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Premiere partie

Basics



1 Glossary

1.1 Purposes. In this section we collect some definitions that will be used in the sequel. We also serve this section as indexes.
1.1 From category

1.2 Abelian category.

1.3 Projector. Let C be a category. A projector in C is a morphism p : A — A such that p o p = p for some object A. We also
say p is idempotent.

1.3.1 Splitting. A projectorp : A — Aissaid to splitif there exists another object B and two morphismsq: A — B, s: B — A
such that

soq=mp, gos=idg.
Such a triple (B, q, s) is called a splitting of p.
1.4 Pseudo-abelian category. A pseudo-abelian category is an additive category C such that all projectors split.

1.4.1 Pseudo-abelian envelop. Let C be an additive category. The pseudo-abelian envelop of C is the category C* defined
as follows.

— Objects : all pairs (A,p : A — A) such that A is an object in C and p is a projector.

— Morphisms :

Home: ((A,p), (B,q)) :={f e Hom¢(A,B) | qof=f=fop} =qoHom¢(A,B)op
1.5 Strictly full subcategory. A subcategory D of a category C is strictly full if it is a full subcategory and closed under
isomorphism.

1.6 Serre subcategory. A nonempty full subcategory D of an abelian category C is a Serre subcategory whenever given
any exact sequence A — B — Cin C with A, C € Ob(D), we have B € Ob(D).

1.7 Weak Serre subcategory. A nonempty full subcategory D of an abelian category C is a weak Serre subcategory whenever
given any exact sequence A - B — C - D — EinC with A, B, D, E € Ob(D), we have C € Ob(D).



2 Local-ringed spaces

2.1 Generalities on sheaves

2.1 Presheaf. Let X be a topological space. Define a category Top(X) as follows.
— An object of Top(X) is an open set in X.
— For two objects U, V of Top(X), set

{tuv : U -V} ,ifU <V, where tyy : U — V denotes the inclusion,

Homyop(x) (V)= { %) otherwise.

Let C be a category. A C-presheaf on X is just a contravariant functor F : Top(X) — C. When C is Set (resp. Ab, Ring, Modg),
we say F is a presheaf of sets (resp. abelian groups, rings, R-modules). A morphism between two presheaves is a natural
transformation. We denote by Cire the category of all C-presheaves on X. For U < V, the morphism F(wyv) : F(V) — F(U)
is usually called a restriction map. An element in F(X) is called a global section of F, and we usually write I'(X, F) = F(X).

2.2 Sheaf. In the following we assume C is either Set, Ab,Ring or Modg. A C-valued presheaf F is called a sheaf if for
every open U and every open cover {U; }ic of U there is an equalizer diagram

FU) ——— [[FU) ———= [[ FUiny)

iel i,jel

We denote by Cx the full subcategory of C}° consisting of all C-sheaves on X.
It follows from the definition that the empty product is the final object in C. By the sheaf axiom, we see that F(¥) is the
final object in C as long as F is a sheaf.

2.3 Sheaf on abasis. Let Bbe abasis of open sets of X. We can view B3 as a full subcategory of Top(X). We define a C-presheaf
on the basis B to be a contravariant functor B — C. A C-presheaf F on the basis B is called a sheaf if for any B € B and its
open cover {B;}ic; € B, there exists an equalizer diagram

FB) ——— [[F@) ———= ][ [ F®B)
i€l 1,jel B'SB;NB;
B’eB

Clearly, every sheaf on X restricts to a sheaf on B. What’s more, the converse is also true. Let 7 denote a sheaf on B. For
U e Top(X), define

F'(W):= lim F(B).
BsBcU
Note that when U = B € B, the canonical projection F'(B) — F(B) is an isomorphism. For opens V < U, clearly we have
F'(U) — F'(V) given by projections. This shows F’ defines a presheaf on X. To show it is a sheaf, let U € Top(X) and {U, }iex
be an open cover of U. We must show

FU) ——— [[F (W) ——= [[ FUin )

iel i,jel

is an equalizer diagram. A possible way to show this is to express inverse limit as a equalizer of certain arrows, and do some
easy diagram chasing; we omit the proof. In fact, F is unique up to isomorphism, which is easy to see.



If B is closed under finite intersection, then for a presheaf F on B, it is a sheaf if and only if for any B € B and its open
cover {Bi}icr € B, there exists an equalizer diagram

F(B) ——— [[F(B) =—= [[ F(BinBy) (%)

iel i,jel

This is easily checked from the definition.
Let B, B, {Bi}ie1 be as above. Suppose, in addition, that B € B is compact. Then to show the exactness of (), it suffices to
show the exactness of

FB) ——— H‘F(Bi) e — 1_[ F(Biy n Bj)
ie] Lj€]
for all finite subsets J of I with B = | J Bi. Indeed, the injectivity is clear, and to show the exactness in the middle, consider
i€]

the diagram
F(B) H}"(Bi):; H‘F(BimBi)

| ) T

[[7B) ——— [[[[F®) ——= ][] ] F(B:inB))

jcI Jcl ie] Jelije]

An easy diagram chasing and argument then shows the exactness of the above sequence.

2.3.1 Let X be a topological space and B an open basis of the topology on X. Let F and G be two sheaves on X. Suppose
for any B € B, there exists a map F(B) — G(B) that is compatible with restriction. Then there exists a unique morphism
F — G of sheaves extending those maps on B. This is easy to construct and see its uniqueness once we regard F and G as
constructed from sheaves on B, just like we do in 2.3.
If we denote by Cx s the category of C-sheaves on the basis B, then our discussion shows that the restriction defines a
natural equivalence
Cx ——— Cx

2.4 Stalk and Sheafification. Let F be a C-presheaf. For each point x of X, the stalk of F at x € X is the direct limit

Fo=  lim  F(UW

Top(X)aUsx

where the open neighborhoods of x are directed by inclusions. The étale space of F is the set-theoretic disjoint union

EtF =| | F

xeX

If s € F(U), we use either sy, s|x or h_l’I;l s|v to denote its image in F. For each s € F(U), define sy : U — EtF by
uUoVax
su(x) = (x, sx). On Et F we install the final topology with respect to the collection of maps {sy | U € Top(X), s € F(U)}.

With this topology the natural projection 7t : Et / — X becomes a local homeomorphism.

Denote by F' the sheaf of continuous section of 7 : Et F — X. If F is a C-presheaf, then F' is a C-sheaf. This sheaf ' is
called the sheafification of the presheaf C. Clearly ( )T defines a functor from Cire to Cx. The map s — sy defines a morphism
tr : F — F'. This morphism tr enjoys the universal property : there is a bifunctorial bijection

Homcl)’('e(f-,g) E— HOmCx (]:Tlg)



whose inverse is given by pre-composing with 1r. Here G is a C-sheaf, and we view it as a C-presheaf on the left. In other
words, the sheafification functor is left adjoint to the forgetful functor Cx — C§°. In particular, this shows if F is already a
sheaf, then 17 : F — F' is an isomorphism of sheaves.

2.4.1 A categorical caveat. The category of Ring is not well-behaved compared to Ab and Modg. One point that deserves
an attention is that the forgetful functor Ring — Set does not preserve arbitrary colimit : it only preserves filtered colimit.
Nevertheless, the set-theoretic filtered colimit of rings has a unique structure of a ring so that it is a colimit in Ring. In
particular, the stalk of a (pre)sheaf of rings is indeed a ring.

2.4.2 Retain the notation in (2.4). Since each section s € F(U) is necessarily injective, we obtain a canonical injection

Fiu) —— [ [ A&
xel
f i (f(x))xeu-

It is easy to describe the image in n Fx:

xel

]:T(u) = {(fx)xeu € H Fx

xell

for any x € U there exist an open neighborhood V < U of x
and s € F(V) such that fy, = s, forally e V '

2.4.3 For any presheaf 7 and x € X, the canonical morphism t = 1f : ¥ — F T induces a map Ly : Fx — FI on the stalk.
This is in fact an isomorphism in C. To see this, an element fy € ]—'i is represented by some f € F T(U), where U is a small
neighborhood of x in X. By shrinking U further we can assume f(U) = {(x, sx) | x € U} for some s € F(U). Then sy = f since

they are sections of a homeomorphism 7'c|}3(u), and thus (sy)x = fx. This proves surjectivity, and injectivity can be proved in
a similar way.

2.5 Define a category Etx as follows. An object is a pair (Y,py : Y — X) consisting of a topological space Y and a local
homeomorphism py : Y — X. A morphism between objects is a continuous map compatible with their projections to the
base X. Taking sheaf of continuous sections defines a functor from Etx to Setx (operations between sections are defined
stalk-wise). In fact, this establishes an equivalence of categories

Etx ———— Setx
with inverse given by associating a sheaf F with its étale space Et ' — X.

2.6 Example : constant sheaf. Let X be a topological space and A a set. The presheaf U — A, (J — {«} is called the constant

presheaf AP which is usually not a sheaf. Its sheafification is called the constant sheaf, and is denoted by Ay. There is an
explicit description of Ay : for any open U in X

Ax(U) ={f:U — A | flocally constant}.

This is clear from the construction of sheafification (2.4). It can be shown that if #A > 2, then Aﬁ’(re is already a sheaf if and
only if X is irreducible (3.34).

2.7 Example : skyscraper sheaf. Let X be a topological space and A a set. Let x € X be a point. Then the presheaf

u | A ifxeu
(=} ,ifx¢U



is a sheaf, and is called the skyscraper sheaf at x with value A. It is so named as if we denote this sheaf by F, then
Fo=1 N ifye [}
(=} ify ¢ {x}

Particularly, if {x} = {x} (e.g. if X is a Ty space), then x is the only point at which F has nontrivial stalk.
If we view A as a sheaf on the one point space {x} and denote by t, : {x} — X the inclusion, then F = (1,):A (2.9).

2.8 Example : locally constant sheaf. Let X be a topological space. A sheaf F is called a locally constant sheaf if there exists
an open cover U of X such that F|y is isomorphic to a constant sheaf for each U € /. Here for a presheaf G and an open set
U of X, the presheaf G|y is a presheaf on U defined by V — F(V). Clearly, if G is a sheaf on X, then G|y is a sheaf on U.

2.1.1 Adjunction between f~! and f.

29 Letf:X — Y be a continuous map. For a C-presheaf F on X, define the direct image presheaf (or the push-forward
presheaf) f.F on Y by the formula

o F (V) = F(fH(V))

where V € Top(Y). If F is a C-sheaf, then f,.F is also a C-sheaf. If G is a C-presheaf on Y, define the inverse image presheaf
(or pull-back presheaf) fP*F on X by

FeFU) = lim  F(V)
Top(Y)aVof(U)

where U € Top(X). When F is a sheaf, fP"F may still fail to be a sheaf. Nevertheless, for a sheaf 7, we define the inverse
image sheaf f~1F of F to be the sheafification of fP*F.
We compute the stalk of fP*F. For x € X,

(FeF) = lim lim  F(V) = lim F(V) = Fr
Top(X)aUsx Top(Y)aVof(U) Vaf(x)

There is no formula for (f,F), in general. Nevertheless, if X is a subspace of Y and f is the inclusion, we have (f,.F), = F
ify € X. If Xis closed, then (f,F), =0 fory ¢ X.

2.10 Adjunction between f~' and f,. Define a category Cr,,, as follows.
— An object in C%r,; is a topological space X together with a C-presheaf F. We denote an object by (X, F).

— For two objects (X, F) and (Y, G), a morphism between them is a continuous map f : X — Y together with a collection

of maps { G(V) Tuy r (U)} fU)eV < Mor(C) compatible with the restriction.
UeTop(X), VeTop(Y)

Let us have a careful look at the condition imposed on a morphism in C%i;. If f(U) < V, then U < f~1(V), the latter being open

in X since f is continuous. Since a morphism is compatible with inclusions, we see that for a fixed V € Top(Y), the subcollection

{Tu,v} ruycv is completely determined by a distinguished element, namely T¢-1(y)v : G(V) — F (f~1(V)). On the other
UeTop(X)

hand, for a fixed U € Top(X), the subcollection {Ty,v} f(u)cv is packed to a map from the direct limit lim G(V)— F(U).
VeTop(Y) Vof(Uu)
To draw a conclusion, let us consider the forgetful functor C%r,; — Top. For objects (X, F) and (Y, G) in Crop, the forgetful
functor gives a projection map

D: Homc%zi((xl F)/ (Y/ g)) — HomTop(X/ Y)

10



The above consideration implies the preimage under ® of a continuous map f : X — Y has two interpretations, that is,
Homgpe (G, 4 F) ———— o(f) ——— Hompr (PG, F)

Ignoring the “bridge”, we obtain the adjunction of f, and fP*. If we consider the full subcategory Crop of C%?; consisting of

(X, F) with F a C-sheaf on X, by composing with the sheafification we obtain the adjunction of f, and f -1,

Homg, (G, f+F) ————— Homg, (f~1G, F)

1

For two appropriate continuous map f and g, we clearly have (fg); = f4gs. The adjunction then shows that (fg)™" and

g~!'f~! are “naturally isomorphic”.

2.10.1 Saying that f, and f~! are adjoint to each other in the categorical sense requires them to be functors. For a continuous
map f: X — Y, define the direct image functor f, : C}'° — C}'* as follows. If F is a C-presheaf, put f,F as in (2.9), and for a
morphism T : F — G inCy", define f, T : f,F — f,G by assigning to each open set V € Top(Y) amorphism (f«T)v = T¢-1(v).
Clearly such a definition makes f, into a functor, and it sends C-sheaves on X to those on Y. It also yields a functorial map

Homg, (F,G) — Homg, (f . F, f+G). (®)

Next, define the inverse image functor fP* : C$re — Cire as follows. For a C-presheaf 7 on Y, define fP**F as in (2.9), and
for amorphism T: F — G in C}, define fP™T : fP F — PG by assigning to each open set U € Top(X) a morphism

(F*Ty=  lm Ty: lm  FV)- lm  G(V).
Top(Y)aVof(U) Top(Y)aVof(U) Top(Y)aVorf(U)

This morphism is obtained by the universal property of the direct limit, applied to the morphisms F(V) — G(V) —

lim G(V). Since taking direct limit is functorial, fP*® is really a functor. Restricting to the full subcategory Cy and
Top(Y)aVof(U)
post-composing with the sheafification functor defines the inverse image functor f~! : Cy — Cx on sheaves. Again, we have

a functorial map
Homg, (F,G) ——— Homg, (f71F,f71G). (&)

2.10.2 Adjunction and stalks Let 0 : G — f.F be a morphism of sheaves on Y, and let 0! : f~1G — F be the morphism
obtained by adjunction. Let’s compare the induced maps on stalks. Let x € X and y = f(x) € Y. The stalk map of 6 at y is

Gy — (fxF)y = lim  F(f (V)
Top(Y)aVay

while by (2.9) the stalk map of 6% at x is

gy = (fﬁlg)x - Fx = h_n} ]:(U)
Top(X)aUsx

By the universal property of direct limits, these two are related in a diagram

Oy
Gy ———— (fF)y

ot l

Fx

It follows from the very construction of adjunction that this is a commutative triangle.

11



211 Let us analyze the adjunction (2.10) further in the case C = Mod. By definition an objective in C is a pair A ~ M,
where A is a ring and M is an A-module. A morphism A —~ M — B —~ N in Mod is a ring homomorphism r: A — B and
an abelian group homomorphism f : M — N with compatible ring action; that is, there is a commutative diagram.

AxM——m M

BxN —— N
Let (X, A ~ M) and (Y, B —~ N) be in Mody,,. Forgetful functors gives a chain of projections

HomMOd-}:-roi, ((X/ A - M)/ (Y/ B~ N)) — HomRing.}:.r:P ((X/ A)/ (Y/ B)) — HomTop (X/ Y)

Let f : X — Y be a continuous map. As in (2.10), consider the following diagram.

HomMod%r;((X,A ~ M), (Y, B~ N))

|

Homg;pgere (B, A) ————— HomRing%ﬁ; ((X, A) «————— Homgy,r(B, f1.A)

The fibre of f in the middles gives a bijection between the leftmost set and the rightmost set. Let 6 : B — f,.4 be in the
rightmost and that 0! be the corresponding element in the leftmost; they map to the same element (f, 0) in the middle. We
ask what is the fibre of (f, 8) in the upper set. A moment consideration gives the answer :

I_IOI'I'IMOdIi’ATe (A ®fpreB fpreN,M) E— HomModﬁffp((X'A — M), (Y,B — N)) — I_Ion'le:‘I;re (N, (f*M)[e})

| l !

(08 : fPe3 — A} Homppge (X, A) (0:B — f,A)

We need to explain the notations used here.

— For a presheaf (resp. sheaf) of rings A on X, a presheaf (resp. sheaf) M of abelian groups on X is called a presheaf
of A-modules (resp. sheaf of A-modules) if M(U) is an A(U)-module for any open U and the module structure is
compatible with the restriction of .A. A morphism between presheaves of .4-modules is a morphism of presheaves
T such that T(U) is an Ox(U)-module homomorphism for every open U. We denote by Mod’}* the category of
presheaves of A-modules, and when A is sheaf, we denote by Mod 4 the full subcategory of Mod',* consisting of
sheaves of A-modules.

— For M, N € Mod"[*, define their tensor product M ®" N € Mod®,® by the assignment U — M (U) ® 4(u) N (U). When
in Mod 4, we define M ®4 N € Mod 4 by (M @} N)T.

— (fxM)®)) means we use 0 : B — f..A to view f4, M as a B-module.
— On the left-upper corner, A is viewed as a fP*B-module via 0%.

Let us replace everything by sheaves. Suppose that (X, A ~ M) and (Y,B —~ N) are actually in Modrp. Passing to
sheafification, the upper part of the diagram above gives a bijection

Hompwod , ((«4 Qeres TPEN)T, M) —— = Hompea, (N, (fxM)10)
The same consideration, but with each fP™ replaced by f~!, gives a bijection

Hommod, ((A®-15 fIN)", M) ———— Hommtoa, (N, (£ M)

12



As a by-product, we see (A®wes P°N)" and (A®¢-15 N )Jr are naturally isomorphic. We give it a new notation :
*N = (A ®prep PN)T € Mod 4. This is called the inverse image of A/ by (f, 0). Also, we simply put f, M = (f, M), and
call it the direct image of A by (f, 0). In this way, the adjunction takes the form

Homwed,, (f*N, M) ———— Hommods (N, fx M)

It is easy to see f, : Mod 4 — Modp and f* : Modg — Mod 4 define functors, and the bijection above is bifunctorial in M
and V. Concisely, this bijection says that f* is left adjoint to .

212 We compute the stalk of f, M and f*N. For the former, the stalk is the same as the one for the usual direct image,
since computing stalk has nothing to do with the module structure. For the latter, by (2.4.3) we only need to compute

(A N,
It follows from the following lemma and (2.9) that this is naturally isomorphic to
A ®5,,, Ni(x)

Lemma. Let (Ay)« be a directed system of rings, (M)« and (N«)« be directed systems of abelian groups with My and
N being A «-modules and the transition maps being compatible with the ring homomorphisms Ay — Ag. Then thereis a
natural bijection

lim Mo ®a, No = (lim, Ma) ®im_a, (lim, No) -

Here My ®a ,, N is directed by the natural map M, ®a, No — Mp ®a, N, which exists either by the explicit construction
of tensor products or by the universal property.

Proof. It suffices to show li_n}(x My ®a, Ny satisfies the obvious universal property that (h_r)m(X M‘X) ®h_r>n“ A (hi% N(x>
enjoys. For brevity, let A, M, N stand for the limit objects h_r}ncx Ay, h_r}no( Ma,@“Nw Let H be an A-module, and let
T: M x N — H be an A-bilinear map. Precomposing with My x Ny — M x N, we obtain an A-bilinear map Ty :
My x Ny — H, which by the universal property induces an A-linear map My ®a, N« — H. From construction it is
clear that (M4 ®a, Ny — H) is a cocone, so it gives a map li_r)na Mg ®a, Ny — H, as wanted. The uniqueness (resp.
functoriality) of this map follows from the uniqueness (resp. functoriality) at each step. This finishes the proof. O

2121 We extend the comparison done in (2.10.2) to this case. Let 6 : N — f,M be a morphism in Mod 4, and let
0% : f* N — M be the corresponding morphism obtained by adjunction. Let x € X and y = f(x) € Y. The stalks maps fits into

a diagram
0 Y

Ny

|

Ax ®By Ny = (f*./\/)x —X> Mx

(fx M)y

where the left-vertical arrow is f — 1 ® f, and the right-vertical arrow is the one in (2.10.2). It follows from (2.10.2) that this
diagram commutes.

2.1.2 Gluing process

2.13 Gluing sheaves Let X; (i € I) be a collection of topological space. On each X; is a sheaf F; of sets. Suppose for any i € I
there exist open subspaces Xi; € X; and Xj; € X;j and an isomorphism fy; : (Xii/]:i|xi,-) — (X1, F; ]in) in Setrop. Assume
these fyj satisfy
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(a) fiy =idx, foranyieI;

(b) fix = fji o fy on Xy5 N Xy forany i,j, kel
Then there exists a topological space X containing each X; as an open subspace with X; n Xj = Xj;, a sheaf of sets F on X
and isomorphisms f; : F|x, — F; of sheaves on X; (i € I) satisfying fi = fi; o fj on Xi n X;.
Moreover, the data (F, {fi}ie1) is unique up to a unique isomorphism, in the sense that if (F”, {f{}ic1) is another such data,
then there exists a unique isomorphism f : 7 — F’ of sheaves on X such that f; = f] o f|x, forany ie L.

2.13.1 This can be phrased in the language of representable functors. Define a functor F : Sety,p, — Set by

F(Y,0) = {(gi)m € [ [ Homsets, ((Xi, Fo), (Y, G) |

iel

gi|xij = gjlxji Ofij for aH 1,] € I
gk © fik|xi;mXee = 9i © Fjilxi;ax;e © fijlxi;nxg; foralli,j kel

Then any topological space X containing each X; as an open subspace with X; n Xj = Xj; and a sheaf of sets 7 on X and
isomorphisms f; : F|x, — F; of sheaves on X; (i € I) satisfying f; = fi; o fj on X; n X; represents the functor. Moreover, such
a pair (X, F) exists.

2.13.2 Proof. We claim if X is a scheme along with open subschemes isomorphic to the X; respecting the gluing data, then X

represents the functor F. We denote by ; : X; — X the open embedding. Note that our assumption implies (1 )ier € F(X). Let
Y be a scheme and (gi)icr € F(Y). Define amap g : X — Y as follows. For x € X, if x € 1;(X}), then set g(x) = gi(tfl(x)). This is
well-defined, asif x € ;(X;) aswell, thenx € 1;(X{)ny(X;) = 1i(Xi5) = ;(Xji) and so gi(Li_l(x)) = g; (fij(ti_l(x))) = gj(Lj_l(x)).
We must show g : X — Y is continuous. Let U < Y be an open subset. It suffices to show g1 (U) n (X;) is open in X; for
each i € I, and we prove this by showing g~} (U) n 4 (X;) = Li(gfl (U)); this is sufficient as the g;l (U) is openin X; and ; is
an open map. If x € Li(gil(U)), then gi(Lfl(X)) € U. Since gi(Lfl(x)) = g(x), this implies x € g~}(U), or x € g7 (U) N v (X3).
Conversely, if x € g71(U) n 1(X;), then U 5 g(x) = gi(tfl (x))soxe Li(gi_l(U)).

We now turn to sheaves. We must define a sheaf map 6 : Oy — ¢.Ox. What we have now is g; : Oy — (gi)+Ox,-
By assumption the inclusion (; induces an isomorphism LiL(X‘) D Oxlixy) = (11)£Ox,. Since gi = g o 11, we obtain a map
0; == (g« o LiL(Xi))_1 0gi: Oy = (91)xO0x; = g (11)xOx; = g« (Ox|i,(x1))- We claim the maps (g|,, (x,), 01) : ti(Xi) — Y glue.
Let V € Y be an open set. Then the (8;)v : Oy(V) — Ox(u(Xi) n g71(V)) defines Py : Oy (V) — HOx(Li(Xi) ng (V).

iel
To show Oy (V) maps to Ox(g~'(V)), by the universal property of equalizer it suffices to show two arrows

Ov(V) 2% [JOx(u(X) n g™ (V) — ] Ox(u(X0) n 4(X;) A g™ (V)

iel i,jel
are the same. This follows from the condition gi|x;; = gj|x;, © fi;. This finishes the construction, and defines a map

F(Y) _— HomSCh(X, Y)
(gi)ier ——— (g,0).

The whole construction is functorial in Y, so this defines a natural transformation. It has an obvious inverse : if g €
Homgh (X, Y), then (g o ti)ier € F(Y) maps to g under the above map. Hence it is a natural isomorphism, proving that X
represents F. In particular, this proves the uniqueness.

It remains to show the existence of such X. This is straightforward. Let X’ = | | X; be the disjoint union of the spaces Xj,
equipped with the final topology given by the inclusions t; : X; — X’. Define a réilition ~ on X’ be declaring (i,x) ~ (j,y) iff
x € Xyj, Yy € Xji and fij(x) =y. This is reflexive and symmetric by the third bullet, and is transitive by the cocycle condition.
Let X = X’/ ~ and equip it with the quotient topology given by 7 : X’ — X. We show mo (; : X; — X is an open embedding.
This is continuous by construction, and is injective as ~ does not collapse 1;(X;). Let U < X; be open, Then (7o ;) (U) is
open if and only if 7t~ (7o 1;)(U) is open, if and only if Lj_lTE_l (o) (U) is open in X;. The latter set is exactly fi; (U n Xj;),
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which is open in Xj. Observe also (7o 1;)(Xi;) = (o )(Xj3) for i,j € 1. To ease the notation, we identify X; with its image in
X; under this identification, the previous observation tells that X; n X; = Xj; = Xj; as topological spaces.
Our final work is to glue together the sheaves Ox,. We leave it to the next paragraph.

2.13.3 Let X be a topological with an open cover i/ = {U; }ic1. Suppose that on each U there is a sheaf F; of abelian groups.
For any 1,j € I, suppose there is an isomorphism 0i; : Fi|u;~u; — Fjlu;~u; of sheaves on U; n U;. Assume these 0;; satisfy
(@) 0y is the identity map for any i € I;
() Oix|u;nu;nu, = O5k]uinu;auy © BilusAu; AUy
Then there exists a unique sheaf of abelian groups F on X and isomorphisms 6; : F|y, — F; of sheaves on U; such that
0jlu;~u; = 045 0 0i|u;~u; forany i, je L.

Proof. Define a presheaf F on X by setting

F(V) = {(Si)iel € n]:i(V N W) | (B45)vau;nu; (SiR//:ﬁ:mui) = Sj\xgﬁiﬁuj foranyi,je I}

iel

By (b), this really defines a presheaf on X. We can show F is a sheaf of abelian groups by a way similar to (2.3). O

2.13.4 LetX,Y be two topological spaces, and F and G be sheaves on X and Y, respectively. Suppose there are an open cover
{Ui}ier and a collection of morphisms f; : (Wi, Flu,) — (Y,§) in Abryp such that fi|u, ~u; = fjlu,~u; for any i,j € I. Then
there exists a unique morphism f : (X, ) — (Y, G) in Aby,, extending the f;.

2.14 Let us mention some categorical limit and colimit objects in C}" and Cx.

— Direct product. If {Fi}icr is a family of presheaves (resp. sheaves), then U — H]—'i(U) defines a presheaves (resp.
iel
sheaves), and is the categorical product in either category.

— Finite direct sum. Suppose C = Ab. Then finite direct sum coincides with finite direct product.

— Inverse limit. Let {Fi}ic1 be an inverse system of presheaves (resp. sheaves). Then the assignment U > lim J;(U)
iel
defines a presheaf (resp. sheaf), and is the categorical limit in either category.

— Direct limit. Let {F; }ic1 be a direct system of presheaves (resp. sheaves). Then U — 11_1)1’1 Fi(U) is a presheaf, but fails to
iel
be a sheaf even if each F; is a sheaf. For this, for a direct system of sheaves, we denote by lim F; the sheafification of
iel
the above direct limit presheaf. Both are categorical directed limit in respective category.

215 Let C be either Ab, Ring or Modg. If ¢ : F — G is a morphism of presheaves (resp. sheaves), then U — ker ¢(U)
defines a presheaves (resp. sheaves), called the kernel of ¢ : 7 — G, and is denoted by ker ¢. When C is Ab or Modg, the
assignment U — G(U)/F(U) = coker ¢(U) only defines a presheaf, so if we are discussing in Cx, we define the cokernel
coker @ of ¢ : F — G to be the sheafification of the previously mentioned presheaf. Similarly, we define the image Im ¢ to
be the sheafification of U — Im ¢ (U). Both kernel and cokernel in Cf(re (resp. Cx) satisfy the usual universal properties.

2.15.1 Lemma. Let X be a topological space and A a sheaf of rings. The categories Mod';* and Mod 4 are abelian. In
particular, Ab}© = Modzrxe and Abx = Modg, are abelian.

2.16 By (2.15.1) we can talk about exactness in AbY and Abx. Explicitly, a sequence F = G %, 7¢ is exact in AbL® (resp.

Abx) if the natural map Im « — ker 3 is an isomorphism. Thus a sequence of sheaves may be exact in Abx while fails to be
exact in AbY°. A useful criterion for exactness is the following :

Lemma. A sequence F = G %, 2 of sheaves of abelian groups is exact if and only if the induced map on the stalk
T %5 G B3 2, forevery x € X.
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2.16.1 As a consequence, we see the sheafification functor ()T : Ab};(re — Aby is exact, in the sense that it sends short exact
sequences to short exact sequences. To see this, let 0 - F — G — H — 0 be a short exact sequence in AbY°. By (2.4.3) and
(2.16), we only need to show 0 — F — Gy — Hx — 01is exact in Ab for every x € X. This is indeed the case, which can be
seen from the proof of (2.16).

2.16.2 Let us split the proof of Lemma 2.16 into several lemmas.

Lemma. Let ¢ : 7 — G be a sheaf of sets. Then ¢ is an isomorphism in Setx if and only if ¢ : Fx — Gy is an isomorphism
for all x € X.
Proof. Only if part is clear as taking stalks is functorial. For the if part, it suffices to show ¢y : F(U) — G(U) is an

isomorphism for every open U < X, for various inverses must glue to an inverse of ¢. Consider the commutative diagram

Fu) —2 g

L

H;X%ng

xelu xel

We see ¢ is injective at once. Let s € G(U) and denote by (s ) its image in the product of stalks. Since the bottom map is

an isomorphism, we can find (t,)x € [] Fx such that [ [, dx(tx)x = (sx)x- For each x € U pick an open neighborhood U,
xel
of x and ty, € F(Uy) such that (ty, )x = tx. Since ¢y, (tu, )x = dx(tx) = sx = (s|u, )x, shrinking U, if necessary, we can

assume ¢y, (tu,) = s|u,. For x,y € U, the injectivity of ¢u, ~u, implies tu, |u,~u, = tu, |lu,~u,, so there exists t € F(U)
with t|y, = tu, . Then ¢y (t) = s, proving the surjectivity. O

2.16.3 Lemma. Let ¢, : F — G be two morphisms of sheaves of sets. Then ¢ =1 if and only if ¢y = ¢ forall x € X.

Proof. The only if part is evident, and the if part follows from the commutative diagram

F(U) %; G(U)

]

fo% I 9

xelU [T bx xelU

O
2.16.4 Lemma. Let ¢ : F — G be a sheaf of sets. Then ¢ is an epimorphism (resp. monomorphism) in Setx if and only if
b« 1 Fx — G is surjective (resp. injective) for all x € X.
Proof. This follows from a direct verification of the definition by using (2.16.3). Also, we use the fact that (f o g)x = fx 0 g,
which is clear. O
2.16.5 Lemma. LetIbe adirected setand A : I — Ring a directed system of rings. Suppose M, N, L: I — Mod are directed
systems of A-modules such that M £ N 5 Lis exact. Then limM — lim N — lim L is exact.
Proof. This is immediate if one realizes lim M as equivalence classes in the disjoint union. For the proof when one realizes

it as a quotient of the direct sum, see [AM94, Exercise 2.19]. O

2.16.6 Corollary. Letf:F — G be a morphism in Abx. Then (ker f), = ker f, and (coker f), = coker fy for all x € X.
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2.16.7 Proof. The lemma follows at once from we have proved.

217 Letf: (X, F) — (Y,G) be a morphism in Abrop. Suppose Y admits an open cover U/ such that the induced morphism
1°|113_1 w) (=1 (W), Fle (u)) = (U, GJu) is an isomorphism for any U € U. Then f is an isomorphism. The map on topological
spaces are clearly a homeomorphism. For the sheaf map, one can use (2.16) to show G — f.F is an isomorphism.

2.2 Local-ringed spaces

2.18 Ringed space. An object in Ringy, is called a ringed space. For simplicity, put RS = Ringy,,. Explicitly, a ringed
space morphism from (X, Ox) to (Y, Oy) consists of a continuous map f : X — Y and a morphism 7 Oy — ,.0x of sheaves
of rings on Y.

219 The morphism f’ induces maps of stalks. To be precise, for x € X and V an open neighborhood of y = f(x) in Y,
we have a map f'{/ 1 Oy (V) — f.0x(V) = Ox(f~1(V)). Post-composing with inclusion into direct limit, we obtain a map

Oy(V) — hi>n Ox(U) = Oxx. Letting V varying and passing to limit, we obtain a map fi 1 Ovy — Oxx.
Top(X)aU>sx

On the other hand, write f* : f~1Oy — Ox to be the morphism obtained via (2.10). Let x € X. By (2.9) and (2.4.3), we have
a map

lim 71 Oypx) = Oxx
Top(X)aUsx

By (2.10.2), this map coincides with f2,.

2.20 Local-ringed space. A ringed space (X, Ox) is called a local-ringed space (or locally ringed space) if each stalk Ox x
is a local ring. A morphism between local-ringed spaces is a morphism of ringed spaces such that each stalk map is a local
homomorphism of local rings, which is to be explained. For a ring homomorphism ¢ : (A, ma) — (B, mg) of local rings, we
say it is a local homomorphism when ¢ ~!(mg) = ma. Note that in general we only have ¢ ~!(mg) < ma. The category of
local-ringed spaces is denoted by LRS.

2.20.1 Letkbe a field. A ringed space over k is a ringed space (X, Ox) such that Ox is a sheaf of k-algebras. The category
RSy, of ringed spaces is the full subcategory of (Alg, )top whose objects consist of ringed spaces over k. A local-ringed space
over k is a local-ringed space (X, Ox) that is also a ringed-space over k, and a morphism of local-ringed spaces of k is both
a morphism of local-ringed spaces and ringed space over k. Denote by LRSy, the category of local-ringed space over k.

221 Let (X, Ox) be alocal-ringed space. For a point x € X, the quotient k(x) = Ox x/my is called the residue field at x. For
open U, x € Uand f € Ox(U), we sometimes write f(x) to denote the class of f in the residue field «(x). For an open subset
U of X and f € Ox(U), put

U :={xe U] f(x) # 0in «k(x)}
={xelU|f e Og }

Then Uy is an open set in U. For if f, € (’);/X, then we can find some neighborhood V of x and g € Ox (V) such that fygx = 1.
But this means fg = 1 in Ox(W) for a smaller neighborhood W < V of x, and thus x € U n W < U. Note that since Ox is

a sheaf, for f € Ox(X), we in fact have f € Ox(X¢)*. To construct an inverse, we do it locally and patch them together to a
section over Xys.

2.22 Topological embedding. Let X be a topological space and Y < X an subspace. We denote by 1 : Y — X the inclusion
map. For a sheaf F on X, we denote the inverse image sheaf 1! by F|y. From the adjunction we also have a morphism
p: F — i (Fly). We call the morphism (i, p) : (Y, Fly) — (X,F) the topological embedding. It enjoys the following
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universal property similar to that of the subspace topology : if (f, ) : (T,G) — (X, F)isa morphism with f(T) < Y, then
there exists a unique morphism (T,G) — (Y, F|y) making the following triangle commute

(f,f%)

(T,9)

\ -

(Y/JT-.|Y)

(X, F)

The only candidate for the map on topological spaces are f|¥. The morphism between sheaves is best defined using the very

. oy N . pre
definition of a morphism in C’TOp

way is to define it via adjunction. To be specific, the morphism f* : F — .G = 1(f|¥).G induces, by adjunction, another

(2.10) then passing to sheafification. In this way the uniqueness is also evident. Another

morphism *F — (f]¥),.G, which is what we want. The commutativity is proved using functoriality of adjunction.
Let G be a sheaf on Y. By adjunction the identity morphism t,G — (.G induces a morphism t~'t,G — G. This is in fact
an isomorphism as long as t is an embedding. It is enough to check on the stalks, and this follows from (2.9).

2.22.1 Let us consider the above situation in LRS. Let (X, Ox) be a local-ringed space and Y < X a subspace. We check
(Y, Ox|y) is also a local-ringed space, and the topological embedding (Y, Ox|y) — (X, Ox) is a morphism in LRS. The first
is easy, for we have

(OX‘Y)U = h_n} h_l’I)l Ox(U) = OX,y-
Top(X)aUDW Top(Y)aWay

To see the stalk map is a local homomorphism, since the stalk of a presheaf coincides with that of its sheafification (2.4.3),
we can replace (Y, Ox|y) by (Y, P*Ox), and the computation above indicates the stalk map is simply the identity map.

Now let (P, 0) : (X/,Ox/) — (X, Ox) be a morphism in LRS and let Y be a subspace of X. Put Y/ = {~1(Y) and give it
subspace topology of X’. Then we have a cartesian square in LRS

(Y, Ox[y/) ———— (Y, Oxly)

| |

($,0)
(X!, 0x) — % (X,0x)
The two vertical morphisms are the canonical embedding, and the upper horizontal map follows from the universal property
for (Y, Ox|v); to see the so obtained map is a morphism in LRS, one can argue as in (2.22).

2.23 Ideal sheaf. Let (X, Ox) be a ringed space. An ideal sheaf [ of Ox is a sheaf on X such that J(U) is an ideal of Ox(U)
for any open U. Symbolically we write J < Ox. The ringed space (X, Ox/J) is called the ringed space associated to 7. Note
that Ox/J means the sheafification of the presheaf U — Ox(U)/J(U).

The natural map 7 : (X,0x/J) — (X, Ox) enjoys the following universal property : if (f, 1) : (T,G) — (X,0x) is a
morphism in RS with 7 < ker f*, then there exists a unique morphism (T,G) — (X, Ox/J) making the following triangle

commute

(T,9) (o) (X, Ox)

N A

(X,0x/T)
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2.23.1 Let(f,0):(Y,Ov) — (X, Ox) be amorphism in RS and J an ideal sheaf of Ox. Note that f*Ox = Oy (2.11). For each
Ovy-module N, define

IN =im (f*J ®o, N — f*Ox ®o, N =~ N) € Modo,
When N = Oy, we see JOy = Im(f*J — Oy). Put 6% : f1Ox — Oy. Then 6% induces a map
1 (Ox/T) = 1710x/T71T — Oy/JOy
By adjunction we obtain a morphism 0 : Ox/J — f4 (Oy/JOy). In sum, we obtain a map
(£,0) : (Y, Ov/JOv) — (X, 0x/J)

in RS. In fact, it fits into a Cartesian square in RS

(Y, 0y /T0y) — 2 (X, 0x/.7)

l l

(,0)
(Y,0y) — (X,0x)

2.24 Let (X, Ox) be a local-ringed space and J < Ox an ideal ideal. For x € X, it may happen that the stalk (Ox/J ) is not
a local ring. Taking stalk is exact, so (Ox/J )x = Ox,x/Jx. Thus it is not a local ring if and only if it is zero, or equivalently,
Ox x = Jx. Define

V(j):{xex‘jxgox,x}

This is a closed subset of X, for if x ¢ V(J), then Oxx = Jx, so there is a neighborhood U of x and f € J(U) such that
fx =1 € Ox . Shrinking U further shows that f|y =1¢€ J(U),so U < X\V(J).

Letj: V(J) — X denote the inclusion. Then V(J) together with the sheaf of rings j~! (Ox/J) = Ox/J |v ) becomes a
local-ringed space, called the closed local-ringed subspace of (X, Ox) associated to the ideal sheaf 7.

Denote by i7 : (V(J),i ' (Ox/T)) (X, 0x/T) — (X,0x) the composition (2.23). This morphism in LRS enjoys the
following universal property : if (f, f¥) : (T,G) — (X, Ox) is a morphism in LRS with 7 < ker f#, then there exists a unique
morphism (T,G) — (V(J),j ! (Ox/J)) making the following triangle commute

(f,f%)

(T,9) (X, 0x)

N, <

V()i (Ox/T)

We first show f(t) € V(J). Since taking stalk at f(t) is exact, we see (ker f’j)f(t) = ker(Ox (1) — Gt). Since the stalk map is
a local homomorphism, we see (ker fﬁ)f(t) is contained in the maximal ideal of Ox (), whence J¢) & Ox (). Similar to
(2.23), we have a morphism Ox/J — .G = j (1“|V(‘7))>X< G, so adjunction gives j =1 (Ox/J) — (f\v(j))* G. The resulting
map is a morphism in LRS and makes this triangle commutative, as one can argue as in (2.22).

2.24.1 Let (f,0): (Y,Oy) — (X, Ox) be a morphism in LRS. Let ' € Modp, and J < Ox an ideal sheaf. By definition there
exists a commutative diagram

*T QN =117 @10, Oy ®o, N N
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Taking stalk at y € Y gives (c.f. (2.12))

Tity) ®0x 1y, Ovy ®oy,, Ny Ny

\/

(TN )y
This proves that

(IN)y = m (Try) Box, sy Ny = My ) = Triy Ny

2.242 Lemma. V(JOy) =f1(V(J)).

Proof. Recall that for y € Y, (Oy/JOv)y = Oy, /TJ¢w)Oy,y- Let me,) and my be the maximal ideals of Ox () and Oy
respectively ; note that f, (m¢(,)) S my.

— Ify e V(JOy), then J¢(y)Ov,y & Oy,y. A fortiori we have J¢ () & Ox,x, 50y € f=1V(T)).
— Ify e f1(V(J)), then Ty S my(y). But

Tt (y)Ov,y € me(y)Ov,y € my S Oyy

soy € V(JOy).

As as corollary, we see from (2.24) and this lemma that a morphism (Y, Oy) — (X, Ox) in LRS induces a morphism

(V(jOY)/ (OY/jOY) |V(]OY)) - (V(j)/ (OX/j) ‘V(J])

Moreover, it fits into a Cartesian square in LRS.

VIOV, (Ov/TOV) |y yo)) ——— (VIT), (Ox/T) |y 5))

| |

(Y, Oy) (X, Ox)

This follows from (2.23.1) and (2.24).
2.24.3 Let F be an Ox-module. Let us compute the pullback sheaf j* F. By definition (2.11)
. pre T spre spre f
]*—7: = (Ov(j) ®‘]’ppreox JP —7:) = (]p (OX/j) ®]Ppreox ]p f)
Define jF™ (Ox/J) ®}’p,eox jPreF — P (Ox /T ®oy F) as follows. For any open set U < V(J), we have

P (Ox/T) ®}Dprcox jPreF(U) = lim ((OX/J) (V) ®ox (v) .7'-(V)) .

j(U)=VeTop(X)
Here we use the fact that direct limit commutes with tensor product. Consider the sheafification map

(24)

lim ((Ox/T) (V) ®ox(v) F(V)) — lim  (Ox/J ®ox F)(V)
j(U)SVeTop(X) j(U)SVeTop(X)

The right hand side is precisely j?*(Ox/J ®o, F). This finishes our definition. Passing to sheafification (2.4), we obtain a
morphism of Oy, (7 -modules

j*F — i HOx/T ®ox F) =i~ (F/TF).
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The last isomorphism is the obvious one. From the construction above, we see this is in fact an isomorphism (check on
stalks).
2.25 Definition. Let (X, Ox) be a local-ringed space.

1. For open Uin X, (U, Ox |u) is called an open local-ringed subspace of (X, Ox).

2. For 7 < Ox, (V(T),(Ox/T) ’vu)) is called a closed local-ringed space of (X, Ox) associated to J.

w V(I), ((’)x|u/\7){vw)) is called a locally closed local ringed subspace of (X, Ox).

A morphism f : (Y,Oy) — (X, Ox) in LRS is called an open immersion / closed immersion / immersion if there exists
an open / closed / locally closed local-ringed subspace (Z, Oz) of (X, Ox) and an isomorphism (Y, Oy) — (Z,Oz) of LRS
making the following diagram commute

(Y, Oy) f (X, Ox)

~

(Z/ OZ)

2.26 Proposition. Letf: (Y,Oy) — (X, Ox) be a morphism in LRS.

1. fis an open immersion if and only if f is a topological open embedding and for any y € Y, the stalk map fy : Ox ¢(y) —
Oy is an isomorphism.

2. fisaclosed immersion if and only if f is a topological closed embedding and for any y € Y, the stalk map fy, : Ox ¢(y)
Oy, is surjective.

3. f is an immersion if and only if f is a topological locally closed embedding and for any y € Y, the stalk map
fy : Ox ¢(y) — Oy, is surjective.

Proof.

1. The only if part is clear. For the if part, let U be the image of f. It suffices to consider (U, Ox| w-
2. To show the only if part, say

(Y, Oy) f (X, 0x)

\/

AOx/ Dy 4y

Taking stalk at y € Y gives

Af(y)

y Ox
Oxt(y)/Ti(y)

and this proves the surjectivity.

Now we consider the if part. Let J be the kernel of the morphism Ox — f,Oy. By the universal property 2.24 there
exists a morphism (Y, Oy) — (V(J), (Ox/J) ’v ( j)) making the triangle commute

(Y,Oy) ! (X, Ox)

\/
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We claim that f(Y) = V(J),and Oy =~ (Ox/J - For x € X, since f is a closed embedding, we have

g

OY,U ’ ifx = f(y)
0 , otherwise

(f*OY)x = {

For convenience, we write supp f.Ox to denote the set of those points in X at which the stalk of f,Ox does not vanish.
Then we see supp f,.Oy = f(Y).

On the other hand, since f is an embedding (and by the fact mentioned in the last part of (2.22)), we have an exact
sequence

0 —— f1J — f10x —— 1,0y =~ Oy

We contend the last morphism is surjective. This follows from our assumption once we look at the stalks. Hence

(Ox/T)x ,ifx =1(y)

0 , otherwise

(f*OY)X = (fﬁlf*Oy)X = {

and this shows supp f.Oy < V(J) = supp Ox/J Finally, taking stalk directly to the exact sequence 0 - J — Ox —
f.Oy — 0 gives (f.Ov)x < (Ox/J)x, showing that V(J) < supp fOy. Hence the equality f(Y) = V(J) is proved.
The above computation of stalks also proves the assertion for sheaves.

3. This follow from 1. and 2. (and perhaps their proofs).

O

2.27 The definition of locally closed subspaces seems to depend on the choice of open sets we choose. In fact it does not, in

the following sense. Let U be an open subspace of X and J < Ox/|,,. Denote by (Y, Oy) the associated locally closed subspace.
Let Uy be the largest open subspace of X containing Y as a closed subset and let j : U — Uy be the inclusion. Let 1y and v,
be the inclusion of Y into U and Uy, respectively. Let us write Oy and Oy, for brevity to mean the sheaves of rings for their
open local-ringed subspace structures. By definition we have an exact sequence

0 J Ou (tw)« Oy > 0

Applying j. this sequence (j is exact in this case), we obtain an exact sequence

0 j«J jxOu — % ()+Ov = (y,)sOy —— 0

l H

Ou() —_— ( LU[) ) ES OY

The middle vertical arrow is surjective, and hence so is the lower horizontal one. Denote by Z the kernel of the lower
horizontal arrow. Then we have a commutative diagram with exact rows.

0 juT jxOu j« ()« Oy —— 0
| l H
0 7 Ou, () Oy —— 0

We claim V(Z) = V(J) =Y and the chain on the bottom induces an isomorphism (Ov,/Z
taking stalks we see V(Z) = supp(ty, )« Oy, and for x € Uy,

) |V(I) ~ Oy. The first is easy, as

Ovx ,ifxeV(J)
0 , otherwise

()« Ov)x = {
So V(Z) = V(J). Now the assertion for sheaves is clear.
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3 Schemes

3.1 Affine schemes

3.1 Let A be a (unital commutative) ring. The set of all prime ideals of A is called the spectrum of A, and is denoted by
SpecA. For asubset S € A, put V(S) = {p € SpecA | S < p}. One checks easily that for ideals I, ] and I, we have

1) Ny V(Ia) =V (U, Ia)
(i) V(1) u (J) V(In I) V(I)),
(iii) V(A) =&, V((0)) = SpecA,
(iv) V(I) = V(VT),

(V) V(S) =VI((S)), where S < A is a subset and (S) denotes the ideal generated by S.
(vi) V(I) € V(J) if and only if ] < /1.

In particular, by (i), (ii), (iii), the V(S) define a topology of closed sets on Spec A. For each f € A, the open set D(f) =
Spec A\V((f)) = {p | f ¢ p} is called a principal open set. The collection of all principal open sets form a basis for this

topology.
The topological space SpecA is compact. More generally, each principal open set D(f) is compact. To see this, say
= |J; D(g1). Taking complement, we see V((f)) = (); V((gi)) = V((gi)ie1). By (vi), this means f € 4/(gi)ie1- Thus we

can fmd i,..., ln € Isuch that f (911, ., gln) and by (vi) again we see V((f)) 2 V((gi,,- .-, g1, )). Taking complements,
we see D(f U (g1, ), and hence D(f U D(gi,)-

3.2 Affine schemes. For a principal open set D(f), define
OA(D(f)) = Ospec A (D(f)) = As.

If D(f) < D(g), i.e., f € 4/(g) by (3.1).(vi), then f* = gh for some n € N and h € A. This gives rises to a map Ay — Ay, by
sending 1 to fln The resulting map is easily seen to be independent of the choice of n and h. This independence also shows

that Oa defines a presheaf of rings on the principal open sets. To show this is a sheaf, since D(f) n D(g) = D(fg), by (2.3)
and (3.1) we need to check to exactness of the following sequence

n n
0—— Af — H Afi Emd H Af.lfj (*)
i=1 ij=1
where f, f; € A with D(f U D(f;). The argument is the same as the one in the next paragraph, so we defer our proof. By

(2.3) we then obtain a sheaf of rings Oa = Ospec A defines on the whole Spec A. The ringed space (Spec A, Ospec A ) is called
the affine scheme. If no confusion will occur, we write Spec A to denote the pair (Spec A, Ospec A ).
We compute the stalk of Ospec A at a prime p. Since the D(f) form a basis, we have

OSpecA,p = hin Oa(U) = 1&)1’1 OA(D(f)) :hL,nAf = Ap.
Top (Spec A )aUsp D(f)ap fép

The last isomorphism is given by the natural maps A — A,. Hence Spec A is in fact a local-ringed space.

3.3 Affine tilde. Let A be a ring and (X, Ox) = (Spec A, Ospec A ). For an A-module M, we construct an Ox-module M as
follows. For each principal open set D(f), define

M(D(f)) = M¢ = M ®a As.
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This defines a presheaf on principal open sets. To show this really defines a sheaf on them, and hence on X, by (2.3) we must
show the sequence

n n
0—— Mf e HM{i E— 1_[ Mfifj (@)
i=1 i,j=1

is exact for every f, f1,...,fn, € Awith D(f) = D(f1) U --- U D(fn). Since D(f) = D(f1) U --- U D(fn), V(f) = V((f1,...,fn)),

mn

so there exist some k > 0 and ay, ..., a, € A such that f* = Z a;f;. Raising to arbitrary powers, we see for each m € N we
i=1

can find M > 0and a4, ..., a, € A such that

n
S
i=1

a
We first show the exactness at the first place. Suppose —; T € M is mapped to zero in each My, . By definition this means
fi'a = 0 in M for some r; > 0. If we take m > max{ry,..., T}, we see f*a = 0 in M. Choose M > 0 and aj,...,an € A
corresponding to m as above. Then

0=alafi™+ -+ anfl) = af™,
. a .
and this means — = 0 in M.

f¢

b: n b: b:
Next we show the exactness at the middle place. Suppose <f;> e [] My, satisfies le — — = 0in My, for all
i i=1 i f)
1 <1i,j < n; we may assume each {; is the same, say equal to {. A similar argument as above show that we can find m > 0
such that

(biff — bjfi)(fif;)™ =0in M
for all i,j. If we put b{ = b;f", the above identities become b{ff*m = b{ff*m. Take M > 0 and ay, ..., an € A with respect

b+ bl by b! n
to ¢ + m. We claim 211 + fM+ @non i mapped to (fe) = <f€+‘m> € 11:[1 Mg, . Indeed,
i =

n n
(a1b] + -+ anbp)fi ™™ = Z aib{f{™ = Z aib{f{t™ = <Z aiff+m> bj = fMb].
i=1 i=1
This show M is really a sheaf on X. In fact, as one easily can see, M is an Ox-module, and M — M defines a functor
Moda — Modp, . The computation of stalks in (3.2) implies that Mp = M®A, =M, for all primes p.

3.4 Lemma. For a complex M — N — Lin Mod,, it is exact if and only if M — N — Lis an exact sequence in Modop, .

Proof. Suppose M — N — Lis exact. Since localization is an exact functor, for each p € Spec A, there exists an exact sequence
M, — N, — L,. Moreover, this is the same as the sequence Mp -~ N, — tp, so by (2.16) we see M — N — L is exact. For
the converse, it suffices to show M % N B L is exact if each localization sequence M, — N, — L, is exact. That is, we
must show ker 3/Im o = 0 if (ker f/Im &), = 0 for all p € Spec A. If D := ker 3/ Im « is nontrivial, take m € D — {0} with
anna (m) < A and consider a maximal ideal m containing anna (m). The image of m in Dy, is then nonzero, for otherwise
ma = 0 for some a € A — m, a contradiction to our choice of m. Hence D = 0, and the sequence M — N — L is exact.

O

3.5 Definition. A scheme is a local-ringed space (X, Ox) admitting an open cover I/ such that for any U € U/, there is an
isomorphism (U, Ox|u) = (Spec Au, Ospec A, ) in LRS for some ring Ay.
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3.6 Let (X, Ox) and (Y, Oy) be local-ringed spaces. There exists a canonical map
Homygs(X,Y) —— Homging(Ov(Y), Ox(X)).
Moreover, this map is bifunctorial in X and Y. More generally, there is a bifunctorial map

Homod s (X, F), (Y, G)) —— Hommoa (Oy(Y) —~ G(Y), Ox(X) —~ F(X)).

3.7 Theorem. Let A be aring and (X, Ox) € LRS. Then the map in 3.6
Homprs(X,Spec A) —— Homging(A, Ox(X)).

is a bijection.

Proof. Let (f,f*) € Homygs(X, Spec A). Then for any x € X, if we put y = f(x) = p € Spec A, then we have a commutative

diagram
fu ec
Ox(X) +—2— A
‘/I‘QS
OX,X # Ap

Write m, the unique maximal ideal of Ox . Then since fy is a local homomorphism, we see p = (fgpec A)*l res—1(my). On
the other hand, for any g € A, there is a commutative diagram

fgpec/\
Ox(X) «+—m

]

f+Ox(D(g)) N A
D(g)

[}

The right vertical arrow is localization, so f% (g) 18 In fact uniquely determined by res ofgpec A- Since the D(g) form an open
basis for Spec A, this shows f* is uniquely determined by fgpec A- This proves the injectivity.

For the surjectivity, let 8 € Homging(Ox(X), A). We define a map f : X — SpecA by setting f(x) = 67! (resX) ™! (m,),
where res : Ox(X) — Ox  is the restriction and m, is the maximal ideal of Ox . To show this is continuous, we claim

f71(D(g)) = Xo(g)

Indeed, x € f1(D(g)) < f(x) € D(g) < g ¢ f(x) = 07! (res}) " (my) < res(6(g)) ¢ my < x € Xg(g)-
For g € A, consider the diagram

Ox(X) +—2%

A
‘/resgge(g) ‘
Ag

f+Ox(D(g))

To construct a morphism in the bottom so that the square is commutative, we use the universal property of localization. To
this end, we need to show res%o(g) (0(g)) € (f+Ox(D(g)))* = Ox(Xg(g))*. But this is the content of (2.21), thus there exists a
unique arrow fOx(D(g)) < A4 making the above square commuting. For arbitrary U, the map can be defined using (2.3).

Finally, by construction we see each stalk map is a local homomorphism. O
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3.7.1 Corollary. Let A be aring, M an A-module. and (X, Ox) € LRS. Then the map in (3.6)
Homyodygs (X, F), (Spec A, M)) —— Homging(A —~ M, Ox(X) ~ F(X)).

is a bijection.

3.7.2 Corollary. Let A be aring. Then M — M defines a fully faithful exact functor Moda — Modo,, 4 -

3.8 Denote by Sch (resp. AffSch) the full subcategory of LRS whose objects are schemes (resp. affine schemes). Then the
bijection in (3.7) implies that the functor Spec : Ring — AffSch defines an equivalence of categories

Spec : Ring®® ——— AffSch

A Spec A

Ox(X) + X

3.8.1 Associated affine schemes. For a local-ringed space (X, Ox), the identity idp, (x) defines via (3.7) a canonical map
(X, Ox) — Spec Ox(X)

universal in all arrows in LRS from (X, Ox) into affine schemes. We will see if X is an affine scheme, then this is an
isomorphism. In general, this is neither surjective nor injective.
For example, let k be a ring and n > 2. Consider the affine n-space X = A} := Specklx, ..., Xn] but minus the origin :

AL — {0} = A\V(x1,...,%n) =D(x1) U -+ U D(xn).
Let’s compute Ox (A} — {0}). It is the kernel of the map

[T Kb xnde — [T Kt s,
ie[n]

1<ij<n

Let (fi)ic[n) be in the kernel. Pick N » 0 so that g; := (x1 -+ xn)Nfi € klx1,...,xn]. Since (gi)ic[n also lies in the kernel
and k[xy,...,xn] embeds into every localization in the scene, it follows that g; = --- = gn. Since x{" fl,sz fy € k[x1,...,%Xnl
already, it follows that f; = - -- = f, € k[x1,...,Xn]. In sum

OX(X) = k[Xl,. . .,Xn} — OX(AE _ {0})
is an isomorphism, so the universal map is
AY — {0} — Specklxq, ..., xn] = AX

n

and it coincides with the open embedding. In particular, it cannot be surjective.
On the other hand, let X := P} denote the projective 1-space, which is the scheme obtained by glueing U, := Speck[x]
and U, := Speckly] along k[x,x~!] = kly,y~!] where x — y~!. We compute Ox (X). It is the kernel of the map

k[x] x kly] ———— klx,x7 1 x kly,y~ 1
(f,g) ————— (f(x) = g(x7"), g(x) — f(x~ 1))
But f(x) — g(x~!) = 0 only happens when f and g are constant, so

Ox(X) =k.
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The universal map is then }P’ll( — Speck, which is far from being injective.
3.9 The bifunctorial maps in (3.6) fit into the commutative diagram

Hommodygs (X, F), (Y,G)) —————— Hompmoea (O (Y) — G(Y), Ox(X) ~ F(X))

| |

Homigrs(X,Y) HomRing(OY (Y), Ox(X)).

Choosing f € Homygs(X, Y) and taking its preimages of vertical maps we obtain a functorial bijection
g
Homyiodo, _, (G, f+F) ————— Homo, (v)(G(Y), F(X) ")

where F(X) (Y] means that we are regarding F(X) as an Oy(Y)-module via the map fg( 1 Oy(Y) = Ox(X). By 3.7 and 3.7.1,
we know when (Y, G) = (SpecA, M), this is a bijection :

HomMod(jspecA (M, fo F) ————— HOmA(M,f(X)[fgpecA])

3.10 Let @ : A — B be aring homomorphism. Then it induces a continuous map Spec ¢ : Spec B — Spec A between affine
schemes. We list some properties of Spec @. For brevity, we write f = Spec ¢.
(i) f~1(D(f)) = D(¢(f)) forany f € A.
(i) f~1(V(I)) = V(IB) for any ideal I of A.
(iii) f(V(])) = V(J n A) for any ideal J of B.
(iv) f(SpecB) is dense in Spec A if and only if ker ¢ < /0.

v) fis a homeomorphism onto its image if for all b € B there exists some 1 € B* such that ub € f(A).
p g

Proof.

(v) For b € B, we can find u € B* and a € A such that ub = ¢(a). Thus
D(b) = D(ub) = D(¢(a)) = f~'(D(a)).

Thus we are left to prove the injectivity of f. Let p # q € SpecB. Say we can pick b € p\q. Choose a € A with
D(b) = f~1(D(a)). Then q € D(b) # p, and thus f(q) € D(a) 3 f(p).

O

3.11 Let S be a multiplicatively closed subset of A. As a consequence of (3.10).(v), we see the map SpecS™'A — Spec A
induced by the canonical map A — S!A is a homeomorphism onto its image. Recall from algebra the image of Spec S™'A —
SpecAis {p e SpecA |pn S =}

If we consider the case S = {f"},>0, we then obtain a homeomorphism h : Spec Ay — D(f). For D(g) < D(f), we have a
map A¢ — Ag. Denote by g its image in A¢; we then have an isomorphism (A¢)g — A4 given by the universal property of
localization. Then

OA(D(g)) = Ag = (Ar)g = Ospeca, (D) 2" hyOspeca, (D(g))

This isomorphism is compatible with the restriction of principal open sets, so by (2.3.1) we obtain an isomorphism
Ospec A‘D( o = hyOspec A ;- In sum, the natural homomorphism A — Ay induces an open immersion Spec A — Spec A
of LRS with image being the principal open set D(f).
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In fact, the above computation shows that M| D(f) = hy W, where in the right hand side, My is viewed as an A¢-module.

3.11.1 The morphism D(f) — Spec Ay is in fact the same as the morphism coming from the bijection (3.7) and id ;. To be
specific, we have a bijection
Homyrs(D(f), Spec A¢r) —— Homging(Ar, Af).

Then the morphism corresponds to the identity map id : Ay — A is exactly the same as the one we construct in (3.11).

Indeed, this follows from the construction of the bijection (3.7).

3.11.2 Themorphism D(f) — Spec A is compatible with the restriction. Suppose D(g) < D(f), so we have amap My — M.
Then we have a commutative diagram
D(f) ——— SpecA¢

N

D(g) —— SpecAq
The map on topological spaces are clearly commutative. For sheaves, let D(h) < D(g). Then we have a commutative diagram

~

M(D(h)) = My, «——— (M¢)y;

M(D(h)) ———— Mgy
each arrow given by the localization. This tells us the commutativity of the sheaf maps.
3.12 Closed subscheme of Spec A defind by ideals. Let A be a ring and I an ideal. Then the morphism
t: Spec(A/I) — SpecA

induced by the quotient map A — A/l is a closed immersion in the sense of (2.25). Indeed, the map on topological spaces is
obviously a homeomorphism onto the closed subset V(I) of Spec A. To see it is a closed immersion, we compute the kernel
T of the sheaf map Ospeca — t4xOspec(a/1)- Let f € A. On the open set D(f), this map is A — (A/I)fmod1- By a similar
argument as above, we see the kernel is I, so that Z(D(f)) = I¢. Therefore, T is the affine tilde I, and 1 factor through the
inclusion V(I) < Spec A, yielding a unique isomorphism Spec(A/I) = (V(I), Ospec A /T) lv(1)) by (2.24).

3.1.1 Quasi-coherent sheaves

3.13 Definition. Let (X, Ox) be a ringed space and F € Modo, .

(i) F is quasi-coherent if every point in X admits an open neighborhood U such that there exists an exact sequence
(OX’u)@I } (Ox}u)@ > Flu > 0

for some index sets I and |, depending on x.
(ii) F is locally free if every point in X admits an open neighborhood U such that F|y = (Ox |u)®I for some index set I,
depending on x.

(iii) F is locally free of rank n if the index set I in the (ii) can be chosen to be [n] for any x € X.

(iv) An invertible sheaf is a locally free sheaf of rank 1.
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3.13.1 Denote by Qcohy, the full subcategory of Modo, consisting of all quasi-coherent Ox-modules. If (X, Ox) is a
scheme, we write Qcohy = Qcoh(X) := Qcohy, instead, if no confusion arises.

3.14 Lemma. Let A,B be rings and f : SpecB — SpecA be any morphism. We know f = (9%, ¢¥) for a unique ring
homomorphism ¢ : A — B.

1. f4N = NI®l for any B-module N.
2. M = BZ@\A_/M for any A-module M.
Proof.

1. Let h € A. By (3.10), we have

~

f:N(D(h) = N(f~'(D(h))) = N(D(¢(h))) = Ng(n) = (N}, = N®/(D(h))
Now 1. follows from (2.3.1).
2. For any Og-module F, by adjunction and (3.9)

Homyod,, (F*M, F) = Homtod,, (M, f4.F) = Homed,, (M, F(Spec B)'?)) = Homyoa, (M ®4 B, F(Spec B))

=~ Homwodo, (M ®n B, F).

3.15 Theorem. Let F be a quasi-coherent sheaf on X = Spec A. Then F = M for some A-module M.

Proof. Let U = D(f) be an open set such that there exist I, ] and an exact sequence

(0X|u)@I B (OX’u)@] Flu 0
| I
;‘:[@I - fA\/fGBI ]__|u 0

where 7 is taken from Mod . Consider the corresponding map AP' — AP of A-modules and let K denote its cokernel.
Then K =~ F |u as they are the cokernels of the same map.

Since X is compact, we can find D(fy), ..., D(fn) such that X = D(f;) u --- U D(fy) and

~

(D(fi), Flo(f,)) = (Spec A, M)

for some M; € Moda, , where the isomorphism here is as in (3.11). For each open U, we have an exact sequence

0— F(U) — _ﬁlf(u AD(f)) ——— .ﬁlf(u AD(f;) A D(f;))
‘ i= i,j=

0 — F(W) — [T(w)s (Flowy) W —— TT (oronpi))s (Flooapir)) (W)

n n
i=1 ij=1

where for an open U, 1y : U — X denotes the inclusion, so we have an exact sequence

n

mn
0 —— F — [1loi)s (Flowy) — I (wirapi)s (Flogoab))
i=1 ij=1

29



Now Lemma 3.14 implies the latter two Ox-modules arise from some A-modules, which in turns says that F arises from the
A-module. O

3.15.1 Corollary Let A be a ring. The affine tilde * : Moda — Qcohgpe. A is an equivalence of categories with inverse
F — F(SpecA).
Proof. This follows immediately from Theorem 3.15 and (3.7.2). O

3.15.2 From (3.7.1), for F € Modp, we have a canonical morphism « : (gp\e?A) — F in Modp, induced by the identity
map idz(x). The content of Theorem 3.15 can be made more formal. That is,

Lemma. o: F (é_p\e_c/A) — F is an isomorphism if F is O -quasi-coherent.

Proof. Let U = D(f) be a principal affine open subset of Spec A. By construction, «y; is given by the localization. Precisely,
we have a commutative triangle

each map being canonical. We claim «y is an isomorphism. This amounts to show that
(i) If s € F(X) restricts to 0 in F(D(f)), then f™s = 0 for some n > 0.
(i) Given t € F(D(f)), there exists some n such that f™*t € F(X).
Note that (i) and (ii) imply injectivity and surjectivity, respectively. We first show (i). Let s € F(X) with s|p () = 0. Let D(f;)
be as in the proof of Theorem 3.15. Then
0=s|pf)np(f) € F(D(fi) n D(f)) = Flpe (D(fif)) = (Mi)f

(note that f; acts invertibly on M;). This means f™(s|p(f,)) = 0 in M; for some n; > 1, and hence an n > 1 such that
(f"s)|p(f,) = 0 for each i. But this means f™s = 0.

For (ii), let t € F(D(f)). Then t|psf,) € F(D(ffi)) = (M), so we can find t; € My = F(D(f;)) and ny > 1 such that
fit = t; on D(ff;). Again pick n » 0 so that f™t = t; on D(ff;) for each i. On the intersection D(f;) n D(fj) = D(fifj), we
have

tiloeeer) = (" Y)oieery) = tiloeee)

so by (i) (applied to X = D(fif;j)) we can find my; > 1 such that f™ (t; — t;) = 0. Again we can take m » 0 such that
f™(t; —t;) = 0 for any i,j. Now f™t; € F(D(f;)) patches to a global section s € F(X) whose restriction to D(f) is f**™t. O

3.15.3 Corollary. Let X be a scheme and F € Modo, . TFAE:
1. Fis quasi-coherent.
2. For any affine open U < X, Fly = M for some Ox(U)-module M.
3. There exists an affine open cover U of X such that for any U € U, F|y = M for some Ox(U)-module M.

3.15.4 Corollary. Let X be a scheme and f : 7 — G be a morphism in Modo, . If 7 and G are Ox-quasi-coherent modules,
then so are ker f, coker f and Im f.
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3.16 Theorem Let X be a scheme. Then Qcohy is a weak Serre abelian subcategory of Modo, . !

3.17 Let f: X — Y be a morphism of schemes. If F is an Oy-quasi-coherent module, then the pullback f*F is also Ox-
quasi-coherent. Indeed, this follows from the definition and the fact that tensor product is right exact. For the pushforward,

we have the following
Lemma. Let 7 be an Ox-quasi-coherent module. Then f.F is Oy-quasi-coherent if there exist
(i) an affine open cover U = {U;}ic1 of Y, and

(ii) for each i € I, a finite affine open cover {Xi;}jej, of f~1(U;) such that X; ; n Xy is compact for every j,j’ € J3.

Proof. For each i € I, put f; : f~1(U;) — U; to be the map induced by f. Then (f..F)|lu, = (fi) s (Fl¢-1(s,))- Since quasi-
coherence is a local property, we may then assume that Y = Spec A for some ring A and X is covered by finite affine opens
Xj (j € J) with Xj n Xj. compact for any j,j’ € J.

Forany j,j’ € ] by compactness we may fix a finite affine open cover Xj ;/ « (k € K; ;:);let ij : X — Xand i 5/ i : Xj /. — X
be the inclusions. Then we have an exact sequence

0— F — H(l))* (./_"|X]) — H 1_[ (Lj,j’,k)* (J—:|Xj,j’,k>
je) jj'e) keK; i
Since f is left exact, we have the following exact sequence
0 — fu F —— n(fo 4 (]:|Xj) —_— H H (fouii)s (]:|Xj,j/,k)
jeJ jj’e] keK; 5

Note that f o 1; and f o ;/ are morphisms between affine schemes, so by Lemma 3.14, the last two sheaves above are
Oy-quasi-coherent. Thus by Corollary 3.15.4 f,.F is Oy-coherent as well. O

3.18 Let X be alocal ringed space. Recall in (2.21) for any g € Ox (X) we defined the open subset X of X. Then by patching
we can construct an inverse of g\xg, so we actually have g|><g e Ox(Xg)*. Let F € Modo,. Then g acts on F(Xg) in an
invertible manner, so the universal property of localization gives rise to a commutative triangle

Now let f : X — S be a morphism in LRS with § affine. Let h € Os(S) and g = fﬁs (h) € Ox(X). Suppose fiF is Os-quasi-
coherent, then the above map

F(X)g — F(Xg)
is in fact an isomorphism. The first step to see this is the equality
Xg =f71(Sn).

For x € Xq if and only if g, # 0 in k(x). But gx = fx(h¢(x)) and fx : k(f(x)) < «(x), so this is equivalent to saying that
h¢x) # 0in k(f(x)), which is the same as saying that x € f~1(Sn). Since S is affine, by 3.15 we know f.F = M for some
Os(S)-module. We have a similar commutative triangle

(f+F)(S)

— TN

(f+F)(S)n (f+F)(Sn)

1. This is not true for a general ringed space.
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In this time the lower horizontal arrow is an isomorphism, for they are in fact both My,. But
(fxF)(Shh = F(X)n = F(X)g

where h acts on F(X) via fé : Os(S) — Ox(X). Thus the horizontal arrow becomes the arrow that we focus on, and this
proves it is an isomorphism.

3.19 Weapply (3.18) to the case F = Oa for some scheme X. We now prove X is affine if and only if & : X — Spec Ox(X) (cf.
(3.8.1)) is an isomorphism in LRS. Only “only if” part needs a proof. For the map on topological space, we easily see from
the construction that there is a commuting square

X ———*— Spec Ox(X)
14 ‘/)
Spe(_‘ A [—— Spec A

where A is a ring such that X =~ SpecA as LRS, so « is a homeomorphism. For the sheaf map, for each g € Ox(X),
o O(D(g)) < Ospec oy (x)(D(g)) is induced by the localization Ox (X4) < Ox(X)4 (here we use a1 (D(g)) = Xg4), and thus
by (3.18) it is an isomorphism. Since the D(g) form a basis of the topology on Spec Ox(X), s0 oz Ox < Ospec oy (x) 1S an
isomorphism.

3.20 For another application of (3.18), we introduce

Definition. A morphism f: X — S of schemes is called affine if it satisfies the following equivalent conditions.
(i) S admits an affine open cover V such that f~!(V) is affine for each V € V.

(ii) For any affine open V S, f~1(V) is affine.

Clearly (ii) implies (i). To see (i) implies (ii), first note that if we write V = {V;}ie1 to be a cover satisfying (i) for f, then
the preimage of principal affine open subsets of each V; is also affine. This means f admits an open basis consisting of affine
opens whose preimages under f are affine. This means for any affine open V, the induced morphism f~!(V) — V again
satisfies (i). Thus we may replace S by V =~ Spec A and X by f~!(V), and we must show, in this case, that X is affine. By (3.7)
we have a commuting square

X —X - Spec Ox(X)

f ‘/Spec(fﬂS )

S ——— Spec Os(S)

where the horizontal arrows are canonical; note that «s is an isomorphism by (3.19). As said above, we can find {h;}ie1 € A
such that Xg, = f~1(D(hy)) is affine, where g; = fus(hi). We see the D(gi) = (Spec fﬁs)_l(D(hi)) covers Spec Ox(X) and
(ax)~1(D(gi)) = f'(D(hi)) = Xg,. Hence

axg, (3.18)
(xx)71(D(gi)) = Xg, ——=—— Spec Ox(Xg,) &, Spec Ox(X)4, = D(gi)

Note that this is simply axx |E;_9‘) by (3.11), so this proves ax is an isomorphism (2.17).

3.21 Closed subscheme. Let X be a scheme, and let Z be an ideal sheaf of Ox. Following (2.24), we may construct a
closed local-ringed subspace (V(Z), (Ox/Z)|v (1)) of (X, Ox). Since we are discussing schemes, a natural question is whether
(V(Z), (Ox/Z)|v (1)) is itself a scheme.
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Suppose Y = (Y, Oy) = (V(I), (Ox/I)|v (1)) is a scheme. Pick y € Y and let U’ be an affine open neighborhood of y in X.
Since we assume Y is a scheme, we can find an affine open neighborhood V' of y in Y contained in U’ n Y. The topology on
Y is given by subspace topology, so we can find f € Ox(U’) with D(f) n' Y < V’. Note that we can restrict f to Y n U’, and

Df)fnY=(U)nY=U~Y)g, ., =V,

which is still affine in Y. In sum we find an affine neighborhood U of y in X such that U n Y remains affine in Y. In other
words, the closed immersion Y — X is an affine morphism (3.20).

Suppose U = SpecA, UNY = SpecB and let ¢ : A — B be the homomorphism corresponding to UnY < U. We contend
that Z|y =~ kfeﬁ). In fact, for any f € A,

Ker o (Uyr) = (ker ) = ker(As — By) = ker(Ox(Uys) — Oy(Y A Uy)) = Z(Uy).

The isomorphisms involved are functorial in Uy, so this proves our contention. In particular, this shows T is quasi-coherent
aty e Y. Furthermore, the inclusion Z|x\y — Ox|x\y is an isomorphism, which shows that 7 is in fact quasi-coherent on the
whole X.

Conversely, suppose Z is quasi-coherent. Let U be an affine open set of X. Then Z|y is an quasi-coherent ideal sheaf of
Ox|u.- Clearly, V(Z) n U = V(Z|u), and

(Ox/DIvipylvizyau = (Ox/Dvizi~u = (Ox|u/ZIu) viz)g)-
Thus we can assume X = Spec A is affine. By (3.15.2), there is a commutative diagram with vertical arrows being isomorphisms

7T — Ox

—_—

IX) ——— A

—_—

so that Ox/Z =~ A/Z(X). A easy computation shows that the closed subset V(Z(X)) of Spec A coincides with V(Z). From
(3.12) we can conclude that (V(Z), (Ox/T)|v(z)) is isomorphic to the affine scheme Spec A/Z(X). We summarize what we
obtain and give some consequences in the following theorem.

3.21.1 Theorem. Let X be a scheme and 7 an ideal sheaf of X.

(i) Every closed immersion of schemes is an affine morphism.

(i) The closed local-ringed subspace (V(Z), (Ox/Z)|v z)) is a scheme if and only if 7 is Ox-quasi-coherent. In this case,
we say (V(Z), (Ox/Z)|v(z)) is a closed subscheme of X.

(iii) If X = Spec A is affine, then every closed subscheme of X has the form (V(I), M|V(I)) for some ideal I of A.

3.22 Let A be a ring. For an ideal I, we can equip the closed subset Z := V(I) with a scheme structure, making it the
image of the closed immersion Spec A /I — Spec A. However, there are many possible closed subscheme structures on Z. For
instance, if ] is another ideal such that 1/] = /1, then V(J) = Z, so we can also equip Z with the scheme structure defined by
J. Nevertheless, among all possible closed subscheme structures on Z we see the one determined by /T is the most natural
one. Moreover, any ideal with V(J) = Z has a inclusion ] < +/T, which induces a closed immersion

(Z,A/V1|z) —— (ZAV]|2)

of schemes.
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For an ideal I, there is an ideal sheaf [Ospec A defined by U +— 1Ospec a (U). The ideal sheaf ﬂ@spec A has the following
description :

\/TOSpecA(u) = {s € Ogpeca(U) | s|x =0forallx e Un Z}.

Indeed, this follows as v/IAs = vIA¢ for any f € A.

3.1.2 Invertible sheaves

3.23 Sheaf hom Let (X, Ox) be a ringed space and F, G € Mod},® . We define the hom sheaf as follows. For any open U < X,
let
Homoy (F,G)(U) = Homo, |, (Flu,Glu)

and for any V < U, the restriction is given by the obvious arrow Homo, |, (F|u,Glu) — Homo, |, (F|v,G|v). This makes
Homo, (F,G) a presheaf of abelian groups on X. We also write Endp, F = Homo, (F, F).

When @ is a sheaf, we easily check that Home, (F, G) is a sheaf of abelian groups. Also, Homo, (F, G) is naturally, as in
the case of modules, a (left) Endp, G-module and a right Endp, F-module.

3.24 Adjunction between f* and f, : sheafified version Letf: (X, Ox) — (Y, Oy) be a morphism of ringed spaces. We saw
in (2.11) that there is a functorial bijection

Hom(’)x (f*-F/ g) _ Hom(’)y (F/f*g)

Let V € Y be an open subset and view it as an open ringed subspace (V, Oy = Oy|v); a similar notation works for the
open subset ! (V) = X. The morphism f restricts to fy = |}, V) (f71(V), Os-1(vy)) = (V, Oy = Oylv), and we obtain a
functorial bijection

Homp ((fv)*]:,g) _— Homov(f,(fv)*g)

f=lv)

for ¥ in Modo, and G inModo__, , -
Now let F be an Oy-module and G an Ox-module. We have (f*F)|¢-1y = (fv)*(Flv) and (f+G)|v = (fv)«(Gls-1(v))-
Various adjunctions are clearly compatible, so they give rise to an isomorphism of Oy-modules

feHomo, (f*F,G) ———— Homo, (F,1+G).

3.25 Let (X, Ox) be a ringed space and F be an Ox-module. Define its dual module
FY :=Homo, (F,Ox)
For any index set I and F € Modo,, one has
Homo, ((Ox)®!, F) = F(X)®".

the map being given by evaluation at (e;)ic1, where e; € Ox(X)®!is e; = 8i;(j). In particular, Endp, Ox = Ox, and LY is
thus an Ox-module.
There is a natural morphism
FQox FY ——— Ox

given by the evaluation. Explicitly, for any open U,
F(U) ®oy (uy Homo, |, (Flu, Ox|u) ——— Ox(U)

(f,T) Ty (f).
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This defines a morphism F ®P 7 — Ox (2.11), and hence a morphism F ® F¥ — Ox by passing to sheafification.

3.25.1 Lemma Let £ be an invertible sheaf (3.13).
(i) If £1 and £, are invertible sheaves, so is £1 ®o, L2, and £1 ®o, L2 = L7 Qo L1.
(i) L®oy Ox = L = Ox ®oy L.
(iii) £V is also an invertible sheaf.

(iv) £L®o, L¥ = Ox.

Proof.

(iv) We claim the above morphism £ ®o, LY — Ox is an isomorphism. It suffices to check that () is an isomorphism for
arbitrary small open set. Let U be an open set such that £|y =~ Ox|u. Then we have a commutative diagram

L(U) ®oy vy Home, |, (£L]u, Ox|u) ———— Ox(U) ab

zJ{ /
(f, T) Ox(W) ®o, (u) Homo, |, (Ox|u, Ox|u)

J |

(f, Tu(1)) Ox(U) ®oy (u) Ox(U)

(a,b)

(this is commutative since T is an Ox|y-module homomorphism). The arrow (a, b) — ab is an isomorphism, hence so
is the arrow on the top.

O

3.26 Picard group. The previous lemma shows the isomorphism classes of invertible sheaves on X form an abelian group
(multiplication being tensor product). We denote by this group Pic(X), called the Picard group of the ringed space X.

3.26.1 Letf:X — Ybeamorphism in RS. If £ is an invertible sheaf on Y, then f*L is an invertible sheaf on X. Indeed, if U
is an open set in Y such that L] = Oy|y, we have

(f*£)|f—1(u) >~ (fﬁlﬁ) ‘f—l(u) ®(f—1OY OX’f—l(u)

=1 u)

If we put g = f|%, (u)- then the above is isomorphic to

g~ (Lluw) ®g-1(0y|u) Oxle1(u) = Ox|e-1(u)-

Thus f* induces a map Pic(Y) — Pic(X). Moreover, since ® commutes with lim, we see f* : Pic(Y) — Pic(X) is a group
homomorphism.

3.27 Twists. Let (X, Ox) be a ringed space. For an invertible sheaf £ and n > 0, denote L™ = L®", and for n < 0, denote
L™ = (L£V)®". Then for n,m € Z, we have L ® L™ =~ L™™,

For any open U, by definition we have a canonical bilinear map £™(U) x £L™(U) — (L™ ® L™)(U) = L™ (U). This
makes

Ne(W) == @ L (U)

nez

a graded ring, and U — T, (U) is a presheaf of graded rings on X.
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3.27.1 Suppose (X, Ox) is a local-ringed space. For each g € £(X), define
Xg :XS ={xeX|gx ¢ myLyx}

If U is an open set such that £|u =~ Ox|u, and if g|u corresponds to a € Ox(U), then Xg n U = U, in the sense of (2.21). In
particular, this shows Xg is an open subset of X. If U < X is an open set such that £|y =~ Ox|u, then Xy n U = U, and we
can find a unique h € £ |y such that under the isomorphism LV | = Ox]|u, it corresponds to the inverse of a. This means
gluh =1€ Ox(U); let us denote h = (g|y)~!. If V is another open set trivializing £ and intersecting with U nontrivially, and

U N V also trivializes £, then clearly (g|v)~! = (glu~v)™! = (glu) ™', so the (g|u)~! patch to a section (g|x,) ™' € £V (X¢),
satisfying g(g|x,)~! = 1 € Ox(X¢). If there is no confusion, we simply put g~ = (g|x,) "
Moreover, the multiplication

Ox‘ug _— E|ug
ar—— ag

is an isomorphism. Indeed, for b € L|y,, wehave b® g™ € L|u, ® E\az ~ Ox|u,-If cis the image of b® g, then cg = b.
3.27.2 For any F € Modp, and any open U, define

e (F, L)(W) = @ (F ®o, L™)(U)
nez
This is naturally a graded T.(U)-module, and T, (F, £) is a presheaf of S-modules. Note that every g € £™(U) acts on
I« (F, £)(Ug) invertibly, for the presence of gle L7 ™(Ug). Thus we have a canonical commuting triangle

Me(F, £)(U)
localiy wﬂon
Me(F, £)(U), ~09) Me(F, £)(Ug)

3.27.3 Lemma. Let X be a scheme, £ an invertible sheaf and F a Ox-quasi-coherent sheaf. Then for any g € £4(X), we have
the following.

(1) If X is compact, then o(g) is injective.

(2) If X admits a finite affine open cover {U; }ic1 such that L]y, = Ox(U;) and U; n U; is compact for any 1,j € I, then x(g)
is surjective.

Proof. This is a generalization of Lemma 3.15.2, and can be proved in a similar way. Here we use a slightly different way
which is essentially the same. Cover X be a family of affine open subsets U; (i € I) such that

(Ui, Llu,, Fluy, 9lu,) = (Spec Ay, AL My, @)

for some ring Ai, a; € A; and M; € Moda, . Consider the following commutative diagram

0 0
Me(F, £)(X) g bl M(F, £)(Xg)
[Tr(F o, — 22 T F, 20X n Uy) *)
iel iel

—

|

[T £ A i), TIN(F L)Xy A Ui o )

ijel i,jel

Hi,j 0‘(9|uinuj
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Note that the middle horizontal arrow is bijective, since there exists a commutative diagram

‘X(glui)

e (F, L) (Ui)g e (F, L)(Xg 0 Ui)

| |

M (M3, A7) (SpecAi)a M« (Mi, A7)(D(ay))

?J 14
DM ®a, AP, = @ ((Mi)ai QA1) (Ai)%)?)

nez nez

For (1), since X is compact, we can assume #I < co. In this case, there exists an exact sequence
0 —— TW(F,L)(X) — [ [Te(F L) (W) — [ Mel(F, L)(Ui n )
iel i,jel
To be specific, this is obtained by taking direct sum of exact sequences

0= (F®oy LMX) = | [(F®ox LM)(U) = [ [(F ®ox L) (Ui A ).
i i,j

The finiteness of I is used here for then the product and direct sum commute. In particular, this means the two vertical
sequences in () are exact. In particular, the left middle arrow in (x) is injective, so «(g) is injective.

For (2), we can still assume #I < oo so the above discussion is valid. Moreover, since U; n U; is compact, the middle
bottom arrow in () is injective by (1). As this stage, the surjectivity of «(g) follows from a simple diagram chasing. O

3.274 Let X be a scheme, £ an invertible sheaf, 7 an Ox-quasi-coherent module and g € £(X). Define

Te(F, L) (U)(g) ——— F(Uy) @)

xg " xlu, ® gl

where I, (F, £)(U) g is the degree 0 part of the localization Ty (F, £)(U)4 (c.f (3.108)). Note this is simply the degree 0 part
of the map

a(g)
Me(F, L) (U)g ——— Tu(F, £)(Uy)
modulo the identification Ox|u, = L|u, made in (3.27.1). Hence from (3.27.3) we deduce
Corollary.

1. If X is compact, then the map (#) is injective.

2. If X admits a finite affine open cover {U,; }ic1 such that L[y, = Ox(U;) and U; n Uj is compact for any i, j € I, then the
map (#) is surjective.

3.1.3 Coherent sheaves

3.28 Definition. Let (X, Ox) be a ringed space and let 7 € Modo, .

(i) F is finitely generated if every point in X admits an open neighborhood U such that there exists an n € Z>; and a
surjection (Ox|u)®™ — Flu.

(ii) F is finitely presented if every point in X admits an open neighborhood U such that there exists an exact sequence

(OX|u)®m ’ (OX|U)®n ]'—|U 0

for some n, m € Z31, depending on x.

37



(iii) F is coherent if it is finitely generated and for any open set U € X, n € Z>; and Ox|y-morphism (0x|u)®n - Flu,
its kernel is of finite type.

3.28.1 Directly from the definition we see Ox is finitely generated and finitely presented. But it is not true that Ox is
Ox-coherent.

3.28.2 Denote by Cohp, the full subcategory of Modo, consisting of Ox-coherent modules. If X is a scheme, we write
Cohx = Coh(X) = Cohp,, instead, if no confusion arises.
3.29 Lemma. Let (X, Ox) be aringed space and let 7 € Qcoh, .
(i) F finitely presented = F quasi-coherent.
(ii) F coherent = F finitely presented = F finitely generated
(iii) If Ox is Ox-coherent, then F finitely presented = JF coherent.

3.30 Theorem. Let (X, Ox) be a ringed space. Cohp, is a weak Serre subcategory of Modo, .
3.31 Lemma. Let (X, Ox) be a ringed space and let 7 € Qcoh,, . Then F is finitely presented if any only if for any open
U c X, n € Zz; and any surjection ¢ : (Ox ‘U)G)n — F, the kernel ker ¢ is finitely generated

Proof. The if part is clear. For the only if part assume F is finitely presented. Replacing any open set U by X, it suffices to
show that if there exist an exact sequence

ogm ogr F 0
for some n, m € Z, then for any p € Z=; and any surjection @ : OPP — F, the kernel ker ¢ is finitely generated O

3.32 Definition. Let X be a scheme.

(i) Xislocally Noetherian scheme if X admits an affine open cover U such that each Ox(U) is a Noetherian ring for each
Ueld.

(if) Xis a Noetherian scheme if X is locally Noetherian and compact.

3.33 Lemma. Let A be aring. Then Spec A is a Noetherian scheme if and only if A is a Noetherian ring.

Proof. Theif partis clear. For the only if part, assume Spec A is a Noetherian scheme. In other words, we can find fy,...,f, € A
such that A = (f1,...,fn) = A and A¢, is Noetherian. Suppose that I; < I, < I3 < --- is an increasing sequence of ideals
in R. Since each Ay, is Noetherian, we can find N » 0 such that (In)f, = (In4m)f, for all m > 0 and i € [n]. To prove the
result, we must show if I, ] are two ideals such that Iy, = J¢, for i € [n], then I = J. This follows from the exact sequence

O_)]_)Hlfi_)nlfifj’ O
]

ien i,jen]

3.33.1 Corollary. A scheme X is locally Noetherian if and only if Ox(U) is Noetherian for all affine opens U < X.

3.33.2 Corollary. Let X be a locally Noetherian scheme and F € Qcohy. Then F coherent < F finitely presented < F
finitely generated.

3.1.4 Irreducibility, reducedness and integrability.

3.34 Definition. Let X be a topological space.
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1. Xis called irreducible if it is nonempty and for any closed subspaces C1, C, of X, if C; u C; = X, then either C; = X or
C, = X. Equivalently, X is irreducible if every nonempty open subspace is dense in X.

2. If Z is an irreducible closed subset of X, a generic point of Z is a point 1 € Z such that Z = {n}.

3. An irreducible component of X is a maximal irreducible subset in X with respect to inclusion.

3.34.1 Itis easy to see that the closure of an irreducible subset is again irreducible. It follows that an irreducible component
is a closed subset in X. Also, a continuous image of an irreducible subset is irreducible.

3.34.2 Lemma. For a topological space X, TFAE :
(i) Xisirreducible.

(ii) There exists an open cover U of X consisting of irreducible open subspaces such that U n V # ¥ forall U,V e U.

Proof. (i)=(ii) follows from definition. To see (ii)=(i), let i/ be such an open cover. We claim any nonempty open set is dense.
Let Vi, V, < X be two nonempty open subsets and let U;, U, € U such that U; n Vi # . By assumption U; n U, # F, so by
irreducibility Uy n Uy n Vi # . Again, by irreducibility of U,,

W nlUhnVi)n(UynVo)=U1nUrn V1NV,
so Vi NV, # J particularly. O
3.34.3 Corollary. Let X be a topological space and U < X an open subset. Then there is a bijection
{irreducible closed subsets of U} ——— {irreducible closed subsets of X that meet U}

Z Z

where closure on the right is taken in X.

Proof.

3.35 Lemma. Let X be an irreducible topological space. Then the constant presheaf defined in (2.6) is already a sheaf.

3.36 Lemma. Let X be a scheme and let Z be an irreducible closed subset of X. Then Z admits a unique generic point. In
particular, this establishes a bijection

X ——— {irreducible closed subsets of X}

- .

Proof. Assume first that X = Spec A is affine. Then Z = V(I) for some ideal I, and by irreducibility I = p is a prime ideal.
Then V(p) = {p}. Indeed, if p’ € V(p), then for any V/(J) containing p, we have ] < p < p’, so p’ € V(]). This proves p’ € {p},
so V(p) = {p}.

Now consider the general case. Let U be an affine open set that meets Z nontrivially. Then U n Z is an irreducible closed
subset of U, so by the preceding case U n Z admits a generic point 1. Since U n Z is an open dense subset of Z, it follows that
= Un Z = Z. Let ' be another generic point of Z and pick an affine open neighborhood W of " in X. Then W n Z is a
nontrivial open setin Z,son € W n Z as {n} is dense in Z. The uniqueness in the preceding case then implies thatn’ =n. O

3.37 Definition. Let X be a scheme.

1. Xis call reduced if Ox  is a reduced ring for every x € X.
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2. Xis called irreducible if the underlying topological space is irreducible.

3. Xis called integral if it is both reduced and irreducible.

3.38 Associated reduced scheme. Let X be a scheme. Define the nilradical nil(Ox) of Ox to be the ideal sheaf defined by
nil(Ox)(U) = {f € Ox(U) | f|x € 4/00,, forall x € U}.

We claim that for x € X, the equality

nil(Ox)x = 1/00, .

holds. To see this we can assume X = Spec A is affine, and we need to show nil(Ospec A)p = 4/0a, for every prime ideal p of
A.If a € A, is nilpotent, then a™ = 0 for some n > 1; take f ¢ p such that a = a’|, for some a’ € A¢; then (a’)™|, = 0so0
(a’)*r =01in A for some r ¢ pAs. This means (a’)™ = 01in (A¢)y = Agy, so that a’ € 4/04a,, . By definition, we have

nil(Ospeca)p = im nil(Ogpec o) (D ().
fép

If we can show nil(Ospec A )(D(f)) = 4/0a, S A, we then may conclude a € nil(Ospec A ). Therefore we are led to show that

nﬂ(OSpecA) (A) = \/a

One direction is clear. For the other way around, let f € A satisfy f|, € ,/0a, for any prime ideal p of A. Recall that

0A, = () aAp, = () gA;. Fixq < p € SpecA. Then f € gA,, implies p’(fp — q) = 0 for some p,p’ ¢ p, q € g, so that
qeSpec A, qcp

fpp’ = p’q € q. Since pp’ € A\p < A\g, it forces that f € q. In sum, f € (N gq=+/04, as we want.
qSpeSpec A

We still need to show nil(Ospec a)p S \/K. If a € nil(Ospec A )p, then a = a’|,, for some a’ € nil(Ospec A ) (D(f)) for some
f ¢ p. But we have shown nil(Ospec o) (D(f)) = /04, so (a’)™ = 0 for some n > 1, implying a™ = 0, i.e., a is nilpotent.

In the above discussion we also show that nil(Ox)(U) = 4/00, (u) < Ox(U) for every affine open U < X, so the ideal
sheaf nil(Ox) is Ox-quasi-coherent. By (3.21), together with an easy fact that V(nil(Ox)) = X, we conclude the ringed space
(X, Ox/nil(Ox)) is a closed subscheme of X. What we showed above implies the local ring (Ox »/nil(Ox))x = Oxx/ M
is reduced. The so constructed scheme is denoted by X4, and is called the reduced scheme associated to X.

3.38.1 The construction X — X4 is clearly functorial, so it defines a functor ();eq : Sch — redSch from the category of
schemes to the full subcategory of reduced schemes. It is the left adjoint and left inverse of the inclusion functor redSch — Sch.

3.38.2 Lemma. Let X be a scheme and Z a closed subset of X. Then there is a unique scheme structure on Z making it a
reduced closed subscheme of X.

Proof. We begin by showing the uniqueness. If U < X is affine open, then (Z n U, Oz|y) is a closed subscheme of U, so
(3.21.1).(iii) says that Z nU = V(I) as schemes for some ideal I of Ox(U). Then Oz (ZnU) = Ox(U)/I. Since Z is reduced, the
quotient ring Ox(U)/Iis reduced by (3.39).(i) so that I = V1. To conclude, it suffices to note that v/Tis completely determined

byV(ID=ZnU,asvVIi= () p.
peV(I)

For the existence, we first recollect that in (3.22) there is a natural way to equip V(I) a scheme structure for an ideal I
of a ring A. Moreover, one easily sees that the description there makes V(I) a reduced closed subscheme of Spec A. Now
take an affine open cover U of X. For each U € U, let Iy < Ox(U) be such that V(Iy) = Z n U, and equip Z n U with the
reduced scheme structure defined in (3.22). The structure sheaves for the Z n U’s glue by uniqueness of such structure on
the intersection, as proved in the first paragraph. This earns Z a desired structure. O

3.39 Lemma. Let A be aring and let X be a scheme.
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(i) Spec A is reduced if and only if A is reduced.
(ii) Spec A is irreducible if and only if the nilradical /0 of A is a prime.
(iii) Spec A is integral if and only if A is an integral domain.

(iv) Xis reduced if and only if Ox(U) is a reduced ring for any open set U of X. If it is the case, Ox(U) is reduced for any
open U in X.

(v) Xisintegral if and only if Ox(U) is an integral domain for any open set U of X.

Proof.
(i) Forn > 1, define [n] : A — A by [n](a) = a™. Then /0a = |J ker[n], and
n>1
VO0A ®a Ap = (U ker[ﬂ]) ®aA Ap = U (kerm] ®a Ap) =4/0a,
n=1 n=1

for all p € Spec A. Hence 1/0a = 0 if and only if /0, = 0 for all p € Spec A.

(ii) First note that for f € A, we have D(f) = & if and only if f € p for any p € SpecA, i.e., f € /0. Assume SpecA is
irreducible. Let f,g € A with fg € v/0 and f ¢ /0. Then D(f) n D(g) = D(fg) = &, and since D(f) is dense (by
irreducibility), this forces that D(g) = &, i.e., g € V0. Conversely, assume +/0 is a prime. Let f ¢ v/0. We must show
D(f) is dense. If g ¢ 1/0, then fg ¢ +/0 as 1/0 is assumed to be a prime, which implies D(f) n D(g) = D(fg) # &. This
proves that D(f) is dense.

(iii) This follows from (i) and (ii).

(iv) This follows from the local natural of being reduced and (i). The last assertion follows from the sheaf axiom and the
fact that a product of reduced rings is reduced.

(v) By (iv) we may assume in the first place that X is reduced. If X is irreducible, then every nonempty open set U of X
is itself irreducible, and hence reduced. Replacing U by X, it suffices to prove Ox(X) is integral. Let f, g € Ox(X) with
fg = 0. Let U be an affine open set in X. Then V(f|y) v V(glu) = V((fg)|u) = U, so by irreducibility we have, say
V(flu) = U. Let V be any other affine open set in X. Then V n U < V(f|y) with V n U dense in V, so V(f|y) =V, or
flv = 0. This implies f = 0 in Ox (X). Conversely, assume that Ox (U) is an integral domain for any open in X. Let U, V
be two nonempty open set in X. If U n V = (¥, then the sheaf axiom implies that

Ox(Uu V) = Ox(U) @ Ox(V)

as rings, which is a contradiction as this is not an integral domain.

3.1.5 Cartier divisors

3.40 Localization. Let (X, Ox) be a ringed space. A subsheaf S of Ox is called multiplicatively closed if S(U) < Ox(U)
is a submonoid for any U e Top(X). In this situation, any restriction Ox(U) — Ox(V) naturally gives rises to a ring
homomorphism S(U)~1Ox(U) — S(V)~1Ox(V). We denote by S~ Ox the sheafification of the presheaf U — S(U)~1Ox(U).
It is clear that for any x € X, the stalk Sy is a multiplicatively closed subset of Ox x, so we can form the localization
S 1Ox x. The natural map
S(W™Ox(U) — 871 Ox«

then induces a ring isomorphism (S71Ox)x = S7'Ox .
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3.41 Total quotient sheaf. For a ring A, an element r € A is regular if the multiplication A — A by r is injective. Denote
by A.eg the set of all regular elements in A, which is a submonoid of A. The localization Frac A := A;eéA is called the total
quotient ring of A.

Let (X, Ox) be a ringed space. For any U € Top(X), define
Oxreg(U) := {s € Ox(U) | s|x € (Oxx)reg for any x € U}.
It is clear from its local nature that Ox reg is a multiplicatively closed subsheaf of Ox. The sheaf

Kx =FracOx =0 Ox

—1
X reg
defined as in (3.40) is called the total quotient sheaf of Ox, or called the sheaf of rational functions of X.

3.41.1 Lemma. The map Ox — Kx is injective. Hence we can view Ox as a subsheaf of Kx.

(3.40) L. . .
Proof. We must show the natural map Oxx — Kxx = FracOxy is injective. If x € Ox x is zero in Frac Ox 4, then sx =0
for some s € (Ox x)reg- Since s is regular, it follows that x = 0. O

3.42 Example : integral schemes. Let X be an integral scheme. By (3.36), X admits a unique generic point 1. Let U be an
affine open subset of X; note thatn € U. The natural map Ox(U) — Ox, induces an isomorphism

Frac(Ox(U)) = Oxry = «k(n).

Indeed, if we write U = Spec A, then 1 corresponds to the zero ideal, and Frac A is by definition A gy = Oxy = k(n). This
implies that Kx is isomorphic to the constant sheaf K(n)x. In this case, we call K(X) := k(n) the (rational) function field of X.
Generally, if U is an arbitrary open subset of X, as n € U, we still have a natural map Ox(U) — Ox,. This is injective as it

is injective for every affine U (and by sheaf axiom). Moreover, if we view Ox () as well as every Ox x (x € U) as subrings of
Ox v, we have the equality

Ox(U) = ) Oxx.
xell
It suffices to show the equality for affine U. Let f € Frac Ox(U) lie in the right hand side. Then the ideal I = {g € Ox(U) |
gf € Ox(U)} is not, by definition, contained in any prime ideal of Ox(U). Hence I = Ox(U), so f = 1.f € Ox(U) particularly.

3.43 Definition. A morphism f: X — Y of schemes is called dominant if the set-theoretic image f(X) is dense in Y.

3.43.1 Suppose f: X — Y is a morphism between irreducible schemes. By (3.36), X (resp. Y) admits a unique generic point
Nx (resp. ny). Then f is dominant if and only if f(X) is dense in Y. Since X = {nx} and f is continuous, the latter happens if
and only if {f(nx)} =Y. By uniqueness, it is equivalent to saying that f(nx) = 1y, or equivalently ny € f(X).

3.43.2  Assume further that X,Y are integral. If X = SpecB and Y = SpecA, then f : X — Y is dominant if and only
if the corresponding ring homomorphism A — B is injective. This is clear for the generic point corresponds to the zero
ideal. It follows that for arbitrary integral schemes X, Y, the morphism f : X — Y is dominant if and only if the sheaf map
fi: Oy — . Oxis injective. Note that since X is integral, by reducing to the affine cases, the restriction map Ox (U) — Ox(U’)
is injective. Thus f* is injective implies that Oy (V) — Ox(U) is injective for any open V < Y and open U < f~1(V). It follows
that if f is dominant, the sheaf map f* extends to a field homomorphism k(ny) — k(nx), or Ky — f.Kx.

3.44 Flat morphisms. Letf: (X, Ox) — (Y, Oy) be a morphism of ringed spaces.
(i) A ring homomorphism ¢ : A — B is flat if B/*! a flat A-module.
(ii) fis flat at x € X if the induced stalk map Oy ¢(x) — Oxx is flat.
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(iii) fis flatif it is flat at every point of X.

3.44.1 Flatness and Exactness of f* Let f: (X, Ox) — (Y, Oy) be a flat morphism between ringed spaces. Then the inverse
image functor f* : Modp, — Modp, is exact. To see this, let 0 - F — G — H — 0 be a short exact sequence of Oy-module.
To show 0 — f*F — f*G — f*H — 0is exact, we check this stalkwise (2.16). If x € X, then the induced stalk map is

0 = Frix) ®0y,(x) Oxx = Gt(x) R0y () Oxx = Hix) ®0y () Oxx — 0

One easily sees that this is the stalk map induced by 0 — 7 — G — H — 0 tensored by Ox x over Oy ¢(x). Since f is flat, Ox x
is flat over Oy ¢(x). This proves the exactness.

3.45 In (3.43.2) we see if f : X — Y is a dominant morphism between integral schemes, then the sheaf map Oy — f,.Ox
extends to a morphism of Ky — f./Kx. In particular, they fit into a commutative diagram

OY — f* OX

|

Ky — f.Kx.

It is natural to ask whether such extension can be defined for other types of morphisms. It is the case for any flat morphism
f : X — Y between arbitrary schemes, which we now prove. It suffices to show for any affine open V = SpecA in Y and
affine open U = SpecB in X with f(U) < V, the corresponding homomorphism ¢ : A = Oy(V) — Ox(U) = B sends
regular elements to regular elements. Let a € Ae;. The multiplication B — B by ¢(a) is obtained by tensoring with B the
multiplication A — A by a. Since ¢ is flat, this shows ¢(a) € Breg.

3.46 Definition. Let (X, Ox) be a ringed space. A global section
MX, K5/05) = (KX /05)(X)

of the quotient sheaf K% /O is called a Cartier divisor on X. Here for a sheaf of rings A, we denote by A* the sheaf
U — A(U)* of invertible elements.

Unwinding the definition (c.f. (2.4.2)), we see a Cartier divisor is represented by a collection of pairs {(fu, U)}uey, where
U is an open cover of X and fy € I(U)* such that for any U,V € U with U n V # ¢F, we have fuf;l € Ox(U n V)*. Two
such collections {(fu, U)}uey and {(gv, V)}vey represent the same Cartier divisor if and only if fy g\j1 € Ox(U n V) for any
Ueld,VeVwithUnV#y.

This gives an alternative way to define a Cartier divisor : it is a maximal collection of pairs {(fu, U)}uey, in the sense that if
(g, V) withVopgen X, g € K(V)* satisfies fug™' € Ox(UnV)* forany U € Y withUnV # &, thenin fact (g, V) € {(fu, U) }ueu-

3.46.1 Cartier class group. Taking global sections of the exact sequence

0 (e K KX/05x —— 0
we obtain
0 — Ox(X)* —— Kx(X)* —— (Kx/05)(X).

An element in the image of the last arrow is called a principal Cartier divisor. A Cartier divisor is called effective if it lies
in the image of I'(X, Ox n K¢) — I'(X, K5 /Ox ). We write D > 0if D is an effective Cartier divisor.

There is an obvious abelian group structure on I'(X, % /Ox ), which we will write additively. We say two Cartier divisors
Di, D; on X is linearly equivalent if D; — D, is principal. Denote by CaCl(X) the group of Cartier divisors on X modulo
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the linear equivalence relation. Equivalently, it is the quotient group of T'(X, K5 /Ox ) mod out the group of principal Cartier
divisor. The group CaCl(X) is called the Cartier class group of X.

3.46.2 Invertible sheaf associated to a Cartier divisor. Let (X, Ox) be a ringed space and let D be a Cartier divisor on X.
Define the subsheaf Ox (D) of Kx as follows. Let {(fu, U)}ueu be the maximal collection of compatible pairs that represents
D. We take Ox(D)|u = fal(9><|u < Kx|u. This is well-defined, as on U n V, we have

(Ox(D)|Wunv = fi (Ox|uW)lu~v = FHEVELD Oxluay = . (Ox|v) [unv = (Ox(D)|v) lunv-

The sheaf Ox(D) is an invertible sheaf of X. If E be a principal Cartier divisor defined by g € I'(X, ), then there is an
isomorphism Ox (D) =~ Ox(D + E) given by multiplication by g~'. Precisely, on any open U of X such that D is represented
by fu, the isomorphism is given by s — s(g|y)~!. This isomorphism is independent of the choice of g representing E, so this
gives a well-defined map

CaCl(X) ———— Pic(X)

D—— Ox(D).

If Ais aring and f, g € Ay, then the multiplication gives an isomorphism fA ®a gA — fgA of A-modules. This shows
D — Ox(D) is also a group homomorphism (c.f. (3.25)).

3.46.3 Lemma. Let (X,Ox) be a ringed space. The homomorphism CaCl(X) — Pic(X) is injective. Moreover, the image
consists of classes of invertible subsheaves of Kx.

Proof. Let {(fu, U)}uey be the maximal collection of compatible pairs that represents D. Say Ox (D) = Ox is trivial. By (3.25)
there exists f € T'(X, Ox(D)) such that f{Ox = Ox(D) in Kx. Then fOx|u = falox\u for any U e U. Hence f|y € Kx(U)* for
any U € U, so that f € Ix(X)*. This shows D is principal.

Let £ < Kx be an invertible subsheaf, and let I/ be an affine open cover such that for each U € U/ (c.f. (3.25)) there exists

fu € Kx(U) such that £|y = fuOx|u = Ox|u- Since then fy is regular in the local ring of points in U, we see f, € Kx(U)*.
Hence L is the invertible sheaf associated to the Cartier divisor {(fu, U)}uecy- O

3.46.4 Effective Cartier divisors as closed subspaces. Suppose (X, Ox) is a local-ringed space, and let D be an effective
Cartier divisor on X. Then Ox(—D) is an invertible ideal sheaf of Ox, so it corresponds to a closed local-ringed subspace

j:(D,0p) = (V(Ox(=D)), Ox/Ox(=D)|v(ox(-D))) — (X, Ox)

and there is a short exact sequence

0—— Ox(—D) Ox ]*OD 0.
Upshot : effective Cartier divisors are those closed subspaces locally cut by a single regular function.

3.47 Lemma. For an integral scheme X, the map CaCl(X) — Pic(X) is an isomorphism.

Proof. We must show each invertible sheaf £ on X has the form Ox(D) for some Cartier divisor D. Let I/ be an affine
open cover of X such that £ is trivial on each U € U. For U € U, we have an isomorphism ¢y : Ox|u = L|u; for any
other V e U with U nV # F, by (3.25) the isomorphism ¢y : (p{,1 o @y : Oxlu~v = Ox|unv corresponds to an element
ouv € Ox(Un V)~

Since X is integral, the function field Kx is the constant sheaf K(X)X. For each open U, we view Ox(U) as a subring of
K(X);if V € U, then Ox(U) < Ox(V) < K(X) (3.42). Fix an Uy € . We then have a compatible collection {(@u,u, W)} ueu,
which then defines an Cartier divisor D.

Define a map Ox(D) — L as follows. For U € U, let Ox(D)|u = @uu,Ox|u — L|u be the morphism defined by

Quu,Ox|u(V) 2 euuyx — @ul(x) € Llu(V).
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Note that this is an isomorphism. For U, V € U, we have a commutative diagram
PuuOxluny — Llunv

-1 —
PvupPuuy, (pvocpul

evu,Oxluny — Llunv.

Vertical arrows are transition maps of Ox (D) and L respectively, so they glue to an isomorphism Ox(D) = L. This proves

the surjectivity. O
3.1.6 Rational maps

3.48 Definition. Let X be a scheme. For two open dense sets U, V of X, the intersection U n V is again open dense. Partially
ordered by inclusion, the collection Ux of dense open sets in X forms a directed set. For Y another scheme, the collection
{Homgcn (U, Y)}ueuy is directed by the restriction Homge, (U, Y) — Homgen (V,Y) with V € U € Ux. An element in the direct

limit lim Homgen (U, Y) is called a rational map. A rational map is usually written with dashed arrow f: X --» Y.

Ueldx
By definition, two morphisms f: U — Y and g : V — Y with U, V € Ux determine the same rational map if and only if

there exists W < U n V with W € Ux such that flw = g|w. In this case we write f ~ g, and use either f or g to denote the

corresponding rational map.

3.49 Composition. Letf: X --» Yand g : Y --» Z be rational maps. We want to define the composition g o f, but it is
not always possible. For example, we certainly cannot do so if f : U — Y hits to the subset that g is not defined. Say g is
represented by g : V — Z for some V € Uy. What we need is the nonemptyness of the subset V n f(X) < Y. To fix this, we

need some density constraint.

3.49.1 Lemma. If f:X --» Y is a dominant rational map, then every representative of f is dominant.

Proof. Let U,Velxandf: U —>Y,g:V — Ywith f ~ g. Take W € U n V with W € Ux such that f|y = g|w. Since f is

continuous, we have f(W) < f(W). By density, we have W = U, and since f(U) is dense, we see Y = f(U) < f(W) so that

f(W) is dense as well. This shows g is also dominant. O

3.49.2 Composition of dominant rational maps. We continue the discussion in (3.49). Instead of consider the composition
of two rational maps, we define the composition of two dominant rational maps. Let X, Y, Z be schemes, U € Ux and V € Uy,
andf:U—Y, g:V — Zbe dominant morphisms. Pictorially,

Since f(U) is dense, V n f(U) < Y, and hence U n f~1(V) < X, is nonempty. We then can well-defined the composition
goflunf-iv) : Wn f1(V) — Z. But here is still an issue : U n f~!(V) may not be dense! Nevertheless, if we assume X is
irreducible, then everything goes well, i.e., g o fly~¢-1(v) : U F1(V) — Z represents a rational map, which we denote by
gof:X--» Z Itis direct to see this does not depend on the representatives of f and g.

3.49.3 Definition. By the previous discussion, it makes sense to define the category IrrSch of irreducible schemes with

morphisms being dominant rational maps.
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(i) A birational map is an isomorphism in IrrSch.
(ii) Two irreducible schemes are birational if there is a birational map between them.

Put IntSch to be the full subcategory of IrrSch consisting of integral schemes.

3.50 Lemma. Two irreducible schemes X, Y are birational if and only if there exist open dense subsets U < Xand V € Y
such that U = V as schemes.

Proof. The if part is clear. For the only if part, suppose thereare f : X --» Yand g : Y --» such that gof ~ idx and fog ~ idy.
Say X; (resp. Y1) is the domain of definition of f (resp. g). O

3.2 Functor of points

3.51 Yoneda. For ascheme X, we can associate it with a functor hx : Sch — Set by hx(T) := Homge (T, X). It is the content
of Yoneda’s lemma that there is a functorial bijection

Hom(hx, hy) E— HomSch(X/ Y)

T Tx(ldx)

From this we see that X = Y if and only if hx = hy as functors. This more or less says that the scheme X is uniquely
determined by the family {Homgen (T, X) }1esch- In fact, we have more.

3.51.1 Lemma. For a scheme X, let hx : Ring — Set be the functor defined by hx(R) = Homg (SpecR, X). There is a
bijection
Homse, (X,Y) = Hom(hx, hy)

natural in X, Y € Sch. This is an incarnation of the local nature of a scheme.

Proof. Let F € Hom(hx, hy). Let U be an affine open cover of X. For each U € U, let 1y : U = Spec Ay — X be the inclusion.
Then 1y € hx(Au), so applying Fy we obtain fy = Fu(wu) € hy(Ay). We claim the fy : U — Y glue to a global morphism
X —Y.LetU,Veld,and let W = SpecB < U n V be an affine open set. Put « : W = Spec B — X be the inclusion. Applying
F to the diagram

U = SpecAy
ich N}
W = SpecB = X
e
incm
V =SpecAv
we obtain
U = Spec Ay
inclusion N
W = SpecB Pwle) Y
S
incm
V =SpecAy

In particular, this shows fy|w = Fw () = fv|w. Hence we obtain a well-defined morphism f : X — Y extending the fy’s.
It is easy to see the resulting f is independent of the choice of I/; in fact, we can use all the affine open sets in X in the first
place. This defines a map Hom(hx, hy) — Homgh (X, Y). The map the other way around is defined by composition.
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We claim they are mutually inverse. One direction is clear. For the other, let F € Hom(hx, hy) and let f be the corresponding
morphism X — Y. Let R be a ring and g € hx(R). Let U be an affine open set in X and pick W < SpecR an affine open set

such that g(W) < U. Then
(fog)lw =Fv(wv) o glw = Fwltv o glw) = Fwlglw) = Fu(9)lw,
where the second equality follows from naturality of F. Hence fo (-) =F. O

3.52 Definition. Let S be a scheme. A scheme X together with a morphism X — S, called the structure morphism, is called
a S-scheme / scheme over S. A morphism between S-schemes is a morphism of schemes that commutes with the structure
morphisms to S. Such a morphism is called an S-morphism. Denote by Schs the category of S-schemes. If S = Spec A, we
write Schs = Scha, and simply call an S-morphism as an A-morphism.

3.53 Example. The ring Z is the initial object in Ring, so by (3.7) the affine scheme SpecZ is the final object in Sch. In

particular, the categories Sch and Schy, are isomorphic.

3.54 Let A be aring. Using the forgetful functors Alg, — Ring and AffSchy — AffSch, we deduce from the equivalence
of categories Spec : Ring®® — AffSch in (3.8) gives rise to the equivalence of categories

Spec : Alg¥ ———— AffScha

R+ SpecR

3.55 Let S be a scheme. Let X be an S-scheme and denote by f : X — § the structure morphism of X. For an open set U of S,
we sometimes use X|y to denote the U-scheme f |}E1 w) f~1(U) - Usoas to prevent ourselves from cumbersome notation.

3.56 Let S be a scheme and Y, X be two S-schemes. Denote by f : Y — S and g : X — § the structure morphisms. Consider

the commutative diagram
Homgen (Y, X) —————— Homging(Ox(X), Oy (Y))

J,QO(_) J{(—Joes

Homgen (Y, S) ——————— Homging(Os(S), Oy (Y))
where 0 : Os — f,Ox is the sheaf map of f. Taking the preimage of f along the vertical maps we obtain
Homsens (Y, X) —————— Homuyg, (Ox(X), Oy(Y)).
By (3.7), this is an isomorphism if S and X are affine.
3.57 Functor of points. Let S be a scheme and let X be an S-scheme. For another S-scheme T, put
X(T) := Homgen, (T, X)

and call its element a T-valued point of X 5. If T = Spec R (where R is an S-algebra), we call it an R-valued point, and simply
write X(T) =: X(R).

3.58 Example. Let f,...,fm € Z[x1,...,xn] and let X = SpecZ[xy,...,xnl/(f1,...,fm). Let R be a ring. Then there is a

natural bijection
X(R) ——— {a=(ai,...,an) eR" | fi(a) =+ = fiy(a) =0}

Indeed, by (3.7) we have

Homsgen (Spec R, X) = Homging(Z[x1, - .., xnl/(f1, ..., fm),R)
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There is a canonical inclusion
HomRing(Z[Xl, cee ,Xn]/(fl, ey fm)/ R) 2’ HomRing(Z[Xl, . /XTL]/ R) = Rn

where p : Z[x1,...,%n] = Z[x1,...,%nl/(f1,...,fm) is the quotient map. The last isomorphism is the evaluation at x1, ..., Xn.
The image of the first set in R™ is then the common zeros of f, ..., f in R™.

Inspired by this bijection, we can understand the R-valued points of a scheme as a generalization of solving equations in
the ring R. In this way the functor of points is quite a natural concept.

3.59 Example. Letkbe a field and V a finite dimensional vector space over k. Consider the affine scheme V := SpecSym V",
where Sym V¥ means the symmetric algebra of VY. By the universal property of symmetric algebras, we have functorial
bijections

V(k) = Homg, (Speck, V) = Homyyg, (Sym VY, k) = Homy (VY, k) = (VY)Y =V

Hence we can always think of a finite dimensional vector space V over k as the k-valued points of the affine space V = Ad™V

(non-canonically) over k.

3.60 Points in local rings. Denote by LocRing the category of local rings. By definition, a morphism of local rings is a local
homomorphism (2.20). Let A be a local ring and m be the unique maximal ideal. We show that there is a bijection

HomSch (SPeC A/ X) — |_| HomLocRing(OX,XI A)
xeX

First, let f : Spec A — X be a morphism of scheme and put x = f(m). Choose an affine open neighborhood U = Spec B of x in
X, and let p € Spec B be the point corresponding to x. Then f(Spec A) < U. Indeed, f~!(U) is an open set in Spec A containing
m, and there exists h € A such that f~1(U) 2 D(h) 5 m, which implies h ¢ m and, thus, D(h) = Spec A. In fact, this shows
that f(Spec A) is contained in any open neighborhood of x in X. The map f then factors through f|" : Spec A — U = SpecB,
so it gives a map (f|4)¥ : B — A with ((f|%)¥)~!(m) = p. This means it factors through the localization B — B,, giving a

commutative triangle
(f]*)*

B—m A
B,
Since B, =~ Ox x, we have a homomorphism 0+ : Ox,x — A. Taking spec gives a morphism SNf : Spec A — Spec Ox . At the
same time, we obtain another morphism ¢y : Spec Ox x — SpecB =U — X.
The constructions of 6~f and ¢ depend on the choice of U. Nevertheless, the morphisms themselves do not, which we
now prove. Let V = Spec C be another affine open neighborhood of x and let W = SpecD < U n V be still another affine

open neighborhood of x. To distinguish, let pw, pu, pv denote the corresponding primes of x in D, B, C. Now we have ring
homomorphism B, C — D — A, and since m — pw — py, pu, the natural diagram

/A\D
vakD/ pWpru
\ / \B/

C
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commutes everywhere. Taking spec gives

Spec A

|

SpecDy,,

N N

Spec C,, «—=— Spec Ox,x —+ SpecB,,

SpecD

L — | T

SpecC Spec B

\X/

This tells the independence. Hence f : Spec A — X admits a canonical factorization

f X
% %

Spec Ox x

Spec A

Recall that 0; corresponds to the homomorphism 6 : Ox x — A.
Finally we can define the maps

HomSch (SPeC A/ X) — |_| HomLocRing(OX,X/ A)
xeX

f 0¢: Oxx — A with x = f(m)

@« o Spec© 10:0xx > A
By checking on any affine open neighborhood of x, we easily see that these are mutually inverse.
3.60.1 Example - points in a field. Let X be a scheme over a field k. Then there is a bijection
X(k) = Homg, (Speck, X) ———— {x e X | k(x) =k}

f f(pt)

Here pt denotes the unique point in Speck. Note that a scheme over k is the same as a scheme that is a local-ringed space

over k (2.20.1). Each k(x) is naturally a k-algebra, so the equality k(x) = k makes sense.
More generally, if K/k is a field extension, then there is a bijection

X(K) ————— |_|X Homayg, (k(x), K).

This follows from (3.60) : the kernel of a local k-homomorphism Ox x — K is precisely its unique maximal ideal, so such a

map is the same as a k-algebra homomorphism k(x) — K.

3.61 Galois action. Let X be a scheme over a field k. Let K/k be a Galois extension with Galois group G. If s : SpecK — X

and o € G, it is clear that s o Spec 0 is again a morphism of k-scheme, so that s o Spec 0 € X(K). This defines a (left) G-action

on X(K).
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Consider the (set-theoretic) map
¢: X(K) ————— X

s ——— > s(SpecK).
By (3.60.1), the fibre of each point x € X is identified as
$7'(x) = Homayg, (k(x),K).

It follows from the construction this bijection is G-equivariant, where G acts on Homayg, (k(x), K) naturally. As K/k is Galois,
it follows that the G-action on ¢ ~!(x) is transitive, and hence ¢ induces an injective map

G\X(K) <= X.
On the other hand, since the bijection

X(K) ————— |_|X Homayg, (k(x), K).

is also G-equivariant, taking invariants gives

X(K)6¢ —=—— uXHomAlgk(K(x),K)G = UXHomAlgk(K(X)/k) —= s X(k).

To summarize,
Lemma. Let X be a scheme over a field k and let K/k be a Galois extension with Galois group G.

(i) The natural map X(K) — X induces an injection G\X(K) — X.
(ii) The injection X(k) — X(K) gives a bijection X(k) =~ X(K)©.

3.2.1 Zariski sheaves

3.62 Definitions in this subsubsection are from Tag 01]JF.

3.63 Definition. A functor F : Sch®? — Set is called a Zariski sheaf if for any scheme X and any open cover U of X, the
sequence

FOX) ——— [[Fw ———— J] Funv)

Ueld u,veu

is a equalizer diagram.

3.64 Definition. LetF:Sch®® — Setbe a functor.

(i) A functor H : Sch°P? — Set is called a subfunctor of F if H(X) < F(X) for each scheme X and for each f € Homge (X, Y),
the map F(f) : F(Y) — F(X) restricts to H(f) : H(Y) — H(X).

(ii) A subfunctor H < F said to be represented by open immersions if for any scheme X and & € F(X), there exists an open
subscheme U; of X satisfying the following :

a morphism f € Homgc (Y, X) maps into U; if and only if F(f)(&) € H(Y).

(iii) A collection (H;)ier of subfunctors of F is said to cover F if for every scheme X and & € F(X), there exists an open cover
U of X such that F(U — X)(&) € Hy(U) for each U € Y.
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3.65 Theorem A functor F : Sch®” — Set is representable if it is a Zariski sheaf and there exists a collection (F;)icr of
subfunctors of F such that

(a) each F; is representatble,
(b) each F; < Fis represented by open immersions, and

(C) (Fi)iEI covers F.
3.3 Fibre products

3.66 Let Sbeascheme.Letf:X — Sand g:Y — S be two schemes over S. A fibre product of f and g is a scheme X xs Y
together with two morphisms X xs Y — X and X xs Y — Y that represents the functor

T — Homsen (T, X) X Homg, (T,5) Homsen (T, Y).
By universal property nonsense, if a fibre product exists, it is unique up to a unique isomorphism.

3.67 Let C bearing and let A, B be two C-algebras. The tensor product ring A ®c B is the fibre coproduct of A — C — B
in the category of rings. This means we have a bijection

Homging (A ®c B, D) ————— HomRing(A, D) XHomgs (¢, 0) HOMRing(B, D)

functorial in D € Ring. It then follows from (3.7) that Spec A ®c B is the fibre product of Spec A and Spec B over Spec C in
the category of schemes (in fact, also in LRS).

3.68 Base change and functor of points. Let S be a scheme and X, Y be two S-schemes. By (3.66), for any S-scheme Z, there
is a canonical bijection
Homge (Z,X x5 Y) —— Homsgw (Z, X) x Homgen (Z,Y)

By taking Z =Y, we obtain

HOI’I'lsChS (Y,X Xs Y) % HOIl’ISChS (Y, X) X HOl’l’lsChS (Y, Y)

]

Homgchs (Y, X) X {1dy}
Taking preimage of the subset Homga (Y, X) x {idy}, we see this induces a bijection

Homsa, (Y, X x5 Y) —— Homge, (Y, X)
3.3.1 Weil restriction

3.69 Restriction of scalars. LetX — T — S be morphisms of schemes. Define a contravariant functor Rest,s X : Schs — Set
as follows. For any S-scheme Z, set
Rest,s X(Z) = X(T xs Z) = Homgen, (T x5 Z,X),
and for any morphism f : Y — Z of S-schemes,
Rest,s X(f) = Homgeh, (idt xsf, X) : Rest,5 X(Y) — Rest,s X(Z).

Here idt xsf : T x5 Y — T x5 Z denotes the obvious morphism. The functor resy,s X is called the Weil restriction (of
scalars). If T = SpecR and S = Spec A are affine, we write Resg /s = Resy/s for simplicity.
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3.70 Example : Affine spaces Let k’/k be a field extension, finite of degree d. For a k-algebra R, we have
Resy /i Al (SpecR) = Homsen, , (Speck’ Xspeck Spec R, Af)
=~ Homayg,, (K'[x1,...,xnl, k' ® R) = (K" @ R)™
Concretely, one can understand the above bijections as follows. Let as, . .., aq be a k-basis for k’ and consider the substitutions
Xi{ =Yi1t1 + - +YiaQa
fori=1,...,mn. Then

Resy//x Al = Resy/ /i Speck’[xq, ..., xn]

.....

3.71 Example : Tori. If A is a ring, put G,y A = Spec Alx,yl/(xy — 1) = Spec Alx,x!]. If R is any A-algebra, we have
set-theoretic bijections

(3.54)
Homsch, (SpecR,Gm,a) = Homyg, (Alx,x1,R) =~ R*.

In other words, the scheme G, A represents the functor R — R* that takes a ring to its group of units.
Consider the case R = C and A = R. For each R-algebra R, we compute

(3.67) X
Resc /g Gin,c(SpecR) = Homgen. (Spec C xspeck SpecR, Gme) = (C®r R)* = (RK]/(x*+1))" .

Of course, we use the natural identification C >~ R[x]/(x*> + 1). To compute the last group, note that for a,b € R, one always
has

(a+bx)(a—bx) =a?—bx*=a?+b> (mod x> +1).

Thusif a>+b? € R*, then a+bx mod x* + 1 (R[x]/(x? + 1)) * withinverse (a?+b?) ! (a—bx). Conversely, if a+bx mod x> + 1 €
(RIXI/(x* +1)) " with inverse ¢ + dx mod x? + 1, then

1= (a+bx)(c+dx)=(ac —bd)+ (ad+bc)x (mod x> +1)
and hence
(a—bx)(c—dx)=ac— (ad+bc)x+bdx* = (ac —bd) — (ad+be)x =1 (mod x>+ 1).

so that a — bx mod x? + 1 (R[x]/(x? + 1)) *. In particular, a> + b? = (a + bx)(a — bx) is also a unit. This establishes a first
bijection of the following :

(RXJ/(®+1))" = {(a,b) € R* | a® + b? € R} = Homayg, (RIx,y, (x* +y?) 7], R).

Therefore, the functor Resc/g Gm,c is represented by the affine scheme Spec R[x, y, (x*> + y*)~!]. A more intrinsic way to
express this scheme is

SpecR[x,y, (x* + y) = Spec (Sym Homped, (C, R))NC/R
where N¢ /g : C — Ris the norm given by N¢ /r(z) = zZ.
3.72 Let A bearingand R a finite A-algebra which is also a projective A-module. Write R := Hompeq , (R, A) for its A-linear

dual. We are going to show Resg,4 Spec B is represented by an A-scheme for each R-algebra B by an explicit construction.
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3.3.2 Separated morphisms

f

3.73 Graph. Letf:X — Y be a morphism of S-schemes. By the universal property (3.66), the morphisms X ox Ly

defines a morphism I’y : X — X x s Y fitting into the commutative diagram

X f

The morphism It : X — X xg Y is called the graph of f.

3.73.1 Lemma. The diagonal It : X — X x Y is an immersion.

Proof. Let pr, : X xs Y — Xand pr, : X x5 Y — Y be the canonical projection. By Proposition 2.26.3, it suffices to show the
restriction Ff_l (prl_1 (u)n prz_1 V) =Unf1(V)—> prl_1 (u)n prz_1 (V) is a closed immersion for any affine opens U < X and
V c Y, lying over some affine open T < S; by further shrinking, we may assume U < f~!(V).Let U = SpecA, V = SpecB, T =
Spec C; then pr; ! (U) n pry ' (V) together with the projections to U and V, respectively, represents the fibre product of U
and V over T, so that it is isomorphic to Spec A ®c B. The restriction f Zr:f(}f()%)rz_ ‘v U~ (V) - pry L) m prsy Lv)
now takes the form Spec A — Spec A ®c B, the morphism corresponding to the C-algebra map A ®c B — A defined by

a®b — ap(b), where ¢ : B — A corresponds to f|}| : U — V. The algebra map is surjective, so Spec A — Spec A ®c Bis a
closed embedding. This finishes the proof. O

3.73.2 Diagonal. Let X — Sbe an S-scheme. The above construction applied to the identity morphism idx : X — Xyields a
morphism Ax /s : X — X xs X. This is called the diagonal morphism of X/S.

3.74 Definition. Letf: X — Y be a morphism.
(i) fis called quasi-compact if for all open compact subsets U C Y, the preimage f~!(U) is compact.

(ii) fis called separated (resp. quasi-separated) if the diagonal Ax,y : X — X xy X is a closed immersion (resp. quasi-
compact).

Finally, a scheme X is called separated (resp. quasi-separated) if the natural morphism X — SpecZ is separated (resp.
quasi-separated).

3.75 Base change and morphisms. Let P be a property about morphisms of schemes that holds for all isomorphisms (in
Sch). Consider the following statements.

(i) P holds for all closed immersions.

(ii) For X 5 Y 9 7 with j an immersion, if g verifies P, then g o j verifies P.
(iii) For X 4y 9 Z with j a closed immersion, if g verifies P, then g o j verifies P.
(iv) If f: X — Y verifies P, then freq : X;eq — Yreq Verifies P.

(v) Local on the base
If f : X — Y verifies P, then for every affine open V < Y, the morphism f|}_, V) f~1(V) — V verifies P.

(vi) If f e Homgen, (X, X’) and g € Homgen, (Y, Y') verify P, then (f,g) : X xs Y — X’ x5 Y’ verifies P.
S S y
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(vii) Stable under base change
If f: X — Y verifies P and Y’ — Y is a morphism, then the base change X xy Y’ — Y verifies P.

(viii) Stable under fibre product
If X — Sand Y — S verify P, then X xs Y — S verifies P.

(ix) For X Ly zif g o f verifies P, then f verifies P.
x) For X — Y = Z with g separateq, if g o f verifies P, then f verifies P.
(x) For X 5 Y 5 Z with g separated, if g o f verifies P, then f verifies P

(xi) Stable under composition
ForX HY 5% Z,if f, g verify P, then g o f verifies P.

3.3.3 Scheme-theoretic fibre

3.76 In (3.11) we see that if A is a ring and S is a submonoid of A, the natural map f : SpecS™'A — SpecA is a
homeomorphism onto its image. In fact, this is also a topological embedding (2.22). To start with, put

Y= {peSpecA|pnS=g}

to be the image. By the universal property (2.22), we then have a commutative triangle

(SPeC S_lAr OSpec S—lA) f (SPeC A/ OSpec A)

Y
(Y, Ospec alv)
We need to show the morphism on the left is an isomorphism in LRS, and it remains to show the sheaf map
Ospecaly = (fI")4Ospecs-1a
is an isomorphism. This is clear.

3.77 Letus talk a little more about the morphism Spec Ox x — X constructed in (3.60). Pick an affine open subset U = Spec A
that covers the image of Spec Ox . Then the morphism Spec Oxx — SpecA corresponds to the ring homomorphism
A — A, = Ox, where p is the prime corresponding to the point x. By (3.76), the morphism Spec Ox,x — Spec A is then a
topological embedding in LRS. Hence the morphism Spec Ox x — X identifies Spec Ox x with (Y, Ox|y), where

Y={x'eX|xe{x'}}
3.78 Definition. Let (A, m) be a local ring. An ideal I < A is called a defining ideal if there exists n € Z>; such that

mtclcm.

In other words, 1 is an defining ideal if and only if the I-adic topology on A is the same as the m-adic topology on A.
3.79 Letf:X — Sbeamorphism of schemes, s € S, and I a defining ideal of Os 5. Consider the fibre squares :

X ¢—— X xs5SpecOs,s «—— X x5 SpecOs /1

| |

S «— SpecOs,s «+— SpecOs /1
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By (2.22.1) and (3.77) we see that X x s Spec Os s is identified with (Y, Ox|y), where
Y =1 ({s’eS | se@}).

Note that Spec Os /1 is the singleton {m/I}, for if p is a prime containing I, then since I is an defining ideal, taking radicals
givesm € p < m. This implies that X x s Spec Os s /I — X is a homeomorphism onto its image which is f~1(s), the set-theoretic
fibre.

3.80 Definition. For a morphism f: X — S of schemes and s € S, we call the fibre product
X x5 Speck(s)

the scheme-theoretic fibre of f at s. In (3.79), we see that as a topological space it is homeomorphic to the set-theoretic fibre
f=1(s).
From now on we regard f~!(s) as a scheme by identifying f~!(s) with X x5 Spec k(s). In this way there is always a fibre
square
X —— f71(s)

|

S «—— Speck(s)

3.81 Underlying space of a fibre product. We can describe the underlying set of X xs Y as follows. Let s € S and let
x € X, y € Y lie over s. Then we have fibre squares

Speck(x) +—— Speck(x) x5 Y +—— Spec(k(x) ®(s) k(y))

| ! !

X X XxsY ¢———— X xsSpeck(y)
S Y Speck(y).

For a scheme T, denote by T the underlying topological space. The universal property of X xs Y, the fibre product in Top,

gives a continuous map
XxsY—>XxsY.

The above fibre squares read that each fibre at (s,x,y) € X x5 Y is homeomorphic to Spec(k(x) ®y(s) k(y)).
3.4 Dimension

3.82 Krull dimension - topology. Let X be a topological space. For us a chain of irreducible closed subsets of X is a
sequence

oG 1G-S 2= X

of strictly increasing irreducible closed subsets Zy, ..., Z,, of X, and we call the integer n the length of the chain. The (Krull)

dimension of X is defined as

dimX:=sup{n|Zy s Z; < - & Z, < Xis achain of irreducible closed subsets of X} < oo
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if X is nonempty, and dim ¢ := —o0 by convention.

3.83 Example. Consider the euclidean space R™. If n = 0, then ROisa singleton, so dim RY = 0. For n > 1, we claim that a
closed subset C = R™ is irreducible if and only if #C = 1. The if part is clear. For the other way around, suppose x # y € C.

Let r > 0 such that |x — y| > 2r. Then the open subspace B.(x) n C has closure contained in B.(x), while |x —y| > 2r > r.
This shows B, (x) n C is not dense in C. Hence we conclude dim R™ = 0 for all n € Z.

3.84 Example. Let A be aring. Any irreducible closed subset of Spec A has the form V(p) for some prime ideal p € Spec A.
Indeed, if V(p) = V(I) u V(]J) = V(I]) for some ideals I, ] of A, then I] < /p = p. Since p is prime, this shows either I < p or
] < p, so that V(p) < V(I) or V(p) < V(]). On the other hand, if V(I) is irreducible, then Spec A/I =~ V/(I) is irreducible. By
Lemma 3.39, we see v/ is a prime in A. But V(I) = V().

Hence, any chain of irreducible closed subsets in Spec A has the form

V(po) S V(p1) S -+ < V(pn) S SpecA.

which in turn gives an strictly decreasing sequence

of prime ideals in A.

3.85 Krull dimension - ring. Let A be a ring. The (Krull) dimension dim A of A is defined the dimension of the topological
space Spec A. In other words,

dimA :=sup{n|pn S - < p1 & Po, pi € Spec A}
For a prime ideal p € Spec A, the height is defined as
htp:=dimA, =sup{n|pn & - - < p1 & p, pi € SpecA}.
With this definition, we see that

dimA = sup htp= sup A,
peSpec A memSpec A

3.86 Example. A field has dimension 0. Any PID which is not a field has dimension 1, as any nonzero prime ideal is
maximal. In number theory, one usually study the arithmetic of a Dedekind domain, which is by definition a Noetherian
integrally closed domain of dimension 1. For example, the ring of integer Or of a number field F, i.e. the integral closure of
Z in a finite extension F of Q, is a Dedekind domain. That dim O = 1 can be seen from the following lemma.

3.87 Going-up. Let A, B berings and ¢ : A — B be an integral homomorphism, i.e., every element in B is integral over the
subring @(A) < B. Then

(i) For q € Spec B, we have htq < ht ¢ ~!(q). In particular, this shows dim B < dim A.
(ii) Suppose in addition that ¢ is injective. Then Spec ¢ : Spec B — Spec A is surjective and dim A = dim B.

Proof. For (i) it suffices to show if g, & q1 € Spec B, then ¢ ~!(q2) & ¢ ~'(q1) € Spec A. By replacing ¢ : A — B by the induced
map ¢ : A/@~!(q2) — B/q2, we may assume A, B are integral domains with A B as subrings, and we only need to show if
q#0,thengn A #0.

Let 0 # b € q. Since B is integral over A, we can find a monic f € A[x] with f(0) # 0 such that f(b) = 0. But then
f(0)e Ang.

Next we show the first assertion of (ii). We begin with another lemma. O
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3.87.1 Lying-over. Let A < B be integral domains with B integral over A. Then A is a field if and only if B is a field.

Proof. By (3.87).(i), we have dim B < dim A, so if A is field, then dimB = 0, i.e., the zero ideal is the only prime ideal,
so that B is a field. Conversely, suppose B is a field. Let 0 # a € A and let b € B be its inverse in B. Taking any monic

n—1
f=x"+ > aix' € Alx] with ap # 0 and f(b) = 0. Define g(x) = x"f(1/x); then g(a) = a™f(b) = 0 so that
i=0

0=g(a)=alaa™ '+ - +an_1)+1
Henceb = —(aga™ ' 4+ -+ 4+ an_1) € A. O

3.87.2 Resume the proof of (3.87).(ii). By the above lemma we see Spec ¢ : Spec B — Spec A maps closed points to closed
points, and is surjective on closed point. Now let p € Spec A, and consider the induced map A, — B, := B®a A, ; pictorially,

we have
A— B

|

A, — B,
By clearing the denominators, the bottom-horizontal arrow is again an integral homomorphism. Since p is maximal in A,
by (3.87.1) we can find a maximal ideal q in B, lying over p. It is then easy to see g n B € SpecB lies over p € Spec A. This
proves the surjectivity.
For the last assertion, in view of (i), it remains to show dim A < dim B. Let p, —# p; be prime ideals in A. By surjectivity
pick any g, € Spec B lying over p,. By surjectivity again, but this time applied to the map A/p, — B/q», we can find a prime
ideal q; € Spec B lying over p; with g2 < q;. This shows dim A < dim B.

3.88 Remark. A ring homomorphism A — B satisfies the going up property if for any prime ideals p; & p, in A and
q1 € SpecB with g1 n A = p;, we can find q, € SpecB with g " A = pp and q1 & q2. We say A < B satisfies the
incomparability property when for any prime ideal p € Spec A, if q, q € Spec B are two prime ideals lying over p, then g & q’

and q’ & q.
In the proof of (3.87), we actually show that if A < B is an integral extension, then it satisfies the going up property and
incomparability property.

3.88.1 Lemma. Let @ : A — B bearing homomorphism (not necessarily injective) that satisfies the going up property. Then
Spec ¢ : Spec B — Spec A is a closed map.

Proof. Let I < B be an ideal. It suffices to show ¢~1(V(I)) = V(¢ ~!(I)). The containment < is obvious. For the other way
around, we must show if ¢ ~!(I) € p < A, then we can find I € q € B with ¢ !(q) = p. It suffices to apply the going-up

property to the extension A/¢@ (1) — B/1.
O

3.89 Definition. Let X be a topological space and Z an irreducible closed subset. The codimension of Z in X is
codimx Z :=sup{n|Z< Z; < --- & Z, € X, Z; is irreducible closed in X}
For a closed subspace Y € X, define the codimension of Y in X as

codimx Y :=inf {codimx Z | Z < Y : irreducible component of Y} .

3.89.1 If X=SpecA and Z = V(p), then by definition

codimx Z = htp =dimA,.
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If Y = V(I) for some ideal I < A, then

codimx Y = inf{htp | I < p € Spec A}.

3.89.2 Lemma. Let Xbe a topological space and Z an irreducible closed subset. If U < X is an open set such that Un Z # ¢,
then

codimy Z = codimy U n Z.

3.90 Lemma. Let X be a topological space and Y a closed subspace of X. Then

dimY + codimy Y < dim X.

Proof. Let Z be an irreducible component of Y. Clearly from the definition, we have dim Z + codimx Z < dimX, so
dim Z + codimx Y < dim X. Since every chain of irreducible closed subsets of Y is contained in an irreducible component of
Y, varying Z gives dim Y + codimx Y < dim X. O
3.91 Definition. A topological space is called catenary if

1. codimy Z < oo for all irreducible closed subsets Z < Y, and

2. for every triple of irreducible closed subsets Z” < Z' < Z, we have

codimy Z” = codimyz Z’ + codimz: Z".

3.91.1 Lemma. A topological space is catenary if and only if for any pair of irreducible closed subsets Z < Y, we have
codimy Z < oo and every maximal chain Z =7y < Z; & --- & Z, =Y has the same length.

Proof.

3.91.2 Lemma. Let X be a topological space.
1. If X is catenary, then any locally closed subset of X is catenary.

2. Xis catenary if and only if X has an open cover consisting of catenary spaces.

3.92 Codimension and local ring Let X be a scheme and let Z be an irreducible closed subset with generic point z (3.36).
Let Z' © Z be any irreducible closed subset of X, with generic point, say z’. Let U = Spec A be any affine open neighborhood
of z. In (3.36) we saw that z’ € U. Let p (resp. p’) be the corresponding prime ideal of z (resp. z’) in A. Then z € {z'} implies
peV(p’), orp’  p, meaning that z’ actually corresponds to a prime ideal p’ in the local ring Ox .. Since z’ lies in any affine
open neighborhood of z, the prime ideal p is independent of the choice of U. This establishes an inclusion reversing map

irreducible closed subsets Z' © Z} ——————— Spec Ox .
irreducible closed sub yAR=YA Spec Ox,

Conversely, if p’ € Spec Ox ., take any affine open U = Spec A containing z and identify p’ as a prime ideal of A contained in
z. The closure Z' := {p’} is then an irreducible closed subset containing Z = {z}. The subset Z’ is independent of the choice
of U, as the affine opens form a basis for the topology of X. This association p’ — Z’ is clearly inverse to the the above map,
so that it is an inclusion reversing bijection. In particular, we see

codimx Z = dim Ox .
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3.93 Dimension and open cover. Let X be a topological space and U be an open cover. If Ue i and Zy & Z; & --- & Z, is
a chain of irreducible closed in U, then taking closure in X gives a chain of irreducible closed

Z0SZ21S S Zn

of X. Indeed, we must have Z; # Z for otherwise Z; = Z; n U = Z N U = Z;, a contradiction. In particular, this shows
dim U < dim X. Conversely, if Zo & Z1 & --- & Z,, is a chain of irreducible closed in X, let U € U be such that U n Zy # &;
then

onUcZinUes---cZynU

is a chain of irreducible closed ; if Z; n U = Z; n U, then Z; = Z; n U = Z; n U = Z;, a contradiction. From this we conclude
that

dim X = sup dim U.
Ueld

In fact, our argument also shows that dim Y < dim X whenever Y is a subset of X, equipped with subspace topology.
3.94 Lemma. Let X be a topological space and Y a subspace of X. Then
dimY + codimx Y < dim X.

3.95 Lemma. Let X be a scheme, and let U, V be two affine opens in X. Then there exists f € Ox(U) and g € Ox(V) such
that Uf = Vg.

Proof. Take a € Ox(U) such that U, = U n V. Take € Ox (V) such that V4 < U. Then
Vg=VgnlUyg=(Vn UW)MVmua = (u“)ﬁ\ufx
Take f' € Ox(Uy) = Ox(U) 4 such that f' = By, and choose N » 0 such that f := f'a™ € Ox(U). Then

(uoc)ﬁ\ugx = (uoc)f’ = (ucx)f = Us

3.4.1 Artinian rings

3.96 Length. Let A be aring and M an A-module. A finite descending chain of M has the form
0=M,cMic---cM,cscMy=M
We say such a filtration has length n. We define the length of the A-module M as
length M = length , M = sup {length of all descending chain of M} € Z>o U {oo}.

We say M is a simple A-module if M # 0 and the only A-submodules of M are 0 and itself; in other words, length , M = 1.
A composition series of M is a descending chain of M

0O=MncMp1&---cMicMy=M
such that each consecutive subquotient M, /My, 11 is simple.

3.96.1 Lemma.
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(i) If N is an A-submodule of M, then length , N + length, M/N = length , M.
(ii) If M has a composition series, then length, M < oo.
(iii) If length, M < oo, then every composition series has the same length.

(iv) Iflength, M < oo, every finite descending chain of M can be refined into a composition series.

Proof.

(i) If length , N or length, M/N is infinite, then clearly so is length , M, and the equality holds trivially. Suppose now
both length , N and length , M/N are finite. Clearly length , N + length , M/N < length , M. Conversely, let

0=M,cMp1c---cMicM=M
be a finite descending chain of M. Intersecting each term with N gives
0=MynNcM,_1nNc---cMinNcMynN=N
Adding N to each term gives
N=M,+NcM, 1+ Nc---cMi+NcMy+N=M
To show n < length , N +length , M/N, it suffices to show that
MizinN=M;nN, Mitz1 +N=M;+N

cannot happen simultaneously. Assume these both happen to hold at the same time. Take x € My ; then there exists
y € Mirrand n € Nsuchthaty =x+n,ory —x =ne My n N = Mi;; n N. This implies x € M1, and hence
M; = M1, which is absurd.

(i) Let
OZMngMn—lg"'nggMOZM

be a composition series of M. By (i) we have
n—1 n—1
length, M = Z length, M{/Mi;1 = Z 1=n<co.
i=0 i=0

(iii) Say 0 =M, & My & --- & M, & My = M is a composition series. By (i)

n—1 n—1
length, M = Z length , M{/M; 1 = Z 1=n.
i=0 i=0

(iv) If N =€ N’ € M are A-submodules, by (i) length , N’/N < o0, so there is a sequence N & Ny & --- & N, = N’ with
each consecutive subquotient simple. Now given a finite descending chain, if we refine each consecutive subquotient
in this way, we get a composition series.

O

3.96.2 Corollary. length, M < oo if and only if M is both an artinian and Noetherian A-module

Proof. Length of ascending chains and descending chains are bounded by length , M. For the if, since M is Noetherian
we can choose a maximal proper submodule M; of M. Doing the same this for M;, we then get a descending chain
M < M1 & M; ¢ ---. Since M is artinian, this process must stop, yielding a composition series of M. O
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3.97 Lemma. Let A be an Artinian ring. Then #Spec A < oo, dim A = 0 and the zero ideal is a product of maximal ideals.

Proof. Consider the collection of all finite intersections of maximal ideals. Since A is Artinian, it has a minimal element, say
m; N - N my. If m a maximal ideal, by minimality m; n - nmy, nm =m; N - N my, som < my for some i € [n]. This shows
#mSpec A < co.If p € Spec A and f ¢ p, consider the descending chain

(f,p)2(p)2(f,p) 2.

Since A is artinian, it follows that f™ € (f**1,p) forn » 0, so f™ = f**!x +y for some x € A, y € p. But then f*(1 — fx) =y
and f ¢ p,so 1 — fx € p. It follows that (f,p) = (1) = A.

Finally, let ] denote the product of all maximal ideals. Since A is artinian, the chain ] 2 J> 2 J* 2 - .- stabilizes, and
hence J™ = J™*! for n » 0. We claim J™ = 0; otherwise, consider the collection {0 # I < A | IJ™ # 0}. This is nonempty as
JJ™ = J™t = J™ £ 0. Since A is artinian, it has a minimal element, and by minimality it must be principal, say, generated by
0 # f € A. Then fJ™ = fJ"*! = (f])J™, so by minimality again f] = (f). It follows that f = fr for some r € J, or f(1 — 1) = 0.
Note that 1 — r € A*; for otherwise it is contained in some maximal ideal, which is absurd. Hence f = 0, which is another
contradiction. This proves J™ = 0. O

3.97.1 Lemma. For an exact sequence 0 - M’ - M — M” — 0 of A-modules, M is Noetherian (resp. Artinian) if and only
if M’ and M” are Noetherian (resp. Artinian).

3.97.2 Characterization of artinian rings. For a ring A, TFAE:
(i) length, A < oco.
(ii) A is artinian.
(iii) A is Noetherian and dim A = 0.

Proof. (i)=(ii) is (3.96.2). Assume (ii). Then dim A = 0 by (3.97). Again by (3.97), m; - - - m,, = 0 for some maximal ideals m;
of A. Consider the filtration

ADm2ommy 2 - 2my - My, 2MmMy - My_1My =0.

Each successive subquotient is an A/m;-module, i.e., a vector space over A/m;. This quotient has finite length, so the
dimension (as vector spaces) over A/m; must be finite, which then implies it is Noetherian. By (3.97.1) this tells A is
Noetherian.

Finally assume (iii). Suppose length , A = oo, and consider the collection {I < A | length , (A/I) = oo}. This is nonempty
aslength , A/0 = oo. Since A is Noetherian, there exists a maximal element m. We claim m is a prime. Say xy € m withy ¢ m.
Form the short exact sequence

0—— A/(p:y) —% A/p A/(y,p) — 0

where (p:y) = {f e A | fy e p}. If x ¢ p, then both (p : y) and (y, p) strictly contain p. By maximality the corresponding
quotient has finite length. By (3.96.1) this implies A /m has finite length, a contradiction. Hence x € m and m is a prime. Since
dim A = 0, mis maximal. But then A /m is a field, so it has finite length as A-module, which is absurd. Hence length , A < oco.
O

3.4.2 Hilbert polynomials
We follow the exposition in [AM94, Chapter 11].

3.98 Lemma. LetA = (P A, be a graded ring. Then A is a Noetherian ring if and only if Ag is a Noetherian ring and A is
n=0
of finite type over Ay.
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Proof. The if part follows from Hilbert basis theorem. For the only if part, suppose A is a Noetherian ring. Note A, < A, so
(3.97.1) Ag = A/A is a Noetherian ring. Since A is Noetherian and A is a proper ideal of A, it is finite over A. By (3.116), it
follows that A is of finite type over Ay. O

3.99 Lemma. Let A be a Noetherian graded ring and M a finite graded A-module. Then M,, is a finite Ap-module for each
n=0.
Proof. Say A = Aglxq,...,xm] with x; € A, homogeneous, and M = Ay; + --- + Ay, for homogeneous y; € M. Then

i
each element in M has the form Z fi(x1,...,xm)yi with f; € Ap[Xj,..., Xm]. From this we see M,, is generated by the

i=1

g(x1,...,Xxm)yi where 1 < i< fand g € Ao[Xy,...,Xn] runs over all homogeneous polynomials of degree n — degy;. O

3.100 Poincaré series. Let A be a graded Noetherian ring. Let A be a Z-valued function on all finite Ap-modules that is
additive, in the sense if
0 M’ M m” 0

is a short exact sequence of finite Ag-modules, then
AM) = A(M) +A(M").

For a finite graded A-module M, the Poincaré series of M with respect to A is the generating function of (A(My))n>o :

P(M,t) = PA(M, 1) = i AM ™ € ZI[t]

n=0

3.100.1 Example. Let A be an artinian ring and R = A[xy,...,xm] be the polynomial ring in m variables over A. Take
M — length , M to be our additive function. Then

n+m-—1
length , R, = ( n )
is the number of the degree n monomials, so
o m+m-—1 -
Prngin (A1, xml 1) = 3 ( " )t“ —-t
n=0

3.101 Theorem. (Hilbert; Serre) Let A be a Noetherian graded ring with A = Ag[xy,...,%s] and x; € A} homogeneous, and
let M be a finite graded A-module. Let A be an additive function as in (3.100). Then

P(M, t) = f(t) ﬁ(l — ey~
i=1

for some f € Z[t].

Proof. We do induction on s. When s =0, then M = Agm + - - - + Agm; for some m; € M, so that M, = 0 for n » 0. Hence
P(M, t) is a polynomial in this case. Assume s > 1. For each n > 0 multiplication by x, yields an exact sequence

XXg

0 Kn M,

]vln+degxS — Ln+degxS — 0.

Define K = @, Ky, and L = @, L, (where Ly = 0 for 0 < k < degx;). By (3.97.1) K and L are finite graded A-modules.
Since L and K are annihilated by x;, we can treat them as A[x;, ..., xs_1]-modules. Applying A to the above sequence we get

)\(Kn) - )\(Mn) + A(Mn+degxs) - )\(Ln+degxs) =0.
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Multiplying by t"9¢8%s and summing over n > 0, we see

degxs—1 degxs—1
48X P(K, t) — t%8XP(M,t) + | P(M,t) — Z AM —(PLY— X ALY | =0
n=0

or
P(M,t)(1 — t9e8*:) = P(L,t) — t%€*P(K, t) + g(t)
for some g € Z[t]. By induction this completes the proof. O
3.101.1 Since P(M, t) is then a rational function, we can put
d(M) = —min{0, ord{—1 P(M, t)} = order of pole of P(M, t) att = 1.
This will be an important quantity in studying the dimension.

3.101.2 Corollary. If x € A is homogeneous and is not a zero-divisor of M, then d(M) = d(M/xM) + 1
Proof. For each n > 0 consider the exact sequence

XX

0 My Mn+degx — Mn+degx/XMn = (M/XM)n+degx — 0.

Multiplying by t"*9¢&* and summing over n > 0, we see
P(M/XM,t) = g(t) + (1 - t¥%)P(M, 1)

for some g € Z[t]. Since g has no pole, P(M/xM, t) has a pole if and only if (1 — tde8X)P(M, t) has a pole, and have the same
order. This finishes the proof. O

3.101.3 Corollary. Ifin (3.101) degx; = 1, then A(M,,) is a polynomial in n with rational coefficients for n » 0, of degree
d(M) — 1. Here the zero polynomial has —1 degree.

deg f 00 s 1
PM 1) = f(t)(1 -t = | D) fit} (Z (’ j )ti> .
i=0 j=0

Cancelling out powers of (1 — t), we assume s = d(M) and f(1) # 0. For n > deg f, we have

deg f n—i+s—1
AMn) = ) fi( L )

i=0

Proof. By (3.101),

f(1)
(s —1)!

ns~!whenn » 0.

This is a rational polynomial with leading term

3.4.3 Noetherian local rings

3.102 I-filtration. Let A be aring, I an ideal and M an A-module. A descending filtration

SCMp<C---ScMiSMgS M
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is said to be an I-filtration if IM,, € M4 for n > 0. Consider the auxiliary graded module

M* = E}—) M.

n=0

If wedenote Bl A = A* := @ I, then M* is a graded Bl; A-module. On the other hand, there is another common associated
n=0

graded module
GI‘F M= @ Mn/Mn+1.
n=0

This is a Gr; A = GL (i), _, A-module.

3.102.1 Lemma. Let A be a Noetherian ring, I an ideal, M a finite A-module and F = (M, )n>¢ an I-filtration. TFAE :
(i) M* is a finite Bl; A-module.
(i1) The filtration F is stable, i.e., IM,, = M1 forn » 0.

n
Proof. Since M is Noetherian, each M, is finite over A. Let Q,, = @@ My then Q,, is finite over A, and generates the finite

k=0
Bl; A-submodule
Mi=Mi® - @M, ®IM, @M @ - -

of M*. Then Ly < L; € --- is an ascending chain which unions to M*. Since Bl; A is Noetherian, we see M* is finite over
Bl; A if and only if the chain stops, i.e. M* = M for n » 0. The last condition is the same as saying F is stable. O

3.102.2 Corollary. (Artin-Rees) Let A be a Noetherian ring, I an ideal, M a finite A-module and F = (M )n>0 a stable
I[-filtration. If N € M is an A-submodule, then (M, n N);,>¢ is a stable I-filtration of N.

Proof. Since Bl; A is Noetherian, by (3.102.1) we see M* is a Noetherian Bl; A-module, and we only need to show N* =
(—B (Mn N N) is also a finite Bl; A-module. But this is clear, as N* is a Bl; A-submodule of M* and M* is Noetherian.

n=0

O

3.103 Lemma. Let (A, m) be a Noetherian local ring, and g a m-primary ideal. Suppose M is a finite A-module, and
F = (My)nso is a stable g-filtration. Then
(i) Each M/M,, has finite length as an A-module.
(ii) There exists some polynomial g of degree < s such that g(n) = length, M/M,, for n » 0, where s is the least number
of generators of .

(iii) The degree and the leading coefficient of g do not depend on the filtration F, but only on M and q.

Proof. Since q is finite over A, Grq A is Noetherian and Grg M is a finite Grq A-module. Since Grf M = M, /M, is killed
by g, it is a finite A/g-module. Since A/q is artinian, it follows that M, /M, 11 is Noetherian and artinian, whence of finite
length (3.96.2). Now by (3.96.1).(i)

n—1

length, M/M,, = Z length , M;/Mi 1 < co.

i=0
This proves (i). For (ii), say q = Axq + - - - + Axs; then Grg A = (A/q)[x1,...,%s]. By (3.101.3), length , (M, /M, 1) is then a
polynomial inn whenn » 0, of degree < s — 1. In particular, length , M/M,, is a polynomial in n whenn » 0 of degree < s.

Finally, for (iii) it suffices to compare with the filtration (q™M)n 0. Since F is stable, g"M < M,, for all n > 0. Now take

N » 0so that qM,, = M,;1 foralln > N. Then M n = q"Mn S q™M, and q"*NM < M, n S M,,. But then

length , M/M,,4n > length, M/q"M,  length, M/q""NM > length , M/M,,
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for all n > 0. By (ii) they are polynomials when n » 0, so this implies they has the same leading term, proving (iii). O
3.103.1 Characteristic polynomial. We denote the polynomial in (3.103) associated to the filtration (q™M)n>0 by
X;\A(n) = length,, M/q"M n>» 0.
When M = A, we simply write
Xq(m) = x?(n) =length, A/q", n»0

and call it the characteristic polynomial of the m-primary ideal g. The degree of x,(n) gives a lower bound of the number
of the generators of q.

3.103.2 Lemma. Let A, m,qbe asin (3.103). Then degxq(n) = degXxm(n).

Proof. Since A is Noetherian, that ,/q = nimplies m" < q £ m for some r » 0, and hence

length, A/m™ <length, A/q™ <length, A/m"*"
for all n > 0. This proves the lemma. O
3.103.3 In view of the previous lemma, we denote by d(A) the common degree of the x4(n). By (3.101.3), in fact

d(A) = d(Grm A),

where the right hand side is defined as in (3.101.1).
3.104 Let (A, m) be a Noetherian local ring and q an m-primary ideal. Denote by

8(A) = 84(A) = the least number of generators of q.

By (3.103) we see 6(A) = d(A). Our goal is to show

For this we are going to prove §(A) > d(A) > dim A > 5(A).

3.4.4 Welil divisors

3.105 Cycles. Let X be a topological space. An irreducible closed subset of codimension r is called a codimension r prime
cycle. Denote by Z"(X) the free abelian group on all codimension r prime cycles. Similarly, an irreducible closed subset of
dimension k is called a dimension k prime cycle. Denote by Z; (X) the free abelian group on all dimension k prime cycles.

3.105.1 Weil divisors. Let X be a Noetherian scheme. An element in Z!(X) is called a Weil divisor on X. For brevity we call

a codimension 1 prime cycle a prime divisor.
3.5 Proj

3.106 LetS = @ Sgbe a gradedring, i.e., Sy - Sy S Snym for any n,m > 0 and each S, is an abelian subgroup of S. An

n=0
element fin S, (n > 0) is said to be homogeneous of degree n, and in this case we put n = deg f. For an element x € S, we
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can write x = ) xn with x,, € S;; in a unique way ; the x,, are called the homogeneous parts of x. An ideal I of S is called
n=0
homogeneous if it is generated by its homogeneous elements, i.e.,

I= > (InSy)

n=0

Put S, = @ So. This is the ideal of elements of positive degrees. Now define

n=1
ProjS := {p € SpecS | p £ S, pis homogeneous}

For a subset T < S, define V. (T) := {p € ProjS | T < p}. By definition we have V. (T) = V(T) n Proj S. We equip Proj S with
the subspace topology inherited from Spec S. Note that V. (T) = V. (I), where I is the homogeneous ideal generated by the
homogeneous part of all x € T. Thus all closed sets of Proj S have the form V_ (I) for some homogeneous ideals I of S. For
any homogeneous f, define the principal open set

Do (f) ={peProjS| f¢p}=D(f) nProjS = Proj S\V,(f).

The principal open sets form a basis for the topology on Proj S. In fact, homogeneous elements of positive degree suffices to
produce a basis. Indeed, for f € Sy, one has

D.(f)={J U Dulfg)

n=1geS,

2 is clear. To see < it suffices to recall p € Proj S do not contain whole S.; by definition. Because of this fact, in the following
by a principal open set we always refer to the one given by homogeneous of positive degree.

3.107 Lemma. For an homogeneous ideal I, we have

Vi= () »

peV (1)

Proof. C is clear. For the another containment, suppose f ¢ v/I. Choose from the family
{] : homogeneous | ] 2 I, f* ¢ Jforalln > 1}
a maximal element q by Zorn’s lemma. Then q is a homogeneous prime not containing f. O

3108 LetS = @ S, be a graded ring and let M = @ M, be a Z-graded S-module, i.e., Sy, - Myy € My for any

n=0 nez
n > 0,m € Z. For a multiplicatively closed subset T of S consisting of homogeneous elements, the localization T~!S is
naturally a Z-graded ring, and T~'M is naturally a Z-graded T~'S-module, i.e.,
1 X
(T M), = {; | x e Mm+n,teTmSmforsomem>0}.
For any homogeneous f € S of positive degree, put
M) = (Mro
to be the degree 0 part of the localization M.

3.109 Opyjs and projective tilde. For a graded ring S and homogeneous f of positive degree, define

Oprojs (D (f)) = Sy
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If D4 (f) =2 D4(g), then V4 ((f)) = V,+((g)), and (g) < +/(f) by Lemma 3.107. This means g™ = sf for some n > 1 and
1
s € S; in particular s is homogeneous. The map S¢ — S4 given by i in is independent of the choice of n and s, and is

degree-preserving, so it gives a map S(¢) — S(g4). This shows Op,js defines a presheaf of rings on the principal open sets. To
show it is a sheaf, we use (2.3), and prove more generally that there is an exact sequence

mn mn
0 M) HM(ga) — H Mgig;)-
i=1 ij=1

n
where M is a Z-graded S-module, and f, g; € S are homogeneous with D (f) = (J D (gi). We use the isomorphism
i=1

@ : D (f) — SpecS¢) in the next paragraph (3.110). The identity D (fg;) = (p—l(D(gfegff— deg9i)) then implies
" deg f
SpecS(s) = | D(g™® F 891 (W)
i=1

The natural map Mt — Mg induces a map M ¢) — M/q4), and an isomorphism (M ) )gciiegff,deggi = M(q4,), where we regard

them all as S)-modules. Similarly (M y)) deg rp—degai9; = Mg, g;)- SO the sequence we are concerning becomes

(gigj)
n n
0 —— My —— H(M(f))g‘gegfffdeggi — H (M(f))(g.lgj)degrf—deggigj-
i=1 1j=1

In view of (@), this reduces to (3.3).(0) (with A = S(;), M = M(y), f = 1, f; = g{*®"f~d°89:), This finishes the proof.
For a Z-graded S-algebra M, we define

M(D (f)) = Mg

Then we have showed that this defines a sheaf on principal open sets, and hence a sheaf on the ringed space (Proj S, Opyo;s)-

3.110 We prove that for homogeneous f € S, there exists an isomorphism in Ringy,,
(D4 (f), Oprojslp, (1) ———— (SpecS(s), Ospecs ;) )-

In particular, this shows Proj S is a scheme.

We first construction a continuous map on topological spaces. Recall in (3.11) we have a homeomorphism D(f) — Spec S¢.
We claim the composition ¢ : D (f) < D(f) — Spec S¢ — Spec S(¢) is again a homeomorphism. Explicitly, @(p) = pS¢ 1 S(y).
We define an inverse map 1 : SpecS(sy — D (f) by

adegf
W) = @ faesa| S e}
n=0

Each summand is an abelian subgroup of S, for if a8 f—™, bde8ff—™ ¢ p/ then (a — b)?98f/f=2" € p’, and thus (a —
b)de8f/f~" e p’ as p’ is a prime. This is an homogeneous ideal for if ade8ff~" ¢ p’ and s € Sy, then (as)de8ff—(n+m) —
(adesff—m)(sde8ff~m) ¢ p’. Thisis a primeideal, forif a € S,, and b € S,, with (ab)de8Tf= (M) ¢ p’ then either ades ™ € p’
or bdeeff~m ¢ p’ as the fractions are of degree 0 and p’ is a prime. Lastly, f ¢ (p’) for otherwise we would have
1 = fdesff—desf ¢ p/ which is absurd; in particular P(p’) 2 S, We must show ¢ and ) are mutually inverses. For
g € S;,, we have

ged(pp) = gt 't Mepp)SpSr=gepSinS=p=g*B " epSin S =op) = ge (o))
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so P(@(p)) =p.For g € S¢p), if g€ @(P(p’)), we can write g = f% for some homogeneous a € P (p’) with dega = ndegf.
But these imply p’ 5 adesff-dega = gdegf 5o g e p’.

Conversely, if g € p’, write g = f% for some homogeneous a € S with dega = ndegf. The above argument shows
aecP(p’),sogeP(p’)Ssn Sy = @(P(p’)). To show @ is a homeomorphism, note that for glegff—degg ¢ Sy withge Sy

homogeneous, we have
@' (D(g'8 ™ 989)) = D, (gf). (*)

For if giesff=des9 ¢ @(p), then gie&ff=d89 ¢ pS; so g ¢ p. This implies gf ¢ p. Note that is gi8ff~ 489 e pS;, then
gdesff—degg — af ™ for some homogeneous a € p, so g € p since p is a prime. Thus the above argument is reversible, so this
proves the equality. To conclude our assertion, it suffices to note that D (gf) forms an open basis of D (f) when g runs over
S and is homogeneous.

To show Ogpecs;, = ©+Oprojs|p, (), we check there are compatible isomorphisms on basis elements of the form (*). One
has

OSpecS(f)(D(gdegff_degg)) = (S(f))gdt‘gff—dcgf = S(gf) = OProjS(D+(9f)) = (p*OProjS(D(gdegff_degg))/

the isomorphism being given by the universal property of localization. This isomorphism is compatible with the restriction,
so by (2.3.1) it patches to an isomorphism Ospecs ;, — @« (Oproj S |D+(ﬂ).

In fact, the same argument also shows that l\f/l\(:) = @y (M|D+(f)) , 50 in fact we have an isomorphism in Mod;rs

(D4 (), Oprojslp., (), Mlp., () ———— (SpecS(¢), Ospecs 1y, Mf))-
Be aware of the difference of two tildes : one is projective, and another is affine.

3.110.1 For a graded ring S, define the category GrMods of graded S-modules as follows. The objects of GrMods consist
of all graded S-modules. A morphism in GrMods is an S-module homomorphism ¢ : M — N satisfying ¢(M,,) < N, for
each n € Z. With this terminology, from the last isomorphism in the previous paragraph, we see the projective tilde defines
a functor

(): GrMods —— Qcohy

3.110.2 The map D, (f) — SpecS(y) in (3.110) is compatible with the restriction, as one can argue as in (3.11.2). Composing
with SpecS(y) — SpecSy (coming from the natural map Sy — S(y)), we obtain a family of morphisms D (f) — Spec Sy,
compatible with the restriction. By (2.13.4) they give rises to a morphism Proj S — Spec S.

Similarly, let A be aring and let S be a graded A-algebra. Here we assume the image of A lies in Sg. With this assumption, the
homomorphism A — S — S¢ stabilizes S(y), making S an A-algebra, which gives rise to a morphism Spec S(¢) — Spec A.
Composing with D (f) — Spec S(y) and gluing, we obtain ProjS — Spec A so that Proj S is naturally an A-scheme.

3.110.3 Let M be a graded S-module and f € S4. Note that there is a canonical homomorphism

~

My ——— Ms) = M(D (f))

m ¢

SE

The homomorphisms obtained by varying f € S, are compatible, so this yields an Sp-homomorphism
My —— M(Proj S).

In particular, there is a canonical ring homomorphism Sy — S (Proj§S),
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3.111 Let S and S’ be two graded rings and ¢ : S — S’ a ring homomorphism such that ¢(S,,) € S/ 4 foranyn e Z and a
fixed d € N. For any p’ € ProjS’, we have

e '(p) eProjS = Sy Lo ' (p') = @(S1) Ep
or p’ € Proj S"\V, (@(S4)). If we put G(¢) = Proj S’ \V,(¢(S~)), we see ¢ induces a continuous map

®:G(¢) —— Proj$
p ¢ (p’).

Note that G(¢) = (J{D,(¢(f)) | f € Sq, d = 1} and @~ }(D(f)) = D (@(f)) for homogeneous f € S.. Observe that ¢
induces a homomorphism Sy — S :p(f) of graded rings, i.e., ((S¢)n) S (Sﬁp(f))n for any n > 0, so it further induces a ring
homomorphism Sy — S((p(f)). This gives a morphism D (¢(f)) — D (f) of schemes (3.110). For any homogeneous g € S,
it is easy to see there is a commuting square

Ser S

! J

Sip(fg) ) Sttg)

sothe D (¢(f)) — D (f) glue toamorphism G(¢@) — Proj S of schemes. We denote this morphism by Proj ¢. By construction
we see Proj ¢ is an affine morphism (3.20).

3.112 Lemma. Let A be aring, B a graded A-algebra and C an A-algebra. Then there is a canonical isomorphism

Proj(B ®a C) = ProjB xspeca Spec C

Here B®a Cis graded via B®a C = é (B ®a C).

n=0
Proof. Put E = B ®a C. The canonical A-algebra homomorphism t: B — E satisfies ((Bn) < E,, = Bn ®a C for every n, so
((B4+) € B4 ;infact, (B4 )E = E4. Then V4 (1(B4)) = V4 (E4) = &. By (3.111) and (3.110.2) we thus obtain an A-morphism
P : Proj E — Proj B. Also, by (3.110.2) the natural map C — E gives an A-morphism Proj E — Spec C. From the definition of
fibre product these two morphisms give

@ : ProjE — ProjB xgpec A SpecC

For homogeneous f € B,, we have

@ (D (f) xspeca Spec C) =~ (D (f)) = Do (1(f))
so we only need to show D (1(f)) — D (f) xspec A Spec C is an isomorphism for every such f. Back to algebra, we need to
show B(sy ®a C — E((f)) is an isomorphism. Clearly, this map is given by

b b®c
m O

which is clearly surjective. To show the injectivity, we only need to show B(¢) ®a C — Bf ®a C — E,(y) is injective. This is

clear. O

3.113 Let Abearing, Sbe a graded A-algebraand f € A ; again we assume the image of A is contained in Sy. The localization
S — St preserves degree, so by (3.111) we have a morphism Proj S¢ — Proj S. Moreover, by (3.110.2) we have a diagram

ProjSy ——— Proj$

|

Spec Ay ——— SpecA
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By checking affine locally, this is a commutative diagram. We claim this is a fibre square. This is clear from the proof of
Lemma 3.112.

3.114 Closed subschemes of Proj defined by homogeneous ideals. Let S be a graded ring and I < S a homogeneous ideal.

Then T < Opyjs is an ideal sheaf, so we can form the closed local-ringed space V(T), Oprojs /T|V (T))' We claim that

V(I) =V, (1) = {p e ProjA | I = p}.
For each homogeneous f € S,
V(D) A D (f) = {p e Do(f) | Ty & Oprojs,p} = {p € SpecS(r)) | (Ir))p < (S(r))p} = V(1)

We must show the image of V, (I) n D, (f) under the isomorphism D (f) = SpecS s is also V(I()). One containment is
clear. For the other way around, let p’ € V(I(¢)). We must check ) (p’) = I, where 1 is defined as in (3.109). If a € I, then
adesff—n e I ;¢ < p’. Hence I,, € ¥(p’))n foreachn > 0, or I < P(p’) as claimed.

Let @ : S — S/I be the natural projection. Then ¢ preserves degree, so by (3.111) there is a natural map @ : ProjS/I —
Proj S. From the construction we see the image of ®@ lies in V. (I). The sheaf map Opojs — @4 Opryjs /1 is defined by gluing
the spec of the maps Sy — (§/1) () (f € S+), which has kernel 1), so ker(Oprojs — @+ Oprojs 1) is exactly I By (2.24) ©

factors through the closed immersion (V(T), Oproj's /T|V(T)> — Proj S, yielding a unique isomorphism
Proj$/1 = (V(D), Oprojs /Ty 7)) -

3.115 Closed subschemes of ProjS (I). Let S be a graded ring. Let Z < Opyojs be an ideal sheaf. By (3.21.1) the closed
local-ringed subspace (V(Z), Ox/Z)|v (1)) is a closed subscheme if and only if Z is Opr,j s-quasi-coherent.

Assume T is Opyojs-quasi-coherent. Let f € S, be homogeneous. Then the canonical map Z(D ((f)) — Z|p , (s) is an
isomorphism. Define

deg f
Jr =D {ae S | af—ng eI(D+(f))}.
n=0

By construction Z(D ( (f)) = (J¢)f). Indeed, for x € Z(D ,(f)) < S(s), we can find n € Z>; so that xf™ € S,  gegr. Hence
(xfr)desfe—nd — xdesf e T(D, (f)), so that xf™ € J¢, or x € (J¢) (1)

If g € S, is another homogeneous element, we get a similar ideal J4. Replacing (f, g) by (fdeg9, gde8f), we assume
deg f = deg g =: d. We claim

JenTg) iy = Ui

and similarly for g. The containment < is evident. Now let a € (J¢)(f); then b := af™ € S 4 n ] for some n € Z and hence
bdesff—nd e 7(D, (f)). On Z(D. (fg)), we have

pdesf pdeg g gnd

fnd gnd fnd’
. pdegg  fm
Since S(45) = (S(g))rg-1 and Z(D . (fg)) = Z(D+.(g)) ®s,,, (S(g))rq-1, We see W . g—m € Z(D,(g)) for some m € Z>1, and
bf™
hence (bf™)des9g—nd-mdegg ¢ 7(D , (g)). This implies bf™ € J4, and hence bf™ N Jg N J¢ with a = ree

Suppose Proj S is compact, i.e., ProjS = D (f;) u --- Dy (fn) for some homogeneous fy, ..., fn € S, ; raising each f; to
some power we can assume degf; = --- = degf,, > 0. By the argument as above, we obtain several homogeneous ideals
Jey, oo Je,and Li=J¢ A - n J¢, such that

Iiey = e e, ienl.
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In other words,T(D+ (fi)) = s ) ro) = Z(D(fi)). By gluing we see >~ 7. We summarize the resultin the next subparagraph.
We will discuss this result in (3.125) in a functorial way.

3.115.1 Lemma. Let S be a graded ring and suppose Proj S is compact. Every closed subscheme of Proj S has the form
Proj S/1 for some homogeneous ideal I of S.

3.5.1 Quasi-coherent sheaves on Proj.

3.116 Let S be a graded ring. Then S can be viewed as an Sp-algebra. Let E = S, be a subset consisting of homogeneous
elements.

Lemma. S, = St if and only if S = Sy[E].

Proof. Considering the grading, we see if part holds obviously. For the only if part, we prove S, < Sy[E] inductively on

m

n > 1.Forse S, writes = ) sie;, where s; € Sand e; € En Sy, for some n; > 1. Writing s; as the sum of its homogeneous
i=1

part, we can assume s; € Sy _p,. Since n — ny < n, we can apply induction hypothesis to see s € So[E]. O

3.117 Suppose S be a graded ring that is generated by S; as an Sp-algebra. Concisely, S = Sy[S1]. Then Proj S is covered
by those principal open sets of the form D (f) with f € S;. Indeed, for any f € S4, write f = ), sif;, where f; is a product

of elements in Sy. Then (f) € (f1,...,Tm),s0 V. (f) 2 V. (f1) n--- "V (fin), and hence D (f) € D, (f1) U --- U Dy ().
But D (fi) < Dy (gi) if gi € S1 is any element appearing in the product f;, so D (f) is covered by those principal open sets
given by elements in S;. Since the D (f) form a basis of topology of Proj S, this proves the assertion.

In fact, the above argument shows that if E = S consists of homogeneous elements such that S = Sy[E], then S can be
cover by those principal open sets given by elements in E.

3.118 O(n). Let S be a graded ring and X = ProjS. For each n € Z, denote by S(n) the Z-graded S-module whose graded
pieces are given by

S(n)d = Sn+d~

—_—

We call this a twist of S by n. The Ox-module S(n) is denoted by Ox (n). Particularly, the sheaf Op,j5(1) is called the twisting
sheaf of Serre. For any Ox-module F, we denote by F(n) = F ®o, Ox(n), and called this F twisted by n. By (3.110.3) there
are canonical Sp-homomorphism

Sn=S8M)g ——— T(X,0x(n))

Taking direct sum, we obtain
S ——— @ T(X,0xn))

n=0

3.118.1 For f € Sq, the sheaf Ox(nd)|p , (r) is in fact trivial. To see this, recall that by (3.110), there is an isomorphism

—_—

(D+(f),0x(nd)|D+(f)) _— (SPECS(f),S(TLd)(f)).

Consider the S)-module isomorphism
S(f) _— S(nd)(f)
s ——— > s

This is well-defined for any n since f is inverted and S(nd)s) consists of elements of degree nd in S¢. This proves that
S(nd)¢) is free of rank 1 over Sy.
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3.118.2 Let M be a graded S-module and f € S4. Note that the natural isomorphism

Mt ®s, Ng ——— (M ®s N)¢

m n m@n

®

fa = fo fa+b

is grading preserving. In particular, this induces M) ®s,, N(s) — (M ®s N)(¢). Moreover, for any other homogeneous
g € S, we have a commutative diagram

M(f) ®s ;) Nisy ———— (M ®s N)

! !

Mitg) ®s 14) Ntgy — (M ®s N)(fg)

This implies we have a morphism M ®0x N — M®s Nin Modp, . In particular, we obtain a morphism
Ox(n) ®o, Ox(m) ——— Ox(n+m)
and by tensoring with an arbitrary Ox-module F, we obtain

Ox(n) ®oy F(M) ——— F(n+m)

3.118.3 Taking global section, we obtain a canonical bilinear map
F(X, Ox(n)) x T(X, Ox(m)) — T(X, Ox(n +m)).

This defines a graded ring structure on @ I'(X, Ox(n)), making the homomorphism

n=0

S ——— @ TI(X 0x(n)

n=0
a graded ring homomorphism (c.f. 3.27). Similarly, we have

@ I'X,0x(n)) x @ (X, F(n)) ——— D "X, F(n)

n=0 nez nez

so that @ T'(X, F(n)) is equipped with a graded P T'(X, Ox(n))-module structure, and hence a graded S-module structure.

nez n>0
3.118.4 Let M be a graded S-module. Consider the homomorphism
M(n) = M ®o, Ox(n) > M®s S(n) = M(n).
Taking global sections, we have
M, — I'(X,M(n)) - (X, M(n))

and by taking direct sum, we obtain

M- @D TXMMm) - P X Mm).

nez nez

Clearly these are S-graded module homomorphism.
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3.118.5 Insum, we have three natural homomorphisms
Ox(n) ®oy Ox(Mm) ——— Ox(n+m)
Ox(M) ®oy F(M) ——— F(n+m)

M(n) ——— M(n)

Letd > 0 and f € S4. Consider their restrictions to D, (f) :

Ox(nd)lp (1) ®oxlp , (1) Ox(Mlp (1) ———— Ox(nd+m)lp_ ()
Ox(nd)[p, (1) ®oxlp , () F(Mlp () ———— Fnd+mlp, (1)

Mnd)|p, () —— MMmd)|p, (1
In fact, these are all isomorphisms. The first follows from (3.118.1), and the second follows from the first. For the third, it

suffices to note that the map M — M(nd) defined by m + f™m induces an isomorphism S(nd) ) ®s ,, M(r) = M(nd)y).

3.119 Lemma. Let S be a graded ring and X = ProjS. Assume that X is covered by the principal open sets D (f) given by
fe Sy (e.g. S =So[S1] by (3.117)).

(1) Ox(n) is an invertible sheaf, and Ox(n) ® Ox(m) =~ Ox(n + m).

(ii) For any graded S-module M, M(n) ~ m

Proof. These follows from (3.118.5). O

3120 Let ¢ : S — T be a homomorphism of graded rings. Let U = G(¢) and f = Proj ¢ : U — Proj S be the morphism
associated with ¢ (3.111). We have an analog of Lemma 3.14, namely

(i) *M = (M/_C;);T) |, for any graded S-module M.
(i) fu(N|y) = NI®l for any graded T-module N.
In particular, if we put X = Proj S and Y = Proj T, this shows that f*(Ox(n)) = Oy(n)|u and f.(Oy(n)|u) = (f+(Ox|u))(n).

Proof. Let g € S, be homogeneous. Then f D(9) : Dy (p(g)) — Dy (g) is the spec of the ring homomorphism S, —
g g D.(e(g)) p g P (g)

Te(g)- By Lemma 3.14 we have

~ D, ~ N — A
(f*M)|D+(<p(g)) = (f|D+E(9p)(g)))*(M‘D+(g)) = M(g) ®S(g) T(cp(g)) = (M®5 T) |U(D+((p(9)))'
where the tilde in the last second place is affine with respect to T, (4)). Now (i) follows from (2.3.1). (ii) is proved similarly. []

3.121 Let A be aring, B a graded A-algebra and C an A-algebra. We then have a fibre square

Proj B xspec A Spec C -9 ProjB

| |

SpecC SpecA

By (3.112) there is a canonical isomorphism
Proj(B ®a C) = ProjB xspec A Spec C.
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In fact, it gives an isomorphism

(Proj(B ®a C), Oprojeeac(n)) = (Proj B xgpec A Spec C, g* Oprojs (1))

in Modigs for each n € Z.

3.122 Quasi-coherent sheaves on Proj Let S be a graded ring, X = Proj S and F be an Ox-module. Define

F)=@DT(X Fn)

nez

We already see this S-graded module in (3.27).

3.122.1 Example-Lemma. Let A be aring, n € Zs1, S = Alxo,.

..,xn] and X = ProjS. The map S — T, (Ox) in (3.118) is an
isomorphism.

Proof. Cover X be the affine open D (x4) (3.117). For any m € Z, by (3.110) we have a commutative diagram with the first
row exact

0 —— Oxm)X) — [[Ox(m)(D. (x)) — ] [ Ox(m)(D, (xexs))

i=0 i,j=0

Since the x; are non-zero divisors in S, the localization maps S — Sy, and Sy, — S, are injective, and these rings can be

viewed as subrings of S,...x, . Hence the above diagram reads Ox(m ﬂ Sk, (m), and thus by degree consideration

n
x) =) Sx, in Sxproxn-
i=0

It remains to show this intersection is precisely S. An element in Sy, ..., can be written uniquely as x;° - - -

X% f(xg, .., Xn )
with o € Z and f € S homogeneous. Such an element lies in Sy, if and only if «;

> 0 for any j # i. Now the result follows. (]

3.123 When F is quasi-coherent, there is a natural homomorphism

—_—

[(F) ——— F

which we now describe. Let f € S4. Recall that by (3.110), there is an isomorphism

(D4 (), T(F)lp , (1) —— (SpecSs), T (F) 1))

Define

T (F)(r) F(D(f)

m/f* ———— mlp, (1) ® (flp, (n) ™"
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Here we implicit use the isomorphism in (3.118.5) (perhaps also (3.118.1)). Since F is quasi-coherent and D (f) is affine, by
(3.15.1) this gives a homomorphism

—_—

Fe(Flp () ———— Flo -

Since all maps in (3.118.5) are functorial, the homomorphisms above, when f € S4, d > 0 vary, glue, yielding

—_—

[«(F) —— F.

3.123.1 Example. We claim F*F(D\pr:j s — Opyjs is right inverse to the tilde of the map S — T’y Opyjs defined in (3.118). Indeed,
for homogeneous f € S, the former map is

r*(OProjS)(f) B OPrOjS(D+(f)) _ S(f)
m/f* ————— mlp, (») ® (flo, (n) ™™ —— Mmlp, (/"

while the latter map
Siry ————— T(Oprojs)(r)

is given by sending s/f™ to s’/f™, where s’ is the image of s under S,, geg r = S(ndeg f)o — T'(X, S(TTae_g;r f)) given in (3.110.3).
By construction, m|p , (r)/f™ is mapped to m/f™ by the latter map, which proves our claim.

3.123.2 When X = Proj S is compact, we contend that

—_—

My(F) —— F.
is an isomorphism. Since X is compact, we can find homogeneous elements fi,..., f, of positive degree such that X =
n
| D+(fi) (3.106). Let d be the least common multiple of those degrees; by raising f; to suitable power, which does not alter
i=1

1
D, (fi), we may assume all f; have the same degree d. From the discussions in (3.118) and its subparagraphs, we see Ox(d)
is an invertible sheaf such that the multiplication maps

Ox(ad) ®oy Ox(bd) ——— Ox((a +b)d)

are isomorphisms for any a,b € Z. Recall the map Sq — T'(X, Ox(d)) stated in (3.118). Denote by s; the image of f; in
I'(X, Ox(d)). By construction (3.110.3), one has (by restricting to the affine pieces)

D (fi) = X5, ={peX|si g mpOx(d)p}.
Now we have

Te(Flir) = DT FM)) g = @ TXFnd)) e,
nez nez

= P TXF @0y Ox(A)®) 1) "2 Tu(F, Ox(d))(X) 1,)

nez

= F*(]-', OX(d))(X)(Si)

(32;7‘4) F(Xs.) = F(D4(f1)

i

The unlabelled isomorphism in the first line is given by multiplication by fi, as f; has degree d, and the equality in the
third line results from the definition of S-action (3.118.3). Unwinding all homomorphisms, one easily checks the above
isomorphism is precisely the homomorphism I, (F) ¢y — F(D4(f)) defined in (3.122). This finishes the proof.
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3.124 Let S be a graded ring and X = ProjS. Let F, G be two Ox-modules. For any n € Z, by twisting and taking global

section, to each homomorphism F — G we may construct homomorphisms I'(X, F(n)) — I'(X,G(n)). Taking direct sum
then yields

N (F) ——— Tu(9).

The construction being natural, this means I, really defines a functor
| ZMOdOX — GI’MOdr*(s).

The graded ring homomorphism S — T,(S) in (3.118.3) yields a forgetful functor w : GrModr, sy — GrMods, so we also
have a functor

woTly :Modp, — GrMods.

~

Since localization and restrictions to open sets are exact, we see (-) is an exact functor.

¢
3.124.1 Adjunction. Let M, N be two graded S-modules, and let g4, ..., g¢ € S+ be homogeneous such that S = | J D4 (gi).
i=1

Suppose {@i : M(g,) — N(g,)}i2; be a compatible set of homomorphisms, in the sense that (@i)g,q; = (@j)g;4, for any
i,j =1,...,L Then they join the exact sequences in (3.109) for M, N, i.e.,

¢ ¢
0 M [T Mgy —— T1 Migiq
i=1 i,j=1
1_[‘ i ‘/Hi,j(@i)gigj
¢ ¢
0 N .HlN(gi) EE— ,Hthgig;]-
i= ij=

Hence there exists a unique graded S-module homomorphism ¢ : M — N such that ¢4, = @i fori=1,...,L. This defines a
bijection from Homgmvods (M, N) to the set

(pf)s € H Homwmoas (M), N¢s)) | (@f)g = @4 for all homogeneous f,g € S with D (g) < D (f)
feS
homigeneous

But by construction, such compatible homomorphism (¢+)¢ defines an Ox-module homomorphism M — N, and vice versa.
Hence there is a natural bijection

HomGrMods (M/ N) — I_IOInMod@X (M, ﬁ ) .

This means the projective tilde () : GrMods — Qcohy is a fully faithful functor.

Now assume X is compact. If F is quasi-coherent, then (3.123.2) says that there is an natural isomorphism wrl, (F) > F.
Hence there is a bijection

Homganod, (M, W (F)) —————— Homytody, (M, Iy (F)) ——— Homgeohy (M, F).
functorial in M and F. Equivalently, this means wr, is right adjoint to the (), when X = Proj S is compact. In particular, wT

and T, are left exact.
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3.125 Closed subschemes of ProjS (II). Let S be a graded ring, X = ProjS and let j : Z — X be a closed subscheme. Let
7 :=ker(Ox — j«Oz). We then have an exact sequence

0 —— T%(Z) — Tu(Ox) — T(§:O2z).

By (3.123.1) and (3.123.2), the tilde of the natural map S — T, (Ox) is an isomorphism. Let I < S be the homogeneous ideal
fitting into the pullback diagram

M«(Z) —— T(Ox)
[——S
Taking tilde we obtain an isomorphism I~ I:;Tl_'j By (3.123.2) again we deduce that 1 = 7. This recovers (3.115.1); moreover,
the ideal I is given explicitly by the kernel of the canonical map

S —— Tu(Ox) —— T(jx0z) = (‘D I'(X, (3+Oz)(n)).

n=0

3.126 Theorem (Serre). Let S be a graded ring and suppose X = Proj S is compact. For a finitely generated quasi-coherent
sheaf F on X, there exists ng € Z>g and d € Z~( such that for all n > ny, the sheaf 7(nd) is generated by finitely many global
sections. If S = Sy[S1], then d can be chosen as 1.

Proof. Asin (3.123.2) take homogeneous elements fy, ..., f, of positive degree d such that X = U D, (fi);wecantaked =1

if S = So[S1]. By (3.15.1), F(D (f3)) is finite over Ox (D (fi)); let {si; € F(D4 (fi))}ierm S F D+( 1)) be a finite generating
set. By Lemma 3.27.3, applied to £ = Ox (1), there exists ng such that f}"s;; € F(X,]—" (no d)) for i € [n] and j € [my]. Then for
n > ny, the set {fI'sy;} < I'(X, F(nd)) generates F(nd). O

3.126.1 Corollary Let S be a graded ring and suppose X = Proj S is compact If F is a finitely generated quasi-coherent sheaf
on X, then there exists a finite S-submodule N of I, (F) such that F >~ N.

Proof. By Theorem 3.126 there exists some n € Zy( such that F(n) is generated by finitely many global sections. Let N be
the S-submodule of T (F) generated by these sections. Then N < T, (F) induces an injection N — I« (F) = F. Twisting by
n gives N(n) < F(n), which is an isomorphism by construction. Twisting back gives N =~ F. O

3.5.2 Projective spaces

3.127 Let A be a ring. For an integer n > 1, we can form the polynomial ring S = A[xg, x1, ..., xn] with n-variables and
coefficient in A. If we view each variable x; as a degree one element in S, it naturally becomes a Z¢-graded ring generated
by all degree one elements. The scheme

= Proj Alxg,x1,...,%n]
is called the n-dimensional projective space over A. By (3.117), we have
PA =Di(x0) uDy(x1) Uu---UDy(xn)
and each D (x;) is isomorphic to the affine scheme (3.110)
(D1 (x1), Opn I, (x)) = (Spec Alxo, - .., Xnlxis Ospec Alxg,.xnly. )

i

The variables xq, ..., X, are called the homogeneous coordinates of P} .
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3.127.1 Letk be a field and V a finite dimensional k-vector space. Define
P(V) :=ProjSym V".
Upon picking a k-basis for V, we can identify Sym V¥ with the polynomial ring over k with dimy V variables, so P(V) =~

]P’iimk V-l non-canonically. The scheme P(V) is called the projectivization of V. (compare with (3.59).)

3.128 Definition. Let (X, Ox) be a ringed space and F be a Ox-module.
1. F is generated by global sections at x € X if 7 (X) ®o, (x) Ox x — Fx is surjective.
2. F is generated by global sections if it is so at every point of X.
3. Let S < F(X) be a subset. F is generated by S if S ®o, (x) Ox,x — Fx is surjective for any x € X.

4. F is finitely generated at x € X if there exists an open neighborhood U of x, an integer n > 0, and an exact sequence

(Ox|u)™ Flu 0

3129 Letf: (X, Ox)— (Y, Oy) be amorphism of ringed spaces. If F is an Oy-module, by adjunction applied to the identity
f*F — f*F, we obtain a canonical map F — f,.f*F; by abuse of notation, we denote this morphism by
% F — £, F.

Now for a section s € F(U), its image f*s € (f,f*F)(V) = (f*F)(f~1(V)) is called the pullback section of s along f. In
particular, if s € F(Y) is a global section, then f*s e (f*F)(X) is a global section.
A careful computation using the construction in (2.10) and (2.12) shows that if s € F(Y), then

(f*s)|x = s|y ® 1 € Fy ®oy,, Oxx = (f*F)x
for any x € X and y = f(x) € Y. In particular, this implies X¢x, = f~1(Y;). Furthermore, we have

f*s = lims|y ® 1 € (f*F)(X)
u

3.130 The homogeneous coordinates xo, ..., xn of P}, by (3.122.1), give rise to elements in OPR (1)(P%). In fact, the sheaf
Opn (1) is generated by the x;’s. To see this, note that Opx (1)(D (xi)) = S(1)(x,) = XiS(x,) is a free S(,,)-module of rank 1.

Then for any p = p € SpecS(,,) = D4 (xi), the stalk at p is xi(S(x))p = xiOpn ,,, which is generated by x; over Opn ,,, as said.

3.130.1 Let A be aring and X be a scheme over A. Let f : X — P} be a morphism. By (3.26.1), the pullback sheaf f*Opn (1)
is an invertible sheaf; let us put £ = f*(Opn (1)). For 0 < 1 < n, let s; := f*x; € £(X) (3.129). The last assertion in (3.129)
implies that the s;i’s generate the sheaf £. In fact, the datum (£, sy, ..., sn) characterizes the morphism f.

3.130.2 Theorem. Let A be a ring and X be a scheme over A.
@) If f: X — Pj is an A-morphism, then f*(Opr (1)) is an invertible sheaf on X generated by the global sections

% (0 <1< n).
(ii) If £isaninvertible sheaf on X generated by the global sections sy, ..., sn € £(X), then there exists a unique A-morphism
f: X — P} with £ = f*(Opn (1)) as Ox-modules and s; = f*x; (0 < i < n) under this isomorphism.

Proof. It remains to prove (ii). Let X; = Xfi be the open set defined as in (3.27). Since the s;’s generate £, it follows at once
that (X;)I*, covers X. Define the morphism f : X — [P} as follows. Define an A-algebra homomorphism

X0 Xi—1 Xi41 Xn
A=A |—,...—,—,...,—| — Ox(Xy)
Xi Xi Xi Xi
X, Sj
Xi Si
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= (silx) ®s71 € (L®LY)(X) = Ox(X:) (327). By
(3.56), this gives an A-morphism f; : X; — D (x;) € PRX. These morphisms glue for an obvious reason, so we obtain a global

This is well-defined as on X;, there exists s; ' € £¥(X;) and so sjs;

A-morphism f : X — P%. By construction and (3.129), we have

(f*(Opn (1))Ix, = 5 (Opr ()|, (x0) = T (xi0pn D, (x1)) = (F*%) ] (Opn [p, (1) = (F*%1) Ox|x,

On the other hand, we have L|x, = siOx|x, (see the fourth line of the proof). By viewing Opn (1)[x; ~x; as subsheaves of
Opn (1)|p x; and Opn (1) |D+(Xi) respectively, we obtain a transition map
Xi

; :XiOPrX|D+(Xin) X)'OPR|D+(X1X1)
)

Xi ¢ Xj

On the other hand, the transition map for £|x, and L|x; is ?1 :8i0x(x;~x; = $j0x|x;~X;- This implies the isomorphisms

(f*x1)Ox|x; — siOx|x, defined by f*x; — s; glue to an isom]orphism *(Opn (1)) = L.

For the uniqueness, let g : X — P} be an A-morphism satisfying (ii). By (3.129), the morphism g; = g|3f(’“) is well-
defined. It suffices to show the corresponding homomorphism 0; : A; — Ox(X;) satisfies 0; (xjx; h = 8§81 1 Restricting,
we have L]x, = (g*Opn(1))[x; = g§(Opy (1)|p, (x;)), and obtain an Opx |p, (x,)-module morphism G : Opn (1)|p (x,) —

(9i)+L]x; - Recall in (2.11) the latter is viewed as an Opn |p | (x,)-module via the homomorphism 6, so

X; xX;
Gp, (x\) (%) = Gp, (x) (Xi : ]> =6; <)) Gp, (x) (xi).

i i

Our claim will follow once we prove Gp |, (x,)(x;) = f*x; € £(X;) for any 0 < j < n. This is clear from the definition (3.129).
O

3.131 Functor of projective spaces. Let A be a ring and R an A-algebra. The last theorem describes the R-points of the
projective n-space Py . Precisely, there is a bijection

PR (R) = {(L,R™*! — L) | Lis an R-module of locally free of rank 1} / ~

where ~ is an equivalence relation : two pairs (L, R**! — L) and (M, R**! — M) are equivalent if there is an R-isomorphism
L — M fitting into the commutative diagram

Rn+1 L 0

Rn+1 M 0

with exact rows.
If R — S is a ring homomorphism, the resulting map P (R) — P (S) is given by tensoring S :

PA(R) PA(S)

(LR"! L) —— (L®g S,S™! - L®k S).
This can be seen by (3.130.2).(i). Note this is well-defined as tensor is right exact.

3.132 Example : projection from puncture affine space to projective space. Let A be a ring, and put

AN{0} :=Dlto, ..., tn) = AR\ V(to, ..., tn).
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The structure sheaf O« is generated by the global section to, ..., tn at each point except along V(to, ..., tn). Indeed, each

t; acts a unit on D(t;), so this follows from the fact that A‘}\“\{O} = |J D(t1). Hence by (3.130.2).(ii), there is a unique
i=0
A-morphism
m: AT\ {0} ———— P} =ProjAlxo, ..., Xn]
such that w* Opy (1) = OARJA\{O} and t; = m*x; for 0 < i < n. By (3.26.1) it follows that
W*OIP;{ (m) = OARH\{O}
for all m € Z. This will be useful in the computation of cohomology of O(m)’s.

3.133 Example : Segre embedding Let A be a ring and n, m € Zx(. Consider the projections

PR ><Spec A PTAH
pr,
Py
n m
]PA IEDA

and the invertible sheaf pry Opn (1) ® pry Opn (1) on the product PR xspec A PR". We will see in (8.21) that this invertible sheaf
is generated by {X{Yj }o<i<n,o<j<m, 0 by (3.130.2) it determines an A-morphism

. +m+
@ 1 PR Xspec A PR ————— PRI

We claim this is an closed embedding. Say z,...,zij,...,Znm is the coordinates of IPR‘“*“‘*“ and @*ziy; = xiy;. By
construction, on D (zi;) the map ¢ is given by the spec of

A[Zkeli_jl} ——————— Ox(Dy(xiyj)) = Abax; '] ®@a A[yzyj_l]

-1 -1 -1
Zkezyy XkXq ®ygyj .

Since this is surjective, ¢ is a closed embedding over D (zi;). Hence ¢ is a closed embedding. This is called the Segre
embedding.

3.133.1 Lemma. The image of ¢ is given by the V. of all the 2 x 2 minors of (zij)o<i<n,0<j<m-
Proof. Suppose f € Alzijlhom satisfies f(x;y;) = 0. We must show f lies in the ideal generated by all the 2 x 2 minors of

(zij)o<i<n,0<j<m- This follows from a simple induction. O

3.134 Example : Veronese embedding Let A be aring, n € Z3¢ and m € Z>,. We will see in (8.21) that the invertible sheaf
Opy (m) is generated by global sections which are Alxo, ..., Xnldgeg=m- By (3.130.2) this defines an A-morphism

(n+nl)_1
TIES Q—

We claim this is a closed embedding. For « = (g, ..., &n) € (Zs)™ !, write x* = xg? - - - x%. Let (z«) |a|=m be the coordinates
n-+m

of }P’E\ )1 and P*z, = x%. On D4 (z«) the map 1 is given by the spec of

Alzpzy'l ————— Opy (D4 (x%))

-1

2p2g) ——————— xB(x*)L,
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Here
Opn (D4 (x¥) = Alxo, ..., Xn] (x) = AP (x¥) 7]
so this ring homomorphism is surjective. Hence 1 is a closed embedding. This is called the degree m Veronese embedding.

3.135 Nakayama’s lemma Let F be a finitely generated quasi-coherent sheaf over a scheme X. If x € X and the images of
$1,..-,Xn € Fx In Fyx ® K(x) generate the k(x)-vector space Fyx ® k(x), then there exists an open neighborhood U of x in X
such that the s; extends to U and define a surjection

(Ox|u)™ Flu

(X1,...,Xn) ——————> X181+ + XnSn.

In other words, sy, ..., sy generates F on Ll

Proof. This immediately reduces to the affine case : let A be a ring, p a prime ideal and M a finite A-module. If s,...,5, € M
spans M, ®a, k(p) over k(p), then there exists f € A\p such that sy, ..., s, generate M over A;. To show this, let xy,...,x
be a generating set for M and write

Xi =Ti181 + - - TinSn (mod p)

with ri5 € A, so clearing the denominators we see

n 1
aixiy = Z biij + Z CijXj
j=1 j=1

for some a; € A\p, byj € A and ¢y € p. In matrix form, we see

X1 S1
(aidyj —cij)y | ¢+ | = (by)

X1 Sn

Multiplying both sides by adj (aid;j — cij)ij and expanding, we obtain

n
in = Z di]'Sj
i=1
where f = det(a;idi; — cij)i5 € A\p and dyj € A. This f does the job. O

3.136 Let A be a ring and X be a scheme over A. Let £ be an invertible sheaf over X and sy, ..., sn € £(X) be some global
section. Put

U= {x € X| sglx,...,Sn|x generate the stalk £, as Ox x-module}

This is an open subset of X by Nakayama’s lemma (but possibly empty). By Theorem 3.130.2 applied to the A-scheme U and
the invertible sheaf £|y together with the sections so|u, ..., sn|u € £(U), we obtain a unique A-morphism g : U — P} with
£|u = g*O]pR (1) and Si|u = f*Xi.

3.137 Let us discuss on some consequences of Nakayama'’s lemma. For a quasi-coherent sheaf F on a scheme X and x € X,
define

rank, F = dim,y) (]-"x R0y K(x)) € Zxp U {00}.
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We also recall that for a topological space X, a map f : X — R is called upper (resp. lower) semicontinuous if for all c € R,
the preimage f~1((—oo, c)) (resp. f~1((c, o0))) is open in X.

3.137.1 If F is a finitely generated quasi-coherent sheaf, then the rank function
rank F: X ———— Zo
X ———— rank, F
is upper semicontinuous. Explicitly, we must show for n > 0, the set
{x € X | ranky, F < n}

is an open set in X. This is clear, as by Nakayama’s lemma, we see if 7 ® k(x) has dimension n, then there is an open
neighborhood U of x such that for each y € U, the k(y)-vector space Fy ® k(y) has a generating set of size n. Hence
ranky F < n for ally € U. This finishes the proof.

3.137.2 If F is locally free (of finite rank), then trivially rank F : X — Zy is locally constant. Conversely, assume rank F is
locally constant. Say n = rank,F and U is an open neighborhood of x such that n = rank,F. By Nakayama’s lemma there
is an surjection

T:(Ox|u)t ——— Flu

The constancy condition on U implies that Ty ®o, , id,(y) : k(y)™ — Fy ®k(y) is an isomorphism for all y € U. In particular,
(kerTy) =ker Ty € mx O, foreachy e U.

3.5.3 Grassmannian

3.138 Let k be a field and V a finite dimensional k-vector space. For 0 < m < n := dimy V, the set

Gr(m,V) := {W c V/|dimW-= m}

subspace

is called the Grassmannian of m-dimensional subspaces of V. There is an injection

Gr(m,V) —— Gr (1, A™V)

W A" W
3.6 Relative spec

3.139 Let X be a scheme and R a quasi-coherent sheaf of Ox-algebras. We are going to construct a scheme Specy R, called
the relative spectrum of R over X, along with a morphism 7t : Specy, R — X and an isomorphism R = 7, Ospec, » Of
Ox-algebras satisfying the following universal property : for any morphism f : Y — X of local-ringed spaces and a morphism
a: R — f.Oy of Ox-algebras, there exists a unique morphism

g:Y — Specy R
of schemes fitting into a commutative triangle

Y —2— Spec, R

N
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so that « factors as

9%
R = 7, Ospec, g —— > 0y .

3.139.1 As an example, let X be a scheme and consider Ox, which is itself a quasi-coherent Ox-algebra. It is tautological
that the morphism id : X — X and the equality Ox = Ox satisfies the universal property in (3.139). Hence X = Spec, Ox as
schemes.

3.139.2 Let X and R be as in (3.139). For a local-ringed space Y, define
F(Y) = {(£,8) | f € Homugs(Y,X), B € Homayg, (R, fOv) }
= I_Ion’lAlgLRS ((Y/ OY)/ (X/ R))

If Y — Y’ is a morphism in LRS by composition we obtain a map F(Y’) — F(Y). Thus F defines a contravariant functor
F: LRS — Set. A part of (3.139) says that F is a representable functor that is represented by the scheme Spec, R. If we fix
some f € Homigrs(Y, X), we then obtain the isomorphism

HomAlgoX (R,f+Oy) = Homyrs, (Y, SpecyR).

where LRSx is the subcategory of LRS consisting of local-ringed spaces over X (obviously defined). We will see in (3.140)
that this generalizes the isomorphism (3.7). In particular, if we take Y = Specy 7 for some quasi-coherent Ox-algebra 7 and
f to be the canonical morphism 7’ : Y — X, we have

Homyyg,, (R, T) = Homyyg,, (R, 70 Ospec, 7) = Homsen, (Specy T, Specy R)

By restricting to affine opens in X (3.143), this is the same as the anti-equivalence between affine schemes and commutative
rings. From this we see Specy defines a fully faithful functor from the category of quasi-coherent Ox-algebras to Schx.

3.140 Affine case. We start our construction of Spec, R by first considering the case X being affine. We claim that
SpecyR = Spec R(X)
does the job. Say X = Spec A and R = R for some A-algebra R. By (3.7.1), for any local-ringed space Y
Homayg, . (Y, Oy), (X, R)) = Homaig(A —~ R, Oy(Y) = Oy(Y))
Since R and Oy (Y) are unital, the last set is simply Homging (R, Ov(Y)), and hence
F(Y) = Homaig,y, (Y, Ov), (X, R)) = Homping(R, O(Y)) = Homugs(Y, SpecR).

by (3.7). Now for any local-ringed space Y and (f, &) € F(Y), there is a commutative diagram

(f, ) + f

F(Y) —————— Homygs(Y,SpecR)

F(SpecR) ———— Homygs(SpecR, SpecR)

(7tr 'Y) f idSpec R

From construction we see 7 : Spec R — Xis the map obtained by taking spec of the structure map Ox(X) — R. Also, the map
Y : R — 14 Ospecr is just the one induced by idg : R — R. This is an isomorphism by (3.15.2).
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3.141 Local nature of Specy. Let U be an open subset of X, and let f : Y — X be a morphism with image in U.
Then the morphism g : Y — SpecyR goes into =1 (U). Moreover, we have «|y : Rlu — (f+Oy)lu = (f|1)+Oy and
(704 Ospecy R) U = (7t -1(u)) % (Ospecy R |1 (1)), which means 711 : -1 (U) — X solves the universal property for
Spec R|u. Therefore 7~ (U) =~ Spec,; R|u, and in the notation (3.55) it reads

(SpecxR) |u = Spec Rlu
If U is affine, by (3.140) this is Spec R(U). This suggests us to construct Spec, R by patching Spec R(U) together.

3.142 Lemma. Let Z be a local-ringed space representing the functor F in (3.139.2).
(i) There is a natural morphism 7t: Z — X.
(ii) For any open U < X, the open local-ringed subspace 7t~ (U) represents Y Homaig, . (Y, Oy), (U, R|u)).
(iii) Z is naturally a scheme and 1,0z =~ R canonically.

In particular, Z solves the universal property in (3.139).

Proof. Since Z is representing F, we have F(Z) = Homayg, ((Z,Oz), (X, R)) = Homsen(Z, Z); let (7,v) € Homgen(Z, X) x
HornmgoX (R, m+Oz) be the pair corresponding to idz € Homge(Z,Z). Then m : Z — X is the map in (i), and the map
v : R — m,. Oz is the map in (iii), which will be shown to an isomorphism.

We turn to (ii). Let G be the functor in the statement, and let L : U — X be the open immersion. For (f,3) € G(Y),
post-composing it with t gives an element in F(Y), which corresponds to a morphism f:Y—> Z Thenmof =tof,so
F(Y) < ml(U). By (2.22) there exists a unique f’ : Y — 7~ !(U) which f factors through. This establishes a natural map
G(Y) — Homse (Y, n1(U)) with an obvious inverse. Hence 7! (U) represents G.

It remains to show (iii). If U is an affine open subspace of X, by (ii) and (3.140) 7t~ (U) =~ Spec R(U) as local-ringed spaces,
and v|u : Rlu — (ﬂ‘}_[l,l(u) )% Oz|x-1(u) is an isomorphism. These together show (iii). O

3.143 Construction. For any U € U/, let my : Spec R(U) — U be the map as in (3.140). For any U, V € U, we must construct
an isomorphism Oy : 711_11 UnV)x 71\_,1 (U n V) satisfying the conditions in (2.13). By (3.15.2) and (3.14), we have

Rlu = (mtu)«Ospecr (1) ©)

and thus R(U N V) >~ OspecR(u)((Wu)_l(U n V)). Thus from the restriction R(V) — R(U n V) we obtain a morphism
71{11 (U N V) — SpecR(V). This morphism fits into a commutative diagram

g (UnV) SpecR(V)

unvcv

(which, as V is affine, follows easily from taking global sections), implying the image lies in 7ry,' (Ul N V); denote by
Ouv : nal(u NnV)— 71\_/1(11 N V) the resulting morphism. Note that the inclusion 71,:[1 (U n V) < SpecR(U) corresponds to
the restriction R(U) — R(U n V) as well, and from this we easily deduce that 6y is an isomorphism and Gf&/ = Ovuy. Also,
this shows the 8yv’s satisfy the cocycle condition in (2.13), so we obtain a well-defined scheme, which is of course denoted
by SpecyR. By (2.13.4), the my’s patch together to a morphism 7 : Specy R — X. The way we glue Spec R(U) and 7t also
glue the isomorphisms (©) together to obtain a global isomorphism R = 7 Ospec, ®-

3.143.1 Finish of construction. We still need to show that 7 : Specy R — X and R = 7,Ospec, r satisfy the universal
property in (3.139). Let f : Y — X be a morphism in LRS and &« : R — f,Oy a morphism of Ox-algebras. Let U be an affine
open cover of X. Put fy; = f|}{1(u] : f71(U) — U for any U € Y. Note that (f,Ov)|u = (fu)«(Ov|¢-1(u)). Then as in (3.140),
we have a morphism gy, : f~1(U) — Spec R(U), which is, in the level of rings, induced by «(U) : R(U) — Oy (f~(U)). The
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gu’s patch together, as for any U, V € U, we can cover U n V by affine open subsets W’s, and both gy |¢-1(w) and gv|¢-1(w)

are then given by R(W) — Oy(f~1(W)). Thus we obtain a well-defined morphism g : Y — Spec, R. Finally, « factors as
-1

R =~ m, OSPECXR 9%, f+Oy since it does on every affine open U € Y. The morphism g is unique as the restriction 9‘7:71((&1))

must equal gy, which is unique as shown in (3.140).

3.144 Lemma. Let X be a scheme and R a quasi-coherent Ox-algebra. Let g : X’ — X be a morphism of schemes. By (3.17),
g*R is a quasi-coherent Ox--algebra. Then there exists a canonical isomorphism

Specy, (g*R) = X’ xx Specy R

Proof. Let F be the functor in (3.139.2) represented by Spec, R, and let G be that of represented by Spec,,(g*R). It suffices

to construct a natural bijection
G(T) = hx/(T) xn, (1) F(T),

where T € LRS. But this is more than tautological : giving f' : T — X’ with a ' : g*R — (f'),Or7 is the same as giving
f:T— Xwith:R — f.Or and f = g o f’. Here we use adjunction (2.11) to replace 3 by f*R — Ot and replace ' by
(f)*g*R — Or. O

3.145 Proposition. Let f:Y — X be a morphism of schemes. TFAE :
(a) fisan affine morphism (3.20).

(b) There exists a quasi-coherent Ox-algebra R such that Y = Spec, R as X-schemes.

Proof. (b)=(a) follows from the discussion in (3.143). For (a)=(b), note that an affine morphism f : Y — X satisfies the
conditions in Lemma 3.17, so f,Oy is a quasi-coherent Ox-algebra. At this stage, it suffices to show that Y >~ Spec, f,.Oy
as X-schemes. By the last isomorphism in (3.139.2), the identity morphism on f, Oy induces a canonical morphism g : Y —
Spec, f,Oy. To see this is an isomorphism, let U be an affine open subset of X such that f~1(U) is affine. We only need to show
g\?:ll((&l)) is an isomorphism, where 7 : Spec, f..Oy — X is the canonical morphism. From construction (3.143.1) g|:f:11((tlJ ]) is

built from the isomorphism id¢-1 () : fxOv(U) — Oy (f~1(U)), so 9‘7::11((1111 )) is an isomorphism as well. O

Note that the proof also gives another way to see the equivalence in (3.20). Further, the claim in (3.19) also follows from
the proposition.

3.146 Let X be a scheme. Put QcohAlg, = Qcohy N AlgoX in the obvious sense. Recall in (3.139.2) we see that Specy
defines a fully faithful functor :
Specy : QcohAlg, ——— Schx

(3.145) shows that the essential image of Specy is the full subcategory of Schx consisting of X-schemes with structure
morphism being affine; we say such an X-scheme is affine over X. Hence Spec, establishes an anti-equivalence from
QcohAlg, to the category of schemes affine over X.

3.147 Lemma. Let X be a scheme and A a quasi-coherent Ox-algebra. Then an .A-module F is .A-quasi-coherent if and only
if it is Ox-quasi-coherent.

3.148 Letf: X — S be an affine morphism. By (3.17) we see f4Ox is Os-quasi-coherent. Recall by construction if F is an
Ox-module, then f,F is viewed as an Os-module via the homomorphism Os — f,Ox (c.f. see the end of (2.11)). By (3.17)
again we see f, defines a functor f, : Qcohy — Qcohg. But (3.147) implies it actually factors through Qcoh¢ o, — Qcohg,
defining a functor

fx : Qecohyx — Qcohy o
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3.148.1 We claim f, is a fully faithful functor. Let 7, G be Ox-quasi-coherent. Note that there is an equality
Homf*(?x (f*}—/ f*g) = Homos (f*]'-/ f*g)
as Os acts on fy F, f,.G via f,.Ox. If V < § is affine open, together with the above identity we have

Homs, o4 (f«F, £:G) (V) = Home, o, (f« Flv, fxG|v)

(3.15.1) 1 _1
=~ Homox(f—l(v))(./—"(f (V))/g(f (V)))
(3.15.1)
=~ Homg, 1(v)(f|f ), Gle-1(vy) = fsHomo, (F,G)(V)

3.6.1 Inverse limit of schemes

3.149 Example. Let (A{)ic1 be a direct system of rings, and put A = li_r)n,l A;. Then the affine scheme Spec A is the (inverse)
limit of the schemes (Spec A;); in the category LRS. Indeed, by Theorem 3.7, we have
Homygs(X,Spec A) = Homging(A, Ox (X)) = lim Homging (A1, Ox (X)) = lim Homyrs(X, Spec Ai).
i i
Hence this shows SpecA = lim SpecA; in LRS. Of course this is not precise unless we specify the canonical maps
{Spec A — Spec A}, which are those induced by {A; — A};

3.150 Generally, let (X, fij)i>je1 be an inverse system of schemes such that
& the transition maps fi; : X; — Xj are affine foralli > je L.

Fix an index iy € 1. Then (X, fi;)i»j»i, defines an inverse system in the category of schemes affine over X;,. To define
liili>io Xi, by (3.146), it suffices to show that QcohAngiO admits direct limits. We show this in the following subparagraph.

3.150.1 Lemma. Qc:ohx_l0 admits direct limits.

Proof. The question is local, so we may assume X;, = SpecA is affine. This then follows from (3.15.1), which says that
Moda = Qcohgpe a- O

3.150.2 Put X = lim. Xi ; by construction this is again a scheme affine over X;,, and there are natural maps f; : X —
Xi (i = ip) compatlble w1th the transition maps. For general j € I, pick any i > j,ip and define f; = fi; o f; : X — Xj; the
definition does not depend on the choice of i by compatibility. We claim (X, f;)i>o is the inverse limit of (X, fij)i>jer in Sch.

Let gi : Y — X; (i € I) be a cone over (Xj, fij)i>je1- Let y € Y and choose an affine open neighborhood U, of gi, (y) in Xj,.

1 (Uy) . . . . .
1 Uy), fy] 7 Y )i=j=i, since the fi; are affine, this is an inverse system of affine schemes,

Consider the inverse system (f; ( 6l uy)
Y

SO @1210 f.l_io (Uy) exists (3.149) ; but clearly flo (Uy) € Xis also the inverse limit, so

L (Uy) = Lim £33 (Uy).
1>10
: . i (Uy) . . 1 2 (Uy) .
together with the morphisms fi\f,{’(u ) represents the inverse limit of (fiio (Uy), f; ‘fﬁo u ))121210 in Sch.
Y ifg Yy

LetVy © g;ol (Uy) be any affine open neighborhood of y in Y. Since g, = fij, 0 gi for any i > i, we see g (Vy) < f;ii (Uy).
The above discussion shows there exists a unique morphism gy, : Vy, — f;ol (Uy) € X compatible with the f; and i3, (i > ip).
By uniqueness, the morphisms gy, , where y € Y and V,, are taken as above, glue, yielding a global morphism g : Y — X.
Clearly this is unique with respect to the compatibility. This demonstrates our claim. We summarize what we obtain in the
next paragraph.

3.151 Theorem. Let (X;, fy )i>]~61 be an inverse system of schemes such that the transition maps fi; : X; — Xj are affine for
alli>je L Then X =lim._ X; exists in the category of schemes. Moreover,
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(i) The canonical morphism f; : X — X; is affine for every i € L.

(ii) For any index ip € I and any open subspace U < X;, one has

fi—ol(u) = @fgi(u).
i=1g

in the category of schemes.

3.6.2 Vector bundles

3.152 Definition. Let X be a scheme and n € Zxg. An X-scheme p : Y — X is called a vector bundle of rank n over X if Y
admits an open cover U such that

(i) for any U € U, there is an isomorphism Py, : p~1(U) = Al of U-schemes, and
(ii) forany U,V € U and any affine open subset W = Spec A < UV, theisomorphism 1])\_/1 oy of Aly, = Spec Alx1,...,%Xn]

is given by a linear automorphism 6 of Afxy,...,Xn], namely, 6|4 =ida and 8(x;) = Z aijx; for some ay; € A.
j=1
We shall call the datum {\u}uey satisfying (i) and (ii) a vector bundle structure over X on Y. A morphism between
vector bundles (Y,{y) of rank n and (Y’,1y,) of rank n’ over X is a morphism g : Y — Y’ of X-schemes such that for
any Ue U,V eVand W = SpecA < U NV, the restriction g|lw : Yjw — Y’|w comes from a linear homomorphism
A[ylr oo /yn’] - A[Xlr . -/Xn]-

3.153 Symmetric algebra. Let (X, Ox) be a ringed space and let F be an Ox-module. Put Syrn0 F =0x, Sym1 F =F,and
for integers n > 2,

Sym™ F = F®"/T,

where Z,, is the Ox-module generated by the local sections s ® -+ @ s — 55(1) @ - @ Sg(n) € F® (5 e S,,). This is called
the n-th symmetric power of 7, and it is an Ox-module. Here the tensor product is always over Ox. The direct sum

SymF = @ Sym™ F

n=0

is called the symmetric algebra of 7, which is an Ox-algebra.

3.154 For any integer n > 0, the n-th symmetric power Sym™ F is isomorphic to the sheafification of the presheaf
U — Sym"™ F(U). To see this, for n > 2, the presheaf U — Sym™ F(U) is the quotient of F @ --- ® F by the subsheaf 7,
generated by the local sections s1 ® - - ® $n — S¢(1) @ - @ S (n) € FE™ (0 € Sy ). By definition, (F®P - - - ®P F)f = F® and
(Z})1 = Z,. At this stage the claim follows from (2.16.1).

3.154.1 Letf:Y — Xbeamorphism of ringed spaces and let 7 be a Oy-module. Then there exists a canonical isomorphism
Sym™ f*F =~ *(Sym™ F).
Itis clear for n =0, 1. For n > 2, since f* is right exact, there is an exact sequence
f* T, —— F*(F®") —— f*(Sym" F) —— 0

Now it suffices to show that image of f*Z,, in f*(F®™) = (f* F)®™ is isomorphic to the ideal defining Sym™ * F. This is clear
in the level of presheaves, and by (2.16.1) the same holds in the level of sheaves as well.

3.154.2 Lemma. Let A be aring and M an A-module. Then Sym™ M =~ S};_rr?l/ M.
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Proof. The cases n =0, 1 are obvious. Let n > 2, and let f € A. Consider the composition
Sym™ M(D(f)) = (Sym™ M); =~ Sym™ M; = Sym™ M(D(f)) — (Sym™ M)(D(¥))

where the isomorphism results from the same argument in (3.154.1), and the last arrow follows from (3.154). Since the arrows
involved are natural, by (2.3.1) this defines a morphism « : Syfrr?r M — Sym" M of Ospec A-modules. For any p € SpecA,
there is an isomorphism (Sym™ M), =~ Sym™ M,, compatible with the ones above, which coincides with the stalk map «,.
Hence « is an isomorphism by (2.16). O

3.154.3 Corollary. Let X be a scheme and F a quasi-coherent Ox-module. Then for any affine open subset U = Spec A of X,
we have

(U, (Sym™ F)|u) = (Spec A, Sym™ F(U)).
In particular, (Sym™ F)(U) = Sym™ F(U) for any affine open subset U, and

—_—

(Sym F)|u = Sym F(U)

Proof. By (3.154.1), (3.154.2) and (3.15.2), we have

—_—

(Sym™ F)|uy = Sym™(F|u) = Sym™ F(U).

For the last assertion,

—_—

((—B Sym“]-') lu = @ Sym™(Flu) = (—BSymnf(\U/) =~ @ Sym™ F(U).

n=0 n=0 n=0 n=0

~

The first and the last isomorphisms result from the facts that (-)|u and (-) are exact functors (2.16) (3.4).
O

3.155 Total space of a locally free sheaf. Let X be a scheme and let F be a locally free Ox-module of rank n < oo.
We can find an affine open cover U of X consisting such that Fly =~ (Ox|u)®™ for any U € U. Fix a U € U and write
(U, Ox|u) = (Spec A, Ospec ). Then

(Sym F)lu = SyﬁU) ~ Sym“ >~ Alxg, ..., Xnl.

This means Sym F is locally free and is locally of finite type. The same argument works for the dual 7 ; in particular, Sym(F ")
is a quasi-coherent Ox-algebra, so we can apply the relative spec construction. The X-scheme V(F) := Spec, Sym(F") is
called the total space of F.

3.155.1 Retain the notations in (3.155). Let U € Y. Then
(Specy Sym(F")) |u = SpecSym(F " )(U) = Spec Ox(U)[y1,...,yn] = A{}.

Let Ve U and pick W < U n V with W affine. Then F|y is free. The transition function on W is obtained by applying Sym
to the isomorphism

(Ox|w)™ = (Flu)lw = Flw = (FIV)Iw = (Ox|w)™

In particular, this shows the transition function is a linear automorphism (for it is degree-preserving). Hence, we have shown
that V(F) — Xis a vector bundle of rank n over X.
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3.155.2 If F — G is a morphism of finite locally free Ox-modules, first taking dual and next applying Spec, Sym gives a
morphism g : V(F) — V(G). Locally on an affine open, it is the morphism g|y : Spec Sym FY(U) — SpecSym Gv(U), and it
is induced by the morphism F|y — G|u. Thus g|u corresponds to a linear homomorphism in the sense of (3.152), and this
shows that g is a vector bundle morphism.

3.156 Sheaf of sections. Let Y be an X-scheme and denote by f : Y — X the structure morphism. Let U be an open set of X.
An element in Homgen,, (U, Y|u) is called a section of f over U. Let us put

I'(UW,Y/X) = Homgen, (U, Y|u) = {s € Homgen (W, Y) | fos =iduy}

By (2.13.4), the presheaf U — T'(Ul, Y/X) of sections is a sheaf of sets. We denote this sheaf by I'(, Y/X), and it is a subsheaf of
Homsg, (-, Y). It is clear that T'(-, Y/X) defines a functor from Schyx to Setx.

3.157 Letp :Y — X be a vector bundle of rank n over a scheme X. We show that I'(, Y/X) has a natural Ox-module
structure. First consider the case X = SpecA being affine and Y is a trivial bundle, i.e.,, Y = A%. Then I'(X,Y/X) =
Homayg, (Alx1,...,xnl,A) = A®" 50 T'(X,Y/X) has a naturally an A-module (note that the resulting module structure
is independent of the last isomorphism). For general case, let U = Spec A be an affine open set of X trivializing Y and let
W = Spec B < Ube another such affine open in X. We then know I'(U, Y/X) (resp. I'(W, Y/X)) is a A- (resp. B-) module. Choose
a free basis of Opp (W) in a way that Opn (W) = Blxy,...,xn] and Opy (U) = Alx1,...,%xn]. Then there is a commutative
diagram
MU, Y/X) = Homgen,, (U, Al}) ——— Homayg, (Alx1,...,xn],A) —— ASn

lrestriction

{s e Homgh (W, A}}) | pos =idw} 0@ @

lz (2.22)

I'W,Y/X) = Homse,, (W, A}y)) ——— Homayg, (Blx1,...,xn],B) —— Bon

where we denote by ¢ : A — B the restriction Ox(U) — Ox (V). From this we see the module structures are compatible
with the restriction, provided the affine open subsets are concerned. Finally, we extend the action to all open sets by (2.3.1).
Moreover, the argument above also shows that I'(-, Y/X) is locally free of rank n.

3.158 Let X be a scheme. Denote by FinLocx the full subcategory of Modp, consisting of finite locally free Ox-modules,
and denote by VBx the category of vector bundles over X (3.152). So far we have two functors

V:FinLocx ——— VBx , I'(-,-/X) : VBx ——— FinLocx
In fact, these are mutually inverse to each other, and hence define an anti-equivalence between FinLocx and VBx.

3.159 Lemma. Let§ be a locally free Ox-module of rank n, and let 7 = I'(-, V(G)/X) be the sheaf of sections of the vector
bundle V(G). Then F ~ G.

3.6.3 Relative Proj

3.160 Definition. Let X be a scheme. A graded Ox-algebra is an Ox-algebra R together with a Z3¢-gradation

R=@P Rn

n=0

with each R,, an Ox-module. We say R is quasi-coherent if it is quasi-coherent as an Ox-module and each R, is quasi-
coherent.
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3.161 Construction of relative Proj. Let X be a scheme and let R be a quasi-coherent graded Ox-algebra. For an affine open
U in X, denote by 7y : Proj R(U) — U the natural projection (3.110.2). Note here that R(U) = @ R, (U) since U is affine

n=0

(for example, by (3.7.2)). If V < U is an affine open subset, then
nal(V) = ProjR(U) xy V = Proj(R(U) ®o, (u) Ox(V)) = Proj R(V).

The first isomorphism is canonical. The second is due to (3.112), and the third is because R is quasi-coherent and it is true
for principal affines in U by (3.15.2). Hence, for two affine opens U, V < X, there is an isomorphism

Ouv g (Un V) S at(Un V).

To glue the (W) (U < X), we must show the 0yv satisfy the cocycle condition in (2.13). Say U,V,W < X are three

affine
affine opens. To check 8yw = 6yw o Byy on ﬂal (U VW), it suffices to check this on 711]1 (T) for all affine open subsets
T < Un Vn W.This is then clear, as all nal (T), 71\_,1 (T), 7'(\7\,1 (T) are naturally isomorphic to Proj R(T). Hence there exists an
X-scheme 7t : Proj, R — X such that 7! (U) =~ Proj R(U) for all affine opens U < X, and is unique in the sense of (2.13). This
is called the relative Proj of R over X.

3.161.1 O(n) of Proj,R. For an affine open U < X, the U-scheme Proj R (U) naturally admits the quasi-coherent sheaves
Oprojr(u) (M) (n € Z) (3.118). We aim to glue these together to obtain a relative version : Opyoj, = (1)
We must of course apply (2.13.3). Similar to the construction of Proj, R, let V < U be affine opens in X. By (3.113) (and
glueing), we have a fibre square
ProjR(V) ————— ProjR(U)

‘/ﬂv ‘/ﬂu
\% - U.

By (3.120), we have 7 Oproj (1) () = Oprojr(v)(1). By a similar argument as in (3.161), we see they glue.

3.161.2 Homogeneous algebras. If we want Opj, z(1) to be an invertible sheaf on Proj, R, by (3.119) we must at least
assume R is generated in degree 1, i.e., the canonical map Symy R1 — R is surjective (where Symy Ry is the symmetric
algebra of R with R; viewed as an Ro-module).

For convenience, we shall call such quasi-coherent graded Ox-algebra R homogeneous.

3.162 Base change. Let X be a scheme and suppose R is a quasi-coherent graded Ox-algebra. For any morphism f: Z — X
of schemes, consider the fibre square
Z xx Proj, R ——  Proj R

| i

z ! X
Let U < X, V c Z be affine opens such that f(V) < U. Then locally the above fibre square becomes

V xy ProjR(U) —— Proj R(U)

| y

\% L.

i

On the other hand, f*R is a quasi-coherent graded Oz-algebra, so we can form 7’ : Proj, f*R — Z. By (3.112)
V xu Proj R(U) = Proj (R(U) ®oy (u) Oz(V)) = Proj ((fI{)*Rlu(V)) = Proj(f*R)(V) = 7'~} (V).
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Via gluing Better write down a map explicitly, this establishes an isomorphism Z xx Proj,R = Proj, f*R of Z-schemes.

3.163 Closed subschemes of Proj. Let S be a scheme and let R be quasi-coherent graded Os-algebra. Let 7t : ProjgR — S be
the structure map. Suppose j : Z — ProjgR be a closed subscheme and let Z be the kernel of the sheaf map Oproj;r — jxOz-
Then there is a natural morphism

R — @ 74 (Orrojr (M) —> D 7 ((§+02) (n))
n=0 n=0
described as follows. The second arrow is clear. The first arrow is from the gluing : if U < S is an affine open set, by (3.118)

we have

U) — P Oprojr(u) (M) = P 74 (Oproj = (M) (U).
n=0 n=0
An argument as in (3.161.2) shows they glue, which finishes the definition of the first arrow. Note that this is simply the
relative version of the map in (3.125).
Denote by J the kernel of this morphism. By (3.125) there is a natural morphism J — Z and is an isomorphism when
7t: Proj¢R — S is quasi-compact (so that each Proj R(U) is compact).

3.163.1 Lemma. Let S be a scheme and let R be quasi-coherent graded Os-algebra. Suppose the structure morphism
7 : Projg’R — S is quasi-compact. Then every closed subscheme of Proj¢R has the form ProjsR/J for some quasi-coherent
graded ideal sheaf J of R.

3.164 Projective morphisms. A morphism f: X — Y of schemes is called projective if there is a commutative triangle

closed
immersion

Proj, Sym F

where F be a finitely generated quasi-coherent sheaf on Y. In this case we also say X is projective over Y.

3.164.1 Example. LetY be ascheme and let R be a finitely generated homogeneous quasi-coherent graded Oy-algebra. Then
there is a degree-preserving surjection Sym R1 — R. By (3.114), this gives a closed immersion Proj, R — Proj, Sym R, and

a commutative triangle

. closed
immersion

Proj, R —————— Proj, Sym R,
\ Y /

The converse holds as well : if X is a closed subscheme of Proj, Sym F for some F is a finitely generated homogeneous
quasi-coherent graded Oy-algebra, then X = Proj, (Sym F)/Z for some quasi-coherent ideal sheaf 7 of Sym F, by virtue of
(3.163.1).

3.164.2 Lemma. A morphism f: X — Y of schemes is projective if and only if there exists a commutative triangle

X ———— Proj,R
for some quasi-coherent graded Oy-algebra R generated by degree 1 elements.

91



3.165 Projective over an affine base. Suppose Y = Spec A is affine. Then X is projective over Spec A if and only if X is a
closed subscheme of Py for somen € Z.

Proof. Since P} = Projg,, o Sym Os@p’gj '+, the if part holds. For the only if part, assume X is projective over Spec A ; then X

is an A-scheme and is closed subscheme of Projg,.. , Sym F for some finitely generated quasi-coherent sheaf F on A. But
then F =~ M for some finite A-module M, so Projg,.. o Sym F = ProjSymM by (3.161) and (3.154.3). Take an surjection

A®" — M for some n € Zs,. Then Sym A®™ — Sym M is a degree-preserving surjection, so we have a closed immersion
ProjSym M < ProjSym A®™ = PRt O

3.166 Basechange. Letf:X — Ybeaprojectivemorphism,and g:Z — Ybeany morphism of schemes. Thenfz : ZxyX — Z
is projective.

Proof. Say X is a closed subscheme of Proj Sym F for some finitely generated quasi-coherent sheaf 7 on Y. We then have a
commutative diagram

ZXYx X

ProjSym g* F ——————— ProjSymF |
fz

Z 3 Y.

The lower square is cartesian by (3.162) and (3.154.1). Since the outer rectangle is cartesian, it follows that the upper square

is cartesian. Hence Z xy X — Proj Sym g*F is a closed embedding and the half circle on the left is commutative, it follows
that fz : Z xy X — Z is projective.

O
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4 Varieties

4.1 Classical varieties

4.1.1 Affine varieties

41 In this subsection, let k be a field. For any positive integer n > 1, we write A} for the product space k™, and called
the n-dimensional affine space over k. If the field involved is clear from the context, we usually omit the subscript and

simply write A™. For a subset S of the polynomial ring k[x1, ..., xn], we put V(S) to denote the common zeroes in A™ of the
polynomialsin S, i.e.,

V(S):={pe A" |f(p) =0forall f € S}.

If I < k[x1,...,%n] is the ideal generated by S, then clearly V(I) = V(S). A set of the form V(S) is called an (affine) algebraic
set. There are some properties of the assignment S — V(S) that can be observed directly from the definition :
(i) If {I4}« is a family of ideals in k[x1, ..., xn], then V (U Ia> =N V().
(ii) If Iy, I, < K[xq,...,xn] are two ideals, then V(I;) u V(L) = V(I; n I) = V(1 1,).
(iii) @ = V(1) and A™ = V/(0).
(iv) If 1 <Qk[xq,...,%n] is an ideal, then V(I) = V(V/I).
(v) If S1 € S; € k[xq, ..., xnl, then V(Sy) € V(Sy).

By (i), (ii) and (iii), the sets of the form V(I), I <k[xy,...,xn] define a topology (of closed sets) on A™. The defined topology
is called the Zariski topology on the affine space A™.

It is easy to write down an open basis for the Zariski topology. To start with, since k[x;, ..., xn] is Noetherian, every ideal
I is finitely generated; say I = (fy, ..., fm). Then by (i),

V() =V((f1)) o0 V().

For f € k[x1,...,xn], put D(f) = {p € A™ | f(p) # 0}; a set of this form is called a principal affine open set. Then taking
complement, the above equation becomes

AMV(D) =D(f1) U -+ U D(fm).

Every open set in A™ has the form as the left hand side. For f, g € k[x1,...,%xn], by (ii) we have D(f) n D(g) = D(fg). Thus
the sets of the form D(f) are a basis for the Zariski topology.

4.2 Forasubset S < A™, put I(S) to denote the set of all polynomials that vanish on S, i.e.,
I(S) ={feklx,...,xn] | f(p) =0forall p € S}.

This is a radical ideal in k[x1, ..., xn]. There are some formal properties of the assignment S — I(S) :
(i) If Sq,S2 € A™, then I(S1 U S2) = [(S1) n I(S2).
(ii) If S € S, < A™, then [(S;) < 1(S1).
(iii) If V < A™ is an algebraic set, then V(I(V)) = V.
(iv) For S € A™, we have V(I(S)) = S, the Zariski closure of S in A™.
v) (&) = kIxq,...,xn], and if #k = oo, [(A™) = 0.
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For an algebraic set V < A™, the quotient
k[V} = k[X], e ,Xn}/I(V)
is called the coordinate ring of V. Since I(V) is radical, the quotient ring k[V] is reduced.

43 LetV < A™and W < A™ be algebraic sets. A map ¢ : V — W is called a morphism if for any integer 1 < i < m, we
have pr; o @ € k[xy, ..., xn], where pr; denotes the projection to the i-th component.

4.4 If ¢ : V- Wis amorphism, then the pullback f — f o ¢ defines a k-algebra homomorphism ¢* : k[W] — k[V]. In fact,
this defines a bijection
{morphisms V — W} ———— Homayg, (k[W], k[V])

*

Pt P

4.5 Lemma. Let @ :V — W be a morphism between algebraic sets. Then
(@) ker ¢* =1I(e(V)).
(b) @(V) = V(ker ¢*).

In particular, ¢(I) is an algebraic set with coordinate ring k[W]/ ker ¢*.

4.1.2 Nullstellensatz.

4.6 Noether’s normalization lemma. Let A be a k-algebra of finite type. Then there exist yi,...,yq € A (0 < d < m) such
that the y; are algebraically independent and A is finite over k[ys, ..., ya4l.

Proof. Write A = k[ry, ..., Tim]. We prove this by induction on m.
1° m =1:Say A = k[r]. If r is transcendental over k, pick y; = 1. Otherwise,  is algebraic over k so that A is finite over k.

2° m > 1:Ifthery,..., T, are algebraically independent over k, then done. Otherwise, there’s a nonzero f € k[xy, ..., Xm]
such that f(ry,...,rm) = 0. Renumbering the subscripts, if necessary, we assume f(xy, ..., Xm) is not a constant in the
variable xo,. Let d = deg f, the maximum of the total monomial degrees. Forj =1,..., m — 1, define

(1+d)}
m

Xj =X =X
For each monomial x{ - - - x&», we have

m—1
Xlel .. .X]enm — (Xl +X1Ttd)el e (Xm—l + X‘(rr1L+d) )em—lxi{n

:X§{“+e](1+d)+m+e‘“_1(1+d)m_l+

Note that different (e, ..., e;m) give polynomials in X, ..., X;—1, X;m with the different highest degrees of x,.

Now write
N-1
1 .
9(X1, o X, Xm) = F(Xg A x@D, xem) =exy + D (X, X1 ),
j=0
. j 1 1 . .
fornon-zeroce k. Forj=1,..., m—1,lets; =15 — r,(111+d)1 . Then —g(s1,...,8m-1,Tm) = =f(r1,...,Tm) =0, 1i.e 1 is

integral over B := k[sy, ..., sm—1]. By induction hypothesis, there exists ys,...,yq4, (0 < d < m—1) such thatyy,...,ya
are algebraically independent over k and B is finite over k[yy, ..., yq4] and thus A is finite over k[ys, ..., yal.
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4.7 Zariski’s lemma. Let K/k be a field extension. If K is of finite type over k, it’s finite over k.

Proof. By normalization lemma, k < k[y,...,ya] S K with K finite over k[ys, ..., yq] for some algebraically independent
elements yi,...,ygq over k. Since K is a field, it follows that k[ys, ..., yq] is a field, and thus d = 0, i.e, K is algebraic over k.
Since K is finitely generated as k-algebra, [K : k] is finite. O

4.8 Hilbert’s Nullstellensatz. In what follows, we assume k is an algebraically closed field.

(i) (Weak form) There is a bijection

AR mSpecklxy, ..., Xn]
(alr--~/an) _ (Xl — Q.. , Xn — aTL)

In particular, if I < k[x,...,xn] is a proper ideal, then V(I) # & in A}.

(ii) For any ideal I of k[x1,...,xn], we have the equality

Proof.

(i) Clearly, (x1 — ai,...,Xn — ay) is a maximal ideal. Conversely, let m € mSpeck(x, ..., xn]. Then K :=k[xy,...,xn]/mis
a field of finite type over k, so by (4.7) K is finite over k. In particular, K/k is algebraic. But k is algebraically closed, this
implies K = k. For each 1 < i < n, we have x; — a; € m for some a; € k, and thusm = (x; — ay,...,Xn — an).

(ii) The nontrivial partif I(V(I)) < V1. Assume g € I(V(I)) and I = (fy,. .., fm). Introduce a new indeterminate x,, 1, and
consider the ideal

I/ = (fl, s /fm/ 9Xn+1 - 1) SI k[X1/ cees Xny XT’L+1]

Then V(1) = &, so by (i), it must be the case (f1, ..., fm, gxm+1 — 1) = k[x1, ..., Xn, Xn+1]. But note

klxi, ..., xnlg _ kX1, X0, Xn 1]
= 7

I, I

so that 1 € 1. This means
arfy+ -+ amfm

1= P

for some a; € k and { € Z5(, which exactly means g € V1.

4.9 Let A be a k-algebra of finite type. Say {yi,...,ys} is a generating set of A. Then there is a surjection

D :klxq,...,xg)] —— A:k[yl/--«/ys}

Xi Yi
Since k[x1,...,Xs] is Noetherian, ker(®) = (fy,..., fim) for some fy,...,fm € k[x1,...,%s], and we can form the algebraic set
V =V(ker(®)) = V((fy,...,fm)) € A}.

The coordinate ring of V is by definition k[V] = k[x1, ..., xs]/I(V). By Nullstellensatz, we have I(V) = 4/ker(®). Hence if A
is a reduced ring, we have k[V] = A as k-algebras.
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Suppose {z1, ...,z } is another generating set of A. Then there is a similarly defined surjection ¥ : k[xs,...,x,;] — A and
the algebraic set V/ = V(ker(¥)) < AJ.. We have the isomorphism

klV'] ~ A ~ k[V]

as k-algebras, so V = V' as algebraic sets over k.

Let AffVar be the category of affine algebraic sets over k whose morphisms are defined as (4.3), and let redfgAlg, be
the full subcategory of Alg, consisting of reduced k-algebra of finite type. Together with (4.4), we then have shown that
there is an anti-equivalence of categories

AffVar, ——— redfgAlg,

Vi k[V]

410 Let A be a reduced k-algebra of finite type. Let {yi,...,yn} be a generating set of A and form the surjection
@ : Klxy,...,xn] = A. Let V = V(ker(®)) < A}. Let p = (ay,...,an) € V and consider the maximal ideal m, = (x; —
ai, ..., Xn — an) of k[x1,...,xn]. By (4.2).(ii), we have ker(®) < m,. Conversely, if m is a maximal ideal of k[V], regarding it
as a maximal ideal in k[x;, ..., xn] containing ker(®), by Nullstellensatz we obtain a point p € A} with m, = m. The point
liesin V as {p} = V(m) < V(ker(®)) = V. This establishes a bijection between V and mSpec k[V], and by the isomorphism
k[V] = A, we have a bijection

V ———— mSpec A

pr—— O(my).

Now let a € A and let f € k[V] be the corresponding element. Then the value of f at a point p € V is the same as the class of
a in the residue field k(®(m,)), i.e., the image of A in A/®(m,,). Indeed, we have A/®(m,,) = k[V]/m,, = k as k-algebras.

411 Retain the notations in (4.10). For a ring R, equip mSpec R with the subspace topology from the topology on the affine
scheme Spec R. Then clearly mSpec k[V] = mSpec A as topological spaces. Also, it follows from the very definition that the
bijection

AR mSpeck[xq,...,xn]
(ai,...,an) ————— (x1 —ay,...,Xn — an)

in Nullstellensatz is a homeomorphism. For an ideal I, we have a commutative diagram

A} ————— mSpeck(x, ..., Xn]

| |

V(I) ————— mSpec k[V]

The vertical maps are all closed embeddings, so the horizontal map on the bottom is a homeomorphism as well. Altogether
we see the bijection

V ———— mSpec A

in (4.10) is a homeomorphism.
Let f : B — A be a k-algebra homomorphism of reduced k-algebra of finite types. Let W be any affine algebraic set
constructed as in (4.10) with A replaced by B. Then we have a k-algebra homomorphism f’ : k[W] = B I A = k[V], and by
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(4.4) it gives a morphism F : V — W of algebraic sets. We claim the diagram

W ————— mSpec k[W]

F /l\f/l

V ————— mSpec k[V]
commutes. This is clear from the construction of F (4.4).

412 Consider the projective space P™ over k with homogeneous coordinates xy, ..., xn. For a point p € P™, it lies in some
affine pieces D (xi) which is isomorphic to the affine space A}}. By Nullstellensatz it corresponds to a maximal ideal in
k[xo, ..., Xnlx;, which can be viewed as a maximal ideal in k[xy, . .., Xn] not containing x; ; call this maximal ideal m,,. If p also
liesin D 4 (x;), it will then corresponds to a maximal ideal in k[xo, . . ., Xnlx; - Nevertheless, since p € D (xi) "D, (x;), it gives a
maximal ideal in k[x, .. ., XnJx,;, and it can be obtained by localizing m,, at x;. By symmetry we see m;, € mSpeck(xy, ..., Xn]
is well-defined. Thus we obtain a well-defined map

Py ——— {m e mSpeck(xo,...,xn] | (X0,...,Xn) & m}

P my.

The procedure of obtaining m,, from p above also shows that this is a bijection. It is this bijection that motivates the Proj
construction in (3.106).

4.13 Projective Hilbert’s Nullstellensatz. Let I be a homogeneous ideal of k[xo, ..., xn].

4.1.3 Sheaf of regular functions

Recall that we are assuming k is algebraically closed.

414 Let Y be an algebraic set and V C Y a Zariski open set. A regular function on V is a map g : V — A! such that any
pointy € V admits an open neighborhood W < Y and u, v € k[Y] with u nonvanishing on W such that g|w = v‘—w A regular
w

ul

We put Oy (V) to be the set of regular functions on V. The assignment V — Oy(V) is clearly a sheaf of k-algebras on Y,

function on V is continuous in the Zariski topology.

and (Y, Oy) is alocal-ringed space. Indeed, if a regular function defined near a point y € Y is nonzero at y, then by continuity
it is nonvanishing on an open neighborhood of y, making it an invertible element in the stalk Oy ,,.

415 LetY be an algebraic set. There is an inclusion k[Y] — Oy (Y). Then for f € k[Y], we can form the open set Yy as in (2.21),
and we see there that f € Oy(Y)*. We can compare Y¢ with D(f). In fact, D(f) = Yr. Indeed, y € Y¢ if and only if f, € Oé,y’
if and only if f(y) # 0, ory € D(f).

By the universal property of localization, the composition k[Y] — Oy(Y) — Oy(Y¢) induces a homomorphism 0 : k[Y]f —
Oy (Ys). This is injective, for if 6(gf~™) = 0, then g|y, =0, or Y = V(g), which implies & = YfnY4 = D(fg), or fg = 0 € k[Y].
This exactly means gf~™ = 0 in k[Y];. Moreover,

Theorem. The canonical map 6 : k[Y]y — Ov(Y¢) is a k-algebra isomorphism.

Proof. It remains to show the surjectivity. The proof is similar to (3.3), with some extra topological concern. Let g € Oy(Ys).

By definition, each y € Y admits an open neighborhood W,, < Y; and v, uy € k[Y] with u, nonvanishing on Wy, such
v
that g\wy = uy||w‘“‘ Since {Yq | g € k[Y]} is a basis for Y, we can find u{J € klY] such thaty € Yu,; c W, €Yy, . Taking
YWy
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complement gives V(u{J) 2 V(uy), and by Nullstellensatz, 4/(u{) < 4/(1y). Thus ug“ = uyug for some ug € k[Y] and
me Zs1; then

" "
vy WUy wu

wy o owyuy o (u)m™

Since k[Y] is Noetherian, Y is Noetherian, which implies Y¢ is Noetherian, and hence compact. Thus we can find a finite set
{yi}ier € Y¢ such that {Yu‘;_l = Y(u]/Ji ym }ier covers Y. Replacing v, by vyug and u, by (u{J)m, wefinduy,...,un, vi,...,vn €

V'|YuA
k[Y] such that 9|Yuj = uJ | ~with Y=Yy, U-- U Yy, .
j Yuj

For each i # j, we have

Vilvy, AV Vilvu, vy,

= g|Yui ﬁYu]- =

Uilvy, vy, Y[y, Ay

s0 (viuj —vjui)ly, Av,, = 0.This implies uiu;(viuj —vj —ui) = 0 on Y. Further replacing vj by vju; and u; by u?, we may

n
assume u;v; — u;v; = 0on Y for any i,j. Since Y¢ = J Y., we have \/(f) = /(uy,...,u,) so that
i=1

f™ =aquy +--+ anlun
for some aj,...,an € k[Y] and m € Zz1. Define v = ajv; + - - - + anvn. We claim gf™ = v, which will imply 6(vf~™) = g,
completing the proof. This is easy, as forany 1 <j < n,

n n n

Vi
g™y, = Z aily, (quily, = Z aily, (Fuily, = Z ailv, Vilv, =Vlv,. -
) ) J D J J J J

i=1 i=1 ) i=1

4.15.1 Corollary. Let Y be an algebraic set.
(@) Oy(Y) =KI[YL
(b) For any y € Y, we have Oy, = k[Y];((y3)-

Note these strike a resemblance with the results in (3.2).

Proof. (a) follows directly from Theorem 4.15. For (b), we compute

Oyy = lim Oy(U) = lim  Ov(Ye) = lim k[l = k[Y]yy-
yeu fek[Y], f(y)+#0 fEI({y})
The third isomorphism results from the functoriality of the isomorphism in Theorem 4.15, and the final isomorphism follows
from the same reason as in (3.2). O

416 Let X be a topological space. The assignment U — Homg.¢(U, k) defines a sheaf of k-algebras on X, which we denote
by kX. A local-ringed space (X, Ox) is called a basic k-space if Ox is a subsheaf of k-algebras of kX and for any x € X, the
unique maximal ideal of Ox  is

mxx = {gx € Oxx | g(x) =0 € k}.

A morphism of basic k-spaces is a continuous map f : X — Y such that for any open V < Y and g € Oy(V), we have
gofe Ox(f~1(V)). In other words, a morphism of basic k-space is a morphism in LRS such that the morphism on sheaves
is given by function pullback. The category of basic k-spaces is denote by bSp,..

As an example, if Y is an algebraic set, we see in (4.14) that (Y, Oy) is a basic k-space.

4.17 Definition. Let (X, Ox) be a basic k-space.
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1. Xis called an affine variety over k if there exist an algebraic set Y over k such that (X, Ox) = (Y, Oy) as basic k-spaces.

2. Xis called an (algebraic) variety over k if it admits a finite open cover U such that (U, Ox|u) is an affine variety over k
for any U e U.

Denote by AffVar, and Vary the full subcategories of bSp, whose objects consist of affine varieties and varieties over k,
respectively.

418 Note thatby (4.4), AffVary defined in (4.17) is equivalent to the one defined in (4.9), and by (4.15.1) the anti-equivalence
there now takes the form

AffVar, ——— redfgAlg,
X —— Ox(X)

A coordinate-free description of the inverse is given by A +— mSpec A.
4.19 Theorem. Let X be a basic k-space and Y an affine variety over k. There exists a bijection
Homysp, (X,Y) ————— Homayg, (k[Y], Ox(X))

f:X>Y+— k[Y|=0y(Y)ag+—gof

Proof. The proof is similar to that of Theorem 3.7. In fact, the proof for injectivity is exactly the same. For surjectivity,
let & € Homayg, (k[Y],Ox(X)) and define f : X — Speck[Y] by setting f(x) = 07'(res})~!(mx). We claim f(x) is in
fact a maximal ideal. In fact, from the definition, the composition k — Oxx — Oxx/mxx is an isomorphism. Then the
homomorphism resX 0 : k[Y] — Oxx gives rise to an isomorphism k[Y]/ (resX 0) 1 (mx ) = Oxx/mxx = k, which implies
f(x) = (res¥ 0)!(mx ) is a maximal ideal. Thus f is in fact a map f : X — mSpec k[Y], which by Nullstellensatz gives a map
f: X — Yin turn. This is a continuous map, as shown in Theorem 3.7. It remains to show

1. forany open V € Yand g € Oy(V), go fe Ox(f~1(V)), and
2. forany g € k[Y], 0(g) = gof e Ox(X).

For 2., if x € X, then the value 6(g)(x) is the same as the class of 8(g) in Ox x/mxx = k. On the other hand, g(f(x)) is the
same as the class of g in Oy ¢(x)/my ¢(x), which is isomorphic to Ox x/mx x as k-algebras. Hence 0(g)(x) = g(f(x)) € k. For
1., we use the argument in Theorem 3.7 to obtain, for any h € k([Y], a map 0y : Oy(Yn) — Ox(Xg(n)). Explicitly,

g 0(g)
Oh (=) = —2—.
n (hm) o(h)m
f
By 2. we have 6 (gh™™) = ( hg Of) = (gh™™) o f, so 1. holds for open sets of the form Yy, = D(h). The general case follows
o m
from covering V with open sets of this form and the sheaf axiom. O

4.20 Remark. A k-space is a local-ringed space (X, Ox) over k (2.20.1) such that the composition k — Ox x — «(x) is a field
isomorphism for any x € X. Denote by Sp, the full subcategory of LRSy whose objects are all k-spaces.
It is straightforward to check that a basic k-space is a k-space, and there is a faithful functor bSp, — Sp, . There is also a
bijection
Homsp, (X,Y) —————— Homayg, (k[Y], Ox(X))

defined as in Theorem 3.7. The proof is the same as (4.19).
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4.1.4 Dimension

4.21 Definition. Let X be a topological space.
1. A subset C < X s called locally closed if it is an intersection of an open set and a closed set in X.

2. A subset of X is called constructible if it is a finite union of locally closed subsets.

4.22 Theorem (Chevalley). Let f: X — Y be a morphism of algebraic varieties. If C < X is constructible, then f(C) < Y is
constructible.

4.22.1 Lemma Letf:X — Ybeamorphism of algebraic varieties. Then f(X) contains a non-empty open subset of its closure
f(X).

Proof. Using affine opens to cover Y, we may assume Y is affine. Also we can assume X is affine. Since X only has finitely
many irreducible components, we can further assume X is irreducible. If we replace Y by f(X), then f induces a k-algebra
injective homomorphism f* : k[Y] — k[X] with k[X] an integral domain. We pick s € k[Y] as in Corollary 4.49.(i). We claim
D(s) = f(D(f*s). If y € f(D(f*s)), then y = f(x) for some x such that f*s(x) # 0, or s(y) = s(f(x)) # 0. Conversely, if
y € D(s), then evaluation at y defines a homomorphism evy, : k[Y] — k with evy(s) = s(y) # 0. The corollary implies there
exists ¢ : k[X] — k extending evy(s), so ¢(s) # 0 and ¢ o f* = evy,. Since ¢ is nonzero, it corresponds to a point in k[X], say
x € X. Then f(x) =y and f*s(x) = s(y) # 0. This proves the claim, and in particular D(s) < f(X). O

4.22.2 Proof of Chevalley theorem. First assume C = X. We may replace Y by f(X). By a previous lemma, there is an
open set U < Y with U < f(X). If U = f(X), we are done. Otherwise, let X" := X\f~1(U) < X; then dim X’ < dim X and by
induction on dimension on the domain we see f(X’) is constructible. Then f(X) = U u f(X’) is construtible. It remains to
check the case dim X = 0. In this case X is a finite set of points with discrete topology, so it suffices to show a singleton is
construtible. This is clear as a point is closed.

For the general case, we can assume C is locally closed in X. If C is closed, then by the previous case applied to f|c : C — Y,
we see f|c(C) = f(C) is construtible in Y. It remains to deal with the case when C is open.

4.1.5 Associated complex analytic spaces

In this subsubsection by a variety we mean an irreducible algebraic variety.

4.23 Now we consider C™ as the usual euclidean space. Let U be an open subset of C™ and denote by Oy, the sheaf of
holomorphic functions on U. Let fy, ..., fm, € Oy (U) be holomorphic functions and let Y = V(fy, ..., fr,) be the common zero
locus of these fy, ..., fm. Put Oy = (Ou/(f1,...,fm)) |v, where (f1, ..., fr) < Oy is the ideal sheaf generated by fy,..., fm. It
is clear that (Y, Ov) is a local-ringed space, and the sheaf Oy is a sheaf of C-algebra.

4.24 Definition. A complex analytic space is a local-ringed space (X, Ox) over C that admits an open cover I such that for
any Uel, (U, Ox|u) = (Y,Oy) in LRS¢ for some Y defined as in (4.23).

4.25 Let Xbe a variety over C. We cover X with affine open subsets Y;. Each Y; is isomorphic to some algebraic set, so we can
write Y; = V(f1,...,fm) € A for some polynomials fi,...,fm € Clxq,...,xn]. If we regard the f; as holomorphic functions
defined on C™, then Y; is an complex analytic space, which we denote by (Y;)?". To distinguish the sheaf of holomorphic
functions from that of regular functions, we denote the former by OF. The gluing data for (X, O) allows us to glue (Y;, OF})
together, by (2.13), to a complex analytic space. We denote the resulting space by (X", O3").

The underlying spaces of X and X*" are the same; the only difference is the topology. We refer to the topology on X*" the
classical topology/analytic topology on X.
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4251 Let A be a reduced C-algebra of finite type. By picking a finite generating set {yi,...,ys} of A, we obtain a closed
embedding mSpec(A) — A% with image V(ker(®)), where @ : k[xi,...,xs] — A is given by @ (xi) = yi (4.9). In this way
the affine variety mSpec(A) has a analytic topology inherited from A. If {zi,...,z.} is another finite generating set of A,
via¥: C[Xy,...,X;] — A the affine variety mSpec(A) has another analytic topology from Af.. We show these topologies on
mSpec(A) are homeomorphic in analytic topology. But this is rather clear, for a morphism V(ker(®)) — V(ker(¥)) comes
from a polynomial map A% — Af, and a polynomial is continuous.

4.26 Lemma. Let X be a variety over C. If U < X is a nonempty Zariski open set, then U is classically dense.

Proof. Covering X by affine open sets, we may assume X is affine. Since D(f) < U for some 0 # f € C[X], to prove the lemma
we may assume U = D(f). Taking complement, we need to show V(f) < X is classically nowhere dense, and it suffices to
show V(f) has empty classical interior. If V(f) contains a nonempty open set V, then f is trivial on V, which by identity
principle f = 0 throughout, a contradiction to f # 0. O

4.27 Lemma. Let X be a variety over C and Y a construtible subset of X. Then the Zariski closure of Y in X coincides with
the classical closure in X.

Proof. We may assume Y is nonempty Zariski locally closed. Denote by Y% and Y* the Zariski closure of Y and the classical

closure of Y in X, respectively; we always have Y© oV By definition, Y is Zariski open in VZ, so by (4.26) Y is classically
VY4 . vz _ o€

densein Y, whichmeans Y™ C Y . O

4.28 Lemma. LetU < AZ be a Zariski open set. Then U is classically path-connected.

Proof. Let x # y € U and pick any affine line L < A! connecting x,y. Since U n L < L is Zariski open and L ~ Al,
#(L\U) < co. But L = R?isa plane, so Un L = L\(L\U) is still path-connected. In particular, there is a (smooth) pathin U~ L
connecting x and y. O

4.29 Theorem. A variety X over C is separated if and only if the complex analytic space X*" is Hausdorff.

Proof. Since the diagonal A : X — X x¢ X is always an immersion, we only need to show A(X) is Zariski closed if and only
if it is classically closed. But A(X) is construtible by Chevalley theorem, so the result follows from Lemma 4.27.
O

4.30 Theorem. A variety X over C is complete if and only if the complex analytic space X*" is compact.

4.31 Theorem. A morphism X — Y of varieties over C is proper if and only if the continuous map X™ — Y2 is classically
proper.

4.2 Schemes and varieties

4.2.1 Generalities on topology

4.32 Definition. A topological space is called sober if every irreducible closed subset has a unique generic point.

4.33 Let X be a sober space. For example, a scheme is sober (3.36). In fact, from the proof there we see a topological space
with an open cover consisting of sober spaces is again sober. We have a bijection

X ———— {irreducible closed subset of X}

X .
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Not every topological space is sober. Nevertheless, with each topological space we may associate a sober space in a functorial
way, which we will discuss in the next paragraph.

4.34 Soberification. Comparing the topology on Spec A (3.1) and that on an affine variety (4.1), we are naturally led to the
following construction. For a topological space, define Sob(X) to be the set of all irreducible closed subsets in X. For a closed
subset C of X, define

V(C) = VX(C):={ZeSob(X) | Z < C}.

closed

Then {V( C)|C < X} forms a topology on Sob(X). Namely,

(1) V(Cy)u V(Cz) = V(C; u Cy) for any closed subsets C;, C of X.
(i) V(N4 Ca) =Ny V(Cq) for any family {C} of closed subsets of X.
(iii)) V() = &, and V(X) = Sob(X).

These are clear. Recall that by definition an irreducible space is nonempty (3.34). The resulting topological space Sob(X) is
called the soberification of X. There is a natural inclusion t : X — Sob(X) defined by x — {x}. This is a continuous map, for

CHV(C) ={xeX|{x}eC}={xeX]|xeC}=

for any closed subset C of X. In fact, this shows the inverse t~! induces a bijection between Top(Sob(X)) and Top(X).

As its name indicates, the space Sob(X) is a sober topological space. Indeed, the aforementioned bijection implies that C
is irreducible if and only if V(C) is irreducible. If Z € Sob(X) and Z € V(C) for some closed C’, it is obvious that V(Z) < V(C).
This implies that V(Z) = {Z} in Sob(X). If V(Z) = V(Z’) for two Z, Z' € Sob(X), then clearly Z = Z’. This finishes the proof
that Sob(X) is sober. We will see in the following paragraph that 1 = 1x : X — Sob(X) is universal among all the other sober
spaces. To give an intuition, we first observe that t is a homeomorphism if and only if X is sober. Indeed, if X is sober, then
x is uniquely determined by {x}, so ¢ is a bijection. A continuous bijection whose inverse = induces a bijection between
topologies is by definition a homeomorphism. In particular, this shows t : X — Sob(X) is a homeomorphism.

4.35 Universality of soberification. Denote by Sob the full subcategory of Top consisting of sober topological spaces. Let
X be a topological space, and define a functor Sob — Set by Y +— Homrop (X, Y). Then the soberification 1 : X — Sob(X)
represents this functor.

As a first step, we show Sob actually defines a functor from Top to Sob. If f : X — Y is a continuous map, define
Sob(f) : Sob(X) — Sob(Y) by sending Z to f f(Z). This is continuous, as for any C’ < Y, we have

closed

Sob(f) 1 (V(C")) = {Z € Sob(X) | f(Z) € V(C')} = {Z € Sob(X) | f(Z) = C'} = V(f~1(C")).

If f, g are continuous maps with g o f being defined, then g(f(Z)) = g(f(Z)). Also, Sob(ldx) = idseb(x). These prove that

Sob : Top — Sob is really a functor. Additionally, for continuous f : X — Y, since f(x) = f({x}) for any x € X, there is a
commutative square

X—F 5y

SOb(X) W SOb(Y)
In particular, if Y is sober, the map Ly is a homeomorphism, and the diagram gives a functorial map

Homrtep (X, Y) ————— Homgp (Sob(X), Y)

f L;loSOb(f).
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In fact, this is a bijection with inverse f’ — f’ o 1x. To see this, let f € Homgep (Sob(X),Y) and put f = f’ o 1x. The identity
Sob(f) = 1y o f' is a tautology. This exactly tells what we claim in the beginning of this paragraph.

4.35.1 We can also describe open sets for the soberification of a space X. Let U be an open subspace of X and C its complement
in X. Clearly for Z € Sob(X), we have Z & C if and only if Z n U # J. Thus, the set of the form

D(U) = DX(U) = Sob(X)\V(C) = {Z e Sob(X) | Zn U # &}

is precisely an open set in Sob(X).

We record a fact that will be used later. Let U be an open cover of X. Then {DX(U) | U € U} also covers Sob(X). This is
tautological. Let Z € Sob(X). Then Z n U # (¥ for some U € U, so that Z € D(U).

Denote by « : U — X the inclusion. Then we have a map Sob(«) : Sob(U) — Sob(X). This is in fact an open embedding
with image precisely D(U). Indeed, by definition, for Z € Sob(U), we have

Sob(o)(Z) = «(Z) = Z € Sob(X).

If Z,Z' € Sob(U) satisfy Z = Z'inX, then Z n Z' and Z n (Z\Z') are two closed subsets of Z whose union is Z. Since Z is
irreducibleand Z n Z’ # §, wemusthave Z n Z' = Z, or Z < Z'. By symmetry we then obtain Z = Z’, proving that Sob(«)
is injective. For a closed subset C < U, we have

Sob(a)(Vu(C)) ={Z | Ze Sob(U), Z < C} = Vx(C) n Im Sob(«).

The last equality holds, as Z < C implies Z = Z n U = C n U = C. This shows Sob(«) is an embedding, and it remains to
show Im Sob(a) = D(U). The containment < is clear. For o, if Zn U # (¥, since Z is irreducible, Z ~ U is dense in Z, showing
that Z =Z n Uwith Z ~n U € Sob(Ul).

There is counterpart for a closed subspace C < X, stating that Sob(C) — Sob(X) is a closed embedding, and the proof is
much easier.

4.36 By definition, a topological space X is Ty / Kolmogorov if for any x # y € X there exists a closed set in X containing
exactly either x or y. We note here that the image 1(X) of X under t : X — Sob(X) is Ty. To see this, let x,y € X with {x} # {y}.If
every closed subset in 1(X) that contains, say, x also contains y, theny € {7} By symmetry, we have x € {17}, which altogether
gives that {x} = {y}, a contradiction.

Denote by Topy, the full subcategory of Top consisting of Ty spaces. Let X be a topological space. We show that the map
1'% s X — ((X) represents the functor Homrep (X, —) : Top — Topy, . To see this, we only need to show that if X is To, then
i: X — 1(X) is a homeomorphism. Once this is proven, the rest of the proof follows exactly the same as that in (4.35). Since
i~! induces a bijection between topologies, just as what 1~! does, it suffices to show i : X — 1(X) is bijective, and it remains
to show injectivity. This is clear as X is T.

4.37 Jacobson space. Let k be an algebraically closed field. By Nullstellensatz, the closed points of the affine scheme
Speckl[x,...,xn] are in bijection with the affine variety k™. Under this bijection, we see k™ is a topological subspace of
Specklxi, ..., xn], and for I <k[x, ..., xn] we have

VY (1) = Vs (1) A {closed points in Spec A}

In view of this relation, we are led to the following definition.
Let X be a topological space. Denote by X, the set of closed points in X, and equip Xy with the subspace topology. We
say the space X is Jacobson if for any closed subset Z of X, the subset Z is dense in Z. Note that Zy = Z n Xy as Z is closed.

4.38 Example. Let A be aring. The closed points in Spec A are exactly the maximal ideals in A ; in other words, (Spec A)g =
mSpec A. For an ideal I 9 A, we see that V(I)q is the set of maximal ideals containing A. For V(I) to be dense in V(I), it
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is sufficient and necessary that V1 = Jac(I), where Jac(I) is the intersection of all maximal ideals in A containing I, and it
called the Jacobson radical of I. To see this, first note that for f € A, D(f) n V(I) # ¢J if and only if f ¢ /1. For such f, clearly
we have D(f) n V(I)g # ¢ if and only if f ¢ Jac(I). This implies the claim. The ring A with Spec A being Jacobson is called a
Jacobson ring. The Jacobson radical of the zero ideal is denoted by rad(A), and is called the Jacobson radical of the ring A.

For example, Nullstellensatz implies that every algebra of finite type over an algebraically closed field k is Jacobson.
Indeed, if I is an ideal of k[x1,...,xn], then

I(V(I)) ={feklxy,...,xnl | f(p) =0forallp e V(I)}
={feklxi,...,xn] | femy, forall p e V(I)} = Jac(I)

where the second equality results from (4.10). This shows k[x1, ..., Xn] is Jacobson, and clearly this implies what we say.

4.39 Definition. A continuous map f : X — Y is called a quasi-homeomorphism if the inverse f~! establishes a bijection
Top(Y) — Top(X) between topologies. Equivalently, it establishes a bijection between closed sets in X and Y.

As an example, we see in (4.34) that for a topological space X, the natural map tx : X — Sob(X) into its soberification is a
quasi-homeomorphism.

4.39.1 The inverse f~! of a function f is well-behaved with arbitrary intersection and arbitrary union. If f : X — Yis a
quasi-homeomorphism, many identities happening in Top(Y) can be pulled back to identities in Top(X), and vice versa.
Thus those topological properties that are defined or can be checked only using intersection and union are preserved under
quasi-homeomorphism. We list some in the following lemma.

Lemma. Let f: X — Y be a quasi-homeomorphism between topological spaces.

(i) LetU be a collection of open sets in Y. Then U is a cover (resp. a basis) of Y if and only if f 12/ := {f~}(U)}yey is a cover
(resp. a basis) of X.

(if) Xis compact if and only if Y is compact.

(iii) Xis connected (resp. irreducible) if and only if Y is connected (resp. irreducible).

4.39.2 Iff:X — Yis a quasi-homeomorphism, then the pushforward f, of presheaves on X to Y induces an equivalence of
categories
Cire Cgre
F — f . F

where C = Set, Ab, Ring, Modg etc. This is obviously a fully faithful functor. Now given a presheaf G on Y, consider the
pullback presheaf fP*G. We claim f, fP**G = G as presheaves canonically. Indeed, for any open set Vin'Y,

ffPeG(V)= lim  G(V') = lim G(V') = G(V)
VI2F(f1(V)) viav

Passing to sheafification, we see f, : Cx — Cy is again an equivalence of categories with inverse .

4.40 Lemma. Let X be a topological space. TFAE :
(a) XisJacobson.
(b) The inclusion X4 — X is a quasi-homeomorphism.
(c) Every nonempty locally closed subset of X meets nontrivially with Xg.
Proof. The equivalence (a)<(b) is simply a paraphrase of the very definition, and (a)=(c) is clear. To see (c)=(a), note that

for any closed Z € X, if Zy & Z, then Z\Z is a nonempty locally closed set in X. However, we have Z\Z, < Z\Xy, which is
a contradiction to (c). O
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4.41 Corollary. Let A be a ring. Assume A satisfies the property that for any f € A and p € D(f), p € D(f)yq implies
p € mSpec A. Then A is Jacobson.

Proof. We use (4.40).(c). Assume that A # 0. Let I < A and f € A\v/I. It suffices to show that D(f) n V(I) contains a closed

point in Spec A. The space D(f) n V(I) is homeomorphic to the affine scheme Spec A¢/I¢, so it contains a closed point. By

hypothesis, it is also a closed point in Spec A. O
Note that the proof is essentially based on the fact that Spec A has a closed point as long as A +# 0.

4.42 Lemma.
1. Any locally closed subset of a Jacobson space is Jacobson.

2. A topological space that admits an open cover consisting of Jacobson spaces is Jacobson.

Proof.

1. Let X be a Jacobson. It follows from definition that every closed subset of X is Jacobson, so we only need to show every
open subset of X is Jacobson. Let Ll < X be nonempty open, and let Z < U be nonempty closed. By (4.40).(c), Z contains
a closed point in X which is, a fortiori, a closed point in U. By (4.40).(c) again, U is Jacobson.

2. Let X be a space and U be an open cover of X with each U € U/ Jacobson. We use (4.40).(c). Let W < X be a nonempty
locally closed subset. Then W n U # ¢ for some U € U, and by (4.40).(c) W n U contains a closed point x in U. In
particular, {x} is locally closed in X. If x € V for some V € U, then x € V, for {x} is locally closed in V and by (4.40).(c).
Thus {x} is closed in X, for {x} n V is closed for any V € U.

O
4.43 Example. Let A be a ring. The universal property of soberification gives rise to a continuous map
Sob(mSpec A) ——— SpecA.

We are going to write down this map explicitly under some additional conditions imposed on A. A closed set of the form
vmspee(]) is irreducible if and only if Jac(I) is a prime ideal. For such I, the image of V™P¢¢(I) in Spec A would be the generic
point of Vmspec(]) < Spec A. For another ideal I, we have V™P*¢(Jac(I)) < V(]) if and only if ] < Jac(I), and this implies
V(Jac(I)) < V(J), which further implies | < m = /L. If A is Jacobson (4.38), we then see V™spec(I) = V/(+1/I) whose
generic point is V1 = Jac(I). For a prime p, if A is Jacobson, we have Jac(p) = /p = p. Hence, if A is a Jacobson ring, every
element in Sob(mSpec A) has the form V™P¢¢(p) with p prime and it has image V(p) in SpecA.

Assume A is Jacobson. The map is then clearly bijective. A closed set in Sob(mSpec A) has the form {V™Pe(p) | I < p},
where [ is an ideal. Its image in Spec A is then V(I), which is closed. Thus the canonical inclusion mSpec A — Spec A is the
soberification when A is Jacobson.

Let f : A — B be a homomorphism between Jacobson rings with f~!(mSpec B) < mSpec A. Let 8 = Spec(f) and

o' — e|mSpecA B

mspec B+ 1hen there is a commutative diagram

Sob(mSpec A) ————— SpecA
}ob(e') {
Sob(mSpec B) ————— SpecB
Indeed, this follows from (3.10).(iii).

444 By definition, every point in a T; topological space is a closed point. Denote by Top. the full subcategory of Top
consisting of T; spaces. Let X be a T; topological space and consider the soberification 1 : X — Sob(X). Since every point
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x € X is a closed point, we have 1(x) = {x} € Sob(X); in particular, t is injective, and X < Sob(X)q. A point Z € Sob(X) is
closed if and only if {Z} = m = V(Z) (4.34), which means that Z is a minimal closed irreducible subset in X with respect to
inclusion. But X = X, we see Z < X is a singleton. This proves X = Sob(X). Since t is a quasi-homeomorphism (4.34), by
(4.40) we see Sob(X) is a Jacobson space.

Denote by JacSob the subcategory of Top whose objects consist of Jacobson sober spaces and whose morphisms consist of
continuous maps f : X — Y with f(Xq) — Yq. Then the functor Sob : Top — Sob restricts to a functor Sob : Top, — JacSob.
Furthermore, this is an equivalence of categories. We state it as a theorem in the next paragraph.

4.45 Theorem. The functor
Sob : Top, — JacSob

is an equivalence of categories with inverse Y — Y.

Proof. We already show in (4.45) that for a T; space X, the map 1 : X — Sob(X) is an embedding with 1(X) = Sob(X)4.
Conversely, let Y be a Jacobson sober space. By definition Y is T;. By the universal property of soberification (4.35), there
exists a continuous map f : Sob(Yy) — Y with f o 1y, equal the inclusion Yy — Y. For any closed irreducible Z < Y, we
have Z n Y4 = Z, where the closure is taken in Y. In particular, this implies f is injective. Conversely, if y € Y, since Y is
Jacobson, Z,, = @ N Yq # & is a closed irreducible subset of Y. Since Z N Yq = Zy, we have f(Z,) = y. To show fis a
homeomorphism, at this stage it suffices to show f is a quasi-homeomorphism. This follows as Y4 — Y and Y4 — Sob(Yy)
are quasi-homeomorphisms.

The way we define the morphisms in JacSob is a sufficient condition for Y — Y to be functor JacSob — Top- . If
f:X — Yis a morphism of Ty spaces, by (4.35) we have a commuting square

X f Y

SOb(X) T(f]) SOb(Y)

Since X = Sob(X)y and similar for Y, we see Sob(f) € Homyacsob (Sob(X), Sob(Y)). Also from this diagram we conclude that
Sob is an equivalence of categories with inverse Y — Y. O

4.2.2 Jacobson rings

4.46 In this subsubsection we follow [AM94, exercises in chapter 5] to introduce some properties of Jacobson rings.

4.47 Lemma. Let A be a subring of a ring B such that B is integral over A, and let f : A — Q be a homomorphism of A into
an algebraically closed field Q. Then f can be extended to a homomorphism of B into Q.

Proof. One has ker f € Spec(A), for A/ ker f is isomorphic to a subring of Q, hence an integral domain. By going-up, there
exists q € Spec(B) such that g n A = ker f. Now f can be extended to a homomorphism f : Frac(A/ ker f) — Q. Since B/q is
integral over A/ ker f, the field Frac(B/q) is algebraic over Frac(A/ ker f) so that f can be extended to a map f : Frac(B/q) — Q.
Finally, restricting to B/q and pre-composing with the quotient B — B/q, we obtain a homomorphism B — Q. O

4.47.1 The essence for the proof is that for a field homomorphism f : K — Q with Q) algebraically closed, we can extend to
a homomorphism L — Q for any algebraic extension L/K. For completeness we give a proof below. First consider the case

L = K(«) being a simple extension of K with « ¢ K. Say mu(T) = >} a;T* € K[T] is the minimal polynomial of c. Let B # 0
i=0
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be a root of the polynomial Z f(ai) T in Q. Now define K[T] — Q by extending f and sending T to B. (m(T)) lies in ins

kernel, so it induces a map K[ ]/(mo((T)) =~ K(a) — Q.
A finite extension L/K is composed of a series of simple extensions, so one can extend f : K — Q along them as we have
done. For the general algebraic extension L/K, consider the set

S:={(M, g) | M/K s an algebraic subextension of L /K, g: M — Q extends f}
with a partial order < defined by
(M1, 91) < (M2, 02) © My € My and ga|m, = g1

Now it follows easily from Zorn’s lemma that S admits a maximal element, say (M, g). It must be the case M = L, for
otherwise we can pick « € L — M and extend g to a map M(«x) — Q, contradicting to the maximality.

4.48 Lemma. Let A be a subring of an integral domain B such that B is of finite type over A. Then that there exists s # 0in A
and elements yj, ..., yn in B, algebraically independent over A and such that B is integral over B,, where B’ = Aly;..., ynl.

Proof. Let S = A — {0} and K = S™'A be the fraction field of A. Then S™'B is a finitely generated K-algebra. By Noether
normalization there exists x1, ..., xn € S™!B such that C := K[xq, ..., xn] is purely transcendental and C — S—1B is finite.
Write B = Alzy,...,zm]). Since z; € S~1B is integral over C, each z; verifies a integral dependence T™+ + Qip g T4
ai1 T+ aip € C[T]; we may assume the 7; are the same. Let s € S be such that y; := sx; € Band saj; € B := Alyy,...,ynl;
for example, take s to be the products of denominators of the x; and all coefficients of the a;; and raise s to a large power.
From what we have done it is easy to see that the sz; are integral over B/, and hence over B.. Finally, since s~! € B/ is of
course integral over B}, the z; are integral B., i.e., B is integral over B, as wanted. O

4.49 Corollary. Let A be a subring of an integral domain B such that B is of finite type over A.

(i) There exists s # 0 in A such that, if Q is an algebraically closed field and f : A — Q is a homomorphism for which
f(s) # 0, then f can be extended to a homomorphism B — Q.

(ii) If the Jacobson radical of A is zero, then so is the Jacobson radical of B.

Proof.

(i) Take s asin Lemma 4.48; we also use the notation therein. Then we can extend f to f : B’ — Q by setting each y; to 0.
Since f(s) # 0, it induces a homomorphism f : B — Q. By Lemma 4.47 f extends to a map f : B — Q. Restricting to B
gives a desired map.

(ii) Let v € B be a nonzero element. We claim there exists a maximal ideal of B not containing v. By applying (i) to the
ring B, and its subring A, we obtain a nonzero element s € A. Let m be a maximal ideal of A not containing s and put
k = A/m. Then the projection A — k extends to a homomorphism g : B, — Q where Q is an algebraic closure of k.
Since v is invertible in By, g(v) # 0 so that v ¢ ker g n B. Now it suffices to show ker g n B is a maximal ideal of B.
But note that m < ker g n B; thus since B is integral over A, B/ ker g n B is integral overk = A/m (B nkergn A =m
because s ¢ m), and hence B/ ker g n B is a field, namely ker g n B is maximal.

O

4.50 In (4.38) we say A is Jacobson if /I = Jac(I) for any ideal I < A. In practice, we only want to check as few conditions
as possible. It turns out it suffices to check the equality for prime ideals. We prove this as a

Lemma. Let A be a ring. Then TFAE :
(i) Every prime ideal in A is an intersection of maximal ideals.

(ii) In every homomorphic image of A the nilradical is equal to the Jacobson radical.
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(iii) Every prime ideal in A which is not maximal is equal to the intersection of the prime ideals which contain it strictly.

Proof. Clearly (i) < (ii) = (iii). It remains to show (iii) = (ii). Suppose (ii) does not hold. Then there exists a prime ideal of A
which is not a intersection of maximal ideals. Passing to quotient we may assume A is an integral domain where the Jacobson
radical is not zero. Let f € Jac(A) be a nonzero element. Then A¢ # 0 and hence it admits a maximal ideal whose contraction
in A is a prime ideal p not containing f and is maximal with respect to this property (here we use the correspondence of
prime ideals between A and Ay). Since f € Jac(A) — p, p is not maximal. Also, p is not the intersection of the prime ideals
strictly containing p, for any prime strictly containing p must contain f, and so must their intersection. O

4.51 There is another characterization of Jacobson rings that is of geometric taste.

Lemma. Let A be a ring. Then A is Jacobson if and only if every finite type A-algebra that is a field is finite over A.

Proof. Suppose A is Jacobson, and let B be a finite type A-algebra that is a field. Let p be the kernel of the structure map
A — B. To show B is finite over A, it suffices to show B is finite over A/p. Hence we can assume A is a subring of B. We take
0 # s € Aasin Corollary 4.49. Let m be a maximal ideal not containing s. By that lemma, the homomorphism A — A/m =: k
extends to a homomorphism ¢ : B — k. Since B is a field, it follows ¢ is injective so that B is algebraic over k. Finite generation
of B over A implies dimy B < oo, which shows that B is finite over A.

Now we turn to if part. We use Lemma 4.50.(iii). Let p be a non-maximal prime ideal of A, and consider the quotient map
A — A/p =: B. For 0 # f € B, since By is of finite type over A, if it is a field, then By is finite over A by assumption, and
a fortiori it is finite over B. By Lemma 3.87.1 B is a field. But p is non-maximal, this implies B¢ is not a field. Then B has a
nonzero prime ideal, whose contraction p’ to B is a prime ideal not containing f. Letting f vary finishes the proof. O

4.51.1 Immediate from the lemma, if A is a Jacobson ring, B a finite type A-algebra and m a maximal ideal of B, then B/m
is a finite type A-algebra that is a field, so B/m is finite over A. Let m’ := A n m so that A/m’ — B/m is injective and finite.
By Lemma 3.87.1 A/m’ is a field, so m’ is maximal. This implies that the natural map Spec B — Spec A restricts to

mSpec B ——————— mSpec A.

4.52 Nullstellansatz. Let A be a Jacobson ring and B an A-algebra. Assume either that B is integral over A or is of finite
type over A. Then B is Jacobson.

Proof. Assume B is integral over A. Let q be a prime in B and put p = q n A. Since A is Jacobson, p is the intersection of all
maximal ideals m; containing p. By going-up we can find maximal n; 2 g such that n; " A = m;. Let I be the intersection
of the ny. If I = q we are done. If g & 1. By localizing A and B at p we can find a maximal ideal q’ of B containing I whose
contraction to A is p. But incomparability tells q = q’, which is absurd. Hence q = L.

Assume B is of finite type over A. We may assume A < B are integral domains, and our goal is to show Jac(B) = 0. Since
A is Jacobson, so the Jac(A) = 0, and it follows from Corollary 4.49.(ii) that Jac(B) = 0. O

4.52.1 Suppose kis a field and A is a finite type k-algebra. By (4.52) A is Jacobson. If m is a maximal ideal of A, then Lemma
4.51 tells that dimy A/m < oco. Conversely, if m is a prime ideal of A such that k — A/m is finite, then Lemma 3.87.1 shows
that m is maximal. In conclusion, we’ve proved the equality

mSpec A = {p € SpecA | [k(p) : k] < co}.

In the case k is algebraically closed, this recovers the Hilbert’s Nullstellensatz.
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4.2.3 Morphisms of finite type

4.53 Definition. A morphism f: X — Y of schemes is called locally of finite type if Y admits an affine open cover V such
that for any V = Spec A € V, the open set (V) (V € V) admits an affine open cover Uy, such that for any U = SpecB € Uy,
the corresponding ring homomorphism A — B is of finite type.

If each Uy can be chosen to be a finite set, f : X — Y is called of finite type.

4.54 Let A — B be a ring homomorphism of finite type. For any g € B, the composition A — B — B is also of finite type,

as By = B[x]/(xg — 1) is a B-algebra of finite type. If A — B factors through some localization A — A atf € A, then Ay — B
is still of finite type.

These imply that for a morphism f : X — Y of schemes, being locally of finite type is really local on both X and Y. Precisely,
let f : X — Y be locally of finite type. Then

(i) For any open U < X, f|y : U — Yis locally of finite type.
(ii) For any open V € Y and open U < f~1(V), f|{{ : U — V is locally of finite type.
Also, let f : X — Y be a morphism of schemes.

(iii) If Y admits an open cover V such that f|}, vy i f ~1(V) — Vs locally of finite type for any V € V, then f is locally of
finite type.

(iv) If X admits an open cover U such that f|y : U — Y is locally of finite type for any U € ¢, then f is locally of finite type.

4.55 Lemma. Consider morphisms X LY 5 Z of schemes.
(i) If f and g are locally of finite type, then so is g o f.
(ii) If g o fis locally of finite type, then so is f.

Proof. Only (ii) deserves a proof. Let y € Y and x € f~!(y). Pick an affine open neighborhood W = Spec A of g(y) in Z and
an affine open neighborhood U = Spec C of x in X such that A — C induced by (g o f)|}} is of finite type. Choose an affine
neighborhood V = SpecB of y such that g(V) € W. Pick h € C with f(Uy) < V. Then U}, - V — W gives A — B — Cy,.
Since A — C is of finite type, so is A — Cy. In particular, B — Cy, is of finite type. O

4.56 Lemma. A morphism f: X — Y is locally of finite type if and only if for every affine open V = Spec A in Y and every
affine open U = Spec B in f~!(V), the corresponding ring homomorphism A — B is of finite type.

In particular, a morphism Spec B — Spec A of affine schemes is locally of finite type if and only A — B is of finite type.

Proof. We need to prove the only if part. We see in (4.54) that f|\ is locally of finite type. By definition, for any h € A we can
find g € B such that f(Ug) < Vi, with Ay, — By of finite type. In particular, B is of finite type over A. All such Uq cover U,
and since U is compact, we can find gy, ..., gn € B with B = (g1,...,gn) and each By, of finite type over A.
Let b; € B be such that 1 = big; + -+ + bngn. Raising to arbitrary power, for any N € Z>;, we can find bin € B
n
with 1 = Z bin giN. Say By, = A[xij]juz‘l for some Xi1,...,Xiq; € Bg,. Let Nj € Z>; be such that xijgiNi € B for any 1,j. Let
i=1
N = max N;.ThenB = A[xi)-gm 1<i<n - To see this, forb € B, let f; € A[Xij}ja:il besuchthatb = fi(xi;). Let M = max degf;

I<isn 1<j<a; I<ign

and put L = MIN. Then

i I<j<a;
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4.2.4 Equivalence of categories

In this subsubsection, we fix an algebraically closed field k.

4.57 We paraphrase the results in (4.11) in terms of the languages in the preceding subsubsection. For an affine variety V
over k, its soberification Sob(V) is homeomorphic to that of mSpec k[V], which is homeomorphic to Spec k[V] by (4.38) and
(4.43). Precisely, we have a commutative diagram with horizontal maps being isomorphisms

Sob(V) —————— Speck|[V]

L v[ /l\inclusion

V ————— mSpec k[V].

Denote by « the bottom horizontal isomorphism and by t the inclusion on the right. By Theorem 4.15, the sheaf 1,0, Oy
on Spec k[V] is naturally isomorphic to the structure sheaf Ogpec i [v)- In this way, we see (Sob(V), (1v)Ov) is isomorphic to
Speck[V] in LRSy, and we obtain a functor

AffVary, Schy

V ————— (Sob(V), (v)+Ov),

where for a morphism f: V. — W, we define (Sob(V), (1v)+Ov) — (Sob(W), (1w )+ Ow) as follows. The map on topological

spaces is certainly Sob(f). To definea sheaf map 6 : (tw )+ Ow — Sob(f)«(tv)+Ov = (tw)« T« Ov, we only need to choose a map

Ow — f,Oy. We already have one : the function pullback. In fact, under the isomorphism (Sob(V), (1v)+Ov) = Speck[V],

we see the morphism (Sob(V), (1v)+Ov) — (Sob(W), (tw)+«Ow) coincides Spec f* : Speck[V] — Speck[W]. The maps on

spaces are the same by (4.43). The maps on sheaves are the same as well, for both are induced by f* : k[W] — k[V].
Similarly, we can define a functor

Vary Schy
X ——— (Sob(X), (tx)+Ox).

The only issue is to show (Sob(X), (1x)«Ox) is really a scheme. Let V be an affine open subset of X. By (4.35.1) we can regard
U = Sob(V) as an open subset of Sob(X). We show that

(Sob(X), (tx)«Ox)|u = (U, (tv)«(Ox]|v)).
For this we only need to notice that ((tx)+Ox)|u = (tv)«(Ox|v).

4.58 Our goal is to show the functor

Vary Schy
X ———— (Sob(X), (tx)+Ox).

is fully faithful and describe its essential image. If V is an affine k-variety, by construction we see Sob(V) is a reduced affine
k-scheme locally of finite type over Spec k. Hence for a general k-variety X, we see Sob(X) is a reduced k-scheme locally of
finite type over Speck.

To proceed, first note that an affine k-variety is a Ty topological space. Next, suppose X is a topological space that admits
an open cover U consisting of Ty space. Then X is itself T;. Indeed, for x € X, if m AU # @ forsomeUeclf,thenxe U, as U
is open. Since each U € U is Ty, the intersection {x} n U is either ¢§ or {x}, proving that x € X is a closed point. As a result,
we see that a k-variety is Ty. By (4.44) and (3.36), the scheme Sob(X) is a Jacobson sober space.
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If f : V. — W is a morphism of affine k-varieties, in (4.57) we also see that the morphism
(Sob(V), (v)xOv) — (Sob(W), (tw)+Ow)

is the same as Spec f* : Spec k[V] — Spec k[W]. Since f* : k[W] — k[V]is automatically of finite type, we see (Sob(V), (v )+ Ov) —
(Sob(W), (1w )« Ow) is locally of finite type. Thus, the image of a morphism between k-varieties is a morphism of k-scheme
locally of finite type.
Now let f : X — Y be a morphism of k-varieties. We see Sob(X) and Sob(Y) are Jacobson sober spaces. A natural question
is whether for any morphism
(Sob(X), (x)xOx) — (Sob(Y), (tv)xOy)

of schemes, the underlying continuous map sends closed points to closed points, i.e., a morphism of Jacobson sober spaces.
Such a morphism is necessarily locally of finite type by (4.55), so we are now in the situation stated in the following, which
is essentially the Nullstellensatz.

4.58.1 Lemma Letf: X — Y be a morphism of schemes locally of finite type with Y Jacobson. Then X is Jacobson with
1:(Xcl) < Ya.

Proof. Observe by (4.52.1) Yq n V =V, for any open V < Y. Indeed,  is clear. For 3, if x € V), then {x} is locally closed
in Y. By (4.40).(c) x € Y. From this observation together with (4.42).(ii), we can assume X and Y are affine. Now the lemma
follows from (4.52) and (4.51.1). O

4.58.2 Let us continue the discussion in (4.58). Let (f,8) : (Sob(V), (1v)+Ov) — (Sob(W), (tw)+Ow) be a k-morphism.
Since Sob(V) is locally of finite type over k, by (4.55).(ii) we see (f, 0) is locally of finite type, and (4.58.1).(ii) implies that
f(Sob(V)a) € Sob(W),, i.e., f is a morphism in JacSob (4.44). Put g = f : V — W be the restriction of f to the closed points
(c.f. (4.45)). Then we have a commutative diagram in Top

\Y 9 w

]

Sob(V) ————— Sob(W).

If W is an affine k-variety, by (3.7) and (4.19), we have functorial bijections

Homse, (Sob(V),Sob(W)) —— Homajg, (Ow (W), Ov(V)) —— Homya,, (V, W)
(f,0) Bsob(wW)
g* g

From their proofs (and as Ly is an embedding and (2.9)), we see Os,p(w) = g* if and only if g = fy. In particular, this shows
0 is given by pullback of functions by g. The general case follows by covering W by affine opens. These altogether prove that

Vary Schy

X ————— (Sob(X), (1x)+Ox).
is fully faithful.

4.59 Inspired by (4.58), we say a k-scheme is algebraic if it is of finite type over Speck. Thus, if X is a k-variety, its
soberification Sob(X) is a reduced algebraic k-scheme. We are now going to show any such a scheme comes from a k-variety,
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and then prove that the essential image of the functor

Vary Schy

X ———— (Sob(X), (1x)+Ox).
is the full subcategory of Schy consisting of reduced algebraic k-schemes.

4.60 For a starter, we show if A is a reduced k-algebra of finite type, then the local-ringed space (mSpec A, Ospec A |mSpec A)
is isomorphism to an affine variety in LRSy. To see this, we are back to the situation in the first paragraph of (4.57), and we
need to show there is an isomorphism

(V/ OV) = (mSPeC k[V}, O‘Spec k[V] ‘mSpec k[V] )

The map on topological space is clearly given by o : V — mSpec k[V] there. For the sheaf map, put t : mSpec k[V] — Speck[V]
to be the inclusion. For f € k[V], since t is a quasi-homeomorphism (4.43), we have

LpreC)Spec k[V] (Dmspec (f) ) = h_I)Il OSpec k[V] (Dspec ( 9) )
Dspec(g )QL(Dmspec(f))

lim k[Vlg
Dspec(g)QDspec(f)
k[VI¢

(4.15)
=~ Oy(DY(f)) = o, Ov (D™P(f)).

lle

Every isomorphism is functorial, so this defines an isomorphism tP*Ogpec k[v) — o Ov of presheaves on the principal open
sets. But «,. Oy is a sheaf, this means (P*Og,..1 v is a sheaf on principal open sets. By (2.3.1) this extends to an isomorphism

Speck[V] P P P y P
Ospeck[V]|mspec k[v] — Oy of sheaves on mSpec k[V].

4.61 Let X be an algebraic k-scheme. Put V = X and denote by « = ty : V — X the inclusion. By (4.58.1), X is Jacobson and
V = {x € X | k = k(x)}. For a section f € Ox(U) on some open set U of X, we can regard it as a function on U n V by means of

Lf:uUnV k

x ——— class of fin k = k(x)

That k = k(x) follows from (4.58.1).(ii). In this way we have defined a morphism « = ay : Ox — k" of sheaves, where
kY denotes the sheaves U — Homsget (L, k). In other words, we obtain a morphism (1, «) : (V,k") — (X, Ox) in RSy. But it
follows from definition that this is a morphism in LRSy. By adjunction (2.10) « gives a morphism t"!Ox — kV. Denote by
Oy the image sheaf, which is a subsheaf of kV. Since X is Jacobson, t is a quasi-homeomorphism (4.40), which implies that
the sheaf Oy is the unique sheaf of kV such that t, Oy is the image of o« (4.39.2). By definition we have a chain of morphisms
1 1Ox - Oy — kY. Computing stalks (c.f. (2.19)) reads that (V, Oy ) is a basic k-space (4.16).

Let f : X — Y be a morphism between algebraic k-schemes. Let V = X, U = Y and v, wy be the respective inclusions.
By (4.58.1), we have f(V) < U. Let us denote by g = f{} : V — U. There is a commutative diagram in LRSy

(V,KY) —2) s 0y)

(9,9*{ (f,fH)

(u, ku) W (Y, Oy).

To see this, for open W € Y, g € Oy(W) and x € f~1(W) n V, we must show the class of fs,v(g) in k = k(x) is the same as
that of g in k = k(f(x)). This is clear (c.f. (4.19)). This implies that f : X — Y induces a morphism (g, g*) : (V, Ov) — (U, Ou)
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in bSp, . The construction is entirely functorial, and this shows the assignment X — (V,Ov) defines a functor from the
category of algebraic k-schemes to bSp, .

We shall expect 1,.Oy is isomorphic to the structure sheaf Ox of X. The morphism « induces a surjective morphism
x : Ox — 1,0y, so it would be nice if « is injective. Let UL = Spec A be an affine open set of X. By (4.58.1) we have
U NV =mSpec A. For oy (U) to be injective, it is the same as saying that if f € A is such that f € m;, < Ay, for all maximal
m, then f =0in A, i.e.,, rad(A) = 0. Since A is Jacobson by (4.42) and (4.38), this is equivalent to saying that 0 = V0, 1ie., Ais
reduced. Hence, if X is a reduced algebraic k-scheme, X can be recovered from the local-ringed space (V, Oy ), in the sense
that 1, Oy = Ox canonically.

Therefore, we assume X is reduced in the following. We are going to show (V, Ov) is a k-variety. Let U be an affine open
setin X; we see Uy = U n V in the previous paragraph. Put U’ = U n V and let j : U’ — U be the inclusion. Since U is also
an algebraic k-scheme, we may construct (U’, Oy-). By functoriality we have a morphism (U’, Oy/) — (V, Oy) in bSp, . By
(2.22) this gives (U, Oy/) — (U, Ov|u’) in LRSy, which is necessarily in bSp, . This morphism fits into a similarly obtained
commutative diagram

(Ox|u)lu Our kY

| I [

(OxIV)|lur ———— Ov|ur ———— kVY|uw

The vertical arrows except the middle one are clearly isomorphisms, and thus so is the middle one. Hence (U, Oy/) —
(U’, O\/|u/) in bSpk

We are now reduced to the case X being affine. Let A be a reduced k-algebra of finite type. Let t : mSpec A — Spec A be
the inclusion. The third paragraph shows that t4 Omspec A = Ospec A in LRSk. Since ( is a quasi-isomorphism (4.43), it follows
from (4.39.2) that we have an isomorphism Omspec A = Ospec A |mspec A- By (4.60), if W is an affine k-variety constructed from
A by means of (4.9), we then have an isomorphism

(Wr OW) = (mSPeC A, OmSpec A)

in LRSy, where the map on topological spaces is given by ¢ : W =~ mSpec k[W] =~ mSpec A. It remains to show the map on
sheaves are given by pullback of functions by ¢. This is easily checked on every principal open set. Therefore we see that the
isomorphism is in fact an isomorphism in bSp, , proving that (mSpec A, Omspec A ) is an affine k-variety.

4.62 We summarize what have been done so far. Denote by AlgSch, (resp. redAlgSch, ) the full subcategory of Schy
consisting of algebraic (resp. reduced algebraic) k-schemes. Categorically speaking, (4.58.1) implies that AlgSch, admits a
forgetful functor AlgSch, — JacSob, given by sending schemes to its underlying topological spaces.

In (4.57) we constructed a functor

Sob : Vary, ————  redAlgSch,
X ———— (Sob(X), (1x)+ Ox).
which is proved to be fully faithful (4.58.2). This functor fits into a commutative diagram

Vary, ——— AlgSch,

|

Topy, ——— JacSob

with the bottom horizontal arrow X — Sob(X) being the equivalence (4.45) with inverse Y — Y.

113



In (4.61) we constructed a functor

cl: AlgSchy, ——— bSp,
X——— (Xa,0x,)

and showed that it restricts to a functor redAlgSch, — Vary that is injective and inverse to the functor Sob on objects. From

the discussion there, we easily see that it is also inverse to Sob on morphisms. Thus they are really inverse to each other.
Pictorially,
Sob

/\)

Vary redAlgSch,

\/

cl

4.63

4.3 Some Birational geometry

In this subsection, let k be a field.
4.64 Definition. An integral algebraic k-scheme is called rational if it is birational to IP}} for some n.

k[x,y, z]
X2+ 2

4.65 Example : Pythagorean triples. Proj ( —Zzz)

is birational to Pi.
4.4 Galois group

4.66 Let X be a scheme of finite type over C. Then there exists a subring R < C of finite type over Z, and a scheme X, of
finite type over R such that

X = Xo Xspecr SpecC.

Proof. Let U/ = {U;}* ; be a finite affine open cover and write

Ox(Ui) =Ry =Clxq, .o, xe, 1/ (Fig, o oo, fimy)-

lle

For each 1, j, cover U; n Uj by affine open subsets in U; and Uj ; then each subset defines an isomorphism ¢;,1 : (Ri)g;;,
(Rj )911,1' For any 19,k 1, 1/, we have
(U)gsagperr = Uddgy it g0 S Wit n e s g
1//

ik, "

This means

N
-1
(91‘.)‘,1 : (bi]-,[(gjk,v)) = E Aijkir 7 gikl”
l//

for some N > 1 and ajjrurr € Ry. Lift a’s and g’s to C[X], and let R be the subring generated by the coefficients of the fi;’s,
g’s, a’s and of the polynomials defining the ¢;;,’s. Put

Rio = Rlx1, ..., x¢,/1i,
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where I; = ker(R[xy,...,x¢,] — Ri),and put U; o = Spec R;o. The element g;; 1 lies in Ry o, and ¢y;,1 restricts to an isomorphism
(Ri,0)gi;1 = (Rjo)g;i, - Now use (2.13) to glue all U . O

4.67 Base change. Letk, K be fields and o € Hompiei4 (k, K). For a k-scheme X, consider the fibre product

X Xgpeck Spec K — X X

‘/ Spec o

SpecK —————— Speck
We denote by X the scheme X xspeck Spec K. Note that if X = Speck[x]/(f), then
X? = Spec (k[x]/(f) ®x,o K) = SpecKI[x]/(f?)

where % € K[x] is the polynomial obtained by applying o to the coefficients of f. If the embedding o is obvious from the
context, we usually write Xk instead of X°.

4.67.1 LetU < X be an open subspace, and x € X°. Consider the commutative diagram

Ox(U) —2—— Oxe (05 (W)

Then for f € Ox(U), we have

Here we use the notation in (2.21). To see this, note that

f—flox(x)) € mx oy (x) © Oxx(f — flox(x))) € mxo x
= G§<f — oxx(flox(

< (04 f)(x) = oxx(flox(x))) = o~} (fox(x)) in k(x)

X)) € mxo x

4.68 Let k be a field and let k be an algebraic closure of k. If X € Schy, we can consider the k-scheme

X = X Xgpeck Speck.

Putp =pr; : Xi — X.
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5 Smoothness

5.1 Normality

5.1 Recall that a ring A is called a normal domain, or simply normal, if it is an integral domain that is integrally closed
in its fraction field. For example, every UFD is a normal domain. If S < A is a multiplicatively closed set, by clearing the
denominators we quickly see the localization S™'A is also a normal domain. Conversely, if A is an integral domain with the
property that the localization A, is normal for every maximal ideal m, then A is normal.

In fact, let C be the integral closure of A in Frac A. By clearing the denominators, we see S~!C is the integral closure of
S~A in Frac A. If we write f : A — C for the natural inclusion, then A, is normal implies the localization fy, : Ay — Ci Of
f at m is surjective (or identity). Varying m yields that f is surjective, i.e., C = A.

5.2 Definition. Let X be a scheme.

1. Xis normal at a point x € X if the local ring Ox x is a normal domain.

2. Xis called the normal scheme if it is normal at each point.

5.3 Let X be an irreducible normal scheme. In particular, X is integral, so Ox(U) is an integral domain for any open set U
of X. If f € K(X) is integral over Ox(U), then f is integral over Oxx for every x € U, as Ox(U) < Ox . By assumption we

then have f € Ox x for every x € U. The equality Ox(U) = (| Oxx in (3.42) then shows that f € Ox(U). This proves Ox (U)
xel

is also a normal domain. Conversely, if Ox (