gi0(y) in Xi0 .

Consider the inverse system (f´1
ii0

(Uy), fij|
f

´1
ji0

(Uy)

f
´1
ii0

(Uy)
)iějěi0 ; since the fij are affine, this is an inverse system of affine schemes,

so lim
Ð−iěi0 f

´1
ii0

(Uy) exists (3.149) ; but clearly f´1
i0

(Uy) Ď X is also the inverse limit, so

f´1
i0

(Uy) – lim
Ð−
iěi0

f´1
ii0

(Uy).

together with the morphisms fi|
f

´1
ii0

(Uy)

f
´1
i0

(Uy)
represents the inverse limit of (f´1

ii0
(Uy), fij|

f
´1
ji0

(Uy)

f
´1
ii0

(Uy)
)iějěi0 in Sch.

Let Vy Ď g´1
i0

(Uy) be any affine open neighborhood of y in Y. Since gi0 = fii0 ˝gi for any i ě i0, we see gi(Vy) Ď f´1
ii0

(Uy).
The above discussion shows there exists a unique morphism gVy

: Vy Ñ f´1
i0

(Uy) Ď X compatible with the fi and fii0 (i ě i0).
By uniqueness, the morphisms gVy

, where y P Y and Vy are taken as above, glue, yielding a global morphism g : Y Ñ X.
Clearly this is unique with respect to the compatibility. This demonstrates our claim. We summarize what we obtain in the
next paragraph.

3.151 Theorem. Let (Xi, fij)iějPI be an inverse system of schemes such that the transition maps fij : Xi Ñ Xj are affine for
all i ě j P I. Then X = lim

Ð−iPI Xi exists in the category of schemes. Moreover,
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(i) The canonical morphism fi : X Ñ Xi is affine for every i P I.

(ii) For any index i0 P I and any open subspace U Ď Xi0 , one has

f´1
i0

(U) = lim
Ð−
iěi0

f´1
ii0

(U).

in the category of schemes.

3.6.2 Vector bundles

3.152 Definition. Let X be a scheme and n P Zě0. An X-scheme p : Y Ñ X is called a vector bundle of rank n over X if Y
admits an open cover U such that

(i) for any U P U , there is an isomorphism ψU : p´1(U) – AnU of U-schemes, and

(ii) for anyU,V P U and any affine open subsetW = SpecA Ď UXV , the isomorphismψ´1
V ˝ψU ofAnW = SpecA[x1, . . . , xn]

is given by a linear automorphism θ of A[x1, . . . , xn], namely, θ|A = idA and θ(xi) =
n
ÿ

j=1
aijxj for some aij P A.

We shall call the datum tψUuUPU satisfying (i) and (ii) a vector bundle structure over X on Y. A morphism between
vector bundles (Y,ψU) of rank n and (Y 1,ψ 1

V) of rank n 1 over X is a morphism g : Y Ñ Y 1 of X-schemes such that for
any U P U , V P V and W = SpecA Ď U X V , the restriction g|W : Y|W Ñ Y 1|W comes from a linear homomorphism
A[y1, . . . ,yn1 ] Ñ A[x1, . . . , xn].

3.153 Symmetric algebra. Let (X, OX) be a ringed space and let F be an OX-module. Put Sym0 F = OX, Sym1 F = F , and
for integers n ě 2,

SymnF = Fbn/In

where In is the OX-module generated by the local sections s1 b ¨ ¨ ¨ b sn ´ sσ(1) b ¨ ¨ ¨ b sσ(n) P Fbn (σ P Sn). This is called
the n-th symmetric power of F , and it is an OX-module. Here the tensor product is always over OX. The direct sum

Sym F =
à

ně0
SymnF

is called the symmetric algebra of F , which is an OX-algebra.

3.154 For any integer n ě 0, the n-th symmetric power SymnF is isomorphic to the sheafification of the presheaf
U ÞÑ SymnF(U). To see this, for n ě 2, the presheaf U ÞÑ SymnF(U) is the quotient of F bp ¨ ¨ ¨ bp F by the subsheaf I 1

n

generated by the local sections s1 b ¨ ¨ ¨ b sn ´ sσ(1) b ¨ ¨ ¨ b sσ(n) P Fbn (σ P Sn). By definition, (F bp ¨ ¨ ¨ bp F): = Fbn and
(I 1
n)

: = In. At this stage the claim follows from (2.16.1).

3.154.1 Let f : Y Ñ X be a morphism of ringed spaces and let F be a OY-module. Then there exists a canonical isomorphism

Symn f˚F – f˚(SymnF).

It is clear for n = 0, 1. For n ě 2, since f˚ is right exact, there is an exact sequence

f˚In f˚(Fbn) f˚(SymnF) 0

Now it suffices to show that image of f˚In in f˚(Fbn) – (f˚F)bn is isomorphic to the ideal defining Symn f˚F . This is clear
in the level of presheaves, and by (2.16.1) the same holds in the level of sheaves as well.

3.154.2 Lemma. Let A be a ring andM an A-module. Then Symn
ĂM – ČSymnM.
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Proof. The cases n = 0, 1 are obvious. Let n ě 2, and let f P A. Consider the composition

ČSymnM(D(f)) = (SymnM)f – SymnMf = Symn
ĂM(D(f)) Ñ (Symn

ĂM)(D(f))

where the isomorphism results from the same argument in (3.154.1), and the last arrow follows from (3.154). Since the arrows
involved are natural, by (2.3.1) this defines a morphism α : ČSymnM Ñ Symn

ĂM of OSpecA-modules. For any p P SpecA,
there is an isomorphism (SymnM)p – SymnMp compatible with the ones above, which coincides with the stalk map αp.
Hence α is an isomorphism by (2.16).

3.154.3 Corollary. Let X be a scheme and F a quasi-coherent OX-module. Then for any affine open subset U = SpecA of X,
we have

(U, (SymnF)|U) – (SpecA, ČSymnF(U)).

In particular, (SymnF)(U) – SymnF(U) for any affine open subset U, and

(Sym F)|U – ČSym F(U)

Proof. By (3.154.1), (3.154.2) and (3.15.2), we have

(SymnF)|U – Symn(F |U) – Symn
ČF(U).

For the last assertion, (
à

ně0
SymnF

)
|U –

à

ně0
Symn(F |U) –

à

ně0
Symn

ČF(U) –
Č

à

ně0
SymnF(U).

The first and the last isomorphisms result from the facts that (¨)|U and Ă(¨) are exact functors (2.16) (3.4).

3.155 Total space of a locally free sheaf. Let X be a scheme and let F be a locally free OX-module of rank n ă ∞.
We can find an affine open cover U of X consisting such that F |U – (OX|U)

‘n for any U P U . Fix a U P U and write
(U, OX|U) – (SpecA, OSpecA). Then

(Sym F)|U – ČSym F(U) – ČSymA‘n – A[x1, . . . , xn].

This means Sym F is locally free and is locally of finite type. The same argument works for the dual F_ ; in particular, Sym(F_)

is a quasi-coherent OX-algebra, so we can apply the relative spec construction. The X-scheme V(F) := SpecX Sym(F_) is
called the total space of F .

3.155.1 Retain the notations in (3.155). Let U P U . Then

(SpecX Sym(F_)) |U – Spec Sym(F_)(U) – Spec OX(U)[y1, . . . ,yn] = AnU.

Let V P U and pickW Ď UX V withW affine. Then F |W is free. The transition function onW is obtained by applying Sym
to the isomorphism

(OX|W)n – (F |U)|W = F |W = (F |V)|W – (OX|W)n.

In particular, this shows the transition function is a linear automorphism (for it is degree-preserving). Hence, we have shown
that V(F) Ñ X is a vector bundle of rank n over X.
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3.155.2 If F Ñ G is a morphism of finite locally free OX-modules, first taking dual and next applying SpecX Sym gives a
morphism g : V(F) Ñ V(G). Locally on an affine open, it is the morphism g|U : Spec Sym ČF_(U) Ñ Spec Sym ČG_(U), and it
is induced by the morphism F |U Ñ G|U. Thus g|U corresponds to a linear homomorphism in the sense of (3.152), and this
shows that g is a vector bundle morphism.

3.156 Sheaf of sections. Let Y be an X-scheme and denote by f : Y Ñ X the structure morphism. Let U be an open set of X.
An element in HomSchU

(U, Y|U) is called a section of f over U. Let us put

Γ(U, Y/X) = HomSchU
(U, Y|U) = ts P HomSch(U, Y) | f ˝ s = idUu

By (2.13.4), the presheaf U ÞÑ Γ(U, Y/X) of sections is a sheaf of sets. We denote this sheaf by Γ(¨, Y/X), and it is a subsheaf of
HomSch(¨, Y). It is clear that Γ(¨, Y/X) defines a functor from SchX to SetX.

3.157 Let p : Y Ñ X be a vector bundle of rank n over a scheme X. We show that Γ(¨, Y/X) has a natural OX-module
structure. First consider the case X = SpecA being affine and Y is a trivial bundle, i.e., Y = AnX. Then Γ(X, Y/X) –

HomAlgA
(A[x1, . . . , xn],A) – A‘n, so Γ(X, Y/X) has a naturally an A-module (note that the resulting module structure

is independent of the last isomorphism). For general case, let U = SpecA be an affine open set of X trivializing Y and let
W = SpecB Ď U be another such affine open inX. We then know Γ(U, Y/X) (resp. Γ(W, Y/X)) is aA- (resp.B-) module. Choose
a free basis of OAn

W
(W) in a way that OAn

W
(W) = B[x1, . . . , xn] and OAn

U
(U) = A[x1, . . . , xn]. Then there is a commutative

diagram
Γ(U, Y/X) = HomSchU

(U,AnU) HomAlgA
(A[x1, . . . , xn],A) A‘n

ts P HomSch(W,AnU) | p ˝ s = idWu

Γ(W, Y/X) = HomSchW
(W,AnW) HomAlgB

(B[x1, . . . , xn],B) B‘n

„

restriction

˝φ

„

φ

„ (2.22)

„ „

where we denote by φ : A Ñ B the restriction OX(U) Ñ OX(V). From this we see the module structures are compatible
with the restriction, provided the affine open subsets are concerned. Finally, we extend the action to all open sets by (2.3.1).
Moreover, the argument above also shows that Γ(¨, Y/X) is locally free of rank n.

3.158 Let X be a scheme. Denote by FinLocX the full subcategory of ModOX
consisting of finite locally free OX-modules,

and denote by VBX the category of vector bundles over X (3.152). So far we have two functors

V : FinLocX VBX , Γ(¨, ¨/X) : VBX FinLocX

In fact, these are mutually inverse to each other, and hence define an anti-equivalence between FinLocX and VBX.

3.159 Lemma. Let G be a locally free OX-module of rank n, and let F = Γ(¨,V(G)/X) be the sheaf of sections of the vector
bundle V(G). Then F – G.

3.6.3 Relative Proj

3.160 Definition. Let X be a scheme. A graded OX-algebra is an OX-algebra R together with a Zě0-gradation

R =
à

ně0
Rn

with each Rn an OX-module. We say R is quasi-coherent if it is quasi-coherent as an OX-module and each Rn is quasi-
coherent.
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3.161 Construction of relative Proj. Let X be a scheme and let R be a quasi-coherent graded OX-algebra. For an affine open
U in X, denote by πU : Proj R(U) Ñ U the natural projection (3.110.2). Note here that R(U) =

À

ně0
Rn(U) since U is affine

(for example, by (3.7.2)). If V Ď U is an affine open subset, then

π´1
U (V) – Proj R(U) ˆU V – Proj(R(U) bOX(U) OX(V)) – Proj R(V).

The first isomorphism is canonical. The second is due to (3.112), and the third is because R is quasi-coherent and it is true
for principal affines in U by (3.15.2). Hence, for two affine opens U,V Ď X, there is an isomorphism

θUV : π´1
U (UX V)

„
Ñ π´1

V (UX V).

To glue the π´1(U) (U Ď
affine

X), we must show the θUV satisfy the cocycle condition in (2.13). Say U,V ,W Ď X are three

affine opens. To check θUW = θVW ˝ θUV on π´1
U (UX V XW), it suffices to check this on π´1

U (T) for all affine open subsets
T Ď UXV XW. This is then clear, as all π´1

U (T), π´1
V (T), π´1

W (T) are naturally isomorphic to Proj R(T). Hence there exists an
X-scheme π : ProjXR Ñ X such that π´1(U) – Proj R(U) for all affine opensU Ď X, and is unique in the sense of (2.13). This
is called the relative Proj of R over X.

3.161.1 O(n) of ProjXR. For an affine open U Ď X, the U-scheme Proj R(U) naturally admits the quasi-coherent sheaves
OProj R(U)(n) (n P Z) (3.118). We aim to glue these together to obtain a relative version : OProjXR(n).

We must of course apply (2.13.3). Similar to the construction of ProjXR, let V Ď U be affine opens in X. By (3.113) (and
glueing), we have a fibre square

Proj R(V) Proj R(U)

V U.

πV

r

πU

ι

By (3.120), we have r˚OProj R(U)(n) – OProj R(V)(n). By a similar argument as in (3.161), we see they glue.

3.161.2 Homogeneous algebras. If we want OProjXR(n) to be an invertible sheaf on ProjXR, by (3.119) we must at least
assume R is generated in degree 1, i.e., the canonical map SymR0

R1 Ñ R is surjective (where SymR0
R1 is the symmetric

algebra of R1 with R1 viewed as an R0-module).
For convenience, we shall call such quasi-coherent graded OX-algebra R homogeneous.

3.162 Base change. Let X be a scheme and suppose R is a quasi-coherent graded OX-algebra. For any morphism f : Z Ñ X

of schemes, consider the fibre square
ZˆX ProjXR ProjXR

Z X

π

f

Let U Ď X, V Ď Z be affine opens such that f(V) Ď U. Then locally the above fibre square becomes

V ˆU Proj R(U) Proj R(U)

V U.

πU

f|UV

On the other hand, f˚R is a quasi-coherent graded OZ-algebra, so we can form π 1 : ProjZf˚R Ñ Z. By (3.112)

V ˆU Proj R(U) – Proj
(
R(U) bOX(U) OZ(V)

)
– Proj

(
(f|UV )

˚R|U(V)
)
= Proj(f˚R)(V) = π 1´1(V).
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Via gluing Better write down a map explicitly, this establishes an isomorphism ZˆX ProjXR – ProjZf˚R of Z-schemes.

3.163 Closed subschemes of Proj. Let S be a scheme and let R be quasi-coherent graded OS-algebra. Let π : ProjSR Ñ S be
the structure map. Suppose j : Z Ñ ProjSR be a closed subscheme and let I be the kernel of the sheaf map OProjSR Ñ j˚OZ.
Then there is a natural morphism

R −Ñ
à

ně0
π˚(OProjSR(n)) −Ñ

à

ně0
π˚((j˚OZ)(n))

described as follows. The second arrow is clear. The first arrow is from the gluing : if U Ď S is an affine open set, by (3.118)
we have

R(U) −Ñ
à

ně0
OProjSR(U)(n) =

à

ně0
π˚(OProjSR(n))(U).

An argument as in (3.161.2) shows they glue, which finishes the definition of the first arrow. Note that this is simply the
relative version of the map in (3.125).

Denote by J the kernel of this morphism. By (3.125) there is a natural morphism J Ñ I and is an isomorphism when
π : ProjSR Ñ S is quasi-compact (so that each Proj R(U) is compact).

3.163.1 Lemma. Let S be a scheme and let R be quasi-coherent graded OS-algebra. Suppose the structure morphism
π : ProjSR Ñ S is quasi-compact. Then every closed subscheme of ProjSR has the form ProjSR/J for some quasi-coherent
graded ideal sheaf J of R.

3.164 Projective morphisms. A morphism f : X Ñ Y of schemes is called projective if there is a commutative triangle

X ProjY Sym F

Y

f

closed
immersion

where F be a finitely generated quasi-coherent sheaf on Y. In this case we also say X is projective over Y.

3.164.1 Example. Let Y be a scheme and let R be a finitely generated homogeneous quasi-coherent graded OY-algebra. Then
there is a degree-preserving surjection Sym R1 Ñ R. By (3.114), this gives a closed immersion ProjYR Ñ ProjY Sym R1 and
a commutative triangle

ProjYR ProjY Sym R1

Y

closed
immersion

The converse holds as well : if X is a closed subscheme of ProjY Sym F for some F is a finitely generated homogeneous
quasi-coherent graded OY-algebra, then X – ProjY(Sym F)/I for some quasi-coherent ideal sheaf I of Sym F , by virtue of
(3.163.1).

3.164.2 Lemma. A morphism f : X Ñ Y of schemes is projective if and only if there exists a commutative triangle

X ProjYR

Y

f

„

for some quasi-coherent graded OY-algebra R generated by degree 1 elements.
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3.165 Projective over an affine base. Suppose Y = SpecA is affine. Then X is projective over SpecA if and only if X is a
closed subscheme of PnA for some n P Zě1.

Proof. Since PnA = ProjSpecA Sym O‘n+1
SpecA, the if part holds. For the only if part, assume X is projective over SpecA ; then X

is an A-scheme and is closed subscheme of ProjSpecA Sym F for some finitely generated quasi-coherent sheaf F on A. But
then F – ĂM for some finite A-module M, so ProjSpecA Sym F – Proj SymM by (3.161) and (3.154.3). Take an surjection
A‘n Ñ M for some n P Zě2. Then SymA‘n Ñ SymM is a degree-preserving surjection, so we have a closed immersion
Proj SymM ãÑ Proj SymA‘n = Pn´1

A .

3.166 Base change. Let f : X Ñ Y be a projective morphism, andg : Z Ñ Y be any morphism of schemes. Then fZ : ZˆYX Ñ Z

is projective.

Proof. Say X is a closed subscheme of ProjR Sym F for some finitely generated quasi-coherent sheaf F on Y. We then have a
commutative diagram

ZˆY X X

Proj Symg˚F Proj Sym F

Z Y.

fZ

f

g

The lower square is cartesian by (3.162) and (3.154.1). Since the outer rectangle is cartesian, it follows that the upper square
is cartesian. Hence ZˆY X Ñ Proj Symg˚F is a closed embedding and the half circle on the left is commutative, it follows
that fZ : ZˆY X Ñ Z is projective.
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4 Varieties

4.1 Classical varieties

4.1.1 Affine varieties

4.1 In this subsection, let k be a field. For any positive integer n ě 1, we write Ank for the product space kn, and called
the n-dimensional affine space over k. If the field involved is clear from the context, we usually omit the subscript and
simply write An. For a subset S of the polynomial ring k[x1, . . . , xn], we put V(S) to denote the common zeroes in An of the
polynomials in S, i.e.,

V(S) := tp P An | f(p) = 0 for all f P Su .

If I� k[x1, . . . , xn] is the ideal generated by S, then clearly V(I) = V(S). A set of the form V(S) is called an (affine) algebraic
set. There are some properties of the assignment S ÞÑ V(S) that can be observed directly from the definition :

(i) If tIαuα is a family of ideals in k[x1, . . . , xn], then V
(
Ť

α

Iα

)
=
Ş

α

V(Iα).

(ii) If I1, I2 � k[x1, . . . , xn] are two ideals, then V(I1) Y V(I2) = V(I1 X I2) = V(I1I2).

(iii) H = V(1) and An = V(0).

(iv) If I� k[x1, . . . , xn] is an ideal, then V(I) = V(
?
I).

(v) If S1 Ď S2 Ď k[x1, . . . , xn], then V(S2) Ď V(S1).

By (i), (ii) and (iii), the sets of the form V(I), I� k[x1, . . . , xn] define a topology (of closed sets) on An. The defined topology
is called the Zariski topology on the affine space An.

It is easy to write down an open basis for the Zariski topology. To start with, since k[x1, . . . , xn] is Noetherian, every ideal
I is finitely generated ; say I = xf1, . . . , fmy. Then by (i),

V(I) = V((f1)) X ¨ ¨ ¨ X V((fm)).

For f P k[x1, . . . , xn], put D(f) = tp P An | f(p) ‰ 0u ; a set of this form is called a principal affine open set. Then taking
complement, the above equation becomes

AnzV(I) = D(f1) Y ¨ ¨ ¨ YD(fm).

Every open set in An has the form as the left hand side. For f,g P k[x1, . . . , xn], by (ii) we have D(f) XD(g) = D(fg). Thus
the sets of the form D(f) are a basis for the Zariski topology.

4.2 For a subset S Ď An, put I(S) to denote the set of all polynomials that vanish on S, i.e.,

I(S) = tf P k[x1, . . . , xn] | f(p) = 0 for all p P Su.

This is a radical ideal in k[x1, . . . , xn]. There are some formal properties of the assignment S ÞÑ I(S) :

(i) If S1,S2 Ď An, then I(S1 Y S2) = I(S1) X I(S2).

(ii) If S1 Ď S2 Ď An, then I(S2) Ď I(S1).

(iii) If V Ď An is an algebraic set, then V(I(V)) = V .

(iv) For S Ď An, we have V(I(S)) = S, the Zariski closure of S in An.

(v) I(H) = k[x1, . . . , xn], and if #k = ∞, I(An) = 0.
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For an algebraic set V Ď An, the quotient

k[V] := k[x1, . . . , xn]/I(V)

is called the coordinate ring of V . Since I(V) is radical, the quotient ring k[V] is reduced.

4.3 Let V Ď An and W Ď Am be algebraic sets. A map φ : V Ñ W is called a morphism if for any integer 1 ď i ď m, we
have pri ˝φ P k[x1, . . . , xn], where pri denotes the projection to the i-th component.

4.4 If φ : V Ñ W is a morphism, then the pullback f ÞÑ f ˝φ defines a k-algebra homomorphism φ˚ : k[W] Ñ k[V]. In fact,
this defines a bĳection

tmorphisms V Ñ Wu HomAlgk
(k[W],k[V])

φ φ˚

4.5 Lemma. Let φ : V Ñ W be a morphism between algebraic sets. Then

(a) kerφ˚ = I(φ(V)).

(b) φ(V) = V(kerφ˚).

In particular, φ(I) is an algebraic set with coordinate ring k[W]/kerφ˚.

4.1.2 Nullstellensatz.

4.6 Noether’s normalization lemma. Let A be a k-algebra of finite type. Then there exist y1, . . . ,yd P A (0 ď d ď m) such
that the yi are algebraically independent and A is finite over k[y1, . . . ,yd].

Proof. Write A = k[r1, . . . , rm]. We prove this by induction onm.

1° m = 1 : Say A = k[r]. If r is transcendental over k, pick y1 = r. Otherwise, r is algebraic over k so that A is finite over k.

2° m ą 1 : If the r1, . . . , rm are algebraically independent over k, then done. Otherwise, there’s a nonzero f P k[x1, . . . , xm]

such that f(r1, . . . , rm) = 0. Renumbering the subscripts, if necessary, we assume f(x1, . . . , xm) is not a constant in the
variable xm. Let d = deg f, the maximum of the total monomial degrees. For j = 1, . . . ,m´ 1, define

Xj := xj ´ x(1+d)j
m

For each monomial xe1
1 ¨ ¨ ¨ xemm , we have

xe1
1 ¨ ¨ ¨ xemm = (X1 + x

1+d
m )e1 ¨ ¨ ¨ (Xm´1 + x

(1+d)m´1

m )em´1xemm

= x
em+e1(1+d)+¨¨¨+em´1(1+d)m´1

m + ¨ ¨ ¨

Note that different (e1, . . . , em) give polynomials in X1, . . . ,Xm´1, xm with the different highest degrees of xm.
Now write

g(X1, . . . ,Xm´1, xm) = f(X1 + x
e1(1+d)1

m , . . . , xemm ) = cxNm +
N´1
ÿ

j=0
h(X1, . . . ,Xm´1)x

j
m

for non-zero c P k. For j = 1, . . . ,m´ 1, let sj = rj ´ r
(1+d)j
m . Then 1

c
g(s1, . . . , sm´1, rm) =

1
c
f(r1, . . . , rm) = 0, i.e, rm is

integral over B := k[s1, . . . , sm´1]. By induction hypothesis, there exists y1, . . . ,yd, (0 ď d ď m´ 1) such that y1, . . . ,yd
are algebraically independent over k and B is finite over k[y1, . . . ,yd] and thus A is finite over k[y1, . . . ,yd].
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4.7 Zariski’s lemma. Let K/k be a field extension. If K is of finite type over k, it’s finite over k.

Proof. By normalization lemma, k Ď k[y1, . . . ,yd] Ď K with K finite over k[y1, . . . ,yd] for some algebraically independent
elements y1, . . . ,yd over k. Since K is a field, it follows that k[y1, . . . ,yd] is a field, and thus d = 0, i.e, K is algebraic over k.
Since K is finitely generated as k-algebra, [K : k] is finite.

4.8 Hilbert’s Nullstellensatz. In what follows, we assume k is an algebraically closed field.

(i) (Weak form) There is a bĳection

Ank mSpeck[x1, . . . , xn]

(a1, . . . ,an) (x1 ´ a1, . . . , xn ´ an)

.

In particular, if I� k[x1, . . . , xn] is a proper ideal, then V(I) ‰ H in Ank .

(ii) For any ideal I of k[x1, . . . , xn], we have the equality

I(V(I)) =
?
I.

Proof.

(i) Clearly, (x1 ´ a1, . . . , xn ´ an) is a maximal ideal. Conversely, let m P mSpeck[x1, . . . , xn]. Then K := k[x1, . . . , xn]/m is
a field of finite type over k, so by (4.7) K is finite over k. In particular, K/k is algebraic. But k is algebraically closed, this
implies K = k. For each 1 ď i ď n, we have xi ´ ai P m for some ai P k, and thus m = (x1 ´ a1, . . . , xn ´ an).

(ii) The nontrivial part if I(V(I)) Ď
?
I. Assume g P I(V(I)) and I = (f1, . . . , fm). Introduce a new indeterminate xm+1, and

consider the ideal
I 1 = (f1, . . . , fm,gxn+1 ´ 1)� k[x1, . . . , xn, xn+1]

Then V(I 1) = H, so by (i), it must be the case (f1, . . . , fm,gxm+1 ´ 1) = k[x1, . . . , xn, xn+1]. But note

k[x1, . . . , xn]g
Ig

–
k[x1, . . . , xn, xn+1]

I 1
,

so that 1 P Ig. This means

1 =
a1f1 + ¨ ¨ ¨ + amfm

gℓ

for some ai P k and ℓ P Zě0, which exactly means g P
?
I.

4.9 Let A be a k-algebra of finite type. Say ty1, . . . ,ysu is a generating set of A. Then there is a surjection

Φ : k[x1, . . . , xs] A = k[y1, . . . ,ys]

xi yi

Since k[x1, . . . , xs] is Noetherian, ker(Φ) = (f1, . . . , fm) for some f1, . . . , fm P k[x1, . . . , xs], and we can form the algebraic set

V = V(ker(Φ)) = V((f1, . . . , fm)) Ď Ask.

The coordinate ring of V is by definition k[V] = k[x1, . . . , xs]/I(V). By Nullstellensatz, we have I(V) =
a

ker(Φ). Hence if A
is a reduced ring, we have k[V] – A as k-algebras.
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Suppose tz1, . . . , zru is another generating set of A. Then there is a similarly defined surjection Ψ : k[x1, . . . , xr] Ñ A and
the algebraic set V 1 = V(ker(Ψ)) Ď Ark. We have the isomorphism

k[V 1] – A – k[V]

as k-algebras, so V – V 1 as algebraic sets over k.
Let AffVark be the category of affine algebraic sets over k whose morphisms are defined as (4.3), and let redfgAlgk be

the full subcategory of Algk consisting of reduced k-algebra of finite type. Together with (4.4), we then have shown that
there is an anti-equivalence of categories

AffVark redfgAlgk

V k[V]

4.10 Let A be a reduced k-algebra of finite type. Let ty1, . . . ,ynu be a generating set of A and form the surjection
Φ : k[x1, . . . , xn] Ñ A. Let V = V(ker(Φ)) Ď Ank . Let p = (a1, . . . ,an) P V and consider the maximal ideal mp = (x1 ´

a1, . . . , xn ´ an) of k[x1, . . . , xn]. By (4.2).(ii), we have ker(Φ) Ď mp. Conversely, if m is a maximal ideal of k[V], regarding it
as a maximal ideal in k[x1, . . . , xn] containing ker(Φ), by Nullstellensatz we obtain a point p P Ank with mp = m. The point
lies in V as tpu = V(mp) Ď V(ker(Φ)) = V . This establishes a bĳection between V and mSpec k[V], and by the isomorphism
k[V] – A, we have a bĳection

V mSpec A

p Φ(mp).

Now let a P A and let f P k[V] be the corresponding element. Then the value of f at a point p P V is the same as the class of
a in the residue field κ(Φ(mp)), i.e., the image of A in A/Φ(mp). Indeed, we have A/Φ(mp) – k[V]/mp – k as k-algebras.

4.11 Retain the notations in (4.10). For a ring R, equip mSpec Rwith the subspace topology from the topology on the affine
scheme SpecR. Then clearly mSpec k[V] – mSpec A as topological spaces. Also, it follows from the very definition that the
bĳection

Ank mSpeck[x1, . . . , xn]

(a1, . . . ,an) (x1 ´ a1, . . . , xn ´ an)

.

in Nullstellensatz is a homeomorphism. For an ideal I, we have a commutative diagram

Ank mSpeck[x1, . . . , xn]

V(I) mSpec k[V]

„

„

The vertical maps are all closed embeddings, so the horizontal map on the bottom is a homeomorphism as well. Altogether
we see the bĳection

V mSpec A

in (4.10) is a homeomorphism.
Let f : B Ñ A be a k-algebra homomorphism of reduced k-algebra of finite types. Let W be any affine algebraic set

constructed as in (4.10) with A replaced by B. Then we have a k-algebra homomorphism f 1 : k[W] – B
f−Ñ A – k[V], and by
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(4.4) it gives a morphism F : V Ñ W of algebraic sets. We claim the diagram

W mSpec k[W]

V mSpec k[V]

„

F

„

f1´1

commutes. This is clear from the construction of F (4.4).

4.12 Consider the projective space Pn over k with homogeneous coordinates x0, . . . , xn. For a point p P Pn, it lies in some
affine pieces D+(xi) which is isomorphic to the affine space Ank . By Nullstellensatz it corresponds to a maximal ideal in
k[x0, . . . , xn]xi , which can be viewed as a maximal ideal in k[x0, . . . , xn] not containing xi ; call this maximal ideal mp. If p also
lies inD+(xj), it will then corresponds to a maximal ideal in k[x0, . . . , xn]xj . Nevertheless, since p P D+(xi)XD+(xj), it gives a
maximal ideal in k[x0, . . . , xn]xixj , and it can be obtained by localizing mp at xj. By symmetry we see mp P mSpeck[x0, . . . , xn]
is well-defined. Thus we obtain a well-defined map

Pnk tm P mSpeck[x0, . . . , xn] | (x0, . . . , xn) Ę mu

p mp.

The procedure of obtaining mp from p above also shows that this is a bĳection. It is this bĳection that motivates the Proj
construction in (3.106).

4.13 Projective Hilbert’s Nullstellensatz. Let I be a homogeneous ideal of k[x0, . . . , xn].

4.1.3 Sheaf of regular functions

Recall that we are assuming k is algebraically closed.

4.14 Let Y be an algebraic set and V Ď Y a Zariski open set. A regular function on V is a map g : V Ñ A1 such that any

point y P V admits an open neighborhoodW Ď Y and u, v P k[Y] with u nonvanishing onW such that g|W =
v|W

u|W
. A regular

function on V is continuous in the Zariski topology.
We put OY(V) to be the set of regular functions on V . The assignment V ÞÑ OY(V) is clearly a sheaf of k-algebras on Y,

and (Y, OY) is a local-ringed space. Indeed, if a regular function defined near a point y P Y is nonzero at y, then by continuity
it is nonvanishing on an open neighborhood of y, making it an invertible element in the stalk OY,y.

4.15 Let Y be an algebraic set. There is an inclusion k[Y] Ñ OY(Y). Then for f P k[Y], we can form the open set Yf as in (2.21),
and we see there that f P OY(Yf)ˆ. We can compare Yf with D(f). In fact, D(f) = Yf. Indeed, y P Yf if and only if fy P Oˆ

Y,y,
if and only if f(y) ‰ 0, or y P D(f).

By the universal property of localization, the composition k[Y] Ñ OY(Y) Ñ OY(Yf) induces a homomorphism θ : k[Y]f Ñ

OY(Yf). This is injective, for if θ(gf´m) = 0, then g|Yf
= 0, or Yf Ď V(g), which implies H = YfXYg = D(fg), or fg = 0 P k[Y].

This exactly means gf´m = 0 in k[Y]f. Moreover,

Theorem. The canonical map θ : k[Y]f Ñ OY(Yf) is a k-algebra isomorphism.

Proof. It remains to show the surjectivity. The proof is similar to (3.3), with some extra topological concern. Let g P OY(Yf).
By definition, each y P Yf admits an open neighborhood Wy Ď Yf and vy, uy P k[Y] with uy nonvanishing on Wy such

that g|Wy
=
vy|Wy

uy|Wy

. Since tYg | g P k[Y]u is a basis for Y, we can find u 1
y P k[Y] such that y P Yu1

y
Ď Wy Ď Yuy

. Taking
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complement gives V(u 1
y) Ě V(uy), and by Nullstellensatz,

b

(u 1
y) Ď

a

(uy). Thus u 1m
y = uyu

2
y for some u2

y P k[Y] and
m P Zě1 ; then

vy

uy
=
vyu

2
y

uyu2
y

=
vyu

2
y

(u 1
y)
m

.

Since k[Y] is Noetherian, Y is Noetherian, which implies Yf is Noetherian, and hence compact. Thus we can find a finite set
tyiuiPI Ď Yf such that tYu1

yi
= Y(u1

yi
)muiPI covers Yf. Replacing vy by vyu2

y and uy by (u 1
y)
m, we find u1, . . . ,un, v1, . . . , vn P

k[Y] such that g|Yuj
=
vj|Yuj

uj|Yuj

with Yf = Yu1 Y ¨ ¨ ¨ Y Yun
.

For each i ‰ j, we have

vi|Yui
XYuj

ui|Yui
XYuj

= g|Yui
XYuj

=
vj|Yui

XYuj

uj|Yui
XYuj

so (viuj ´ vjui)|Yui
XYuj

= 0. This implies uiuj(viuj ´ vj ´ ui) = 0 on Y. Further replacing vj by vjuj and uj by u2
j , we may

assume uivj ´ ujvi = 0 on Y for any i, j. Since Yf =
n
Ť

i=1
Yui

, we have
a

(f) =
a

(u1, . . . ,un) so that

fm = a1u1 + ¨ ¨ ¨ + anun

for some a1, . . . ,an P k[Y] and m P Zě1. Define v = a1v1 + ¨ ¨ ¨ + anvn. We claim gfm = v, which will imply θ(vf´m) = g,
completing the proof. This is easy, as for any 1 ď j ď n,

gfm|Yuj
=

n
ÿ

i=1
ai|Yuj

(gui)|Yuj
=

n
ÿ

i=1
ai|Yuj

(
vj

uj
ui)|Yuj

=
n
ÿ

i=1
ai|Yuj

vi|Yuj
= v|Yuj

.

4.15.1 Corollary. Let Y be an algebraic set.

(a) OY(Y) = k[Y].

(b) For any y P Y, we have OY,y – k[Y]I(tyu).

Note these strike a resemblance with the results in (3.2).

Proof. (a) follows directly from Theorem 4.15. For (b), we compute

OY,y = lim−Ñ
yPU

OY(U) – lim−Ñ
fPk[Y], f(y)‰0

OY(Yf) – lim−Ñ
fRI(tyu)

k[Y]f – k[Y]I(tyu).

The third isomorphism results from the functoriality of the isomorphism in Theorem 4.15, and the final isomorphism follows
from the same reason as in (3.2).

4.16 Let X be a topological space. The assignment U ÞÑ HomSet(U,k) defines a sheaf of k-algebras on X, which we denote
by kX. A local-ringed space (X, OX) is called a basic k-space if OX is a subsheaf of k-algebras of kX and for any x P X, the
unique maximal ideal of OX,x is

mX,x = tgx P OX,x | g(x) = 0 P ku.

A morphism of basic k-spaces is a continuous map f : X Ñ Y such that for any open V Ď Y and g P OY(V), we have
g ˝ f P OX(f´1(V)). In other words, a morphism of basic k-space is a morphism in LRS such that the morphism on sheaves
is given by function pullback. The category of basic k-spaces is denote by bSpk.

As an example, if Y is an algebraic set, we see in (4.14) that (Y, OY) is a basic k-space.

4.17 Definition. Let (X, OX) be a basic k-space.
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1. X is called an affine variety over k if there exist an algebraic set Y over k such that (X, OX) – (Y, OY) as basic k-spaces.

2. X is called an (algebraic) variety over k if it admits a finite open cover U such that (U, OX|U) is an affine variety over k
for any U P U .

Denote by AffVark and Vark the full subcategories of bSpk whose objects consist of affine varieties and varieties over k,
respectively.

4.18 Note that by (4.4), AffVark defined in (4.17) is equivalent to the one defined in (4.9), and by (4.15.1) the anti-equivalence
there now takes the form

AffVark redfgAlgk

X OX(X)

A coordinate-free description of the inverse is given by A ÞÑ mSpec A.

4.19 Theorem. Let X be a basic k-space and Y an affine variety over k. There exists a bĳection

HombSpk
(X, Y) HomAlgk

(k[Y], OX(X))

f : X Ñ Y k[Y] = OY(Y) Q g ÞÑ g ˝ f

Proof. The proof is similar to that of Theorem 3.7. In fact, the proof for injectivity is exactly the same. For surjectivity,
let θ P HomAlgk

(k[Y], OX(X)) and define f : X Ñ Speck[Y] by setting f(x) = θ´1(resXx )´1(mX,x). We claim f(x) is in
fact a maximal ideal. In fact, from the definition, the composition k Ñ OX,x Ñ OX,x/mX,x is an isomorphism. Then the
homomorphism resXx θ : k[Y] Ñ OX,x gives rise to an isomorphism k[Y]/(resXx θ)´1(mX,x) – OX,x/mX,x – k, which implies
f(x) = (resXx θ)´1(mX,x) is a maximal ideal. Thus f is in fact a map f : X Ñ mSpeck[Y], which by Nullstellensatz gives a map
f : X Ñ Y in turn. This is a continuous map, as shown in Theorem 3.7. It remains to show

1. for any open V Ď Y and g P OY(V), g ˝ f P OX(f´1(V)), and

2. for any g P k[Y], θ(g) = g ˝ f P OX(X).

For 2., if x P X, then the value θ(g)(x) is the same as the class of θ(g) in OX,x/mX,x – k. On the other hand, g(f(x)) is the
same as the class of g in OY,f(x)/mY,f(x), which is isomorphic to OX,x/mX,x as k-algebras. Hence θ(g)(x) = g(f(x)) P k. For
1., we use the argument in Theorem 3.7 to obtain, for any h P k[Y], a map θh : OY(Yh) Ñ OX(Xθ(h)). Explicitly,

θh

( g

hm

)
=

θ(g)

θ(h)m
.

By 2. we have θh(gh´m) =
g ˝ f

(h ˝ f)m
= (gh´m) ˝ f, so 1. holds for open sets of the form Yh = D(h). The general case follows

from covering V with open sets of this form and the sheaf axiom.

4.20 Remark. A k-space is a local-ringed space (X, OX) over k (2.20.1) such that the composition k Ñ OX,x Ñ κ(x) is a field
isomorphism for any x P X. Denote by Spk the full subcategory of LRSk whose objects are all k-spaces.

It is straightforward to check that a basic k-space is a k-space, and there is a faithful functor bSpk Ñ Spk. There is also a
bĳection

HomSpk
(X, Y) HomAlgk

(k[Y], OX(X))

defined as in Theorem 3.7. The proof is the same as (4.19).
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4.1.4 Dimension

4.21 Definition. Let X be a topological space.

1. A subset C Ď X is called locally closed if it is an intersection of an open set and a closed set in X.

2. A subset of X is called constructible if it is a finite union of locally closed subsets.

4.22 Theorem (Chevalley). Let f : X Ñ Y be a morphism of algebraic varieties. If C Ď X is constructible, then f(C) Ď Y is
constructible.

4.22.1 Lemma Let f : X Ñ Y be a morphism of algebraic varieties. Then f(X) contains a non-empty open subset of its closure
f(X).

Proof. Using affine opens to cover Y, we may assume Y is affine. Also we can assume X is affine. Since X only has finitely
many irreducible components, we can further assume X is irreducible. If we replace Y by f(X), then f induces a k-algebra
injective homomorphism f˚ : k[Y] Ñ k[X] with k[X] an integral domain. We pick s P k[Y] as in Corollary 4.49.(i). We claim
D(s) = f(D(f˚s). If y P f(D(f˚s)), then y = f(x) for some x such that f˚s(x) ‰ 0, or s(y) = s(f(x)) ‰ 0. Conversely, if
y P D(s), then evaluation at y defines a homomorphism evy : k[Y] Ñ k with evy(s) = s(y) ‰ 0. The corollary implies there
exists ϕ : k[X] Ñ k extending evy(s), so ϕ(s) ‰ 0 and ϕ ˝ f˚ = evy. Since ϕ is nonzero, it corresponds to a point in k[X], say
x P X. Then f(x) = y and f˚s(x) = s(y) ‰ 0. This proves the claim, and in particular D(s) Ď f(X).

4.22.2 Proof of Chevalley theorem. First assume C = X. We may replace Y by f(X). By a previous lemma, there is an
open set U Ď Y with U Ď f(X). If U = f(X), we are done. Otherwise, let X 1 := Xzf´1(U) Ĺ X ; then dimX 1 ă dimX and by
induction on dimension on the domain we see f(X 1) is constructible. Then f(X) = U Y f(X 1) is construtible. It remains to
check the case dimX = 0. In this case X is a finite set of points with discrete topology, so it suffices to show a singleton is
construtible. This is clear as a point is closed.

For the general case, we can assumeC is locally closed inX. IfC is closed, then by the previous case applied to f|C : C Ñ Y,
we see f|C(C) = f(C) is construtible in Y. It remains to deal with the case when C is open.

4.1.5 Associated complex analytic spaces

In this subsubsection by a variety we mean an irreducible algebraic variety.

4.23 Now we consider Cn as the usual euclidean space. Let U be an open subset of Cn and denote by OU the sheaf of
holomorphic functions onU. Let f1, . . . , fm P OU(U) be holomorphic functions and let Y = V(f1, . . . , fm) be the common zero
locus of these f1, . . . , fm. Put OY = (OU/(f1, . . . , fm)) |Y , where (f1, . . . , fm)� OU is the ideal sheaf generated by f1, . . . , fm. It
is clear that (Y, OY) is a local-ringed space, and the sheaf OY is a sheaf of C-algebra.

4.24 Definition. A complex analytic space is a local-ringed space (X, OX) over C that admits an open cover U such that for
any U P U , (U, OX|U) – (Y, OY) in LRSC for some Y defined as in (4.23).

4.25 Let X be a variety over C. We cover Xwith affine open subsets Yi. Each Yi is isomorphic to some algebraic set, so we can
write Yi = V(f1, . . . , fm) Ď AnC for some polynomials f1, . . . , fm P C[x1, . . . , xn]. If we regard the fi as holomorphic functions
defined on Cn, then Yi is an complex analytic space, which we denote by (Yi)

an. To distinguish the sheaf of holomorphic
functions from that of regular functions, we denote the former by Oan

Yi
. The gluing data for (X, O) allows us to glue (Yi, Oan

Yi
)

together, by (2.13), to a complex analytic space. We denote the resulting space by (Xan, Oan
X ).

The underlying spaces of X and Xan are the same ; the only difference is the topology. We refer to the topology on Xan the
classical topology/analytic topology on X.

100



4.25.1 Let A be a reduced C-algebra of finite type. By picking a finite generating set ty1, . . . ,ysu of A, we obtain a closed
embedding mSpec(A) Ñ AsC with image V(ker(Φ)), where Φ : k[x1, . . . , xs] Ñ A is given by Φ(xi) = yi (4.9). In this way
the affine variety mSpec(A) has a analytic topology inherited from AsC. If tz1, . . . , zru is another finite generating set of A,
via Ψ : C[X1, . . . ,Xr] Ñ A the affine variety mSpec(A) has another analytic topology from ArC. We show these topologies on
mSpec(A) are homeomorphic in analytic topology. But this is rather clear, for a morphism V(ker(Φ)) Ñ V(ker(Ψ)) comes
from a polynomial map AsC Ñ ArC, and a polynomial is continuous.

4.26 Lemma. Let X be a variety over C. If U Ď X is a nonempty Zariski open set, then U is classically dense.

Proof. Covering X by affine open sets, we may assume X is affine. SinceD(f) Ď U for some 0 ‰ f P C[X], to prove the lemma
we may assume U = D(f). Taking complement, we need to show V(f) Ď X is classically nowhere dense, and it suffices to
show V(f) has empty classical interior. If V(f) contains a nonempty open set V , then f is trivial on V , which by identity
principle f ” 0 throughout, a contradiction to f ‰ 0.

4.27 Lemma. Let X be a variety over C and Y a construtible subset of X. Then the Zariski closure of Y in X coincides with
the classical closure in X.

Proof. We may assume Y is nonempty Zariski locally closed. Denote by YZ and YC the Zariski closure of Y and the classical
closure of Y in X, respectively ; we always have YC Ď Y

Z. By definition, Y is Zariski open in YZ, so by (4.26) Y is classically
dense in YZ, which means YZ Ď Y

C.

4.28 Lemma. Let U Ď AnC be a Zariski open set. Then U is classically path-connected.

Proof. Let x ‰ y P U and pick any affine line L Ď AnC connecting x,y. Since U X L Ď L is Zariski open and L – A1
C,

#(LzU) ă ∞. But L – R2 is a plane, soUXL = Lz(LzU) is still path-connected. In particular, there is a (smooth) path inUXL

connecting x and y.

4.29 Theorem. A variety X over C is separated if and only if the complex analytic space Xan is Hausdorff.

Proof. Since the diagonal ∆ : X Ñ XˆC X is always an immersion, we only need to show ∆(X) is Zariski closed if and only
if it is classically closed. But ∆(X) is construtible by Chevalley theorem, so the result follows from Lemma 4.27.

4.30 Theorem. A variety X over C is complete if and only if the complex analytic space Xan is compact.

4.31 Theorem. A morphism X Ñ Y of varieties over C is proper if and only if the continuous map Xan Ñ Yan is classically
proper.

4.2 Schemes and varieties

4.2.1 Generalities on topology

4.32 Definition. A topological space is called sober if every irreducible closed subset has a unique generic point.

4.33 Let X be a sober space. For example, a scheme is sober (3.36). In fact, from the proof there we see a topological space
with an open cover consisting of sober spaces is again sober. We have a bĳection

X tirreducible closed subset of Xu

x txu.
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Not every topological space is sober. Nevertheless, with each topological space we may associate a sober space in a functorial
way, which we will discuss in the next paragraph.

4.34 Soberification. Comparing the topology on SpecA (3.1) and that on an affine variety (4.1), we are naturally led to the
following construction. For a topological space, define Sob(X) to be the set of all irreducible closed subsets in X. For a closed
subset C of X, define

V(C) = VX(C) := tZ P Sob(X) | Z Ď Cu.

Then
"

V(C) | C Ď
closed

X

*

forms a topology on Sob(X). Namely,

(i) V(C1) Y V(C2) = V(C1 Y C2) for any closed subsets C1, C2 of X.

(ii) V (
Ş

α Cα) =
Ş

α V(Cα) for any family tCαu of closed subsets of X.

(iii) V(H) = H, and V(X) = Sob(X).

These are clear. Recall that by definition an irreducible space is nonempty (3.34). The resulting topological space Sob(X) is
called the soberification of X. There is a natural inclusion ι : X Ñ Sob(X) defined by x ÞÑ txu. This is a continuous map, for

ι´1(V(C)) = tx P X | txu P Cu = tx P X | x P Cu = C

for any closed subset C of X. In fact, this shows the inverse ι´1 induces a bĳection between Top(Sob(X)) and Top(X).
As its name indicates, the space Sob(X) is a sober topological space. Indeed, the aforementioned bĳection implies that C

is irreducible if and only if V(C) is irreducible. If Z P Sob(X) and Z P V(C) for some closedC 1, it is obvious that V(Z) Ď V(C).
This implies that V(Z) = tZu in Sob(X). If V(Z) = V(Z 1) for two Z,Z 1 P Sob(X), then clearly Z = Z 1. This finishes the proof
that Sob(X) is sober. We will see in the following paragraph that ι = ιX : X Ñ Sob(X) is universal among all the other sober
spaces. To give an intuition, we first observe that ι is a homeomorphism if and only if X is sober. Indeed, if X is sober, then
x is uniquely determined by txu, so ι is a bĳection. A continuous bĳection whose inverse ι´1 induces a bĳection between
topologies is by definition a homeomorphism. In particular, this shows ι : X Ñ Sob(X) is a homeomorphism.

4.35 Universality of soberification. Denote by Sob the full subcategory of Top consisting of sober topological spaces. Let
X be a topological space, and define a functor Sob Ñ Set by Y ÞÑ HomTop(X, Y). Then the soberification ι : X Ñ Sob(X)
represents this functor.

As a first step, we show Sob actually defines a functor from Top to Sob. If f : X Ñ Y is a continuous map, define
Sob(f) : Sob(X) Ñ Sob(Y) by sending Z to f(Z). This is continuous, as for any C 1 Ď

closed
Y, we have

Sob(f)´1(V(C 1)) = tZ P Sob(X) | f(Z) P V(C 1)u = tZ P Sob(X) | f(Z) Ď C 1u = V(f´1(C 1)).

If f,g are continuous maps with g ˝ f being defined, then g(f(Z)) = g(f(Z)). Also, Sob(idX) = idSob(X). These prove that
Sob : Top Ñ Sob is really a functor. Additionally, for continuous f : X Ñ Y, since f(x) = f(txu) for any x P X, there is a
commutative square

X Y

Sob(X) Sob(Y)

f

ιX ιY

Sob(f)

In particular, if Y is sober, the map ιY is a homeomorphism, and the diagram gives a functorial map

HomTop(X, Y) HomSob(Sob(X), Y)

f ι´1
Y ˝ Sob(f).
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In fact, this is a bĳection with inverse f 1 ÞÑ f 1 ˝ ιX. To see this, let f 1 P HomSob(Sob(X), Y) and put f = f 1 ˝ ιX. The identity
Sob(f) = ιY ˝ f 1 is a tautology. This exactly tells what we claim in the beginning of this paragraph.

4.35.1 We can also describe open sets for the soberification of a spaceX. LetU be an open subspace ofX andC its complement
in X. Clearly for Z P Sob(X), we have Z Ę C if and only if ZXU ‰ H. Thus, the set of the form

D(U) = DX(U) = Sob(X)zV(C) = tZ P Sob(X) | ZXU ‰ Hu

is precisely an open set in Sob(X).
We record a fact that will be used later. Let U be an open cover of X. Then tDX(U) | U P Uu also covers Sob(X). This is

tautological. Let Z P Sob(X). Then ZXU ‰ H for some U P U , so that Z P D(U).
Denote by α : U Ñ X the inclusion. Then we have a map Sob(α) : Sob(U) Ñ Sob(X). This is in fact an open embedding

with image precisely D(U). Indeed, by definition, for Z P Sob(U), we have

Sob(α)(Z) = α(Z) = Z P Sob(X).

If Z,Z 1 P Sob(U) satisfy Z = Z
1 in X, then Z X Z 1 and Z X (ZzZ 1) are two closed subsets of Z whose union is Z. Since Z is

irreducible and ZX Z 1 ‰ H, we must have ZX Z 1 = Z, or Z Ď Z 1. By symmetry we then obtain Z = Z 1, proving that Sob(α)
is injective. For a closed subset C Ď U, we have

Sob(α)(VU(C)) = tZ | Z P Sob(U), Z Ď Cu = VX(C) X Im Sob(α).

The last equality holds, as Z Ď C implies Z = Z X U Ď C X U = C. This shows Sob(α) is an embedding, and it remains to
show Im Sob(α) = D(U). The containment Ď is clear. For Ě, if ZXU ‰ H, since Z is irreducible, ZXU is dense in Z, showing
that Z = ZXUwith ZXU P Sob(U).

There is counterpart for a closed subspace C Ď X, stating that Sob(C) Ñ Sob(X) is a closed embedding, and the proof is
much easier.

4.36 By definition, a topological space X is T0 / Kolmogorov if for any x ‰ y P X there exists a closed set in X containing
exactly either x or y. We note here that the image ι(X) ofX under ι : X Ñ Sob(X) is T0. To see this, let x,y P Xwith txu ‰ tyu. If
every closed subset in ι(X) that contains, say, x also contains y, then y P txu. By symmetry, we have x P tyu, which altogether
gives that txu = tyu, a contradiction.

Denote by TopT0
the full subcategory of Top consisting of T0 spaces. Let X be a topological space. We show that the map

i : ι|ι(X) : X Ñ ι(X) represents the functor HomTop(X, ´) : Top Ñ TopT0
. To see this, we only need to show that if X is T0, then

i : X Ñ ι(X) is a homeomorphism. Once this is proven, the rest of the proof follows exactly the same as that in (4.35). Since
i´1 induces a bĳection between topologies, just as what ι´1 does, it suffices to show i : X Ñ ι(X) is bĳective, and it remains
to show injectivity. This is clear as X is T0.

4.37 Jacobson space. Let k be an algebraically closed field. By Nullstellensatz, the closed points of the affine scheme
Speck[x1, . . . , xn] are in bĳection with the affine variety kn. Under this bĳection, we see kn is a topological subspace of
Speck[x1, . . . , xn], and for I� k[x1, . . . , xn] we have

Vvar(I) = Vsch(I) X tclosed points in SpecAu

In view of this relation, we are led to the following definition.
Let X be a topological space. Denote by Xcl the set of closed points in X, and equip Xcl with the subspace topology. We

say the space X is Jacobson if for any closed subset Z of X, the subset Zcl is dense in Z. Note that Zcl = ZX Xcl as Z is closed.

4.38 Example. LetA be a ring. The closed points in SpecA are exactly the maximal ideals inA ; in other words, (SpecA)cl =

mSpecA. For an ideal I � A, we see that V(I)cl is the set of maximal ideals containing A. For V(I)cl to be dense in V(I), it
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is sufficient and necessary that
?
I = Jac(I), where Jac(I) is the intersection of all maximal ideals in A containing I, and it

called the Jacobson radical of I. To see this, first note that for f P A,D(f) X V(I) ‰ H if and only if f R
?
I. For such f, clearly

we haveD(f) X V(I)cl ‰ H if and only if f R Jac(I). This implies the claim. The ring Awith SpecA being Jacobson is called a
Jacobson ring. The Jacobson radical of the zero ideal is denoted by rad(A), and is called the Jacobson radical of the ring A.

For example, Nullstellensatz implies that every algebra of finite type over an algebraically closed field k is Jacobson.
Indeed, if I is an ideal of k[x1, . . . , xn], then

I(V(I)) = tf P k[x1, . . . , xn] | f(p) = 0 for all p P V(I)u

= tf P k[x1, . . . , xn] | f P mp for all p P V(I)u = Jac(I)

where the second equality results from (4.10). This shows k[x1, . . . , xn] is Jacobson, and clearly this implies what we say.

4.39 Definition. A continuous map f : X Ñ Y is called a quasi-homeomorphism if the inverse f´1 establishes a bĳection
Top(Y) Ñ Top(X) between topologies. Equivalently, it establishes a bĳection between closed sets in X and Y.

As an example, we see in (4.34) that for a topological space X, the natural map ιX : X Ñ Sob(X) into its soberification is a
quasi-homeomorphism.

4.39.1 The inverse f´1 of a function f is well-behaved with arbitrary intersection and arbitrary union. If f : X Ñ Y is a
quasi-homeomorphism, many identities happening in Top(Y) can be pulled back to identities in Top(X), and vice versa.
Thus those topological properties that are defined or can be checked only using intersection and union are preserved under
quasi-homeomorphism. We list some in the following lemma.

Lemma. Let f : X Ñ Y be a quasi-homeomorphism between topological spaces.

(i) Let U be a collection of open sets in Y. Then U is a cover (resp. a basis) of Y if and only if f´1U := tf´1(U)uUPU is a cover
(resp. a basis) of X.

(ii) X is compact if and only if Y is compact.

(iii) X is connected (resp. irreducible) if and only if Y is connected (resp. irreducible).

4.39.2 If f : X Ñ Y is a quasi-homeomorphism, then the pushforward f˚ of presheaves on X to Y induces an equivalence of
categories

Cpre
X Cpre

Y

F f˚F

where C = Set, Ab, Ring, ModR etc. This is obviously a fully faithful functor. Now given a presheaf G on Y, consider the
pullback presheaf fpreG. We claim f˚f

preG – G as presheaves canonically. Indeed, for any open set V in Y,

f˚f
preG(V) = lim−Ñ

V 1Ěf(f´1(V))

G(V 1) = lim−Ñ
V 1ĚV

G(V 1) – G(V)

Passing to sheafification, we see f˚ : CX Ñ CY is again an equivalence of categories with inverse f´1.

4.40 Lemma. Let X be a topological space. TFAE :

(a) X is Jacobson.

(b) The inclusion Xcl Ñ X is a quasi-homeomorphism.

(c) Every nonempty locally closed subset of Xmeets nontrivially with Xcl.

Proof. The equivalence (a)ô(b) is simply a paraphrase of the very definition, and (a)ñ(c) is clear. To see (c)ñ(a), note that
for any closed Z Ď X, if Zcl Ĺ Z, then ZzZcl is a nonempty locally closed set in X. However, we have ZzZcl Ď ZzXcl, which is
a contradiction to (c).
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4.41 Corollary. Let A be a ring. Assume A satisfies the property that for any f P A and p P D(f), p P D(f)cl implies
p P mSpecA. Then A is Jacobson.

Proof. We use (4.40).(c). Assume that A ‰ 0. Let I � A and f P Az
?
I. It suffices to show that D(f) X V(I) contains a closed

point in SpecA. The space D(f) X V(I) is homeomorphic to the affine scheme SpecAf/If, so it contains a closed point. By
hypothesis, it is also a closed point in SpecA.

Note that the proof is essentially based on the fact that SpecA has a closed point as long as A ‰ 0.

4.42 Lemma.

1. Any locally closed subset of a Jacobson space is Jacobson.

2. A topological space that admits an open cover consisting of Jacobson spaces is Jacobson.

Proof.

1. Let X be a Jacobson. It follows from definition that every closed subset of X is Jacobson, so we only need to show every
open subset of X is Jacobson. LetU Ď X be nonempty open, and let Z Ď U be nonempty closed. By (4.40).(c), Z contains
a closed point in Xwhich is, a fortiori, a closed point in U. By (4.40).(c) again, U is Jacobson.

2. Let X be a space and U be an open cover of X with each U P U Jacobson. We use (4.40).(c). Let W Ď X be a nonempty
locally closed subset. Then W X U ‰ H for some U P U , and by (4.40).(c) W X U contains a closed point x in U. In
particular, txu is locally closed in X. If x P V for some V P U , then x P Vcl for txu is locally closed in V and by (4.40).(c).
Thus txu is closed in X, for txu X V is closed for any V P U .

4.43 Example. Let A be a ring. The universal property of soberification gives rise to a continuous map

Sob(mSpec A) SpecA.

We are going to write down this map explicitly under some additional conditions imposed on A. A closed set of the form
Vmspec(I) is irreducible if and only if Jac(I) is a prime ideal. For such I, the image of Vmspec(I) in SpecAwould be the generic
point of Vmspec(I) Ď SpecA. For another ideal I, we have Vmspec(Jac(I)) Ď V(J) if and only if J Ď Jac(I), and this implies
V(Jac(I)) Ď V(J), which further implies J Ď

a

Jac(I) =
?
I. If A is Jacobson (4.38), we then see Vmspec(I) = V(

?
I) whose

generic point is
?
I = Jac(I). For a prime p, if A is Jacobson, we have Jac(p) = ?

p = p. Hence, if A is a Jacobson ring, every
element in Sob(mSpec A) has the form Vmspec(p) with p prime and it has image V(p) in SpecA.

Assume A is Jacobson. The map is then clearly bĳective. A closed set in Sob(mSpec A) has the form tVmspec(p) | I Ď pu,
where I is an ideal. Its image in SpecA is then V(I), which is closed. Thus the canonical inclusion mSpec A Ñ SpecA is the
soberification when A is Jacobson.

Let f : A Ñ B be a homomorphism between Jacobson rings with f´1(mSpec B) Ď mSpec A. Let θ = Spec(f) and
θ 1 = θ|

mSpecA
mSpec B . Then there is a commutative diagram

Sob(mSpec A) SpecA

Sob(mSpec B) SpecB

„

Sob(θ1)

„

θ

Indeed, this follows from (3.10).(iii).

4.44 By definition, every point in a T1 topological space is a closed point. Denote by TopT1
the full subcategory of Top

consisting of T1 spaces. Let X be a T1 topological space and consider the soberification ι : X Ñ Sob(X). Since every point
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x P X is a closed point, we have ι(x) = txu P Sob(X) ; in particular, ι is injective, and X Ď Sob(X)cl. A point Z P Sob(X) is
closed if and only if tZu = tZu = V(Z) (4.34), which means that Z is a minimal closed irreducible subset in Xwith respect to
inclusion. But X = Xcl, we see Z Ď X is a singleton. This proves X = Sob(X)cl. Since ι is a quasi-homeomorphism (4.34), by
(4.40) we see Sob(X) is a Jacobson space.

Denote by JacSob the subcategory of Top whose objects consist of Jacobson sober spaces and whose morphisms consist of
continuous maps f : X Ñ Y with f(Xcl) Ñ Ycl. Then the functor Sob : Top Ñ Sob restricts to a functor Sob : TopT1

Ñ JacSob.
Furthermore, this is an equivalence of categories. We state it as a theorem in the next paragraph.

4.45 Theorem. The functor

Sob : TopT1
Ñ JacSob

is an equivalence of categories with inverse Y ÞÑ Ycl.

Proof. We already show in (4.45) that for a T1 space X, the map ι : X Ñ Sob(X) is an embedding with ι(X) = Sob(X)cl.
Conversely, let Y be a Jacobson sober space. By definition Ycl is T1. By the universal property of soberification (4.35), there
exists a continuous map f : Sob(Ycl) Ñ Y with f ˝ ιYcl equal the inclusion Ycl Ñ Y. For any closed irreducible Z Ď Ycl, we
have Z X Ycl = Z, where the closure is taken in Y. In particular, this implies f is injective. Conversely, if y P Y, since Y is
Jacobson, Zy := tyu X Ycl ‰ H is a closed irreducible subset of Ycl. Since Zy X Ycl = Zy, we have f(Zy) = y. To show f is a
homeomorphism, at this stage it suffices to show f is a quasi-homeomorphism. This follows as Ycl Ñ Y and Ycl Ñ Sob(Ycl)

are quasi-homeomorphisms.
The way we define the morphisms in JacSob is a sufficient condition for Y ÞÑ Ycl to be functor JacSob Ñ TopT1

. If
f : X Ñ Y is a morphism of T1 spaces, by (4.35) we have a commuting square

X Y

Sob(X) Sob(Y).

f

ιX ιY

Sob(f)

Since X = Sob(X)cl and similar for Y, we see Sob(f) P HomJacSob(Sob(X), Sob(Y)). Also from this diagram we conclude that
Sob is an equivalence of categories with inverse Y ÞÑ Ycl.

4.2.2 Jacobson rings

4.46 In this subsubsection we follow [AM94, exercises in chapter 5] to introduce some properties of Jacobson rings.

4.47 Lemma. Let A be a subring of a ring B such that B is integral over A, and let f : A Ñ Ω be a homomorphism of A into
an algebraically closed fieldΩ. Then f can be extended to a homomorphism of B intoΩ.

Proof. One has ker f P Spec(A), for A/ker f is isomorphic to a subring of Ω, hence an integral domain. By going-up, there
exists q P Spec(B) such that q XA = ker f. Now f can be extended to a homomorphism f : Frac(A/ker f) Ñ Ω. Since B/q is
integral overA/ker f, the field Frac(B/q) is algebraic over Frac(A/ker f) so that f can be extended to a map f : Frac(B/q) Ñ Ω.
Finally, restricting to B/q and pre-composing with the quotient B Ñ B/q, we obtain a homomorphism B Ñ Ω.

4.47.1 The essence for the proof is that for a field homomorphism f : K Ñ Ω withΩ algebraically closed, we can extend to
a homomorphism L Ñ Ω for any algebraic extension L/K. For completeness we give a proof below. First consider the case

L = K(α) being a simple extension of K with α R K. Say mα(T) =
n
ř

i=0
aiT

i P K[T ] is the minimal polynomial of α. Let β ‰ 0
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be a root of the polynomial
n
ř

i=0
f(ai)T

i in Ω. Now define K[T ] Ñ Ω by extending f and sending T to β. (mα(T)) lies in ins

kernel, so it induces a map K[T ]/(mα(T)) – K(α) Ñ Ω.
A finite extension L/K is composed of a series of simple extensions, so one can extend f : K Ñ Ω along them as we have

done. For the general algebraic extension L/K, consider the set

S := t(M,g) | M/K is an algebraic subextension of L/K, g :M Ñ Ω extends fu

with a partial order ĺ defined by

(M1,g1) ĺ (M2,g2) ô M1 Ď M2 and g2|M1 ” g1

Now it follows easily from Zorn’s lemma that S admits a maximal element, say (M,g). It must be the case M = L, for
otherwise we can pick α P L´M and extend g to a mapM(α) Ñ Ω, contradicting to the maximality.

4.48 Lemma. LetA be a subring of an integral domain B such that B is of finite type overA. Then that there exists s ‰ 0 inA
and elements y1, . . . ,yn in B, algebraically independent overA and such that Bs is integral over B 1

s, where B 1 = A[y1...,yn].

Proof. Let S = A ´ t0u and K = S´1A be the fraction field of A. Then S´1B is a finitely generated K-algebra. By Noether
normalization there exists x1, . . . , xn P S´1B such that C := K[x1, . . . , xn] is purely transcendental and C ãÑ S´1B is finite.

Write B = A[z1, . . . , zm]. Since zi P S´1B is integral overC, each zi verifies a integral dependence Tri +ai,ri´1T
ri´1 + ¨ ¨ ¨+

ai,1T + ai,0 P C[T ] ; we may assume the ri are the same. Let s P S be such that yi := sxi P B and sai,j P B 1 := A[y1, . . . ,yn] ;
for example, take s to be the products of denominators of the xi and all coefficients of the ai,j and raise s to a large power.
From what we have done it is easy to see that the szi are integral over B 1, and hence over B 1

s. Finally, since s´1 P B 1
s is of

course integral over B 1
s, the zi are integral B 1

s, i.e., Bs is integral over B 1
s, as wanted.

4.49 Corollary. Let A be a subring of an integral domain B such that B is of finite type over A.

(i) There exists s ‰ 0 in A such that, if Ω is an algebraically closed field and f : A Ñ Ω is a homomorphism for which
f(s) ‰ 0, then f can be extended to a homomorphism B Ñ Ω.

(ii) If the Jacobson radical of A is zero, then so is the Jacobson radical of B.

Proof.

(i) Take s as in Lemma 4.48 ; we also use the notation therein. Then we can extend f to f : B 1 Ñ Ω by setting each yi to 0.
Since f(s) ‰ 0, it induces a homomorphism f : B 1

s Ñ Ω. By Lemma 4.47 f extends to a map f : Bs Ñ Ω. Restricting to B
gives a desired map.

(ii) Let v P B be a nonzero element. We claim there exists a maximal ideal of B not containing v. By applying (i) to the
ring Bv and its subring A, we obtain a nonzero element s P A. Let m be a maximal ideal of A not containing s and put
k = A/m. Then the projection A Ñ k extends to a homomorphism g : Bv Ñ Ω where Ω is an algebraic closure of k.
Since v is invertible in Bv, g(v) ‰ 0 so that v R kerg X B. Now it suffices to show kerg X B is a maximal ideal of B.
But note that m Ď kergX B ; thus since B is integral over A, B/kergX B is integral over k = A/m (BX kergXA = m

because s R m), and hence B/kergX B is a field, namely kergX B is maximal.

4.50 In (4.38) we say A is Jacobson if
?
I = Jac(I) for any ideal I � A. In practice, we only want to check as few conditions

as possible. It turns out it suffices to check the equality for prime ideals. We prove this as a

Lemma. Let A be a ring. Then TFAE :

(i) Every prime ideal in A is an intersection of maximal ideals.

(ii) In every homomorphic image of A the nilradical is equal to the Jacobson radical.
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(iii) Every prime ideal in Awhich is not maximal is equal to the intersection of the prime ideals which contain it strictly.

Proof. Clearly (i) ô (ii) ñ (iii). It remains to show (iii) ñ (ii). Suppose (ii) does not hold. Then there exists a prime ideal of A
which is not a intersection of maximal ideals. Passing to quotient we may assumeA is an integral domain where the Jacobson
radical is not zero. Let f P Jac(A) be a nonzero element. Then Af ‰ 0 and hence it admits a maximal ideal whose contraction
in A is a prime ideal p not containing f and is maximal with respect to this property (here we use the correspondence of
prime ideals between A and Af). Since f P Jac(A) ´ p, p is not maximal. Also, p is not the intersection of the prime ideals
strictly containing p, for any prime strictly containing p must contain f, and so must their intersection.

4.51 There is another characterization of Jacobson rings that is of geometric taste.

Lemma. Let A be a ring. Then A is Jacobson if and only if every finite type A-algebra that is a field is finite over A.

Proof. Suppose A is Jacobson, and let B be a finite type A-algebra that is a field. Let p be the kernel of the structure map
A Ñ B. To show B is finite over A, it suffices to show B is finite over A/p. Hence we can assume A is a subring of B. We take
0 ‰ s P A as in Corollary 4.49. Let m be a maximal ideal not containing s. By that lemma, the homomorphismA Ñ A/m =: k

extends to a homomorphismϕ : B Ñ k. SinceB is a field, it followsϕ is injective so thatB is algebraic over k. Finite generation
of B over A implies dimk B ă ∞, which shows that B is finite over A.

Now we turn to if part. We use Lemma 4.50.(iii). Let p be a non-maximal prime ideal ofA, and consider the quotient map
A Ñ A/p =: B. For 0 ‰ f P B, since Bf is of finite type over A, if it is a field, then Bf is finite over A by assumption, and
a fortiori it is finite over B. By Lemma 3.87.1 B is a field. But p is non-maximal, this implies Bf is not a field. Then Bf has a
nonzero prime ideal, whose contraction p 1 to B is a prime ideal not containing f. Letting f vary finishes the proof.

4.51.1 Immediate from the lemma, if A is a Jacobson ring, B a finite type A-algebra and m a maximal ideal of B, then B/m
is a finite type A-algebra that is a field, so B/m is finite over A. Let m 1 := A X m so that A/m 1 Ñ B/m is injective and finite.
By Lemma 3.87.1 A/m 1 is a field, so m 1 is maximal. This implies that the natural map SpecB Ñ SpecA restricts to

mSpec B mSpec A.

4.52 Nullstellansatz. Let A be a Jacobson ring and B an A-algebra. Assume either that B is integral over A or is of finite
type over A. Then B is Jacobson.

Proof. Assume B is integral over A. Let q be a prime in B and put p = q XA. Since A is Jacobson, p is the intersection of all
maximal ideals mi containing p. By going-up we can find maximal ni Ě q such that ni X A = mi. Let I be the intersection
of the ni. If I = q we are done. If q Ĺ I. By localizing A and B at p we can find a maximal ideal q 1 of B containing I whose
contraction to A is p. But incomparability tells q = q 1, which is absurd. Hence q = I.

Assume B is of finite type over A. We may assume A Ď B are integral domains, and our goal is to show Jac(B) = 0. Since
A is Jacobson, so the Jac(A) = 0, and it follows from Corollary 4.49.(ii) that Jac(B) = 0.

4.52.1 Suppose k is a field andA is a finite type k-algebra. By (4.52)A is Jacobson. If m is a maximal ideal ofA, then Lemma
4.51 tells that dimkA/m ă ∞. Conversely, if m is a prime ideal of A such that k Ñ A/m is finite, then Lemma 3.87.1 shows
that m is maximal. In conclusion, we’ve proved the equality

mSpec A = tp P SpecA | [κ(p) : k] ă ∞u.

In the case k is algebraically closed, this recovers the Hilbert’s Nullstellensatz.
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4.2.3 Morphisms of finite type

4.53 Definition. A morphism f : X Ñ Y of schemes is called locally of finite type if Y admits an affine open cover V such
that for any V = SpecA P V , the open set f´1(V) (V P V) admits an affine open cover UV such that for any U = SpecB P UV ,
the corresponding ring homomorphism A Ñ B is of finite type.

If each UV can be chosen to be a finite set, f : X Ñ Y is called of finite type.

4.54 Let A Ñ B be a ring homomorphism of finite type. For any g P B, the composition A Ñ B Ñ Bg is also of finite type,
as Bg – B[x]/(xg´ 1) is a B-algebra of finite type. If A Ñ B factors through some localization A Ñ Af at f P A, then Af Ñ B

is still of finite type.
These imply that for a morphism f : X Ñ Y of schemes, being locally of finite type is really local on bothX and Y. Precisely,

let f : X Ñ Y be locally of finite type. Then

(i) For any open U Ď X, f|U : U Ñ Y is locally of finite type.

(ii) For any open V Ď Y and open U Ď f´1(V), f|VU : U Ñ V is locally of finite type.

Also, let f : X Ñ Y be a morphism of schemes.

(iii) If Y admits an open cover V such that f|V
f´1(V)

: f´1(V) Ñ V is locally of finite type for any V P V , then f is locally of
finite type.

(iv) If X admits an open cover U such that f|U : U Ñ Y is locally of finite type for any U P U , then f is locally of finite type.

4.55 Lemma. Consider morphisms X f−Ñ Y
g−Ñ Z of schemes.

(i) If f and g are locally of finite type, then so is g ˝ f.

(ii) If g ˝ f is locally of finite type, then so is f.

Proof. Only (ii) deserves a proof. Let y P Y and x P f´1(y). Pick an affine open neighborhood W = SpecA of g(y) in Z and
an affine open neighborhood U = SpecC of x in X such that A Ñ C induced by (g ˝ f)|WU is of finite type. Choose an affine
neighborhood V = SpecB of y such that g(V) Ď W. Pick h P C with f(Uh) Ď V . Then Uh Ñ V Ñ W gives A Ñ B Ñ Ch.
Since A Ñ C is of finite type, so is A Ñ Ch. In particular, B Ñ Ch is of finite type.

4.56 Lemma. A morphism f : X Ñ Y is locally of finite type if and only if for every affine open V = SpecA in Y and every
affine open U = SpecB in f´1(V), the corresponding ring homomorphism A Ñ B is of finite type.

In particular, a morphism SpecB Ñ SpecA of affine schemes is locally of finite type if and only A Ñ B is of finite type.

Proof. We need to prove the only if part. We see in (4.54) that f|VU is locally of finite type. By definition, for any h P Awe can
find g P B such that f(Ug) Ď Vh with Ah Ñ Bg of finite type. In particular, Bg is of finite type over A. All such Ug cover U,
and since U is compact, we can find g1, . . . ,gn P Bwith B = (g1, . . . ,gn) and each Bgi

of finite type over A.
Let bi P B be such that 1 = b1g1 + ¨ ¨ ¨ + bngn. Raising to arbitrary power, for any N P Zě1, we can find biN P B

with 1 =
n
ÿ

i=1
biNg

N
i . Say Bgi

= A[xij]
ai

j=1 for some xi1, . . . , xiai
P Bgi

. Let Ni P Zě1 be such that xijgNi

i P B for any i, j. Let

N = max
1ďiďn

Ni. ThenB = A[xijg
N
i ] 1ďiďn

1ďjďai

. To see this, for b P B, let fi P A[Xij]
ai

j=1 be such that b = fi(xij). LetM = max
1ďiďn

deg fi
and put L =MN. Then

b = b1 =
n
ÿ

i=1
biLfi(xij)g

MN
i P A[xijg

N
i ] 1ďiďn

1ďjďai
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4.2.4 Equivalence of categories

In this subsubsection, we fix an algebraically closed field k.

4.57 We paraphrase the results in (4.11) in terms of the languages in the preceding subsubsection. For an affine variety V
over k, its soberification Sob(V) is homeomorphic to that of mSpec k[V], which is homeomorphic to Spec k[V] by (4.38) and
(4.43). Precisely, we have a commutative diagram with horizontal maps being isomorphisms

Sob(V) Speck[V]

V mSpec k[V].

„

„

ιV inclusion

Denote by α the bottom horizontal isomorphism and by ι the inclusion on the right. By Theorem 4.15, the sheaf ι˚α˚OV
on Spec k[V] is naturally isomorphic to the structure sheaf OSpeck[V]. In this way, we see (Sob(V), (ιV)˚OV) is isomorphic to
Speck[V] in LRSk, and we obtain a functor

AffVark Schk

V (Sob(V), (ιV)˚OV),

where for a morphism f : V Ñ W, we define (Sob(V), (ιV)˚OV) Ñ (Sob(W), (ιW)˚OW) as follows. The map on topological
spaces is certainly Sob(f). To define a sheaf mapθ : (ιW)˚OW Ñ Sob(f)˚(ιV)˚OV = (ιW)˚f˚OV , we only need to choose a map
OW Ñ f˚OV . We already have one : the function pullback. In fact, under the isomorphism (Sob(V), (ιV)˚OV) – Speck[V],
we see the morphism (Sob(V), (ιV)˚OV) Ñ (Sob(W), (ιW)˚OW) coincides Spec f˚ : Speck[V] Ñ Speck[W]. The maps on
spaces are the same by (4.43). The maps on sheaves are the same as well, for both are induced by f˚ : k[W] Ñ k[V].

Similarly, we can define a functor
Vark Schk

X (Sob(X), (ιX)˚OX).

The only issue is to show (Sob(X), (ιX)˚OX) is really a scheme. Let V be an affine open subset of X. By (4.35.1) we can regard
U = Sob(V) as an open subset of Sob(X). We show that

(Sob(X), (ιX)˚OX)|U – (U, (ιV)˚(OX|V)).

For this we only need to notice that ((ιX)˚OX)|U = (ιV)˚(OX|V).

4.58 Our goal is to show the functor
Vark Schk

X (Sob(X), (ιX)˚OX).

is fully faithful and describe its essential image. If V is an affine k-variety, by construction we see Sob(V) is a reduced affine
k-scheme locally of finite type over Spec k. Hence for a general k-variety X, we see Sob(X) is a reduced k-scheme locally of
finite type over Spec k.

To proceed, first note that an affine k-variety is a T1 topological space. Next, suppose X is a topological space that admits
an open cover U consisting of T1 space. Then X is itself T1. Indeed, for x P X, if txu XU ‰ H for some U P U , then x P U, as U
is open. Since each U P U is T1, the intersection txu X U is either H or txu, proving that x P X is a closed point. As a result,
we see that a k-variety is T1. By (4.44) and (3.36), the scheme Sob(X) is a Jacobson sober space.
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If f : V Ñ W is a morphism of affine k-varieties, in (4.57) we also see that the morphism

(Sob(V), (ιV)˚OV) Ñ (Sob(W), (ιW)˚OW)

is the same as Spec f˚ : Speck[V] Ñ Speck[W]. Since f˚ : k[W] Ñ k[V] is automatically of finite type, we see (Sob(V), (ιV)˚OV) Ñ

(Sob(W), (ιW)˚OW) is locally of finite type. Thus, the image of a morphism between k-varieties is a morphism of k-scheme
locally of finite type.

Now let f : X Ñ Y be a morphism of k-varieties. We see Sob(X) and Sob(Y) are Jacobson sober spaces. A natural question
is whether for any morphism

(Sob(X), (ιX)˚OX) Ñ (Sob(Y), (ιY)˚OY)

of schemes, the underlying continuous map sends closed points to closed points, i.e., a morphism of Jacobson sober spaces.
Such a morphism is necessarily locally of finite type by (4.55), so we are now in the situation stated in the following, which
is essentially the Nullstellensatz.

4.58.1 Lemma Let f : X Ñ Y be a morphism of schemes locally of finite type with Y Jacobson. Then X is Jacobson with
f(Xcl) Ď Ycl.

Proof. Observe by (4.52.1) Ycl X V = Vcl for any open V Ď Y. Indeed, Ď is clear. For Ě, if x P Vcl, then txu is locally closed
in Y. By (4.40).(c) x P Ycl. From this observation together with (4.42).(ii), we can assume X and Y are affine. Now the lemma
follows from (4.52) and (4.51.1).

4.58.2 Let us continue the discussion in (4.58). Let (f, θ) : (Sob(V), (ιV)˚OV) Ñ (Sob(W), (ιW)˚OW) be a k-morphism.
Since Sob(V) is locally of finite type over k, by (4.55).(ii) we see (f, θ) is locally of finite type, and (4.58.1).(ii) implies that
f(Sob(V)cl) Ď Sob(W)cl, i.e., f is a morphism in JacSob (4.44). Put g = fcl : V Ñ W be the restriction of f to the closed points
(c.f. (4.45)). Then we have a commutative diagram in Top

V W

Sob(V) Sob(W).

g

ιV ιW

f

IfW is an affine k-variety, by (3.7) and (4.19), we have functorial bĳections

HomSchk
(Sob(V), Sob(W)) HomAlgk

(OW(W), OV(V)) HomVark(V ,W)

(f, θ) θSob(W)

g˚ g

„ „

From their proofs (and as ιV is an embedding and (2.9)), we see θSob(W) = g
˚ if and only if g = fcl. In particular, this shows

θ is given by pullback of functions by g. The general case follows by coveringW by affine opens. These altogether prove that

Vark Schk

X (Sob(X), (ιX)˚OX).

is fully faithful.

4.59 Inspired by (4.58), we say a k-scheme is algebraic if it is of finite type over Spec k. Thus, if X is a k-variety, its
soberification Sob(X) is a reduced algebraic k-scheme. We are now going to show any such a scheme comes from a k-variety,
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and then prove that the essential image of the functor

Vark Schk

X (Sob(X), (ιX)˚OX).

is the full subcategory of Schk consisting of reduced algebraic k-schemes.

4.60 For a starter, we show if A is a reduced k-algebra of finite type, then the local-ringed space (mSpec A, OSpecA|mSpecA)

is isomorphism to an affine variety in LRSk. To see this, we are back to the situation in the first paragraph of (4.57), and we
need to show there is an isomorphism

(V , OV) – (mSpec k[V], OSpeck[V]|mSpec k[V])

The map on topological space is clearly given byα : V Ñ mSpec k[V] there. For the sheaf map, put ι : mSpec k[V] Ñ Speck[V]
to be the inclusion. For f P k[V], since ι is a quasi-homeomorphism (4.43), we have

ιpreOSpeck[V](D
mspec(f)) – lim−Ñ

Dspec(g)Ěι(Dmspec(f))

OSpeck[V](D
spec(g))

= lim−Ñ
Dspec(g)ĚDspec(f)

k[V]g

– k[V]f

(4.15)
– OV(DVar(f)) = α˚OV(Dmspec(f)).

Every isomorphism is functorial, so this defines an isomorphism ιpreOSpeck[V] Ñ α˚OV of presheaves on the principal open
sets. But α˚OV is a sheaf, this means ιpreOSpeck[V] is a sheaf on principal open sets. By (2.3.1) this extends to an isomorphism
OSpeck[V]|mSpec k[V] Ñ α˚OV of sheaves on mSpec k[V].

4.61 Let X be an algebraic k-scheme. Put V = Xcl and denote by ι = ιV : V Ñ X the inclusion. By (4.58.1), X is Jacobson and
V = tx P X | k = κ(x)u. For a section f P OX(U) on some open setU of X, we can regard it as a function onUXV by means of

ι˚f : UX V k

x class of f in k = κ(x)

That k = κ(x) follows from (4.58.1).(ii). In this way we have defined a morphism α = αV : OX Ñ ι˚k
V of sheaves, where

kV denotes the sheaves U ÞÑ HomSet(U,k). In other words, we obtain a morphism (ι,α) : (V ,kV) Ñ (X, OX) in RSk. But it
follows from definition that this is a morphism in LRSk. By adjunction (2.10) α gives a morphism ι´1OX Ñ kV . Denote by
OV the image sheaf, which is a subsheaf of kV . Since X is Jacobson, ι is a quasi-homeomorphism (4.40), which implies that
the sheaf OV is the unique sheaf of kV such that ι˚OV is the image of α (4.39.2). By definition we have a chain of morphisms
ι´1OX � OV ãÑ kV . Computing stalks (c.f. (2.19)) reads that (V , OV) is a basic k-space (4.16).

Let f : X Ñ Y be a morphism between algebraic k-schemes. Let V = Xcl, U = Ycl and ιV , ιU be the respective inclusions.
By (4.58.1), we have f(V) Ď U. Let us denote by g = fUV : V Ñ U. There is a commutative diagram in LRSk

(V ,kV) (X, OX)

(U,kU) (Y, OY).

(g,g˚)

(ιV ,αV)

(f,f7)

(ιU,αU)

To see this, for open W Ď Y, g P OY(W) and x P f´1(W) X V , we must show the class of f7
W(g) in k = κ(x) is the same as

that of g in k = κ(f(x)). This is clear (c.f. (4.19)). This implies that f : X Ñ Y induces a morphism (g,g˚) : (V , OV) Ñ (U, OU)
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in bSpk. The construction is entirely functorial, and this shows the assignment X ÞÑ (V , OV) defines a functor from the
category of algebraic k-schemes to bSpk.

We shall expect ι˚OV is isomorphic to the structure sheaf OX of X. The morphism α induces a surjective morphism
α : OX Ñ ι˚OV , so it would be nice if α is injective. Let U = SpecA be an affine open set of X. By (4.58.1) we have
UX V = mSpec A. For αV(U) to be injective, it is the same as saying that if f P A is such that f P mm Ď Am for all maximal
m, then f = 0 in A, i.e., rad(A) = 0. Since A is Jacobson by (4.42) and (4.38), this is equivalent to saying that 0 =

?
0, i.e., A is

reduced. Hence, if X is a reduced algebraic k-scheme, X can be recovered from the local-ringed space (V , OV), in the sense
that ι˚OV – OX canonically.

Therefore, we assume X is reduced in the following. We are going to show (V , OV) is a k-variety. Let U be an affine open
set in X ; we see Ucl = UX V in the previous paragraph. Put U 1 = UX V and let j : U 1 Ñ U be the inclusion. Since U is also
an algebraic k-scheme, we may construct (U 1, OU1). By functoriality we have a morphism (U 1, OU1) Ñ (V , OV) in bSpk. By
(2.22) this gives (U 1, OU1) Ñ (U 1, OV |U1) in LRSk, which is necessarily in bSpk. This morphism fits into a similarly obtained
commutative diagram

(OX|U)|U1 OU1 kU
1

(OX|V)|U1 OV |U1 kV |U1

The vertical arrows except the middle one are clearly isomorphisms, and thus so is the middle one. Hence (U 1, OU1) Ñ

(U 1, OV |U1) in bSpk.
We are now reduced to the case X being affine. Let A be a reduced k-algebra of finite type. Let ι : mSpec A Ñ SpecA be

the inclusion. The third paragraph shows that ι˚OmSpec A – OSpecA in LRSk. Since ι is a quasi-isomorphism (4.43), it follows
from (4.39.2) that we have an isomorphism OmSpecA – OSpecA|mSpec A. By (4.60), ifW is an affine k-variety constructed from
A by means of (4.9), we then have an isomorphism

(W, OW) – (mSpec A, OmSpecA)

in LRSk, where the map on topological spaces is given by φ :W – mSpec k[W] – mSpec A. It remains to show the map on
sheaves are given by pullback of functions byφ. This is easily checked on every principal open set. Therefore we see that the
isomorphism is in fact an isomorphism in bSpk, proving that (mSpec A, OmSpecA) is an affine k-variety.

4.62 We summarize what have been done so far. Denote by AlgSchk (resp. redAlgSchk) the full subcategory of Schk
consisting of algebraic (resp. reduced algebraic) k-schemes. Categorically speaking, (4.58.1) implies that AlgSchk admits a
forgetful functor AlgSchk Ñ JacSob, given by sending schemes to its underlying topological spaces.

In (4.57) we constructed a functor

Sob : Vark redAlgSchk

X (Sob(X), (ιX)˚OX).

which is proved to be fully faithful (4.58.2). This functor fits into a commutative diagram

Vark AlgSchk

TopT1
JacSob

with the bottom horizontal arrow X ÞÑ Sob(X) being the equivalence (4.45) with inverse Y ÞÑ Ycl.
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In (4.61) we constructed a functor
cl : AlgSchk bSpk

X (Xcl, OXcl)

and showed that it restricts to a functor redAlgSchk Ñ Vark that is injective and inverse to the functor Sob on objects. From
the discussion there, we easily see that it is also inverse to Sob on morphisms. Thus they are really inverse to each other.
Pictorially,

Vark redAlgSchk

Sob

cl

4.63

4.3 Some Birational geometry

In this subsection, let k be a field.

4.64 Definition. An integral algebraic k-scheme is called rational if it is birational to Pnk for some n.

4.65 Example : Pythagorean triples. Proj k[x,y, z]
(x2 + y2 ´ z2)

is birational to P1
k.

4.4 Galois group

4.66 Let X be a scheme of finite type over C. Then there exists a subring R Ď C of finite type over Z, and a scheme X0 of
finite type over R such that

X – X0 ˆSpecR SpecC.

Proof. Let U = tUiu
n
i=1 be a finite affine open cover and write

OX(Ui) = Ri = C[x1, . . . , xti ]/(fi,1, . . . , fi,ni
).

For each i, j, cover Ui X Uj by affine open subsets in Ui and Uj ; then each subset defines an isomorphism ϕij,l : (Ri)gij,l –

(Rj)gji,l . For any i, j,k, l, l 1, we have

(Uj)gji,l¨gjk,l1 = (Ui)gij,l¨ϕ
´1
ij,l(gjk,l1)

Ď Ui XUj XUk Ď
ď

l2

(Ui)gik,l2 .

This means (
gij,l ¨ ϕ´1

ij,l(gjk,l1)
)N

=
ÿ

l2

aijkll1l2gikl2

for some N ě 1 and aijkll1l2 P Ri. Lift a’s and g’s to C[X], and let R be the subring generated by the coefficients of the fij’s,
g’s, a’s and of the polynomials defining the ϕij,l’s. Put

Ri,0 = R[x1, . . . , xti ]/Ii,
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where Ii = ker(R[x1, . . . , xti ] Ñ Ri), and putUi,0 = SpecRi,0. The elementgij,l lies inRi,0, andϕij,l restricts to an isomorphism
(Ri,0)gij,l – (Rj,0)gji,l . Now use (2.13) to glue all Ui,0.

4.67 Base change. Let k,K be fields and σ P HomField(k,K). For a k-scheme X, consider the fibre product

XˆSpeck SpecK X

SpecK Speck

σX

Specσ

We denote by Xσ the scheme XˆSpeck SpecK. Note that if X = Speck[x]/(f), then

Xσ = Spec (k[x]/(f) bk,σ K) = SpecK[x]/(fσ)

where fσ P K[x] is the polynomial obtained by applying σ to the coefficients of f. If the embedding σ is obvious from the
context, we usually write XK instead of Xσ.

4.67.1 Let U Ď X be an open subspace, and x P Xσ. Consider the commutative diagram

OX(U) OXσ(σ´1
X (U))

OX,σX(x) OXσ,x.

σ
7
X

σX,x

Then for f P OX(U), we have

(σ7
Xf)(x) = σ

´1(f(σX(x))) in κ(x).

Here we use the notation in (2.21). To see this, note that

f´ f(σX(x)) P mX,σX(x) ô σX,x(f´ f(σX(x))) P mXσ,x

ô σ
7
Xf´ σX,x(f(σX(x))) P mXσ,x

ô (σ7
Xf)(x) = σX,x(f(σX(x))) = σ

´1(fσX(x)) in κ(x)

4.68 Let k be a field and let k be an algebraic closure of k. If X P Schk, we can consider the k-scheme

Xk = XˆSpeck Speck.

Put p = pr1 : Xk Ñ X.
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5 Smoothness

5.1 Normality

5.1 Recall that a ring A is called a normal domain, or simply normal, if it is an integral domain that is integrally closed
in its fraction field. For example, every UFD is a normal domain. If S Ď A is a multiplicatively closed set, by clearing the
denominators we quickly see the localization S´1A is also a normal domain. Conversely, if A is an integral domain with the
property that the localization Am is normal for every maximal ideal m, then A is normal.

In fact, let C be the integral closure of A in FracA. By clearing the denominators, we see S´1C is the integral closure of
S´1A in FracA. If we write f : A Ñ C for the natural inclusion, then Am is normal implies the localization fm : Am Ñ Cm of
f at m is surjective (or identity). Varying m yields that f is surjective, i.e., C = A.

5.2 Definition. Let X be a scheme.

1. X is normal at a point x P X if the local ring OX,x is a normal domain.

2. X is called the normal scheme if it is normal at each point.

5.3 Let X be an irreducible normal scheme. In particular, X is integral, so OX(U) is an integral domain for any open set U
of X. If f P K(X) is integral over OX(U), then f is integral over OX,x for every x P U, as OX(U) Ď OX,x. By assumption we
then have f P OX,x for every x P U. The equality OX(U) =

Ş

xPU

OX,x in (3.42) then shows that f P OX(U). This proves OX(U)

is also a normal domain. Conversely, if OX(U) is normal for every open U Ď X, then the local natural of normality stated in
(5.1) implies that X is normal.

5.3.1 Lemma. Let X be an irreducible scheme. TFAE :

(i) X is normal.

(ii) OX(U) is a normal domain for every open U Ď X.

5.2 Tangent spaces and differential forms

5.4 Definition. Let (X, OX) be a local-ringed space. For a point x P X, the (Zariski) cotangent space T˚
X,x of X at the point x

is defined as the quotient mX,x/m
2
X,x. The (Zariski) tangent space TX,x is defined as the linear dual

TX,x := Homκ(x)(mX,x/m
2
X,x, κ(x))

of the cotangent space T˚
X,x.

5.5 Example. Let M be a smooth manifold. Write C∞ := C∞
M for the sheaf of real-valued smooth functions on M. Then

(M,C∞) is a local-ringed space over R. For each p P M, the stalk C∞
p is the collection of smooth functions defined near p.

The unique maximal ideal mp of C∞
p is the kernel of the evaluation map

C∞
p R

f f(p)

Denote by Dp = Der(C∞
p ) the space of all point derivations on C∞

p . Then there is an isomorphism

Dp HomR(mp/m
2
p,R)

X f ÞÑ X(f).
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This is well-defined, as for f,g P mp, clearly X(fg) = X(f)g(p) + f(p)X(g) = 0. For f P C∞
p , f´ f(p) lies in mp, so X(f) = X(f´

f(p))+X(f(p)) = X(f´f(p)) ; this shows the injectivity. For T P HomR(mp/m
2
p,R), defineXT : C∞

p Ñ R byXT (f) = T(f´f(p)).
This is clearly linear, and for f,g P C∞

p ,

XT (fg) = T(fg´ f(p)g(p))

= T((f´ f(p))(g´ g(p)) + (f´ f(p))g(p) + f(p)(g´ g(p)))

= T(f´ f(p))g(p) + f(p)T(g´ g(p)) = XT (f)g(p) + f(p)XT (g)

showing that XT P Dp, whence the surjectivity. Now sinceM is smooth,Dp is naturally identified as the tangent space ofM
at p. This somewhat gives the intuition that why (co)tangent spaces of local-ringed spaces are defined so.

5.6 Let X be a scheme over a field k and x P X a k-valued point, i.e., κ(x) = k. Then

TX,x – tf P HomSchk
(Speck[ε]/(ε2),X) | f((ε)) = xu

To see this, recall in (3.60) that the right hand side is in bĳection with HomLocAlgk
(OX,x,k[ε]/(ε2)), where LocAlgk denotes

the subcategory of LocRing consisting k-algebras. For a P OX,x, denote by a(x) its class in the residue field κ(x) = k Ď OX,x ;
then a´ a(x) P mX,x, which defines a k-isomorphism

OX,x/mX,x k‘ mX,x/m
2
X,x

a a(x) + (a´ a(x))

Similarly (but for much trivial reason), we have k[ε]/(ε2) – k‘ kε. Then obviously

HomLocAlgk
(OX,x,k[ε]/(ε2)) Homk(mX,x/m

2
X,x,kε)

f f|mX,x/m
2
X,x

is a bĳection (fmaps mX,x/m
2
X,x to kε as it is a local homomorphism). But the latter set is simply TX,x.

5.7 Module of Kälher differentials LetA be a ring, R anA-algebra andM an R-module. AnA-linear derivation d : R Ñ M

is a A-linear map satisfying the Leibniz rule : d(fg) = fd(g) + d(f)g for any f,g P R. Denote by DerA(R,M) the set of all
A-linear derivations R Ñ M. This is naturally an A-module.

Let ΩR/A be the R-module free on the symbols tdf | f P Ru modulo the relations d(fg) = f(dg) + (df)g (f,g P R) and
d(af + bg) = a(df) + b(dg) (a,b P A, f,g P R). This is called the module of Kähler differential of R over A. There is a
natural map d : R Ñ ΩR/A given by f ÞÑ df, called the universal A-derivation. The pair (ΩR/A,d) represents the functor
ModR Ñ ModA defined byM ÞÑ DerA(R,M), i.e., there are functorial bĳection

HomR(ΩR/A,M) DerA(R,M)

ϕ ϕ ˝ d

5.8 Conormal module. Retain the notations in the previous paragraph. We shall give another description ofΩR/A. Denote
by µ : RbA R Ñ R the multiplication map and put I = kerµ.

Lemma. I is the ideal of RbA R generated by fb 1 ´ 1 b f (f P R).

Proof. Suppose
n
ř

i=1
fi b gi P RbA R satisfies

n
ř

i=1
figi = 0 in R. Write fi b gi = (fi b 1)(1 b gi ´ gi b 1) + figi b 1. Then by

assumption
n
ÿ

i=1
fi b gi =

n
ÿ

i=1
(fi b 1)(1 b gi ´ gi b 1) +

n
ÿ

i=1
figi b 1 =

n
ÿ

i=1
(fi b 1)(1 b gi ´ gi b 1)
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5.8.1 Let
e : R I/I2

f fb 1 ´ 1 b f (mod I2)
.

It is easy to see e is an A-derivation. Since I/I2 is an R bA R-module killed by I, we can view it as an R-module. From the
lemma we see e is surjective.

Define the map
HomR(I/I

2,M) DerA(R,M)

ϕ e ˝ ϕ.

We claim this is bĳective. Since e is surjective, ϕ ÞÑ e ˝ ϕ is injective. For the surjectivity, for a derivation D : R Ñ M, define
ϕ = ϕD : RbA R Ñ M by

ϕ(fb g) = fe(g).

One easily checks that

ϕ(xy) = µ(x)ψ(y) + µ(y)ψ(x),

so that ϕ is trivial on I2, and whence defined a map ϕ : I/I2 Ñ M. It is easy to see ϕ is R-linear, and ϕ(fb 1 ´ 1 b f) = ´e(f),
so D = e ˝ (´ϕ).

Clearly the bĳection is functorial in M, so the pair (I/I2, e) represents the functor M ÞÑ DerA(R,M) as well. It follows
that there is a unique isomorphism (I/I2, e) – (ΩR/A,d).

5.9 Let X be a topological space, A a sheaf of rings on X and R an A-algebra. For an R-module M, an A-derivation of R
with valued in M is an A-morphism d : R Ñ M such that dU P DerA(U)(R(U), M(U)) for each open U Ď X. Denote by
DerA(R, M) the set of all A-derivations R Ñ M. In this way we obtain a functor

ModR Set

M DerA(R, M).

5.9.1 Lemma. The above functor is representable.

5.9.2 Definition. The object that represents the functor M ÞÑ DerA(R, M) is called the sheaf of Kähler differentials
/ 1-forms of the A-algebra R, and is denoted by ΩR/A. The universal element d : R Ñ ΩR/A is called the universal
A-derivation.

5.10 Lemma. Let f : Y Ñ X be a continuous map, A a sheaf of rings on X and R an A-algebra. Then there is an natural
isomorphism

f´1ΩR/A – Ωf´1R/f´1A.

compatible with universal derivations.

Proof. This follows from the definition and the adjunction (2.9).

5.11 Let f : X Ñ S be an S-scheme. Recall from Lemma 3.73.1 that the diagonal embedding ∆X/S : X Ñ X ˆS X. Let
U Ď X ˆS X be any open subset containing the image ∆(X) as a closed subset, and let I be the defining ideal of ∆(X) in U,
i.e., V(I) = ∆(X).

118



Definition. The sheaf of Kälher differentials of f : X Ñ S is defined as

ΩX/S = ∆˚
X/S(I/I

2).

Clearly the right hand side is independent of the choice of the open set U. This is also called the sheaf of 1-forms.
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6 Homological algebra

6.1 Triangulated category

6.1 Triangle. Let T be an additive category and and let [1] : T Ñ T be an additive automorphism. A triangle in T
is a complex in T of the form X Ñ Y Ñ Z Ñ X[1]. A morphism between two triangles X Ñ Y Ñ Z Ñ X[1] and
X 1 Ñ Y 1 Ñ Z 1 Ñ X 1[1] is a triple (f,g,h) P HomT (X,X 1) ˆ HomT (Y, Y 1) ˆ HomT (Z,Z 1) fitting into a commutative diagram

X Y Z X[1]

X 1 Y 1 Z 1 X 1[1]

f g h f[1]

Under the obvious composition of morphisms, the class of triangles in T then forms a category.

6.2 Mapping cone. Let T be an additive category with an additive automorphism [1] : T Ñ T . Given a morphism of
triangles

X Y Z X[1]

X 1 Y 1 Z 1 X 1[1]

f

a

g

b

h

c

f[1]

α β γ

we can form a new triangle, called the mapping cone, as follows

X 1 ‘ Y Z‘ Y 1 X[1] ‘ Z 1 Y[1] ‘ X 1[1]

 0 ´b

α g


 0 ´c

β h


0 ´a[1]

γ f[1]



where, for example, we write(
0 ´b

α g

)
(x 1,y) :=

(
0 ´b

α g

)(
x 1

y

)
=

(
´by

αx+ gy

)
= (´by,αx+ gy).

6.3 Pre-triangulated category. A pre-triangulated category is an additive category T together with an additive automor-
phism [1] : T Ñ T , called the shift functor, and a collection of triangles, called the distinguished triangles, satisfying the
following three axioms

(TR 0) ‚ X
id
Ñ X Ñ 0 Ñ X[1] is distinguished.

‚ Distinguished triangles are closed under isomorphism.

(TR 1) Any morphism in T can be completed to a distinguished triangle. Namely, or any f P HomT (X, Y), there exist Z P Ob T
and (g,h) P HomT (Y,Z) ˆ HomT (Z,X[1]) such that X f

Ñ Y
g

Ñ Z
h
Ñ X[1] is distinguished.

(TR 2) A triangle X f
Ñ Y

g
Ñ Z

h
Ñ X[1] is distinguished if and only if Y g

Ñ Z
h
Ñ X[1] ´f[1]

Ñ Y[1] is distinguished.

(TR 3) For any commutative diagram of distinguished triangles

X Y Z X[1]

X 1 Y 1 Z 1 X 1[1]

f g f[1]

there exists a morphism h P HomT (Z,Z 1) making the above diagram commutative.
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We often write [0] = idT , [´1] = [1]´1, [n] = [1] ˝ ¨ ¨ ¨ ˝ [1]
loooooomoooooon

n-times

(n ě 1) and [n] = [´n]´1 (n ď 0).

6.4 Example : homotopy category. Let A be an additive category, and let Kom(A) denote the category of complexes of
objects in A. For a complex X = (X‚,d‚

X), define X[1] = X‚[1] by

(X‚[1])n = Xn+1, dnX[1] = ´dn+1
X .

Aware of the minus sign here. For a morphism f : X Ñ Y, the morphism f[1] : X[1] Ñ Y[1] is defined as f[1]n = fn+1 : Xn+1 Ñ

Yn+1. Then [1] : Kom(A) Ñ Kom(A) is an additive automorphism.
For a morphism f : X Ñ Y, the mapping cone cone(f) is a complex defined by

cone(f)‚ = Y‚ ‘ X‚[1], dncone(f) =

(
dnY fn+1

0 ´dn+1
X

)

Then there is a natural diagram X
f

Ñ Y Ñ cone(f) Ñ X[1].
For two complexes X and Y, define the Hom‚(X, Y) by

Homn(X, Y) =
ź

mPZ
HomA(X

m, Ym+n)

and dnHom‚(X,Y) : Homn(X, Y) Ñ Homn+1(X, Y) by setting for (um)m P Homn(X, Y) that

dnHom‚(X,Y)(u
m) = dn+mY ˝ um + (´1)n+1um+1 ˝ dmX .

Note that HomKom(A)(X, Y) = kerdnHom‚(X,Y).
We say two morphism f,g : X Ñ Y of complexes are homotopic if f´ g P Imd´1

Hom‚(X,Y), i.e, there exists h P Hom´1(X, Y)
such that f´ g = dY ˝h+h ˝dX. In this case we write f „ g. Note that f „ g if and only if f´ g „ 0, and „ is an equivalence
relation. Define the homotopy category of complexes K(A) by

Ob K(A) = Ob Kom(A), HomK(A)(X, Y) = HomKom(A)(X, Y)/ „

= HomKom(A)(X, Y)/ Imd´1
Hom‚(X,Y)

Define Kom+(A) (resp. Kom´(A), Komb(A)) to be the full subcategory of Kom(A) consisting of complexes X such that
Xn = 0 for n ! 0 (resp. n " 0, |n| " 0). We then can similarly define the homotopy categories

K˝(A) for ˝ = +, ´, b

of complexes that are bounded below (resp. bounded above, bounded) in the same way.

6.4.1 Lemma. (TR 2) Given f : X Ñ Y a morphism of complexes, consider the diagram

Y cone(f) X[1] Y[1]

Y cone(f) cone(τ) Y[1].

τ ρ ´f

τ θ

There exists a morphism g : X[1] Ñ cone(τ) completing the above diagram, making it commutative in K(A). Also, g is an
isomorphism in K(A).

Proof. Define g : X[1] Ñ cone(τ) by

gn : Xn+1 cone(τ)n = Yn ‘ Xn+1 ‘ Yn+1

x (0, x, ´fx).
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Define h : cone(τ) Ñ X[1] simply by projecting down to X[1] component. Then h ˝ g = idX[1], and

(gn ˝ hn ´ id)(y, x,y 1) = (´y, 0, ´fx´ y 1)

If we putψ P Hom´1(cone(τ), cone(τ)) by settingψ(y, x,y 1) = (0, 0, ´y), then g˝h´ idcone(τ) = dcone(τ) ˝ψ+ψ˝dcone(τ),
i.e., g ˝ h „ idcone(τ). Hence g is inverse to h in K(A).

It is direct to see that the rightmost square is commutative in Kom(A). For the middle, we compute

(g ˝ ρ´ θ)(y, x) = (´y, 0, ´fx).

If we put ϕ : Hom´1(cone(f), cone(τ)) by setting ϕ(y, x) = (0, 0, ´y), then g ˝ ρ´ θ = d ˝ ϕ+ ϕ ˝ d, i.e., g ˝ ρ „ θ.

6.4.2 Lemma. (TR 0) X idX
Ñ X Ñ 0 Ñ X[1] is isomorphic to X idX

Ñ X Ñ cone(idX) Ñ X[1] as triangles in K(A).

6.4.3 As a result, if we declare a triangle to be distinguished inK(A) if and only if it is isomorphic toX f
Ñ Y Ñ cone(f) Ñ X[1],

thenK(A)becomes a pre-triangulated category. We shall always equipK(A)with this structure of pre-triangulated categories.
Similarly K˝(A) (˝ = +, ´,b) are pre-triangulated in this way.

6.5 Triangulated category. A pre-triangulated category T is said to be triangulated if it satisfies the following axiom

(TR 4) For any distinguished triangles depicted below as solid arrows, there exists a distinguished triangle Z 1 f
Ñ Y 1 gÑ X 1 hÑ

Z 1[1] completing the following commutative diagram

X[1]

Z 1

X[1]

Y Y 1

Z

X X 1

Y[1]

Z 1[1]

a

α˝a

b f

α m

β

h

c

h

γ

b[1]

n

a[1]

idX[1]

6.6 Triangulated functor. Let T , S be pre-triangulated categories. A functorΦ : T Ñ S is a triangulated functor if
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‚ there is a natural equivalence Φ ˝ [1]T – [1]S ˝Φ, and

‚ X Ñ Y Ñ Z Ñ X[1] being distinguished in T implies Φ(X) Ñ Φ(Y) Ñ Φ(Z) Ñ Φ(X)[1] being distinguished in S

6.7 (Co)homological functor. Let A be an abelian category and T a pre-triangulated category. An additive functor
(resp. additive contravariant functor) H : T Ñ A is homological (resp. cohomological) if for any distinguished triangle
X Ñ Y Ñ Z Ñ X[1], the sequence H(X) Ñ H(Y) Ñ H(Z) (resp. H(Z) Ñ H(Y) Ñ H(X)) is exact in A.

6.7.1 Associated long exact sequence. Let H : T Ñ A be homological. For X P Ob(T ) and n P Z, put

Hn(X) = H(X[n]).

If X f
Ñ Y

g
Ñ Z

h
Ñ X[1] is distinguished, we have an exact sequenceH(X) H(f)

Ñ H(Y)
H(g)
Ñ H(Z). But by TR 2, Y g

Ñ Z
h
Ñ X[1] ´f[1]

Ñ

Y[1] is also distinguished, so we have another exact sequence H(Y) H(g)
Ñ H(Z)

H(h)
Ñ H(X[1]) = H1(X). Similarly we have an

exact sequence H´1(Z) = H(Z[´1]) H(´h[1])
Ñ H(X)

H(f)
Ñ H(Y). Combining these gives a long exact sequence

H´1(Z) H0(X) H0(Y) H0(Z) H1(X)
H(´h[1]) H(f) H(g) H(h)

6.8 Example : representable functors. Let T be a pre-triangulated category, and A P Ob(T ). Then the functor X ÞÑ

HomT (A,X) P Ab is homological.

Proof. Let X f
Ñ Y

g
Ñ Z

h
Ñ X[1] be a distinguished triangle. We must show

HomT (A,X) HomT (A, Y) HomT (A,Z)˝f ˝g

is exact.

6.9 Example : cohomology. Let A be an abelian category. For a complex X = (X‚,d‚
X), its cohomology complex H‚(X) =

H‚(X‚,d‚
X) is the quotient

Hn(X) = kerdn/ Imdn´1

with zero differential. Note that Hn(X) = H0(X[n]). A morphism f : X Ñ Y in Kom(A) induces a morphism between
cohomology H‚(f) : H‚(X) Ñ H‚(Y) in a natural way.

Lemma. H0 : X ÞÑ H0(X) is a homological functor.

Proof. Let f : X Ñ Y be a morphism in A. We must the sequence

H0(X) H0(Y) H0(cone(f))

is exact. Suppose y P Y0 such that dy = 0 and there exists (y 1, x 1) P cone(f)´1 such that (y, 0) = (dy 1 + fx 1, ´dx 1). Then
dx 1 = 0, i.e., x 1 P H0(X) and fx 1 = y´ dy 1 = y in H0(Y).

Hence by (6.7.1), for each morphism f : X Ñ Y we have an induced long exact sequence on cohomology :

¨ ¨ ¨ Hn´1(cone(f)) Hn(X) Hn(Y) Hn(cone(f)) Hn+1(X) .Hn(f)

6.10 δ-functor. Let A be an abelian category and T a pre-triangulated category. A δ-functor is a functor T : A Ñ T together
with a rule which assign to each short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 a morphism δAÑBÑC : T(C) Ñ T(A)[1] such
that
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‚ T(A) Ñ T(B) Ñ T(C)
δAÑBÑC−Ñ T(A)[1] is distinguished, and

‚ for any morphism (0 Ñ A Ñ B Ñ C Ñ 0) Ñ (0 Ñ A 1 Ñ B 1 Ñ C 1 Ñ 0) of short exact sequences, the diagram

T(C) T(A)[1]

T(C 1) T(A 1)[1]

δAÑBÑC

δA1ÑB1ÑC1

is commutative.

6.2 Derived category

6.11 Localization. Let C be a category and S a collection of morphisms in C. The localization of C at S is a category S´1C
together with a natural functorΦ : C Ñ S´1C satisfying the following universal property : if Ψ : C Ñ D is a functor such that
Ψ(s) is an isomorphism in D for each s P S, then there exists a unique functor Ψ 1 : S´1C Ñ D such that Ψ 1 ˝Φ = Ψ.

6.12 Localizing system. For a category C, a collection S of morphisms in C is called a left localizing system if
(i) idX P S for all X P Ob(C) and S ˝ S Ď S in the obvious sense.

(ii) (Extension property) For X Ð Y
s

Zwith s P S, there exists X t
Ñ W Ð Zwith t P S completing the diagram

W Z

X Y.

t s

(iii) For all f,g P HomC(X, Y), if f ˝ s = g ˝ s for some s P S, then t ˝ f = t ˝ g for some t P S.
Similarly, S is called a right localizing system if

(i) idX P S for all X P Ob(C) and S ˝ S Ď S in the obvious sense.
(ii) (Extension property) For each diagram X Ñ Y

s
Ð Z with s P S, there exists X t

Ð W Ñ Z with t P S completing the
commutative diagram

W Z

X Y.

t s

(iii) For all f,g P HomC(X, Y), if t ˝ f = t ˝ g for some t P S, then f ˝ s = g ˝ s for some s P S.
We say S is a localizing system if it is both a left localizing system and right localizing system.

6.13 Roof category. Let C be a category and S a right localizing system. Define the roof category RoofSC as follows. Set
Ob(RoofSC) = Ob(C), and

HomRoof(C)(X, Y) =
!

X
s

Ð Z
f

Ñ Y | Z P Ob(C), f P HomC(Z, Y), s P S
)

/ „

where „ is an equivalence relation such that X s
Ð Z

f
Ñ Y „ X

s1
Ð Z 1 f

1
Ñ Y if there exists another diagram X

t
Ð Z2 Ñ Y with

t P S, and two morphisms Z2 Ñ X, Z2 Ñ Y in C fitting into the commutative diagram

Z2

Z Z 1

X Y

t

s

fs1
f1
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For two morphisms X s
Ð Z

f
Ñ Y, Y t

Ð Z 1 g
Ñ X 1 in RoofSC, their composition is defined to be the equivalence class of

X
s˝u
Ð W

g˝h
Ñ Z 1, where Z u

Ð W
h
Ñ Z 1 is some morphism RoofSC, fitting into the commutative diagram

W

Z Z 1

X Y X 1

u h

s f t g

Note that such Z u
Ð W

h
Ñ Z 1 exists by the extension property of S.

6.13.1 „ is an equivalence relation. Reflexivity and symmetry are clear. For transitivity, suppose we have two commutative
roofs

W

Z Z 1

X Y

t

s

s1

W 1

Z 1 Z2

X Y

t1

s1

s2

with adorned arrows lying in S.

6.13.2 Composition is well-defined.

6.13.3 Composition is associative and unital.

6.14 Theorem. Let C be a category and S a right localizing system. Then RoofSC is a localization of C at S.

Proof. There is a natural inclusion Φ : C Ñ RoofSC, which is identity on objects and sends a morphism f : X Ñ Y is C to the
roof X idX

Ð− X f
Ñ Y. Let Ψ : C Ñ D be any functor sending morphisms in S to isomorphisms.

C RoofSC

D
Ψ

Φ

Suppose Ψ 1 : RoofSC Ñ D is a functor making the above triangle commutative. Clearly Ψ 1 must be the same as Ψ on objects.
Now let φ = (X

s
Ð Z

f
Ñ Y) be a morphism in RoofSC. Upon applying Ψ 1 to the identity φ ˝Φ(s) = Φ(f), we get

Ψ 1(φ) ˝ Ψ(s) = Ψ 1(φ) ˝ Ψ 1(Φ(s)) = Ψ 1Φ(f) = Ψ(f).

Since Ψ(s) is invertible in D, we see Ψ 1(φ) = Ψ(f) ˝ Ψ(s)´1. This proves the uniqueness.
For the existence, define Ψ 1 : RoofSC Ñ D by being identical to Ψ on objects, and

Ψ 1(X
s

Ð Z
f

Ñ Y) = Ψ(f) ˝ Ψ(s)´1.

We must check this is a well-defined functor. Say we have a commutative diagram

Z2

Z Z 1

X Y

g
bat

s

fs1
f1
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We need to show Ψ(f 1) ˝ Ψ(s 1)´1 = Ψ(f) ˝ Ψ(s)´1. Indeed, Ψ(f)Ψ(s)´1Ψ(t) = Ψ(f)Ψ(a) = Ψ(g), so Ψ(f)Ψ(s)´1 = Ψ(g)Ψ(t)´1.
Similarly, Ψ(f 1)Ψ(s 1)´1 = Ψ(g)Ψ(t)´1, so they are equal. Next, it is clear that Ψ 1 preserves identity. Finally, say we have a
commutative roof

W

Z Z 1

X Y X 1.

u h

s f t g

Then

Ψ(gh)Ψ(su)´1 = Ψ(g)Ψ(h)Ψ(u)´1Ψ(u)´1 = Ψ(g)Ψ(t)´1Ψ(f)Ψ(u)´1,

which is what we want.

6.15 Quasi-isomorphisms. Let A be an abelian category. For a complex X = (X‚,d‚
X), its cohomology complex H‚(X) =

H‚(X‚,d‚
X) is the quotient

Hn(X) = kerdn/ Imdn´1

with zero differential. A morphism f : X Ñ Y in Kom(A) induces a morphism between cohomology H‚(f) : H‚(X) Ñ H‚(Y)

in a natural way. We say f is a quasi-isomorphism, or qis for brevity, if the induced map H‚(f) is an isomorphism.

6.15.1 Lemma. If f „ g, then H(f) = H(g).

6.15.2 Lemma. A morphism f : X Ñ Y is a qis if and only if H‚(cone(f)) = 0.

Proof. This follows from the long exact sequence on cohomology in (6.9).

6.16 Lemma. Let A be an abelian category. The collection of quasi-isomorphisms in K˝(A) (˝ = H,+, ´,b) is a localizing
system.

Proof. We must verify (i), (ii) and (iii) in (6.12). We only prove qis’ are right localizing ; the other is proved similarly. (i) is
obvious. For (ii), let Z s

Ñ Y
f

Ð X be a diagram in K˝(A). Let τ : Y Ñ cone(s) be the inclusion. Consider the commutative
diagram

Z Y cone(s) Z[1]

cone(τ)[´1] Y cone(s) cone(τ)

cone(τf)[´1] X cone(s) cone(τf)

s τ

„

τ

„

f

τf

Here the first row is isomorphic to the second row by TR 2. By (6.15.2), s is a qis if and only if H‚(cone(s)) = 0, if and only if
cone(τf)[´1] Ñ X is a qis. Now two commutative squares on the left merge to the commutative square we want. For (iii), it
suffices to show if f : X Ñ Y is such that tf „ 0 for some qis t : Y Ñ Y 1, then fs „ 0 for some qis s. Write sf = dh + hd for
some h P Hom´1(X, Y) and define

g : X cone(s)[´1] = Y 1[´1] ‘ Y

x (´hx, fx).
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Then we have a commutative diagram with row being distinguished triangles

cone(g) cone(s)[´1] X cone(g)[´1]

cone(s)[´1] Y Y 1 cone(s)

g

f

t

s

By (6.15.2), s is a qis implies H‚(cone(s)) = 0, so t is a qis. Since gt „ 0, we see ft „ 0.

6.17 Derived category. Let A be an abelian category. The derived category of A, denoted by D(A), is the localization of
K(A) at quasi-isomorphisms. By (6.16) and (6.14),

D(A) = RoofqisK(A).

Similarly, we define D˝(A) = RoofqisK
˝(A) for ˝ = +, ´,b.

6.18 Localization of subcategory. Let C be a category and S a right localizing system. For a full subcategory B of C, put SB

to be the subcollection of morphisms in S that are morphisms in B. By the universal property of localization (6.11), there is
a natural functor S´1

B B Ñ S´1C.

Lemma. Suppose SB is a right localizing system such that for all X P Ob(B) and s : X 1 Ñ X in S, there exists X2 P Ob(B) and
a morphism X2 Ñ X 1 in C such that the composition X2 Ñ X 1 s

Ñ X lies in SB. Then S´1
B B Ñ S´1C is fully faithful.

Proof. By our assumption and (6.14), we can instead show the canonical map RoofSB B Ñ RoofSC is fully faithful. This is
straightforward.

Hence, under the assumption of the lemma, the natural functor S´1
B B Ñ S´1C realizes S´1

B B as a full subcategory of S´1C.

6.18.1 Canonical truncation. Let A be an additive category and X a complex. For n P Z, define the canonical truncations :

τďnX =
(
¨ ¨ ¨ Ñ Xn´2 Ñ Xn´1 Ñ kerdnX Ñ 0 Ñ 0 Ñ ¨ ¨ ¨

)
τąnX =

(
¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Imdn´1

X Ñ Xn+1 Ñ Xn+2 Ñ ¨ ¨ ¨
)

.

The reason for their names and the subscripts is

Hm(τďnX) =

#

Hm(X) , ifm ď n

0 , ifm ą n
, Hm(τąnX) =

#

Hm(X) , ifm ą n

0 , ifm ď n

Using these truncations we immediately verify that quasi-isomorphisms satisfy the assumption in Lemma 6.18. Hence

6.18.2 Corollary. Let A be an abelian category. Then the natural functors Db(A) Ñ D˘(A) Ñ D(A) are fully faithful
embeddings of categories.

6.19 Localization and triangles. Let T be a pre-triangulated category and S a collection of morphisms. We say S is
compatible with triangulation if

(i) f P S if and only if f[1] P S.

(ii) For any commutative diagram of distinguished triangles

X Y Z X[1]

X 1 Y 1 Z 1 X 1[1]

f g f[1]

with f,g P S, there exists a morphism h P HomT (Z,Z 1) X Smaking the above diagram commutative.
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6.19.1 Theorem. Let T be a (pre-)triangulated category and S a right localizing system compatible with triangulation. Then
S´1T is (pre-)triangulated as follows.

‚ The shift functor on S´1T is induced by the one on T .

‚ A triangle in S´1T is distinguished if it is isomorphic in S´1T to the image of a distinguished triangle of T under the
inclusion T Ñ S´1T

Proof.

6.3 Derived functors
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7 Sheaf Cohomology

7.1 Definition

Recall that if R is a unital ring (not necessarily commutative), then the abelian category RMod of left R-modules has
enough injectives. Now let (X, OX) be a ringed space. Recall from Lemma 2.15.1 that the category ModOX

of OX-modules is
abelian.

Lemma 7.1. ModOX
has enough injectives.

Proof. Let F P ModOX
. For each x P X, the stalk Fx is an OX,x-module, so there exists an injective φx : Fx Ñ Ix for some

injective OX,x-module Ix. For each x P X, denote by ιx : txu Ñ X the inclusion and consider the sheaf

I :=
ź

xPX

(ιx)˚(Ix)

Here we consider Ix as a sheaf on the one point space txu, and view (txu, OX,x) as a ringed space. Explicitly, for each open
U Ď X,

I(U) =
ź

xPU

Ix.

Then I P ModOX
, and there is a natural morphism F Ñ I given as follows.

F(U)
ś

xPU

Fx
ś

xPU

Ix = I(U)

f (fx)xPU (φx(fx))xPU

This is injective, for F is a sheaf (so the first arrow is injective) and each φx is injective.
It remains to show I is an injective OX-module. Let G P ModOX

. The universal property of direct products gives an
isomorphism

HomOX
(G, I)

ś

xPX

HomOX
(G, (ιx)˚(Ix)).„

As the direct product preserves exactness, it suffices to show each factor on the right is exact. But the adjunction (or argue
directly) gives

HomOX
(G, (ιx)˚(Ix)) HomOX,x((ιx)

˚G, Ix) = HomOX,x(Gx, Ix).„

Since the stalk functor G ÞÑ Gx is exact, we conclude that HomOX
(¨, I) is an exact functor, i.e., I is injective.

Corollary 7.1.1. The abelian category of sheaves of abelian groups on a topological space X has enough injectives.

Proof. Regard Xwith the ringed space (X,ZX) where ZX is the constant sheaf with values in Z.

Let X be a topological space. There is a global section functor Γ(X, ¨) : ModZX
Ñ ModZ, which is left exact but not right

exact in general. We then define the sheaf cohomology functors Hp(X, ¨) to be the right derived functors of Γ(X, ¨), i.e.,
Hp(X, ¨) := RpΓ(X, ¨).

It should be noted that even if X or F has some additional structure (e.g. X a manifold or scheme, and F a quasi-coherent
sheaf), we always take cohomology by regarding Xmerely as a topological space and F as a sheaf of abelian groups over X.

Definition. A sheaf F on a space X is flasque if for every open U, the restriction F(X) Ñ F(U) is surjective.

— Equivalently, F is flasque if and only if for all opens V Ď U, the restriction F(U) Ñ F(V) is surjective.

Before continuing our discussion on cohomology, we talk about some operation on a sheaf. Let Z be a closed subset of X
and U := XzZ. Denote by i : Z Ñ X and j : U Ñ X the canonical inclusions.
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1. If F is a sheaf on Z, the direct image i˚F is a sheaf on X. Then

(i˚F)x =

#

0 , if x R Z

Fx , if x P Z

This follows from the definition of stalks, and the fact that the topology on Z is subspace topology. Because of this, we
speak of i˚F the sheaf obtained by extending F by zero outside Z.

2. If F is a sheaf on U, denote by j!F the sheafification of the presheaf F 1 defined by V ÞÑ F(V) if V Ď U and ÞÑ 0
otherwise. Then

(j!F)x =

#

0 , if x R U

Fx , if x P U

This follows from the description of F 1, and the fact that stalk remain unchanged after sheafification. Moreover, j!F
is the unique sheaf on X such that the above identities hold and whose restriction to U to F . Indeed, we can easily
construct a morphism F 1 Ñ G of presheaves by extending the isomorphism G|U – F by “zero outside U”, so we
obtain a morphism j!F Ñ G of sheaves. Taking stalks shows this is an isomorphism. We call j!F is the sheaf obtained
by extending F by zero outside U.

3. Let F be a sheaf on X. Then there exists an exact sequence

0 j!(F |U) F i˚(F |Z) 0

The first arrow is easily constructed, and the second is from the adjunction. Exactness is easily checked on the stalks.
Another important property is that j! is left adjoint to j´1, that is, we have a functorial isomorphism

HomOX
(j!F , G) HomOX|U(F , j´1G)

Lemma 7.2. Let (X, OX) be a ringed space.
1. Any injective OX-module is flasque.
2. The restriction ModOX

Ñ ModOX|U preserves injective objects for any open set U Ď X.

3. If 0 Ñ F1
α
Ñ F2

β
Ñ F3 Ñ 0 is an exact sequence of sheaves with F1 flasque, then

0 F1(X) F2(X) F3(X) 0αX βX

is an exact sequence of abelian groups.

4. If 0 Ñ F1
α
Ñ F2

β
Ñ F3 Ñ 0 is an exact sequence of sheaves with F1, F2 flasque, then F3 is also flasque.

5. Any flasque sheaf F on X is acyclic, i.e, Hi(X, F) = 0 for i ě 1.

Proof.
1. Let J be an injective OX-module. Let U Ď X be an open set and denote by j : U Ñ X the inclusion. Applying

HomOX
(¨, J ) to the inclusion 0 Ñ j!(OX|U) Ñ OX, we obtain a surjection HomOX

(OX, J ) Ñ HomOX
(j!(OX|U), J ) Ñ 0,

which is equal to the map J (X) Ñ J (U).
2. Let J be an injective OX-module. LetU Ď X be an open set and denote by j : U Ñ X the inclusion. Suppose 0 Ñ F Ñ G

is an injective morphism in ModOX|U . By 3. above, we have a commutative diagram

HomOX|U(G, j´1J ) HomOX
(j!G, J )

HomOX|U(F , j´1J ) HomOX
(j!F , J )

„

„

By computing the stalk, we see j!F Ñ j!G is injective. Since J is injective, the map on the right is surjective. Hence the
map on the left is surjective, and this proves the injectivity of j´1J .
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3. It suffices to show βX : F2(X) Ñ F3(X) is surjective. Fix an element in h P F3(X) and consider the set

S =

"

(U,g) | g P F2(U),U Ď
open

X, βU(g) = h|U

*

.

Partially ordered S by the rule : (U1,g1) ď (U2,g2) if and only if U1 Ď U2 and g2|U1 = g1. By exactness S is nonempty.
By Zorn’s lemma S admits a maximal element (U0,g0).
We claim U0 = X. Suppose otherwise and pick x P XzU0. By looking at the stalk at xwe can find a neighborhoodW of
X and gW P F2(W) with βW(gW) = h|W . Then g0|U0XW = gW |U0XW , so by exactness there exists an f 1 P F(U0 XW)

such that
αU0XW(f 1) = g0|U0XW ´ gW |U0XW

Since F1 is flasque, f 1 = f|U0XW for some f P F1(X). Then αX(f)|U0XW = g0|U0XW ´ gW |U0XW , or

g0|U0XW = αX(f)|U0XW + gW |U0XW =
(
αX(f)|W + gW

)
|U0XW .

This means g0 and αX(f)|W + gW glue to a section g P F2(U0 Y W), and βU0YW(g) = h|U0YW . This contradicts the
maximality.

4. This follows from 2. and snake lemma.

5. Choose an embedding F Ñ J into an injective object J in ModZX
. Put G = J /F ; then we have an exact sequence

0 F J G 0

of sheaves. By 2. we have an exact sequence

0 F(X) J (X) G(X) 0

Since J is injective, it is acyclic, so in view of the long exact sequence of sheaf cohomology, we obtain H1(X, F) = 0
and Hi(X, F) = Hi´1(X, G) for each i ě 2. But by 3. G is also flasque, so 4. follows from induction. on i.

Corollary 7.2.1. Let (X, OX) be a ringed space. The derived functor of Γ(X, ¨) : ModOX
Ñ ModZ coincide with the sheaf

cohomology functors Hi(X, ¨).

Proof. This follows from the previous lemma and the fact that we can computeH‚(X, F) by taking a acyclic resolution of F .

Corollary 7.2.2. Let X be a topological space and j : Z Ñ X a closed subspace. Then Hi(Y, F) – Hi(X, j˚F) canonically for
any sheaf F of abelian groups on Z.

Proof. Let F Ñ I‚ be a flasque resolution of F in AbZ. Clearly j˚I‚ is flasque. Since j is a closed embedding, j˚F Ñ j˚I‚

remains a flasque resolution by (2.9) and (2.16). Since j˚I‚(X) = I‚(Z), we get the result.

We conclude this subsection by introducing a functorial flasque resolution of an abelian sheaf. Let F be a sheaf of abelian
groups on X. Define a sheaf C0(F) on X by (c.f. (7.1))

C0(F)(U) =
ź

xPU

Fx.

This is clearly a flasque sheaf on X, and there is a natural morphism ιF : F Ñ C0(F) given by s ÞÑ (sx)xPU (c.f. (2.4)), which is
injective as F is a sheaf. If we denote by Z1(F) the cokernel of ιF, we can obtain a morphism δ0

F C0(F) Ñ C1(F) := C0(Z1(F))

by injecting Z1(F) into C1(F). Continuing this process, we obtain a flasque resolution of F

0 F C0(F) C1(F) ¨ ¨ ¨ .ιF δ0
F δ1

F
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This is called the Godement resolution of F . It is clear from the construction that the resolution is functorial in F .
Additionally, if F is an OX-module for some sheaf of rings OX on X, then each Ci(F) has a natural structure of OX-modules.
Particularly, we see

Lemma 7.3. Let (X, OX)be a ringed space. Every OX-module admits a flasque resolution in ModOX
. In particular, cohomology

of an OX-module is a naturally an OX(X)-module.

7.2 Fine sheaves

The main reference of this section is [Voi02].

Definition. Let X be a topological space. A fine sheaf F on X is a A-module, where A is a sheaf of rings satisfying the
following property : For every open cover U of X, there exists a partition of unity (fU)UPU subordinate to U .

By a partition of unity we mean the family (fU)UPU satisfies

(i) fU P A(X) with supp fU Ď U.

(ii) tsupp fUuUPU is a locally finite family of subsets of X, and
ÿ

UPU

fU = 1.

Here supp fU := tx P X | (fU)x ‰ 0 P Axu, and it is a closed set in X.

Proposition 7.4. A fine sheaf F on X is acyclic.

Proof. Say A is the sheaf of ring on Xmaking F a fine sheaf. Choose any acyclic resolution I‚ of F in ModA. Then

Hk(X, F) –
ker(Ik(X) Ñ Ik+1(X))

image(Ik´1(X) Ñ Ik(X))
.

Let k ě 1 and α P Ik(X) be in the kernel. By exactness we can find an open cover U such that α|U comes from some
βU P Ik´1(U) for every U P U . Let (fU)UPU be a partition of unity subordinate to U , and put

β =
ÿ

UPU

fUβU.

Note that the sum is locally finite and we view fUβU P Ik´1(X)by setting (fUβU)x = 0 forx P XzU and (fUβU)x = (fU)x(βU)x

for x P U (c.f. (2.4.2)). Thus β P Ik´1(X) is well-defined and is mapped to α as α =
ÿ

UPU

fUα|U. Then α = 0 in Hk(X, F), and

since α is arbitrary, this proves Hk(X, F) = 0.

Corollary 7.4.1. LetM be a (paracompact) smooth manifold and C∞
M the sheaf of (real-valued) smooth functions onM. Then

every C∞
M-module is fine, and hence acyclic by (7.4).

7.2.1 de Rham cohomology

Let M be a smooth manifold and p ě 0. Let ApM,R denote sheaf of smooth sections of the p-th cotangent bundle
Źp(TM)_ Ñ M ; note that A0

M,R = C∞
M. Together with the exterior derivatives d, we obtain the de Rham complex

0 A0
M,R A1

M,R A2
M,R ¨ ¨ ¨

d d

Note that ker(A0
M,R

d−Ñ A1
M,R) = RM consists of locally constant functions on M. We define the p-th de Rham cohomology

group HpdR(M,R) as

H
p
dR(M,R) := Hp(A‚

M,R(M),d).

A fundamental result is that every closed form onM is locally exact. Precisely,
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Lemma 7.5 (Poincaré lemma). HpdR(R
n,R) = 0 for p ě 1.

Proof. We are going the construct an integration operator Lp : ApRn,R(Rn) Ñ Ap´1
Rn,R(Rn) such that Lp+1d+ dLk = id.

It follows from Poincaré lemma and (7.4.1) that

0 RM A0
M,R A1

M,R A2
M,R ¨ ¨ ¨

d d

is an acyclic resolution of RM.

Theorem 7.6. For any smooth manifoldM, there is a natural isomorphism

H‚(M,RM) – H‚
dR(M,R).

Assume M is a complex smooth manifold. Similarly we define ApM,C to be the sheaf of smooth sections of the p-th
complexified cotangent bundle

Źp(TMbR C)_ Ñ M, and there is a de Rham complex over C

0 A0
M,C A1

M,C A2
M,C ¨ ¨ ¨

d d

which resolves the locally constant sheaf CM. If we put

H
p
dR(M,C) := Hp(A‚

M,C(M),d),

the same reason then shows that there is a natural isomorphism

H‚(M,CM) – H‚
dR(M,C).

7.2.2 Dolbeault cohomology

LetM be a complex (smooth) manifold. Multiplication by
?

´1 on local coordinates of TM gives rise to a smooth vector
bundle isomorphism J : TM Ñ TM satisfying J2 = ´ idTM. This is called the complex structure on M. Consider the
complexified tangent bundle TM bR C. On each fibre, the linear map J has eigenvalues ˘

?
´1, and this gives a global

decomposition
TMbR C = T 1,0

M ‘ T 0,1
M

of TMbRC, where T 1,0
M and T 0,1

M are complex subbundles corresponding to the eigenvalue
?

´1 and ´
?

´1 respectively. Both
T 1,0
M and T 0,1

M are isomorphic to TM as real vector bundles. This decomposition induces a decomposition

AkM,C =
à

p+q=k

Ap,q
M (♣)

on differential forms. Explicitly, in a local chart U of M with local coordinates z1, . . . , zn, Ap,q
M (U) is the subspace of AkM(U)

generated by the k-forms of the form
fdzi1 ^ ¨ ¨ ¨ ^ dzip ^ dzj1 ^ ¨ ¨ ¨ ^ dzjq

with f : U Ñ C a smooth function. An element in Ap,q
M (U) is called a (p,q)-form.

Define two differentials B, B by

B : Ap,q
M Ap+qM,C Ap+q+1

M,C Ap+1,q
M

B : Ap,q
M Ap+qM,C Ap+q+1

M,C Ap,q+1
M

d

d

where the last arrows are the projections from (♣). It is straightforward to see that
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(i) a smooth function f : U Ñ C is holomorphic if and only if Bf = 0,

(ii) d = B + B and BB + BB = 0,

(iii) (A‚,q, B) and (Ap,‚, B) are complexes,

(iv) for any k-form α and k 1-form β, we have

B(α^ β) = (Bα) ^ β+ (´1)kα^ (Bβ)

and the same for B.

In what follows we put C∞
M to be the sheaf of complex-valued smooth functions on M. Let E be a holomorphic vector

bundle overM and let E be the sheaf of holomorphic sections of E Ñ M. Define

Ap,q
M (E) := E bOX

Ap,q
M .

Explicitly, if U Ď M is a local chart with holomorphic coordinates z1, . . . , zn that trivializes the bundle E, and if σ1, . . . ,σr P

E(U) such that σ1(x), . . . ,σr(x) form a basis of the fibre Ex for each x P U, then

Ap,q
M (E)(U) =

#

r
ÿ

i=1

ÿ

#I=p, #J=q
fI,J,i ¨ σi b dzI ^ dzJ | fI,J,i P C∞

M(U)

+

where I, J run over all ordered multi indices in [n] of length p and q, respectively. With this notation, define

BE,U(fI,J,i ¨ σi b dzI ^ dzJ) = σi b (BfI,J,i ^ dzI ^ dzJ).

This extends by linearity to a map BE,U : Ap,q
M (E)(U) Ñ Ap,q+1

M (E)(U).

Lemma 7.7. Let V Ď M be another local trivialization of E. Then BE,U and BE,V agree on Ap,q
M (E)(UX V).

This means we can glue BE,U to a global morphism

BE : Ap,q
M (E) Ñ Ap,q+1

M (E).

As above, we can show that

(a) a smooth section σ of E Ñ M is holomorphic if and only if BEσ = 0,

(b) (Ap,‚
M (E), BE) is a complex,

(c) for any k-form α and any local section σ of Ap,q
M (E), we have

BE(α^ σ) = (Bα) ^ σ+ (´1)kα^ (BEσ).

Definition. Let E Ñ M be a holomorphic vector bundle on a complex manifoldM and E the sheaf of holomorphic sections
of E Ñ M. For p,q P Zě0, the (p,q)-th Dolbeault cohomology group of E is defined as

H
p,q
B

(X,E) =
ker(BE : Ap,q

M (E)(X) Ñ Ap,q+1
M (E)(X))

image(BE : Ap,q´1
M (E)(X) Ñ Ap,q

M (E)(X))

Note that each Hp,q(X,E) is a C-vector space, and H0,0(X,E) = E(M) by (a).

To relate it with the sheaf cohomology, we need a following B-analogue of Poincaré lemma.

Lemma 7.8 (Dolbeault-Grothendieck lemma). The complex

Ap,q´1
M Ap,q

M Ap,q+1
M

B B

is exact for p ě 0, q ě 1.
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It follows that the complex

Ap,q´1
M (E) Ap,q

M (E) Ap,q+1
M (E)

BE BE

is also exact for q ě 1. By (i) we see the kernel of B : Ap,0
M Ñ Ap,q

M is the sheaf ΩpM of holomorphic p-forms on M. Hence by
(7.4.1)

0 E bOM
Ω
p
M Ap,0

M (E) Ap,1
M (E) ¨ ¨ ¨

BE BE

is an acyclic resolution of E bOM
Ω
p
M, where OM is the sheaf of holomorphic functions onM. This proves

Theorem 7.9 (Dolbeault theorem). There is a natural isomorphism

Hq(M, E bOM
Ω
p
M) – Hp,q(X,E).

7.2.3 Holomorphic de Rham complex

Again let M be a complex manifold and ΩpM the sheaf of holomorphic p-form on M. If ω is a holomorphic form, then
dω = Bω is again holomorphic, so (Ω‚

M, B) forms a subcomplex of the complex de Rham complex (A‚
M,C,d). The former

complex is called the holomorphic de Rham complex :

0 OM Ω1
M ¨ ¨ ¨ ¨ ¨ ¨ΩnM Ñ 0.B B B

We show this is an acyclic resolution of the locally constant sheaf CM by means of double complexes. Consider the double
complex (Ap,q

M , B, (´1)pB) :
...

...
...

...

0 Ω2
M A2,0

M A2,1
M A2,2

M ¨ ¨ ¨

0 Ω1
M A1,0

M A1,1
M A1,2

M ¨ ¨ ¨

0 OM A0,0
M A0,1

M A0,2
M ¨ ¨ ¨

B

B

B

B

B

B

B

B

´B

B

´B

B

´B

B

´B

B

B

B

B

B

B

B

B

B

Each row is exact by Dolbeault lemma, so the inclusionΩ‚
M Ñ tot(A‚,‚

M )‚ is a quasi-isomorphism, by virtue of Lemma 8.12.
But tot(A‚,‚

M )‚ = A‚
M,C, this shows

(Ω‚
M, B) Ñ (A‚

M,C,d)

is a quasi-isomorphism. In particular, our assertion follows.

7.2.4 Logarithmic de Rham complex

In this subsubsection we write X for the complex manifold (instead of M), and let D be a hypersurface in X, i.e., it is
locally defined as the zero locus of a single holomorphic function. We say D is a normal crossing divisor if near each point
of D we can find a local coordinate (U, z1, . . . , zn) of X such that DXU = V(z1 ¨ ¨ ¨ zr) for some 1 ď r ď n (depending on U)
in U. Denote byΩpX(˚D) the sheaf of meromorphic p-forms which are holomorphic on XzD. For each open U, define

Ω
p
X(logD)(U) := tω P Ω

p
X(˚D)(U) | ordpω, ordp dω ě ´1 for each p P Du

ThenΩpX(logD) is the subsheaf ofΩpX(˚D) consisting of forms with log poles along the divisor D.
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7.3 Grothendieck vanishing theorem

Theorem 7.10. Let X be a noetherian topological space of dimension n. Then for all i ą n and all sheaves of abelian groups
F on X, we have Hi(X, F) = 0.

7.4 Serre’s theorem on affineness

Let X be a topological space and F a sheaf of abelian groups on X. For an open U, if we denote by ι : U Ñ X the natural
inclusion, then we have a canonical map F Ñ ι˚ (F |U), and hence a map Hi(X, F) Ñ Hi(X, ι˚ (F |U)) on sheaf cohomology
groups . The image of an element x P Hi(X, F) in the latter group will be denoted by x|U.

We start with a general topological lemma.

Lemma 7.11. Let X be a compact topological space and B a basis of the topology of X. For a sheaf F of abelian groups and
i ě 0, we say F satisfies (Pi) if

(Pi) for all γ P Hi(X, F) there exists a finite cover U1, . . . ,Ur of X by elements in B such that α|Ui
= 0 for any 1 ď i ď r.

Then we have the following :

(i) (P1) holds for all sheaves of abelian groups on X.

(ii) Suppose in addition B is closed under finite intersection. Let F be a sheaf and i ą 1. IfHp(U, F |U) = 0 for all 0 ă p ă i

and U P B, then (Pi) holds for F .

Proof. Let F be a sheaf of abelian groups on X. Let 0 Ñ F Ñ I be an embedding into a flasque sheaf I . If we write G to be
the quotient sheaf I/F , we get an exact sequence of sheaves :

0 F I G 0φ ψ

Taking cohomology, we have a long (but quite short) exact sequence

0 F(X) I(X) G(X) H1(X, F) 0

Let γ P H1(X, F) and lift it to α P G(X). Since I Ñ G is surjective (as sheaves) and since X is compact, we can find a finite
cover U1, . . . ,Ur of X by B such that α|Ui

= ψUi
(si) for some si P I(Ui).

Let ιi denote the canonical inclusion Ui Ñ X. Then we have a commutative diagram

0 F I G 0

0 (ιi)˚ (F |Ui
) (ιi)˚ (I|Ui

) (ιi)˚ (G|Ui
)

φ ψ

Replacing (ιi)˚ (G|Ui
) by Gi := coker

(
(ιi)˚ (F |Ui

) Ñ (ιi)˚ (I|Ui
)
)
, we obtain a commutative diagram with exact rows (note

that (¨)|Ui
is exact !)

0 F I G 0

0 (ιi)˚ (F |Ui
) (ιi)˚ (I|Ui

) Gi 0.

φ ψ

Taking cohomology, by functoriality we have (note that (ιi)˚ (I|Ui
) is flasque)

0 F(X) I(X) G(X) H1(X, F) 0

0 F(Ui) I(Ui) Gi(X) H1(X, (ιi)˚ (F |Ui
)) 0

φ ψ

136



The image of α in Gi(X) Ď (ιi)˚ (G|Ui
) (X) = G(Ui) is α|Ui

, and it comes from sj P I(Ui) via ψUj
. Thus γ|Ui

is the image of
sj in H1(X, (ιi)˚ (F |Ui

)), which is zero. This proves (i).
Next we prove (ii). Proceed by induction on i ą 1. Let U1, . . . ,Ur be an arbitrary finite open cover of X by B, and put

ιj : Uj Ñ X to be the natural inclusion. If U P B, then Uj X U P B and hence H1(Uj X U, F |UjXU) by our assumption. The
sequence 0 Ñ F |UjXU Ñ IUjXU Ñ G|UjXU Ñ 0 is still exact, so taking cohomology gives

0 F(Uj XU) I(Uj XU) G(Uj XU) 0 ,

or equivalently
0 (ιj)˚

(
F |Uj

)
(U) (ιj)˚

(
I|Uj

)
(U) (ιj)˚

(
G|Uj

)
(U) 0

On the other hand, we have an exact sequence 0 Ñ (ιj)˚

(
F |Uj

)
Ñ (ιj)˚

(
I|Uj

)
Ñ Gj Ñ 0 (with Gj being the cokernel of the

former map). Restricting to U and taking cohomology gives

0 (ιj)˚

(
F |Uj

)
(U) (ιj)˚

(
I|Uj

)
(U) Gj(U) H1(U, (ιj)˚

(
F |Uj

)
|U) 0.

(Note that (ιj)˚

(
I|Uj

)
is flasque, and so is its restriction to U.) If 0 Ñ F Ñ C‚ is a flasque resolution of F , then C‚|UjXU is

also a flasque resolution of F |UjXU, and (ιj)˚(C‚|Uj
)|U is also a flasque resolution of (ιj)˚(F |Uj

)|U. Since

Γ(U, (ιj)˚(Cn|Uj
)|U) = Γ(Uj XU, Cn|UjXU)

we see particularly that H1(U, (ιj)˚(F |Uj
)|U) = H

1(Uj XU, F |UjXU) = 0, and hence

0 (ιj)˚

(
F |Uj

)
(U) (ιj)˚

(
I|Uj

)
(U) Gj(U) 0

is exact. Regarding Gj naturally as a subsheaf of (ιj)˚

(
G|Uj

)
, since we see that these two sheaves agrees on every basis

element U P B, they are the same. In particular, we have a commutative diagram with exact rows

0 F I G 0

0 (ιj)˚

(
F |Uj

)
(ιj)˚

(
I|Uj

)
(ιj)˚

(
G|Uj

)
0

φ ψ

Taking cohomology and using the fact that I and (ιj)˚

(
I|Uj

)
are flasque, for each i ě 2 we have a commuting square

Hi´1(X, G) Hi(X, F)

Hi´1(X, (ιj)˚

(
G|Uj

)
) Hi(X, (ιj)˚

(
F |Uj

)
)

with two horizontal arrows being isomorphisms. By (i) G satisfies (P1), so if we choose thoseU1, . . . ,Ur to be as in (P1) for G,
this says that F satisfies (P2). Now suppose (ii) holds for all iwith 2 ď i ă n. To show (ii) in n, it suffices to show G satisfies
(Pn´1). By induction hypothesis it is sufficient to showHp(U, G|U) = 0 for allU P B and 0 ă p ă n´ 1. This of course holds,
as by the exact sequence

0 F |U I|U G|U 0

and as Hp(U, I|U) = 0 and Hp+1(U, F |U) = 0 (this is true because p+ 1 ă n).

Theorem 7.12. Let A be a ring and F a quasi-coherent sheaf on X = SpecA. Then Hi(X, F) = 0 for all i ą 0.
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Proof. We use Lemma 7.11 with B the collection of all affine open subsets of X, which is a basis for the Zariski topology on
X. Note also that X is (quasi-)compact. We prove this by induction on i ě 1.

Assume i = 1. Let γ P H1(X, F) By Lemma 7.11.(i) we can find affine opens U1, . . . ,Ur such that γ maps to 0 in all
H1(X, (ιj)˚

(
F |Uj

)
), where ιj : Uj Ñ X denotes the inclusion. Now each (ιj)˚

(
F |Uj

)
is quasi-coherent, and so is the cokernel

G := coker
(

F Ñ
r
ś

j=1
(ιj)˚

(
F |Uj

))
. Since X is affine, we obtain a short exact sequence

0 F(X)
r
ź

j=1
(ιj)˚

(
F |Uj

)
(X) G(X) 0. (˚)

In view of long exact sequence of cohomology, we see H1(X, F) Ñ

r
ź

j=1
H1 (X, (ιj)˚

(
F |Uj

))
is injective. This shows γ = 0.

For i ą 1, by induction hypothesis, Hp(U, F |U) = 0 for each 0 ă p ă i and U P B. Now let γ P Hi(X, F) be given. By
Lemma 7.11.(ii) we can find affine opens U1, . . . ,Ur that covers X such that γ maps to zero in each Hi(X, (ιj)˚

(
F |Uj

)
). By

induction hypothesis, Hi´1(X, G) = 0, so (˚) implies Hi(X, F) Ñ

r
ź

j=1
Hi
(
X, (ιj)˚

(
F |Uj

))
is injective. This again shows γ = 0.

7.5 Higher direct image

Let X, Y be spaces and f : X Ñ Y be a continuous map. The direct image of f defines a functor f˚ : AbX Ñ AbY . This
is a left exact functor, as it is a right adjoint functor (2.11). Since AbX has enough injective, we then can consider the right
derived functors Rif˚ of f˚.

Definition. The right derived functors Rif˚ : AbX Ñ AbY of the direct image f˚ are called the higher direct image functors
of f.

Lemma 7.13. For i ě 0 and any sheaf F of abelian groups on X, the sheaf Rif˚F is isomorphic to the sheafification of the
presheaf V ÞÑ Hi(f´1(V), F |f´1(V)) on Y.

Proof. Let F Ñ I‚ be an injective resolution of F in AbX. By definition, Rif˚F is the i-th cohomology sheaf of the complex
f˚I0 Ñ f˚I1 Ñ f˚I2 Ñ ¨ ¨ ¨ , hence it is the sheafification of the presheaf

V ÞÑ
ker(f˚Ii(V) Ñ f˚Ii+1(V))

Im(f˚Ii´1(V) Ñ f˚Ii(V))
=

ker(Ii(f´1(V)) Ñ Ii+1(f´1(V)))

Im(Ii´1(f´1(V)) Ñ Ii(f´1(V)))
.

Since restriction to f´1(V) is exact and by (7.2).2., F |f´1(V) Ñ I‚|f´1(V) is an injective resolution of F |f´1(V). Hence the last
quotient computes Hi(f´1(V), F |f´1(V)), and the proof is completed.

Corollary 7.13.1. If U Ď Y is an open subspace, there is a unique isomorphism of δ-functor

(Rif˚F)|U Ri(f|V
f´1(U)

)˚(F |U)
„

(i ě 0)

extending the i = 0 case (f˚F)|U – (f|V
f´1(U)

)˚(F |U).

Corollary 7.13.2. Let f P HomSch(X, Y) be an affine morphism and F a quasi-coherent OX-module. Then Rpf˚F = 0 for
p ě 1.

Proof. This follows from Lemma 7.13 and (7.12).

In particular, if F is a flasque sheaf, then all Rif˚F vanish by Lemma 7.2.4 and Lemma 7.13. Therefore, if (X, OX) and
(Y, OY) are ringed space and f : (X, OX) Ñ (Y, OY) is a morphism of ringed spaces, then the higher direct image functor
Rif˚ : ModOX

Ñ ModOY
coincides with that computed as a functor AbX Ñ AbY . Also, Lemma 7.13 holds if f is replaced by

a morphism (X, OX) Ñ (Y, OY) of ringed spaces and f˚ is viewed as a functor f˚ : ModOX
Ñ ModOY

.
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7.5.1 Quasi-coherency

Let X, Y be schemes, and f P HomSch(X, Y). In this subsubsection we prove the quasi-coherency of Rif˚F when F is
a quasi-coherent OX-module under some mild condition on f. In (3.17), we see if f is, for example, quasi-compact and
quasi-separated, then R0f˚F = f˚F is quasi-coherent. Generally, we have

Theorem 7.14. Let f P HomSch(X, Y) be quasi-separated and quasi-compact. If F is a quasi-coherent OX-module, then all
Rif˚F are quasi-coherent OY-modules.

Proof. By Corollary 7.13.1 we can assume Y = SpecA is affine. This then follows from Lemma 7.16 below.
The key ingredient is the following categorical property of QcohX.

Lemma 7.15. Let A be a ring and f : X Ñ SpecA be a quasi-compact A-scheme. If F is quasi-coherent OX-module, then
there exists a quasi-coherent flasque sheaf I and an injection F Ñ I . 2

Proof. By compactness of X, take a finite affine open cover U ofX. For eachU P U let jU : U Ñ X denote the inclusion. Since F
is quasi-coherent, for each U P U say F |U – ĄMU for some OX(U)-moduleMU. EmbedMU into an injective OX(U)-module
IU. Set

I :=
à

UPU
(jU)˚

ĂIU.

By adjunction, from F |U Ñ ĂIU we get a morphism F Ñ (jU)˚
ĂIU. Taking direct sum yields F Ñ I . Using (2.10.2) and (2.16)

we easily see this is an injection. By (7.2).2. each ĂIU is flasque and quasi-coherent on U, so U is flasque and quasi-coherent
on X.

Lemma 7.16. LetAbe a ring and let f : X Ñ SpecAbe a quasi-compact and quasi-separatedA-scheme. If F is a quasi-coherent
OX-module, then ČHp(X, F) – Rpf˚F canonically for p ě 0, where affine tilde is with respect to A. (c.f. (7.3))

Proof. For p = 0, since R0f˚F = f˚F is quasi-coherent, by (3.15.2) the canonical morphism

ĆF(X) = Čf˚F(SpecA) Ñ f˚F = R0f˚F

is an isomorphism. In general, since r̈ is exact, the functor QcohX Q F ÞÑ ČHp(X, F) is a δ-functor. By Lemma 7.15 functors
on both sides are effaceable for p ą 0. Hence there is a unique isomorphism of δ-functors ČHp(X, F)

„
Ñ Rpf˚F extending the

p = 0 case.

7.5.2 Leray spectral sequence

Let f : (X, OX) Ñ (Y, OY) be a morphism between ringed spaces. We have three functors

f˚ : ModOX
Ñ ModOY

, Γ(Y, ¨) : ModOY
Ñ Ab, Γ(X, ¨) : ModOX

Ñ Ab

Clearly from the definition that Γ(Y, ¨) ˝ f˚ = Γ(X, ¨). We want to apply Grothendieck spectral sequence. For this we need

Lemma 7.17. If I is an injective OX-module, then Hp(Y, f˚I) = 0 for p ě 1.

Proof. By (8.13.3) it suffices to show rHp(U , f˚I) = 0 for p ě 1, any open U Ď Y and any open cover U of U. Since

C‚(U , f˚I) = C‚(f´1U , I)

and I|f´1(U) is flasque, it follows from (8.16) that rHp(U , f˚I) = 0 for p ě 1.

2. See [Har66, Theorem 2.7.18] for the locally Noetherian case.
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Hence by Grothendieck spectral sequence, there is a biregular spectral sequence

E
pq
2 = Hp(Y,Rqf˚F) ñ Hp+q(X, f˚F).

This is called the Leray spectral sequence.

Lemma 7.18. The edge homomorphism En0
2 = Hn(Y, f˚F) Ñ Hn(X, F) is the natural map extending f˚F(U)

=
Ñ F(f´1(U)).

Corollary 7.18.1. If f P HomSch(X, Y) is an affine morphism and F is a quasi-coherent OX-module, then Hn(Y, f˚F)
„
Ñ

Hn(X, F) is an isomorphism for all n ě 0.

Proof. This follows from (7.13.2).

7.5.3 Base change morphisms

Let f : Y Ñ X be a continuous map between topological spaces, and let F be a sheaf of abelian groups on X. Since
f´1 : AbX Ñ AbY is exact, F ÞÑ Hi(Y, f´1F) (i ě 0) remains a δ-functor. By the universality there is a unique map of
δ-functors

Hi(X, F) Hi(Y, f´1F)

such that when i = 0 it is the natural map F(X) Ñ (f˚f
´1F)(X) = (f´1F)(Y). This is the topological base change map.

Explicitly, let F Ñ I‚ and f´1F Ñ J ‚ be injective resolutions. Since f´1 is exact, by Lemma 8.14 there exists f´1I‚ Ñ J ‚

extending the identity map f´1F id
Ñ f´1F . By adjunction this gives I‚ Ñ f˚J ‚. Now taking global section and then taking

cohomology gives the topological base change map.
If in addition (X, OX) and (Y, OY) are ringed spaces and f is a morphism between ringed spaces, then there is a natural

map f´1F Ñ f˚F (defined again in the level of presheaves), so it induces a map Hi(Y, f´1F) Ñ Hi(Y, f˚F). Composing
yields the so-called base change map

Hi(X, F) Hi(Y, f˚F) (i ě 0)

Now turn to the relative version. Consider a commutative diagram in RS

Y X

T S

f

ψ φ

g

Let U Ď S be an open set. From the commutativity and the base change map above, we have a map

Hi(φ´1(U), F |φ´1(U)) Hi(ψ´1(g´1(U)), (f|φ
´1(U)

ψ´1(g´1(U)
)˚(F |φ´1(U))) = H

i(ψ´1(g´1(U)), (f˚F)ψ´1(g´1(U)))

By the definition, there is a natural map

Hi(ψ´1(g´1(U)), (f˚F)ψ´1(g´1(U))) Ñ (Riψ˚f
˚F)(g´1(U)) = g˚(R

iψ˚f
˚F)(U)

so composing these two gives
Hi(φ´1(U), F |φ´1(U)) g˚(R

iψ˚f
˚F)(U)

It is easy to check this map is functorial in U Ď
open

S, so it defines a morphism of presheaves on S. By sheafification this gives

the morphism of OS-modules
Riφ˚F g˚(R

iψ˚f
˚F)
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and by adjunction we obtain the desired base change morphism

g˚Riφ˚F Riψ˚f
˚F (i ě 0).

We compute the stalk of the base change morphism. Let t P T and s = g(t) P S. Then it is

OT ,t bOS,s (Riφ˚F)s (Riψ˚f
˚F)t

By (2.12.1) this is induced by

(Riφ˚F)s (g˚(R
iψ˚f

˚F))s (Riψ˚f
˚F)t

which by (7.13) is

lim−Ñ
Top(S)QUQs

Hi(φ´1(U), F |φ´1(U)) lim−Ñ
Top(T)QVQt

Hi(ψ´1(V), (f˚F)|ψ´1(V)).

It follows from construction that this is induced by the base change maps

Hi(φ´1(U), F |φ´1(U)) Hi(ψ´1(g´1(U)), (f˚F)ψ´1(g´1(U)))

In sum, the stalk of the base change morphism gives the base change maps.

7.6 Formal function theorem

Let f : X Ñ SpecA be a morphism of schemes, and let I be an ideal of A. For an OX-module F , we can form the subsheaf
IF of F (2.23.1) : by definition,

IF = Im
(
f˚
rIbOX

F Ñ f˚OA bOX
F – F

)
.

For n ě 0, we similarly form InF (here I0 = A). Consider the short exact sequences of OX-modules

0 In+1F F F/In+1F 0

0 InF F F/InF 0

It then induces long exact sequences on cohomology

Hi(X, In+1F) Hi(X, F) Hi(X, F/In+1F) Hi+1(X, In+1F) Hi+1(X, F)

Hi(X, InF) Hi(X, F) Hi(X, F/InF) Hi+1(X, InF) Hi+1(X, F)

βn+1 αn+1 γn+1

βn αn γn

Let us look at the maps αn : Hi(X, F) Ñ Hi(X, F/InF). Note that the latter cohomology group has a structure of A/InA-
module ; one can see this by resolving F/InF with Godement resolution. Hence αn induces a map

α 1
n : Hi(X, F) bA A/I

n Hi(X, F/InF).

The commutative diagram above shows that various α 1
n form an inverse system of abelian groups, yielding

α 1 : lim
Ð−
ně0

(
Hi(X, F) bA A/I

n
)

lim
Ð−
ně0

Hi(X, F/InF)
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On the other hand, we can trim the long exact sequences, obtaining

0 Hi(X, F)/ Imβn+1 Hi(X, F/In+1F) kerγn+1 0

0 Hi(X, F)/ Imβn Hi(X, F/InF) kerγn 0

α2
n+1

α2
n

Taking limits gives

0 lim
Ð−
ně0

(
Hi(X, F)/ Imβn

)
lim
Ð−
ně0

Hi(X, F/InF) lim
Ð−
ně0

kerγn 0α2

Note that this is exact at the third place as the transition maps of
(
Hi(X, F)/ Imβn

)
n

are surjective. In fact, α 1 and α2 are
compatible, in the sense we now describe. From the long exact sequences we read InHi(X, F) Ď kerαn = Imβn, so we have
a projection

pn : Hi(X, F)/ Imβn Hi(X, F)/InHi(X, F) = Hi(X, F) bA A/I
n.

Passing to limit, we obtain p : lim
Ð−
ně0

(
Hi(X, F)/ Imβn

)
Ñ lim

Ð−
ně0

(
Hi(X, F) bA A/I

n
)
. It is clear that

α2 = α 1 ˝ p,

so we have a larger commutative diagram with exact row

0 lim
Ð−
ně0

(
Hi(X, F)/ Imβn

)
lim
Ð−
ně0

Hi(X, F/InF) lim
Ð−
ně0

kerγn 0

lim
Ð−
ně0

(
Hi(X, F) bA A/I

n
)p

α2

α1

Theorem 7.19 (Formal Function Theorem). Let f : X Ñ SpecA be a proper morphism of schemes with A Noetherian, F a
coherent OX-module, and I an ideal of A. Then for each i ě 0, the natural homomorphism

α 1 : lim
Ð−
ně0

(
Hi(X, F) bA A/I

n
)

lim
Ð−
ně0

Hi(X, F/InF)

is an isomorphism of topological lim
Ð−
ně0

A/In-modules.

To prove this, we claim that under these circumstances, we have the followings.

(1) There exists n0 P Zě0 such that Imβn Ď In´n0Hi(X, F) for all n ě n0.

(2) There exists d P Zě0 such that then transition maps kerγn+d Ñ kerγn are trivial for n " 0.

These will complete the proof. Indeed, (1) says that p is an isomorphism, and (2) says that lim
Ð−
ně0

kerγn = 0.

To show (1) and (2), we make use of the blow-up algebra

B‚ =
à

ně0
In = A‘ I‘ I2 ‘ ¨ ¨ ¨

which is a graded algebra. SinceA is Noetherian, I is finitely generated. Since B‚ is generated by I as anA-algebra, this shows
B‚ is Noetherian. Our proof is based on the following

Lemma 7.20. Let A be a Noetherian ring, I�A an ideal,M a finite A-module, and (Mn)ně0 a descending I-filtration ofM.
Put B‚ =

À

ně0
In. TFAE :
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(i) The graded B‚-module
À

ně0
Mn is finitely generated.

(ii) IMn =Mn+1 for n " 0.

To utilize this lemma, we consider
À

ně0
Hi(X, InF)

À

ně0
Imβn Ď

À

ně0
Hi(X, F).

For each a P Im, the multiplication by a gives a map ImF Ñ In+dF Ď F , inducing homomorphisms on cohomology groups

Hi(X, InF) Hi(X, In+mF)

Hi(X, F).

By considering various m and a P Im, we can equip
À

ně0
Hi(X, InF) and

À

ně0
Hi(X, F) with B‚-module structures. With

such structures, the map
À

ně0
Hi(X, InF) Ñ

À

ně0
Hi(X, F) becomes a B‚-module homomorphism. In particular,

À

ně0
Imβn is

a B‚-submodule of
À

ně0
Hi(X, F), and

À

ně0
kerγn is a B‚-submodule of

À

ně0
Hi+1(X, InF). We claim

(3) The graded B‚-module
À

ně0
Hi(X, InF) is finite over B‚ for each i ě 0.

Once this is proved, (1) and (2) will follow immediately. Indeed, sinceB‚ is Noetherian, (3) implies the submodules
À

ně0
kerγn

and the homomorphic image
À

ně0
Imβn are finite over B‚ as well. The lemma above then applies, showing that there exist

n0,d ě 0 satisfying

(1)’ Imβn+1 = I Imβn for n ě n0, and

(2)’ kerγn+1 = Ikerγn for n ě d.

From (1)’, we see for all n ě n0 that

Imβn = In´n0 Imβn0 Ď In´n0Hi(X, F)

proving (1). Similarly, from (2)’ we see

kerγn+d = Id kerγn

for all n ě d. In particular, we see Im(kerγn+d Ñ kerγn) is the B‚-span of the homomorphisms

kerγn Ď Hi(X, InF) Hi(X, In+dF) Hi(X, InF)
a

with a running over Id. Hence it suffices to show each element in Id kills kerγn = In´d kerγd, or kills kerγd. This is obvious,
as from the long exact sequence we see

kerγd = Im(Hi(X, F/IdF) Ñ Hi+1(X, IdF))

and Hi(X, F/IdF) is an A/Id-module.
Now we only need to show (3). We need a variant of Grothendieck coherency theorem :

Theorem 7.21. Let f : X Ñ SpecA be a proper morphism of schemes withANoetherian. Let B be anA-algebra of finite type
and set B := f˚

rB. If F is a coherent B-module, then Hi(X, F) is a finite B-module for each i ě 0.
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We apply this theorem to the sheaf
À

ně0
InF which is clearly B = f˚

ĂB‚ =
À

ně0
(f˚

rI)n-coherent. This shows

Hi

(
X,

à

ně0
InF

)
–

à

ně0
Hi(X, InF)

is a finite B‚-module. Caution : one needs to check that this B‚-structure is the same as the one defined above, but this is
clear. This finishes the proof of (3), and hence the proof of formal function theorem.

7.6.1 Reformulation

Let f : X Ñ Y be a morphism of schemes and y P Y a point. Consider the base changes

Xn = XˆY Spec OY,y/m
n
Y,y X1 = f´1(y) X

Spec OY,y/m
n
Y,y Spec OY,y/mY,y Y

fn f1 f

Each Xn is the same as topological spaces : they are all the fibre f´1(y). What’s different is the structure sheaf ; Xn captures
more nilpotents when n grows. In some sense we are “thickening the fibre f´1(y)”.

7.6.2 Consequences

Theorem 7.22 (Zariski connectedness principle). Let π : X Ñ Y be a proper morphism between locally Noetherian schemes
with π˚OX – OY . Then π´1(q) is connected for each q P Y.

Proof.

7.7 Cohomology of base change

Theorem 7.23. Let f : X Ñ Y be a proper morphism of Noetherian schemes with Y = SpecA. Let F be a coherent OX-module
that is flat over Y, i.e., each stalk Fx is flat over OY,f(x). Then there exist a finite complex K‚ : 0 Ñ K0 Ñ K1 Ñ ¨ ¨ ¨ Ñ Kn Ñ 0
of finitely generated projective A-modules and a natural isomorphism

H‚(XˆY SpecB, F bA B) – H‚(K‚ bA B)

on the category of A-algebras B.

Proof. First we make a reduction so that this becomes a purely homological problem. Choose a finite affine open cover U
of X. By Corollary 8.15.1 (and since X is separated) and Theorem 8.7, we can compute the cohomology by the ordered Čech
complex C‚ = (C‚

ord(U , F),d‚), which is a finite complex as # U ă ∞, and consists of A-flat modules.
Also, for anyA-algebra B, tUˆY SpecB | U P Uu is an finite affine cover of XˆY SpecB, and C‚ bA B is the Čech complex

of F bA B for this cover. Therefore,

H‚(XˆY SpecB, F bA B) – H‚(C‚ bA B)

for all B, which is in fact functorial in B.
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8 Čech Cohomology

8.1 Definitions

Let X be a topological space, U = tUiuiPI an open cover of X and F a presheaf of abelian groups on X. For p ě 0, define a
complex (C‚(U , F),d‚) as follows. For each p ě 0, define the Čech p-th cochain group with values in F by

Cp(U , F) =
ź

i0,...,ipPI

F(Ui0 X ¨ ¨ ¨ XUip).

For a p-th cochain s P Cp(U , F), we write s(i0, . . . , ip) to denote its component in F(Ui0 X ¨ ¨ ¨ XUip).
For p ě 0, define the p-th coboundary map dp : Cp(U , F) Ñ Cp+1(U , F) by the formula

(ds)(i0, . . . , ip+1) =

p+1
ÿ

j=0
(´1)js(i0, . . . , pij, . . . , ip+1)

ˇ

ˇ

Ui0 X¨¨¨XUip+1
.

Lemma 8.1. For p ě 0, the composition

Cp(U , F) Cp+1(U , F) Cp+2(U , F)
dp dp+1

is zero.

Proof. Let s P Cp(U , F). Then

d(ds)(i0, . . . , ip+2) =

p+2
ÿ

j=0
(´1)j(ds)(i0, . . . , pij, . . . , ip+2)

ˇ

ˇ

Ui0 X¨¨¨XUip+2

=

p+2
ÿ

j=0

(
ÿ

0ďkăj

(´1)j+ks(i0, . . . , pik, . . . , pij, . . . , ip+2)
ˇ

ˇ

Ui0 X¨¨¨XUip+2

+
ÿ

jăkďp+2
(´1)j+k´1s(i0, . . . , pij, . . . , pik, . . . , ip+2)

ˇ

ˇ

Ui0 X¨¨¨XUip+2

)
= 0.

In this way we define a cochain complex (C‚(U , F),d)of abelian groups, called the Čech complex. Thep-th Čech-cohomology
group qHp(U , F) with respect to the cover U is then defined to be the p-th cohomology group of the Čech complex :

qHp(U , F) := Hp(C‚(U , F),d‚).

Lemma 8.2. The maps Cp(U , F) Ñ Cp(U , F:) (p ě 0) induced by sheafification commute with coboundaries.

Proof. Recall from (2.4) that for each open U Ď X the map F(U) Ñ F:(U) is given by s ÞÑ [sU : x ÞÑ (x, sx)].

Suppose V = tVjujPJ is another open cover X that refines U . Pick any map σ : J Ñ I such that Vj Ď Uσ(j) for all j P J. The
restriction induces a map on cochain group

refU ,p
V ,σ : Cp(U , F) Cp(V , F)

given by

refU ,p
V ,σ(s)(j0, . . . , jp) = s(σ(j0), . . . ,σ(jp))

ˇ

ˇ

Vj0 X¨¨¨XVjp
.
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Lemma 8.3. One has
dp+1 ˝ refU ,p

V ,σ = refU ,p+1
V ,σ ˝ dp.

This shows refsU ,‚
V ,σ induces a map on the Čech cohomology group, still denoted by

refU ,‚
V ,σ : qH‚(U , F) qH‚(V , F).

Proof.

The construction of refU ,‚
V ,σ depends on the mapσ between index sets, but it turns out that the resulting map on cohomology

levels is independent of σ. Suppose τ : J Ñ I is another map with Vj Ď Uτ(j). In particular, we have

Vj Ď Uσ(j) XUτ(j).

Suppose s is a 1-cocycle (i.e. ds = 0) for the cover U . Then

refU ,1
V ,σs(j0, j1) = s(σ(j0),σ(j1))

ˇ

ˇ

Vj0 XVj1

(omit the restriction) = s(σ(j0), τ(j1)) ´ s(σ(j1), τ(j1))

=
(
s(σ(j0), τ(j0)) + s(τ(j0), τ(j1))

)
´ s(σ(j1), τ(j1))

= refU ,1
V ,τs(j0, j1) + s(σ(j0), τ(j0)) ´ s(σ(j1), τ(j1)).

If we define t P C1(V , F) by t(j) := s(σ(j), τ(j)) P F(Vj), the above computation shows

refU ,1
V ,σs´ refU ,1

V ,τs = d
0t

i.e., two different ref differ only from a 1-coboundary. In general

Lemma 8.4. If s is a p-cocycle for the cover U , then

refU ,p
V ,σs´ refU ,p

V ,τs = d
p´1t

where t P Cp´1(V , F) is given by

t(j0, . . . , jp) =
p´1
ÿ

k=0
(´1)ks(σ(j0), . . . ,σ(jk), τ(jk), . . . , τ(jp´1))

ˇ

ˇ

Vj0 X¨¨¨XVjp
.

Proof.

This shows refU ,‚
V ,σ is in fact independent of the choice of σ in the cohomology level, and hence we can drop the subscript

when mentioning the cohomology map :

refU ,‚
V : qH‚(U , F) qH‚(V , F).

This also shows that all qH‚(U , F), with U ranging over all open covers of X, forms a directed system under the partial order
given by the refinement. Now we can define the p-th Čech cohomology group by

qH‚(X, F) = lim−Ñ
U

qH‚(U , F).
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Introduce the alternating Čech cochain group :

C
p
alt(U , F) =

#

s P Cp(U , F) |
s(i0, . . . , ip) = 0 if in = im for some n ‰ m

s(iσ(0), . . . , sσ(p)) = sgn(σ)s(i0, . . . , ip) for all σ P Sp+1.

+

When p = 1, every 1-cocycle is automatically alternating : if s P C1(U , F)with ds = 0, then s(i0, i1) = s(i0, i2)´s(i1, i2), and in
particular, if i0 = i1 = i, choosing i2 = i shows s(i, i) = 0 ; if we choose i2 = i0, then s(i0, i1) = s(i0, i0) ´ s(i1, i0) = ´s(i1, s0).
This is no longer holds for p ą 1.

Lemma 8.5. For p ě 0, one has dpCpalt(U , F) Ď C
p+1
alt (U , F).

Proof. Let s P C
p
alt(U , F). Then

(ds)(i0, . . . , ip+1) =

p+1
ÿ

j=0
(´1)js(i0, . . . , pij, . . . , ip+1)

ˇ

ˇ

Ui0 X¨¨¨XUip+1
.

If in = im for some n ‰ m, this formula readily implies that (ds)(i0, . . . , ip+1). To show ds is alternating, it suffices to check

ds(i0, . . . , in, . . . , im, . . . , ip+1) = ´ds(i0, . . . , im, . . . , in, . . . , ip+1).

for all n ă m.

Thus (C‚
alt(U , F),d‚) forms a subcomplex of (C‚(U , F),d‚). A significant result is the following

Theorem 8.6. The cohomology of (C‚
alt(U , F),d‚) is isomorphic to that of (C‚(U , F),d‚).

Proof. Let ă be a total order on I. For each k ě 0, define Dp(k) ď Cp(U , F) by

D
p

(k) = ts P Cp(U , F) | s(i0, . . . , ip) = 0 if i0 ă ¨ ¨ ¨ ă ip´ku .

Clearly we have 0 = Dp(p) Ď D
p

(1) Ď ¨ ¨ ¨ Ď D
p

(0) and dpDp(k) Ď D
(p+1)
(k) . Moreover, the inclusion induces an isomorphism

D
p

(0) ‘ C
p
alt(U , F) – Cp(U , F).

To see this, let s P Cp(U , F), and define sa P C
p
alt(U , F) by

sa(i0, . . . , ip) =

#

0 , if in = im for some n ‰ m

sgn(π)s(iπ(0), . . . , iπ(p)) , if π P Sp+1 is the unique element such that iπ(0) ă ¨ ¨ ¨ ă iπ(p).

It is clear from the construction that sa is alternating and s ´ sa P D
p

(0). This proves the above map is an isomorphism. In
fact, we have D‚

(0) ‘ C‚
alt(U , F) – C‚(U , F), and taking cohomology gives

qH‚(U , F) – H‚(C‚
alt(U , F),d‚) ‘H‚(D‚

(0),d‚).

We claimH‚(D‚
(0),d‚) = 0, i.e., (D‚

(0),d‚) is exact. It suffices to show the quotient complex (D‚
(k)/D

‚
(k+1),d‚) is exact for each

k.
There is an isomorphism induced by the projection

D
p

(k)/D
p

(k+1) –

$

’

’

&

’

’

%

s P
ź

i0,...,ipPI
i0ă¨¨¨ăip´k´1

F(Ui0 X ¨ ¨ ¨ XUip) | s(i0, . . . , ip) = 0 if i0 ă ¨ ¨ ¨ ă ip´k

,

/

/

.

/

/

-
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The right-handed side also defines a complex with coboundary map defined as before, and this isomorphism in fact an
isomorphism of these two complexes. From now on we identify (D‚

(k)/D
‚
(k+1),d‚) with the right-handed side. Define

hp : Dp(k)/D
p

(k+1) D
p´1
(k) /D

p´1
(k+1)

as follows. For i0, . . . , ip´1 P Iwith i0 ă ¨ ¨ ¨ ă ip´k´2, set

hps(i0, . . . , ip´1)

=

$

’

’

’

&

’

’

’

%

0 , if ip´k´1 = in for some 0 ď n ď p´ k´ 2
(´1)n+1s(i0, . . . , in, ip´k´1, in+1, . . . , ip´1) , if in ă ip´k´1 ă in+1 for some 0 ď n ď p´ k´ 3

s(ip´k´1, i0, . . . , ip´1) , if ip´k´1 ă i0

0 , if ip´k´1 ą ip´k´2

We show dp´1 ˝hp+hp+1 ˝dp = id, proving the exactness of (D‚
(k)/D

‚
(k+1),d‚). Let i0, . . . , ip P Iwith i0 ă . . . ă ip´k´1. We

have

dp´1 ˝ hp(s)(i0, . . . , ip) =
p
ÿ

j=0
(´1)jhps(i0, . . . , pij, . . . , ip)

=
ÿ

0ďjďp´k´1
(´1)jhps(i0, . . . , pij, . . . , ip´k´1, . . . , ip)

+
ÿ

p´k´1ăjďp

(´1)jhps(i0, . . . , ip´k´1, . . . , pij, . . . , ip)

=
ÿ

0ďjďp´k´1
(´1)jhps(i0, . . . , pij, . . . , ip´k´1, . . . , ip).

There are four cases.

— ip´k = in for some 0 ď n ď p´ k´ 1. Then

hp+1 ˝ dp(s)(i0, . . . , ip) = 0

and

dp´1 ˝ hp(s)(i0, . . . , ip) = (´1)n(´1)ns(i0, . . . , in´1, ip´k, in+1, . . . , ip) = s(i0, . . . , ip).

So in this case the homotopy relation holds.

— in ă ip´k ă in+1 for some 0 ď n ď p´ k´ 2. Then

dp´1 ˝ hp(s)(i0, . . . , ip) =
ÿ

0ďjďp´k´1
(´1)jhps(i0, . . . , pij, . . . , ip´k´1, . . . , ip)

=
ÿ

0ďjďn

(´1)j(´1)ns(i0, . . . , pij, . . . , in, ip´k, in+1, . . . , )+

+
ÿ

n+1ďjďp´k´1
(´1)j(´1)n+1s(i0, . . . , in, ip´k, in+1, . . . , pij, . . . , ip´k´1, . . .)
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hp+1 ˝ dp(s)(i0, . . . , ip) = (´1)n+1dps(i0, . . . , in, ip´k, in+1, . . . , ip´k´1, . . . , ip)

= (´1)n+1

(
ÿ

0ďjďn

(´1)js
(
i0, . . . pij, . . . , in, ip´k, in+1, . . .

)
+ (´1)n+1s(i0, . . . , ip)

+
ÿ

n+1ďjďp

(´1)j+1s(i0, . . . , in, ip´k, in+1, . . . , pij, . . .)
)

= s(i0, . . . , ip) + (´1)n+1
ÿ

0ďjďn

(´1)js
(
i0, . . . pij, . . . , in, ip´k, in+1, . . .

)
+ (´1)n+1

ÿ

n+1ďjďp´k´1
(´1)j+1s(i0, . . . , in, ip´k, in+1, . . . , pij, . . . , ip´k´1, . . . , ip)

Hence the homotopy relation holds as well.

— ip´k ą ip´k´1. Each term is zero.

— ip´k ă i0. Then

dp´1 ˝ hp(s)(i0, . . . , ip) =
ÿ

0ďjďp´k´1
(´1)js(ip´k, i0, . . . , pij, . . . , ip)

hp+1 ˝ dp(s)(i0, . . . , ip) = dp(s)(ip´k, i0, . . . , ip)

= s(i0, . . . , ip) ´
ÿ

0ďjďp´k´1
(´1)js(ip´k, i0, . . . , pij, . . . , ip´k´1, . . . , ip).

Thus the homotopy relation holds.

In any case we see dp´1 ˝ hp + hp+1 ˝ dp = id holds, and this completes the proof.

There is an equivalent formulation of the alternating Čech complex. Let ă be a total order on I. Define the ordered Čech
complex (C‚

ord(U , F),d‚) as follows : set

C
p
ord(U , F) =

ź

i0ă¨¨¨ăip

F(Ui0 X ¨ ¨ ¨ XUip)

and set dp as before. There is a natural projection

πp : Cp(U , F) C
p
ord(U , F).

Its restriction to Cpalt(U , F) is an isomorphism of complexes with inverse

ψp : Cpord(U , F) C
p
alt(U , F)

given by

ψp(s)(i0, . . . , ip) =

#

0 , if in = im for some n ‰ m

sgn(π)s(iπ(0), . . . , iπ(p)) , if π P Sp+1 is the unique element such that iπ(0) ă ¨ ¨ ¨ ă iπ(p).

The last theorem together with the above discussion leads to

Theorem 8.7. Let X be a topological space, U an open cover of X and F a presheaf on X. Then all arrows below are
quasi-isomorphisms.

C
p
alt(U , F) Cp(U , F) C

p
ord(U , F).inclusion projection
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8.2 Basic properties

8.2.1 Long exact sequence for cohomology

An easy argument shows that Čech cohomology is a δ-functor from the category of presheaves of abelian groups over X
to that of abelian groups. Explicitly, for every short exact sequence

0 F1 F2 F3 0

of presheaves, and for every open cover U of X, there exists a long exact sequence on the cohomology groups :

0 qH0(U , F1) qH0(U , F2) qH0(U , F3) qH1(U , F1) qH1(U , F2) ¨ ¨ ¨
δ

Moreover, by passing to refinement we obtain (recall that lim−Ñ
is exact in the category of Z-modules)

0 qH0(X, F1) qH0(X, F2) qH0(X, F3) qH1(X, F1) qH1(X, F2) ¨ ¨ ¨
δ

But in applications, we are interested in the cohomology of sheaves, and a short exact sequence of sheaves is barely exact
as a sequence of presheaves. But the long exact cohomology sequence continues to hold in reasonable cases. Say

0 F1 F2 F3 0

is an exact sequence of sheaves. Define a subpresheaf F˚
3 of F3 by

F˚
3 (U) := Im (F2(U) Ñ F3(U)) .

Then we obtain a short exact sequence of presheaves

0 F1 F2 F˚
3 0

whence a long exact sequence

¨ ¨ ¨ qHi(X, F1) qHi(X, F2) qHi(X, F˚
3 )

qHi+1(X, F1) ¨ ¨ ¨
δ

Now F3 is the sheafification of F˚
3 , so we can replace F˚

3 by F3 in the above sequence if we can prove the following assertion

˛ for all presheaves F over X, the canonical maps (c.f. (8.2))

qHi(X, F) qHi(X, F:)

are isomorphisms.

The statement (˛) will follow if the following assertion holds :

˛˛ If F is a presheaf over X such that F: = 0, then qHi(X, F) = 0.

Proposition 8.8. (˛˛) holds when X is a Hausdorff paracompact space.

Proof. Since X is paracompact, locally finite covers of X form a cofinal system among all open covers of X, and hence it
suffices to compute Čech cohomology group with respect to every locally finite cover. So let U = tUiui be such a cover.
Each point x P X is contained in some Ui, and by regularity (a paracompact space is normal, and hence regular) we can
find an open Wx Q x with Wx Ď Wx Ď Ui. Pick a locally finite open refinement W of tWxu. Define f : W Ñ I by requiring
W Ď Uf(W) for eachW P W , and set

Vi :=
ď

f(W)=i

W
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Then Vi Ď Vi Ď Ui. We claim V = tViuiPI is locally finite. Let x P X and pick a neighborhood N of x such that #tW P W |

W XN ‰ Hu ă ∞. IfNX Vi is nonempty, thenN intersects nontrivially with someW with f(W) = i, and vice versa. Hence

#ti P I | Vi XN = Hu ď #tW P W | W XN ‰ Hu ă ∞
and this proves the locally finiteness of V .

Now we prove (˛˛). Let s P Cp(U , F). Let x P X ; by locally finiteness we can find a neighborhood Nx such that

(i) x P Vi implies Nx Ď Vi,

(ii) Nx X Vi ‰ H implies Nx Ď Vi, and

(iii) x P Ui0 X ¨ ¨ ¨ XUip implies Nx Ď Ui0 X ¨ ¨ ¨ XUip and s(i0, . . . , ip)|Nx
= 0.

Indeed, (i) and (iii) follow from locally finiteness and assumption. For (ii), we can first pickN 1
x so that it intersects only with

finitely many Vi and then choose
Nx Ď N 1

x X
ď

xPVi

Vi X
ď

xRVi

(N 1
xzVi).

Now take W = tNxuxPX. Then W refines V and refU ,p
W (s) = 0 as a cochain. Indeed, suppose Nx0 X ¨ ¨ ¨ X Nxp ‰ H and

pick i0, . . . , ip P I with Nxn Ď Vin . We must show s(i0, . . . , ip)|Nx0 X¨¨¨XNxp
= 0. But Nx0 X ¨ ¨ ¨ XNxp Ď Nxn Ď Vin implies

Nx0 X Vin ‰ H, so by (ii) Nx0 Ď Vin for each 0 ď n ď p. Hence

s(i0, . . . , ip)|Nx0 X¨¨¨XNxp
=
(
s(i0, . . . , ip)|Nx0

)ˇ
ˇ

Nx0 X¨¨¨XNxp
= 0

by (iii).

It is sad that we do not have a long exact sequence for Čech cohomology for sheaves in general. Nevertheless, this is true
in low dimension.

Proposition 8.9. Let X be a topological space and

8.2.2 Comparison between refinement

Proposition 8.10. Let X be a topological space, F a sheaf of abelian groups on X, and U = tUiuiPI and V = tVjujPI two open
covers of X. Suppose V refines U . For every finite subset I0 Ď I, put UI0 =

Ş

iPI0

Ui, and denote by V |US0
the cover of US0

induced by V . Assume

qHp(V |US0
, F |US0

) = 0 for all S0 and p ą 0.

Then refU‚

V : qH‚(U , F) Ñ qH‚(V , F) is an isomorphism.

Proof. We compare two cohomologies by double complexes. For p,q ě 0, define

Cp,q =
ź

i0,...,ipPI

ź

j0,...,jqPJ

F(Ui0 X ¨ ¨ ¨ XUip X Vj0 X ¨ ¨ ¨ X Vjq).

Define two differentials d1 : Cp,q Ñ Cp+1,q and d2 : Cp,q Ñ Cp,q+1 by the usual differentials but ignoring either i0, . . . , ip or
j0, . . . , jq. Then d2

i = 0, i = 1, 2 and d1d2 = d2d1, and we obtain a commutative first quadrant double complex
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...
...

...

C0,2 C1,2 C2,2 ¨ ¨ ¨

C0,1 C1,1 C2,1 ¨ ¨ ¨

C0,0 C1,0 C2,0 ¨ ¨ ¨

d2

d1

d2

d1

d2

d2

d1

d2

d1

d2

d2

d1

d2

d1

d2

Put
C(n) = tot(C‚,‚)n =

ÿ

p+q=n
p,qě0

Cp,q

to be the total complex of this double complex, and put

d :=
ÿ

p+q=n
p,qě0

(d1 + (´1)pd2) : C
(n) −Ñ C(n+1)

to be the differential of C(n). By our assumption, the d2-cohomology of columns vanish for all p ě 0 and q ą 0. On the other
hand, the d1-cohomology of rows also vanish for all p ą 0 and q ě 0. This is because the cover used in that Čech complex
contains the whole space, and the following lemma witnesses the vanishing.

Lemma 8.11. Let X be a topological space, F a sheaf of abelian groups, and U an open cover of X with X P U . Then
qHp(U , F) = 0 for all p ą 0.

Proof. Say X = Uζ for some ζ P I. If s is a p-cocycle, define t P Cp´1(U , F) by

t(i0, . . . , ip´1) = s(ζ, i0, . . . , ip´1).

Then dt = s. Indeed,

dt(i0, . . . , ip) =
p
ÿ

j=0
(´1)js(ζ, i0, . . . , pij, . . . , ip).

On the other hand,

0 = ds(ζ, i0, . . . , ip) = s(i0, . . . , ip) ´

p
ÿ

j=0
(´1)js(ζ, i0, . . . , pij, . . . , ip).

so summing these two up gives dt = s.

To finish the proof, we use the following homological lemma whose proof is omitted.
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Lemma 8.12. Consider the following double complex

...
...

...
...

...

0 F3 K0,3 K1,3 K2,3 K3,3 ¨ ¨ ¨

0 F2 K0,2 K1,2 K2,2 K3,2 ¨ ¨ ¨

0 F1 K0,1 K1,1 K2,1 K3,1 ¨ ¨ ¨

0 F0 K0,0 K1,0 K2,0 K3,0 ¨ ¨ ¨

with all rows exact. Then the natural map F Ñ tot(K) is a quasi-isomorphism.

Since F is a sheaf, the kernel d1 : C0,q Ñ C1,q is exactly Cq(V , F), and similarly ker(d2 : Cp,0 Ñ Cp,1) = Cp(U , F). These
natural inclusions give rise to the isomorphisms

qH‚(V , F)
„−Ñ H‚(C(‚),d)

and

qH‚(U , F)
„−Ñ H‚(C(‚),d).

It remains to show the composition

qHn(U , F) Hn(C(‚),d) qHn(U , F)

coincides with refU ,n
V . Let s be an n-cocycle for U . Then s P Cn,0 and refU ,n

V (s) P C0,n. It is enough to show they are
cohomologous in the total complex. To be precise, we have refU ,n

V (s) ´ s P C(n), and we show there exists t P C(n´1) such
that dt = refU ,n

V (s) ´ s. Define t P C(n´1) by setting its (ℓ,n´ 1 ´ ℓ)-th component tℓ to be

tℓ(i0, . . . , iℓ, j0, . . . , jn´1´ℓ) = (´1)ℓs(i0, . . . , iℓ,σ(j0), . . . ,σ(jn´1´ℓ))
ˇ

ˇ

Uti0,...,iℓuXVtj0,...,jn´1´ℓu

where σ : J Ñ I is a map such that Vj Ď Uσ(j). Then

d1tn´1(i0, . . . , in, j0) =
n
ÿ

k=0
(´1)ktn´1(i0, . . . , pik, . . . , in, j0)

=
n
ÿ

k=0
(´1)k(´1)n´1s(i0, . . . , pik, . . . , in,σ(j0))

(cocycle condition) = ´s(i0, . . . , in)

for 0 ď ℓ ď n´ 2

d1tℓ(i0, . . . , iℓ, iℓ+1, j0, . . . , jn´1´ℓ) + (´1)ℓ+1d2tℓ+1(i0, . . . , iℓ, iℓ+1, j0, . . . , jn´1´ℓ)

=
ℓ+1
ÿ

k=0
(´1)k(´1)ℓs(i0, . . . , pik, . . . , iℓ+1,σ(j0), . . . ,σ(jn´1´ℓ))

+ (´1)ℓ+1
n´1´ℓ
ÿ

k=0
(´1)k(´1)ℓ+1s(i0 . . . , iℓ+1,σ(j0), . . . , zσ(jk), . . . ,σ(jn´1´ℓ))

= (´1)ℓds(i0, . . . , iℓ+1,σ(j0), . . . ,σ(jn´1´ℓ)) = 0
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and

d2t0(i0, j0, . . . , jn) =
n
ÿ

k=0
(´1)ks(i0,σ(j0), . . . , zσ(jk), . . . ,σ(jn))

(cocycle condition) = s(σ(j0), . . . ,σ(jn)) = refU ,n
V ,σ(s)(j0, . . . , jn)

The above computation shows dt = refU ,n
V ,σ(s) ´ s, and the proof is completed.

8.2.3 Sheafified Čech complex

Let X be a topological space, U = tUiuiPI be an open cover and F a presheaf of abelian groups. For p ě 0, we define a
presheaf Cp(U , F) by

Cp(U , F)(V) =
ź

i0,...,ipPI

F(V XUi0 X ¨ ¨ ¨ XUip).

and for two open V1 Ď V2 Ď X, two groups are connected with restriction :

Cp(U , F)(V2) a Cp(U , F)(V1)

ś

i0,...,ipPI

F(V1 XUi0 X ¨ ¨ ¨ XUip) a
ś

i0,...,ipPI

F(V2 XUi0 X ¨ ¨ ¨ XUip)
restriction

ö

Equivalently, if for each tuple (i0, . . . , ip) P Ip+1 we put ιi0,...,ip : Ui0 X ¨ ¨ ¨ XUip Ñ X to be the natural inclusion, then

Cp(U , F) =
ź

i0,...,ipPI

(ιi0,...,ip)˚

(
F |Ui0 X¨¨¨XUip

)
The Čech differential d on each Cp(U , F)(V) is packed together to a morphism

dp : Cp(U , F) Cp+1(U , F)

and we obtain a complex of presheaves :

0 F C0(U , F) C1(U , F) C2(U , F) ¨ ¨ ¨
ϵ d0 d1

where ϵ : F Ñ C0(U , F) is the product of maps F Ñ (ιi)˚ (F |Ui
) (i P I). Observe the following properties.

— If F is a sheaf (resp. flasque sheaf), so is each Cp(U , F).

— F is a sheaf if and only if the above complex is exact at the first two places.

— Γ(X, Cp(U , F)) = Cp(U , F).

In fact, more is true.

Lemma 8.13. For any sheaf F of abelian groups on X, the sequence

0 F C0(U , F) C1(U , F) C2(U , F) ¨ ¨ ¨
ϵ d0 d1

is exact as sheaves.

Proof. The first two places are already exact. To show the exactness at remaining places, we check them on the stalks. To
this end, we construct k0 : C0(U , F)x Ñ Fx and for each p ě 1

kp : Cp(U , F)x Cp´1(U , F)x
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and prove ϵ ˝ k0 + k1 ˝ d0 = id and dp´1 ˝ kp + kp+1 ˝ dp = id.
Let x P X be given and an index j P I such that x P Uj. Given sx P Cp(U , F)x, it is represented by some s P Γ(V , Cp(U , F)x)

for some neighborhood V of x ; choose V so small that V Ď Uj. Now for i0, . . . , ip´1 P I, put

kps(i0, . . . , ip´1) = s(j, i0, . . . , ip´1)
ˇ

ˇ

x
.

This makes sense as V X Ui0 X ¨ ¨ ¨Uip´1 = V X Uj X Ui0 X ¨ ¨ ¨Uip´1 , and this map is independent of the choice of V Ď Uj.
Now compute

kp+1 ˝ dps(i0, . . . , ip) = dps(j, i0, . . . , ip)|x

dp´1 ˝ kps(i0, . . . , ip) =
p
ÿ

k=0
(´1)kkps(i0, . . . , pik, . . . , ip)

=

p
ÿ

k=0
(´1)ks(j, i0, . . . , pik, . . . , ip) = s(i0, . . . , ip) ´ dps(j, i0, . . . , ip)

and

ϵ ˝ k0s(i) = k0s(i) = s(j, i).

These proves the homotopy relations, and the proof is completed.

Corollary 8.13.1. Let X denote a topological space, U an open cover of X and F a sheaf of abelian groups on X. Then for any
p ě 0 there exists a natural map qHp(U , F) Ñ Hp(X, F) functorial in F .

Proof. Let 0 Ñ F Ñ I‚ denote an injective resolution of F in ModZX
. Consider the diagram

0 F C0(U , F) C1(U , F) ¨ ¨ ¨

0 F I0 I1 ¨ ¨ ¨

id

A general result says that there exists a morphism of complexes C‚(U , F) Ñ I‚ making the above diagram commute, and
the morphism is unique up to homotopy. Now the result follows once we taking global sections and cohomology. The
functoriality follows again from the fact above.

Corollary 8.13.2. Let X denote a topological space and U any open cover of X. If F is a flasque sheaf, then qHp(U , F) = 0 for
all p ě 1.

Proof. Since F is flasque, the sheafified Čech complex is a flasque, hence acyclic, resolution of F , and thus it computes the
sheaf cohomology. But since F is flasque, by Lemma 7.2 F is acyclic, and the result follows.

Corollary 8.13.3. Let X be a topological space and F a sheaf of abelian groups. If for any open U and any open cover U of U,
we have qHp(U , F) = 0 for p ě 1, then Hp(U, F) = 0 for all opens U Ď X.

Proof. Take an embedding j : F Ñ I into some flasque sheaf I , and take their quotient Q in AbX ; then we have a short
exact sequence in AbX

0 F I Q 0

By our assumption, this is in fact an exact sequence in Abpre
X . Indeed, for any openU Ď X and s P Q(U), take an open cover U

ofU such that s|V comes from an element tV in I(V) for any V P U . On VXW with V ,W P U , the element tV |VXW´tW |VXW

maps to 0 in Q(V XW), so tV |VXW ´ tW |VXW comes from an element uVW P F(V XW). Since qH1(U , F) = 0 by assumption,
there exists (uV)V P C1(U , F) such that uV |VXW ´ uW |VXW = uVW for any V ,W P U . Then (jV(uV) ´ tV)V glues to
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t P I(U) which maps down to s. (Alternatively this can be deduced by combining (8.16) and the long exact sequence of sheaf
cohomology.) Hence we have a short exact sequence

0 C‚(U , F) C‚(U , I) C‚(U , Q) 0

and therefore a long exact sequence in Čech cohomology. It follows from Corollary 8.13.2 that qHp(U , Q) = 0 for p ě 1, for
any open U and any open cover U of U.

Now for any open U Ď X and p ě 0 consider the exact sequence of sheaf cohomology

Hp(U, F) Hp(U, I) Hp(U, Q) Hp+1(U, F) 0 = Hp+1(U, I).

Here Hp+1(U, I) = 0 as I is flasque. When p = 0 we have just proved the map H0(U, I) Ñ H0(U, Q) is surjective, so
H1(U, F) = 0. Since F is arbitrary,H1(U, Q) = 0 as well. But thenH2(U, F) = 0, henceH2(U, Q) = 0. Continuing this process
we deduce Hp(U, F) = 0 for p ě 1.

For the sake of completeness and future use, the statement and the proof of the homological lemma used in (8.13.1) is
included here.

Lemma 8.14. Let C be an abelian category with enough injective. Let φ :M Ñ N be a morphism in C. SupposeN Ñ I‚ is an
injective resolution ofN andM Ñ E‚ is an arbitrary resolution. Then there exists a map E‚ Ñ I‚ of chain complexes making
the diagram

0 M E0 E1 ¨ ¨ ¨

0 N I0 I1 ¨ ¨ ¨

φ

commutes. Moreover, any such two maps of chain complexes are homotopic.

8.3 Comparison to sheaf cohomology

Theorem 8.15. Let X be a topological space, U = tUiuiPI an open cover of X and F a sheaf of abelian groups on X. Suppose
that for any p ą 0 and any finite intersection V = Ui0 X ¨ ¨ ¨ X Uik of elements in U , we have Hp(V , F |V) = 0. Then for any
p ě 0, the natural map in Corollary 8.13.1 is an isomorphism.

Proof. When p = 0, the natural map qHp(U , F) Ñ H0(X, F) is induced by the identity map id : F(X) Ñ F(X). It follows from
definition that qHp(U , F) = F(X) = H0(X, F), so the theorem holds for p = 0.

For p ą 0, embed F into a flasque sheaf I and consider the resulting short exact sequence

0 F I G 0.

By assumption for any k ě 0 and i0, . . . , ik P I, the sequence

0 F(Ui0 X ¨ ¨ ¨ XUip) I(Ui0 X ¨ ¨ ¨ XUip) G(Ui0 X ¨ ¨ ¨ XUip) 0

is exact, and taking product over all (k+ 1)-tuples gives an exact sequence of Čech complexes :

0 C‚(U , F) C‚(U , I) C‚(U , G) 0

This gives a long exact sequence of Čech cohomology groups ; in view of Corollary 8.13.2, we have an exact sequence

0 qH0(U , F) qH0(U , I) qH0(U , G) qH1(U , F) 0 (‹)
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and isomorphisms

qHp(U , G) – qHp+1(U , F) (‹‹)

for p ě 1 (given by connecting homomorphisms). Since the maps qH‚(U , F) Ñ H‚(X, F) are functorial, by the case p = 0, the
sequence (‹) implies qH1(U , F) Ñ H1(X, F) is an isomorphism.

Let V be any finite intersection of elements in U . The restriction F ÞÑ F |V being exact, we have an exact sequence

0 F |V I|V G|V 0

with I|V still flasque. The resulting long exact sequence on cohomology shows that Hk(V , G|V) = 0 for any k ą 0. Now the
result follows from induction on p and the isomorphisms (‹‹).

Corollary 8.15.1. Let X be a separated scheme, U = tUiuiPI an open affine cover of X, and let F a quasi-coherent sheaf on X.
Then for p ě 0, the natural map in Corollary 8.13.1 is an isomorphism.

Proof. It suffices to take U to be an affine cover of X. Then the assumption in Theorem 8.15 holds by Theorem 7.12 (that X is
separated is use here !).

In general, Čech cohomology does not coincide with sheaf cohomology. But in the degree 1, two cohomology groups are
always isomorphic. Precisely,

Proposition 8.16. Let X be a topological space and F a sheaf of abelian groups on X.

1. For open covers U and V of X, if V refines U , we have a commutative triangle

qH‚(U , F)

H‚(X, F)

qH‚(V , F)

refU ,‚
V

where the slanted arrows are natural maps in Corollary 8.13.1.

By 1. we can pass to limit, obtaining a map qH‚(X, F) Ñ H‚(X, F).

2. The map qH1(X, F) Ñ H1(X, F) is an isomorphism.

Proof. Using the same map on index sets for induced covers, various refinement maps are packed to a morphism of sheafified
Čech complexes ref : C‚(U , F) Ñ C‚(V , F). We then have a commutative diagram

0 F C0(U , F) C1(U , F) ¨ ¨ ¨

0 F C0(V , F) C1(V , F) ¨ ¨ ¨

0 F I0 I1 ¨ ¨ ¨

id ref ref

id

Now 1. follows from Lemma 8.14.
For 2., embed F into a flasque sheaf I and take the quotient G = I/F . Define a complex D‚(U) by the exact sequence

0 C‚(U , F) C‚(U , G) D‚(U) 0
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The natural map D‚(U) Ñ C‚(U , G) and this exact sequence are compatible with refinement. Now taking cohomology,
together with Corollary 8.13.2, gives

0 F(X) I(X) H0(D‚(U)) qH1(U , F) 0

0 F(X) I(X) G(X) H1(X, F) 0

Each map is natural as in Corollary 8.13.1. Moreover, the third map is the composition H0(D‚(U)) Ñ qH0(U , G) Ñ H0(X, G).
Being compatible with refinement, we can pass the first sequence to the limit, obtaining

0 F(X) I(X) lim−Ñ
U
H0(D‚(U)) lim−Ñ

U

qH1(U , F) 0

0 F(X) I(X) G(X) H1(X, F) 0

To show that last vertical arrow is an isomorphism, it suffices to show the third vertical one is an isomorphism. The injectivity
is clear ; in fact, it is already injective before taking limit. To see surjectivity, for x P G(X), by surjectivity of stalks we can find
an open cover U = tUiuiPI such that x|Ui

= si for some si P I(Ui). This means x lies in Im(C0(U , I) Ñ C0(U , G)) X G(X) =
H0(D‚(U)), demonstrating the surjectivity.

8.3.1 Base change morphisms

Let f : Y Ñ X be a continuous map between topological spaces and let F be a sheaf of abelian groups on X. Let U be an
open cover of X, and put f´1U := tf´1(U) | U P Uu which is an open cover of Y. For each p ě 0, we have a map

Cp(U , F) Cp(f´1U , f´1F)

which is induced by F(U) Ñ (f´1F)(f´1(U)). This is the topological base change map on the level of qCech complexes. In
fact, this gives a morphism

Cp(U , F) f˚Cp(f´1U , f´1F)

Lemma 8.17. The maps Cp(U , F) Ñ Cp(f´1U , f´1F) (p ě 0) commute with coboundary maps.

This shows the topological base change maps defines a map of complexes C‚(U , F) Ñ C‚(f´1U , f´1F), so it induces a
map between cohomologies

qHp(U , F) qHp(f´1U , f´1F)

This is the topological base change map in terms of qCech cohomology for the cover U . One checks at once that this commutes
with refinement map, so it further passes to a map between genuine qCech cohomologies :

qHp(X, F) lim−Ñ
U

qHp(f´1U , f´1F) Ñ qHp(Y, f´1F).

The goal of this subsubsection is to show the qCech-sheaf (c.f. §7.5.3) compatibility of base change maps.

Lemma 8.18. The diagram
qHp(U , F) qHp(f´1U , f´1F)

Hp(X, F) Hp(Y, f´1F)
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commutes. Here the horizontal arrows are topological base change maps, and the vertical arrows are as in (8.13.1).

Proof. Let F Ñ I‚ and f´1F Ñ J ‚ be injective resolutions. By Lemma 8.14, we have a map of complexes C‚(U , F) Ñ I‚

extending the identity map F id
Ñ F and

C‚(f´1U , f´1F)

f´1I‚ J ‚

both extending the identity map f´1F id
Ñ f´1F . We complete this corner into a diagram

f´1C‚(U , F) C‚(f´1U , f´1F)

f´1I‚ f´1I‚ J ‚

.

The upper-horizontal is the adjunction of the topological base change map. Every vertex is pointed by an arrow starting
from f´1F , and the resulting cone has commutative faces by construction, so this trapezoid commutes by Lemma 8.14 (each
vertex is an exact complex since f´1 is exact). By adjunction, this gives a commutative trapezoid

C‚(U , F) f˚C‚(f´1U , f´1F)

I‚ f˚f
´1I‚ f˚J ‚

.

Taking global section and then taking cohomology give the desired commutative diagram.

Now assume X, Y are ringed spaces and f P HomRS(Y,X). Then the natural map f´1F Ñ f˚F induces, for each p ě 0, a
map

Cp(V , f´1F) Cp(V , f˚F)

with V an arbitrary open cover of Y. Again, it induces a morphism Cp(V , f´1F) Ñ Cp(V , f˚F) of sheafified qCech complexes.
It follows at once (and by Lemma 8.2) that these commute with coboundary maps, so it induces a corresponding map
between cohomologies

qHp(V , f´1F) qHp(V , f˚F) .

Lemma 8.19. The diagram
qHp(V , f´1F) qHp(V , f˚F)

Hp(Y, f´1F) Hp(Y, f˚F)

commutes. Here horizontal arrows are those induced by f´1F Ñ f˚F , and the vertical arrows are again as in (8.13.1).

Proof. This follows from the functoriality part of (8.13.1).
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We are ready to define the base change map for qCech-cohomology and establishes the qCech-sheaf comparison. Retain
the notation above. The composition

qHp(U , F) qHp(f´1U , f´1F) qHp(f´1U , f˚F)

is the base change map for qCech-cohomology. By the compatibility proved above, we obtain the following

Theorem 8.20. The diagram
qHp(U , F) qHp(f´1U , f˚F)

Hp(X, F) Hp(Y, f˚F)

commutes. Here the horizontal arrows are base change maps, and the vertical arrows are as in (8.13.1).

8.4 Cohomology of projective spaces

Let A be a ring, n P Zě0 and let U = tD+(xi)u
n
i=0 be the standard affine cover of PnA. The goal of this subsection is to

compute the Cech cohomology

qHp(U , OPn
A
(m))

of the invertible sheaves OPn
A
(m) (m P Z).

Put X = An+1
A zV(t0 ¨ ¨ ¨ tn). Recall from Example 3.132 there is a A-morphism

π : X PnA = ProjA[x0, . . . , xn]

such that π˚OPn
A
(1) – OX and ti = π˚xi for 0 ď i ď n under this isomorphism. Consider the morphism

C
p
ord(U , OPn

A
(m)) C

p
ord(π

´1U ,π˚OPn
A
(m)) – C

p
ord(π

´1U , OX). (♠)

induced by the pullback by π. Notice π´1U = tD(ti)u
n
i=0 is the standard cover of X = An+1

A zV(t0 ¨ ¨ ¨ tn). Let’s look at a
particular piece : if I Ď t0, 1, . . . ,nu with #I = p+ 1 as multisets, the corresponding I-th part is simply the inclusion Check !

A[x0, . . . , xn][tx´1
i uiPI]deg=m A[t0, . . . , tn][tt´1

i uiPI]

xj tj.
(♣)

In particular, this shows (♣) is a split injection of complexes, whence inducing an injection on the level of cohomology

qHp(U , OPn
A
(m)) qHp(π´1U , OX). .

By using the ordered Čech complex (c.f. (8.7)), we see

qHp(U , OPn
A
(m)) = 0

whenever p ą n or p ă 0. For the other case, we first compute qHp(π´1U , OX). Again we use ordered Čech complexes to
facilitate our computation. In this case the complex to be considered has the form

0 R
ź

0ďiďn

R[t´1
i ]

ź

0ďiăjďn

R[t´1
i , t´1

j ] ¨ ¨ ¨ R[t´1
0 , . . . , t´1

n ] 0
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where R = A[t0, . . . , tn]. We claim this is exact except at the last nonzero place. This complex is, modulo some signs, an
n+ 1-fold tensor product, i.e., it is

â

0ďiďn

[0 Ñ R Ñ R[t´1
i ] Ñ 0]

where the position R is degree 0. We prove more generally that

0 R
ź

0ďiďn
iPI

R[t´1
i ]

ź

0ďiăjďn
i,jPI

R[t´1
i , t´1

j ] ¨ ¨ ¨ R[tt´1
i uiPI] 0

is exact except at the last place for any I Ď t0, 1, . . . ,nu by induction on #I. The case where #I = 1 is clear. Let n+ 1 ě #I ě 2 ;
without loss of generality we assume n P I. Consider

0

R[t´1
n ]

0 R
ź

0ďiďn´1
iPI

R[t´1
i ]

ź

0ďiăjďn´1
i,jPI

R[t´1
i , t´1

j ] ¨ ¨ ¨ R[tt´1
i un‰iPI] C 0

0

where C is the cokernel of the last place ; introducing C makes the horizontal complex exact. Since R Ñ R[t´1
n ] is flat, by

Lemma 8.12, the tensor complex

0 R
ź

0ďiďn
iPI

R[t´1
i ]

ź

0ďiăjďn
i,jPI

R[t´1
i , t´1

j ] ¨ ¨ ¨ R[tt´1
i uiPI] ‘ C Cb R[t´1

n ] 0

is exact. Truncating at the last second place and projecting down, we still need to prove the exactness of
ź

iăj, i,jPI
R[tt´1

k ukPI,k‰i,j]
ź

iPI

R[tt´1
k ui‰kPI] R[tt´1

k ukPI] (♠)

Since each arrow preserves degrees of each ti, it suffices to check the exactness monomial by monomial. Consider the
diagram 3

0
ź

iăj‰n, i,jPI
R[tt´1

k ukPI,k‰i,j]
ź

n‰iPI

R[tt´1
k ui‰kPI] R[tt´1

k ukPI] 0

0
ź

iăj, i,jPI
R[tt´1

k ukPI,k‰i,j]
ź

iPI

R[tt´1
k ui‰kPI] R[tt´1

k ukPI] 0

0
ź

iăn, iPI
R[tt´1

k ukPI,k‰i,n] R[tt´1
k un‰kPI] 0 0

By construction each column is a short exact sequence. By induction hypothesis the first row is exact at the middle. Also
by induction hypothesis, if we restrict the third row to a single monomial, we see it is exact at the middle except when all

3. We could have used this trick to show the ordered Cech complex is exact except at the last place.
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exponents on tk, k P Iztnu are all negative. Taking long exact sequence on cohomologies, we see (♠) is exact for monomials
with at least one exponent of tk (k P Iztnu) is non-negative. Playing the same game for another index in Iz[n], we see (♠) is
exact.

In view of Corollary 8.15.1, we have almost proved the following

Theorem 8.21. Let A be a ring, n P Zě0 andm P Z. Then

Hp(PnA, OPn
A
(m)) =

$

’

&

’

%

0 , if p ‰ 0,n
A[x0, . . . , xn]deg=m , if p = 0(

(x0 ¨ ¨ ¨ xn)
´1A[x´1

0 , . . . , x´1
n ]
)

deg=m , if p = n.

Proof. It remains to compute qHn(U , OPn
A
(m)), and by (♣) we only need to compute the cokernel of

ź

0ďiďn

A[t0, . . . , tn][t´1
0 , . . . , xt´1

i , . . . , t´1
n ] A[t˘

0 , . . . , t˘
n ]

(f0, . . . , fn)
n
ÿ

i=0
(´1)ifi.

The image is the A-span of monomials of the form t
r0
0 ¨ ¨ ¨ trnn , where ri P Z with at least one ri non-negative. Hence

the cokernel is isomorphic to the A-span of the monomials of the form t
r0
0 ¨ ¨ ¨ trnn with ri P Ză0, i.e., isomorphic to

(t0 ¨ ¨ ¨ tn)
´1A[t´1

0 , . . . , t´1
n ]. Taking degreem part finishes the proof.

8.4.1 Coherency theorem

Let S be a Noetherian ring, n P Zě0 and X = PnS = ProjS[x0, . . . , xn]. By Serre’s theorem we see if F is a coherent sheaf on
X, then there exist a0,b0 P Zě0 and a surjection Ob0

X � F(a0). Twisting down a then gives OX(´a0)
b0 � F . Iterating this

process yields an exact sequence

¨ ¨ ¨ OX(´a1)
b1 OX(´a0)

b0 F 0.

This is an resolution of F by locally free sheaves of finite rank.

Theorem 8.22 (Serre). Let S,X, F be as above.
(i) Hp(X, F(m)) is a finite S-modules for all p ě 0, m P Z.

(ii) There existsm0 P Z such that Hp(X, F(m)) = 0 for all p ě 1, m ě m0. (This holds without Noetherian condition.)
(iii) F – ĂM for some finite graded S[x0, . . . , xn]-module M, and there exists m1 such that Mm Ñ H0(X, F(m)) is an

isomorphism for allm ě m1.

Proof. (i) and (ii) are proved by descending induction on p. Using ordered Cech complex with respect to the standard affine
cover, we see Hp(X, F(m)) = 0 for p ą n. Now suppose (i) and (ii) hold for all F P CohX and p ą p0 ě 1. As above there is
a short exact sequence

0 G OX(a)b F 0

for some a,b and G P CohX. For eachm P Z this gives

0 G(m) OX(a+m)b F(m) 0.

Taking cohomology gives an exact sequence

Hp0(X, OX(a+m)b) Hp0(X, F(m)) Hp0+1(X, G(m)) Hp0+1(X, OX(a+m)b)
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By Theorem 8.21 Hp0(X, OX(a + m)b) and Hp0+1(X, OX(a + m)b) are finite over S and = 0 for m " 0. By induction
Hp0+1(X, G(m)) is finite over S and = 0 form " 0. Hence the same holds for Hp0(X, F(m)). This proves (i) and (ii).

The first statement of (iii) is Corollary 3.126.1.

Corollary 8.22.1. Let f : X Ñ Y be a projective morphism with Y locally Noetherian. If F is OX-coherent, then Rpf˚F is
OY-coherent for all p P Zě0.

Proof. The problem is local in the base Y, so we can assume Y = SpecA for some Noetherian ring A and there is a
commutative triangle for some n P Zě0

X PnA

SpecA

f

j

closed
immersion

But then Rpf˚F – ČHp(X, F) by (7.16) and Hp(X, F) – Hp(PnA, j˚F) by (7.2.2), we see from Theorem 8.22.(i) that Rpf˚F is
coherent.

Theorem 8.23. Let f : X Ñ Y be a proper morphism between locally Noetherian schemes. If F is a coherent OX-module,
then Rif˚F is OY-coherent for all i ě 0.

8.4.2 Grothendieck coherency
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9 Singular (co)homology

9.1 Definitions

9.1 Singular chain groups. Let R∞ have the standard basis e0, e1, . . .. For n P Zě0, the standard p-simplex is the set

∆n :=

#

p
ÿ

i=0
aiei | 0 ď ai ď 1,

p
ÿ

i=0
ai = 1

+

.

For v0, . . . , vp P RN, define
[v0, . . . , vp] : ∆n RN

p
ÿ

i=0
aiei

p
ÿ

i=0
aivi.

Let X be a topological space and p P Zě0. By definition, a singular p-simplex in X is a continuous map ∆p Ñ X. For
p ě 0, define the singular p-chain group Sp(X) to be the free abelian group based on all the singular p-simplices in X. For
convenience, we put Sp(X) = 0 for p ă 0.

For a singular p-simplex σ : ∆p Ñ X and 0 ď i ď p, the i-th face of σ is defined as 0 if p ď 0, and

σ|[e0,...,xei,...,en] := σ ˝ [e0, . . . , ei´1, ei+1, . . . , en] : ∆n´1 Ñ X

if p ě 1. Define the boundary map Bp : Sp(X) Ñ Sp´1(X) by the formula

Bpσ =

p
ÿ

i=0
(´1)iσ|[e0,...,xei,...,ep].

In particular, Bp = 0 for p ď 0.

9.1.1 Lemma. For n P Zě0, one has Bn ˝ Bn+1 = 0. Thus there is a chain complex

¨ ¨ ¨ Sp+1(X) Sp(X) Sp´1(X) ¨ ¨ ¨
Bp+1 Bp Bp´1

9.2 Singular homology. Let G be an abelian group. Tensoring the chain complex in Lemma 9.1.1 with G, we obtain

¨ ¨ ¨ Sp+1(X) bZ G Sp(X) bZ G Sp´1(X) bZ G ¨ ¨ ¨
Bp+1bidG BpbidG Bp´1bidG

The p-th singular homology group Hp(X;G) of the space X with coefficient in G is defined as

H
sing
p (X;G) := Hp(S‚(X) bZ G, B‚ b idG).

For simplicity, we write Sp(X;G) for the group Sp(X) bZ G and write B‚ for the boundary map B‚ b idG.

9.3 Singular cohomology. Let G be an abelian group. Applying HomZ(¨,G) to the complex in Lemma 9.1.1, we obtain a
cochain complex

¨ ¨ ¨ HomZ(Sp´1(X),G) HomZ(Sp(X),G) HomZ(Sp+1(X),G) ¨ ¨ ¨
δp δp+1

The p-th singular cohomology group Hpsing(X;G) of the space X with coefficient in G is defined as

H
p
sing(X;G) := Hp(HomZ(S‚(X),G), δ‚).
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For simplicity, we write Sp(X;G) for the group HomZ(Sp(X),G).

9.4 Universal coefficient theorems for cohomology. The relation between singular homology and singular cohomology
is established by the universal coefficient theorem, which is purely algebraic. A definition : a ring R is left (resp. right)
hereditary if any R-submodule of a projective left (resp. ring) R-module is projective.

Theorem. Let R be a left hereditary ring, C‚ a complex of projective left R-modules, and M any left R-module. For every
n P Z there is an exact sequence

0 Ext1
R(Hn´1(C‚),M) Hn(HomR(C‚,M)) HomR(Hn(C‚),M) 0

natural in C‚ andM. Moreover, it splits by a homomorphism that is natural inM (but not in C‚).

9.4.1 Universal coefficients theorem for homology. There is also a universal coefficient theorem for homology, which states
that the singular homology with coefficient in G is determined by that with coefficient in Z.

Theorem. Let R be a right hereditary ring, C‚ a complex of projective right R-modules and M any left R-module. For every
n P Z there is an exact sequence

0 Hn(C‚) bRM Hn(C‚ bRM) TorR1 (Hn´1(C‚),M) 0

natural in C‚ andM. Moreover, it splits by a homomorphism that is natural inM (but not in C‚).

9.2 Relation to sheaf cohomology

9.5 Definitions. Let X, Y be topological spaces.

1. Two continuous maps f,g : X Ñ Y are called homotopic if there exists a continuous map F : X ˆ [0, 1] Ñ Y such that
F(x, 0) = f(x) and F(x, 1) = g(x) for any x P X. Such an F is called a homotopy from f to g, and we write f „ g.

2. Let A be a subspace of X. A continuous map F : Xˆ [0, 1] Ñ Y is called a homotopy rel(ative to) A if F(a, t) = a for any
a P A, t P [0, 1].

3. A continuous map f : X Ñ Y is a homotopy equivalence if there exists another continuous map g : Y Ñ X such that
f ˝ g „ idY and g ˝ f „ idX. If such f exists, we say X and Y are homotopic equivalent, and write X „ Y.

4. X is called contractible if idX : X Ñ X is homotopic to a constant map X Ñ X. Equivalently, X „ t˚u for some ˚ P X.

5. X is called locally contractible if every point in X admits a neighborhood basis consisting of contractible open sets.

9.6 Induced maps on (co)homology groups. Let f : X Ñ Y be a continuous map. For a singular p-simplex σ : ∆p Ñ X,
the composition f˚σ = f ˝ σ : ∆p Ñ Y is a singular p-simplex in Y. Extending by linearity, we obtain a homomorphism
f˚ : Sp(X) Ñ Sp(Y). The map f˚ is a chain map, i.e., f˚B = Bf˚, so it induces maps on homology groups f˚ : H

sing
p (X;G) Ñ

H
sing
p (X;G) and cohomology groups f˚ : Hpsing(Y;G) Ñ H

p
sing(X;G).

9.6.1 Lemma. If f,g : X Ñ Y are two continuous map homotopic to each other, then

f˚ = g˚ : H
sing
p (X;G) Ñ H

sing
p (Y;G).

In particular, if f : X Ñ Y is an homotopy equivalence, f˚ : H
sing
p (X;G) Ñ H

sing
p (Y;G) is an isomorphism. Similarly,

f˚ = g˚ : Hpsing(Y;G) Ñ H
p
sing(X;G).
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Proof. Let F : Xˆ [0, 1] Ñ Y be a homotopy from f to g. We are going to utilize F to show f˚ is chain homotopic to g˚ as maps
Sp(X) Ñ Sp(Y). Precisely, define P : Sp(X) Ñ Sp+1(Y) by

P(σ) =

p
ÿ

i=0
(´1)iF ˝ (σˆ id[0,1])|[v0,...,vi,wi,...,wp].

Here v0, . . . , vp (resp.w0, . . . ,wp) are the vertices of ∆pˆ t0u (resp. ∆pˆ t1u) such that vi andwi have the same image under
the projection ∆p ˆ [0, 1] Ñ ∆p. We claim

g˚ ´ f˚ = BP + PB.

9.7 Theorem. Let X be a locally contractible topological space and R a ring. Then there is a canonical isomorphism

H
p
sing(X;R) – Hp(X,RX)

9.3 Relative homology groups

Let G be an abelian group, X be a topological space and A be its subspace. For n P Z, define

Sn(X,A;G) := Sn(X;G)/Sn(A;G).

The boundary map Bn : Sn(X;G) Ñ Sn´1(X;G) takes Sn(A;G) and Sn´1(A;G), so it induces a boundary map

Bn : Sn(X,A;G) Sn´1(X,A;G)

on the quotient groups. The homology groups of this chain complex are called the relative homology groups, and are
denoted as

H
sing
‚ (X,A;G) := H‚(S‚(X,A;G), B‚)

Similarly, put Sn(X,A;G) = HomZ(Sn(X,A),G) and define the relative cohomology group

H‚
sing(X,A;G) := H‚(S‚(X,A;G), δ‚)

where δ‚ = HomZ(B‚,G).
By definition, we have an exact sequence of chain complexes

0 Ñ S‚(A;G) Ñ S‚(X;A) Ñ S‚(X,A;G) Ñ 0

so it induces a long exact sequence on homology groups :

¨ ¨ ¨ H
sing
n (A;G) H

sing
n (X;G) H

sing
n (X,A;G) H

sing
n´1(A,G) ¨ ¨ ¨ .

For the cohomology, note that the exact sequence

0 Ñ Sn(A) Ñ Sn(X) Ñ Sn(X,A) Ñ 0

splits : Sn(X,A) is naturally identified as the subgroup of Sn(X) free over the singular n-simplices ∆n Ñ X with image not
contained in A. It follows that the dual sequence

0 Ñ Sn(X,A;G) Ñ Sn(X;G) Ñ Sn(A;G) Ñ 0

is exact, so it induces a long exact sequence of cohomology groups

¨ ¨ ¨ Hnsing(X,A;G) Hnsing(X;G) Hnsing(A;G) Hn+1
sing (X,A;G) ¨ ¨ ¨ .
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Definition.

1. A pair (X,A) consists of a space X and a subspace A Ď X.

2. An arrow f : (X,A) Ñ (Y,B) is a continuous map f : X Ñ Y such that f(A) Ď B.

A map f : (X,A) Ñ (Y,B), as usual, induces maps on homology groups f˚ : H
sing
n (X,A;G) Ñ H

sing
n (Y,B;G) and

cohomology groups f˚ : Hnsing(Y,B;G) Ñ Hnsing(X,A;G). The map f˚ is natural in the sense that there exists a commutative
diagram

¨ ¨ ¨ H
sing
n (A;G) H

sing
n (X;G) H

sing
n (X,A;G) H

sing
n´1(A,G) ¨ ¨ ¨

¨ ¨ ¨ H
sing
n (B;G) H

sing
n (Y;G) H

sing
n (Y,B;G) H

sing
n´1(B,G) ¨ ¨ ¨ .

f˚ f˚ f˚ f˚

The similar statement holds for f˚. Also, a careful look of the proof of Lemma 9.6.1 gives

Lemma 9.1. If f,g : (X,A) Ñ (Y,B) are continuous map homotopic through maps of pairs (X,A) Ñ (Y,B), then f˚ = g˚ :

H
sing
n (X,A;G) Ñ H

sing
n (Y,B;G) and f˚ = g˚ : Hnsing(Y,B;G) Ñ Hnsing(X,A;G).

Theorem 9.2 (Excision). Given a chain Z Ď A Ď X of subspaces with Z Ď intA, the inclusion (XzZ,AzZ) Ñ (X,A) induces
an isomorphisms

Hn(XzZ,AzZ) Hn(X,A)„

for all n P Z. Equivalently, for subspaces A,B Ď X with X = intA Y intB, the inclusion (B,A X B) Ñ (X,A) induces
isomorphisms Hn(B,AX B) Ñ Hn(X,A) for all n P Z.

9.4 Algebraic Künneth formula

Theorem 9.3. Let R be a ring, and let A‚ a complex of flat right R-modules such that the subcomplex of boundaries are R-flat.
Given any complex C‚ of left R-modules, for each n ě 1 there exists a exact sequence of abelian groups

0
À

p+q=n
Hp(A‚ bR Hq(C‚) Hn(A bR C‚)

À

p+q=n´1
TorR1 (Hp(A),Hq(C‚)) 0

9.5 Cup product

LetX be a topological space and R be a ring. Here a ring is not necessarily commutative nor unital. Define the cup product

Sp(X;R) ˆ Sq(X;R) Sp+q(X;R)

(φ,ψ) φ ! ψ

by

(φ ! ψ)(σ) = φ(σ|[e0,...,ep])ψ(σ|[ep,ep+1,...,ep+q]) P R

It is associative in the obvious sense, and it is distributive. If R is unital, then the 0-cocycle defined by σ P S0(X) ÞÑ 1 P R is
the identity element for !.

Lemma 9.4. δ(φ ! ψ) = δφ ! ψ+ (´1)pφ ! δψ for φ P Sp(X,R) and ψ P Sq(X,R).
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Proof. This is a direct computation. For σ P Sp+q+1(X),

δ(φ ! ψ))(σ) =

p+q+1
ÿ

i=0
(´1)i(φ ! ψ)(σ|[e0,...,xei,...,ep+q+1])

=

p
ÿ

i=0
(´1)iφ(σ|[e0,...,xei,...,ep+1])ψ(σ|[ep+1,ep+2,...,ep+q+1])

+

p+q+1
ÿ

i=p+1
(´1)iφ(σ|[e0,...,ep])ψ(σ|[ep,ep+1,...,xei,...,ep+q+1])

=

p
ÿ

i=0
(´1)iφ(σ|[e0,...,xei,...,ep+1])ψ(σ|[ep+1,ep+2,...,ep+q+1]) + (´1)p+1φ(σ|[e0,...,ep])ψ(σ|[ep+1,ep+2,...,ep+q+1])

+ (´1)pφ(σ|[e0,...,ep])ψ(σ|[ep+1,...,ep+q+1]) +

p+q+1
ÿ

i=p+1
(´1)iφ(σ|[e0,...,ep])ψ(σ|[ep,ep+1,...,xei,...,ep+q+1])

= (δφ ! ψ)(σ) + (´1)p(φ ! δψ)(σ)

From this lemma we see the cup product descends the level of cohomology groups :

H
p
sing(X;R) ˆH

q
sing(X;R) H

p+q
sing (X;R).!

If we form the direct sum

H˚
sing(X;R) :=

à

pě0
H
p
sing(X;R),

the cup product then makes H˚
sing(X;R) into an (associative and distributive) Zě0-graded R-algebras (there is a canonical

map R Ñ S0(X;R) Ñ H0
sing(X;R)). This is called the singular cohomology ring. It is unital as long as R is unital.

If f : X Ñ Y is a continuous map, the induced map f˚ : H˚(Y;R) Ñ H˚(X;R) is a ring homomorphism. Indeed, for
φ P Sp(Y;R) and ψ P Sq(Y;R),

(f˚φ ! f˚ψ)(σ) = f˚φ(σ|[e0,...,ep])f
˚ψ(σ|[ep,...,ep+q])

= φ(f ˝ σ|[e0,...,ep])ψ(f ˝ σ[ep,...,ep+q]) = (φ ! ψ)(f ˝ σ) = f˚(φ ! ψ)(σ).

Theorem 9.5. If R is commutative, then α ! β = (´1)pqβ ! α for all α P H
p
sing(X;R) and β P H

q
sing(X;R).

Proof. For a singular n-simplex σ : ∆n Ñ X, define

σ : ∆n ∆n X

ei en´i

linear σ

and define
ρ : Sn(X) Sn(X)

σ εnσ

where εn := (´1)
n(n+1)

2 . We are going to show ρ is a chain map homotopic to the identity. This, together with the discussion
preceding the theorem, at once shows the desired identity.

That ρ is a chain map follows from a direct computation and a trivial fact that εn = (´1)nεn´1. To construct a chain
homotopy from ρ to id, we use the notation in Lemma 9.6.1 and define Q : Sn(X) Ñ Sn+1(X) by

Q(σ) =
n
ÿ

i=0
(´1)iεn´i(σ ˝ π)|[v0,...,vi,wn,...,wi]

where π = pr1 : ∆n ˆ [0, 1] Ñ ∆n is the projection to the first component. We claim BQ+QB = ρ´ id.
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10 Curves

Let k be a field. Conceptually, a curve over k is an integral scheme of dimension 1 separated and of finite type over
k. There are various definitions in the literature. We will not specify a definition for curves ; instead, we will qualify our
schemes appropriately in different context.

10.1 Compact Riemann surface

10.1 Definition. A Riemann surface X is a complex manifold of dimension 1. We denote by OX (resp. C∞
X ) the sheaf of

holomorphic (resp. smooth) functions on X. Note that C∞
X is a fine sheaf.

10.2 Various tangent bundles. Let M be a complex manifold. As a real manifold, we can form the (real) tangent bundle
TM,R Ñ M. AsM is a complex manifold, TM,R admits a holomorphic structure. With this structure, we call it the holomorphic
tangent bundle ofM, and denote it by TM Ñ M. Multiplication by

?
´1 on local coordinates of TM,R gives a smooth bundle

isomorphism J : TM,R Ñ TM,R that satisfies J2 = ´ id. The function J is called the complex structure ofM.
Put TM,C = TM,R bR C Ñ M to be the complexified tangent bundle, which also has a holomorphic structure inherited

from TM. The complex structure J induces a complex bundle isomorphism JC : TM,C Ñ TM,C, and on each fibre JC has
eigenvalues ˘

?
´1. This gives a global decomposition

TM,C = T 1,0
M ‘ T 0,1

M

The bundle homomorphism Re : TM,C Ñ TM,R defined by taking real part maps T 1,0
M and T 0,1

M isomorphically onto TM,R as
smooth vector bundles.

10.3 Differential form. LetM be a complex manifold,U an open subset ofM and k ě 0. The sheaf AkM,C of smooth sections
of

Źk
T_
M,C Ñ M is called the sheaf of smooth k-forms on M with coefficient C. The decomposition in (10.2) induces a

decomposition

AkM,C =
à

p+q=k

Ap,q
M

Explicitly, in a local chart U of M with local coordinates z1, . . . , zn, Ap,q
M (U) is the subspace of AkM(U) generated by the

k-forms of the form
fdzi1 ^ ¨ ¨ ¨ ^ dzip ^ dzj1 ^ ¨ ¨ ¨ ^ dzjq

with f : U Ñ C a smooth function. An element in Ap,q
M (U) is called a (p,q)-form.

The sheafΩkM of holomorphic sections of
Źk

TM Ñ M is called the sheaf of holomorphic k-forms onM. By definition,
we see a holomorphic k-form can be viewed as a smooth (k, 0)-form.

10.2 Serre duality

10.2.1 Traces and residues

In this subsubsection, we do not suppose an algebra is commutative. Still, we assume an algebra is unital.

10.4 Traces. Let k be a field and V a k-vector space. We say θ P Endk V is finite potent if dimk θ
nV ă ∞ for some integer

n ě 0. For a finite potent θ P Endk V , a trace trV θ P k can be defined, having the following properties :

(i) If dimk V ă ∞, then trV θ is the usual trace.

(ii) IfW is a subspace of V with θW Ď W, then

trV θ = trW θ+ trV/W θ.

169



(iii) If θ is nilpotent, then trV θ = 0.

These properties also characterizes traces. In fact, if θ P Endk V is finite potent, there exists n " 0 such that the subspace
W := θnV satisfies θW Ď W and dimkW ă ∞. Then

trV θ = trW θ+ trV/W θ = trW θ

for θ in nilpotent on the quotientV/W. This also gives a well-defined definition of traces. There are some additional properties
of traces.

(iv) If F Ď Endk V is a finite potent subspace (i.e. there exists some n ě 0 such that dimk θ1 ¨ ¨ ¨θnV ă ∞ for any
θ1, . . . , θn P F), then trV : F Ñ k is k-linear.

Indeed, we may assume F is finite dimensional, and compute the traces of all elements of F on the finite dimensional subspace

W = FnV =
ÿ

σPSn

θσ(1) ¨ ¨ ¨θσ(n)V

where tθ1, . . . , θnu is a k-basis for F.

(v) If φ : V 1 Ñ V and ψ : V Ñ V 1 are k-linear with φψ and ψφ finite potent, then

trV(φψ) = trV 1(ψφ).

Indeed, for n " 0 the maps φ and ψ induce mutually inverse isomorphisms between the subspace W 1 = (ψφ)nV 1 and
W = (φψ)nV , under which the endomorphisms (ψφ)|W 1 and (φψ)|W correspond.

10.5 Definition. Let V be a k-vector space and A,B be two k-subspaces of V .

1. A is not much bigger than B if dimk(A+B)/B ă ∞, or equivalently, A Ď B+W for some finite dimensional subspace
W Ď V . In this case we write A ă B.

2. A is about the same size as B if A ă B and B ă A. In this case we write A „ B.

It follows from definition at once that the relation ă is transitive and „ is an equivalence relation. Note that ă is preserved
under Endk V . Namely, if A ă B, then φA ă φB for any φ P Endk V . Also, we have

m
ÿ

i=1
Ai ă

n
č

j=1
Bj if and only if Ai ă Bj for all i, j.

10.6 Let V be a k-vector space and fix a k-subspace A of V . Define

E = tθ P Endk V | θA ă Au

E1 = tθ P Endk V | θV ă Au

E2 = tθ P Endk V | θA ă 0u = tθ P Endk V | dimk Im θ ă ∞u

E0 = E1 X E2 = tθ P Endk V | θV ă A, θA ă 0u.

Proposition.

(a) E is a k-subalgebra of Endk V .

(b) The Ei’s are two sided ideals in E, E1 + E2 = E and E0 is finite potent.

(c) E and the Ei’s depend only on the equivalence class of A under „.

(d) If (φ,ψ) P E0 ˆ EY E1 ˆ E2, the commutator [φ,ψ] = φψ´ψφ lies in E0 and has zero trace.
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Proof. (a) is clear, and the first statement in (b) follows from the facts that ψV ă V for any ψ P Endk V and ă is transitive.
That E0 if finite potent is clear. Write V = A‘A 1 for some k-subspace A 1 of V . If we denote by π and π 1 the projections to A
and A 1, respectively, then idV = π+ π 1 with π P E1, π 1 P E2. This implies E = E1 + E2, so (b) is proved. (c) is clear. (d) follows
from definition and (10.4).(v).

10.7 Definition-Theorem. Let K be a commutative k-algebra, V a K-module, and A Ď V a k-subspace such that fA ă A for
all f P K. Let E and Ei be as in (10.6). The condition on A implies that the image K Ñ Endk V lies in E ; for an element f P K,
we shall denote its image in E by the same letter f.

Then, there exists a unique k-linear map, the residue map

resVA : ΩK/k Ñ k

such that for any pair f,g P K, we have

resVA(fdg) = trV [f1,g1]

for f1,g1 P E such that
(a) f ” f1 (mod E2), g ” g1 (mod E2), and
(b) either f1 P E1 or g1 P E1.

Proof. Let f,g P K. Since E = E1 + E2 (10.6), f1 and g1 that satisfy (a) and (b) always exist. Then [f1,g1] P E1 by (b), and
[f1,g1] ” [f,g] = 0 (mod E2) by (b) and the commutativity of K. Hence [f1,g1] P E1 X E2 = E0, so the trace trV [f1,g1] P k is
defined. By (10.6).(d), the value of trV [f1,g1] is unaltered if f1 or g1 is changed by an element in E2, provided that the other
is in E1. Moreover, by (10.4).(iv), (f,g) ÞÑ trV [f1,g1] is a k-bilinear map on K, so it gives rise to a k-linear map

r : Kbk K k

fb g trV [f1,g1].

Recall that by the very definition ofΩK/k there is a surjective k-linear map

c : Kbk K ΩK/k

fb g fdg

such that ker c is generated over k by elements of the form fbgh´ fgbh´ fhbg. By surjectivity of c, the residue resVA, if it
exists, is the only map r 1 such that r 1 ˝ c = r. Such r 1 exists if and only if r vanishes on ker c. This is the case, for if f,g,h P K,
we can choose suitable f1,g1,h1 P E1 and let (fg)1 = f1g1, (gh)1 = g1h1, (fh)1 = f1h1. Now the identity

[f1,g1h1] = [f1g1,h1] + [f1h1,g1]

implies that r vanishes on ker c, proving the existence and the uniqueness resVA.

10.8 Retain the notation in (10.7). For f,g P K, let

B = A+ gA

C = BX f´1(A) X (fg)´1(A) = tv P B | fv P A, fgv P Au.

Then dimk B/C ă ∞, and
resVA(fdg) = trB/C[πf,g],

where π : V Ñ A is a k-linear projection.

10.9 Retain the notation in (10.7). We list some properties for the residue map resVA.
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(R1) If V 1 is a K-submodule of V with V Ě V 1 Ě A, then resVA = resV 1

A . For this, we usually suppress the superscript V and
simply write resA.

(R2) If fA+ fgA+ fg2A Ď A, then resA(fdg) = 0. In particular, this is so if fA, gA Ď A. Thus resA is identically zero if A is
a K-submodule of V .

(R3) For g P K, resA(gndg) = 0 for all integersn ě 0, and if g is invertible inK, then the same holds forn ď ´2. In particular,
resA(dg) = 0 for all g P K.

(R4) If g P Kˆ and h P K such that hA Ď A, then

resA(hg´1dg) = trA/(AXgA)(h) ´ trgA/(AXgA)(h).

In particular, resA(g´1dg) = dimkA/gA.

(R5) Suppose B Ď V is another k-subspace such that fB ă B for all f P K. Then

f(A+ B) ă A+ B and f(AX B) ă AX B for all f P K

and resA+ resB = resA+B+ resAXB.

(R6) LetK 1 be a commutativeK-algebra which is a freeK-module of finite rank. LetV 1 = K 1 bKV and letA 1 =
ř

i xibA Ď V 1,
where txiu is a K-basis for K 1. Then f 1A 1 ă A 1 for all f 1 P K 1, the „-equivalence class of A 1 depends only on that of A,
not on the choice of basis txiu, and we have

resA1(f 1dg) = resA((trK1/K f)dg)

for f 1 P K 1 and g P K.

10.2.2 Residues on algebraic curves
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Deuxième partie

Group schemes
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11 Affine group schemes

11.1 Group functors. Let S be a scheme. A group functor over S/S-group functor is a functorG : Schop
S Ñ Gp. A morphism

between group functors over S is simply a natural transformation. Denote by GpFunS the category of group functors over
S.

11.2 Group schemes. A group scheme over S/S-group scheme is a representable group functor over S. Denote by
GpSchS the full subcategory of GpFunS consisting of group schemes over S. If S = SpecA is affine, we simply write
GpSchA = GpSchSpecA, and GpSch = GpSchZ.

11.3 Example - classical groups. Let k be a ring and V a k-module. We can form the group functor GLV : Algk Ñ Gp by

GLV(R) = AutModk
(V bk R).

When k is a field and V is finite over k, this is represented by the algebra

k[(Xij)1ďi,jďn, (detX)´1].

In the sequel we shall stick to the following list of symbols :

k unital ring
G group functor over k
A k-algebra that represents G if G is an affine group scheme
R k-algebra
V k-module

11.4 Let k be a ring. Recall in (3.54) we have an equivalence

Spec : Algop
k AffSchk

A SpecA
.

If G = SpecA is a group scheme, the multiplication, identity and inversion are transformed to k-homomorphisms :

∆ : A Ñ Abk A, ι : A Ñ A, ε : A Ñ k

These are called the comultiplication, antipode, and counit on A, respectively.

11.4.1 Definition. In general, a Hopf algebra over k is a unital commutative k-algebra Awith three maps

∆ : A Ñ Abk A, ι : A Ñ A, ε : A Ñ k

called comultiplication, antipode, and counit respectively such that the following diagrams commute :

(i) Coassociativity :
Abk (Abk A) Abk A

A

(Abk A) bk A Abk A

„canonical

idA ˆ∆

∆

∆ˆidA

∆
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(ii)
Abk k Abk A

A A

kbk A Abk A

idA ˆε

„ ∆

idA

„

εˆidG

∆

(iii)
Abk A Abk A

A k A

Abk A Abk A

idA ˆι

∆mult

mult

1 ε

ιˆidA

∆

A morphism between two Hopf algebras over k is a unital k-algebra homomorphism ϕ : A Ñ B such that ∆B ˝ ϕ =

(ϕˆ ϕ) ˝ ∆A. Denote by HopfAlgk the category of Hopf algebras over k.

11.4.2 Lemma. If ϕ : A Ñ B is a morphism between Hopf algebras over k, then ϕ preserves counits and antipodes.

11.4.3 Equivalence. If we denote by AffGpSchk the full subcategory of GpSchk consisting of affine group schemes, then
Spec restricts to an equivalence

Spec : HopfAlgop
k AffGpSchk

A similar definition and results hold for the relative spec SpecX over a scheme X.

11.5 Linear representations. For a group functor G : Algk Ñ Gp, a (linear) representation of G is a k-homomorphism
G Ñ GLV for some k-module. A morphism between two linear representations of G is a k-linear map V Ñ W that
intertwines the G-action. Denote by RepG the category of linear representations of G.

11.5.1 Comodules. Suppose G is an affine group scheme represented by SpecA. By Yoneda’s lemma for each k-module we
have a bĳection

Hom(G, GLV) GLV(A)

φ φA(idA)

The element φA(idA) is an A-automorphism V bk A Ñ V bk Awhich is uniquely determined by its restriction

ρ = ρφ : V Ñ V bk A

to V . That φ : G Ñ GLV is a homomorphism amounts to saying that ρ satisfies the two commutative diagrams

V V bk A

V bk A V bk Abk A

ρ

ρ

idV b∆

ρbidA

V V bk A

V bk k

„

ρ

idV bε

In general,
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Definition. Let A be a Hopf algebra. A right A-comodule is a k-module V along with a k-linear map ρ : V Ñ V bk A that
satisfies the above commutative diagram. A homomorphism between two comodules ρ : V Ñ VbkA and θ :W Ñ WbkA

is a k-linear map T : V Ñ W such that

θ ˝ T = (T b idA) ˝ ρ.

Denote by ComodA the category of right A-comodules.

11.5.2 Theorem. If G is an affine group scheme represented by the algebra A, the assignment

[φ : G Ñ GLV ] ÞÑ [ρ : V Ñ V bk A]

defines an equivalence of category

RepG – ComodA

11.6 Stabilizers. Let G an affine k-group scheme represented by A and φ : G Ñ GLV a representation over k. For a
k-subspaceW Ď V , we can define the stabilizer ofW as the group functor

StabG(W) : R ÞÑ tg P G(R) | φR(g)(W bk R) Ď W bk Ru.

11.6.1 Lemma. If k is a field, then StabG(W) is an affine closed subgroup scheme of G.

Proof. Let ρ : V Ñ V bk A be the comodule map. Let (ei)iPI be a k-basis forW and extend it to a k-basis (ei)iPI\J for V . For
i P Iwrite

ρ(ei) =
ÿ

ej b aij

so that

φR(g)ei =
ÿ

ej b g(aij)

for all g P G(R) = HomAlgk
(A,R). Then g P StabG(W)(R) if and only if

g(aij) = 0 for all (i, j) P Iˆ J.

Hence StabG(W) is the closed subscheme of G = SpecA cut off by the ideal generated by (aij)iPI,jPJ.

11.7 Theorem (Chevalley). Let G be an affine algebraic group. Every algebraic subgroup of G is the stabilizer of a one-
dimensional subspace in some finite dimensional representation of G.

11.8 Trigonalizable algebraic groups. An affine algebraic k-group G is said to be trigonalizable if every simple represen-
tation of G is one-dimensional. This term is justified by the

Lemma. For an affine algebraic k-group, TFAE :

(i) G is trigonalizable.

(ii) Every finite dimensional representation of G is trigonalizable.

(iii) G is isomorphic to a subgroup of groups of upper triangular matrices.

(iv) There exists a normal unipotent algebraic subgroup U of G such that G/U is diagonalizable.
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11.9 Maximal affine quotient. Let G be an algebraic group over k. The group operation on G turns OG(G) into a Hopf
algebra over k, so

Gaff := Spec OG(G)

is an affine group scheme. The assignment G ÞÑ Gaff defines a functor AlgGpk Ñ AffGpSchk. By (3.7) there is a bĳection

HomSchk
(G,H) – HomSchk

(Gaff,H)

for an affine scheme H, functorial in both arguments.

11.9.1 Lemma. Let G be an algebraic group over k. Then OG(G) is a finitely generated k-algebra.

11.9.2 Hence Gaff is an affine algebraic group. Every homomorphism from G into an affine algebraic group factors through
the natural map

G −Ñ Gaff.

In view of this, we call Gaff the maximal affine quotient of G.
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12 Lie algebras

12.1 Root datum

12.1 Reflection. Let F be a field of characteristic 0 and V be a finite dimensional F-vector space. Write x, y : V ˆ V_ Ñ F for
the duality pairing

xx, fy := f(x), (x, f) P V ˆ V_.

A reflection on V is an operator s : V Ñ V that fixes an hyperplane and acts as ´1 on a complementary line. If s is a reflection
and α P Vzt0u is such that s(α) = ´α, we then say s is a reflection with vector α.

12.1.1 Lemma. If α_ P V_ is such that xα,α_y = 2, then the operator sα,α_ : V Ñ V defined by

sα,α_(x) = x´ xx,α_yα

is a reflection with vector v. Moreover, every reflection with vector α is for this form for a unique α_.

Proof. Compute

sα,α_(sα,α_(x)) = sα,α_(x) ´ xsα,α_(x),α_yα

= x´ xx,α_yα´ xx´ xx,α_yα,α_yα = x´ 2xx,α_yα+ xx,α_yxα,α_yα = x,

and

sα,α_(α) = α´ 2α = ´α.

Conversely, suppose s is a reflection with vector α, and let H be the hyperplane fixed by s. Define α_ : V Ñ F by α_(H) = 0
and α_(α) = 2. This defines a functional as V = H‘ Fα satisfying s = sα,α_ .

12.1.2 Lemma. Let R be a finite generating set of V . For α P Vzt0u, there is at most one reflection s with vector α such that
s(R) Ď R.

Proof. Suppose s and s 1 are two such reflection, and put t = ss 1. Then t acts on Fα and V/Fα all by 1, so (t ´ 1)2V Ď

(t ´ 1)Fα = 0. This shows the minimal polynomial of t divides (T ´ 1)2. On the other hand, since s(R) Ď R and #R ă ∞,
there exists n P Zě1 such that tn(x) = x on R, and hence on V . This shows the minimal polynomial of t divides Tn ´ 1. Since
gcd((T ´ 1)2, Tn ´ 1) = T ´ 1, we deduce that t = idV .

12.2 Root datum. A root datum is a 4-tuple (X,R,X_,R_) consisting of a pair of finite rank free abelian groups X,X_ with a
perfect pairing x , y : Xˆ X_ Ñ Z and a pair of finite subsets R Ď X, R_ Ď X_ such that there is a bĳection R Q α ÞÑ α_ P R_

satisfying
(i) xα,α_y = 2 for all α P R, and

(ii) the reflections sα,α_ : X Ñ X and sα_,α : X_ Ñ X_ defined by

sα,α_(x) = x´ xx,α_yα, sα_,α(x
˚) = x˚ ´ xα, x˚yα_

satisfy sα,α_(R) Ď R and sα_,α(R
_) Ď R_ for all α P R.

Clearly from the definition, we see (X_,R_,X,R) also forms a root datum; this is the dual root datum of (X,R,X_,R_). From
(i) and (ii) we see ´α P R for all α P R. We say the root datum (X,R,X_,R_) is reduced if the only multiples of α in R is ˘α

for all α P R. The Weyl groupW =W(X,R,X_,R_) of the root datum is by definition

W := xsα,α_ | α P Ry ď AutX.
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12.2.1 Lemma. For a root datum (X,R,X_,R_), the bĳection R Q α ÞÑ α_ P R_ is unique.

Proof. Put V = QR Ď XQ := X bZ Q. Then there is a quotient map X_
Q Ñ V_ ; denote by f 1 the image of f P X_

Q in V_. By
condition (ii), (12.1.1) and (12.1.2), (α_) 1 P V_ is the unique vector such that x ÞÑ x ´ xx, (α_) 1yα is the unique reflection
with vector α on V that leaves R invariant. To conclude, it suffices to show the quotient X_

Q Ñ V_ is injective on R_. Indeed,
say α,β P R satisfy xγ,α_y = xγ,β_y for all γ P R. Then for x P R,

sα,α_sβ,β_(x) = sα,α_(x´ xx,β_yβ) = x´ xx,α_yα´ xx,β_y(β´ xβ,α_yα)

= x+ 2xx,β_yα´ xx,β_y(α+ β).

When x = β, we get sα,α_sβ,β_(β) = 2α´ β = 2(α´ β) + β. Also,

sα,α_sβ,β_(α´ β) = (3α´ 2β) ´ (2α´ β) = α´ β.

Iterating gives (sα,α_sβ,β_)n(β) = 2n(α´ β) + β. But #R ă ∞, so condition (ii) implies α = β.

12.2.2 Lemma. For α P R, x P X, y P X_, we have

xsα,α_(x),yy = xx, sα_,α(y)y.

In particular, xsα,α_(x), sα_,αyy = xx,yy.

Proof. This is a direct computation :

xsα,α_(x),yy = xx´ xx,α_yα,yy = xx,yy ´ xx,α_yxα,yy = xx,y´ xα,yyα_y = xx, sα_,α(y)y.

In view of this lemma and (12.2.1), it shall causes no confusion to write

sα := sα,α_ , s_
α := sα_,α

for each α P R.

12.3 Let (X,R,X_,R_) be a root datum. Consider the homomorphism

p : X X_

x
ÿ

αPR

xx,α_yα_.

For x P X, one computes that

xx,p(x)y =
ÿ

αPR

xx,α_y2 ě 0.

When x P R, this is a strictly positive integer. From this inequality we see

kerp = tx P X | xx,R_y = 0u =: X0.

Also, for β P R, since s_
β(R

_) = R_, by (12.2.2) we compute

xsβx,p(sβx)y =
ÿ

αPR

xsβx,α_y2 =
ÿ

αPR

xx, s_
βα

_y2 =
ÿ

αPR

xx,α_y2 = xx,p(x)y.

Hence xwx,p(wx)y = xx,p(x)y for all x P X, w P W.
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12.3.1 Lemma. For α P R, one has xα,p(α)yα_ = 2p(α).

Proof. For α,β P R, by (12.2.2) we compute

xα,β_y2α_ = xα,β_y(α_ ´ s_
α(β

_)) = xα,β_yα_ + x´α,β_ys_
α(β

_) = xα,β_yα_ + xsα(α),β_ys_
α(β

_)

= xα,β_yα_ + xα, s_
α(β

_)ys_
α(β

_).

Summing over β P R, since s_
α(R

_) = R_, we see

xα,p(α)yα_ =
ÿ

βPR

xα,β_y2α_ = 2p(α).

12.3.2 Lemma. The homomorphism p : X Ñ X_ induces an homomorphism p : ZR Ñ ZR_ with [ZR_ : Imp] ă ∞. In
particular, it induces an isomorphism

1 b p : QR QR_.

Proof. By (12.3.1), we see [ZR : 2 Imp] ă ∞, so [ZR_ : Imp] ă ∞. Tensoring with Q kills the torsion, implying 1 b p : QR Ñ

QR_ is surjective. In particular, dimQR ě dimQR_. Applying this to the dual root datum, we get the reverse inequality.
Hence dimQR = dimQR_, and 1 b p is an isomorphism.

12.3.3 Lemma. ZRX X0 = t0u, and [X : ZR+ X0] ă ∞. Hence there is an exact sequence

0 ZR‘ X0 X F 0

for some finite abelian group F.

Proof. The map 1 b p : XQ Ñ QR_ has kernel (X0)Q, and maps spanQR isomorphically onto QR_ by (12.3.2). Hence

XZ = QR‘ (X0)Q,

and this finishes the proof.

12.3.4 Toral/semisimple root datum. A root datum (X,R,X_,R_) is toral if R = H, and is semisimple if R spans XQ. By the
previous lemma, we see (X,R,X_,R_) is “isogenous” to a direct sum of semisimple root datum (ZR,R,ZR_,R_) and a toral
root datum (X0, H,X_

0 , H).

12.4 Finiteness of Weyl group. Let (X,R,X_,R_) be a root datum. The pairing x, y : Xˆ X_ Ñ Z induces a pairing

x, y : QRˆ QR_ Q.

This is again a perfect pairing. Indeed, if x P QR is such that xx,R_y = 0, then x P (X0)QXQR = t0u. Since dimQR = dimQR_,
this implies it is perfect on both sides.

12.4.1 Lemma. For x P X and w P W =W(X,R,X_,R_), one has w(x) ´ x P ZR.

Proof. Let α P R and w P W. Then

sαw(x) ´ x = sα(w(x) ´ x) + (sα(x) ´ x).

By induction it suffices to show sα(x) ´ x P ZR, which is clear :

sα(x) ´ x = ´xx,α_yα P ZR.
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12.4.2 The Weyl group W acts on R by condition (ii) of a root datum. We can also let W act on X_ as follows : for w P W

and y P R_, let wy P X_ be the unique element such that

xx,wyy = xwx,yy

for all x P X. This is well-defined as the pairing is perfect. By (12.2.2) we have

sα.y = s_
α(y)

for all α P R and y P X_. In particular, by condition (ii) we seeW leaves R_ invariant.

Lemma. For α,β P R, one has (sα(β))_ = sα.β_.

Proof. By definition, xsα(β), sα.β_y = xβ,β_y = 2, so by (12.1.1)

x ÞÑ x´ xx, sα.β_ysα(β)

is a reflection with vector sα(β). For x P X, we have

x´ xx, sα.β_ysα(β) = sα (sα(x) ´ xsα(x),β_yβ) = sα(sβ(sα(x))),

so the reflection leaves R invariant. By (12.1.2) and the proof of (12.2.1), this proves the lemma.

Hence, the bĳection R Q α ÞÑ α_ P R_ preserves the action of the Weyl groupW.

12.4.3 Proposition. The Weyl groupW acts on R faithfully. In particular, #W ă ∞.

Proof. By (12.4.2) it suffices to showW acts on R_ faithfully. Suppose w P W is such that w.α_ = α_ for all α P R. Then

xw(x) ´ x,α_y = xx,w.α_y ´ xx,α_y = 0.

By (12.4.1) and (12.4), this shows w(x) = x for all x P X, i.e., w = idX.

12.5 Root system. Let F be a field of characteristic 0 and V a finite dimensional F-vector space. A subset R Ď V is called a
root system of V if

(i) #R ă ∞, 0 R R and R spans V ,

(ii) for each α P R there is a reflection sα with vector α such that sα(R) Ď R, and

(iii) for all α,β P R, the vector sα(β) ´ β is an integral multiple of α.

An element in R is called a root.

12.5.1 It follows from (12.1.2) that sα in (ii) is unique. By (12.1.1) there is a unique element α_ P V_ such that xα,α_y = 2
and sα = sα,α_ . The unique vector α_ is called the coroot of α P R.

12.5.2 Rational model. Let V0 be the Q-span of R in V . Then clearly R is a root system of V0, and the canonical map
V0 bQ F Ñ V is an isomorphism. This shows that root systems over the field F are the same as root systems over the field Q.

12.5.3 For α,β P R, the number xβ,α_y is the number n such that β´ sα(β) = nα ; by (iii) we have n P Z. Now if α P R and
cα P R for some c P F, then

2c = xcα,α_y P Z
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so c P
1
2Z. Also,

12.6 Category of root data. Let k be a field. Set

p =

#

1 , if Char k = 0
p , if Char k = p

.

An isogeny of the root data (X,R,X_,R_) Ñ (Y,S, Y_,S_) defined over k consists of a injective homomorphism f : Y Ñ X

with finite cokernel, a bĳection ι : R Ñ S and a map q : S Ñ pZě0 satisfying

f(ι(α)) = q(α)α, f_(α_) = q(α)ι(α)_

for all α P R. We say an isogeny is central if q ” 1 and is an isomorphism if it is central and f is an isomorphism of abelian
groups.
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Troisième partie

Étale cohomology
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Quatrième partie

Toric varieties
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13 Convex Geometry

13.1 Convex polyhedral cones

In this subsection, let V be a finite dimensional real vector space with dual space V_. Then the evaluation V_ ˆ V
x , y−−Ñ R

is a perfect pairing. We identify (V_)_ with V naturally.

Definition.

1. A convex polyhedral cone in V is a set of the form

σ = cone(S) :=

#

ÿ

uPS

auu | au ě 0

+

Ď V

for some finite subset S Ď V . We also say σ is the cone generated by S. By convention, cone(H) = t0u.

2. The dimension of a convex polyhedral cone σ, denoted by dimσ, is the dimension of the linear span of σ over R ; in
other words, dimσ = dimR(σ+ (´σ)).

3. The dual σ_ of some set σ Ď V is

σ_ := tu P V_ | xu, vy ě 0 for all v P σu .

Also, we put

σK = tu P V_ | xu, vy = 0 for all v P σu.

‚ If σ = cone(S) for some finite subset S Ď V , then

σ_ =
č

vPS

tu P V_ | xu, vy ě 0u .

Lemma 13.1 (Farkas’). If σ is a convex polyhedral cone and v0 R σ, then there exists u0 P σ_ such that xu0, v0y ă 0. In
particular, this implies (σ_)_ = σ.

Proof. By choosing a basis for V , we do not distinguish V , V_ and Rn, and under this assumption, x , y becomes the standard
inner product. Let B be the closed ball centered at 0 with radius ∥v0∥. Then σX B is nonempty and compact, so the function
w ÞÑ ∥w´ v0∥ attains its minimal at some w0 P σX B Ď σ. Put u0 = w0 ´ v0. We claim u0 P σ_ and xu0, v0y ă 0.

‚ Let w P σ. Then w0 + tw P σ for all t ě 0, and

∥u0∥2 = ∥w0 ´ v0∥2
ď ∥w0 + tw´ v0∥2 = ∥u0 + tw∥2 = ∥u0∥2 + 2txu0,wy + t2 ∥w∥2 .

This implies xu0,wy ě 0, and since w P σ is arbitrary, we see u0 P σ_.

‚ Since xu0, v0y = xw0, v0y ´ ∥v0∥2, if w0 = 0, then we are done. Suppose now w0 ‰ 0 ; then u0 ‰ 0 as well. Consider

∥tw0 ´ v0∥2 = t2 ∥w0∥ ´ 2txw0, v0y + ∥v0∥2 .

By our choice of w0, the quadratic function on the right minimizes at t = 1. This implies ∥w0∥2 = xw0, v0y, and hence

0 ă ∥u0∥2 = ∥w0∥2
´ 2xw0, v0y + ∥v0∥2 = ´xw0, v0y + ∥v0∥2 = ´xu0, v0y.

Definition. Let σ be a convex polyhedral cone in V .

1. A supporting hyperplane of σ is the hyperplane in V determined by some vector in σ_.
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2. A face of σ is the intersection of σwith some support hyperplane. In particular, σ is a face of itself. The faces of σ other
than itself are called proper faces.

— For u P V_, we put

uK := tv P V P xu, vy = 0u.

Then a supporting hyperplane is of the form uK for some u P σ_.

— If τ is a face of σ, we write τ ĺ σ. We call ĺ the face relation.

Lemma 13.2. Let σ be a convex polyhedral cone in V .

1. Any linear subspace of σ is contained in every face of σ.

2. Every face of σ is a convex polyhedral cone.

3. An intersection of two faces of σ is a face of σ.

4. A face of a face of σ is a face of σ.

Proof.

1. If v P σ is such that ´v P σ, then for any u P σ_, we have xu, vy ě 0 ď xu, ´vy, proving that xu, vy = 0.

2. In fact, if σ = cone(S) for some finite subset S Ď V and τ = σ X uK for some u P σ_, then τ = cone(S X uK). Clearly,
we have cone(SX uK) Ď τ. Conversely, if v P τ, write v =

ÿ

sPS

ass with as ě 0. By the following lemma, we see ass P τ

for each s, so s P SX τ = SX uK, implying v P cone(SX uK).

Lemma 13.3. Let τ ĺ σ. If v,w P σ are such that v+w P τ, then v,w P τ.

Proof. Say τ is cut off by the hyperplane determined by u P σ_. Then xu, vy ě 0 ď xu,wy. By assumption we have
xu, v+wy = 0, so this forces that xu, vy = xu,wy = 0. This shows v,w P τ.

3. Let u1, u2 P σ_. Then

(σX uK
1 ) X (σX uK

2 ) = σX (u1 + u2)
K.

This identity is proved as before, and clearly implies 3.

4. Let τ = σX uK for some u P σ_ and γ = τX vK for some v P τ_. Consider the vector v+ tu ; since σ has a finite set of
generators, we see v+ tu P σ_ for t " 0. Indeed, if v P S, we have either xu, vy ą 0, or xu, vy = 0 and xu 1, vy ě 0. Thus

τX (v+ tu)K = (τX vK) X (τX uK) = γX τ = γ.

The converse of Lemma 13.3 holds in the following sense. Note that this lemma is not used in this section.

Lemma 13.4. Let σ be a convex polyhedral cone in V and τ Ď σ a convex cone such that if v,w P σ and v + w P τ, then
v,w P τ. Then τ is a face of σ.

Proof. Replacing V by spanRσ, we may assume σ has maximal dimension. Further, by replacing σ by a face of which, we
may assume τ is not contained in any proper face of σ. Under these assumptions and the condition of the lemma, we prove
τ = σ.

By Corollary 13.8, σ_ is a convex polyhedral cone, so we may write σ_ = cone(u1, . . . ,us) for some minimal generating
set tu1, . . . ,usu of σ_. By Lemma 13.1, σ = cone(u1, . . . ,us)_. Fix an integer 1 ď i ď s. If xui, τy = 0, then τ Ď σ X (ui)

K,
contradicting to our assumption that τ is not contained in any proper face. Thus we can find vi P τ such that xui, viy ą 0. If
we take v0 = v1 + ¨ ¨ ¨ + vs, we see xui, v0y ą 0 for any i, so that v0 P int(σ) X τ.
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If τ Ĺ σ, then for v P σzτ, consider the vector tv0 ´ v ; if t " 0, then xui, tv0 ´ vy ě 0 for any 1 ď i ď s, so that
tv0 ´ v P (σ_)_ = σ. This implies tv0 = (tv0 ´ v) + v P τ with tv0 ´ v, v P σ, and our condition implies that tv0 ´ v, v P σ, a
contradiction.

Definition. Let σ be a convex polyhedral cone in V .

1. A facet of σ is a face τ of codimension one, namely, dim τ = dimσ´ 1.

2. An edge of σ is a face of dimension one.

Lemma 13.5. Any proper face of a convex polyhedral cone σ in V is contained in some facet.

Proof. Put σ = cone(S) for some finite subset S of V . Let u P σ_ be such that τ = σ X uK has codimension ą 1 in σ. We
saw that τ = cone(SX uK). By replacing V with σ + (´σ), we may assume V is spanned by σ. Also put W = τ + (´τ). The
image of S in V/W is contained in the closed half-space determined by u. Since dimR V/W ě 2, if we rotate (in V/W) this
half-space about the origin, we can obtain a closed half space containing 0+W and at least one nonzero image of S in V/W.
In other words, we can find u0 P σ_ such thatW Ĺ σX uK

0 .

Corollary 13.5.1.

1. Any face of codimension 2 is an intersection of two facets.

2. Any proper face is the intersection of all facets containing it.

Proof. Let σ be a convex polyhedral cone.

1. Retain the notation in the proof of the last lemma. Under our assumption, we have dimR V/W = 2, i.e., V/W is a plane.
This means the image of σ inW has two supporting lines, and the result is clear.

2. Let τ be a proper face of σ. If the codimension of τ in σ is ą 1, then by the last lemma, τ is contained in the facet γ of σ.
Since σ_ Ď γ_, we may regard τ as a face of γ, so by induction we see τ is the intersection of all facets of γ containing
τ. But each facet of γ, by 1., is an intersection of two facets in σ, so τ is an intersection of facets.

Lemma 13.6. Let σ be a convex polyhedral cone in V such that V = σ+ (´σ). Then Bσ is the union of all facets of σ.

Proof. A facet is an intersection of σ with some hyperplane determined by some vector in σ_, so any neighborhood of a
point p in a facet intersects nontrivially with the complement of σ. Since σ has nonempty interior and is convex, the segment
connecting p and any interior point entirely lies in σ. This shows any neighborhood of pmeets the interior of σ. This shows
p P Bσ.

Conversely, let p P Bσ and let (wn) be a sequence outside σ such thatwn Ñ p. By Lemma 13.1, we can find un P σ_ such
that xun,wny ă 0. Rescaling, we assume ∥un∥ = 1. Since V is finite dimensional, the unit sphere is compact ; by passing the
convergent subsequence, we may assume un converges to some point q P σ_. Then 0 ď xq,py ď 0, so p P σX qK.

Lemma 13.7. If σ is a convex polyhedral cone spanning the whole vector space V with σ ‰ V , then

σ =
č

τ

tv P V | xuτ, vy ě 0u

where τ runs over all facets of σ and uτ is the unique vector (up to multiplication by a positive scalar) such that τ = σXuK
τ .

Proof. By definition we always have the containment Ď. If v were in the intersection but not in σ, take any vector v 1 in the
interior of σ and denote by w the last point in σ on the segment from v 1 to v. Then w P Bσ, so w lies in some facet τ of σ by
Lemma 13.6. We have xuτ, v 1y ą 0 and xuτ,wy = 0, so xuτ, vy = 0, a contradiction.
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Lemma 13.8. The dual of a convex polyhedral cone σ is a convex polyhedral cone.

Proof. If σ spans V , then σ_ is generated by the uτ in Lemma 13.8. Indeed, if u P σ_zconetuτuτ, by Lemma 13.1, we can
find v P V with xuτ, vy ě 0 for all facets τ and xu, vy ă 0 ; the former implies v P σ by the last lemma, and the latter leads to a
contradiction.

If σ spans a smaller spaceW, then σ_ is generated by lifts of generators of its image in V_/WK along with vectors u and
´u, where u runs over a basis ofWK.

Corollary 13.8.1. A subset σ in V is a convex polyhedral cone if and only if it is a finite intersection of closed half spaces in
V .

Proof. The only if part follows from the last lemma and the fact σ_ =
č

vPS

tu P V_ | xu, vy ě 0u. For the if part, say

σ = u_
1 X ¨ ¨ ¨ X u_

ℓ with ui P V_. Put γ = conetu1, . . . ,uℓu Ď V_ ; then γ_ = σ. If γ Ĺ σ_, say u P σ_zγ, then by Lemma
13.1 we can find v P γ_ = σ such that xu, vy ă 0, a contradiction to the facts u P σ_ and v P σ. Hence σ_ = γ is a convex
polyhedral cone, so σ = γ_ is also a convex polyhedral cone by the last lemma.

Definition.
1. A lattice in V is a Z-submodule of V of rank dimR V .
2. A convex polyhedral cone σ in V is N-rational if N is a lattice in V and σ = cone(S) for some finite subset S Ď N.

‚ SupposeN andM are lattices of V and V_, respectively, so thatN andM are dual to each other under the pairing x , y.
Then

(i) Any face of σ is N-rational. For if τ = σX uK and σ = cone(S) for some S Ď N, then τ = cone(SX uK).
(ii) If σ is N-rational, then σ_ isM-rational. This can be seen from the 1. and the proof of Lemma 13.8.

Lemma 13.9 (Gordan’s). Suppose N and M are lattices of V and V_, respectively, so that N and M are dual to each other
under the pairing x , y. If σ is a N-rational convex polyhedral cone, then

Sσ := σ_ XM

is a finitely generated semigroup.

Proof. Say σ_ = cone(S) for some S Ď M. Let K = t
ř

uPS auu | 0 ď au ď 1 for all u P Su be the fundamental parallelotope.
Since K is compact andM is discrete, KXM is finite. Then KXM generates σ_ XM. Indeed, if v P σ_ XM, write

v =
ÿ

uPS

auu =
ÿ

uPS

tauuu+
ÿ

uPS

tauuu

One sees that the latter two terms lie in KXM.

Definition. The relative interior relint(σ) of a convex polyhedral cone σ is the interior of σ in the topological space spanRσ.
‚ Say σ = cone(S), and let T Ď S be the independent subset of size dimσ. Then every positive linear combination of

vectors in T lies in relint(σ). In particular, if S ‰ H, then relint(σ) ‰ H. Also, if σ isN-rational, then relint(σ)XN ‰ H.
‚ We have v P relint(σ) if and only if xu, vy ą 0 for all u P σ_zσK. To see this, first consider the case V = spanRσ. Then

relint(σ) is just the interior of σ in V . By Lemma 13.6 we have v P relint(σ) if and only if xuτ, vy ą 0 for all facets τ of
σ. Each element in σ_zσK gives a proper face of σ, and each proper face is contained in some facet. Now the result
follows.
If σ spans a smaller spaceW, then the preceding paragraph shows that

relint(σ) =
č

uPW_

tv P σ | xu, vy ą 0u

ButW_ – V_/WK = V_/σK in a way that x , y is preserved, the result follows.
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‚ Every vector in σ is contained in the relative interior of some face of σ. This can be seen by induction on dimensions of
cones, by virtue of Lemma 13.6.

Lemma 13.10. Let σ be a convex polyhedral cone in V .
1. If τ is a face of σ, then τ˚ := σ_ X τK is a face of σ_ with dim τ+ dim τ˚ = dimR V .
2. There is an inclusion-reversing bĳection

tfaces of σu tfaces of σ_u

τ τ˚

3. The smallest face of σ is σX (´σ).

Proof. First note that every face of σ_ has the form σ_ X vK for some v P (σ_)_ = σ. If v is contained in the relative interior
of some face τ, then

σ_ X vK = σ_ X τ_ X vK = σ_ X τK.

The first equality results from σ_ Ď τ_, and the second follows from xu, vy ą 0 for any u P τ_zτK. This shows the map 2. is
surjective. The map is clearly inclusion-reversing, and it follows formally from τ Ď (τ˚)˚ that τ˚ = ((τ˚)˚)˚, so the map is
bĳective. In particular, the smallest face is

(σ_)_ X (σ_)K = (σ_)K = σX (´σ)

and dimσX (´σ) + dimσ_ = dimV (for x , y is nondegenerate). In general, if τ is a proper face, find a sequence

σX (´σ) = τ0 Ĺ τ1 Ĺ ¨ ¨ ¨ Ĺ τℓ = τ Ĺ ¨ ¨ ¨ Ĺ τm Ĺ σ

of faces of σ such that τi´1 has codimension one in τi and τm is a facet. Taking ˚ and computing dimensions gives
dim τ+ dim τ˚ = dimR V .

Lemma 13.11. Let σ be a convex polyhedral cone in V . TFAE :
(a) t0u is a face of σ.
(b) σ contains no positive dimensional subspace of V .
(c) σX (´σ) = t0u.
(d) dimσ_ = dimR V .

If either condition holds, we say σ is strongly convex.

Proof. We saw in Lemma 13.2.1. that any linear subspace of σ is contained in every face of σ. Since σX (´σ) is the smallest
face of σ, we see (b)ô(c). Also, Lemma 13.10 shows (c)ô(d). If t0u is a face, it must be the smallest one, so (a)ô(c).

Corollary 13.11.1. If σ is a strongly convex polyhedral cone, then σ is generated by its edges.

Proof. For an edge ρ of σ, by Lemma 13.11.(b), we see ρ is a ray, i.e., ρ = Rě0eρ for some vector eρ P σ. By saying σ is
generated by its edges we actually mean that σ = coneteρu, where ρ runs over all edges of σ.

Say σ = cone(S) for some finite subset S Ď V . We assume that S is minimal among all generating sets of σ. We claim that
tRě0v | v P Su is the collection of all edges of σ.

— Let v P S. Applying Lemma 13.1 to cone(Sztvu), we obtain a vector u P cone(Sztvu)_ with xu, vy ă 0. Take u 1 P

relint(σ_) ; then xu 1, v 1y ą 0 for any v 1 P (σ_)_z(σ_)K = σzt0u. Let λ ą 0 be the unique number such that xu+λu 1, vy =

0. Then u+ λu 1 P σK, and

σX (u+ λu 1)K = Rě0v

for xu+ λu 1, v 1y ą 0 for any v 1 P Sztvu. This shows Rě0v is an edge.
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— Let τ = σ X uK be an edge of σ. Then τ = cone(S X uK) is one dimensional, so S X uK must be a singleton tvu, and
τ = Rě0v by Lemma 13.11.(b).

Remark. Let σ be a strongly convexN-rational polyhedral cone. If ρ is an edge of σ, then ρ is a ray. Since ρ is alsoN-rational
(and N is discrete), the semigroup ρ X N is generated by a unique element uρ P ρ X N. This vector uρ is called the ray
generator of ρ. Thus Corollary 13.11.1 implies that σ is generated by the ray generators of its edges.

Lemma 13.12. Let σ be a convex polyhedral cone. If τ = σX uK for some u P σ_, then τ_ = σ_ + Rě0(´u).

Proof. Both sides of the identity being convex polyhedral cones, we only need to show their duals are equal. But

(σ_ + Rě0(´u))
_ = (σ_)_ X (´u)_ = σX (´u)_ = σX uK = τ,

we are done.

Lemma 13.13 (Separation lemma). If σ and σ 1 are convex polyhedral cones whose intersection is a face τ of each, then
τ = σX uK = σ 1 X uK for any u P relint(σ_ X (´σ 1)_).

In the following we fix a latticeN in V and denote byM Ď V_ the dual lattice ofN. By a rational convex polyhedral cone
in V (resp. in V_) we always mean a convex polyhedral cone that is N-rational (resp.M-rational).

13.1.1 Hilbert bases

Definition. Let σ be a rational convex polyhedral cone in V and Sσ := σ_ XM. An element x P Sσ is called irreducible if
x = x 1 + x2 for some x 1, x2 P Sσ implies x 1 = 0 or x2 = 0.

Lemma 13.14. Let σ be a strongly convex rational polyhedral cone of maximal dimension in V and Sσ := σ_ XM. Put

H := tx P Sσ | x is irreducibleu .

Then
(a) H is finite and generates Sσ.
(b) H contains the ray generators of the edges of σ_.
(c) H is the minimal generating set of Sσ with respect to inclusion.

The generating set H is called the Hilbert basis of the semigroup Sσ.

Proof. Since σ = (σ_)_, Lemma 13.11.(d) implies that σ_ is strongly convex, so t0u is a face of σ_ by Lemma 13.11.(a), i.e.,
there exists v P σXNzt0u such that xu, vy P Zě0 for any u P Sσ, and for u P Sσ, xu, vy = 0 if and only if u = 0.

Suppose u P Sσ is not irreducible. Then u = u 1 + u2 for some u 1,u2 P Sσzt0u. It follows that

xu, vy = xu 1, vy + xu2, vy

with xu 1, vy, xu2, vy P Zą0, so both of them are strictly smaller than xu, vy. By induction on xu, vy we conclude that every
element in Sσ is a finite sum of irreducible elements, meaning that H generates Sσ. By Lemma 13.9, H is finite. This proves
(a).

For (b), let ρ be an edge of σ_ and uρ P ρ X M be its ray generator. We must show that uρ P Sσ is irreducible. Write
ρ = σ_ X vK for some v P σXNzt0u. If uρ = u1 + u2 for some ui P Sσ Ď σ_, then

0 = xuρ, vy = xu1, vy + xu2, vy

with each xui, vy non-negative. This forces that xu1, vy = 0 = xu2, vy, so u1, u2 P ρ XM. But uρ is the unique generator of
ρ XM, so either u1 = 0 or u2 = 0, demonstrating the irreducibility of the ray generator uρ. Finally, (c) results from the fact
that every element in H is irreducible.
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13.2 Convex polytopes

We retain the notation in the last subsection.

Definition.

1. For any subset S Ď V , the convex hull of S is the smallest convex set conv(S) in V containing S.

2. A convex polytope in V is the convex hull of a finite subset of V

3. An affine subspace of V is a subset of the form v +W, where v P V and W Ď V is a subspace. The dimension of this
affine subspace is the dimension ofW.

4. For any subset S Ď V , the affine span of S is the smallest affine subspace aff(S) of V containing S. In fact, we have

aff(S) =

#

ÿ

vPS

avv |
ÿ

vPS

av = 1, av = 0 for all but finitely many v P S

+

5. The dimension dimP of a polytope P is dimaff(P).

‚ For a finite subset S of V , we have

conv(V) =

#

ÿ

vPS

avv | 0 ď av,
ÿ

vPS

av = 1

+

‚ Let S Ď V be a finite subset. Consider V 1 = V ‘ R. If we identify V as V ˆ t1u Ď V 1, then

conv(S) = cone(Sˆ t1u) X V .

Clearly, conv(S) Ď cone(S ˆ t1u) X V . Conversely, if v P cone(S ˆ t1u) X V , write v =
ÿ

sPS

as(s, 1) with as ě 0. Since

v P V ˆ t1u,
ÿ

sPS

as = 1, so v P conv(S) by the last property.

‚ If S is a finite subset, then cone(S ˆ t1u) is a strongly convex polyhedral cone. To see this, let u 1 P V_ be such that
xu 1,Sy ą 0. Let u = (u 1, 0) P V_ ‘ R ; then u P cone(S ˆ t1u)_ and cone(S ˆ t1u) X uK = t0u, implying that t0u is a
face of cone(Sˆ t1u).

Definition. Let P be a convex polytope in V . A face of P is a subset of the form

P X tv P V | xu, vy = bu

for some u P V_ and b P R with P Ď H+
u,b := tv P V | xu, vy ě bu. In this situation, Hu,b := tv P V | xu, vy = bu is called the

supporting affine hyperplane.

‚ A facet, edge, and vertex of P is a face of dimension dimP ´ 1, 1 and 0, respectively.

Lemma 13.15. If P = conv(S) for some finite subset S Ď V andQ = Hu,bXP is a face, thenQ = conv(SXHu,b). In particular,
any face of a convex polytope is a convex polytope.

Proof. Clearly we have Ď. Conversely, if q P Q, write q =
ÿ

vPS

avv with 0 ď av and
ÿ

vPS

av = 1. Since q P Hu,b, we have
ÿ

vPS

avxu, vy = b. But P Ď H+
u,b, we have

b =
ÿ

vPS

avxu, vy ě
ÿ

vPS

avb = b

and hence the equality xu, vy = b for any v P Swith av ‰ 0. This proves q P conv(SXHu,b).
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Lemma 13.16. There is a bĳection

tfaces of Pu tfaces of cone(P ˆ t1u)u

Q cone(Qˆ t1u)

with empty face of P corresponding to t0u.

Proof. Write P = conv(S) for some finite subset S Ď V ; then cone(Pˆ t1u) = cone(S), where we identify Swith Sˆ t1u. Let
u P cone(S)_ and write u = (u 1, r) for some u 1 P V_ and r P R. Then

cone(S) X uK X V = P XHu1,´r

and P Ď H+
u1,´r. Indeed, v = (v, 1) P LHS if and only if xu 1, vy + r = 0, if and only if v P RHS. Since u P cone(S)_, for any

v P P, we have xu 1, vy + r ě 0, i.e., v P H+
u1,´r.

If u P V_ and b P R, then (u, ´b) P V_ ‘ R, and the condition P Ď H+
u,´b implies (u, ´b) P cone(S)_. Thus, the map in

the lemma is well-defined, and it is clear that it is bĳective.

Corollary 13.16.1. Let P = conv(S) be a polytope in V .

1. Every vertex of P lies in S.

2. P is the convex hull of its vertices.

3. If Q is a face of P, the faces of Q are exactly the faces of P contained in Q.

4. Every proper face Q of P is the intersection of facets of F containing Q.

Proof.

1. SayHu,bXP = conv(SXHu,b) is a vertex ofP. This means conv(SXHu,b) is a singleton, so conv(SXHu,b) = SXHu,b Ď S.

2. A vertex of P corresponds to an edge of cone(P ˆ t1u). Now the result follows from Corollary 13.11.1.

3. Lemma 13.2.4.

4. Corollary 13.5.1.2.

Lemma 13.17. A subset P of V is a polytope if and only if it is bounded and is a finite intersection of affine half-spaces.

Proof. The only if part follows from Corollary 13.8.1. For the if part, write P =
ℓ
č

i=1
H+
ui,bi

for some ui P V_ and bi P R. Then

C(P) =
ℓ
č

i=1
t(v, λ) P V ‘ Rě0 | xui, vy ě λbiu =

ℓ
č

i=1
(ui, ´bi)

_

is a convex polyhedral cone, soC(P) = cone(S) for some finite subset S Ď V‘Rě0. We assume S = tviu
a
i=1 Ytwju

b
j=1 with, by

abuse of notation, vi = (vi, 1) P Vˆ t1u andwj = (wj, 0) P Vˆ t0u. ClearlyC(P)XV = P, so P = convtviu
a
i=1 +conetwju

b
k=1.

By boundedness of P we must have b = 0, i.e., P = conv(S).

Remark. A set of the form conv(S) + cone(T) with S, T Ď V finite is called a polyhedron. By definition, a convex polytope
is exactly a bounded polyhedron. One can show that a subset of V is a polyhedron if and only if it is a finite intersection of
affine half-spaces.

When dimP = dimR V , by Lemma 13.7 we can write P as the intersection of the half spaces determined its facets, and
each facet F has a unique supporting affine hyperplane

HF := tv P V | xuF, vy = ´aFu
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for some pair (uF,aF) P V_ ‘R unique up to a multiplication of a positive scalar. The vector uF is called an inward-pointing
facet normal of F. If we put H+

F = H+
uF,´aF

, we have

P =
č

F

H+
F = tv P V | xuF, vy ě ´aF for all facets Fu,

where F runs over all facets of P. This is called the facet presentation of P.

Definition. Convex polytopes P1 and P2 are combinatorially equivalent if there is a bĳection

tfaces of P1u tfaces of P2u

that preserves dimensions, intersections, and the face relation (this means if Q 1 is a face of Q with Q,Q 1 being faces of P1,
then under this bĳection, the image of Q 1 is still a face of the image of Q).

Definition. Let P be a convex polytope of dimension d in V .

1. P is a simplex/d-simplex if it has d+ 1 vertices.

2. P is simplicial if every facet of P is a simplex.

3. P is simple if every vertex is the intersection of precisely d facets.

Definition. Let P = conv(S) be a convex polytope in V .

1. For r ě 0, put rP = conv(rS) = convtrv | v P Su, which is again a convex polytope.

2. If P 1 = conv(S 1) is another convex polytope, the Minkowski sum P + P 1 = conv(S+ S 1) is still a convex polytope.

3. When dimP = dimR V and 0 P int(P), define the polar/polar set of P to be

P˝ = tu P V_ | xu, vy ě ´1 for all v P Pu Ď V_.

‚ Note that the distribution law holds : for r, t ě 0, we have

rP + tP = (r+ t)P.

— The equality P+ P 1 = conv(S+ S 1) needs a verification. The containment conv(S+ S 1) Ď P+ P 1 is relatively clear. The
other can be dealt with greedy.

Lemma 13.18. Let P be a convex polytope in V with dimP = dimR V and 0 P int(P).

1. P˝ is convex polytope, and (P˝)˝ = P.

2. If Q is a face of P,

Q˚ = tu P P˝ | xu, vy = ´1 for all v P Qu

is a face of P˝, and this establishes an inclusion-reversing bĳection

tfaces of Pu tfaces of P˝u

Q Q˚

with dimQ+ dimQ˚ = dimV ´ 1.

3. If P = tv P V | xuF, vy ě ´aF for all facets Fu, then P˝ = convta´1
F uFuF facets. Note that aF ą 0 since 0 P int(P).

Proof. Let σ = cone(Pˆt1u). Then σ_ = cone(P˝ ˆt1u), so P˝ is a convex polytope. Now (P˝)˝ = P follows from (σ_)_ = σ.
For a faceQ of P, τ = cone(Qˆ t1u) is a face of σ, and τ˚ = σ_ X τK = cone(Q˚ ˆ t1u). Now 2. follows from Lemma 13.10,
and 3. follows from the first paragraph of the proof of Lemma 13.8.
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13.2.1 Normal lattice polytopes

Definition. LetM be a lattice in V . AnM-lattice/M-rational polytope is a convex polytope conv(S) with S Ď M.
‚ A convex polytope isM-rational if and only if its vertices all lie inM.
‚ Faces of an M-rational polytope is also M-rational. Also, every M-rational polytope is an intersection of affine half-

spaces H+
u,b defined overM, i.e., u P N and b P Z.

‚ Let N Ď V_ be the dual lattice of M. If P is an M-rational polytope with dimP = dimR V and 0 P int(P), then P˝ is an
N-rational polytope in V_.

‚ LetN be as above and P beM-rational and dimP = dimR V . For any facet F of P, the inward-pointing facet normal lies
on a rational ray in V_ ; let uF P N be the unique ray generator. If v is a vertex contained in F, then xuF, vy = ´aF P Z is
integral.

In the following, fix an lattice M in V and let N be the dual lattice in V_. By a lattice polytope in V (resp. in V_) we
always mean an M-rational (resp. N-rational) convex polytope. Notice that in the last subsection N denoted a lattice in V ,
while here we useM to denote a lattice in V .

Definition. A lattice polytope P in V is called normal if

(kP) XM+ (ℓP) XM = ((k+ ℓ)P) XM

for all k, ℓ P Zě0.
‚ The inclusion Ď is automatic, so the normality actually means that all lattice points of (k+ ℓ)P come from lattice points

of kP and ℓP.
‚ A lattice polytope P is normal if and only if

P XM+ ¨ ¨ ¨ + P XM
looooooooooooomooooooooooooon

k-copies

= (kP) XM

for all k P Zě0.
‚ Lattices polytopes of dimension one are normal.

Definition. A lattice polytope P of V is a basic simplex/unimodular simplex if P is a simplex and has a vertexm0 such that
tm´m0 | m ‰ m0 : vertices of Pu forms a subset of a Z-basis ofM.

‚ The definition is independent of the choice of the vertexm0 P P.
‚ The standard simplex ∆d (0 ď d ď n) in Rn is basic.
‚ Any basic simplex is normal.

Theorem 13.19. Let P Ď V be a full dimensional lattice polytope of dimension n ě 2. Then kP is normal for all k ě n´ 1.

Proof. We will prove that

(kP) XM+ P XM = ((k+ 1)P) XM

for k ě n´ 1. This implies kP is normal for all k ě n´ 1.
First consider the case where P is a simplex with no interior lattice point. Let v0, . . . , vn be vertices of P and take k ě n´ 1.

Then (k+ 1)P has vertices (k+ 1)v0, . . . , (k+ 1)vn, so that any point v P ((k+ 1)P) XM has the form

v =
n
ÿ

i=0
µi(k+ 1)vi

with µi ě 0 and
n
ÿ

i=0
µi = 1. Put λi = (k+ 1)µi ; we have

n
ÿ

i=0
λi = k+ 1.
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(i) λi ě 1 for some i = 0, . . . ,n. Then v´ vi P (kP) XM, so v = (v´ vi) + vi P (kP) XM+ P XM, as we desire.

(ii) λi ă 1 for all i = 0, . . . ,n. Then

n = (n´ 1) + 1 ď k+ 1 =
n
ÿ

i=0
λi ă n+ 1

so k = n´ 1 and
n
ÿ

i=0
λi = n. Consider the point

rv := (v0 + ¨ ¨ ¨ + vn) ´ v =
n
ÿ

i=0
(1 ´ λi)vi

The coefficients are positive, and their sum is
n
ÿ

i=0
(1 ´λi) = (n+1)´n = 1. Thus rv is a lattice point, and since 1 ´λi ą 0

for each i, rv lies in the interior of P. This is a contradiction.

For general P, it suffices to show P is a finite union of n-dimensional lattice simplices with no interior lattice points. For this,
we invoke

Lemma 13.20 (Carathéodory’s). For a finite set S Ď V , we have

conv(S) =
ď

T

conv(T)

where T runs over all subsets of S consisting of dim conv(S) + 1 affinely independent vectors.

Proof. Let x P conv(S) and write x =
ÿ

vPS

avv with 0 ď av and
ÿ

vPS

av = 1. Among all such presentations of x, we choose a

minimal one, i.e., the one so that

T := tv P S | av ‰ 0u

is minimal. We claim #T ď dim conv(S) + 1. Suppose for contradiction that #T ą dim conv(S) + 1. Pick any t0 P T . Then
tt ´ t0 | t ‰ t0, t P Tu is linear dependent, so 0 =

ÿ

TQt‰t0

bt(t ´ t0) for some nonzero sequence (bt)t‰t0 . If we define

bt0 = ´
ÿ

t‰t0

bt, we see 0 =
ř

tPT btt and 0 =
ř

tPT bt. Since (bt)t is nonzero, #tt P T |bt ą 0u ě 1. For any r P R, we may

write

x =
ÿ

vPT

avv´ r
ÿ

vPT

bvv =
ÿ

vPT

(av ´ rbv)v.

If we choose r = min
"

av

bv
| v P T , bv ą 0

*

ą 0, then av ´ rbv ě 0 for any v P T and
ÿ

vPT

(av ´ rbv) = 1. But r = av1

bv1
for some

v 1 P T , so av1 ´ rbv1 = 0, contradicting the minimality of T . In addition, we also proved that T is affinely independent. The
proof is completed once we notice that every affinely independent subset of S can be extended to an affinely independent
subset of S of size dim conv(S) + 1. Thus we can write P as a finite union of n-dimensional lattice simplices. If
Q = convtw0, . . . ,wnu is an n-dimensional lattice simplex with an interior lattice point v, then

Q =
n
ď

i=0
convtw0, . . . , xwi, . . . ,wn, vu

with each convtw0, . . . , xwi, . . . ,wn, vu an n-dimensional lattice simplex having fewer interior lattice points. We repeat this
process so that Q, and hence P, is written as a finite union of n-dimensional lattice simplices with no interior lattice points.
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Corollary 13.20.1. Every lattice polygon in R2 is normal.

Lemma 13.21. Let P be a lattice polytope in V . Then P is normal if and only if (P X M) ˆ t1u generates the semigroup
C(P) X (Mˆ Z), where C(P) = cone(P ˆ t1u).

Proof. Note that

C(P) X (Mˆ Z) = t0u Y
ď

kě1
((kP) XM) ˆ tku

Thus (P XM) ˆ t1u generates C(P) X (Mˆ Z) if and only if for any k ě 1 and v P (kP) XM, we can find v1, . . . , vℓ P P XM

such that v = v1 + ¨ ¨ ¨ + vℓ and k = ℓ, which is the same as saying that P is normal.

Remark. Elements in (PXM)ˆt1u are clearly irreducible, so (PXM)ˆt1u is contained in the Hilbert basis of the semigroup
C(P) X (M ˆ Z). This lemma simply says that P is normal if and only if (P X M) ˆ t1u is exactly the Hilbert basis of
C(P) X (Mˆ Z).

Lemma 13.22. Let P be a full dimensional lattice polytope in V of dimension n ě 2 and let k0 be the maximal height of an
element in the Hilbert basis of C(P). Then k0 ď n´ 1.

Proof. This follows from the identity

(kP) XM+ P XM = ((k+ 1)P) XM (k ě n´ 1)

proved in Theorem 13.19.

13.2.2 Very ample polytopes

Definition. A lattice polytope P in V is called very ample if for every vertex v of P, the semigroup

SP,v := Zě0(P XM´ v)

generated by the set tv 1 ´ v | v 1 P P XMu is saturated inM.

‚ Recall that an affine semigroup S Ď M is saturated if for all k P Zą0 and v P M, kv P S implies v P S.

Lemma 13.23. A normal lattice polytope P is very ample.

Proof. Fix a vertex v0 of P and take w P M such that kw P SP,v0 for some k P Zą0. Write

kw =
ÿ

v1PPXM

av1(v 1 ´ v0)

for some av1 P Zě0. Take d P Zě0 so that kd ě
ÿ

v1PPXN

av1 . Then

kw+ kdv0 =
ÿ

v1PPXM

av1v 1 +

(
kd´

ÿ

v1PPXM

av1

)
v0 P kdP

Dividing out k, we see w+ dv0 P dP. By normality we see w+ dv0 =
ÿ

mPT

m for some T Ď P XMwith #T = d. Thus

w =
ÿ

mPT

(m´ v0) P SP,v0

as desired.

Corollary 13.23.1. Let P Ď V be a full dimensional lattice polytope. If dimP ě 2, then kP is very ample for all k ě n´ 1. In
particular, P is very ample if dimP = 2.
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Example. There exists non-normal very ample polytope. Given 1 ď i ă j ă k ď 6, let [ijk] denote the vector in Z6 with 1 in
positions i, j,k and 0 elsewhere. Let

A = t[123], [124], [135], [146], [156], [236], [245], [256], [345], [346]u Ď Z6.

The lattice polytope P = conv(A) lies in the affine hyperplane
6
ÿ

i=1
xi = 3 in R6. It is straightforward to see that A = P X Z6,

and A is the set of vertices of P. Label the points in A asm1, . . . ,m10. Then

(1, 1, 1, 1, 1, 1) = 1
5

10
ÿ

i=1
mi =

10
ÿ

i=1

1
10 (2mi)

which shows that v = (1, 1, 1, 1, 1, 1) P 2P. Since v is not a sum of lattices point of P (when [ijk] P A, the vector v´ [ijk] R A),
we conclude that P is not a normal polytope.

To show P is very ample, firstly, by computer we see A ˆ t1u Y t(v, 2)u Ď R6 ˆ R is a Hilbert basis of the semigroup
C(P) X Z7, where C(P) = cone(Pˆ t1u) Ď R6 ˆ R. Next fix i and let SP,mi

be the semigroup generated by themj ´mi. Take
m P Z6 such that km P SP,mi

. As in the proof of the last lemma, this implies m + dmi P dP for some d P Zě0, and thus
(m+ dmi,d) P C(P) X Z7. Expressing this in terms of the above Hilbert basis easily implies that

m = a(v´ 2mi) +
10
ÿ

j=1
aj(mj ´mi)

for some a,aj P Zě0. If we can show v´ 2mi P SP,mi
, thenm P SP,mi

follows and this proves SP,mi
is saturated. When i = 1,

one checks that

v+ [123] = [124] + [135] + [236]

which implies that

v´ 2m1 = (m2 ´m1) + (m3 ´m1) + (m6 ´m1) P SP,m1 .

One computes this for i = 2, . . . , 10 similarly, and this proves that P is very ample.

13.2.3 Normal fans

Let P be a full dimensional lattice polytope. We have the facet presentation of P

P = tx P V | xuF, xy ě ´aF for all facets Fu.

A vertex v of P gives cones

C_ = cone(P XM´ v) Ď V and σ_ = C_
v Ď V_.

where P XM´ v = tw´ v | w P P XMu. There is a bĳection

tfaces of P containing vu tfaces of C_u

Q Q_ = cone(QXM´ v)

Q = (Qv + v) X P Qv

that preserves dimensions, inclusions and intersections. In particular, all facets of Cv come from facets of P containing v, so
that Lemma 13.7 gives

Cv = tx P V | xuF, xy ě 0 for all facets F of P containing vu.
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It follows that the proof of Lemma 13.8 that

σ_ = cone tuF | F : facets of P containing vu.

For any face Q of P, we set

σQ = cone tuF | F : facets of P containing Qu.

In particular, σF = Rě0uF and σP = coneH = t0u.

Theorem 13.24. Let P be a full dimensional lattice polytope and set ΣP = tσQ | Q is a face of Pu. Then :

1. For all σQ P ΣP, each face of σQ also lies in ΣP.

2. The intersection σQ X σQ1 of any two cones in ΣP is a face of each.

We call ΣP the (inner) normal fan of P.

To avoid cumbersome sentences, we will always write Q, F, v to denote faces, facets, vertices of P.

Lemma 13.25. LetQ be a face of P and letHu,b be a supporting affine hyperplane of P. Thenu P σQ if and only ifQ Ď Hu,bXP.

Proof. Suppose u P σQ and write u =
ÿ

QĎF

λFuF, λF ě 0. By setting b0 = ´
ÿ

QĎF

λFaF, we see

xu, xy =
ÿ

QĎF

λFxuF, xy ě ´
ÿ

QĎF

λFaF = b0

for any x P P, and the middle inequality is an equality for x P Q. In other words, P Ď H+
u,b0

and Q Ď Hu,b0 X P, so Hu,b0 is a
supporting hyperplane of P. By assumption Hu,b is a support hyperplane of P, so we must have b = b0, and Q Ď Hu,b X P

in turn.
Conversely, suppose that Q Ď Hu,b X P. Take a vertex v P Q. Then P Ď H+

u,b and v P Hu,b imply that Cv Ď H+
u,0. Hence

u P C_
v = σv, so that

u =
ÿ

vPF

λFuF

for some λF ě 0. Let F0 be a facets of P containing v but not Q, and pick p P Qwith p R F0. Then p, v P Q Ď Hu,b imply that

b = xu,py =
ÿ

vPF

λFxuF,py

b = xu, vy =
ÿ

vPF

λFxuF, vy = ´
ÿ

vPF

λFaF,

so that
ÿ

vPF

λFxuF,py = ´
ÿ

vPF

λFaF. But p R F0 gives xuF0 ,py ą ´aF, and since xuF,py ě ´aF for all F, it forces that λF0 = 0

whenever Q Ę F0. Thus u P σQ, and the proof is completed.

Corollary 13.25.1. If Q is a face of P and F is a facet of P, then uF P σQ if and only if Q Ď F.

Proof. The if part follows from definition, and the only if part follows from the last lemma with u = uF and b = ´aF, where
F = P XHuF,´aF

.

Theorem 13.24 is an immediate consequence of the following

Lemma 13.26. Let Q and Q 1 be faces of a full dimensional lattice polytope P in V . Then

(a) Q Ď Q 1 if and only if σQ1 Ď σQ.
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(b) If Q Ď Q 1, then σQ1 is a face of σQ, and all faces of σQ have this form.

(c) σQ X σQ1 = σQ2 , where Q2 is the smallest face of P containing Q and Q 1.

Proof.

(a) The only if part is obvious, and the if part follows from Corollary 13.25.1 and Corollary 13.5.1.2.

(b) Recall that a vertex v P Q of P determines a face Qv of Cv. By Lemma 13.10.2,

Q˚
v := C_

v XQK
v = σv XQK

v

is a face of σv. Since Qv Ď Cv = σ
_
v , for u P Q˚

v , if we write u =
ÿ

vPF

λFuF with λF ě 0, then for any x P Qv, we have

0 = xu, xy =
ÿ

vPF

λFxuF, xy

with each xuF, xy ě 0. ThusQv Ď HuF,0 if λF ą 0, proving that u P conetuF | v P F, Qv Ď HuF,0u. ThusQ˚
v Ď conetuF |

v P F, Qv Ď HuF,0u. The reversed inclusion is clear, so we obtain

Q˚
v = conetuF | v P F, Qv Ď HuF,0u.

Since v P Q, the inclusion Qv Ď HuF,0 is the same as Q Ď HuF,´aF
, which is equivalent to Q Ď F. It follows that

Q˚
v = conetuF | Q Ď Fu = σQ,

so σQ is a face of σv, and all faces of σv arise in this way (Lemma 13.10.2).
In particular,Q Ď Q 1 implies that σQ1 is a face of σv, and since σQ1 Ď σQ by (a), σQ1 is thus a face of σQ. Furthermore,
every face of σQ is a face of σv by Lemma 13.2.4, and hence has the form σQ1 for some face Q 1 ; by (a) again we see
Q 1 Ď Q, and (b) follows.

(c) Let Q2 be the smallest face of P containing Q and Q 1 (whose existence is assured by Lemma 13.2.3). By (b) σQ2 is a
face of both σQ and σQ1 , so σQ2 Ď σQ X σQ1 .
It remains the prove the reversed inclusion. If σQ X σQ1 = t0u = σP, thenQ2 = P and we are done. If σQ X σQ1 ‰ t0u,
pick a nonzero vector u in the intersection. If we take b = min

vPP
xu, vy, then P Ď H+

u,b and v P Hu,b for at least one vertex
v of P, implying that Hu,b is a supporting hyperplane. By Lemma 13.25, u P σQ X σQ1 implies Q Ď Hu,b X P Ě Q 1, so
Q2 Ď Hu,b X P by minimality of Q2. Using the same lemma again, we obtain u P σQ2 , as desired.

Lemma 13.27. Let P be a full dimensional lattice polytope in V of dimension n. Then

1. dimQ+ dimσQ = n for all faces Q of P.

2. V_ =
ď

vPP

σv =
ď

σQPΣP

σQ.

We will use the sentence “the normal fan ΣP is complete” to refer to the statement 2.

Proof.

1. This follows from the proof of Lemma 13.26.(b) and Lemma 13.10.1.

2. In the proof of Lemma 13.26.(c) we saw for every nonzero element u P V_, we can find b P R makingHu,b a supporting
hyperplane of P. If v P Hu,b, then Lemma 13.25 gives u P σv. The last equality follows from Lemma 13.26.(a).

Lemma 13.28. Let P be a full dimensional lattice polytope in V . For any lattice point m P M and any integer k ě 1, the
translation P +m and the dilation kP have the same normal fan as P.
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14 Toric Varieties

In this section, a variety over k is defined as in (4.17).

Definition. A toric variety is an irreducible variety X over C containing a torus TN – (Cˆ)n as a Zariski open subset such
that the action of TN on itself extends to an algebraic action of TN on X.

14.1 Affine toric varieties

14.1 We recall some properties about tori. Denote by AlgGp the category of algebraic groups over C. A torus (over C) is an
affine algebraic group T isomorphic to (Cˆ)n in AlgGp. The set HomAlgGp(T ,Cˆ), which is an abstract group, is called the
character group of T , and its element is called a character of T . From the theory of tori, the character group is isomorphic to
Zn. Explicitly, form = (m1, . . . ,mn) P Zn, define χm : T Ñ Cˆ by

χm(x1, . . . , xn) = xm1
1 ¨ ¨ ¨ xmn

n

where (x1, . . . , xn) P (Cˆ)n – T . The assignment m ÞÑ χm is an group isomorphism between Zn and HomAlgGp(T ,Cˆ).
Also, if we putM = HomAlgGp(T ,Cˆ), then the coordinate ring C[T ] of T is the same as the group algebra C[M].

On the other hand, the set HomAlgGp(Cˆ, T), which is also an abstract group, is called the cocharacter group of T , and its
element is called a cocharacter. It is also isomorphic to Zn. Explicitly, for u = (u1, . . . ,un) P Zn, define λu : Cˆ Ñ T by

λu(t) = (tu1 , . . . , tun) P (Cˆ)n – T .

The assignment u ÞÑ λu is an group isomorphism between Zn and HomAlgGp(Cˆ, T).
There is a pairing defined as follows.

HomAlgGp(T ,Cˆ) ˆ HomAlgGp(Cˆ, T) HomAlgGp(Cˆ,Cˆ)

(χ, λ) χ ˝ λ

The last group is isomorphic to Z, so χ ˝ λ(x) = xℓ for some unique ℓ P Z. We set ℓ = xχ, λy. If we identify both the character
group and the cocharacter group with Zn, this becomes the inner product on Zn :

Zn ˆ Zn Z

(m = (mi),u = (ui)) m ¨ n =
n
ÿ

i=1
miui.

In particular, this shows the pairing x , y is perfect.

14.2 Let T be a torus with character groupM. Every point t P T induces an evaluation ϕt :M Ñ Cˆ given by ϕt(χ) = χ(t).
The map

T HomZ(M,Cˆ)

t ϕt

is an group isomorphism. Indeed, if we identify T with (Cˆ)n, then

HomZ(M,Cˆ) = HomZ(Zn,Cˆ) (Cˆ)n

ϕ (ϕ(e1), . . . ,ϕ(en))
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is an group isomorphism whose inverse is exactly the map given above. Thus

T – HomZ(M,Cˆ) – HomZ(M,Z) bZ Cˆ – NbZ Cˆ

The map is explicitly given by NbZ Cˆ Q ub t ÞÑ λu(t) P T .

14.3 We quote, without proof, some facts about tori that we will use in the sequel.

(i) If φ : T1 Ñ T2 is a morphism of algebraic groups between tori, then the image of φ is closed in T2, and is a torus.

(ii) If T is a torus and H Ď T is an irreducible subvariety that is also an abstract subgroup, then H is a torus.

Suppose that a torus T acts linearly on a finite dimensional C-vector space V . For eachm P M, set

Vm := tv P V | t.v = χm(t)v for all t P Tu

This is the eigenspace of T with eigencharacter χm. Then we always have

(iii) V =
à

mPM

Vm.

14.4 Affine toric variety from lattice points. a Let TN be a torus with character group M and cocharacter group N. Let
A = tm1, . . . ,msu Ď M be a finite subset ofM. Using A, we construct a morphism ΦA : TN Ñ (Cˆ)s by

ΦA(t) = (m1(t), . . . ,ms(t)) P (Cˆ)s

Denote by YA the Zariski closure in AsC = Cs of the image ofΦA. Then YA is an affine toric variety whose torus has character
group ZA ď M, the abelian group generated by A.

To see this, by (14.3).(i), the image T = ΦA(T) of ΦA in (Cˆ)s is closed and is a torus. So by definition we have
YA X (Cˆ)s = T , which means that T is open in YA. This shows YA contains the torus T as a Zariski open subset. To show
the action of T on itself extends to an action of T on YA, note that for t P T , we have T = t.T Ď t.YA, so taking closure gives
YA Ď t.YA. Replacing t by t´1 shows YA = t.YA, so the action of T on itself really induces an action on YA. This shows YA is
an affine toric variety.

We are left to show the character group of T is ZA. By definition of T , we have a commutative diagram

TN (Cˆ)s

T
closed

Taking coordinate rings gives
C[M] C[x˘

1 , . . . , x˘
s ]

C[T ]

The upper horizontal map is given by xi ÞÑ mi, so C[T ] – C[m˘
1 , . . . ,m˘

s ] = C[ZA]. Note that themi are viewed as characters
of T in a way that for t = (t1, . . . , ts) P T Ď (Cˆ)s,

mi(t) = xi(t1, . . . , ts) = ti.

Let us putM 1 to be the character group of T temporarily. Then ZA ď M 1 (written additively). But C[ZA] = C[M 1], we must
have ZA =M 1, as we desire.
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14.5 Toric ideals LetA = tm1, . . . ,msu Ď M and YA be the affine toric variety constructed in (14.4). The mapΦA there gives
a homomorphism on character groups :

pΦA : Zs M

ei mi

Let L be the kernel of this map, so that we have an exact sequence of abelian groups

0 L Zs M
xΦA

For an element ℓ = (ℓ1, . . . , ℓs) P L, write

ℓ+ =
ÿ

i:ℓią0
ℓiei and ℓ´ = ´

ÿ

i:ℓiă0
ℓiei.

Then ℓ = ℓ+ ´ ℓ´ with ℓ˘ P (Zě0)
s. The binomial

Xℓ+ ´ Xℓ´ =
ź

i:ℓią0
xℓii ´

ź

i:ℓiă0
x´ℓi
i

vanishes on the image ofΦA, and hence on YA. Indeed, by definition of Lwe have
s
ÿ

i=1
ℓimi = 0, so

ÿ

i:ℓią0
ℓimi = ´

ÿ

i:ℓiă0
ℓimi,

which implies our assertion. Hence

xXℓ+ ´ Xℓ´ | ℓ P Ly Ď I(YA).

In fact, we have the equalities :

I(YA) = xXℓ+ ´ Xℓ´ | ℓ P Ly = xXa ´ Xb | a,b P (Zě0)
s, a´ b P Ly.

The last equality is clear, so it remains to show the first is contained in the second. For this, fix an isomorphism TN – (Cˆ)n

and identifyM = Zn ; then the map ΦA : (Cˆ)n Ñ (Cˆ)s has the form

ΦA(t1, . . . , tn) = (tm1 , . . . , tms)

where for a = (a1, . . . ,an) P Zn, we write ta := ta1
1 ¨ ¨ ¨ tan

n . Fix a monomial order ą on C[x1, . . . , xs]. If IL := xXℓ+ ´ Xℓ´ | ℓ P

Ly Ĺ I(YA), pick f P I(YA)zIL with minimal leading monomial xα =
s
ź

i=1
xαi

i , where α = (α1, . . . ,αs) P (Zě0)
s. Rescaling, if

necessary, we may assume xα is the leading term of f (that is, its coefficient is one).
Since f(tm1 , . . . , tms) = 0 identically, there must be some cancellation involving the term xα. In other words, there must

exist β = (β1, . . . ,βs) P (Zě0)
s such that

s
ź

i=1
tαimi =

s
ź

i=1
tβimi .

which implies
s
ÿ

i=1
αimi =

s
ÿ

i=1
βimi. It follows that α ´ β P L and Xα ´ Xβ P IL, so f ´ (Xα ´ Xβ) P I(YA)zIL has smaller

leading monomial, a contradiction.
The ideal I(YA) is then an example of toric ideals, a notion defined in the next paragraph.

14.6 Definition. Let L Ď Zs be a lattice.

1. The ideal IL := xXa ´ Xb | a,b P (Zě0)
s, a´ b P Ly is called a lattice ideal.

2. A prime lattice ideal is called a toric ideal.
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14.7 Proposition. An ideal I� C[x1, . . . , xs] is toric if and only if it is prime and is generated by some binomials of the form
Xα ´ Xβ (α,β P (Zě0)

s).

Proof. The only if part is shown in (14.5). For the if part, say I is a prime ideal generated byXαj ´Xβj for someαj, βj P (Zě0)
s.

Then (1, . . . , 1) P V(I) X (Cˆ)s and V(I) X (Cˆ)s is a subgroup of (Cˆ)s. Indeed, if t = (t1, . . . , ts), r = (r1, . . . , rs) lies in the
intersection, then

s
ź

i=1
t
αji

i =
s
ź

i=1
t
βji

i and
s
ź

i=1
r
αji

i =
s
ź

i=1
r
βji

i

so
s
ź

i=1
(riti)

αji =
s
ź

i=1
(riti)

βji , implying ts P V(I) X (Cˆ)s. By (14.3).(ii), the intersection T := V(I) X (Cˆ)s is a torus, so V(I)

is an affine toric variety.
Denote bymi the induced character on T from the projection to the i-th component of (Cˆ)s. Then clearly V(I) = YA with

A = tm1, . . . ,msu Ď M (here we take TN = T , soM is the character group of T ). Since I is a prime, by Hilbert’s Nullstellensatz
we have I = I(YA), and hence I is toric by (14.5).

14.8 Affine monoids. By definition, a monoid is a set S equipped with an associative unital binary operation. We say a
monoid S is an affine monoid if

(i) S is commutative and finitely generated, and
(ii) S is embedded in some latticeM of a finite dimensional vector space.

For an affine monoid S, the monoid algebra C[S] is a C-algebra with a C-basis S and with multiplication induced from the
binary operation on S. If, say, S is embedded inM andM is the character group of a torus TN, then

C[S] =

#

ÿ

mPS

amχ
m | am P C, am = 0 for all but finitely manym P S

+

with χm ¨ χm
1
= χm+m1 for anym,m 1 P S. If S is generated by A = tm1, . . . ,msu, then

C[S] = C[χm1 , . . . ,χms ].

14.9 Proposition. Let S be an affine monoid embedded in the latticeM.
1. The monoid algebra C[S] is an integral domain and is of finite type over C.
2. The affine variety V corresponding to C[S] is an affine toric variety whose torus has character group ZS, and if S is

generated by some finite set A Ď M, then V – YA.

Proof. Say S is generated by A = tm1, . . . ,msu Ď M. Then C[S] = C[χm1 , . . . ,χms ], so C[S] is finitely generated. Since
C[S] Ď C[M] and C[M] – C[Zn] – C[t˘

1 , . . . , t˘
n ] is an integral domain, so is the monoid algebra C[S].

There is a C-algebra homomorphism

π : C[x1, . . . , xs] C[M]

xi χmi

with image C[S]. IfM is the character group of the torus TN, then π corresponds to the morphismΦA : TN Ñ Cs constructed
in 14.4. The image of π corresponds to the closure of the image of Φ in Cs, so the coordinate ring of YA is Imπ = C[S]. The
assertion on the character group is clear.

14.10 Let TN be a torus with character group M. Then C[M] is the coordinate ring of TN. We let TN acts on C[M] by left
translation : for t P TN and f : TN Ñ C in C[M], define t.f P C[M] to be

t.f(p) = f(t´1.p)
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for any p P TN. We have the following result.

Lemma. LetW Ď C[M] be a subspace stable under the action of TN. Then

W =
à

mPM
χmPW

Cχm

Proof. The right hand side is of course contained inW, so it suffices to prove the opposite inclusion. For 0 ‰ f P W Ď C[M],
write f =

ÿ

mPM

amχ
m. Let B = spanCtχm | m P Mwith am ‰ 0u, which is a finite dimensional subspace of C[M]. Since

t.χm = χm(t´1)χm, it follows that B is invariant under TN-action, and hence so is BXW. By (14.3).(iii), BXW is spanned by
simultaneous eigenvectors of TN. An easy computation shows that any simultaneous vector is a character of TN, so BXW is
spanned by characters. It follows that χm P W for thosemwith am ‰ 0, and hence f lies in the right hand side.

14.11 Theorem. For an affine variety V , TFAE :

(i) V is an affine toric variety.

(ii) V = YA for a finite set A in some lattice (of a finite dimensional vector space).

(iii) I(V) is a toric ideal.

(iv) The coordinate ring of V is C[S] for some affine monoid S.

Proof. (ii)ô(iii) follows from (14.5) and (the proof of) Proposition (14.7), and (ii)ô(iv)ñ(i) follows from (14.9.2). It remains
to show (i)ñ(iv). Let V be an affine toric variety containing the torus TN with character group M. The inclusion TN Ď V

induces a homomorphism C[V] Ñ C[M], which is injective for TN is Zariski dense in V . Thus we can think of C[V] as a
subalgebra of C[M]. The TN-action on V being given by a morphism TN ˆ V Ñ V , it follows that C[V] is a TN-invariant
subspace of C[V]. By Lemma 14.10

C[V] =
à

mPM
χmPC[V]

Cχm

so C[V] = C[S] for the monoid S = tm P M | χm P C[V]u. Finally, since C[V] is finitely generated, it follows that S is a finitely
generated monoid, and hence an affine monoid.

14.12 Affine toric varieties from rational convex polyhedral cones. Let N be a free Z-module of rank n. Let σ Ď NR be
an N-rational convex polyhedral cone and set Sσ = σ_ XM, where M is the lattice in (NR)

_ dual to N with respect to the
evaluation pairing (NR)

_ ˆNR Ñ R. By Gordan’s lemma, the set Sσ is an affine monoid so by (14.11) it gives an affine toric
variety, which we denote by Uσ.

14.13 Theorem. Retain the notation in (14.12). TFAE :

(i) dimUσ = n.

(ii) The torus of Uσ is TN = NbZ Cˆ.

(iii) σ is strongly convex.

Proof. We see in (14.9) that the character lattice of the torus of Uσ is ZSσ Ď M. To proceed, we first show the quotient group
M/ZSσ is torsion-free. Let m P M and suppose km P ZSσ for some k P Zě1. Then km = m1 ´m2 for some m1, m2 P Sσ.
Since σ_ is convex,

m+m2 =
1
k
m1 +

k´ 1
k

m2 P σ_
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and thusm = (m+m2) ´m2 P ZSσ.
SinceM/ZSσ is finitely generated and torsion-free, it follows that the torus ofUσ is TN if and only if ZSσ =M, if and only

if rankZSσ = n, or dimUσ = n, proving (i)ô(ii). Since σ is strongly convex if and only if dimσ_ = n by Lemma 13.11.(d), it
remains to show rankZSσ = n if and only if dimσ_ = n. But σ_ is rational, we see σ_ = cone(σ_ XM) = cone(Sσ), and
consequently

rankZSσ = dimRSσ = dim cone(Sσ) = dimσ_.

14.14 Definition. Let A,B be two monoids. A map φ : A Ñ B is called a monoid homomorphism if φ(1) = 1 and
φ(xy) = φ(x)φ(y) for any x,y P A.

14.15 Points of affine toric varieties. Let S be an affine monoid and let V be the affine toric variety with coordinate ring C[S]
(14.9). By Nullstellensatz, there is a bĳection V – mSpecC[S]. In the case of an affine toric variety V , there is a more useful
bĳection

V HomMonoid(S,C)

p γp : m ÞÑ χm(p)

We describe its inverse as follows. Let γ P HomMonoid(S,C). It extends to a nontrivialC-algebra homomorphism γ : C[S] Ñ C,
so kerγ P mSpecC[S], which corresponds to a point pγ P V in turn.

We can write down pγ more explicitly in terms of the embedding V = YA Ď AsC, where A = tm1, . . . ,msu is a finite
generating set of S. Put q = (γ(m1), . . . ,γ(ms)) P Cs. We claim q = pγ. First we must show q P YA, and by (14.5) it amounts

to showing that all the binomials Xα ´ Xβ with α,β P (Zě0)
s and

s
ÿ

i=1
αimi =

s
ÿ

i=1
βimi vanishes at q. This is clear, as

s
ź

i=1
γ(mi)

αi = γ

(
s
ÿ

i=1
αimi

)
= γ

(
s
ÿ

i=1
βimi

)
=

s
ź

i=1
γ(mi)

βi

Next, we prove q = pγ by showing kerγ = kerγq. Let f P C[S] = C[χm1 , . . . ,χms ]. Write f =
ÿ

αP(Zě0)s

cαX
α ; then

γ(f) =
ÿ

αP(Zě0)s

cαγ(X
α) =

ÿ

αP(Zě0)s

cα

s
ź

i=1
γ(mi)

αi = f(q)

This implies our contention that kerγ = kerγq. In fact, it tells more ; for anym P S, one has

γ(m) = χm(pγ),

and from this we easily see that γ ÞÑ pγ is inverse to p ÞÑ γp.
Suppose T is the torus of V with character groupM. In (14.2) we see there is a bĳection

T HomZ(M,Cˆ)

t [m ÞÑ m(t) = χm(t)]

Observe that HomZ(M,Cˆ) = HomMonoid(M,C), so this isomorphism is compatible with the bĳection above, i.e., it fits into
the commutative diagram

V HomMonoid(S,C)

T HomZ(M,Cˆ)

inclusion restriction
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14.16 Let TN be a torus with character groupM. IfA = tm1, . . . ,msu is a finite set inM, then we have an affine toric variety
V = YA Ď AsC. If p = (p1, . . . ,ps) P YA Ď AsC, from (14.4) we see the action of t P TN on p is

t.p = (m1(t), . . . ,ms(t))(p1, . . . ,ps) = (m1(t)p1, . . . ,ms(t)ps).

We can also write this action in terms of monoid homomorphism (14.15). The action maps

TN ˆ V V

TN ˆ TN TN

corresponds to the diagram (here S = Zě0A Ď M)

HomZ(M,Cˆ) ˆ HomMonoid(Sσ,C) HomMonoid(S,C)

HomZ(M,Cˆ) ˆ HomZ(M,Cˆ) HomZ(M,Cˆ)

where the horizontal maps are given by multiplication on C.

14.17 Proposition. Let V be an affine toric variety with coordinate ring C[S] for some affine monoid.
(a) The torus action on V has a fixed point if and only if S is pointed, i.e., SX (´S) = t0u, in which case the unique fixed

point is given by the monoid homomorphism γ0 : S Ñ C defined by

m ÞÑ

#

1 , ifm = 0
0 , ifm ‰ 0

(b) If V = YA Ď AsC for some A Ď Szt0u, then the torus action has a fixed point if and only if 0 P YA, in which case the
unique fixed point is 0.

Proof. Let p P V be a point and let γ : S Ñ C be the corresponding monoid homomorphism. Then by (14.16), p is a fixed
point if and only if γ(m) = χm(t)γ(m) for every t P TN and m P S. This equation is satisfied for m = 0, for γ(0) = 1. If
m ‰ 0, we can find t P TN such that χm(t) ‰ 1 so that γ(m) = 0. Thus if a fixed point exists, it is unique and is given
by the homomorphism γ0 described in the proposition. To finish the proof of (a), it suffices to note that γ0 is a monoid
homomorphism if and only if S is pointed. Indeed, if γ0 is a homomorphism, then form,n P S such thatm = ´n P SX (´S),
we have m + n = 0 so that γ(m)γ(n) = 1, and thus γ(m) ‰ 0 ‰ γ(n). By definition we have m = n = 0. Conversely, if
SX (´S) ‰ t0u, saym = ´n P (SX (´S))zt0u, then γ(m+ n) = 1 ‰ 0 = γ(m)γ(n).

For (b), 0 is clearly a fixed point under the (Cˆ)s-action, so if 0 P YA, 0 is a fixed point under the TN-action. Conversely, if
the torus action has a fixed point, by (a) the fixed point is given by γ0, and from the proof of (14.16) we see γ0 corresponds
to the origin 0 of AsC. Thus 0 P YA ; indeed, the corresponding point is (γ0(m1), . . . ,γ0(ms)) if we write A = tmiu

s
i=1, and all

components vanish since 0 R A.

14.18 Corollary. Let Uσ be the affine toric variety of a strongly convex rational polyhedral cone σ Ď NR. Then the torus
action on Uσ has a fixed point if and only if dimσ = dimRNR, in which case the fixed point is unique and is given by the
maximal ideal

xχm | m P Sσzt0uy Ď C[Sσ]

where as usual Sσ = σ_ XM.

Proof. By Proposition 14.17, The torus action on Uσ has a fixed point if and only if Sσ is pointed. But

Sσ X (´Sσ) = σ
_ X (´σ)_ XM
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and since σ_ X (´σ)X is rational, we see Sσ is pointed if and only if σ_ X (´σ)_ = t0u (if σ_ X (´σ)_ ‰ t0u, it would contain
a rational ray). By Lemma 13.11, this is equivalent of saying that dimσ = dimRNR. Finally, it is straightforward to verify that
maximal ideal is the kernel of γ0 : C[S] Ñ C, where γ0 is as in Proposition 14.17.(a).

14.19 Theorem. Let V be an affine toric variety with torus TN. TFAE :

(i) V is normal.

(ii) V = mSpecC[S] for some saturated affine monoid S.

(iii) V = mSpecC[Sσ], where Sσ = σ_ XM and σ Ď NR is a strongly convex rational polyhedral cone.

14.20 Definition. Let V be a finite dimensional real vector space with a lattice N and let σ be a strongly convex N-rational
polyhedral cone.

1. σ is called smooth/regular if its ray generators of the edges forms a subset of some Z-basis of N.

2. σ is called simplicial if its ray generators of the edges are linearly independent over R.

14.21 Let M be the dual lattice of N in V_. Let σ be a strongly convex N-rational polyhedral cone of maximal dimension.
Then σ_ is also strongly convex.

Lemma. The cone σ is smooth if and only if its dual σ_ is smooth.

Proof. In the proof of Corollary 13.11.1, we saw that the ray generators of σ is exactly the minimal generating set of the
cone σ ; denote by te1, . . . , enu the minimal generating set. If σ is smooth, then te1, . . . , enu is a Z-basis of N. We have
σ_ = conete˚

1 , . . . , e˚
nu, where the e˚

j are the dual basis of the ei, and te˚
j u is a Z-basis of M. This must be a minimal

generating set of σ_, so te˚
j u consists of ray generators of σ_. This proves σ_ is smooth. The other implication follows from

σ = (σ_)_.

14.22 Smooth affine toric varieties. Let the notation be as in (14.12). Then the varietyUσ is smooth if and only if σ is smooth.
Furthermore, all smooth affine toric varieties are of this form.

14.23 Faces and affine open subsets. Let N be a free Z-module of rank n and M be the lattice in (NR)
_ dual to N with

respect to the evaluation pairing. Let σ Ď NR be a strongly convex rational polyhedral cone. Let τ be a face of σ and write
τ = σXmK for somem P MX σ_. Since τ Ď σ, we have Sσ Ď Sτ = τ

_ XM. In fact, we have

Sτ = Sσ + Zě0(´m)

To see this, since xm,uy = 0 for any u P τ, we have ˘m P τ_, and thus the containment Ě. For the opposite inclusion, take a
finite set S Ď Nwith cone(S) = σ and pickm 1 P Sτ. If we set

C = max
uPS

|xm 1,uy| P Zě0,

then m 1 + Cm P Sσ. Indeed, if u P τ, then xm 1,uy ě 0 ď xm,uy, and if u P σzτ, then xm,uy ě 1, so xm 1,uy + xCm,uy ě 0.
This finishes the proof.

From this equality, we obtain C[Sτ] = C[Sσ,χ˘m] = C[Sσ]χm . This implies we may view Uτ as the affine open setD(χm)

of Uσ.

14.2 Projective toric varieties

14.24 Affine pieces of projective toric varieties.
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14.25 Projective toric variety from a very ample polytope. Let TN be a torus with character group M and cocharacter
group N, and let P Ď MR be a full dimensional very ample M-rational convex polytope. Put n = dimP. If we write
P XM = tm1, . . . ,msu, then we have a projective toric variety XPXM, which is by definition the Zariski closure of the image
of the map TN Ñ Ps´1 given by

t [m1(t) : ¨ ¨ ¨ : ms(t)] P Ps´1.

For any mi P P XM, let Si = Zě0(P XM ´mi) be the monoid generated by tm ´mi | m P P XMu. Fix a homogeneous
coordinates x1, . . . , xs of Ps´1, and let Ui = Ps´1zV(xi) – Cs´1. In (14.24), we saw that intersection XPXM X Ui is an affine
subvariety of Ui, with coordinate ring

C[XPXM XUi] – C[Si]

and

XPXM =
ď

mi: vertex of P
XPXM XUi

For such a projective toric variety from a very ample polytope, we have the following results.

(i) For each vertexmi of P, the affine piece XPXM XUi is the affine toric variety with coordinate ring C[σ_
i XM], where

σi = cone(P XM´mi)
_ Ď NR

is a strongly convex rational polyhedral cone with dimension n = dimP.

(ii) The torus of XPXM has character groupM, and hence is TN.

Proof.

(i) Since mi is a vertex, t0u is a face of cone(P XM´mi), so cone(P XM´mi) is strongly convex by Lemma 13.11.(a).
Clearly, cone(P XM ´mi) has the same dimension as P, so σi = cone(P XM ´mi)

_ is strongly convex by Lemma
13.11.(d). Thus both cone(P XM´mi) and σi are strongly convex rational polyhedral cones of dimension n.
We have Si Ď cone(P XM ´mi) XM = σ_

i XM. Since P is very ample, by definition Si is saturated (in M). In the
proof of Theorem 14.19, we see this implies Si = σ_

i XM, so C[Si] = C[σ_
i XM]

(ii) From Theorem 14.12 (applicable as σi is strongly convex) we see the torus of Uσi
= XPXM X Ui is TN. Since TN Ď

Uσi
Ď XPXM, it follows that TN is also the torus of XPXM.

14.26 Intersection of affine pieces of XPXM. Let TN, N, M, P be as in (14.25), and put s = #(P XM). We can construct the
normal fan ΣP of the polytope P as in Theorem 13.24. If XPXM XUv is the affine piece of XPXM corresponding to a vertex v
of P, then (14.25) shows that XPXM XUv is the affine toric variety of the cone σv in the normal fan ΣP.

Next we study the intersection of affine pieces. Suppose v ‰ w are two vertices of P. We want to describe the coordinate
ring of XPXM XUv XUw. To this end, let Q be the smallest face in P containing v and w. The result is that

XPXM XUv XUw = UσQ

where σQ P ΣP, i.e., the coordinate ring of the intersection of C[σ_
Q XM].

Proof. From (14.24) we see the coordinate ring of XPXM XUv XUw is C[σ_
v XM]χw´v = C[σ_

w XM]χv´w , so we only need
to show

C[σ_
v XM]χw´v = C[σ_

Q XM]
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But w´ v P cone(P XM´ v) = σ_
v , from (14.23) we see

C[σ_
v XM]χw´v = C[Uτ] = C[τ_ XM]

where τ = (w´ v)K X σv is a face of σv. Thus we only need to show τ = σQ, or

(w´ v)K X σv = σQ = σv X σw

where the last equality is by Lemma 13.24.(c). Let u P (w´v)K Xσv. If u ‰ 0, there exists b P R such thatHu,b is a supporting
hyperplane of P, so by Lemma 13.25, u P σv implies v P Hu,b X P. As u P (w´ v)K, we obtain w P Hu,b, and using Lemma
13.25 again we see u P σw. Conversely, let u P σv X σw. If u ‰ 0, pick b as above ; then by Lemma 13.25, u P σv X σw implies
v,w P Hu,b X P, which implies u P (w´ v)K in turn.

In this proof, we see

C[Uv]χw´v = C[Uτ] = C[Uw]χv´w

for any vertices v ‰ w. Thus the toric variety XPXM can be glued from the affine toric varieties given by σv P ΣP along those
given by στ P ΣP. Concisely, the normal fan ΣP completely determines the toric variety XPXM.

14.27 Projective toric variety from a polytope. Let N and M be as in 14.12, and let P Ď MR be a full dimensional lattice
polytope. By Corollary 13.23.1, for k " 0, the multiple kP of P becomes very ample, so from 14.25 we can construct the
projective variety XkPXM. In (14.26) we see XkPXM is completely determined by the normal fan ΣkP. By Lemma 13.28,
ΣkP = ΣP for any k ě 1, so the resulting toric variety XkPXM are all isomorphic as C-varieties. This suggests us to put

XP := XkPXM

for any k " 0 such that kP is very ample. This is the toric variety determined by the polytope P.

14.28 Example ; toric variety from the standard simplex ∆n. By definition, ∆n = conet0, e1, . . . , enu Ď Rn. Clearly, k∆n is
a normal, and hence very ample by Lemma 13.23, lattice polytope for any k P Zě1. We then can construct X∆n

using k∆n
for any integer k ě 1. The lattice points of k∆n are all the integer points (x1, . . . , xn) P (Zě0)

n with x1 + ¨ ¨ ¨ + xn ď k, which

corresponds to the monomials in C[x1, . . . , xn] with total degree ď k. These monomials are in number sk =

(
n+ k

k

)
, so each

kP gives a projective embedding X∆n
Ď Psk´1. When k = 1, ∆n X Zn = t0, e1, . . . , enu, which implies

X∆n
= Pn.

From the definition of Xk∆nXZn , for any integer k ě 1, the embedding X∆n
Ď Psk´1 is given by the morphism

νk : Pn Psk´1

defined using all the monomial of total degree k ď 1 in C[x0, x1, . . . , xn]. The morphism νk is really an embedding, usually
called the Veronese embedding.

14.29 Example ; rational normal scrolls. For a,b P Z with 1 ď a ď b, define the polygon

Pa,b = convt0,ae1, e2,be1 + e2u.

The toric variety of Pa,b is denoted by Sa,b, and is called the rational normal scroll. By Corollary 13.23.1, Pa,b is very ample,
so Sa,b = XPa,bXZ2 is the closure of the morphism

(Cˆ)2 Pa+b+1

(s, t) [1 : s : ¨ ¨ ¨ : sa : t : st : ¨ ¨ ¨ : sbt]
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To describe the image, we write this morphism as

C ˆ P1 Pa+b+1

(s, [λ : µ]) [λ : λs : ¨ ¨ ¨ : λsa : µ : sµ : ¨ ¨ ¨ : sbµ]

When [λ : µ] = [1 : 0], it maps to a rational normal curve Ca, and when [λ : µ] = [0 : 1], it maps to another rational normal
curveCb. One thinksCa andCb as edges of Sa,b. By fixing an s P C we obtain points onCa andCb respectively, and varying
[λ : µ] P P1 gives a segment connecting the two points.

Note that the normal fan of Pa,b only depends on the difference b´ a. Thus for any integer r ě 1, we have

XP1,r = XP2,r+1 = XP3,r+2 = ¨ ¨ ¨

as C-varieties. If we consider Sa,b as a projective variety embedded in Pa+b+1, the roles of integers a ď b can be seen from
the defining equations of Sa,b : if we let x0, . . . , xa,y0, . . . ,yb be the homogeneous coordinates of Pa+b+1, then I(Sa,b) is
generated by the 2 ˆ 2 minors of the matrix(

x0 x1 ¨ ¨ ¨ xa´1 y0 y1 ¨ ¨ ¨ yb´1

x1 x2 ¨ ¨ ¨ xa y1 y2 ¨ ¨ ¨ yb

)

14.30 Normality. Let P Ď MR be a full dimensional lattice polytope. Then

(i) XP is normal.

(ii) XP is projectively normal under the embedding given by kP if and only if kP is normal.

Proof.

1. This follows from Theorem 14.19.(ii) and the definition of very ample.

2. The affine cone of XkPXM is Y((kP)XM)ˆt1u, and by Theorem 14.19, YkPXMˆt1u is normal if and only if the monoid
S := Zě0(((kP) XM) ˆ t1u) is saturated in M ˆ Z. But ((kP) XM) ˆ t1u generates the cone C(kP), so it is equivalent
to saying that ((kP) X M) ˆ t1u generates the monoid C(kP) X (M ˆ Z) : if (m, ℓ) P M ˆ Z and (nm,nℓ) P S, then
nm P nℓ((kP)XM) so thatm P ℓ((kP)XM), or (m, ℓ) P S. Conversely, for x P C(kP)X(MˆZ), let kPXM = tm1, . . . ,msu

and write x =

(
s
ÿ

i=1
aimi,

s
ÿ

i=1
ai

)
for some ai ě 0. Since x P M ˆ Z, every as is rational, so there exists r P Zě1 such

that ras P Zě0. But this implies rx P S, and thus x P S as S is saturated. Finally, by Lemma 13.21, the last equivalent
statement is the same as saying kP is normal.

14.31 Definition. Let P Ď MR be a lattice polytope.

1. Given a vertex v of P and an edge E containing v, denote bywE the unique lattice point on E such thatwE´ v is the ray
generator of the ray cone(E´ v).

2. P is called smooth/unimodular if for every vertex v, the vectorswE´v, where E runs over all edges containing v, form
a subset of some Z-basis ofM. In particular, if dimP = dimMR, then twE ´ vuE forms a Z-basis ofM.

14.32 Smoothness. Let P Ď MR be a full dimensional lattice polytope. TFAE :

(i) XP is a smooth projective variety.

(ii) ΣP is a smooth fan, in the sense that every cone in ΣP is smooth (14.20).

(iii) P is a smooth polytope.
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Proof. Being smooth is a local property, so XP is smooth if and only if for any vertex v of P, the affine toric variety Uσv
is

smooth. By (14.22), this is true if and only if for any vertex v of P, the cone σv P ΣP is smooth. Clearly faces of a smooth cone
are again smooth, so by Lemma 13.26.(a) this is the same as saying that every cone in ΣP is smooth. Thus (i)ô(ii).

For (ii)ô(iii), since σv is of maximal dimension, in (14.21) we see σv is smooth if and only if Cv = σ_
v is smooth. Recall

that Cv = cone(P XM ´ v), so the ray generators of Cv are exactly wE ´ v, where E runs over all edges of P containing v.
Thus P is smooth if and only if Cv, and hence σv, is smooth for every vertex v.

14.33 Lemma. Every smooth full dimensional lattice polytope P Ď MR is very ample.

Proof. This follows from the fact

Zě0twE ´ vuvPE = Zě0(P XM´ v)

for any vertex v.

14.34 Let V1, V2 be two finite dimensional real vector spaces and let Pi Ď Vi (i = 1, 2) be a convex polytope. Consider the
cartesian product P1 ˆ P2 Ď V1 ˆ V2. If Pi = conv(Si) for some finite subset Si Ď Vi, then

P1 ˆ P2 = conv(S1 ˆ S2) Ď V1 ˆ V2.

In particular, this shows P1 ˆ P2 is also a convex polytope.
Now let Si be the set of vertices of Pi. The above equality shows that the vertex of P1 ˆP2 is contained in S1 ˆS2. Conversely,

if vi P Si (i = 1, 2), then vi = Pi X Hui,bi
for some supporting hyperplane Hui,bi

of Pi. Then (v1, v2) P Hu1,b2 ˆ Hu2,b2 Ď

H(u1,u2),b1+b2 and P1 ˆP2 Ď H+
u1,b2

ˆH+
u2,b2

Ď H+
(u1,u2),b1+b2

, soH(u1,u2),b1+b2 is a supporting hyperplane of P1 ˆP2 containing
(v1, v2). If (x,y) P (P1 ˆ P2) X H(u1,u2),b1+b2 , then b1 + b2 = xu1, xy + xu2,yy. But Pi Ď H+

ui,bi
(i = 1, 2), so xu1, xy ě b1 and

xu2,yy ě b2, which forces these two to be equalities in turn. Thus (x,y) = (v1, v2), so that t(v1, v2)u = (P1 ˆP2)XH(u1,u2),b1+b2 ,
i.e., (v1, v2) is a vertex of P1 ˆ P2.

14.35 Let i = 1, 2 and Ni be a free Z-module of rank ni. Let Mi be the dual lattice of Ni in (Ni)R with respect to the
evaluation pairing. Let Pi Ď (Mi)R be a full dimensional lattice polytope. The product P1 ˆ P2 is then a full dimensional
lattice polytope in (M1 ˆM2)R = (M1)R ˆ (M2)R, so we may consider the normal fan ΣP1ˆP2 . A result is that

ΣP1ˆP2 = ΣP1 ˆ ΣP2 .

To see this, by virtue of Lemma 13.26, we only need to show :
(i) For any vertices vi P Pi (i = 1, 2), we have σ(v1,v2) = σv1 ˆ σv2 .

(ii) Suppose σi Ď (Ni)R are convex polyhedral cones and τi Ď σi (i = 1, 2) are faces. Then τ1 ˆ τ2 is a face of σ1 ˆ σ2, and
all faces of σ1 ˆ σ2 arise in this way.

(ii) is clear, and to show (i), we prove C(v1,v2) = Cv1 ˆ Cv2 . This follows from cone(S1) ˆ cone(S2) = cone(S1 ˆ S2) for finite
subsets Si Ď (Mi)R.

14.36 Let Pi Ď (Mi)R be full dimensional lattice polytopes of dimension ni (i = 1, 2). Put si = #(Pi XMi). Replacing Pi by
their multiples, we assume the Pi are very ample, so there are projective embeddings XPi

Ñ Psi´1. We obtain a projective
embedding by the composition

XP1 ˆ XP2 Ps1´1 ˆ Ps2´1 Ps1s2´1Segre embedding

Theorem.
(i) P1 ˆ P2 Ď (M1 ˆM2)R is very ample with lattice points

(P1 ˆ P2) X (M1 ˆM2) = (P1 XM1) ˆ (P2 XM2),

which has cardinality s = s1s2.
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(ii) The image of the embedding XP1ˆP2 Ď Ps´1 determined by P1 ˆ P2 equals that of XP1 ˆ XP2 Ñ Ps´1 above.

(iii) XP1ˆP2 – XP1 ˆ XP2 .

Proof. (i) is clear, and (iii) is an immediate consequence of (ii). For (ii), let TNi
be the torus of XPi

. The torus TN1 ˆ TN2 is
Zariski dense in XP1 ˆ XP2 , so by composing with the Segre embedding, we see XP1 ˆ XP2 is the closure of the image of
XP1 ˆ XP2 Ñ Ps´1, which is given by the characters χmχm1 , where (m,m 1) P (P1 ˆ P2) X (M1 ˆ M2). When we identify
TN1 ˆ TN2 with TN1ˆN2 , the characters χmχm1 becomes χ(m,m1), so the above map coincides with TN1ˆN2 Ñ Ps´1 coming
from the polytope P1 ˆ P2. This finishes the proof.

In view of the theorem, we have

XP1 ˆ XP2 =

(
ď

v1

Uσv1

)
ˆ

(
ď

v2

Uσv2

)
=

ď

v1,v2

Uσv1
ˆUσv2

=
ď

(v1,v2)

Uσ(v1,v2)
= XP1ˆP2 .

In the third equality we use

C[σ_
1 XM1] bC C[σ_

2 XM2] = C[(σ1 ˆ σ2)
_ X (M1 ˆM2)].

and (14.35).(i).

14.3 Fans and toric varieties

14.37 Definition. Let N be a free Z-module of rank n. A fan Σ in NR is a finite collection of strongly convex N-rational
polyhedral cones σ in NR such that

1. for any σ P Σ, all faces of σ lie in Σ ;

2. for any σ1, σ2 P Σ, the intersection σ1 X σ2 is a face of each.

The support of a fan Σ is defined as

|Σ| :=
ď

σPΣ

σ Ď NR.

For r P Zě0, let Σ(r) be the set of all r-dimensional cones in Σ.
The normal fan defined in Theorem 13.24 is certainly a fan in the above sense.

14.38 Lemma. Let Σ be a fan and σ1,σ2 P Σ. If τ = σ1 X σ2, then

Sτ = Sσ1 + Sσ2 .

Proof. First note that

σ_
1 + σ_

2 = (σ1 X σ2)
_ = τ_.

This implies Sσ1 + Sσ2 Ď Sτ. For the opposite inclusion, take p P Sτ and pickm P σ_
1 X (´σ2)

_ XM such that σ1 XmK = τ =

σ2 XmK, which exists by Lemma 13.13. Then (14.23) implies that Sτ = Sσ1 + Zě0(´m), so p = q + ℓ(´m) for some q P Sσ1

and ℓ P Zě0. But ´m P σ_
2 implies ´m P Sσ2 , so p P Sσ1 + Sσ2 .

14.39 Toric variety from a fan. Let Σ be a fan inNR. By (14.12), each cone σ in Σ gives rise to an affine toric variety Uσ with
coordinate ring C[σ_ XM]. If τ = σXmK is a face of σ, then in (14.23) we see that Uτ = (Uσ)χm is an affine open subset of
Uσ. If σ1, σ2 P Σwith τ = σ1 X σ2, then Lemma 13.13 says that

σ1 XmK = τ = σ2 XmK

212



for somem P σ_
1 X (´σ2)

_ XM, which implies that

C[σ_
1 XM]χm = C[τ_ XM] = C[σ_

2 XM]χ´m .

Let gσ1,σ2 : (Uσ1)χm Ñ (Uσ2)χ´m be the resulting isomorphism of affine varieties. We check tgσ1,σ2 uσ1,σ2PΣ satisfies the
condition in (2.13). In fact, it suffices to check the conditions on topological spaces, for the morphisms on sheaves are
completely determined by the maps of topological spaces. At this stage it is clear that both conditions in (2.13) hold. Hence
tUσuσPΣ glues to a well-defined variety, denoted by XΣ. We claim that XΣ is a normal separated toric variety.

Proof. Since each cone σ in Σ is strongly convex, by (14.13) the torus in each affine toric varietyUσ is TN = Ut0u for any σ P Σ.
These TN in Uσ are identified by the gluing, so that TN Ď XΣ as a dense open subspace. In particular, XΣ is irreducible. By
(2.13.4), the action maps TN ˆ Uσ Ñ Uσ glue to an algebraic action TN ˆ XΣ Ñ XΣ. Indeed, the action map corresponds to
the homomorphism C[Sσ] Ñ C[Sσ] b C[M], and on Uσ1 XUσ2 = Uτ, the two action maps agree (or are compatible with the
gσ1,σ2 ), for they are all C[Sτ] Ñ C[Sτ] b C[M]. Thus, this proves XΣ is a toric variety.

Since each σ is strongly convex, each Uσ is normal by Theorem 14.19.(iii), and thus XΣ is a normal variety. To see XΣ is
separated, we must show the diagonal morphism XΣ Ñ XΣ ˆ XΣ is a closed immersion, and in view of Proposition 2.26, it
suffices to show that for any cones σ1, σ2 P Σ, the diagonal morphism

∆ : Uτ Ñ Uσ1 ˆUσ2

(where τ = σ1 X σ2) is a closed immersion. On coordinate rings the diagonal morphism reads

∆˚ : C[Sσ1 ] ˆ C[Sσ2 ] C[Sτ]

χm b χm
1

χm+m1 .

By Lemma 14.38, ∆˚ is surjective, showing that ∆ is a closed immersion in turn.
For a full dimensional lattice polytope P Ď MR, the description of the projective toric variety XP in (14.26) shows that XP

is isomorphic to the toric variety XΣP
associated to the normal fan ΣP.

14.40 Product of fans. Let Ni (i = 1, 2) be a free Z-module of rank ni and let Σi be a fan in (Ni)R. Then the product

Σ1 ˆ Σ2 = tσ1 ˆ σ2 | σi P Σi, i = 1, 2u

is a fan in (N1)R ˆ (N2)R = (N1 ˆ N2)R. Indeed, each σ1 ˆ σ2 is strongly convex (N1 ˆ N2)-rational polyhedral cone, and
(14.35).(ii) implies Σ1 ˆ Σ2 is a fan. Therefore we may construct the toric variety XΣ1ˆΣ2 . A result is that

XΣ1ˆΣ2 – XΣ1 ˆ XΣ2 .

14.41 Example ; the blowup of Cn at the origin. Let N = Zn and e1, . . . , en be the standard basis. Set e0 = e1 + ¨ ¨ ¨ + en.
Consider the fan Σ of NR consisting of the cones generated by all subset of te0, . . . , enu not containing te1, . . . , enu. Then the
toric variety XΣ is isomorphic to the blowup Bl0(Cn) of Cn at the origin.

To see this, for 1 ď i ď n, let σi = conete0, e1, . . . , pei, . . . , enu Ď NR. Its dual inMR is

σ_
i = conetei, e1 ´ ei, . . . , ei´1 ´ ei, ei+1 ´ ei, . . . , en ´ eiu Ď MR.

Note that the generating set of σ_
i entirely lies inM, so

Sσi
= σ_

i XM = Zě0tei, e1 ´ ei, . . . , ei´1 ´ ei, ei+1 ´ ei, . . . , en ´ eiu

and thus
Uσi

= mSpecC
[
xi,
x1

xi
, . . . , xi´1

xi
, xi+1

xi
, . . . , xn

xi

]
.
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The separating hyperplane of σi and σj, where 1 ď i ă j ď n, is the hyperplane with normal vector ei ´ ej ; note that
ei ´ ej P σ_

j and ej ´ ei P σ_
i . Thus the gluing data is the isomorphism

C
[
xi,
x1

xi
, . . . , xi´1

xi
, xi+1

xi
, . . . , xn

xi

]
xj
xi

= C
[
xj,
x1

xj
, . . . , xj´1

xj
, xj+1

xj
, . . . , xn

xj

]
xi
xj

By the change of coordinates xi ÞÑ si and xj
xi

ÞÑ
tj

ti
, we see

Uσi
= mSpecC

[
t1

ti
, . . . , ti´1

ti
, ti+1

ti
, . . . , tn

ti
, si
]

and the gluing isomorphism becomes the map defined by si ÞÑ
ti

tj
sj and tk

ti
ÞÑ
tk

ti
=
tk

tj

tj

ti
. This is the same as the blowup

Bl0(Cn) = V(tisj ´ tjsi | 1 ď i, j ď n) Ď Pn´1 ˆ Cn

at the origin ; on the product we use the coordinates ([t1 : ¨ ¨ ¨ : tn], s1, . . . , sn).

14.42 Example ; Hirzebruch surfaces. Let r P Zě0 and consider the fan consisting of the four cone

σ1 = conet(1, 0), (0, 1)u σ2 = conet(1, 0), (0, ´1)u

σ3 = conet(´1, r), (0, ´1)u σ4 = conet(´1, r), (0, 1)u

together with all of their faces. In (14.29) we consider the rational normal scroll Sa,b constructed from the polytope Pa,b (1 ď

a ď b). The normal fan ΣPa,b is the fan Σb´a defines above, so XΣb´a
– Sa,b as C-varieties. Generally, the toric variety XΣr

is called the Hirzebruch surface, and by definition it is covered by the four affine varieties

Uσ1 = mSpecC[x,y] Uσ2 = mSpecC[x,y´1]

Uσ3 = mSpecC[x´1, x´ry´1] Uσ4 = mSpecC[x´1, xry]

each isomorphic to the affine space A2
C.

14.43 Definition. Let Σ be a fan in NR.
1. Σ is smooth if every cone in Σ is smooth.
2. Σ is simplicial if every cone in Σ is simplicial (14.20).
3. Σ is complete if its support |Σ| is the whole NR.

14.44 Theorem. Let XΣ be the toric variety defined by a fan Σ Ď NR.
(i) XΣ is a smooth variety if and only if Σ is smooth.

(ii) XΣ is a orbifold if and only if Σ is simplicial.
(iii) XΣ is compact in the classical topology (4.25) if and only if Σ is complete.

Proof. Being smooth is a local property, so XΣ is smooth if and only if each Uσ is smooth. At this stage (i) simply follows
from (14.22). We will not prove (ii) here. The proof of (iii) will be given in the sequel.

14.3.1 The orbit-cone correspondence

14.45 Retain the notations in (14.12). Consider the map γσ : Sσ Ñ C defined by

m ÞÑ

#

1 , ifm P Sσ X σK = σK XM

0 , otherwise
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This is a monoid homomorphism, as σ_ X σK = σ˚ is a face of σ_ (13.10) : if m +m 1 P Sσ and m +m 1 P Sσ X σK, then
m, m 1 P SσXσK by (13.3). The corresponding point (14.15) of γσ is again denoted by γσ P Uσ. We call this the distinguished
point corresponding to σ. By (14.18), γσ is fixed under the TN-action if and only if dimσ = dimRNR.

If τ is a face of σ, then γτ P Uτ Ď Uσ. More precisely, there is a commutative diagram

Uτ Uσ

HomMonoid(τ
_ XM,C) HomMonoid(σ

_ XM,C)

inclusion

„ „

restriction

and γτ|σ_XM P HomMonoid(σ
_ XM,C).

14.46 Lemma. Let σ Ď NR be a strongly convex rational polyhedral cone and u P N. Then

u P σ ô lim
sÑ0

λu(s) exists in Uσ.

Here the limit is taken in the classical topology of Uσ (4.25). Moreover, u P Relint(σ) ñ lim
sÑ0

λu(s) = γσ.

Proof. Say Uσ = YA for some finite set A = tm1, . . . ,msu Ď Sσzt0u. Since σ is strongly convex, the torus of YA is TN (14.13).
If we view TN as a subgroup of (Cˆ)s by t ÞÑ (m1(t), . . . ,ms(t)), the characters mi P A are simply the projections to i-th
component.

lim
sÑ0

λu(s) exists in Uσ ô lim
sÑ0

χm(λu(s)) exists in C for anym P Sσ

ô lim
sÑ0

sxm,uy exists in C for anym P Sσ

ô xm,uy ě 0 for anym P σ_ XM

ô u P (σ_)_ = σ.

This proves the first part of the lemma. If u P σ X N, since mi = χmi is simply the i-th projection as said above, from the
explicit expression in (14.15) we see lim

sÑ0
λu(t) is the point corresponding to the monoid homomorphism Sσ Ñ C defined by

σ_ XM Q m ÞÑ lim
sÑ∞ sxm,uy.

If u P Relint(σ), then xm,uy ą 0 for all m P σ_zσK, and xm,uy = 0 if and only if m P σ_ X σK. Thus this monoid
homomorphism is the same as γσ defined in (14.45).

14.47 Let σ be a strongly convex rational polyhedral cone in NR. Let Nσ be the sublattice of N generated by σXN, and let
N(σ) = N/Nσ. The perfect pairing x , y :MˆN Ñ Z induces a nondegenerate pairing

x , y : (σK XM) ˆN(σ) Ñ Z.

In fact, this is a perfect pairing. To see this, from the short exact sequence

0 Nσ N N(σ) 0

we obtain
HomZ(N(σ),Z) = tφ P HomZ(N,Z) | φ|Nσ

= 0u

Using the identificationM = HomZ(N,Z), it becomes

HomZ(N(σ),Z) = tm P M | xm,Nσy = 0u = (Nσ)
K = σK XM
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14.48 The torus orbits abstractly. Let Σ be a fan in NR – Rn. Recall that τ ĺ σmeans τ is a face of σ. For σ P Σ, define the
torus

O(σ) = TN(σ) := N(σ) bZ Cˆ.

Clearly, dimO(σ) = n´ dimσ, and TN acts on TN(σ) transitively via the projection TN Ñ TN(σ).
Define the star of a cone τ P Σ to be

Star(τ) = tσ = σmod (Nτ)R Ď N(τ)R | τ ĺ σ P Σu.

This is the collection of cones σ P Σ that contain τ as a face.

Lemma. Star(τ) is a fan in N(τ)R

Proof. It is clear that each σ is a N(τ)-rational convex polyhedral cone. The dual σvee = σ_ X τK Ď τK has maximal
dimension, as σ_ Ď MR has, so σ is strongly convex.

If τ ĺ σ 1 ĺ σ, then σ 1 is a face of σ. Indeed, if σ 1 = σX uK for some u P σ_, then τ Ď uK so that u P τK X σ_ = σ_. We
claim that

σ 1 = σX uK Ď N(σ)R

If x P σ 1, then x´ x 1 P (Nσ)R for some x 1 P σ 1, and thus

0 = xx´ x 1,uy = xx,uy ´ xx 1,uy = xx,uy.

If x P σX uK, write x´ x 1 P (Nσ)R for some x 1 P σ, and 0 = xx 1 ´ x,uy = xx 1,uy so that x 1 P σX uK = σ 1.
Now let C be a face of σ. Then CK X σ_ is a face of σ_ = σ_ X τK, and thus by (13.10) it has the form σ_ X (σ 1)K for some

face τ ĺ σ 1 ĺ σ. In sum, CK X σ_ = σ 1
K

X σ_, and since σ 1 ĺ σ, so by (13.10) again we have C = σ. This shows every face of
σ has the form σ 1 for some τ ĺ σ 1 ĺ σ.

Let τ ĺ σ,σ 1. Then
σX σ 1

_
= (σX σ 1)_ X τK = σ_ X (σ 1)_ X τK = σ_ X σ 1

_
Ď τK

so by duality we have σX σ 1 = σX σ 1 in N(σ)R.

Put V(τ) = XStar(τ). Note that the torus of V(τ) is TN(τ) = O(τ). By (14.47), the toric variety V(τ) has an affine open cover
consisting of

Uτ(σ) := mSpecC[σ_ X τK XM]

where σ runs over all faces in Σwith τ ĺ σ. Note here that σ_ X τK is a face of σ_ (13.10), andUτ(τ) = O(τ) is dense in V(τ).

14.49 Lemma. There exists a closed immersion V(τ) Ď XΣ.

Proof. We prove this by constructing compatible closed immersionUτ(σ) Ď Uσ for any τ ĺ σ P Σ. On coordinate rings there
is an obvious projection

C[σ_ XM] C[σ_ X τK XM]

defined by χm ÞÑ

#

χm , ifm P σ_ X τK XM

0 , otherwise
. This gives a closed immersion Uτ(σ) Ď U(σ). There morphisms are

compatible, for if τ ĺ σ ĺ σ 1, the diagram
Uτ(σ) Uτ(σ

1)

Uσ Uσ1
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corresponds to the diagram on coordinate rings

C[(σ 1)_ X τK XM]χm C[σ_ X τK XM] C[(σ 1)_ X τK XM]

C[(σ 1)_ XM]χm C[σ_ XM] C[(σ 1)_ XM]

.

where m P (σ 1)_ is such that σ = σ 1 X mK, and this is clearly commuting. Thus, these Uτ(σ) Ñ U(σ) glue to a closed
immersion V(τ) Ď XΣ.

For the later use, we can also write Uτ(σ) Ď Uσ in terms of monoid homomorphisms. It corresponds to

HomMonoid(σ
_ X τK XM,C) HomMonoid(σ

_ XM,C)

defined by extending γ P HomMonoid(σ
_ X τK XM,C) to σ_ XM by zero, i.e, by setting γ(m) = 0 if m P (σ_ XM)zτK. In

particular, the inclusion TN(τ) Ď Uτ corresponds to

HomZ(τ
K XM,Cˆ) HomMonoid(τ

_ XM,C).

14.50 If τ ĺ τ 1 P Σ, we have a closed immersion V(τ 1) Ď V(τ), which on each affine Uσ, σ P Star(τ 1) is given by the
projection

C[σ_ X (τ 1)K XM] C[σ_ X τK XM]

Also, from the proof (14.49) we see the defining ideal of Uτ(σ) = V(τ) XUσ Ď Uσ is

xχm | m P SσzτKy Ď C[σ_ XM].

14.51 The torus orbits. The domain and codomain of the bĳection

TN(σ) HomZ(τ
K XM,Cˆ)

admit TN-actions ; the action on the left is from the projection TN Ñ TN(σ), and the action on the right is from the inclusion

HomZ(τ
K XM,Cˆ) HomMonoid(τ

_ XM,C).

and (14.16). In fact, this bĳection intertwines the TN-actions. To see this, letNbZCˆ Q ubs = t P TN andu 1 bs 1 P N(σ)bZCˆ.
The element u 1 b s 1 maps to γ 1 P HomZ(σ

K XM,Cˆ) defined by γ 1(m) = s 1xm,u1y. The element t.γ 1 = (ub s)(u 1 b s 1) then
corresponds to (c.f. (14.16) and (14.2))

m ÞÑ sxm,uyγ 1(m) = χm(λu(s))γ 1(m) = χm(t)γ 1(m) = t.γ 1(m),

so the TN-action on both sides are compatible.
In other word, the inclusion O(τ) Ď Uτ is TN-equivariant. Since TN acts on O(τ) transitively, it follows that O(τ) is an

TN-orbit in Uτ. Moreover, the distinguished point γτ P Uτ lies in O(τ), so that

O(τ) = TN.γτ Ď XΣ.

It suffices to show that γτ P HomMonoid(τ
_ X M,C) restricts to a nonvanishing map on τK X M, and it is clear from its

definition (14.45).

14.52 Lemma. Let σ be a rational convex polyhedral cone inMR, and γ P HomMonoid(σ
_ XM,C). Then there exists a face τ

of σ such that
γ´1(Cˆ) = σ_ X τK XM.
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Proof. Put T = γ´1(Cˆ). This is a finitely generated sub monoid of Sσ, so cone(T) Ď σ_ is a convex polyhedral cone. Note
that we have

γ´1(Cˆ) = cone(T) XM

To see cone(T) XM Ď T , we may replace cone(T) by coneQ(T) = cone(T) XMQ. If v P coneQ(T) XM Ď Sσ, we can find an
integer n " 0 so that nv P T XM Ď Sσ and thus 0 ‰ γ(nv) = γ(v)n.

For x,y P σ_ X MQ such that x + y P coneQ(T) for some θ P (0, 1) X Q, take an integer n " 0 such that nx,ny P Sσ

(possible as σ_ is rational), and nx + ny = n(x + y) P T . Then nx, ny P T , and thus x,y P coneQ(T). By continuity we see
cone(T) Ď σ_ is a convex subset satisfying the condition in Lemma 13.4. Thus cone(T) is a face of σ_, which must be of the
form cone(T) = σ_ X τK for some face τ of σ by Lemma 13.10.

14.53 Orbit-Cone correspondence. Let XΣ be the toric variety of the fan Σ in NR.

(a) There is a bĳection
Σ TNzXΣ

σ O(σ) = HomZ(σ
K XM,Cˆ).

(b)
Uσ =

ď

τĺσ

O(τ),

(c) τ ĺ σ if and only if O(σ) Ď V(τ), and

V(τ) =
ď

τĺσPΣ

O(σ) = O(τ)
C.

Here O(τ)C denotes the closure in the classical topology.

Proof. Let O be a TN-orbit in XΣ. Since each Uσ is TN-invariant, O is contained in Uσ for some σ P Σ. Moreover, as
Uσ1 XUσ2 = Uσ1Xσ2 for any σ1,σ2 P Σ, there exists a unique minimal cone σ P Σ with O Ď Uσ. We contend that O = O(σ).
Note that (a) follows from this contention.

To prove O = O(σ), it suffices to show OXO(σ) ‰ H. Let γ P O. By Lemma 14.52, there exists a face τ of σ such that

γ´1(Cˆ) = σ_ X τK XM.

Write τ = σ X mK for some m P σ_ X M ; then Uτ = (Uσ)χm (14.23). As in (14.15), we have χm(γ) = γ(m), and since
m P σ_ X τK XM, we see χm(γ) ‰ 0, or γ P Uτ. By minimality of σ it forces that τ = σ, and hence

γ´1(Cˆ) = σK XM.

so that γ|σKXM P HomZ(σ
K XM,Cˆ) = O(σ). Hence (γ P)OXO(σ) is nonempty.

For (b), since Uσ is TN-invariant, it is a union of TN-orbits. If O is an orbit, the contention above implies that O = O(τ),
where τ is the minimal cone in Σ such that O Ď Uτ. It follows that τ ĺ σ, since σX τ is a face of each with UσXτ = Uτ XUσ,
by minimality it must be the case σX τ = τ, implying τ ĺ σ. This proves (b).

It remains to prove (c). We prove the first statement with V(τ) replaced byO(τ)C first. SinceO(τ)C is TN-invariant, it is a
union of TN-orbits. If O(σ) P O(τ)

C, then O(τ) Ď Uσ, since for otherwise O(τ) X Uσ = H, which implies O(τ)C X Uσ = H

as Uσ is classically open. With O(τ) Ď Uσ, it follows from (b) that τ ĺ σ. Conversely, suppose τ ĺ σ. Let u P Relint(σ) and
consider the curve γ : Cˆ Ñ XΣ defined by γ(s) = λu(s).γτ ; note that γ(s) P O(τ) Ď Uτ Ď Uσ. As a monoid homomorphism,
we have, form P τ_ XM,

γ(s)(m) = χm(λu(s))γτ(m) = sxm,uyγτ(m)
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Since u P Relint(σ), we have xm,uy ą 0 ifm P σ_zσK and xm,uy = 0 ifm P σK ; it follows that

lim
sÑ0

γ(s)(m) =

#

1 , ifm P (σ_ XM)zσK

0 , ifm P σK XM
= γσ(m)

and thus lim
sÑ0

γ(s) exists in Uσ and is equal to γσ P O(σ). In particular, this implies O(τ)C XO(σ) ‰ H, i.e., O(σ) Ď O(τ)
C.

The equality

O(τ)
C
=

ď

τĺσPΣ

O(σ)

follows immediately from the first statement in (c), so it remains to show V(τ) = O(τ)
C. From (b) and (c) we see

O(τ)
C

XUσ =
ď

τĺσ1

O(σ 1) X
ď

σ1ĺσ

O(σ 1) =
ď

τĺσ1ĺσ

O(σ 1) Ď Uσ.

On the other hand we have the closed subvariety Uτ(σ), which, as monoid homomorphisms, is given by (14.49)

HomMonoid(σ
_ X τK XM,C) HomMonoid(σ

_ XM,C)

SinceUτ(σ) is the Zariski closure ofO(τ) inUσ, we seeO(τ)CXUσ Ď Uτ(σ). Conversely, if γ P HomMonoid(σ
_ XτK XM,C),

by Lemma 14.52 there exists σ 1 ĺ σwith, viewed γ as a map γ : σ_ XM Ñ C,

γ´1(Cˆ) = σ_ X (σ 1)K XM

which implies σ_ X τK Ě σ_ X (σ 1)_, so that by Lemma 13.10 we obtain τ ĺ σ 1. Thus γ P O(τ)
C

XUσ, proving the opposite
inclusion.

14.3.2 Toric morphisms

14.54 Definition. Let N1, N2 be two free Z-modules of finite rank and let Σi Ď (Ni)R (i = 1, 2) be a fan.

1. A Z-linear morphism ϕ : N1 Ñ N2 is compatible with the fans Σ1 and Σ2 if for every cone σ1 P Σ1, there exits a cone
σ P Σ2 such that ϕR(σ1) Ď σ2.

2. A morphism ϕ : XΣ1 Ñ XΣ2 is toric if ϕ(TN1) Ď TN2 and ϕ|TN1
: TN1 Ñ TN2 is a group homomorphism.

14.55 Theorem. Let N1, N2 be two free Z-modules of finite rank and let Σi Ď (Ni)R (i = 1, 2) be a fan.

(i) If ϕ : N1 Ñ N2 is a Z-linear map compatible with Σ1 and Σ2, then there is a toric morphism ϕ : XΣ1 Ñ XΣ2 such that
ϕ|TN1

is the map
ϕb idCˆ : N1 bZ Cˆ −Ñ N2 bZ Cˆ.

(ii) If ϕ : XΣ1 Ñ XΣ2 is a toric morphism, then ϕ induces a Z-linear map ϕ : N1 Ñ N2 compatible with the fans Σ1 and Σ2.

14.56 Proposition. Let N 1 ď N be a sublattice with dimRNR = n and dimRN
1
R = k. Let Σ be a fan in N 1

R, which can be
viewed as a fan in NR. Then

(i) If N 1 is spanned by a subset of basis of N, then there is an isomorphism

XΣ,N – XΣ,N1 ˆ TN/N1 .
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(ii) In general, a basis forN 1 can be extended to a sublatticeN2 ď N of finite index. Then XΣ,N is isomorphic to the quotient
of

XΣ,N2 – XΣ1 ˆ TN2/N1

by the finite abelian group N/N2.

14.57 Fibre bundle. Let N,N 1 be two free Z-modules of finite rank and let ϕ : N Ñ N 1 be a surjective Z-linear map. Let
Σ, Σ 1 be fans in NR and N 1

R, respectively, that are compatible with ϕ. Then there is a corresponding toric morphism

ϕ : XΣ −Ñ XΣ1 .

Let N0 = kerϕ ; note that N0 is spanned by a subset of basis of N. The collection

Σ0 = tσ P Σ | σ Ď (N0)Ru

is a fan in (N0)R. By (14.56).(i) we have an isomorphism

XΣ0,N – XΣ0,N0 ˆ TN1

as N 1 – N/N0. Furthermore, ϕ is compatible with Σ0 in NR and the trivial fan t0u in N 1
R, so it gives the toric morphism

ϕ|XΣ0,N : XΣ0,N −Ñ TN1 .

Moreover,
ϕ´1(TN1) = XΣ0,N – XΣ0,N0 ˆ TN1

so XΣ is a fibre bundle over TN1 with fibre XΣ0,N0 .

14.58 Lemma. Let V1, V2 be two finite dimensional real vector spaces and let σi Ď Vi be a convex polyhedral cone. Let
ϕ : V1 Ñ V2 be an R-linear map such that ϕ(σ1) Ď σ2. If

ϕ(Relint(σ1)) X (σ2zRelint(σ2)) ‰ H,

then ϕ(σ1) is contained in a proper face of σ2.

Proof. Let v0 P Relint(σ1) such that ϕ(v0) P σ2zRelint(σ2). By Lemma 13.6, we see ϕ(v0) P τ 1 for some proper face τ 1 of σ2.
Take any v P σ1 ; as v0 P Relint(σ1), we have v0 ´ εv P σ1 if ε ą 0 is small enough. Then

ϕ(v0) = ϕ(v0 ´ εv) + ϕ(εv)

with the two summands in σ2. Since τ 1 is a face, Lemma 13.3 implies ϕ(εv) P τ 1, and thus ϕ(v) P τ 1.

14.59 Images of Distinguished points. Let ϕ : XΣ Ñ XΣ1 be a toric morphism coming from a map ϕ : N Ñ N 1 compatible
with the fans Σ, Σ 1. Let σ be a given cone in Σ, and let σ 1 be the minimal cone in Σ 1 containing ϕR(σ). Then

(i) ϕ(γσ) = γσ1 .

(ii) ϕ(O(σ)) Ď O(σ 1), and σ(V(σ)) Ď V(σ 1).

(iii) The induced map ϕ|V(σ) : V(σ) Ñ V(σ 1) is toric.

Proof.

(i) By Lemma 14.58 and the minimality of σ 1, we have ϕ(Relint(σ)) Ď Relint(σ 1).
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14.3.3 Complete and proper

14.60 Theorem. Let XΣ be the toric variety of the fan Σ in NR. TFAE :

(i) XΣ is a complete variety.

(ii) XΣ is compact in the classical topology.

(iii) The limit lim
sÑ0

λu(s) exists in XΣ for all u P N.

(iv) Σ is a complete fan, i.e., |Σ| = NR.

Proof. (i)ô(ii) is a general result (4.30) on varieties over C. For the others, note that by (14.39) and (4.29), XΣ is Hausdorff
in the classical topology. Since the classical topology on each Uσ is metrizable, XΣ is compact if and only if it is sequentially
compact (both classically).

We first show (ii)ñ(iii). Assume XΣ is compact and fix a u P N. Let (tk)k be a sequence in Cˆ converging to 0. Applying
λu, we obtain a sequence (λu(tk))k in XΣ. Since XΣ is compact, by passing to a convergent subsequence we may assume
λu(tk) Ñ γ P XΣ. Since XΣ is covered by the Uσ, and these are classically open, we may assume λu(tk) P Uσ Q γ for any k.
Takem P σ_ XM. Since χm is a morphism, it is a classical continuous function on Uσ, so that

χm(γ) = lim
kÑ∞χm(λu(tk)) = lim

kÑ∞ txm,uy

k .

Since tk Ñ 0, it must be xm,uy ě 0 for any m P σ_ XM. This implies xm,uy ě 0 for any m P σ_, so that u P (σ_)_ = σ.
Now Lemma 14.46 implies that lim

sÑ0
λu(s) exists in Uσ, and hence in XΣ.

Now consider (iii)ñ(iv). Take u P N and consider the limit lim
sÑ0

λu(s). This lies in some Uσ, so Lemma 14.46 implies
u P σXN. Thus N Ď |Σ|, and hence NR = |Σ|.

Finally we show (iv)ñ(ii). We prove this by induction on n = dimRNR. For n = 1, assumeN = Z. The only complete fan
in R is Σ = tt0u,Rě0,Rď0u. The corresponding toric variety is P1

C, which is classically homeomorphic to S2, the unit sphere
in R3, and hence is compact.

Assume the statement is true for all complete fans of dimension ă n, and let Σ be a complete fan in NR – Rn. Let (γk)k
be a sequence in XΣ. We are going to show that (γk)k has a convergent subsequence.

Since XΣ is a finite union of the O(τ) (τ P Σ) (14.53), by passing to a subsequence we may assume (γk)k Ď O(τ) for some
τ P Σ. If τ ‰ t0u, then the orbit closure V(τ) = XStar(τ) is a toric variety of dimension ď n´ 1.

Lemma. If Σ is a complete fan, then for any τ P Σ, then Star(τ) is a complete fan in N(τ)R.

Proof. This amounts to show that for x P NRz(Nτ)R, there exists a cone τ ĺ σ P Σ such that x P σ+ (Nτ)R. Consider the set

U = tσ P Σ | dimσmaximal, (x+ (Nτ)R) X σ ‰ Hu = tσ1, . . . ,σru.

We contend that τ ĺ σi for some 1 ď i ď r. Suppose not ; take any u P τ. Take (mij)ij Ď MR such that σi =
Ş

jm
_
ij. Since

u ł σi, we can find j = j(i) such that xu,mijy ă 0. Take λ " 0 so that

xmij(i), x+ λuy ă 0

for each i. But then x+ λu R σi for any 1 ď i ď n, a contradiction to the completeness of Σ. Hence σ ĺ σi for some 1 ď i ď r,
and x P σi + (Nτ)R as wanted.

Since Σ is complete, the fan Star(τ) is complete inN(τ)R. By induction hypothesis, (γk)k has a convergent subsequence in
V(τ), and we are done. It remains to deal with the case τ = t0u ; in other words, we may assume (γk)k lies inO(t0u) Ď TN Ď XΣ.
To proceed, we introduce a key tool in the next paragraph.
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14.61 In this paragraph we introduce the logarithm map L : TN Ñ NR and discuss some of its important properties. Let
p P TN and let γ :M Ñ Cˆ be the corresponding (semi)group homomorphism. Define L(γ) :M Ñ R by the formula

L(γ)(m) = log |γ(m)|

Then L(γ) P HomZ(M,R) – NR, and we define L(p) to be the corresponding vector in NR.

Lemma. If L(p) P ´σ for some σ P Σ, then |γ(m)| ď 1 for allm P σ_ XM.

Proof. Let p P TN be such that L(p) P ´σ for some σ P Σ. Ifm P σ_ XM, from the definition we have

log |γ(m)| = L(γ)(m) = xm,L(p)y.

Since L(p) P ´σ, it follows that log |γ(m)| ď 0, i.e. |γ(m)| ď 1.

14.62 Finish of the proof. We apply the logarithm map L : TN Ñ NR to our sequence (γk)k Ď TN, so we obtain a sequence
(L(γk))k in NR. Since Σ is complete, we have NR =

ď

σPΣ

(´σ), so by passing to subsequence we may assume there is a σ P Σ

with L(γk) P ´σ for any k. By (14.61) we conclude |γk(m)| ď 1 for all m P σ_ XM and k. Let A be a finite generating set of
the monoid σ_ XM. Denote by D the closed unit ball in C. Then there is an injection

B := HomMonoid(σ
_ XM,D) DA

γ (γ(m))mPA.

We topologize the left hand side by the subspace topology inherited from DA. Then B is a closed subspace of DA. Since DA is
compact, so is B. Thus by passing to a convergent subsequence, we may assume that γk Ñ γ P B = HomMonoid(σ

_ XM,D).
This corresponds to a point γ inUσ, and it remains to show γk Ñ γ in the classical topology ofUσ. For this it suffices to note
that χm(γk) Ñ χm(γ) in C for allm P σ_ XM.

14.63 Next we prove the relative version of Theorem 14.60.

Theorem. Let ϕ : XΣ Ñ XΣ1 be the toric morphism corresponding to a homomorphism ϕ : N Ñ N 1 that is compatible with
fans Σ in NR and Σ 1 in N 1

R. TFAE :

(i) ϕ is classically proper.

(ii) ϕ is a proper morphism.

(iii) If u P N and lim
sÑ0

λϕ(u)(s) exists in XΣ1 , then lim
sÑ0

λu(s) exists in XΣ.

(iv) (ϕR)
´1(|Σ 1|) = |Σ|.

Proof. (i)ô(ii) is a general result (4.31) for varieties over C. To prove (ii)ñ(iii), let u P N and suppose lim
sÑ0

λϕ(u)(s) = γ 1 P XΣ1 .

First consider the case that ϕ(u) ‰ 0. By Theorem 4.22, the image λu(Cˆ) is construtible in XΣ. By (4.27), the Zariski closure
λu(Cˆ) in XΣ is the same as the classical closure. Since ϕ is Zariski proper, ϕ(λu(Cˆ)) Ď XΣ1 is Zariski closed, hence
classically, closed. It follows that

λϕ(u)(Cˆ) Ď ϕ(λu(Cˆ))

and thus we can find γ P λu(Cˆ) such that ϕ(γ) = γ 1. Take (tk)k Ď Cˆ with λu(tk) Ñ γ. Then

lim
sÑ0

λϕ(u)(s) = γ 1 = ϕ(γ) = lim
kÑ∞ϕ(λu(tk)) = lim

kÑ∞ λϕ(u)(tk)

222



Assume γ 1 P Uσ1 for some σ 1 P Σ 1. Since Uσ1 is classically open, we can further assume that λϕ(u)(tk) P Uσ1 for all k and
λϕ(u)(s) P Uσ1 for s sufficiently small. As ϕ(u) ‰ 0, the cocharacter λϕ(u) : Cˆ Ñ TN1 Ď Uσ1 is nontrivial, so there must be
m P (σ 1)_ XM 1 with xm,ϕ(u)y ‰ 0. But

lim
sÑ0

sxm,ϕ(u)y = χm(γ 1) = lim
kÑ∞ txm,ϕ(u)y

k

exists, we must have xm,ϕ(u)y ą 0 and thus tk Ñ 0. Now the argument in (14.60).(ii)ñ(iii) shows that lim
sÑ0

λu(s) exists in
XΣ.

Now drop the restriction ϕ(u) ‰ 0. Consider the map (ϕ, idC) : XΣ ˆ A1
C Ñ XΣ1 ˆ A1

C, which is proper as ϕ is. This is the
toric morphism corresponding to (ϕ, idZ) : NˆZ Ñ N 1 ˆZ. Now applying the argument above to (u, 1) P NˆZ shows that
lim
sÑ0

λu(s) exists in XΣ.

For (iii)ñ(iv), first note that since ϕ is compatible with Σ and Σ 1, the inclusion

|Σ| Ď ϕ
´1
R (|Σ 1|)

is automatic. For the opposite inclusion, let u P ϕ
´1
R (|Σ 1|). Then ϕ(u) P |Σ 1|, so by Lemma 14.46 the limit lim

sÑ0
λϕ(u)(s) exists

in XΣ1 . By assumption, lim
sÑ0

λu(s) exists in XΣ, and Lemma 14.46 again implies u P σXN for some σ P Σ. Since all the cones

are rational, this implies ϕ´1
R (|Σ 1|) Ď |Σ|.

Finally we prove (iv)ñ(i). We begin with two special cases. Suppose that a toric morphismϕ : XΣ Ñ TN1 satisfies (iv) and
has the additional property that ϕ : N Ñ N 1 is surjective. The fan of TN1 consists of the trivial cone t0u, so that (iv) implies

|Σ| = (ϕR)
´1(0) = ker(ϕR) = (kerϕ)R.

We can think of Σ as a fan Σ2 in ker(ϕR). As in (14.57), there is an isomorphism

XΣ – XΣ2 ˆ TN1 ,

and ϕ corresponds to the projection XΣ2 ˆ TN1 Ñ TN1 . The fan Σ2 is complete in ker(ϕR), so by (14.60) XΣ2 is compact,
implying XΣ2 ˆ TN1 Ñ TN1 is proper. The second case is discussed in the next paragraph.

14.64 Suppose that a homomorphism of tori ϕ : TN Ñ TN1 has the additional property that ϕ : N Ñ N 1 is injective. The
condition (iv) is then clear for ϕ. We prove directly that ϕ is proper.

Let ϕ˚
: M 1 Ñ M be the adjoint of ϕ ; note that (ϕ

˚
)R = (ϕR)

˚. Since ϕ is injective, (ϕ˚
)R is surjective, and thus

ϕ
˚
(M 1) ď M has finite index. Pick any integer d ą 0 such that dM Ď ϕ

˚
(M 1).

Let (γk)k Ď TN be a sequence such that (ϕ(γk))k converges in TN1 . We are going to show (γk)k admits a convergent
subsequence in TN. Since χϕ˚(m1) = χm

1
˝ϕ for anym 1 P M 1, we see χm(γk) converges in TN for allm P ϕ

˚
(M 1), and hence

χm(γdk) converges in TN for allm P M. Choose a basis ofM – Zn and identify TN with (Cˆ)n. If we write γk = (γ1k, . . . ,γnk),
then each γd1k converges to some point Ăγ1 P Cˆ, and hence

γdk = (γd1k, . . . ,γdnk) Ñ (Ăγ1, . . . , Ăγn) P (Cˆ)n.

As each rγi P Cˆ, it follows that we can choose the d-th roots rγi
1/d in a way that, by passing to subsequences, γik Ñ rγi

1/d.
This proves γk converges in TN.

14.65 Proof of (iv)ñ(i). Consider a general toric morphism ϕ : XΣ Ñ XΣ1 satisfying (iv). Assume (γk)k is a sequence in XΣ
such that (ϕ(γk))k converges in XΣ1 . Our goal is to show that (γk)k admits a convergent subsequence in XΣ.

Since XΣ has only finitely many TN-orbits, we may assume (γk)k Ď O(σ) for some σ P Σ. Let σ 1 be the minimal cone of Σ 1

containing ϕR(σ). By (14.59).(iii), the restriction ϕ|V(σ) : V(σ) Ñ V(σ 1) is toric, and it corresponds to the mapN(σ) Ñ N(σ 1)

induced byϕ. This map satisfies the condition (iv) with the fans Star(σ), Star(σ 1). By (14.59).(ii), we thus can assume γk P TN

and ϕ(γk) P TN1 for all k.
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The limit γ 1 = lim
kÑ∞ϕ(γk) lies in some O(τ 1) (τ 1 P Σ) ; we then can assume the ϕ(γk) and γ 1 lie in Uτ1 . Note that (iv)

implies

(ϕR)
´1(τ 1) =

ď

ϕR(σ)Ďτ1

σ

(If u P (ϕR)
´1(τ 1), let σ be the minimal cone in Σ containing u, and σ 1 the minimal cone in Σ 1 containing ϕR(σ). Since σ

is minimal, we have u P Relint(σ). Since σ 1 is minimal, by Lemma 14.58 we have ϕR(u) P Relint(σ 1) X τ 1. Since Σ 1 is a fan,
σ 1 X τ 1 is a face of σ 1, so Relint(σ 1) does not meet σ 1 X τ unless σ 1 X τ 1 = σ 1, i.e., σ 1 ĺ τ 1. Thus ϕR(σ) Ď σ 1 Ď τ 1). Also, the
construction of ϕ from ϕR (14.55) implies that ϕ´1(Uτ1) is the toric variety given by the fan tσ P Σ | ϕR(σ) Ď τ 1u. Therefore,
we may assume XΣ = Uτ1 and (ϕR)

´1(τ 1) = |Σ|.
If τ 1 = t0u, then O(τ 1) = Uτ1 = TN1 . By writing ϕ as the composition N Ñ ϕ(N) Ñ N 1, we see ϕ : XΣ Ñ TN1 factors as

XΣ −Ñ Tϕ(N) −Ñ TN1 .

Since the composition of proper maps remains proper, we conclude ϕ is proper from the above two special cases.
It remains to deal with the case τ 1 ‰ t0u. Recall

γ 1 P O(τ 1) = HomZ((τ
1)K XM 1,Cˆ) Ď HomMonoid((τ

1)_ XM 1,C).

As ϕ(γk) Ñ γ 1 and (τ 1)_ XM 1 is a finitely generated monoid, by passing to a subsequence we may assume

|ϕ(γk)(m
1)| ď 1 for all k andm 1 P (τ 1)_ XMz(τ 1)K

The logarithm map defined in (14.61) gives maps LN : TN Ñ NR and LN1 : TN1 Ñ N 1
R, and they fit into a commutative

square
TN NR

TN1 N 1
R.

ϕ|TN

LN

ϕR

LN1

This is commutative by (14.55).(i). Let ϕ˚
:M 1 Ñ M be the adjoint of ϕ : N Ñ N 1. Then form 1 P (τ 1)_ XMz(τ 1)K and all k,

we have

xϕ
˚
(m 1),LN(γk)y = xm 1,ϕR(LN(γk))y

= xm 1,LN1(ϕ(γk))y = log |ϕ(γk)(m
1)| ď 0. (♣)

On the other hand, we have the equivalences :

u P (ϕR)
´1(τ 1) ô ϕR(u) P τ 1

ô xm 1,ϕR(u)y ě 0 for allm 1 P (τ 1)_ XM 1

ô xϕ
˚
(m 1),uy ě 0 for allm 1 P (τ 1)_ XM 1

To proceed further, we need a lemma.

14.66 Lemma. Let σ ‰ t0u be a strongly convex rational polyhedral cone in NR. Then

u P σ if and only if xm,uy ě 0 for allm P σ_ XMzσK

14.67 Finish of the proof. The preceding lemma establishes the equivalence

u P (ϕR)
´1(τ 1) ô xϕ

˚
(m 1),uy ě 0 for allm 1 P (τ 1)_ XM 1z(τ 1)K.
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From (♣) we conclude that ´LN(γk) P (ϕR)
´1(τ 1) for all k. But we are assuming (ϕR)

´1(τ 1) = |Σ|, so

´LN(γk) P |Σ|

for all k. By passing to a subsequence we may assume LN(γk) P ´σ for some σ P Σ. The argument in (14.62) then implies γk
admits a convergent subsequence in Uσ Ď XΣ. This finishes the proof.
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