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Chapter 1

Local Fields

1.1 Fractional Ideals

Let R be an integral domain and K its field of fractions. For R-submodules I, J of K, we can define
I+ J InJ 1]

as usual, and all of the operations above are commutative and associative. Moreover, for R-submodules
[, [1, [2 of K,
IL+1L)=1L+1I

For an R-submodule I of K, define
I''={zeK|2I<R}=(R:1I)
R(I)={zeK|zlIcI}=(I:1)
It is easy to see that
1. R(I) 2 R2IT7Y
2. if I € R, then I"! 2 R.
Definition. An R-submodules I of K is a fractional ideal of R if
o [ #0;
o there exists a € K* such that al < R.
Note that a can always be chosen to lie in R; in particular, In R # . If R = I17!, we say [ is invertible.

Lemma 1.1. If I, I;, I, are fractional ideals, then so are I} + Iy, I} n I, [} I, I, R(I).



Proof. Tt’s clear for the first three. For the last two, we prove a more general statement. If Iy, [, are

fractional, so is
J={$EK|$]2§]1}=(]1Z]2)

o J is nonzero: Let a,b € R\{0} be such that al, € R, b € I; n R. Then bal, < bR < I; so that
ab e J\{0} and J is nonzero.

e J is fractional: Let ¢,d € K* such that c¢I; € R, d € I,. Then for x € J, cdx € cxly, < cl; € R, so
cdJ < R.

]

Lemma 1.2. Suppose R is Noetherian. A nonzero R-submodule I of K is fractional iff I is finitely

generated.

Proof. Suppose [ is fractional. Then I =~ al < R (a € R) is finitely generated. Conversely, if [ is finitely
generated, pick a € R to be the product of the denominators of a finite generating set of I; then af < R. [l

Lemma 1.3. Let [ be fractional.
1. If I is invertible, then [ is finitely generated.
2. I is invertible if and only if I is a projective R-module

Proof. Assume II™" = R. Then 1 =Y | a;b; for some a; € I, b; € I, and for each a € I,
a=al = Z a;(ab;)
i=1

Since b; € I, ab; € R. Hence I = (ay,...,a,)r. Let @ Rx; > I defined by 7(z;) = a;. Define

i=1
f:l —— @®Rus
i=1
a — E(Gbi)%’
i=1

Then
(mo f)la;) = (Z ajbixi) - Za’jbiaz‘ = a;
i=1 i=1

so that the exact sequence 0 — kerm — R" 5> I — 0 splits.



Conversely, suppose [ is projective. Let {a,}scs be a generating set, and define @ Rx, -> I defined
seS
by m(x,) = a,. Then we can lift id; to a map f : I — R®. Write f = (f,)ses. Then the f, satisfy the

property: for all x € I, f(z) = 0 for all but finitely many s € S, and for any a € I,

a = Z fs(a)a

Now let b € I\{0} and let f,,,..., fs,, S; € S be all the maps that f,(b) # 0. Let r € I=' n R\{0}. Then
for eachael, se S,

brfs(a) = fs(bra) = fs(b)ra

so that fy(a) = b~ fs(b)a. This show f,, ..., fs, are the only nontrivial maps in {f;}ss, and b=! f,(b) € I~
for each s € S.
Now, for a € I\{0}, we have

- Z fs’i(a)a’si = Z b_1f5i<b)aasi = Z fsl CLSZ
i=1 i=1 i1

so that 1 = Y. b1 f, (b)a,, € [7'I. Hence [7'] = R. O

i=1

1.2 Discrete Valuation Rings

Let K be a field.
Definition. A map v : K — Z u {0} is a discrete valuation of K if
1. v: K* — 7Z is a surjective homomorphism;
2. v(0) = oo;
3. v(z +y) = min{v(z),v(y)}
-v(=1)+v(-1) =v(1) =0,s0 v(—1) = 0. Thus v(—y) = v(—1) + v(y) = v(y).
- R ={xe K |v(r)=0}

- If v(z) # v(y), then v(z + y) = min{v(z), v(y)}.
Proof. Suppose v(z) < v(y). Then

v(ir+y) zv(r)=v(z+y—y)=min{v(r+y),vy)}=rve+y)



- The set R, = {r € K | v(x) = 0} is an integral domain with quotient field K. This is called the

valuation ring of v.

Theorem 1.4. A discrete valuation v of a field K can uniquely be extended to a discrete valuation on the

completion K of K with respect to the valuation topology. Additionally, v(K) = v(K).

Proof. Fix 0 < p < 1 and define |z|, = p*® for each x € K. Then |- |, is a metric on K. Let K be
the completion of K with respect to | - |,; the addition, multiplication and inverse are continuous on K so

they're well-defined on K, making K a complete field. The uniqueness is clear for K is dense in K.

e | - |, is non-Archimedean. Let z,y € K and let z, — 2, ¥, — v in K. Then |z, + Y|, <

max{|Z,|., |ym|,}. Taking limit, we see |z + y|, < max{|z|,,|y|.}.

« The image group is the same. Let € K and let a € K be such that |z — a|, < |z|,. Then

la, = max{|a — x|, |z|,} = |z,
Define 7 : K — Z u {0} by v(z) = log, |7|,. Then 7 is a discrete valuation on K extending v. O

Choose an element 7 € K with v(7) = 1; such an element is called a uniformizer. Then every a € K*
has a unique representation

a=n"Y%, ue R
This gives a (non-canonical) isomorphism K* =~ Z x R). We turn to the fractional ideals of R,.
Proposition 1.5. R, is a local PID with maximal ideal p, = {x € K | v(z) > 0}.

Proof. Let I be a nonzero ideal of R,. Let z € I\{0} be such that v(z) = min{r(y) | y € I\{0}}.
Claim. [ is generated by x, and I = {y e I | v(y) = v(z)}.

Indeed, for y € I\{0}, we have v(yx~') = v(y) —v(z) = 0, so yr~! € R,. This shows I < zR, < I, and
hence I = zR,,.
For each n € N U {0}, define I, := {x € R, | v(z) = n}. Then we have a descending chain of ideals

R, =Ih2L2102- -

consisting of all nonzero ideals of R,. Together with the above results, R, is PID with the unique maximal
ideals I = p,. O

Corollary 1.5.1. Every fractional ideal I of R, takes the form p/"), where v(I) = min{v(z) | z € I}.

Definition. A discrete valuation ring, or DVR for short, R is a local principal ideal domain but not
a field.

Proposition 1.6. Let K be a field with discrete valuation v, and (R, p) be its valuation ring. Then the
valuation ring of the completion K of K at v is (R,p), where ~ denotes the closure of - in K. Moreover,
p=pR.



Proof. Let x € K with v(z) > 0. Find a; € K such that v(x — a;) > v(x). Then v(a;) = min{v(z —
ar),v(z)} = v(x), so a; € R. Inductively we find a,, € K such that

vie—(ar+ -+ ap1+ay) >v(e—(ar+ - +a,1))

with a1,...,a, € R. Then a; + --- + a, — x as n — o, so that x € R. Conversely, if € R, then we
can find a € R such that v(z —a) > v(z), and hence 0 < v(a) = v(z). In the same way we can show the
maximal ideal of R is .

Finally, let 7 be a uniformizer of R. Then 7 is also a uniformizer of R, so

pR=7R=p

Characterizations of DVR

Theorem 1.7. Every valuation ring R, of a discrete valuation » on K is a DVR.

Conversely, every DVR R is the valuation ring R, for a unique discrete valuation of its field of fractional
K.

Proof. It remains to show the converse. Let p = 7R be the unique maximal ideal of R. R is a UFD, so

every nonzero element x € R has a unique representation

T =m"'u

for v a unit and n = 0. For ab™! € K, a,b € R\{0}, write a = 7"u, b = 7™v. Thus ab™' = 7" "™ (uv™1),
so allowing n € Z we see every x € K* has the form as above. Define v : K — Z u {00} by setting
v(xz) =n, v(0) = oco. Then v is a discrete valuation on K, and R = R, by definition.

If 4 is another discrete valuation on K such that R, = R, then p, is the unique maximal ideal of

R, = R, forcing that p, = p,; in particular, u(r) = 1. Hence p = v. O

Theorem 1.8. An integral domain R is a DVR iff it’s Noetherian, integrally closed and local, but not a
field.

Proof. A PID is necessarily Noetherian, and a UFD is integrally closed. This shows the necessity.

For sufficiency, let I be a fractional ideal. Then R(I) = (I : I) € K in a ring, and hence for all
x € R(I) € K, R[x] is an R-submodule of R(/). By lemmas in 1.1, R(I) is finitely generated, hence so is
R[x]. This proves z is integral over R, i.e., x € R, and thus R(I) = R.

Let p be the maximal ideal of R. We claim that p~! # R. Consider the collection

S:={0#1<R|I "+ R}

this is nonempty, for aR € S for a # 0 € p. Since R is Noetherian, let J € § be a maximal element. We

show J is a prime, and hence J = p.



Let x,y € R be such that zy € J,z ¢ J. For 2 € J7'\R, we have zy(zR + J) < R, and hence
zy € (zR + J)™' = R by maximality of J. Then 2(yR + J) < R, so z € (yR + J)™!, showing that
(yR+ J)' # R. By maximality, yR + J = J; in particular, y € J. This proves J = p.

By lemmas in 1.1,

Ropp ' 2pR=p
But pp~! =1 would imply p~! < R(p) = R (in the second paragraph), a contradiction. Hence R = pp~'.
Clearly, p* < R () p™ ). If ( p" #0, then [ p" = Rand p~' < R < p~ !, a contradiction. Hence

n=1 n=1 n=1

(pm =0 (1.1)

n=1

Choose a € p\p%. Then ap~' = R. Since R = pp~!, ap~™ & p. Hence ap~! is an ideal of R contained in
any maximal ideal, so ap™! = R, and thus
p=aR

is principal. By (1.1) every nonzero element of R has a unique representation a"u, n = 0, u € R*: every
z € R lies in p™\p™ ™! for some unique n > 0. Hence R is a DVR. O
Some associated groups

Let K be a field with a discrete valuation v. Let (R,p) be its valuation ring. The quotient k = R/p is
called the residue class field.
The additive group of K is the union of open and closed subgroups p” (n € Z) whose intersection is

Zero.

Lemma 1.9. For n € Z, there is an isomorphism

P pn/pn-i-l
of k-modules.

Proof. Write p = mR. Then the isomorphism is induced by multiplication by 7". Pictorially,
R ™ N pn N pn /pn-i-l

|

k= R/p"

We turn to the multiplicative group K of K. Note that the valuation induces an exact sequence

0 s U y KX Y5 7 y 0

10



where U = R* is the group of units of R. For each n > 1, define
U,=1+p"

this is an open subgroup of U, with () U, = {1} (for z € U, if y € p", then x + y € U,). The subgroup
n=1

topology of U induced by the U, (n = 1) coincides with the subspace topology of U < K.
Proposition 1.10.
1. The residue class map R — k gives rise to an isomorphisms
U/Uy =~ k™
as groups.

2. For each n > 1, the map u — u — 1 gives rise to an isomorphism

Un/Uns1 = p"/p"*!
Thus U, /U1 = K.
Proof.

1. U = R —p, so the image of U equals k*. Let x = 1 + mu € U;. Then x mod p = 1 in k, and thus
Uy = ker(U — kX).

2. For u,v e U,,

(ww—1)—(u—1)—@w-1=w-u—v+1=(u—-1)(v-1)ep™

Proposition 1.11. Let p be the characteristic of .

1. If p > 0 is a prime, then for n > 1

U’r]; - Un+1

2. If K is complete and if m € N not divisible by p, then for each n > 1, the map u — u™ is an

automorphism of U,,.
Proof.

1. From the previous proposition, we have U, /U, 1 = k for n = 1, a multiplicative-to-additive homo-

morphism. Hence U? < U,,.;.

11



2. Again by the mentioned isomorphism, the map f : v — u™ on U, induces an isomorphism f, :
Uy/Ugs1 = Uy/Uysq for ¢ = n. If © € ker f, then 2™ € U, 41, and hence x € U, 41. Repeatedly, we see
z € () Upr1 = {1}, proving that ker f = {1}, that is, f is injective.

q=n
Let uw € U,. To show f is surjective, start with vy € U, w; € U,41 such that v = v{'w;; this is
possible for f, is bijective. Inductively, let v, € Upig, wyt1 € Upigy1 such that w, = vg'wgyq for each

q = 0. This gives
u = vg'wy = v (v]"we) = (vev1)Mwy = -+ = (Vovy - - - V) " Wyt1

Then the sequence {w,},>¢ tends to 1, and since K is complete, the product vov; - - - v, converges to

an limit v € U,,. But then u =v™ € U™, so u = f(v).

]
1.3 Hensel’s lemma
Theorem 1.12. Let K be a field complete with respect to a non-archimedean absolute value |- |, and let
f(z) € o[z], where o is the ring of integers of | - |. If
| (o)| < | () ?
for some ag € 0, then there exists a unique « € o such that
f(a)]
fla) =0, Ja—al<
/()]
Corollary 1.12.1. Let K be a field complete with respect to a non-archimedean absolute value | - |, and
let f(x) € o[z], where o is the ring of integers of | - |. If
flag) =0 (mod p), f'(ag) #0 (mod p)
for some ag € Kk = o/p, then there exists a unique « € o such that
fla) =0, Ja—a| <1
Proof. (of Theorem 1.12) Write
fla+1t) = f(x) + f'(2)t + gz, )t (1.2)
flx+1) = fl(z) + f'(2)t + h(z, t)t? (1.3)

for some g, h € o[z, t]. For n = 0, define «,, (3, € 0 by the equations
f(Oén) + an,(Oén> = 07 Qpy1 = Qp + Bn

12



For n > 0, using (1.2) and the construction of the ,, we have

‘f(an)P <..- < |f<040)’2"+1
‘f( )‘2 |f’(an)|2...|f/<a0)’2n+1

|fan)] = [f(an + Ba)| = Wig(amﬂn” < |Bn|2 (1.4)

and using (1.3) gives
|f ()]

‘f/<04n+1) - f (Oén)| = |ﬁn’ |f/( )|

We prove it by induction on n that

[ (am)| = [f' ()

The statements hold when n = 0. In general, (1.4) and the assumption give

gn+1 gntl
o) = Flan)] < et < s = | | aa)] < £ (aoll =11 (a)
so |f'(ans1)| = |f'(an)| = |f' ()], and (1.4) again gives
Fla)™ | flao) [,
’f(Oén-i-l)‘ < |f,(a0>|2n+2_2 - f,(ao)g ‘f (050>‘2
Also,
anl
Bl < |22 17 e
Finally, for n > 0,
2
a0l < sl ) < | L] ) <[ L0
Since ]]:’((ZO)) < 1, both f(ay,), B — 0 as n — o0, and put @ = lim «a,, € K. Hence
0 n—00

The latter property and the assumption give « € o, for
o] < max{|or — agl, o[} < max{]f'(a0)], [aol} < 1

The uniqueness follows from (1.2) and |f'(«)| = |f'(ap)| # 0; indeed, if o’ € 0 is another solution with the

desired conditions, then, put t = o/ — «,

f ()
t| =o' — —al <
it] =o' —ag + ag — af Flan)
and
0= fla+t)= fla)+ f(a)t + gla, )t* = f(a)t + g(a, t)?
If t # 0, then
(o)
"(ap)| = |f ()| = |gla, t)t] < |t] <
|f"(ao)| = [f/ ()] = [g(a, )] < [¢] (a0
a contradiction to the assumption. Hence t = 0. [

13



Corollary 1.12.2. Let R be a complete DVR and K its field of fractions. Put U = R* to be the group

of unit. Then for n > 1 not divisible by the characteristic of x, the n-power subgroup
U ={z"|zeU}
is open in R.

Proof. Let x € U and y € R such that |2" —y| < 1; then y € U. Consider the equation f(X) := X" —y = 0.
We have |f(z)] = |[z" —y| < 1 and |f'(z)| = |nz""!| = 1, so by Hensel’s lemma, there exists o € R such

that y = o”. Since |y| = 1, |a| = 1 as well, implying o« € U. Hence y € U™. O

1.4 Localization

Let A be a commutative ring with identity, and S € A a multiplicatively closed subset containing 1; we

write S is an m.c.s. for short. Define an equivalence relation ~ on A x S
(a,s) ~ (b,r) < s'(ar — bs) = 0 for some s’ € S

Define a ring S71A = A x S/N. Symbolically we write an element of S™1A as g, a€ A, se . This is
s

LA —— ST1A
called the localization of R at S. We have the canonical map a
a ——— I

Example. Let p < A be an ideal. Then p is a prime if and only if S := A — p is multiplicatively closed.

In this case, we can form S™'A, and it is usually denoted as Ay, and called the localization of A at p.

We give the universal property of the localization S™'A. For any commutative ring B with identity,
define F/(B) := {¢ € Homging(A, B) | p(S) < B*}; then it is easily seen that F' is a functor.

Theorem 1.13. The map
Hompging(S™'A, B) —— F(B)

fi s fou

is a functorial bijection in B.
Proof. For ¢ € F(B), define f,: S™'A — B by f,(a/s) = p(a)p(s) . O

For an A-module M, we can define its localization at S as well. Define an equivalence relation ~ on
M x S

(m,s) ~ (n,r) < s'(mr —ns) =0 for some s' € S
Define an abelian group S~*M = M X5/ Then it’s clear that S~'M is a S~'A-module. In fact,

Proposition 1.14. S™'M >~ M ®4 S~'A as S~' A-modules.
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Proof. Define

o:MxSTTA —— ST V:STIM —— M®sS™tA
a ma m 1
(m 0y oy M mel
s s S s

Then ¢ induces a S~ A-homomorphism M ®4 S~'A — S~'M which we still denote by ¢. Then
(Yoyp)m®a/s) =1(ma/s) =ma®1l/s=m®®a/s

(pop)(m/s) = p(m@1/s) =m/s

so that ¢ and ¢ are mutually inverses. [

The proposition in particular shows that S=' : Mody — Modg-1, is a functor. To be precise, for
f: M — N, define S_lf = f®idg-14: M ®4 S71A — N ®a STLA.

Proposition 1.15. S~! is an exact functor. In other words, S™'A is a flat A-module.
Proof. Let M LN % L be exact in Mody. Then
S~ S sIN L g1
is a complex. Now let ' ¢ S7IN such that 9(n) = 0in S™'L. Then 0 = s'g(n) = g(s'n) in L for some

s
s’ € S, s0 s'n = f(m) for some m € M. Thus

n_ s _ f(m)

S s's s's

1.4.1 Ideals in the localization
Proposition 1.16. Let S be an m.c.s. and I < A an ideal.
1. S7T'I=S"1Aifand only if Sn I # &.
2. For JQAS™A J=(JnA)SA.
{p e Spec(A) | pn S =g} —— Spec(StA)

is a bijection.

p » pSTLA

Proof.

1
1. For s € S, if = € S7'I, then s'(r — bs) = 0 for some r,s’' € S, b € I, so that rs' = bss' € S n I.
s

1
Conversely, pick 7 € S n I. Then for any s € S, — = T esr
s sr
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2. Clearly, (J n A)S™'A < J. Conversely, for Le J, v =s" Teln A, so that Le (JnA)STLA.
s s s

3. For B € Spec(S~1A), since (PnA)STTA=P < SA (PnA)nS = . Conversely, let p € Spec(A)
with p n S = . Then pS—'A is an ideal in S71A.

Claim.

(a) pS~tA € Spec(S~1A).
(b) (pSTTA) N A=p

Proof.

(a) Let E, Yes1Awith Y - ; epSTtA, zepbut z,y ¢ p. Then s'zyt = s'srt € pn S for some
s’ sr
s’ € S, a contradiction.

(b) Clearly, p < (pS—'A) n A. Conversely, let % Sy (pS7tA) N A, x € p. Then s(z —ra) = 0 for
s
some s€ S. If ae A—p, then p 3 sz = srae A — p, a contradiction. (Note that S < A — p).

]

Il
Note that IS™'A =~ T®4 5 1A ~ ST as S~' A-modules.
Corollary 1.16.1. If A is Noetherian, so is S™1A.

Proof. By the proposition, every ideal of S7'A is of the form IS™'A =~ S~'I for some I < A. A being
Noetherian, there is an exact sequence A" — I — 0 for some n € Ny. Since S7!'A is flat over A,
(S7*A)" — S7T — 0 is exact. Hence S™'T finitely generated. O

1.4.2 Integral dependence

Proposition 1.17. Let A € B be rings and C' be the integral closure of A in B. Let S € A be an m.s.c.
Then S~!C is the integral closure of S™'A in S™'B.

Proof. Let bs™ € S71B integral over S™'A. Then f(bs™!) = 0 for some monic f € S~!A[z]. Multiplying

a multiple of denominators of coefficients, we obtain

anb™ + Ap1 SV 4 a1s" I+ aps™ = 0

b b
for some a; € A and a,, € S. Then a,b € B is integral over A, implying a,,b € C. Hence — = 2 e 510
S aps

Conversely, it is easy to see every element in S~'C is integral over S~1A. ]
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1.5 Dedekind Domains

In this section R always means an integral domain with K its field of fraction. If p € Spec R, define the

local ring of fractions at p by

R,={zy'eK|z,yeR, y¢p}

Proposition 1.18.

1. R, is a local ring with maximal ideal pR,.
2. p=pR,n R.
3. If J <Ry, then J = (J n R)R,.

Proof. We have already seen 2,3 in the section for localization. For 1., it suffices to show R, = R, —pR,,.

If zy~' € RY, then 7" € R,, so that ¢ p. Hence 2y~" € R, — pR,.

If zy~' € R, — pR,, then x ¢ p so that 27y € R,,.

Theorem 1.19. Let R be an integral domain. Then TFAE:

1.

2.

3.

R is Noetherian, integrally closed and its nonzero primes are maximal.
R is Noetherian, any for any non-zero prime p, R, is a DVR.

All fractional ideals are invertible.

Proof. If R = K is a field, then everything holds trivially. In the following we assume R is not a field.

1. = 2.

We invoke Theorem 1.8. To show R, is a DVR, it suffices to show it is Noetherian, integrally closed

and local but not a field. We will implicitly use the results in the section of localization.

Since R is Noetherian and integrally closed, so is R,. Since p # 0, R, is local with maximal ideal
pR, # 0.

. Let I be a fractional ideal. By lemmas in 1.1, I is finitely generated; say I = (aq,...,a,)g. Let

n
xr = Y, r;a; € 1. Denote by v, the valuation in R,. Then
i=1

v(x) = inf yy(re) = inf vy(a;)
1=1,...,n = n

Now assume that a; is such that v,(ay) = ‘_ilnf

nl/p(al-). Then IR, = a1 R,.

Now let aj'a; = zgy; ' with 2,5, € Rand y; ¢ p. Put y = y1---9,. Then ya;'a; € R, so that
ya;' € 171, whence y € I17'. However y ¢ p, so I~ & p. Since this is true for all maximal p,
II7' = R.
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3. = 1. By lemmas in 1.1, every invertible ideal are finitely generated, so that R is Noetherian.

Let x € K be integral over R. Then S := R|z] € K is finitely generated. By lemmas in 1.1, S is

fractional. Since S is a ring, S? = S. Thus
S=SR=S5(SS"=8*8"1=899"=R

so z € R. Therefore R is integrally closed.

Let p € Spec(R) be nonzero and m € mSpec(R) containing p. Then pm™' < pp~! = R and
(pm~')m = p. Since p is a prime, we have either m < p or pm~! < p; if the latter were to happen,

mlcplp=R
so that m™! € R, i.e., m = R, a contradiction. Hence m < p, and thus p is maximal.
O

Definition. If R is an integral domain satisfying any of the statements in Theorem 1.19, we call R a
Dedekind domain.

o If p is a nonzero prime of R, we denote by 1, the valuation on the field of fractions K of R with

valuation ring R,,.
o If |-| is a nontrivial absolute value (i.e., |z| # 1 for some z € K) on K with |R| < 1. Then |z| = p»»@)

for some 0 < p < 1 and some nonzero prime p of R.

Proof. Let p ={z € R | |x| < 1}. Then p € Spec(R) is nonzero. We show
o] = [
where 7 is the uniformizer of R,.

— Write 7 = ab™! with a,be R, aep $b. Then [b| =1 and a = br € p, so |r| < 1. Since 7 # 0,
|| > 0.
! ~!| = 1. Now for every z € K*,

— For u € R, write u = 2y~ with 2,y € R — p. Then |u| = |zy

write z = 7"u for some unique u € RX, n € Z. Then |z| = |7|"|u| = |7|" = |x|»@.

o For @ # 1 < K, define v,(I) := in?yp(x) €Z v {+wo}.
xre
Theorem 1.20. Let R be a Dedekind domain.

1. The fractional ideals of R form an abelian group J(R) under multiplication.
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2. J(R) is free on the nonzero primes of R.
3. For a fractional ideal I,
I = HPVP(I)
P
Also, IR, = (pR,)"»)

Proof. The first follows from Theorem 1.19 and lemmas in 1.1. To show the nonzero primes generate J(R),
it suffices to show every integral ideal I < R is a product of primes. If I # R, then I < p for some p, and
I < Ip~! < R. Continuing in this way on Ip~!. the result then follows since R is Noetherian.

For each p, we have a surjective homomorphism
fo 1 I(R) —— T(Ry)
I ——— IR,
o If fo(p") = (pRy)" = R,, then n = 0.

o If g #p, then qn (R —p) # J so that f,(q) = R,.

Hence ker f, contains all nonzero primes other than p. This shows J(R) is free on the set of nonzero primes.

I=]]p™
p

Finally, write

Then IR, = f,(I) = (pR,)™, so that
ny = (IR,) = (1) + (Ry) = (1)

Corollary 1.20.1. If a € K, then v,(a) = 0 for almost all p.
Corollary 1.20.2. Let I, J € 3(R).

v(LJ) = (1) + vp(J);

(™) = —1(I);

w1+ J) = inf{p (1), ()}

(1 1 J) = sup{up(D), ().

Corollary 1.20.3. The maps f, induces a group isomorphism

J(R) = @D I(Ry)
p

—_

o

w

e

Let R, be the valuation ring of the completion of K at v,. By Proposition 1.6, 3(R,) =~ J(R,). Hence
Corollary 1.20.4.

I(R) = DI(R,)
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1.5.1 Modules and Bilinear Forms

Throughout this subsection, let R be a Dedekind domain, K its fraction field, U an n > 0 dimensional
K-vector space. The symbols L, M, N stand for finite R-submodules of U which span U.

Lemma 1.21. For an R-submodule T" of U, we have

T= (] = () %
(R) (R)

peSpec pemSpec
Lemma 1.22. Given M, N, there is a nonzero element a of K with aM < N.

Proof. Let {u;} be a basis of U contained in N. For a finite generating {w;} set of M, choose a € R to

eliminate the denominators of coefficients of the w; with respect to {u;}. ]
Lemma 1.23. For almost all p, M, = N;.

Proof. By Lemma, we find a,b e K* with aM < N < bM. Hence M, = N, if vy(a) = 0 = v4,(b), which is

the case for almost all p. [

Suppose for a while that M, N are free over R, hence of rank n. Then there exists £ € GL(U) such that
M/{ = N. The determinant det(¢) is non-zero, and solely depends on M, N up to a unit in R. Hence the

fractional ideal

[M : N]:= Rdet({)

solely depends on M, N.

Now drop the condition that M, N are free. Nevertheless, for each p € Spec(R), we see M,, N, are
contained in U, and hence they are torsion-free. This shows M, and N, are free over R, of the same rank
n, so the fractional ideal [M, : N,] is well-defined. Moreover, by Lemma above, [M, : N,| = R, for almost
all p.

Definition. The module index [M : N| = [M : N]g is defined to be the unique fractional ideal such
that
[M : NIR, = [M; : N,

for all p € Spec(R); both existence and uniqueness follow from Corollary 1.20.3.
o When M, N are free, two definition clearly agree.
e When R=7Z and N € M, [M : N] is just the ordinary group index.
Property 1.24. Let U, M, N, L as above. Then
1. [M:N]|[N:L|=[M:L]and [M: M] =R.

2. If N = M, then [M : N| € R, and [M : N] = Riff M = N.
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3. If t € GL(U), then [M¢t : Nt] = [M, N].

Proof. Locally, we can suppose M, N, L are free, and all are clear. Then use Lemma 1.21 to obtain the
global result. n

Proposition 1.25. [M : N] is a principal fractional ideal if and only if M =~ N.
Definition. Let B : U x U — K be a nondegenerate, symmetric K-bilinear form on U.
1. For a K-basis {u;} for U, its dual basis {v;} is defined by B(u;, v;) = d;;.
2. The dual module of T is defined by

D(T) = Dp(T) := {ue U | B(u,T) < R}

If M is the free R-module on {w;}, then D(M) is the free R-module on the dual basis {v;}, and
D(D(M)) = M.

In the following we put D = Dg and D, = Dgp,.
Property 1.26.

1. D(M) is a finite R-module spanning U.

2. D(M), = Dy(M,).

3. D(M): ﬂ Dp(Mp)~
peSpec(R)

4. D(D(M)) = M.
5. [D(M): D(N)] =[N : M].
Proof.

1. M contains a free R-module N spanning U, and by previous lemma M is contained in L = bN for

some be K*. Hence N € M < L implies
D(N) 2 D(M) 2 D(L)
We know D(L) generates U and D(N) is finite over R, and hence D(M) has the desired properties.

2. Say {w;} is a finite generating set of M. Suppose v € D,(M,). Then for all i, B(v,w;) = b~'a; with
a;,be Rand b¢ p. Hence ve D(M)b~ < D(M),. Conversely, we have

B(D(M),, M,) € B(D(M), M)R, < R,
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3. Use 2. and Lemma 1.21.
4. D(D(M))p = Dp(Dp(Mp)) = M,. Use Lemma 1.21.

5. Locally we can assume M, N are free. Suppose {u;} and {v;} are dual bases and {u;¢} and {v;{*} are
dual basis, then we must have det(¢)det(¢*) = 1. Say wu; is a basis for N and wu;¢ is a basis for M,

Then
[N: M| =det(/)R = det(ﬁ**l)R = [D(M) : D(N)]

Definition. For a finite R-submodule M of U which spans U, define the discriminant of M to be
o(M) = o(M/R) := [Dr(M) : M]g
Property 1.27. Let M, N as above.
1. o(N) =0o(M)[M : N>
2. 9(M,/R,) = 0(M/R)R,.
3. If M is the free R-module on {u;}, then 9(A/) is the fractional ideal generated by det B(u;,u;).
4. If N € M, then 9(M) | 0(N), and o(M) =d(N) iff M = N.

Proof.

2. [Dy(My) : My] = [D(M)y : My] = [D(M) : M]R,.

3. Let {v;} be the dual basis of {u;} and write u; = v;{. Then [D(M) : M] = det(¢)R. On the other
hand,
det B(u;,u;) = det B(u;, v;l) = det(¢) det B(u;, v;) = det()

4. Since N € M, [M : N] is integral, and equals R iff N = M. Then it follows from 1.
Il

Proposition 1.28. Let U; be a finite dimensional K-vector space and M;, N; are R-submodules of U; that
span U;. Set U = U; @ U,, and similar for M, N.

1. [M : N] = [Ml : Nl][MQ : NQ]
Suppose moreover that B(Uy, Us) = 0. Then
2. D(M) = D(M;)® D(My).
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3. (M) = 2(M)O(M)

Let R be a Dedekind domain containing R with quotient field K. Embed U into the vector space

U := U ®g K. B can be extended uniquely to a non-degenerate symmetric K-bilinear form B on U.
Proposition 1.29.

1. [MR: NR]z = [M : N]gR.

2. DE(MR) = Dr(M)R.

3. o(MR/R) = o(M/R)R.

1.6 Extensions

Let R be a Dedekind domain with fraction field K. Let L be a finite extension of K, and let S be the
integral closure of R in L. We know that S ®p R, is the integral closure of R, in L for each p € Spec(R).

Definition. A prime B € Spec(S) is said to lie over the prime ideal p € Spec(R) if P~ R = p. If it is
the case, we write P | p.

1.6.1 Krull-Akizuki

We temporarily drop the notation set above. Suppose now A is a Noetherian domain of dimension 1 and
K its fraction field. Let M be a torsion-free A-module. Set rank M = dimyg K ®4 M.

Lemma 1.30. For z € A, we have
length o (M /zM) < rank(M)length ,(A/xA)
with equality if M is finite over A.

Proof. Set r = rank(M); if M is finite over A, then r < co. If r = 00, there is nothing to prove, so we may
assume r < 0.

Assume M is finite over A, and pick mq, ..., m, € M such that they form a K-basis for K ® 4 M. Let
a : A" — M be a homomorphism sending a basis of A" to the m;; by construction « is injective, so we may
assume A" as a submodule of M. Put N = M/A"; we have K ®4 N = 0. Consider the exact sequence

0 s AT s M > N > 0

Tensoring with A/x A, we have an exact sequence

Tort (M, AJxA) —— Tor}(N,A/zA) —— A"/zA" —— M/tM —— N/ztN —— 0
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Using the free resolution 0 — A 5> A — A/zA — 0 of A/zA, we see Tori (M, A/zA) = {me M | zm = 0}
and similar for Tor{'(N, A/zA). Since M is torsion-free, Tor{' (M, A/zA) = 0. Also, consider the exact
sequence

0 —— Tor (N, A/zA) y N -2 N » NJtN —— 0

Since K ®4 N = 0 and N is finite over A, there exists f € A — {0} with fN = 0, making the modules
appearing in the above complex A/fA-module. Since dimA = 1, dim A/fA = 0, implying the modules

above are of finite length. Hence
length Tor{!(N, A/zA) = length(N) — length(N) + length(N/zN) = length(N/zN)
Using the complex involving M /xM above, and noting that they are all A/xA-module, we have

length(M /M) = length(A”/zA") + length(N/zN) — length Tor{ (N, A/zA)
= length(A"/zA")
= rlength(A/zA)

proving the equality when M is finite over A.

Now drop the condition that M is finite over A. Suppose the inequality in Lemma does not hold, i.e.
length(M /zM) > rlength(A/zA). Choose a finite submodule M’ of M whose image N’ in M /xM has
length > rlength(A/xA), which is possible. Indeed, we can find a filtration

OcM -~ M, M/xM
with ¢ > rlength(A/zA). Pick m; € M such that (m; mod xM) € M;\M;_;, and define M’ = ZélmZA.
Put M/ = (M; +xM) n M")/xM" < M'/xM'. Then M'/xM admits a filtration -
OcM <M, M/zM
by our construction. Hence length(M’'/xM') = ¢ as we wish. But then
length(M'/xM') = length N’ > rlength(R/zR) > rank(M') length(R/xR)
contradicting to the equality proved in the finite case. Il

Theorem 1.31 (Krull-Akizuki). Let R be a Noetherian domain of dimension 1 with fraction field K and
L/K a finite field extension. Let S be any subring of L containing R. Then

1. S is Noetherian and of dimension < 1.
2. For any nonzero ideal J of S, length, S/JS < .

3. Spec(S) — Spec(R) has finite fibres.
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Proof. Let 0 # J <5 be an ideal. We first show J n R # 0. Pick # € J. Then x satisfies a polynomial over
K; eliminating the denominators, we may assume the polynomial has coefficients in R. Then the constant
term lies in J n R. We contend J/aS is a module of finite length. Since J/aS < S/aS and S is torsion-free
R-module of finite rank, Lemma applies, showing that S/aS has finite length, thus so does J/aS. This
implies J is a finite S-module, and hence S is Noetherian.

If J is a nonzero prime, so is J N R; since dim R =1, J n R =: m is a maximal ideal of R. What we
proved above show S/mS has finite length, and thus S/mS is Artinian. Hence every nonzero prime of S

containing mS' is maximal and there are in finite number. This shows J is maximal, proving dim .S < 1.
O

Corollary 1.31.1. Let R be a Dedekind domain with fraction field K and L/K a finite extension. Then

the integral closure of R in L is a Dedekind domain.

1.6.2 Trace form

Definition. For a finite field extension L/K, the trace Try x(x) of x € L is defined to be the trace of the
K-linear map T}, : L — L defined by multiplication by x on L.

e Trp/x: L — K is a K-linear map.

o Let U be a finite dimensional L-vector space and ¢ € End(U). Then tracex (p) = Try k (tracer(p)).

Proof. Say {e;} is an L-basis for U. The identity is L-linear on both side, so we may assume
¢(e;) = aej (a € L*) and zero on other basis elements. Let {c;} be a K-basis for L. Then ¢(ase;) =

Opilu(ag)e;. If @ # j, then tracex () = 0 = Try g (tracer(p)). If 7 = j, then

tracex () = tracex (1,) = Trp/k(a) = Try i tracer (o)

e For a tower of finite extensions K € L € M, Try/x = Trp g o Tragr.

« The characteristic polynomial of T,, € Endg (L) equals m¢, ;- with edeg(ma,x) = [L : K].

Proof. Say {f;}{_, is a basis for L/K(«); then edeg(m, k) = [L : K] and L = P K(«)f; is a
i=1

decomposition of L into a-invariant subspace. Hence the characteristic polynomial of_Ta € Endg (L)
equals that of T, € Endg (K («)) to the power of e.

Now we can assume L = K(«). By Cayley-Hamilton we have m, x | Chary,. Since they are both

monic of degree [K («) : K], they are the same. O

Proposition 1.32. Let L/K be a finite field extension. Put Tr = Trp k. TFAE:
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1. L/K is separable.
2. Tr is not identically zero, or equivalently, surjective.
3. The pairing @ : L x L — K defined by Q(x,y) = Tr(zy) is non-degenerate.

Proof. 3 = 2 is clear. Conversely, say Tr(z) # 0. Then for each y € L*, Q(y,z/y) = Tr(z) # 0.

Now suppose L/K is separable. By transitivity of trace together with the induction, we can assume L
is a simple extension of K. Let o, ..., a, be all conjugates of a over K; they are distinct by separability,
and they are the eigenvalues of the map T, : © — az. Put x; : Z — L to be x;(r) = af. By independence
of characters, there exists e € Z such that xi(e) + -+ - + xn(e) # 0, so that Tr(a®) # 0.

Now suppose L/K is not separable. Then by transitivity we have Trr gk = Trpser/, Trp psen, so it
suffices to show Trp s is identically zero. Hence we can assume L/K is purely inseparable, and let
p = Char(K) > 0. As above we can assume L = K (a) for some o € L*. We have mg () = f(z*") for
some irreducible separable f € K[z] and some k € Z — {0}, so a”" € K. Replace o by o#" ™", we assume

o? € K. Now we can obtain Try k(o) = 0 for each i € Z, showing that Try/x = 0. H

Proposition 1.33. Let R be a Noetherian integrally closed domain with fraction field K and L/K a finite

separable extension. Then the integral closure S of R in L is finite over R.

Proof. Pick a basis {u;} for L/K such that u; € S. Since L/K is separable, Try k is non-degenerate;
let {v;} be the dual basis of {u;}. Now for each z € S, write x = } a;u;. Since zv; € S, we have
Trp/k(2v;) = aj € R, showing S < Y Ru;. O

1.7 Ramification

Lemma 1.34. Let R be a ring and M an R-module of finite length. Let 0 = My M, < --- < M, =M

be a composition series of M. Then
1. M;/M; 1 = A/m,; for some maximal ideal m;.
2. For each m € mSpec(A), we have #{i | m; = m} = length, M.

Proof. Since the M; is a composition series, each successive quotient is simple, so 1. follows. Now since

the localization functor is exact, we then obtain a filtration of My:
0= (Mo)m & (Ml)m [SERE R (Mn)m = Mm

Last, we have
0 ,m#Em

Rp/mR, , m=mw

From these the second statement follows at once. O]

(R/m)m = {
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Proposition 1.35. Let (A, m) be a local ring, B an A-algebra and M a B-module of finite length. Suppose

B is semilocal with maximal ideal ny,...,n,, each of which lying over m. Then
q
length, M = > [k(n;) : £(m)]lengthy, M,
i=1
Proof. Let 0 = My < My < --- < M, = M be a composition series of M. Then by Lemma,

n q
length , M = Z length 4 M;/M;_; = Z length 4, B/n, - lengthy M, = Z k(1) © k(m)]lengthp M,

i=1 =1

]

Corollary 1.35.1. Let (A, m) be a Noetherian local ring of dimension 1 and B a finite A-algebra. Suppose

B is semilocal with maximal ideal ny, ..., n,, each of which lying over m. Then

(a) For b e B regular, we have

MQ

length ,(B/bB) = m)] lengthp, (By,/bBs,)

z=1

(b) If B is free of finite rank n over A, then
q
Z : k(m)]lengthy, (By,/mB,,)

Proof. Since B is finite over A, dim B < dim A = 1.

1. Since b is regular, dim B/bB = 0, implying that lengthy B/bB < oo. Apply Proposition with
M = B/bB.

2. We have B/mB = (A/m)", a product of field, and thus B/mB has finite length over A, and a fortiori

over B.
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Chapter 2

Global Fields

2.1 Valuations

2.2 Types of Valuation

2.3 Examples of Valuations
2.4 Topology

2.5 Completeness

2.6 Independence

Lemma 2.1 (Weak approximation theorem). Let |- |, (1 < n < N) be inequivalent non-trivial valuations

of a field k. For each n let k,, be the topological space k with topology induced by |- |,,. Then the diagonal

N
embedding k — H k, has dense image.

n=1
Proof. Note that it suffices to find 6,, € k such that |0,], > 1 and |0,,|, < 1forn # mforall 1 <n,m < N.
For then

lim — ) -
P T 0 1t 0"

o 1 1 with respect to | - |,
0 with respect to | - |, for m #n

r
n

N

To approximate (aq, ..., ay), it is then enough to take & = Z
1+
It is enough to consider the case when n = 1. We do this by induction on N. When N = 2, since | - |;

a, with sufficiently large r.

and | - | are inequivalent, we can find « € k such that |a|; < 1 but |a]y = 1, and similarly § € k such that
|B]1 = 1 but |Bly < 1. Then 0; = Ba~! does the job.
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For N = 3, by induction hypothesis we can find ¢ € k such that |¢|; > 1 but |¢|, < 1for2 <n < N-1,
and by the case N = 2 we can find ¢ € k with 1| > 1 and [y < 1. Now put

¢ if ¢y < 1
g={ OV if [ply =1
¢ .
f 1
1+ ¢T¢ if [¢|n >
with r € Z sufficiently large. O

Note that when & = Q and the | - |,, are non-archimedean, this lemma follows from Chinese Remainder
theorem.

2.7 Finite Residue Field Case

Let k be a field with non-archimedean valuation |- |. We set the following notation.
e 0:={a€k]||a] <1} is called the ring of integers for |- |.
e 0° ={aek]||al =1} is called the group of units.
e p:={aek]||al <1} is a maximal ideal of o.

We consider the case #0/p =: P < o is finite. Suppose further that |-| is discrete, i.e., p = () is principal.
Let 0, p be defined with respect to the completion k of k; then o/p = o/p and p = 7o.

Lemma 2.2. Suppose k is complete with respect to |- |. Then o is precisely the set of
ee]
a = Z a;m’ (M)
j=0

where the a; run independently through some set A of representatives in o of o/p.

Proof. Series of the form (#) clearly converge in 0. Conversely, for a € 0 let ag € A be the unique element

such that |a — ag| < 1; then oy := 77} (a — ag) € 0. Take inductively that a, € A such that |a,, — a,| < 1

w .
and put a1 = 7 *(a, — a,). Then a = > a7, O
5=0
Theorem 2.3. Suppose k is complete with respect to |- |. Then o is complete. In particular, k is locally
compact.

Proof. Let {U;} be an open cover of 0. We must show that the U; admits a finite subcover of 0. Suppose
otherwise.

Let A be a set of representative of o/p. Then

0=|_|a+7r0

agA
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Then there exists ag € A such that ag + mo cannot be covered by finitely many of the U;. Inductively find
[ee)

an € A such that ag + a17 + -+ + a, @™ + 7" "o is not finitely covered by the U;. Let o = >, a;m7; then
§=0
a € U, for some ig. Since U, is open, o + 70 for some m € N, a contradiction. [

Theorem 2.4. Let k be a locally compact field with a non-archimedean valuation |- |. Then

(1) k is complete.
(2) The residue field is finite.

(3) The valuation is discrete.

Proof. Since k is locally compact, there exists a compact neighborhood K of 0; then 70 < K for v » 0.
Hence o is compact (for 770 is closed), and thus (1) holds. Let (aq)s be a set of representative in o of
o/p. Then the open sets {x € 0 | |x — a,| < 1} cover o, so it admits a finite subcover and hence (2) holds.
Finally, since p = 7o is compact, the cover S, = {a € k | o] <1 — 1} of p has a finite subcover, and thus
p = Sy for some N, i.e. (3) holds. O

Since k is locally compact Hausdorff, there exists a Haar measure p on k, invariant under translation,
and it is unique up to a positive scalar. Let us normalize p in the way that (o) = 1. That p is invariant

together with the disjoint union decomposition

0=|_|a—|—7r0

gives 1 = Pu(mo). Inductively we have p(n”0) = P~ for v € Z.

Definition. Let k be a field with discrete valuation | - | and residue class field with P < oo elements. We

say that | - | is normalized if 1| = P!, where p = 7o.

Theorem 2.5. Let k be as in Theorem 2.3 and suppose | - | is normalized. Then u(a + fo) = ||, where

 is the normalized Haar measure on k such that p(o) = 1.

Proof. Write § = m¥u with v € Z and w € 0*. Then |f| = P7" and u(a + o) = p(r¥o) = P77, as shown

above. O]

Consider the multiplicative group k* which is open in k. The group of unit 0* is compact, by virtue
of the isomorphism 0*/(1 + p) = (o/p)*, and thus £ is locally compact.
Let k and p be as above. The additive measure p on 1+ p is also invariant under multiplication in 0*;
indeed, for u € o,
plu(a+p") = plua+p") = p(p")
This defines a Haar measure v on k£*, namely, u(z) := d,u_(x) From the isomorphism 0* /(1 +p) = (o/p)*,

|z|
o* = || fle)+p

aeg(o/p)*

we have
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where f: (0/p)* — 0* is a section of 0 — (0/p)*. Then

Vo) = | dvle) = pe) = ¥ wlfl@)+p) = (P- )P = 1= P

a€g(o/p)*

Lemma 2.6. k£ and k™ are totally disconnected.
Proof. They admit a base consisting of compact open sets. [

If Char k = 0, then k£ and k£* are locally isomorphic, for we have the exponential map

e 0]
a?’L

a+— expa = Z —
n!
n=0

valid for all sufficiently small o with its inverse

n

log a =

(=) Ha -1
;( )T(L )

valid for all « sufficiently near to 1.

2.8 Normed Spaces

2.9 Tensor Product

Let A, B be commutative rings containing a field £ and suppose N := dim; B < o0, say with the basis

w=1,ws,...,wy. Then B is determined up to isomorphism by the multiplication table
N
Wem = Z ComnWn Comn € k
n=1

We can define a new ring C' containing k£ whose elements are expressions of the type

N
Z AW am, € A
m=1

where the w,, have the same multiplication rule

N

Wl = 2 ComnWn
n=1

as the w,,. There are injective ring homomorphisms
i:A— C jiB—"—C
and
a — aw; 3 AW —— X A\l

of A and B into C.
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Lemma 2.7.

1. C is independent of the choice of the basis w,, of B.

2. (C,1,7) is a tensor product of the rings A and B over k.
We will write C' = A ®;, B.

Proof. Let D be a commutative ring containing a field k and f : A - N, g : B — N such that the diagram

I

™ —

D=

—_—

commutes. Define ¢ : C' — N by ¢(a) = f(a) and ¢(@) = g(w;). It is clearly well-defined, and it is the

unique map making the diagram
N

J

™ —

W—Q

commutes. ]

Suppose further that A is a topological ring. There is an abelian group isomorphism

C —— AV

> oy — (ag,...,ay)

We use this map to give C' the product topology. In fact, this topology is the same as the initial topology
induced by the maps ida ®f : C — A, where f € Homy(B, k). To see this, note that Homy (B, k) has a
basis f;, 1 <i < N, where f; : B — k is given by f;(w;) = d;;, so by linearity the initial topology described
above the same as that induced by the f;. From the above isomorphism each f; corresponds to the i-th

projection of AN to A, whence the the initial topology is the same as the product topology on AV.
Lemma 2.8.

1. The topology on C'is independent of the choice of the basis w;.

2. (C'is a topological ring.
We speak of this topology on C' the tensor product topology.

Proof.
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1. This is clear from the discussion right above.

2. The addition is clearly continuous. The multiplication is given by the map

AN x AN y AN

N N
(al,...,aN,bl,...,bN) — (Z aibjcijla---a'z aibjcijN>

i,7=1 i,7=1
N
The map continuous if and only if each component >} a;bjc;;x (k = 1,..., N) is continuous; but it
ij=1
is the composition of the continuous maps
AN x AN » AN y A
(&1, oo, an, bl, . ,bN) — (aibjcijk)lgidg]v
N
(Tijh<ijeny —— 2 Ty
ij=1

hence the multiplication is continuous.
O
Let us drop our condition that A has a topology, but suppose that A, B are not merely rings but fields.

Lemma 2.9. Let A, B be field extensions of k, and suppose B/k is finite separable of degree N. Then
C = A®y B is the direct sum of a finite number of fields K, each containing an isomorphic image of A
and an isomorphic image of B.

Proof. Say B = k((3), where the minimal polynomial f over k of 5 is separable of degree N. Then

1,B,...,8 1 is a basis for B/k, so A®; B = A[B], where 1,5, ... ,BN_l are A-linear independent and

f(B) =0.
J
Write f(X) =[] g;(X), where g;(X) € A[X] is irreducible. The g; are distinct, for f is separable. By
j=1

Chinese Remainder Theorem

1o ps) : A®L B — D A[X]/(g5(X)

i=1
Each K, := A[X]/(g;(X)) is a field. It remains to show
A\ B —— A®, B — K;
is injective, and it only needs to show J; is nontrivial, which is clear. [
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Corollary 2.9.1. Let a € B and let F(X) € k[X], G;(X) € A[X](1 < j < J) be the characteristic

polynomial of a over k£ and of the image of a under
B—— A®y B — K;

over A respectively. Then

FX)= [] G;(x) ()

1<5<J

Proof. Let T be the characteristic polynomial of the image of a in A®;, B over A. We claim both sides of
(M) equal T.

« Computing in terms of the basis &y, ..., Wy, where wy,...,wy is a basis for B/k, we obtain T'(X) =
F(X).
« Using a basis of A®, B = @ K; composed of bases of the individual K;/A, we obtain T'(X) =
1<5<J
[T Gi(X).
1<j<J
O
Corollary 2.9.2. For a € B, we have
Normp/ra = H Normp, /4
1<j<J
Tracep o = Z Traceg, ac
1<j<J
2.10 Extension of Valuations
Let £k < K be fields and | - |, ||-|| be valuations on k and K respectively. We say ||-|| extends | - | if

e =1 1.

Theorem 2.10. Let k£ be complete with respect to the valuation k and let K be an extension of k with
[K : k] = N < oo0. Then there is precisely one extension of |- | to K namely

||| = [Normp par| ¥

Theorem 2.11. Let K /k be a separable extension of degree N < co. Then there are at most N extensions
of a valuation | - | of k to K, say ||||; (1 <j < J). Let k, K; are the completions of k and K with respect
to |- | and [-[|;, respectively. Then

Ey K= P K; Q)

1<5<J

algebraically and topologically, where the RHS is given the product topology.
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Proof. We already know that k®, K is of the shape (©), where the K;/k are finite extensions of k (Lemma
2.9). Hence there is a unique extension | - [ of | - | to the K}, and each Kj is complete with respect to the
extended valuation. In the proof of Lemma 2.9, we have the injective homomorphisms A;, so we get the

extensions [|-[|; of | - | to K by putting
1BIl; = 12 (B)15

Further, K = )\;(K) is dense in K with respect to [|-[|; for K = k ®, K is dense in k ®, K. Hence Kj is
exactly the completion of K.

We show that [|-||; are distinct and that they are the only extensions of | - | to K. Let |- be any
extension to K of |- |. Then it extends by continuity to a real-valued function on k ®;, K, still denoted by

|-|. By continuity we have
lov + Bl < max{{|a], [[o]}

lall = llall 18]

for all o, B € k®j, I{. We consider its restriction to the K ;; they are either identically 0 on K or valuations

on K. Further, ||-|| cannot restrict to two nonzero valuations on the Kj, for the sake of ||ag|| = ||a|| ||3]]-
Hence |[|-|| induces a valuation in precisely one of the K, and it clearly extends the given valuation | - | of
k. Hence ||-|| = ||| ; for precisely one j by Theorem 2.10.

It remains to show that (©) is a homeomorphism. For (fy,...,5;) € K1 ®---@® K, put

1155 Bo)llg == max [[55]];

1<j<J

Clearly, |||, is a norm on RHS of (©), considered as a k-vector space, and it induces the product topology.
On the other hand, any two norms are equivalent by virtue of the completeness of k, and so ||-|| o induces
the tensor product topology on the LHS of (©). ]

Corollary 2.11.1. Let K = k() and let f € K[X] be the irreducible polynomial of 3 over k. Suppose
that

) =11 9%

1<5<J

in k[X], where the g, are irreducible. Then K; = k(8;) where g;(3;) = 0.

2.11 Extension of Normalized Valuations

2.12 Global Fields

Definition. A global field £ is either a finite extension of Q or a finite separable extension of F (), where

q is a rational prime power and ¢ is transcendental over [F,.

Lemma 2.12. Let o # 0 be in the global field k. Then there are only finitely many unequivalent valuations
| - | of k for which |a| > 1.
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Proof. 1t is clear for Q and F,(t). Since there are only finitely many archimedean valuations on k, it suffices
to consider the non-archimedean ones. Write

1

a"+aa" o ta, =0
for some n and ay, ..., a, in either Q or Fy(¢). Then
la|” = | — a1a™t — - — a,| < max{1, |o|""'} max |a,|
1<i<n
and so
la| < max{1,|ai], ..., |a,|}
The result then follows from the case for Q and F,(¢). O

Let K be a finite separable extension of the global field k. Then for every valuation v of £ we have an

isomorphism (Theorem 2.11)
ky @y K =K1 ®--- @Ky

where k, is the completion of k£ with respect to v and K, ..., K; are the completions of K with respect
to the extensions wy, ..., w; of v to K; the number J := J(v) depends on v.
Lemma 2.13. Let wy,...,wy be a basis for K/k. Then for almost all normalized v we have

wo®d - Buyo=0® - DO, (o)

where N = [K : k], o = o0, is the ring of integers of k for | - |, and O; < Kj is the ring of integers for
|- lw; (1 < j < J). Here we have identified a € K with its canonical image in k, ® K.

Proof. The LHS of (&) is contained in the RHS provided that |wy|,, <1for1<n < Nand1<j</J.
Since |af,, < 1 for almost all w, it follows that LHS € RHS for almost all v.

To get an inclusion the other way we use the discriminant

D<717 e 771\7) = det<TrK/k<7m’yn))mﬂ
where vy, ...,yv € k, ®; K. If 7, e RHS (1 <n < N), we have (Lemma 2.9.2)

TrK/k(’ym’Yn) = Z TrKj/k’u (’Ym’}/n) €0
1<j<J
and so D(v1,...,7n) € 0.
Now suppose that

N
B=> bw,eRHS  (b,ek,)

n=1
Then for any 1 < m < N we have
D(wla s 7wm71767wm+17 s JWN> = b72nD<w17 . ,(.UN)
and so b2 D(wi,...,wy) € 0 by the discussion in the second paragraph. But since K /k is separable,
D(wy,...,wy) # 0, and so |D(wy,...,wy)|, = 1 for almost all v. Thus for almost all v we have b, € 0,,
and hence RHS < LHS. O
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2.13 Restricted Topological Product

Definition. Let €2, (A € A) be a family of topological spaces together with ©, < (2, for all but finitely

open

many A € A. The restricted product of the (2, with respect to the 0, is the set

H/ Q= {(x,\) € HQ)\ | ) € O, for all finitely many A € A}

AEA AEA

with topology whose basis consists of sets of the form [] I'y, where I'y < , for all A and T'y = O, for
AeA open

all but finitely many A € A.

o Let S < A be a finite subset and put

(23 = I_I gZA X I_I ()A

AeS AES

!/ !/
Then g is open in H er Q,, and the open cover (g induces the same topology on H er Q) as

defined above.

o If ©) < Q, is defined for all but finitely many A, and ©, = ©, for all but finitely many A. Then
open
they define the same (canonically isomorphic) restricted product.

Lemma 2.14. Let the notation be as above. Suppose the €2, are locally compact and the ©, are compact.

Then the restricted product is locally compact.

Proof. Let S < A be finite. Then Qg is locally compact because a finite product of locally compact spaces is

locally compact. Since the (2g form the basis for the restricted product, the local compactness follows. [

Definition. Let the notation be as above. Suppose that measures i are defined on the Q) with p)(0,) = 1

when ©, is defined. Define the product measure y on H/ 2, to be that for which a basis of measurable
AeA

]
A

where M), < Q) has finite puy-measure and M) = ©, for almost all A\, and where

" (1:[ Mu) = UNA(MA)

sets in the

2.14 Adele Ring

Lemma 2.15. Let K /k be a finite separable extension of the global field k. Then
A ®r K = Ag (&)

algebraically and topologically. In this correspondence k ®; K = K € A, ® K, where k € Ay, is mapped
identically onto K < A
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Proof. Let wq,...,wy be a basis for K/k and let v run through the normalized valuations of k. Then

Ay ® K, with the tensor product topology, is just the restricted product of the
ku@kK = kz/w1®“'®kwa

with respect to the 0,w; @ --@o,wy. Indeed, the topology on A ®; K is the initial topology with respect
to the map

N
> ajw; — (ag,...,ay)
i=1

It is easy to see AY is isomorphic to the mentioned restricted product as topological rings (the multiplication
on AY is given by that on Aj, ®; K). By Theorem 2.11,

kV@kK:kuwl@”'®kuwN: @ Kw]-

SN

where wy,...,w; | v are normalized extensions of v to K. Further, this identification also identifies
(Lemma 2.13)

wa1®"'@OVWN:lee')"'@Dw‘]

for almost all v. Hence the LHS of (#) is the restricted product of the K, with respect to the O,,, where
w runs over all the normalized valuations of K, and this is just the RHS of (&). ]

Corollary 2.15.1. Ax = A, @---® Ay as additive topological groups, where N = [K : k]. In this
—_—

N-copies

isomorphism, the principal adele K < Ag is mapped into kD --- D k.

Proof.
A=A, Qe K =A@ - DAwny =AM, D DA,

Theorem 2.16. k is discrete in Ay, and A /k is compact in the quotient topology.

Proof. The previous topology shows that it suffices to consider the case for Q and F,(¢). For the first
assertion, since Ay is a topological group, it suffices to show 0 € k is isolated, and we shall do this by

constructing a neighborhood U of 0 that contains no other elements of k.

e k=Q. Take
U={(w), €Ag | |awle <1, |apl, <1 forall p < oo}

where | - |, and | - |, are respectively the usual and p-adic absolute values on Q. If b € Q n U, then
be Z for |b|, <1 for all p. Since |bl, <1, b=0.
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o k=F,(t). Take
U= {(aw), € Ap | |awle > 1, |ap], < 1 for all p}
where p runs over all irreducible polynomials in F,(¢), | - |, and | - | are the normalized absolute

values corresponding to p(t) and ¢t~'. If f € F (t) n U, then f € F[t] for |f], < 1 for all p, and this
also implies | f|, = ¢~ 97 for some chosen 0 < ¢ < 1; ¢~ 48/ > 1 implies deg f < 0, i.e. f=0.

We proceed to prove the second assertion separately.

e« k=Q. Let 8 = (B,), € Ag. For each finite p, choose r, = z,p~* with z, € Z and z, > 0 such that

|Bp — Tplp < 1; since x is an adele, we can take r, = 0 for almost all p, and thus r := > r, € Q is
P<DO

1
well-defined. Thus |8, —r| < 1 for all p < 0. Now choose s € Z such that |B,, — 1 — s| < 3 and put
b=r+s. Then g —be W, where

; laplp, < 1forall p< oo}

N

W= { )€ Ao ol <
In sum, we have proved Ag = Q + W.
o k=TF,(t). Let 8 = (B,), € Ay. Similar to the case Q, we can find r € F,(¢) such that |3, —r|, <1
for all irreducible p(t). Note that (F,(¢))e = F,((1/t)). Write S —7 = D] ct™" = >, c_,t", and
let s(t) = > ¢_,t". Then T -

n=0

min n
= cMen?0nzlT e < ]

Z cpt™"

n>0

|Boo_r_5|oo:

where 0 < ¢ < 1 is a chosen constant. Since s € F,[t], |s|, <1 for all p. Hence  —r — s € W, where
W= {(aw)y € A | |aw]o < ¢ |y, < 1 for all p}
In sum, we obtain a similar result Ag, ) = F,(t) + W.

In either case, we have A, = k + W, and hence a surjective continuous map W — Ay /k induced by the
quotient map Ay — Ag/k. By Tychonov’s theorem, W is compact, and being a continuous image of W,
Ay /k is also compact. O

Corollary 2.16.1. There is a subset U of A, defined by the inequalities of the type ||, < 0, where
0, = 1 for almost all v, such that
AL=k+U

Proof. Let wy,...,wx be a basis for k/k’. Then
A=Ay Qp k=Apw1 @ @ Apwy

where k' = Q or F,(t), and k is mapped into k'w1 @ - -- @ k'wy. Take U' = Ww; @ --- @ Wwy, where W is
the subset constructed in the proof of the Theorem. Note that for almost all v on k, |w;|, < 1. Then it is

clear from the definition of W that U’ is contained in some U of the type described above. [
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We give A, a measure by the way described in the previous section; it is a Haar measure on Ay, (invariant
under translation). Since k is discrete, the Haar measure on k can be chosen to be the counting measure,

and we always make this choice.

Corollary 2.16.2. A;/k has finite measure in the quotient measure induced by the Haar measure on Ay

and the counting measure on k.
Proof. For Ay/k is compact. O

Corollary 2.16.3 (Product Formula). [ |¢], =1 for all £ € k*.
Proof. We use the surjectivity of the map
Co(G) ———  C.(G/H)

fh———+[fH:xHF+Lfﬂde4

where GG is an LCH group and H < G is a closed subgroup, and the quotient integral formula

Lﬂ@M:LmLﬂMWM7

Put K = A, /k. Since £k € k, we have EK = K. Let f € C.(Ay) such that f* = 1, the characteristic
function of K. Then

| 1exi@ran = | e mis = | | 63+ ryaras - NG

By Theorem 2.5, for a measurable set M in Ay and 5 € Ay, we have vol(SM) = vol(M)]]|5,|. Hence

| tecoras = | se o =TTiel [ e =TTl | 1clo)as
K Ag v Ay v K
Since (K = K and K is compact (so the integral is finite), it follows that [ [ |£], = 1. O

Lemma 2.17. There is a constant C' > 0 depending only on the global field k£ with the following property:
let a € Ay be such that [[|a,|, > C. Then there exists a principal adele 5 € k < Ay, § # 0 such that

18], < |a,|, for all v.
Proof. Let ¢y be the total volume of A /k, and let ¢; be that of the set
1 .
{ﬂy e Ay | |l < 1 for archimedean v, |v,|, < 1 for non-archimedean y}

¢
Then 0 < ¢g < 0 and 0 < ¢; < o for the number of archimedean places is finite. We show that C' = =2

(&1
will do.
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The set

1
T = {T e A | ||, < Ehy\y for archimedean v, |7,|, < |7,|, for non-archimedean I/}

has measure ¢; [ [ |aw|, > ¢1C = ¢o by Theorem 2.5. Hence in the quotient Ag/k, there must be a pair of
v
distinct points of 7" which have the same image in A /k, say 7/, 7" € T and 7/ — 7" =: € k. Then
|B|V = |TL - qumlu| < |au‘u
for all v, as required. O

Remark 2.18. Let M < A, be measurable such that the restriction to M of the quotient map 7 : Ay —
Ay /k is injective. We claim

Lk 1 (2)da = J Loy (2)d

Ag/k
By the quotient integral formula, one has

f 1y (x)de = f f 1y (z + h)dhdx
Ag Ar/k Ji

{hek|z+heM}—{aeM|a—zek}

We have a bijection

Since the measure on k is the counting measure, we have
f1M(x+h)dh=#{hek\:c+he]\/[}z#{aeM|a—xek}
k
Now consider w(M). We have z + ke 1(M) < #{g€ M | g — x € k} > 1, which implies the inequality

f Ly (7)dr < #{ge M |g—xe H}dx
Ak/k Ak/k

with inequality #{g € M | g — z € k} = 1 for almost every = such that = + k € 7(M). In particular, since
7| ar is injective, #{g € M | g—x € k} = 1 for every z (if g1, g € k lie in that set, then gy +k = z+k = go+k,

SO0 g1 = go by injectivity). Hence in our case, we have

L (o) =

From the above discussion we also see that in general there is an inequality

Lk 1o (@)dz > J Lo ()

Ap/k

#{geM!g—er}dxzf Lo (x)dx

Ay /k Ap/k

That is, 7 is measure-decreasing.

Corollary 2.17.1. Let vy be a normalized valuation and let §,, > 0 be given for all v # 1y with §, = 1 for
almost all v. Then there exists a 8 # 0 € k with |5], < 0, for all v # vy

Proof. Choose «,, € k, with 0 < |, |, <4, and |a,|, = 1 if §, = 1. We then can choose «, € k,, so that

[T|ew|, > C, where C is as in Lemma 2.17. The resulting /5 € k given by the same lemma does the job.
’ O
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2.15 Strong Approximation Theorem

Theorem 2.18. Let 1y be any valuation of the global field k. Let V' to be the restricted product of the

k, with respect to the o,, where v runs through all normalized v # vy. Then k is dense in V.

Proof. Tt is equivalent to proving the following statements: given € > 0 and a finite set S of valuations
v # 1y, together with elements «, € k, for v € S, there exists § € k such that |5 — «,|, < e forallve S
and |B], < 1forallvé¢ S, v +# 1.

Let 0, and U < Ay be as in Corollary 2.16.1. By Corollary 2.17 there is a A # 0 € k such that

I\, <0t (ves)
I\, <6,° (vésS, v+

Then we have Ay, = \U + k. Let a € A}, have component o, at v € S and 0 elsewhere, and write « = z + (8
for x € AU and [ € k. Then

o forves, |au_ﬁ|u: |Oé_ﬁ|u: |I|V<57 and

® fOI'I/¢S,I/7éV0, |/B|V:|_£|V<1

2.16 Idele Group

Let R be a commutative topological ring. The group of units R* need not be a topological group if
it is equipped with the subspace topology because the inversion need not be continuous. To make it a
topological group, we equip R* with the topology generated by the subspace topology from R and the

final topology of the inversion x ~— x~!. It is convenient to state this as follows. There is an injection
R* —— RxR
T — (z,27")

of R* into the topological product R x R. Topologize R* with the subspace topology inherited from R x R.

Then clearly R* becomes a topological group, and the inclusion R* — R is continuous.
Definition. The idele group [}, is the group of units A} in A, with the topology defined above.

o For each rational prime p, let a? € Iy be such that of = p and of =1 for ¢ # p. Then o — 1 as

p — o0 in Ay, but not in the topology of Ig.

e The multiplicative group £ of k is naturally embedded into I;. Elements of £* are called principal
ideles.

42



o kX < I} is a discrete subgroup. For since k € A, is discrete, it follows that £* injects into Ay x Ay

as a discrete subset.

o [ is the restricted direct product of the k) with respect to the units o;.

For « € I, we write || := [ [ |a|,, where v runs over all normalized valuations of k. Then

I, — R
a —— |af
is a continuous homomorphism. Let I} be the kernel of this homomorphism.
« By the product formula 2.16.3, we have k* < I}.

Lemma 2.19. I} is a closed subset of Ay, and the induced topology from Ay, on I} coincides with that of

from I},.
Proof. Let a € Aj\I}. We must find an open neighborhood W of « in Ay that is disjoint from I.

e |a| < 1. Then there is a finite set S of places such that

- S contains all the places v with |a,|, > 1 and

- [ lewly < 1.

vesS

Now take 0 < ¢ < migl |a|, and define
ve
We={zx=(z,)eAy| |z, —a,], <eforvels, |v,|, <1forv¢S}
Clearly, every element  in W has |z| < 1.

e |a|>1. Put C = H ||, > 1. Then there is a finite set S of places such that S contains

viloaw|,>1
- all the places v with |a,|, > 1,
- all archimedean places, and

- all non-archimedean places v with Np < 2C.
For € > 0 define
Wi={ex=(v,) e Ay ||z, —a|, <eforves |z,|, <1forv¢s}

Take € > 0 small enough so that x € W implies 1 < 1_[ |z,| < 2C. Then for x € W, if |z,|, = 1 for

vesS

x| =] Jlawly > 1

vesS

all v ¢ S, then
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Otherwise, if |x,|, < 1 for some v ¢ S, then |x,|, < (Np)~' < C~! so that

o] < (Hmn) eyt <1

vesS

It remains to show the second statement. Let a € I}. A neighborhood basis of o in Ay consists of sets of

the form
W=W.s:={xel;||v,—a, <ecforveSs, |z, <1forvé¢S}

where ¢ > 0 and S is a finite set of primes. By replacing < with =, we see every such a set contains a

neighborhood of a in I. Conversely, a neighborhood basis of « in [} consists of sets of the form
H=H.¢:={zxely||v,—a,], <ecforvels, |z,|, =1forv¢S}

where € > 0 and S is a finite set of places containing all archimedean places and all v with |a, |, # 1. We

claim for € small enough
Hosnl=W.sn I,

< is clear. Let x € W, g n I}. Let € small enough so that |x,|, = |a,|, for all non-archimedean places v in
S. Since x is an idele, we then have |z,|, = 1 for almost all v ¢ S. Now it follows from the discreteness of
v ¢ S that it we take e far smaller, then we must have |z,|, = 1 for all v ¢ S. (The argument is similar to

that of |a| > 1 case in the proof of the first statement.) O
Theorem 2.20. The quotient I} /k* is compact.

Proof. By the previous lemma it suffices to find a compact subset W of Aj such that the projection
W n I} — I} /k* is surjective.
Let C be as in Lemma 2.17, and take « € I}, such that |a| > C. Take

W ={xeAy||z,], <|a,l, for all v}

Let y € I}. By the same lemma there exists r € k* such that |r|, < |y, 'a,| for all v. Then ry € W, as
Yy k yu

required. Il

2.17 Ideal and Divisors

First let £ be a number field. The set of all fractional ideals forms an abelian group J free on the set of
finite primes of the ring of integers o0, of k. Denote by P, the subgroup of all principal fractional ideals in
k.

Definition. The ideal class group of k is the quotient Cl(k) := T/ Py

44



Equip J; with the discrete topology. Then the natural map

1, > Ji

a H pordp o
b

is continuous, and the image of £* < I}, is exactly the subgroup of principal ideals.
Theorem 2.21. # Cl(k) < .

Proof. The continuous map I, — Jy is surjective, and so is the induced map I;/k* — Cl(k). Since I;/k*
is compact by Theorem 2.20, so is the continuous image Cl(k). But Cl(k) is equipped with the discrete
topology, this means Cl(k) is a finite group. N

Now consider a finite separable extension k of Fy(t), where ¢ is transcendental over the finite field F,.

2.18 Units

Let S be a finite set of places containing all archimedean places. The intersection kg := I ¢ N k™ is called

the group of S-units. Explicitly,
ks :={rek*||rl,=1forall v ¢ S}
When S = Sy, consists of only archimedean places of k, then kg, is the usual group of units o .
Lemma 2.22. Let 0 < ¢ < C' < 0. Then the set
{reks|c<lz|, <C forveS}

is finite.

Proof. We have
{reksle<|zl, <CforveS}=k"nlisn{rel;|c<|z|, <CforveS}

k> is discrete and the latter two sets are compact, so the required set is both discrete and compact, whence
finite. ]

Lemma 2.23. The set
{rek||rl, =1 for all places v}

is finite, and consists of all roots of unity of k.
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Proof. A root of unity r € k™ clearly satisfies |r|, = 1 for all v. Conversely, by the previous lemma with
¢c=C =1and any S we see #{r € k | |r|, = 1 for all places v} < o0, and since they form a (finite) group,

they are all roots of unity. O

Theorem 2.24. kg is a direct sum of a finite cyclic group and a free abelian group of rank s — 1, where

s =#5.

Proof. Let Ig consist of ideles « with |, |, = 1 for all v ¢ S. By definition, this is an open subgroup of Ij.
If we put

It :=Isn I}
then I} is an open subgroup of I}, and
Ig/ks = Ig/(Ig N k™) < Ig/k*

is also open. Since it is a subgroup, it is also closed, and hence compact by Theorem 2.20.

Consider the map

log : Ig » RS
a—— (log |awly)ves

where v1, ..., vs are the places in S. We have the following properties.
(i) ks nkerlog is a finite group consisting of roots of unity of k. This follows from Lemma 2.23.
(ii) log kg is discrete. This is because by Lemma 2.22

{rekg|27'<|rl, <2forallve S}

is a finite set.

(iii) loglg = H Zlog (#0,/p,) % H R. This is clear.

VeS, vioo veS, v|owo

(iv) log It = {(xu)yeg elogls | >z, = O}. Indeed, € I ifand only if [ ||, = 1, or . log|a,|, = 0.

vesS vesS ves

Since I}/kg is compact and log is continuous, it follows that log I/log ks is compact as well. Hence,
R ® log kg is the same rank as R ® log I§. But it follows from (iii) and (iv) that dimR ® log I§ = #5 — 1.
This finishes the proof. O

2.19 Inclusion and Norm Maps for Adeles, Ideles and Ideals
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Chapter 3

Cyclotomic Fields and Kummer Extensions

3.1 Cyclotomic Fields

3.2 Kummer Extensions

Lemma 3.1. The discriminant of K ({/a) over K divides n"a"!; p is unramified if p { na. If af is the
least power of a such that 2™ — a/ = 0 (mod )p is solvable, then f is the residue class degree.
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Chapter 4

Cohomology of Groups

4.1 Definition of Cohomology
4.2 The Standard Complex
4.3 Homology

4.4 Change of Groups

Let A be a G-module and A" a G’-module. If ¢ : G — G is a group homomorphism and f: A — A’ is a
Z-homomorphism with the property that for each ¢’ € G’ and a € A

fle(g)a) = g'f(a)

then the pair (¢, f) induces a cochain map on the Homg (P, A) — Home (P, A) (with P, P’ the standard
complex)
Homg(P;, A) ——— Homg (P!, A)

Z[GH] S A — Z[G+] 122 A
hence a homomorphism on cohomology class
(o, f)* : HY(G, A) —— HU (G A)
for any G-module A, where we regard A as a G’-module via f. On the other hand,

o Take G’ = H < G and ¢ : H — G to be the embedding. Then the induced map is called the

restriction homomorphism
res = (p,id)* : HY(G,A) —— HI(H, A)
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o« Take G' = H <G and ¢ : G — G/H to be the quotient map. For any G-module A we have a
G/H-module A7 and the natural inclusion ¢ : A — A. The map

inf = (¢,0)* : HY(G/H, A") —— H9(G, A)
is called the inflation homomorphism.
o Let teG. Take p:s—tst ' and f:a— t 'a. Then we have the map
or = (o, f)*: H(G,A) —— HYG,A)
Proposition 4.1. o, defined right above is the identity map for all ¢ > 0.
Proof. When ¢ = 0, we think of o, as the composition

*

AC Ty pG I g

on which the G-action on the second A is via ¢; for clarity we denote it by B. ¢* gives an isomorphism
t.A% ~ B, and f, is just the multiplication by t~!. Hence o, is the identity map when ¢ = 0. For general

case, we conduct dimension shifting. We have a commutative diagram
HYG, Jg Q¢ A) —— HTHG, A) —— HI"(G,Z[G] Q¢ A) = 0
Zlat lﬂt
HYG, Jo Q¢ A) —— HTHG, A) —— HI"(G,Z[G] ®¢ A) = 0

By induction hypothesis the leftmost arrow is identity, and hence so is the middle one. Here Jg is defined
by the exact sequence 0 — Z — Z[G] — Jg — 0. O

Now consider homology. A group homomorphism ¢ : G’ — G induces a chain map p ®id : P’ Qg A —

P ®¢ A, and hence a homomorphism of homology class
i H(G' A) —— H, (G, A)
o Take G' = H < G and ¢ : H — G to be the embedding. The induced map
cores = ¢, : Hy(H,A) —— H (G, A)
is called the corestriction map.

Let H < G and A an H-module. Form a G-module ind$ A := Hompy(Z[G], A) on which G acts by
(0 f)(g) := f(go); this makes ind$ A a left G-module. Consider the homomorphism

f:indG A —— A
o —— (1)

which is compatible with the inclusion ¢ : H — G. Hence the pair (¢, f) induces a map on cohomology

class
(¢, f)* : HY(G,ind§ A) —— HI(H, A)
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*

Proposition 4.2 (Shapiro’s lemma). The map (¢, f)* is an isomorphism.

Proof. Suppose ¢ = 0; the map becomes

(ind% A)¢ = HY(G,ind%(A)) —— HO(H,A) = A"

p:G— A > 90(1)
Since ¢ is fixed by G, p(g) = op(g) = ¢(go) for all o, g € G; taking g = 1, we obtain p(1) = (o) for all

o € G. Hence it is an isomorphism. The general ¢ > 0 case follows from dimension shifting. [

4.5 The Restriction-Inflation Sequence

4.6 'The Tate Groups

Proposition 4.3. If [G : H| = n, then coresores = n.

Corollary 4.3.1. If #G = n, then all the groups f[q(G, A) are annihilated by n.
Corollary 4.3.2. If A is a finite G-module, then all the groups H%(G, A) are finite.
Corollary 4.3.3. Let S be a Sylow p-subgroup of GG. Then

res : H1(G,A) —— H(S, A)

is injective on the p-primary component of H 1G,A).

Corollary 4.3.4. If an element « € H(G, A) restricts to zero in H%(S, A) for all Sylow subgroups S of G,
then z = 0.

4.7 Cup-products
Theorem 4.4. Let G be a finite group. Then there exists one and only one family of homomorphisms

HY(G,A)® HY(G, B) — H"(G,AQ B)

a®b s a.b
(the unadorned tensor product is over Z) defined for all integers p, ¢ and all G-modules A, B such that
(i) These homomorphisms are functorial in A and B;
(ii) For p = ¢ = 0 they are induced by the natural product

A°®@ B¢ —— (A® B)¢
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(iii) f 0 > A - A - A” — 0 is an exact sequence of G-modules, and if 0 > A® B - A/ ® B —
A" ® B — 0 is exact, then for a” € HY(G, A”) and be H(G, B) we have

5(a").b = 8(a".b) € H" (G, A® B)

(iv) If 0 > B - B" - B” — 0 is an exact sequence of G-modules, and if 0 > AQ B - A® B' —
A® B” — 0 is exact, then for a € H?(G, A) and V' € H1(G, B") we have

a.(60") = (=1)P6(a.b) € HP (G, AQ B)

Proof. Let (P,)nez be a complete resolution for G. The proof of existence depends on constructing G-
module homomorphisms

Ppa: Pprg — B, O,
for all pairs of integers p, ¢ satisfying the following two conditions:
(1) wpgod=(d®1)oppi1q+ (—1)P(1®d) 0 ppgs1
(2) (e®e)opop=c¢

where € : Py — Z is defined by ¢(g) = 1 for all g € G. Once the ¢, , are defined, we proceed as follows. Let
f € Homg(P,, A), g € Homg(P,, B) be cochains, and define the product cochain f.g € Homg(P,4,, A® B)
by

f9=(f®g)opp

Then it follows from (1) that

d(f.9) = (f®g)opprgod
= (f®g)o((d®1) 0 @pi1q + (=1)"(1Qd) 0 ppg41)
= (df ®g)o Pptiq T (=1)P(f®dg) o Pp,g+1
=df.g+ (=1)"f.dg

Hence if f, g are cocycles, so is f.g, and the cohomology class of f.g depends only on the classes of f,g: in

other words, we have a homomorphism
HY(G,A)® HY(G, B) — H"(G,AQ B)
(i) is clear, and (ii) follows from (2). For (iii), we compute directly. Consider the exact sequence
0 —— Homg(P,, A) —— Homg(P,, A') —— Homg(P,, A") —— 0

Let o” € Homg(P,, A”) be a representative cocycle of the class a”, and lift o” back to o’ € Hom(P,, A);
da/ has zero image in Homg (P41, A”) and therefore lies in Homg(P,+1, A). The class of do/ in HP*'(G, A)

is 6(a”). Hence if § € Homg(P,, B) is a cocycle in the class b, then
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o .0 represents the class a”.b;
o d(a/.) represents d(a”.b);
o da’.[3 represents da”.b.

But since df = 0, we have d(a/.3) = da/.[3; hence 6(a”.b) = da”.b. The proof of (iv) is similar.

It remains to construct the ¢, , which we shall do for the standard complete resolution (P, = Z[G?"!]
ifg=0;, Py="Py,ifqg=1). lfg=1, P, = Py, has a Z-basis consisting of all (g7, ..., g7) that sends
(G15---,99) to 1 and every other basis element to 0. In terms of this basis of P_,, the coboundary map

d:P_,— P_, is given by

q
d( 7--‘agq ZZ gl?"'79575*792117""9;)

seG i=0

and d: Py — P_1 by d(g0) = >, (s%).
seG
Now define ¢, , : Pprq — P, ® P, as follows:

(a) if p=0and ¢ =0,
SDP,Q<g07 A 7gp+q> = (907 R 791)) ® (gp7 A 7gp+q)

(b) if p=1and g >
Pp—a(G1s 2 Gprg) = (9552 9,) @ (Gys - Gpsg)

(c) if p=0andq>1,
91,81, 8p) @ (55,857,975, 9y)
Gr 295,81 55) @ (Spy -5 51, 9q)

90s -+ 9ps 15+ 8¢) (85, 57)

* *
¥Y—q,p+q\90; - - -5 9p 817"'7Sq)®(sq7'"a8q7907"‘7gp>

Note that ¢o0(g9) = (9)®(g), so (2) is verified easily. The verification of (1) is tedious but straightforward.

This proves the existence part. The uniqueness follows easily via dimension shifting. O
Proposition 4.5. Let us use the identification AQ B=B® A and (AQB)®C = A®Q (B®C). Then
1. (a.b).c = a.(b.c).
2. a.b = (—1)dima.dimbp g
3. res(a.b) = res(a).res(b).
4. cores(a.res(b)) = cores(a).b.
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Proof.

4. Let H < G be a subgroup, a € ﬁp(H, A)and b e ﬁq(G, B). In the case p = ¢ = 0, a is represented
by a € A so cores(a) is represented by Ng/pa € A%; b is represented by 8 € B¢ so that cores(a).b

is represented by
Nepa® B =) 5a®8 =Y si(a®p) = Neula® B)
On the other hand, a.res(b) is represented by a® 3 € (A® B)¥ so that cores(a. res(b)) is represented
by Ne/u(a® B).
Now we apply dimension shifting to finish the general case. Let 6, : H*(G, A*) > H*(G, A) be the

connecting homomorphisms (* = p, ¢). Then for a € HP and b ee H?

cores(a. res(b)) = cores(,a’. res(d,0))
= cores(d,(a’.6,(resb')))
= 0, cores((—1)Pd,(a’. res "))
= (—1)P0,0, cores(a’. res ')

= (—1)P0,0,(cores(a’).b) = -+ - - = cores(a).b

Here we use the fact that res and cores commute with 4d,.

Proposition 4.6. Let H <G, p,q >0, a € H?(G/H,A) and € H(G/H, B). Then
infem(e) U infem(B) = infa/m(a v ) e H'(G, A® B)

Proof. This follows at once from the definition of inflation and that of cup product in positive dimension.
O

Let A, B,C be G-modules and ¢ : A® B — C' a G-homomorphism. Then we have a map
H?(G, A)® HY(G, B) —%— HYG,A® B) —2— HY(G,C)

a®b > p*(aub)

called the cup-product relative to .
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4.8 Computations of Cup Products in Low Dimensions

In the following G denotes a finite group, and A, B, ... are G-modules. If a € A%, we denote by @ its
image in H°(G, A). If a € A with Na = 0, denote by @ its image in H~ (G, A).

Lemma 4.7. Let a € A9, f, € Homg(Z, A) such that f,(1) = a and 2 € H"(G, B). Then the cup product
@’ ure H(G,A® B)
equals the image of x under the homomorphism induced by f,® 1: B=Z® B > A® B.

Proof. Consider first the case n > 0, and we deal with it by induction. Say x is represented by the cycle
€. When n =0, @ U z is represented by a ® £, and (f, ® 1)(£) = fo(1) ® € = a® . For n > 0, consider
the exact sequence

0

~

Z » Z|G] > Ja > 0

Since it splits, it remains exact after tensoring with B, and since Z|G] ® B is free over G, the connecting

homomorphism

§: H"(G,Je ® B) —— H"(G,B)
is an isomorphism; say = = 0y, y € H" L. Then
adur=a"udy=206@ vy =8((fa®@1)*Y) = (fa®1)"(6y) = (fa®1)*(2)
For the case n > 0, use another exact sequence, namely

0 > Ia > 7| G > 7 > 0

to do dimension shifting. O

Lemma 4.8. Given a € A with Na = 0, and let f : G — B be a l-cocycle, f € f[l(G, B) its cohomology
class. Then

douf=2ceH (G, A® B)
with

c=—>ta® f(t)

teG

Proof. Use the exact sequence as above.

0 > 7 > Z|G e > 0

Since H'(G,Z[G] ® B) = 0, there exists V' € Z[G] ® B such that f(t) = db/(t) = tb/ — ' for all t € G. Let
V' € B" := J; ® B be the image of ¥'; then f = §(0") € H'(G, B). By the preceding lemma

Guf=-8a@ut)=-0a®b")
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Recall that 0 : H (G, A® B") — H°(G, A® B) is defined by norm. Thus

—0(a®b") = —Ng(a®UV) = Zta@tb’
teG

M ta@th = > ta® f(t) + Y ta@b = - > ta® f(t)

teG teG teG teG
for Na = 0. O

But

Recall the exact sequence

Also, for s € G denote by i, the element s — 1 € I;. Then (iy)o € H (G, I). Let 5 € H2(G,Z) be such

that ds = (i4)o; this defines by passing to the quotient the canonical isomorphism
G/G —— H2(G,Z)
R — ]

Lemma 4.9. Let f : G — B be a l-cocycle and f € H'(G, B) its cohomological class. Then for every
se G,

5uf=f(s),e HYG,B)
where we identity Z ® B with B.

Proof. The connecting homomorphism 8 : H1(G, B) — H(G, Iz ® B) is an isomorphism, so it suffices
to show (3 U f) = 6(f(s),) € H(G, B® I5). By definition,

$)o) = D tOLf(s)
teG
On the other hand, by the preceding lemma
SEUT) =) U= (MouT = — S tia® f(t) = St —ts) ® (¢)

teG teG

But f(t) = f(ts) — tf(s), we then have
Dt—ts) @ f(t) = Dt @ f(t) — D ts® (f(ts) — tf(s))

teG teG teG
=D R f(t) = Y ts® flts) + Y ts@Lf(s)
teG teG teG
= Y ts®@1f(s)
teG

Finally,

Dits@tf(s) = Y t@tf(s) = N((s = 1) ® f(s))

teG teG
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Lemma 4.10. Let u : G x G — B be a 2-cocycle, u € H*(G, B) its cohomological class. Then for all
s e,
sut=a e H(G,B)

where a = > u(t, s).
teG

Proof. Use the exact sequence

0 s B s B’ s B s 0

Since H?*(G, B') = 0, u = du’ for some 1-cocycle v’ : G — B’. Let u” : G — B” be the image of u’; then

d(u") = u. Then by the preceding lemma

sU U = 5(u(s),) = ) tu/(s)

teG

But u(t,s) = du'(t, s) = tu'(s) — u'(ts) + u'(t), hence

Z tu'(s) = Z u(t,s) +u'(ts) —u'(t) = Z u(t, s)

teG teG teG
O
Corollary 4.10.1. Let G be a finite group of order n. Then the cupping
H%(G,7) x H(G,Z) — H%(G,Z) = Z/nZ
is given by 5 U 0, = nX(s) mod n, where X(s) € Q is such that x(s) = X(s) (mod 1).
Proof. Define o5 : G x G — Z by
dx(1,0) :=X(1) + X(0) — X(70)
Then by represents 6, € H*(G,Z). Summing over 7 € G, we obtain
Y. 8x(r,0) = nx(0)
TeG
The result follows from Lemma above. [

Corollary 4.10.2. Let G be a finite cyclic group of order n, A a G-module and ¢ a generator of G. Let
X be a generator of Homy (G, Q/Z). Then cupping with J, and with @ give mutually inverse isomorphism

Uby
HP(G,A) — ' HP*2(G, A)
N
Proof. Indeed, we have 5 U d, = 0, US = nx(¢) =1 (mod n). O
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4.9 Cyclic Groups: Herbrand Quotient

Lemma 4.11. Let G be a finite group and let M M’ be two finite-dimensional Q[G]-modules such that
Mp = M ®g R and M} = M’ ®g R are isomorphic as R[G]-modules. Then M, M’ are isomorphic as
Q[G]-modules.

Proof. Let K be any field, L/K be a field extension and A a K-algebra. If V' is any K-vector space denote
by Vi, the L-vector space V® L. Let M, M’ be A-modules which are finite dimensional as K-vector space.
An A-homomorphism ¢ : M — M’ induces an Ap-homomorphism ¢®1: M, — M, and ¢ — p®1 gives
rise to an L-isomorphism

Hom(M.M');, =~ Hompy, (M, M})

Now take K = Q, L = R, A = Q[G], so that A, = R[G]. The hypotheses imply M, M’ have the same
dimension over Q, so by choosing bases of M, M’ we can speak of the determinant of an element of
Homgg (M, M'), or of Hompg) (Mg, My). (It will of course depends on the bases chosen.)

From the isomorphism above it follows that if &; are a Q-basis of Homgg)(M, M), they are also an R-
basis of Hompg[g (Mg, My). Since Mg, Mg are R[G]-isomorphic, there exist a; € R such that det(} a;&;) #
0. Hence the polynomial

F(t) :=det(> t:i&) € Q[t, .. . tw]
where t; are independent indeterminants over Q, are not identically zero, since F'(a) # 0. Since Q is
infinite, there exist b; € Q such that F'(b) # 0, and then Y] b;§; is a Q[G]-isomorphism of M onto M’'. [

Proposition 4.12. Let F be a finite-dimensional real representation space of GG, and let L, L’ be two
lattices of E which span E and are invariant under G. Then if either of h(L), h(L’) is defined, so is the

other, and they are equal.

Proof. Apply Lemma with M = LQQ, M’ = L' ®Q; Mg and My, are R[G]-isomorphic to E. Hence there
1

exists a Q[G]-isomorphism € : L Q — L'® Q. Say ¢(L) < NL/ for some N € N. Hence f = Ny maps

L injectively into L’. Consider the exact sequence

0 >Lf

> L/ > coker(f) —— 0

Since L, L' have the same rank as abelian groups, coker(f) is finite, and hence h(L) = h(L') if either one
is defined. ]

4.10 Coholomogical Triviality

A G-module A is cohomologically trivial if for every subgroup H < G, HY(H, A) = 0 for all ¢ € Z.

Lemma 4.13. Let p be a prime number, G a p-group and A a G-module such that pA = 0. TFAE
(i) A=0.
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(i) HO(G,A) = 0.
(iii) Ho(G, A) = 0.

Proof. Clearly (i) implies (ii) and (iii).

Assume (ii). Suppose A # 0 and pick a nonzero element z € A. The submodule B = xZ[G] is finite
of order a power of p. Consider the G-orbit of the elements of B; the orbit-stabilizer formula tells us that
every orbit is of p-power order. There is at least one fixed point, namely 0, so there are at least p fixed
point; hence H(G, A) = A% # 0.

Assume (iii). Consider H°(G, Homy, (A,F,)) = (Homg, (A,F,))¢ = Homg(A,F,) = Homg (Ag,F,).
Since Ag = Ho(G,A) = 0, it follows H°(G,Homg, (A,F,)) = 0, and thus Homg, (A,F,) = 0. Hence
A=0. O

Lemma 4.14. With the same hypothesis as above, suppose Hi(G, A) = 0. Then A is a free module over
|G-

Proof. Since pA = 0, pHy(G, A) = 0, and therefore Hy(G, A) is a F,-vector space. Take a basis e, of this
space and lift each ey to a) € A. Let A’ be the submodule of A generated by the ay, and let A” = A/A’.

We then have an exact sequence
Hy(G,A") —— Hy(G,A) —— Hy(G,A") —— 0

where by our construction « is an isomorphism. Hence Hy(G, A”) = 0, and by Lemma 4.13 A” = 0. Thus
the a) generate A as a G-module, and hence define a surjective F,[G]-homomorphism ¢ : L — A where L

is a free IF,|G]-module. Since H;(G, A) = 0, there is an exact sequence
0 —— Hy(G, kerp) —— Ho(G, L) —— Hy(G, A) — 0

By construction [ is an isomorphism, so Hy(G, ker ¢) = 0 and hence kerp = 0 by Lemma 4.13. Thus

¢ : L — Ais an isomorphism. [
Theorem 4.15. Let G be a p-group and A a G-module such that pA = 0. TFAE
(i) Aisa free F,[G] module.
(ii) A is an induced module.
(iii) A is cohomologically trivial.
(iv) H(G, A) = 0 for some q € Z.

Proof. Clearly (i) =(ii) =(iii) =(iv). Now suppose (iv). By dimension shifting we construct a module B
such that pB = 0 and H"(G, A) = H"7%(G, B) for all n.

e n=gq Then 0 = HY(G, A) = H*(G, B) = H,(G, B). Thus B is free over F,[G] by Lemma 4.14.
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e n=-2 H(G,A = H?2G,A) = H*%G,B) = 0, for B is free. Hence A is free over F,[G] by
Lemma 4.14.

Theorem 4.16. Let G be a p-group and A a G-module without p-torsion. TFAE:
(i) A is cohomologically trivial.
(i) H9(G,A) = H*"(G, A) = 0 for some q € Z.
(i) A/pA is free over F,[G].

Proof. (i)=(ii) is clear. Assume (ii). Consider the exact sequence

0 »y AL A y A/pA —— 0
Passing to the cohomology gives the exact sequence
HY(G, A) —— HY(G,A) —— HI(G, A/pA) —— HHG, A) —— H(G, A)

Then HY(G, A/pA) = 0, and thus A/pA is free over F,[G] by Theorem 4.15 above. Finally, assume (iii).
From the same exact sequence we see H 9(H,A) = 0 for all ¢ and all subgroups H < G (note that A/pA is
also F,[H |-free). O

Corollary 4.16.1. Let A be a G-module free over Z satisfying the equivalent conditions of Theorem 4.16.
Then for any torsion-free G-module B, the G-module N = Homy(A, B) is cohomologically trivial.

Proof. Since A is free over Z, the exact sequence

0 » B - B » B/pB —— 0
gives an exact sequence

0 y N L5 N » Homg(A, B/pB) —— 0

so that N has no p-torsion point and N/pN =~ Homgz(A, B/pB) = Homg(A/pA, B/pB). Since A/pA is
F,[G]-free, it is a direct sum of the s. A", where A" < A/pA is some subgroup. Hence N/pN is a direct
sum of the s. Homy(A’, B/pB), and hence N /pN is induced. That N is cohomologically trivial now follows
from Theorem 4.15 and Theorem 4.16. Il

Theorem 4.17. Let G be a finite group, A a G-module which is Z-free, and G, a Sylow p-subgroup of G.
TFAE

(i) For each prime p, the G,-module A satisfies the equivalent conditions of Theorem 4.16.
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(ii) A is a projective G-module.
Proof. That (ii) =(i) is clear. Assume (i). Choose an exact sequence

0 > () >y G > A > 0

where F' is a free G-module. Since A is Z-free, this gives an exact sequence
0 —— Homy(A, Q) —— Homyz(A, ) —— Homgz(A,A) —— 0

By Corollary 4.16.1 Homg (A, @) is cohomologically trivial as a G,-module for all p, and hence the group
H'(G,Homgz(A,Q)) is trivial by Corollary 4.3.4; it follows that Homg(A, F) — Homg (A, A) is surjective,
and hence the identity map id, extends to a G-homomorphism A — F', i.e. A is G-projective. 0

Theorem 4.18. Let A be any G-module. TFAE
(i) For each prime p, H 1(Gp, A) = 0 for two consecutive values of ¢ (which may depend on p).
(ii) A is cohomologically trivial.
(iii) There is an exact sequence 0 — By — By — A — 0 in which By and B are G-projective.

Proof. That (iii) = (ii) = (i) is clear. Assume (i) and choose an exact sequence

0 > By > By > A > 0

with By free over Z[G]. Then HY(G,, By) =~ H1'(G,, A) for all ¢ and all p, and hence the condition (i)
holds for B;. Since Bj is a subgroup of By, Bj is Z-free. Therefore B; is G-projective by Theorem 4.17 [

4.11 Tate’s Theorem

Theorem 4.19. Let G be a finite group, B and C' two G — modules and f : B — C a G-homomorphism.
For each prime p, let G, be a Sylow p-subgroup of GG, and suppose that there exists an integer n, such that

£ H9(Gy, B) —— H9(G,,C)

is surjective for ¢ = n,, bijective for ¢ = n, + 1 and injective for ¢ = n, + 2. Then for any subgroup H < G
and any integer g,

£ HY(Gy, B) —— H1(G,,C)

is an isomorphism.
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Proof. Let B* = Homg(Z|G], B) and let ¢ : B — B* be the injection defined by i(b)(g) = gb. Then

(f,1) : B— C @ B* is injective, so that we have an exact sequence

0 » B s C @ B* > D > 0

Since B* is cohomologically trivial, the cohomology of C'® B* is the same as that of C'. Hence the
cohomology sequence and the assumption imply H Gy, D) = 0 for ¢ = ny, and ¢ = n, + 1. It follows from
Theorem 4.18 that D is cohomologically trivial, whence the result. [

Theorem 4.20. Let A, B,C be three G-modules and ¢ : A® B — C' a G-homomorphism. Let ¢ be a
fixed integer and a a given element of H %G, A). Assume that for each prime p there exists an integer n,
such that the map
f{q(GP?B) B If[q<Gp7 C)
b ——— i(resgq,(a) U b)

is surjective for ¢ = n,, bijective for ¢ = n, + 1 and injective for ¢ = n, + 2. Then for all subgroups H < ¢

and all integers, the cup-product with resg,x(a) induces an isomorphism
H"(H,B) —— H""(H,C)
b ——— ), (resg/m(a) U b)

Proof. The case ¢ = 0 is essentially Theorem 4.19. We have a € H 0(G, A); choose o € AY representing a.
Then « also represented resg g (a) for all H < G. Define

B p(a®p)
Since o € A%, f is a G-homomorphism. We claim that for every b e H "(H, B)
p*(vesqm(a) U b) = f*(b) € H"(H,C) (®)

The n = 0 is just definition, and the general case follows from dimension shifting: for example, consider

the commutative diagram with exact rows
0 > B’ > B, s B

lf/ ll@f lf (©)

0 s O s O, s C s 0

o

where B, = Z|G]® B and C, = Z|G]®C. Then we have the commutative diagram with horizontal arrows
being isomorphisms
H"(H,B) —— H""\(H,B)

bl

H"(H,C) —— H""(H,C")
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The diagram (¢) remains exact after tensoring with A over Z; let ¢” : AQ B’ — C’ be the homomorphism
induced by ¢ : A® B — C. Then by induction hypothesis

o(f*(b)) = f*0(b) = " (vesgyu(a) L 6(D))
= ¢"*d(resg/u(a) U b)
= 0™ (resg/m(a) U b)
Since ¢ is an isomorphism, the result follows.

The general case q € Z now follows by another piece of dimension shifting. For example, consider the

exact sequence

0 » Al > A, > A > 0

where A, = Z[G] ® A; this gives rise to isomorphisms 0 : HY(H, A) — Hq+ 1(H, A'). Let u = resq/r(a) €
HY(H, A); then o/ = du = resq/u(da). Also ¢ : A® B — C induces ¢’ : A’® B — (’. Consider the
diagram

H"(H,B) —*— A™9(H,A® B) —% s H"1(H,C)

| L

H"(H,B) ¥ Hm "\ (H, A'® B) —£— Hm+a+1(H, ")
which is commutative, for
o (uub) =" 0(uub) =" (0(u) Ub) =*(u Ub)

By induction hypothesis, the bottom line is an isomorphism, and since ¢§ is an isomorphism, so is the top
line. [

Theorem 4.21. Let A be a G-module and a € H*(G, A). For each prime p, let G,, be a Sylow p-subgroup

of (G, and assume that
(i) HY(G,, A) = 0.
(ii) H*(G,, A) is generated by resq/q,(a) and has order equal to that of G,,.
Then for all H < G and all integers n, cupping with resg,y(a) induces an isomorphism
H“(H,Z) —— H"**(H, A)
Proof. Take B=17,C = A, ¢ =2, n, = —1 in Theorem 4.20.
o n = —1. The surjectivity follows from (i).
« n=0. HG,,Z) is cyclic of order #G,, so the bijectivity follows from (ii).
o n = 1. The injectivity follows from the fact that H'(G,, Z) = Homy(G,,Z) = 0.

Hence all the hypotheses of Theorem 4.20 are satisfied. O
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Chapter 5

Local Class Field Theory

5.1 The Brauer Group of a Local Field

Let K be alocal field and L a finite Galois extension of K. We write H?(L/K) instead of H?*(Gal(L/K), L*).
By definition, the Brauer group Br(K) is the direct limit

Br(K) := lim H*(L/K) = H*(K*?/K).

L/K: finite Galois

In order to compute Br(K') we look first at the intermediate field K™, the maximal unramified extension
of K. If k denotes the residue field of K, then the algebraic closure k of k is the residue field of K, and
the reduction Gal(K"/K) — Gal(k/k) is an isomorphism. We denote by Froby the Frobenius element in
Gal(K"/K) pulling back from the one on k. Then the map

Z —— % Gal(K"/K)

v > Froby

is an isomorphism of topological groups.
Since K™ is a subfield of K*P, H*(K™/K) is a subgroup of Br(K). In fact

Theorem 5.1. Br(K) = H2(K"™/K) =~ H(Z, (K™)*).
Theorem 5.2. The evaluation v : (K")* — Z defines an isomorphism

H*(K™/K) - H*(Z,7).

5.1.1 Statements of Theorems

5.1.2 Computation of H*(K,,/K)

Proposition 5.3. Let K,, be an unramified extension of K of degree n and let G = Gal(K,,/K). Then

for all ¢ € Z we have
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(1) HY(G,U,) = 0, where U,, = Uk,,.

(2) the map v: HI(G,K)) — HYG,7Z) is an isomorphism.

5.1.3 Some Diagrams

5.1.4 Construction of a Subgroup with Trivial Cohomology

Let L/K be a finite Galois extension with Galois group G, where L and K are local fields. We already

know that Uy, has trivial cohomology when L/K is unramified.

Proposition 5.4. There exists an open subgroup V' of Uy, with trivial cohomology, that is, HY(G,V) =0
for all q.

Corollary 5.4.1. Let L/K be a cyclic extension of degree n. Then we have h(Ur) = 1 and h(L*) = n.
Corollary 5.4.2. Let L/K be a cyclic extension of degree n. Then H?(L/K) is of order n = [L : K.

5.1.5 An Ugly Lemma

Lemma 5.5. Let G be a finite group and let M be a G-module and suppose that p, ¢ are non-negative

integers. Assume that

(a) HY(H,M) =0 for all 0 < i < q and all subgroups H of G;

(b) if H< K < G with K/H cyclic of prime order, then the order of HY(H, M) (resp. H°(H,M) if
q = 0) divides [K : H]*.

Then the same is true of G. That is, H4(G, M) (resp. H(G, M)) is of order dividing [G : 1]°.

5.1.6 End of Proofs

5.1.7 An Auxiliary Results

Let A be an abelian group and let n be an integer > 1. Consider the cyclic group Z/nZ with trivial action

on A. We shall denote the corresponding Herbrand quotient by h,(A), whenever it is defined. We have

ha(A) = —#;fi Z/U

where , A is the set of o € A such that na = 0. Alternatively, we could begin with the map A > A and
take h,(A) to be

# coker(n)
#ker(n)
Now let K be a local field. Then for a € K there is a normalized absolute value, denoted by |a|g. If
1
a € Ok, then |a|lg = ——F———.
o e 0l = 0 a0x)
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Proposition 5.6. Let K be a local field and let n > 1 be an integer prime to the characteristic of K.
Then hy(K*) = —

=
5.2 Abelian Extension of Local Fields

5.2.1 Cohomological Properties
5.2.2 The Reciprocity Map

5.2.3 Characterization of (o, L/K) by Characters

Let L/K be a Galois extension with Galois group G. We start from an oo € K* and we seek a characteri-

zation of (o, L/K) € G®. Let us set some notations.
o 5S4 := (o, L/K).

« For x € Homgz(G,Q/Z), let §, € H*(G,Z) be its image under the connecting homomorphism § :
H'(G,Q/Z) - H*(G, 7).

« Let@e H(G,L*) = K*/NyxL* be the image of a.
Proposition 5.7. x(s,) = invg (@ u dy).
Proof. Identifying s, with an element of H=2(G, Z), one has s, U ur/k = @ by definition. Then
AUy =uUr/k U (Sa Udy) =urx Ud(sa U X) = Up/K U 5(@0)

If x(sa) = % for some r € Z, then 6(x(s4),) = r. Hence

ur/k Y 6(x(Sa)g) = ur/x VT
and thus invg(a v dy) = invg(ug/x V) = o X(Sa) O
n

As an application we consider the following situation. Consider a tower of Galois extension K < L' < L
with G = Gal(L/K) and H = Gal(L/L").

Corollary 5.7.1. For a € K*, we have (o, L/K)|p = (o, L'/K) € (G/H)?.
Proof. Let ¢ € Hom((G/H)*®,Q/Z) and put x = infg/y 1. Then
(e, L/K) ) = x((e, L/ K))
= invg(a ud,)
= invg (@ U infgm dy)

(
= invg(infg/u(@ U 6y))
= invg(@udy) = ¥((a, L'/K))
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The second last equality results from the very definition of Brauer group (inf is the inclusion map).
O

This compatibility allows us to define («, L/K) for any abelian extension; in particular, taking L = K2,

the maximal abelian extension of K, we get a homomorphism
Ok « K* —— Gal(K*/K)
a —— (a, K*/K)

The effect of (o, K**/K) on K < L < K" is then that of (o, K**/K)|; := (o, L/K).

5.2.4 Variations with the Field Involved
5.2.5 Unramified Extensions
In this case it is possible to compute the norm residue symbol explicitly in terms of the Frobenius elements:

Proposition 5.8. Let L/K be an unramified extension of degree n and let normalized valuation. Let
a € K* and let v(a) € Z be its normalized valuation. Then (o, L/K) = F¥(®),

Proof. Let x € Homy(Gal(L/K),Q/Z). Then
X((a, L/K)) = invg (@ U §y).
The map invg : H*(Gal(L/K), L*) — Q/Z has been defined as a composition
H?*(Gal(L/K), L*) —— H*(Gal(L/K),Z) SN HY(Gal(L/K),Q/Z) —— Q/Z.
Hence
invg(@uédy) =v06 tov(@ud,)
O

Corollary 5.8.1. Let E/K be a finite abelian extension. The norm residue symbol K* — Gal(E/K)

maps Ug onto the inertia subgroup I := I/ of Gg/k.

Proof. Put Ey = E'; then Ey/K unramified. By Proposition 5.8, Uy has trivial image in Gal(Fy/K) so
that it is mapped into Gal(E/L) = I < Gal(E/K). Conversely, let t € I and let f = [Ey : K]. There
exists a € K* such that t = (a, F/K). Since t € I, Proposition 5.8 shows 1 = (a, E/K)|g, = Frobg;/(}?, SO
that f | vk (a). Considering the ramification, one see there exists b € E* such that vk (a) = v (ND). If we
put u = a(Nb)™', we have u € Ugx and (u, E/K) = (a, E/K) = t. O
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5.2.6 Norm Subgroups

5.2.7 Statements of the Existence Theorem

Theorem 5.9. A subgroup M of K* is a norm subgroup if and only if it satisfies the following two

conditions
(1) The index [K* : M] is finite.
(2) M is open in K*.

We give now some equivalent formulations.

Consider the reciprocity map 0 : K* — Gal(K®?/K). By Proposition 5.8, the composition
K% -2 Gal(K*/K) —— Gal(Kw/K) =2

is just the valuation map v : K* — Z. Hence we have a commutative diagram

0 —— Ug y KX > 7. > 0
l@ l& lid
0 y I » Gal(K**/K) s 7. > 0

where I = Gal(K?"/K,,) is the inertia group of Gal(K?*"/K).
The map 0 : Ux — Ik is continuous, and its image is dense by Corollary 5.8.1; since Uy is compact, it
follows that 6 is surjective.

We can now state two equivalent formulations of the existence theorem.
Theorem A The map 6 : Ux — [ is an isomorphism.

Theorem B The topology induced on Uk by the norm subgroups is the natural topology on Uk.

The group Ik is just lim Uy /(M n Uk), where M runs over all norm subgroups of K> (if M = NL*,
then Ux /(M n Ug) = Ik is the inertia group of L/K, by Corollary 5.8.1). The equivalence of Theorem
A and Theorem B follows from this and a compacity argument. That Theorem 5.9 implies Theorem B is

clear. The converse follows from Proposition 5.8.

Corollary 5.9.1. The exact sequence 0 — Ux — K* — 7Z gives by completion the exact sequence

5.2.8 Some Characterization of (o, L/K)

5.2.9 The Archimedean Case

For the global class field theory, it is necessary to extend these results to the (trivial) cases in which K is
either R or C. Let G = Gal(C/R). We have Br(C) = 0 and Br(R) = H*(G,C*) = R*/RX.
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The invariant invg : Br(R) — Q/Z has image {0,1/2} < Q/Z, and invc : Br(C) — Q/Z has image
{0}. The group H*(G,C*) = H?*(C/R) is cyclic of order 2 and is generated by u € Br(R) such that
invg(u) = 1/2.

Under the reciprocity law map (or rather its inverse) we have an isomorphism

G =H?*G,2) — H°(G,C*) = R*/R*

5.3 Formal Multiplication in Local Fields

For our purposes, the main consequence will be

1. the construction of a cofinal system of abelian extension of a given local field K;
2. a formula giving (o, L/K) explicitly in such extensions;

3. the Existence Theorem.

5.3.1 The Case K = Q,

Theorem 5.10. Let ngd be the field generated over QQ, by all roots of unity. Then ngd is the maximal

abelian extension of Q,,.

In order to determine (o, L/K) it is convenient to split @;yd into parts. Define Q,, to be the field
generated over QQ, by roots of unity of order prime to p (so Qy, is the maximal unramified extension of Q,)
and define Q,» to be the field generated over QQ, by p*-th roots of unity, v = 1,2,..., (so Q,» is totally

ramified). Then Q,, and Q= are linearly disjoint we have a diagram

Qcycl

N
\/

Now Gal(Qy,) = 7 and if o € Gal(Qp=/Q,), then o is known by its action on the roots of unity. Let E be
the group of p’~th roots of unity, v = 1,2,...,. As an abelian group, E is isomorphic to lim Z/p"Z = Q,/Z,.

We shall view E as a Z,-module. There is a canonical map Z, — End(E), defined in an obviously way

and this map is an isomorphism. The action of the Galois group on E defines a homomorphism

Gal(Qp»/Q,) — Aut(E) = U,

and it is known that this is an isomorphism. If u € U, we shall denote by [u] the corresponding automor-
phism of Qe /Q,.
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Theorem 5.11. If a = p"u where u € U, then (o, Q¥?/Q,) = 0, is described by

1. on Qy,, o, induces the n-th power of the Frobenius automorphisms;

2. on Qux, 0, induces the automorphism [u~].

5.3.2 Formal Groups

Definition. Let A be a commutative ring with 1 and let F' € A[[X,Y]. We say F is a commutative

formal group law if
(a) F(X,F(Y,Z)) = F(F(X,Y), Z);
(b) F(0,Y) =Y and F(X,0) = X;
(c) there is a unique G(X) such that F(X, G(X)) = 0;
(d) F(X,Y) = F(Y.X);
(e) F(X,Y)=X+Y (mod deg 2)

« One can show that (¢) and (b) are consequences of (a) and (e).

Proof. Write F(X,Y) =X +Y + Y, a;X'Y7. We prove by induction that ag; = 0 = ajo for j > 2.

ij>
Write F/(0,Y) =Y + ag, Y™ (modﬂdelg m+1) and F(X,0) = X + apnoX™ (mod deg m+ 1) By (a)
one has
F(F(X,0),Y)=F(X,F(0,Y))
so that
F(X,0)+Y + ) ayF(X,00Y7 = X + F(0,Y) + Y a;X'F(0,Y)
ij>1 ij>1
Then

X +an X" +Y + > ay XY =X +Y +ag, Y™ + Y, XY/ (mod deg m +1)

i,j=1 i,j=1

Q0

from which we see a0 = dgn. This shows (b). Suppose G(X) = Y. by X* verifies F(X,G(X)) = 0.
k=0

A computation gives

o0 m m — g
0=FX.GX)=>|> D ayby b (k . ) X
m=0 | =0 §=0 Lot hy
k14 +kj=m—¢
0<ky,..., k:j

Each coefficient has the form b, + ¢,, by (b), where ¢,, involves no b,,. Thus we can solve the b,,

inductively. [
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Definition. Let F,G be two formal group law over a commutative ring A with 1. A homomorphism
f + F — G between two formal groups is a formal power series f € A[X] such that f(F(X,Y)) =

G(f(X), f(Y)).

Take A = Ok, and let FI(X,Y) be a commutative formal group law defined over Og. If mg is the
maximal ideal of Ok and z,y € mg, then F(x,y) converges and it sum belongs to Og; then mg is made
into a group via F' which we denote by F(my).

The same argument applies to an extension L/K and the maximal ideal m;, of O. We then obtain a
group F'(myp) defined for any algebraic extension of K by passage to inductive limit from the finite case.

FFX,)Y)=X+Y+ XY =(1+X)(1+Y)—1, then we recover the multiplicative group law of
1+ mg.

The elements of finite order of F(mg,) form a torsion group and Gal(K/K) operates on this group.
The structure of this Galois module presents an interesting problem which up to now has been solved only

in special case.

5.3.3 Lubin-Tate Formal Group Laws

Let K be a local field, ¢ = Char(k) and choose a uniformizer 7 € Ok. Let §, be the set of formal power

series f with:
(1) f(X)=7X (mod deg 2);
(2) f(X)=X? (mod )

The second condition means that if we go to the residue field k& and denote by f(X) the corresponding
element of k[ X, then f(X) = X.

Example.

(a) f(X)=7mX+ X"

() K =@ =p ()= 3 (f)xz’ e XP oL

Proposition 5.12. Let f € §. Then there exists a unique formal group law F; with coefficients in A for

which f is an endomorphism on F}.

Proposition 5.13. Let f € §, and let F; be the corresponding group law in the above proposition. Then
for any a € A = Ok, there exists a unique [a]; € A[[A] such that

(1) [a]f commutes with f;
(2) [a]; = aX (mod deg 2)
Moreover, [a]f is then an endomorphism of the group law Fy.
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From the above proposition we obtain a mapping
A —— End(Fy)
a —— [a]y

For example, consider the case K = Q, and f(X) = (1 + X)? — 1; then F} is the multiplicative law
X +Y + XY, and

[al; = (1+X)* —1:= i (j)x

i=1

Proposition 5.14. The map a — [a] is an injective ring homomorphism from A to End(FY).

Proposition 5.15. Let f, g € §.. Then the corresponding group laws are isomorphic.

5.3.4 Statements

Let K be a local field and let 7 be a uniformizer. Let f € §, and let Fy be the corresponding group law (of
Proposition 5.12). We denote by M; = Fy(mg,) the group of points is the separable closure equipped with
the group law deduced from F'. Let a € A, x € My and put ax := [a];x. By Proposition 5.14, this defines
a structure of an A-module on M. Let E; be the torsion submodule of My; that is the set of elements of

My killed by a power of .
Theorem 5.16. The following statements hold.

1. The torsion submodule E is A-isomorphic to K /A.

2. Let K; = K(Ey) be the field generated by E; over K. Then K, is an abelian extension of K.
3. Let u be a unit in K*. Then the element o, = (u, K;/K) of Gal(K,/K) acts on E; via [u™!];.
4. The operation described in (c) defined an isomorphism Ux — Gal(K,/K).

5. The norm residue symbol (7, K;/K) is 1.

6. The field K,, and K, are linearly disjoint and K = K, K.

We may express the results of Theorem 5.16 as follows. We have diagram

K /Kab\K
~ 7

K

Here Gal(K,,/K) = Z and Gal(K,/K) = Uy. Moreover every o € K* can be written in the form a = ur™,
and o, gives o = Frobg on K,,/K whilst o, gives [u™!] on K,/K.
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Example. Take K = Q,, 7 = p and f(X) = (1 + X)? — 1. The formal group law is the multiplicative
group law; E; is the set of p”-th roots of unity; K is the field denoted by Qe in subsection 1, and we

recover Theorem 5.10.

5.3.5 Construction of Fy, [a];

Proposition 5.17. Let f,g € §., n € N and let ¢1(X,...,X,) be a linear form in Xi,..., X, with
coefficients in A. Then there exists a unique ¢ € A[ X7, ..., X, ]| such that

(i) ¢ = ¢ (mod deg 2);
(i) fogp=go(gx - xg).

Moreover, ¢ is the only power series with coefficients in an extension of A, which is torsion free as an

A-module, satisfying (a) and (b).

Proof. We shall construct ¢ be successive approximation. More precisely, we construct a sequence (¢®))
such that ¢ € A[X,..., X, ] satisfies (a) and (b) (mod deg p+1), and ¢ is unique (mod deg p+1).
We shall then define ¢ := lim,, #® . and this will be the ¢ whose existence is asserted.

Take ¢V = ¢;. Suppose that the approximation ¢y + - -- + Op = #® has been constructed, that is,
fop® =¢®P o(gx--xg) (mod deg p+ 1). For convenience, we shall replace g x --- x g by the single
variable g. Now write ¢+ = ¢(P) + ¢ ., where ¢, is to be determined with ¢,; =0 (mod deg p+1).
Write

fop® =g og+ E,.1 (mod degp +2)

where E,.; (“the error”) satisfies E,;; = 0 (mod deg p + 1). Consider ¢(P*; by Taylor’s expansion we

have
fod®t) = fo(p®) +¢,1)=fod® + ¢, (mod degp+2)

(recall f(X)=7X (mod deg 2)) and
W og+gpog=0P og+a,  (mod degp+2)

Thus
fop®Pth) — gtV og=F | + (1 —7"")¢,.1 (mod deg p+2)

These equations show that we must take

¢ — _Ep+1
P r(1 = )

The unicity is now clear and it remains to show that ¢, has coefficients in A, that is, £, 1 =0 (mod 7).
Now for ¢ € F [ X, we have ¢(X9) = ¢(X)? and together with f(X) = X9 (mod 7) this gives

fod =W og= (6" (X))"—¢"(X*) =0 (mod )

as wanted. So, given ¢ we can construct a unique ¢®*1) and the proof is completed by induction and

passage to the limit. [
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Proof. (of Proposition 5.12) For each f € §, let Fy(X,Y) be the unique solution of Fy(X,Y) =X +Y
(mod deg 2) and f o Fy = Fyo (f x f) whose existence and uniqueness is assured by Proposition 5.17. It

remains to show that F} is a formal group law.

o Associativity. Note that both
Fy(Fy(X,Y), Z) and Fy(X, Fy(Y, Z))

are solutions to H(X,Y,Z) = X +Y + Z (mod deg 2) and H(f(X), f(Y), f(Z)) = f(H(X,Y, Z)),

so by unicity part in Proposition 5.17, both expressions are identical.

o Commutativity. F(X,Y) and F(Y, X) are solutions to Ho (f x f) = foH and H(X,Y)= X +Y
(mod deg 2).

]

Proof. (of Proposition 5.13) For each a € A and f, g € §x, let [a]s4(T") be the unique solution to [a]f4(T) =
al (mod deg 2) and f o [a]s, = [a]fy 0 g. Now we have

Fyo([alyg x [alyg) = [alfg 0 Fy

for each side is congruent to aX + aY (mod deg 2) and

Fy(lalra9(X), [alra9(Y)) = Fy(f([al (X)), f(lalrs(Y))) = f(Fy([alyg(X), [alr4(Y)))

and
[alyoFy(9(X),9(Y)) = [alrg(9(Fo(X,Y))) = f(lal o Fy(X,Y))

so that by Proposition 5.17 the both sides coincide. Thus [a]f, : F, — F} is a formal homomorphism, and
if we put [a]; = [a]; 4, this shows that [a]; € End(F}). O

Proof. (of Proposition 5.14) In the same way as outlined above, one proves that

l[a + 01y = Fro([alygolalfy)

and
[ablyn = [alyg© [blgn

This shows a — [a] is a ring homomorphism from A into End(FY). It is injective since the term of degree
1 of [a]f is aX. O

Proof. (of Proposition 5.15) If a € A, then [a];, is invertible, so F, =~ F; by means of the isomorphism
[a]f,y. Note that [7]y = f and [1]; is the identity. O
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5.3.6 First Properties of the Extension K, of K

From now on, we confine our attention to subfields of a fixed separable closure K, of K. Given f € §,, let

o Fy: the corresponding formal group law;
o Ey: the torsion submodule of the A-module F(my);

o B} :=ker[n"];, KT := K(E}) and K, = |J K7.

n=1

o Gr,i=Gal(K(E})/K), so that Gal(K,/K) = lim G,

n

Proposition 5.18. The natural homomorphism Gal(K,/K) — Uk is an isomorphism.

Proof. We are free to choose f as we please by Proposition 5.15; take f = 7X 4+ X?. Then

M foriiof—[x"
= f f=17"]y

n-times

Since f™ is separable, #E} = #ker[n"]; = ¢". Pick A e E;}\E}L’I and consider the map
A —— E}

a —— a\

it has kernel A/m" A, and thus induces an injection A/7"A — E%. Since both sides have order ¢", it follows
that A/7" = E7}. Then
End(E}) = End(A/7"A) = A/7"A

and so
Aut(E}) = (A/7"A)* = Uk /Uy

where Ut = 1 + 7" A. This gives an injection Gal(K”/K) — Aut(E}) = Ug/U}t. Define
K w f K
)

¢ = f=1) T D)
Since f(X) = X7+ 71X, % = X971 + 7 and hence
(n—1)
A = ey +x

which is of degree ¢" — ¢"~! and which is irreducible for it is Eisenstein. All elements of E}‘\E}L’l are roots
of ¢, so the order # Gal(K"/K) = (¢ — 1)¢"'. On the order hand, this is actually the order of U /UL,
hence Gal(K?/K) = Uk /U}. 1t follows that

Gal(K,/K) = lim Gal(K?/K) = lim U /U = Ug

n
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Corollary 5.18.1. K(E})/K is totally ramified.
Proof. We have seen, in the proof above, that ¢ is Eisenstein, so that K(E7})/K is totally ramified. O
Corollary 5.18.2. The element 7 is a norm from K(\) = K, where A € E}‘\E}‘_l is a primitive element.

Proof. The polynomial ¢ constructed above is monic with constant term m; hence Ngn /g (=) = 7. [

5.3.7 The Reciprocity Map

We shall study the compositum L = K, K, and the symbol (a, L/K), a € K*. We need to compare two
uniformizers m and w = 7wu, u € Ug.

Let IA(nr be the completion of K, (remember that K, is an increasing union of complete fields but is
not itself complete) and denote by ﬁnr and m,, the ring of integers of IA(nr and the valuation ideal. By
definition I?nr is complete; 7 is a uniformizer of [?nr. Let 0 = Frobg € Gal(K,,/K) and extend it to [?nr

by continuity.

Lemma 5.19.

(i) o —1: /Alnr — /Alm is surjective with kernel A.

(ii) o —1: (Afnr — [Afnr is surjective with kernel A*.

Proof. Let A, be the ring of integers of K, and m,, the maximal ideal; then /Alnr = Li_mAnr/mgr and

n

flm/ﬁlnr = Ap/my = k, where k is the residue field A/my and k is its separable closure. We prove by

induction that for each n > 1 there is an exact sequence
0 —— A/m} —— A,/ml 1, Ap/ml’. —— 0

For n = 1, it is simply the exact sequence

0 s k s kL %

~
o

(recall that Gal(K,,/K) is generated by o = Frobg.) For n > 2 consider the commutative diagram

0 —— Ap/my, —— Ap/m?, —— Ay /mt —— 0

Bl

0 —— Ap/my, —— Ap/m?. —— Ay /mt —— 0

By induction hypothesis and snake’s lemma we see the middle arrow is surjective and its kernel has order
q". Since A/mY. is contained in the kernel and it has order ¢" as well, it is the whole kernel. This finishes

the induction and passing to the inverse limit, we obtain (i).
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For (ii), note that Uy, = lim Uy, /U,

nr’

where Ul = 1 + m].. Similar to the argument above, we show
n
there is an exact sequence

0 —— Uk /UL —— Up /U™ 215 U /U™ —— 0

When n = 1, since Ux/U} =~ k* under the quotient map A — A/my = k (and the same for U,,), the

complex becomes

X

0 s k* N AL Ny A s 0

which is clearly exact. The case for n > 2, consider the commutative diagram

0 — Uvtur —— U, /U —— U, /U —— 0

b el

0 — Uvtur —— U, /U —— U, /UM —— 0

The isomorphism U"~!/U". = k is o-invariant (note that 7 € K), so the leftmost vertical arrow, under the
mentioned isomorphism, becomes k = k, which is surjective and its kernel has order ¢. Now by snake’s
lemma the middle arrow is surjective whose kernel has order ¢"~'(q — 1). Since Ux/U} lies in the kernel
and it has order exactly ¢"~!(q — 1), it follows it is the whole kernel. The proof is finished by passing to
the limit. O

Take f € §r and g € §.

Lemma 5.20. There exists a power series ¢ € Ay, [X] with ¢(X) =eX (mod deg 2) and ¢ a unit, such
that

(a) 7o =doluls
(b) ¢oFy=Fyo(¢xo);
(c) ¢olaly =[a]foeforallae A
Proof. For i € Ay[[X]], denote by ¢~ € A, [X] such that ¢ o ™ = id = ¢y 0 1h.

1° Since o — 1 is surjective on ﬁnr, we can find ¢ € ﬁnr such that oe = eu. Now define ¢1(X) = ¢X. For
n =1, define ¢, 1(X) = ¢n(X) + X", Suppose we have found ¢, such that “¢,, = ¢, o [u]; + E,
with B, = aX™™! + ... =0 (mod deg n + 1). We have

T On1(X) = bny1([u] (X)) = En+o(b) X" —b([u] 1 X)"' = (a+0(b)—bu"T) X" (mod deg n+2)
Write b = e"™1¥'; then
o(b) —bu = o (") = Ve" My = " u(o (b)) - V)

~ ~ —a

Since o — 1 is surjective on A, we can find b’ € A, such that o(b') — V' = ———, SO we finish
gntly

our construction of ¢,41 with “¢,11 = ¢4 0 [u]; (mod deg n + 2). Now taking limit we obtain

¢ € A [ X] satisfying ¢(X) = X (mod deg 2) and (a).

76



2° We adjust ¢ so that g = “¢po fop™!. Put h = “¢o fo¢~t. Then

h="¢ofog ' =g¢ofulfofop ' =¢ofolulfoe’

Since f, [u]f have coefficients in A, we have
"h= 9o folulyo (67 = “dofos = h
forid = 7¢o 7(¢71) = ¢po[ulfo 7(¢"), so that h has coefficients in Ape. Also,
h(X)=o(e)re ' X =unX (mod deg 2)

and
MX) = 606 (X) = 606 (X)) = X7 (mod my)
so that h € §o (w = mu). Now let ¢ = [1], o ¢; then ¢ still satisfies (a) and p(X) = eX
(mod deg 2), and, moreover,
“pofopt =[Ugne ("¢ fod) o1y = [enoholl],, =g
From now on we replace ¢ by .
3° We prove F, = ¢ o Fyo (¢ x ¢)~'. One has
poFro(px¢) H(X,Y)=e(e'X+e'Y)=X+Y (mod deg 2)
and
gogpoFro(px¢) ' ="¢ofolFro(p 0d™)
=7¢oFro((foe™) x (foo™))
="poFro(((“¢) " og) x (")~ 0 9))
="¢o F(("¢) " x ("¢) ) o (9 x g)
= ¢o[ulyo Fy([ul;' x [u];") o (67 x ¢7) o (g x g)
=poFro(pxe)olgxg)

so by Proposition 5.17, F, = ¢o Fyo (¢ x ¢)~* so that (b) holds. The proof for (c) is similar to that
of (b).
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Computation of the norm reciprocity map in L/K

Let L, = K,,K,. Since K,, and K, are linearly disjoint (one unramified and one totally ramified), we

have
Gal(L,/K) = Gal(K,/K) x Gal(K,,/K)

For each uniformizer m € A of A, define r, : K* — Gal(L,/K) such that
e 7-(m) =1on K, and is Frobg on K,;
o forue Uk, rr(u) =[ut]; on K, and is 1 on K.

We want to prove that the field L, and the homomorphism r, are independent of 7. Let @w = wu be the
second uniformizer.
First, L = Lg. For by Lemma 5.20, F; and [, are isomorphic over [A(nr. Hence the field generated by

their division points are the same; so I?MK7r = IA(anw. On taking completions we find

P

Kanﬂ' = Kanw

Lemma 5.21. Let E be any algebraic extension of a local field and let a € E. Ifais separable over F,
then o € F.

Proof. Let E, be the separable closure of E. It suffices to show E n E; = E. Let s € Gal(Es/E). Since s is
continuous and is the identity on B, it extends to the identity on E. Hence Gal(E,/E) = Gal(E,/E n E,),
and by Galois theory, EnE,=E. ]

Hence, intersecting with the separable closure K, of K, we obtain K, K, = K, K, so that L, =: L
is independent of .

We turn now to the homomorphism r, : K* — Gal(L/K). We shall show that r,(w) = ry(w); this
will imply that r,(c) is independent of 7, and so the r,’s coincide on the local uniformizer. Since these
generate K, the result will follow.

We look first at r(w). On Ky, rm»(w) = Frobg, and on K it is 1. On the other hand, r.(w) is
o = Frobg on K;; so we must look at r,(w) on K.

Now K, = K(E,), where g € §. Let ¢ € A[[X] be as in Lemma ??; ¢ determines an isomorphism of
E; onto E,. Soif A € E,, then we can write A = ¢(u) with p € Ey. We look at rr(w)A, and we want to
show that this is \. Write s = r(w). We want to show A = X, or *¢(u) = ¢(u). Now r.(w) = ro(m)r(u).
Since ¢ has coefficients in I?nr, ‘o= %¢ = ¢po|u|s by Lemma ??. But

“((w) = *o(Cu) = *d([u=]r (1))

Hence
*o(p) = ¢ o lulyolu];(1) = ¢(n)

so r is the identity on K. We conclude that r, is independent of 7.
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5.3.8 The Existence Theorem

Let K® be the maximal abelian extension of K; it contains K,,. We prove Theorem A: if Ix =
Gal(K?"/K,,) is the inertia subgroup of Gal(K?"/K), then the reciprocity map 6 : Ux — Ik is an
isomorphism.

Let L = K, K,, and let I}, = Gal(L/K,,) be the inertial subgroup of Gal(L/K). Consider the map

9
Uk y Iy —— I

where 6 is the reciprocity map and e : I — I is the canonical map; both of them are surjective.
On the other hand, the composition e o § : Ux — I}, has just been computed. If we identify I}, with
Uk, it is u — u~!. Hence the composed map e o 6 is an isomorphism, and it follows that both of them are

isomorphisms.
e 6 is an isomorphism. This gives Theorem A.
¢ is an isomorphism. This implies L = K2, since both L and K" contain K,,.

Alternatively, let us prove that every open subgroup M of K* of finite index is a norm subgroup
corresponding to a finite subextension of L. This will prove both the existecne theorem and that L = K?P.
Since M is open, U < M for some n > 1; since M is of finite index, 7™ € M for some m > 1. Hence
M contains the subgroup V,, ,,, generated by Uy and 7™. Now let K,, be the unramified extension of K of
degree m, and consider the subfield L,, ,, = KK, of L. If u € Ux and a € Z, we know that (un®, L, ,,,/K)

is equal to [u"!] on K™, and to Frob% on K,,; hence
(ur®, Lym/K)=1<uelUfganda=0 (modm)< ur®eV,,,

This shows that V,,,, = NL,,,, and since M contains V,, ,,, M is the norm group of a subextension of
L.

5.4 Ramification Subgroups of Conductors
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Chapter 6

Global Class Field Theory

6.1 Action of the GGalois Group on Primes and Completions
6.2 Frobenius Automorphisms

6.3 Artin’s Reciprocity Law

Proposition 6.1. The diagram

FrobL//K/

%" —5 Gal(L'/K")

5 ZPHE Gal(L/K)

are commutative, where N denotes “norm”.

Theorem 6.2. If L/K is a finite abelian extension, and S is the set of primes of K consisting of the
archimedean ones and those ramified in L, then there exists ¢ > 0 such that if a € K* and |a — 1|, < ¢ for
all v € S, then Frobrx((a)¥) = 1.

Corollary 6.2.1. Let L, K, S be as in the theorem. If L/K are number fields, then the condition |a—1|, < ¢
can be replaced by a € (K)" with n = [L : K.

6.4 Chevalley’s Interpretation by Ideles

Proposition 6.3. Let K and S be as before, G be a complete abelian topological group and ¢ an admissible

homomorphism of I° into G. Then there exists a unique homomorphism ¢ : Jx — G such that

(i) % is continuous;
(i) P(K) =15
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(iii) ¥(z) = ¢((x)®) for all z € JZ.

Conversely, if ¥ : Jx — G is a continuous homomorphism such that ¢(K*) = 1, then ¢ comes from some
admissible pair (S, @) as defined above, provided that there exists a neighborhood of 1 in G such that {1}
is the only subgroup.

Corollary 6.3.1. The reciprocity law holds for a finite extension L/K if and only if there exists a contin-
uous homomorphism ¢ : Jx — Gal(L/K) such that

(i) v is continuous;
(i) P(K™) = 1;

(iii) ¥(z) = Frobpx((x)%) for all x € JZ, where S consists of all archimedean primes of K and those

ramified in L.

Proposition 6.4. If the reciprocity law holds for L/K and L'/K’, then

T S Gal(L /K

N K’/Kl le

Tie 5 Gal(L/K)

is a commutative diagram.

Proof. Let S be a large finite set of primes of K, and S’ be the set of primes of K’ above S. We have then

a diagram
/ WK,

!
]IS(/

J3 > Gal(L'/K")
l iﬁL//K/
Ny
/ W
YLK

» Gal(L/K)

The non-rectangular parallelograms are commutative by compatibility of ideal and idele norms, and by
Proposition 6.1. The triangles are commutative by Corollary 6.3.1.(iii). Thus the front rectangle is com-
mutative. But ¢y x o Ng//ix and 0 o /g take value 1 on principal ideles by Corollary 6.3.1.(ii), so they
coincide on (K’ )J}?, which is a dense subset of Jg: by weak approximation. Since the two maps are

continuous, they coincide on the whole Jx» which is what we wished to prove. [

Variant. Suppose L/K satisfies the reciprocity law, and K < M < L. Then ¢ x(Nyxdu) <
Gal(L/M).
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6.5 Statement of the Main Theorem on Abelian Extensions

Theorem 6.5.

(A) Every abelian extension L/K satisfies the reciprocity law, i.e., there is an Artin map ¢k : Jx —
Gal(L/K).

(B) The Artin map vk is surjective with kernel K*N. r/kJr and hence induces an isomorphism of
Ck/NrkCr onto Gal(L/K).

(C) If M = L 2 K are abelian extensions, then the diagram

YK

! l

CK/NL/KCL % Gal(L/K)

where the horizontal arrows are natural maps (note that Ny xCy S Np/kClp).

(D) (Existence theorem) For every open subgroup N of finite index in C there exists a unique abelian
extension L/K (in a fixed separable closure of K) such that NjxCp, = N.

The subgroup N of (D) are called norm groups, and the abelian extension L such that Ny /xCp = N is
called the class field belonging to V.

1. Given (A) and (B), then (C) is a special case of Proposition 6.4 (put K’ = K and L' = M)

2. The uniqueness part of (D) follows from the rest. Given the existence, let L and L’ be two finite
abelian extensions of K in a fixed separable closure of K and let M be the compositum of L and
L’ (which is again a finite abelian extension of K). Now consider the diagram in (C). Since the
horizontal arrows are isomorphisms by (B) we see that ker § = Gal(M/K) is the isomorphic images
under 1)/ of the group NL/KCL/NM/KC’M. Thus L, as the fixed field of the group ker 6, is uniquely
determined, as a subfield of M, by Ny ,xCr. Applying the same reasoning with L replaced by L', we
see that if Np/x/Crr = Np/gCp, then L = L.

The commutative diagram of (C) allows us to pass to the inverse limit, as L runs over all finite abelian

extensions of K. We obtain a homomorphism

Vi : Cx — lim Gal(L/K) = Gal(K**/K)
L

where K" is the maximal abelian extension of K; and then, by (D),

Gal(K*/K) = lim Cx/N
N
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where the limit is taken over all open subgroups N of finite index in C'x. Thus we know the Galois groups
of all abelian extensions of K from a knowledge of the idele class group of K. The nature of the homo-
morphism g : Cx — Gal(K?/K) is somewhat different in the function field and number field cases. The

facts, which are not hard to derive from the main theorem, but whose proofs we omit, are as follows:

Function Field Case. Here the map vk is injective and its image is the dense subgroup of Gal(K?*"/K)
consisting of those automorphisms whose restriction to the algebraic closure K of the field of constants k

is simply an integer power of the Frobenius automorphism Fj,.

Number Field Case. Here ¢y is surjective and its kernel is the connected component Dy of Cx. So we
have obtained a canonical isomorphism Cx /Dy =~ Gal(K**/K).

Example. Cyclotomic Fields.

Consider Q™¢/Q, the maximal cyclotomic extension of Q. Let 7 = LiLnZ/nZ; by Chinese Remainder

n

theorem we have Z = [1Z,, where Z, is the ring of p-adic integers.
p

(i) 7 acts on any abelian torsion group, for Z/nZ acts on any abelian group whose exponent divides n.

(ii) The invertible elements of 7 are those in [1U,, where U, = Z.
p

Now consider the torsion group u consisting of all roots of unity. If ( € p, we can define ¢* for all u € [ [ U,;
p
explicitly, if ¢ is a primitive m-th root of unity, write m,, the “p-primary part” of m and u, the p-component

of u. Take an n € Z that solves the simultaneous congruence n = u, (mod m,) for all p; then (n,m) =1
and n mod m is uniquely determined. Then (* = (™.

u induces an automorphism on g. On the other hand,
Jo = Q¥ XR+><HUP
p

Indeed, if © = (2o, x2, 3, ...) € Jy, we have © = a - (t, ug, us, . ..), where

a = sign o, - le’?(mp) e Q*

p

and where ¢ > 0 and u, € U, for p = 2,3, .... Moreover, this decomposition is unique because 1 is the only

positive rational number which is a p-adic unit for all primes p. Hence we have a canonical isomorphism
p

so there is a map of Cg onto [ [ U,, which is the Galois group of the maximal cyclotomic extension.

p
What in fact happens is the following.
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Lemma 6.6. If 2 € Cy and z +— u € [ | U,, then ¢¥(®) = ¢,
P

Proof. Suppose ( is a primitive m-th root of unity and let S € My consist of co and all prime factors of

m. We have three cases.

e zeR,. Let a, € Q be such that a,, — x at all places in S; particularly a,, € J(S . Then

$(2) = ¥lanr) = lim ((a2)*) - lim | [e(an)y) = lim Froboeyo((as)®)

n—0
qeS

Write a,, = b,/c, with b,, ¢, € Z coprime to m and b, = ¢, (mod m) (the latter condition can be
satisfied by, for example, Fermat little theorem). Then

Frobg¢)/g((bn)*)-¢ = ¢ = (" = Frobg()((en)®) €
so that Frobg)q((as)®) = 1.

o €U, with p | m. Take a, € Z~ such that a,, — 2! at all finite places in S.

$(2) = lan) = lim ((an2)) - i G((a2)%) - i [ 9((ane),) = i Frobogoyo((a,)%)

n—00 n—o0
qES{-‘m

Let us assume a, = (z~1), (mod m,) for all n > 1. Then ¢* " = (. Since the a, are coprime to m,

Frobg)g((an)”).¢ = ¢*

for each n.

« x €U, with p{m. In this case, ¥(z) = Frobg)((z)%) = 1.

Proposition 6.7 (Kronecker-Weber). Q" = Q™e.

Proof. From the lemma above we see kery = R,, which is the connected component Dg of Cy. The

discussion above gives an exact sequence
0 —— Dg =Ry —— Cop —— [[, U, = Gal(Q™/Q) —— 0

Assuming (B) of the main theorem, we have

0 —— Dy » Co LN Gal(Q**/Q) —— 0

Adjusting in accordance with the above lemma, we see the natural map Gal(Q*/Q) — Gal(Q™¢/Q) is an
isomorphism, hence Q* = Q™°, ]
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6.6 Relation between Global and Local Artin Maps

We continue to deduce results on the assumption that the reciprocity law (but not necessarily the whole
main theorem) is true for an abelian extension L/K.

For each prime v of K, we let K, denote the completion of K at v. If L/K is a finite Galois extension,
then the various completions of L,, with w over v are isomorphic. It is convenient to write LV for “any one
of the completions L,, for w | v”, and we write G* = Gal(L"/K,) for the local Galois group, which we can
identity with a decomposition subgroup of G. In the abelian case this subgroup is unique, i.e. independent
of the choice of w.

Assume that L/K is abelian and that there exists an Artin map
wL/K : JK - Gal(L/K) =G

For each prime v of K we have

by YLK
S Jkx — G
Jv

where
o iy K — Jg maps v € K to the element of Jx whose v-th component is x, and the others are 1;
e Ju:Jx — K is the projection to v-th component.

Call ¥, = Y K © 1y; 50 Y, : K — G. In fact

Proposition 6.8. If K, € M < L”, then 9,(Nyyx, M*) < Gal(L"/M). In particular, ¥,(K) < G,
and wU<NLv/KU(LU>X) = 1.

Proof. Let M = L n M be the fixed field of Gal(L"/M) in L, so that Gal(L/M) is identified with
Gal(L?/M) under our identification of the decomposition group with the local Galois group. Then M =

M, where w is a prime above v, and the diagram

Ty
M=M, ———— Jy
Na/iy Ny
Ty
Kv y Ji

is commutative. By Variant of Proposition 6.4 we conclude that

77DU(NM/K1}MX) - wL/K(NM/KJM> - Gal(L/M) = Gal(L”/./\/l)
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We shall call ¢, : K — G the local Artin homomorphism, or by its classical name: norm

residue homomorphism. If x = (z,) € Jg, then we have

T = lién <H iv(xv)>

veS

and consequently, by continuity, we have
¢L/K(x) = 1_[ %}(%)

this product is actually finite since if z, is a v-unit and v is not ramified, then it is a norm of LV/K,. Thus

knowledge of all the local Artin maps 1, is equivalent to knowledge of the global Artin map ¢y k.

6.7 Cohomology of Ideles

Let L/K be a finite Galois extension (not necessarily abelian) with Galois group G. Write A, for the adele
ring of L and J;, for the idele group, the invertible elements in A;, = L ®x Ak, and G acts on L @ A
by 0 — o ®1; so G acts on Jy.

However, we want to look at the action of GG on the cartesian product structure of J. Suppose z € J,
then © = (Zy)wenm,; 0 € G induces 0, : Ly, — Lyy. Then (02)yy = 04,2,. Indeed, the identification
Ap = L ®k Ak is given by

L®x K, — || Luw
wlv

a®r —— (iy(a)x)y,

We transfer the G-module structure to RHS by this identification; using o © i, = iy, © 0, We see (02 )y =
Owly. Hence we have two commutative diagrams

g a

Ly —— L, Ly —— L,
JL —7 JL JL —— JL

Proposition 6.9. Let v € My and wy € My, with wg | v. Then there are mutually inverse isomorphisms

Hr (G, I L;) — 5 H" (G, LY,

w|v ij .res
and

H" (G, I Uw> —— ¢ L (CTNN I

'w|'u jwo.res
where U, denotes the group of units in L,,. The assertion remains valid when H" is replaced by Hr.
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Proof. This follows from Shapiro’s lemma once

. .G .
lndeO L1>l<]() — Hw|v L1>1<1 Hw|v Ll>l<) E— ll’ldeO L1>1<)0
and
[:G—= L —— (0f0 ™ )ouw, A [0 10— 0Qp1y,
are shown to be mutually inverse. [

Thus the cohomology groups H" (G, L) are canonically isomorphic for all w over v, so it is permissible
to use the notation H"(G", (L")*) for any one of these.

Proposition 6.10.
(a) Under the inclusion Jx € Jp, one has J& = Jk.

(b) H'(G,Ji) = @ H"(G" (L")").

’UGMK

Proof.

1. Tt is clear Jx € J¢. Let @ = (7)€ [[ L. Suppose x is fixed by G; in particular, for each w | v,
wlv

Ty, is fixed by Gal(L,/K,), so that z,, € K. But if ow = ', then zy = Toy = (02)ow = TuwTe.
Hence all z,, € K are the same, and thus x € K.

2. Recall that

Jp =lim Jy, s where Jp 5 := HHL; X nnUw
s

veS wlv vgS wlv
and S is a finite set of primes of K containing all the ramified primes in L/K and the archimedean

primes. The limit is taken over an increasing sequence of S with S — M. Note that

e the cohomology of finite groups commutes with direct limits, and
e any cohomology theory commutes with products

so it is enough to look at the cohomology of the various parts. By the above Proposition and

Proposition 5.3, H H U, has trivial cohomology for S contains all ramified primes. Hence
v¢S wlv

lle

HY (G, Jps) = [ [ H7(GY, (L)) EBS H'(G", ("))
veS ve

by above Proposition, and

A7(G, Jy) = lim @ A (G, (L)) = @ H(G",(L")")

S weS vEM ¢
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Corollary 6.10.1.

(a) HY(G,J;) = 0.

(b) HAG,J1)~ @ (iZ/z>,where ny — [LV: K.

’UEMK nl]

Proof. These follow from local class field theory. [

6.8 Cohomology of Idele Class (I), The First Inequality

We recollect the exact sequence 0 — L* — J, — (', — 0. The action of G on C}, is that induced by its

action on Jy.
Proposition 6.11. Ok =~ C¢.
Proof. The above exact sequence gives rise to the cohomology sequence
0— H(G, L") - HG, J,) — H(G,CL) — H'(G, L*)

that is
0>K*—JS=Jx—>CY -0

Remark 6.12. Our object in the abelian case is to define
¢L/K . CK/NL/KCL - Gal(L/K) =G

By the above Proposition Cx /Ny xCp, = H°(G,C1), and on the other hand G' = H~2(G,Z). Comparison
with local class field theory suggests that the global theorem we want to prove about the cohomology of
(', is essentially the same as the local theorem about the cohomology of L*. This is in fact the case.

Abstracting the common features, one get the general notion of “class formation”.
We recollect that if G is cyclic and A a G-module, the Herbrand quotient is defined by

#H?(G, A)
WG A) = T

if both these cardinalities are finite.

Theorem 6.13. Let L/K be a cyclic extension of degree n. Then h(G,Cp) = n.
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Proof. Take S € My to be a finite containing all ramified primes of K in L, all archimedean primes of

K and all primes of K which lie below some primes that generates the ideal class group of L. Then

Jr, = L*Jp g, where
Joso=[[TTLs <]V

veS wlv v¢S wlv

Let T < My, collect those primes that lies above S. Then
CL = JL/LX = JLS/(LX N JL,S) = JL73/LT

where Ly = L™ n J g is the set of T-units of L. It follows that

h(JL.s)

ML) = h(Lr)

if the right hand side is defined.

First we determine h(.Jy g). Since S contains all ramified primes, H H U, has trivial cohomology, so
vgS wlv

hJus) =TT TZs | =T]n (]2

veS wlv vesS wlv

that

Now by Proposition 6.9 and Corollary 5.4.1

JLS an

veS

where n, = [L" : K,] is the local degree. This is the “local part” of the proof.
The “global part” consists in determining h(Lz); in order the prove that h(CL) = n, we have the show
that nh(Ly) = [] n,. We do this by constructing a real vector space, on which G acts, with two lattices

ves
such that one has Herbrand quotient nh(Ly) and the other has quotient [ [ n,.
veS

Let V = Homg(T,R) = R!, where ¢t = #T. Make G act on V by defining
(0f)(w) = flo™ w)
forall feV,oeG, weT (sothat (of)(ow) = f(w)). Put
—{(feV|(T) <)

Clearly, N spans V and is G-invariant. We have N = [ [[ Z., where Z,, = Z for all w, and the action

veS wlv
of G on N is to permute the Z, over a given v € S. Then by Shapiro’s lemma

~ Hﬁ[’" G,HZw ~ Hﬁ[’”(G“,Z

vES wlv vES
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so that

#H°(G",Z)
WN) =[] =T
W =11 gz ~ L

Now we define another lattice. Let A : Ly — V given by A(a) = f,, where f,(w) = log|al, for all
w € T. The unit theorem tells us that ker A is finite and A(Lz) is a lattice M° of V spanning the subspace
VO ={feV |3 f(w)=0}. Since ker \ is finite, h(Ly) = h(M°). Now let V = V°+Rg, where g : T — V
is defined by g(w) = 1 for all w € S. Our second lattice is M = M° + Zg. Then M spans V and both
MY Zg are invariant under G. Hence h(M) = h(M°)h(Z) = nh(M°) = nh(Lr).

Now M, N are lattices spanning the same vector space, so h(N) = h(M) by Proposition 4.12. This
finishes the proof. O

Corollary 6.13.1 (First inequality). If L/K is cyclic of degree n, then

Jx )
K _)>n
# (KXNL/KJL

Proof. From the Theorem and Proposition 6.11, we have

. I
- h < #HO — _n
n=h(G,CL) < #H(G,Cy) #(KXNL/KJ)

Corollary 6.13.2. If L/K is a finite abelian extension and D < Jk is a subgroup such that
(a) D < NyglJi,
(b) K*D is dense in Jk,

then L = K.

Proof. f L 2 L' 2 K, then D < NpxJ;, & NpygJr. Thus we may assume L/K is cyclic. From local
class field theory we know that the local norms Np,,k, Ly, are open in K which contains U, for almost
all v; so Np/kJr and K* Ny Jp are open, and hence closed in Ji. By assumption K* Ny i Jp is dense in

Ji, s0 Jg = K* Ny i Jp. By first inequality we obtain n = 1. O

Recall that in the Galois case an element © = (x,) € Ji is in Ny xJy if and only if it is a local norm

everywhere, i.e. x, € Npv/g, (L") for all v e Mk.

Corollary 6.13.3. If S < M is a finite set and L/K is a finite abelian extension, then Gal(L/K) is
generated by the elements Frobrx(v) for v ¢ S, i.e. the map Frobyx : I¥ — Gal(L/K) is surjective.

Proof. Replacing S by G.S, we may assume S is G-invariant. Then the subgroup G’ < Gal(L/K) generated
by the Frobpk(v), v ¢ S is normal. Let M be the fixed field of G'. For v ¢ S, the Froby k(v) viewed in
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Gal(M/K) =~ G/G" are all trivial, so for all v ¢ S, M,, = k, if w € M), is over v. Trivially every element
of K is a norm of this extension.

Take D = J7, the subgroup of ideles with , = 1 for v ¢ S. Then D < Nk Jur, as stated right before
the corollary. Now K*J¥ is dense in Jg; indeed, for x = (z,) € Jg, by weak approximation we can find
b e K* such that b is closed to x, for v e S. Pick y € J with by, = x, for v ¢ S. Then by is closed to x
in Ji. By Corollary 6.13.2 we have M = K and thus G’ = G. O

Corollary 6.13.4. If L is a nontrivial abelian extension of K, there are infinitely many primes v of K

that do not split completely, i.e. Froby x(v) # 1.

Proof. Suppose there are only finitely such primes and let S © Mg be a finite set containing those primes.
Then Gal(L/K) is generated by Frobpx(v), v ¢ S. But Froby/k(v) = 1 for all v ¢ S, so Gal(L/K) is
trivial, i.e. L = K. Il

6.9 Cohomology of Idele Class (II), The Second Inequality

Theorem 6.14. Let L/K be a Galois extension of degree n, with Galois group GG. Then
(1) #H(G,CL) and #H?(G, Cy) divide n.
(2) #HY(G,Cy) = 0.

Proof. The proof will be in several steps.

1° Suppose that the theorem has been proved when G is cyclic and n is prime. By Ugly Lemma, with
(p,q) = (1,0), (0,1) it follows that #H°(G,C}) divides n and H'(G,Cp) = 0. Using the triviality
of H', it follows again from Ugly Lemma, with (p, q) = (1,2), that #H2(G,Cy) | n.
To see how the condition (b) of Ugly Lemma is satisfied, if H QK < G with K/H cyclic of prime order,
then L /L¥ is cyclic with Galois group K /H. By hypothesis H'(H, M) = 1 and H(H, M) | [K : H],
ie. HY(H,M) |[K : H]* for (p,q) = (1,0), (0,1).

2° Now assume that G is cyclic of prime order; in this case we know that H° =~ H? and by the first
inequality that #H° = n#H". So it suffices to show that #H°(G,C1) = [Ck : N jxCy] divides n.

(#) We will make one assumption that in the function field case n is not equal to the characteristic of K

(so that the Kummer theory is valid).

3° We now show that we may further assume that K contains the n-th roots of unity.

91



40

In fact, if we adjoin a primitive n-th root of unity ¢ to K, we get an extension K’ = K({) whose

degree m divides (n — 1), and so is prime to n. So

I'=LK —" K = K()

L K

n

The degree of LK’ over K’ is n, and L and K’ are linearly disjoint over K. So there is a commutative

diagram with exact rows

Cr, » Ok » Cx/NCp, —— 0
Conl Conl Conl

Cp > O >» C//NCpp —— 0

S v

Cr, » Ok » Cx/NCp, —— 0

Here Con is the conorm map and N o Con is simply raising to the m-th power. The group Cx/NC},

is torsion in which each element has order n, for if a € Ck, then a” = Nk (a) € NCr. Thus
NK//KCOHK//K : CK/NCL - CK/NCL

is surjective since ged(n,m) = 1. Hence Nk i : Cx//NCp — Cg/NCY, is surjective; so if the index
[Ckr : NCp/| divides n, so does [Ck : NCp].

We are thus reduced to the case where n is a prime and K contains the n-th roots of unity. In fact
we call prove directly in this case the more general result.

Lemma Let K contain the n-th roots of unity and L/K be an abelian extension of prime exponent
n, with say Gal(L/K) =: G = (Z/nZ)". Then [Ck : Ny xCyr] divides [L : K| = n".

Although, as we have just seen, the case of arbitrary r does follow from the case r = 1, yet the
method to be used does no simplify at all if one puts » = 1, and some of the construction in the

proof are useful for large r.

By Kummer theory, we know that L = K(g/ai,..., {/a,) for some a4,...,a, € K. Take S to be a
finite set of (bad) primes, such that

(i) S contains all archimedean primes,
(ii) S contains all divisors of n,

(iii) Jx = K*Jks,
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(iv) S contains all factors for the numerators and denominators of any a;.

Condition (iv) just means that all the a; are S-units, that is, they belong to Kg := K n Jgg: they

are units for all v ¢ S.

Write M := K({/Kg) for the field obtained from K by adjoining n-th roots of all S-units. By the
unit theorem the group Kg has a finite basis, so this extension M /K is finite, and M is unramified

outside S by Kummer theory and condition (ii), (iv) (we know divisors of the discriminant of M/K).
Now M 2 L 2 K and

Kg = (MX)HQKSQ(Lx)nﬂng(KX)nﬁKS:Kg
By Kummer theory with [M : K] =n', [L: K| =n" and [M : K] = n®, we have
[Ks: (L*)" n Ks]=n", [(L*)"n Kgs: Ki] =n" and [Kg : K¢] = n° (*)

respectively. We claim that s = #S. By unit theorem, there are #S — 1 fundamental units, and the
roots of unity include the n-th roots of unity; so Kg = Z#5~1 x (cyclic group of order divisible by n)
and

[Ks: K2] =n* =n° where s =t +r
We recall we want to show that [Ck : Ny /xCy] divides n", i.e. divides [(L*)" n Kg : Kg]. So we

need to show that Ny (Y} is fairly large — we have to provide a lot of norms.

If wis a prime of L above a v ¢ S, then Froby(w) is well-defined for M /K is unramified out-
side S. By Corollary 6.13.3, the Froby(w) generates Gal(M/L). Choose wy,...,w; so that
Frobpr(w;) (i = 1,...,t) are a basis for Gal(M /L), and let vq,...,v; be primes of K below them.
We assert that Frobys/r,(w;) = Froby /i (v;) (the latter is well-defined for M /K is unramified at each
of them). The M /K decomposition group Gal(M"/K,) is a cyclic subgroup of (Z/nZ)?®, so is either
of prime order n or trivial. The w’s were chosen so that the Frobys.(w) were nontrivial, so that
Gal(M"/L,,) # 0; so that L/K decomposition group

Gal(L,/K,) =~ Gal(M"/K,)/ Gal(M*/Ly)

is trivial, i.e. v splits completely in L. Therefore Gal(M"/K,) = Gal(M"/L,,) and it is generated
by the Froby/r(v;) = Froby /i (w;). Notice also that we have L,, = K,, foralli=1,...,t.

Write T' = {vy, ..., v} € M. We claim that
(L*)"NnKg={aeKg|aec K] forallveT} (o)

In fact, since L,, = K, for all v € T" and w above v, it follows trivially that (L*)" n Kg is contained
in the right-hand side. Conversely, if a € Kg, then {/a € M. If further a € K" for all n € T, then
{/a € K, for all v e T, and so is left fixed by all Froby/x(v) = Froby /. (v); these generate Gal(M /L)

so {/a € L. This proves (o).
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Let

E = H(Kvx)” X HKUX X H U,

vES veT s¢SuT

where U, is the set of v-unit in K,; so £ < Jg sor. Also E < NpgJp, — for every element of (/)"
is a norm, since K/NL} =~ Gal(L,/K,), which is killed by n; we have K = L for all v € T', and

so all the elements of these K are norms, and the elements of U, are all norms for v unramified.

Now
[OK . NL/KCL] = [JK . KXNL/KJL]

divides [Ji : K*E] because E < Nk Jr. The set S was chosen (condition (ii)) so that
Jk = K*Jks = K*Jgsor
therefore [Cx : Nk CLr] divides [K* Jg gor : KX E]. A general formula for indices of group is
[CA:CB]J[CnA:CnB]=[A:B]
so to prove Lemma it will be enough to show that (with A = Jxsor, £ = B, C = K*)

[Jsor @ E] .
[KguTS: Knpl " ()

where KSUT =K*n JK,SUT'
First we calculate [Jg sor @ E.

JK,SUTZHK;( ><]i[f(;< X H Uv

veES veT vgSuUT

so [Jrsor @ E] = [I[KS : (K))"] From Proposition 5.6 we see that the “trivial action” Her-

vesS
brand quotient h(K)) = %, where | - |, denotes the normed absolute value. But also h(K)) =
n v

KX - (KX)n 2
LR ()] because the n-th roots of unity are in K. This means that [K : (K)})"] = |n—|, and

n Ty
[Jisor: E] =n* [ [Inl," =n* (©)

veS

by product formula and that |n|, = 1if v ¢ S.

We will also need in a moment the formula

[Uv : U:] =

e

which follows from the fact that h(U,) =

(for K* ~ U x Z).

|n|v
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By (V) we see to prove (&), it will be enough to show that
[Ksor: K* A E] =n*"" =n*t

As in (*), replacing S by S U T, we have [Kg_ 7 : K& r] = n°*". Also K* n E 2 K%, so it will be
enough to show that K* n £/ = K ;.

It remains to prove
K*nE<Kg r

and this will result from the following lemma.

Lemma 6.15. Let K contain the n-th roots of unity. Let S be a subset of My satisfying the
conditions (i)~(iv), and let 7" be a set of primes disjoint from S, and independent for Kg in the sense

that the map Kg — [] U,/U}" is surjective.
veT

Suppose that b € K* is an n-th power in S, arbitrary in 7', and a unit outside SUT. Then b e (K*)".

Proof. Consider the extension K’ = K ({/b); it will be enough to deduce that K’ = K. Put

D=1[kK;x[[ur= ]] U
veES veT vgSuUT

By argument similar to the ones used before (next to the proof of (¢)), D & Ng//kJg/. By Corollary

6.13.2 it is sufficient to show K*D = Jg. But by hypothesis, the map K¢ — [[(U,/U}) = Jxs/D
veT
is surjective. Hence Jx g = KgD and Jx = K*Jx s = K* D as required. O]

To deduce K* n E < K¢, from Lemma, we have to check that 7" is independent for S in the sense

of Lemma. Let H denote the kernel of the map Kg — [] U,/U!". To prove that he map is surjective
veT
it suffices tot show that [Kg : H] = [[[U, : U"]. The latter product is just n’ (right below (©)),
veT
because |n|, = 1 for v € T. On the other hand, by (¢) we have H = Kg n (L*)", and consequently

[Ks: H] = n' by (*).

The proof of the theorem is now complete.

O

Remark 6.16. Even the case of the Lemma 6.15 with 7' = ¢J is interesting: if S satisfies conditions (i),

(ii) and (iii), then an S-unit which is a local n-th power at all primes in S is an n-th power.

Corollary 6.16.1. If L/K is abelian with Galois group G, and there is an Artin map 1 : f[O(G, Cp) =
Ck/NCp — G, then ¢ must be an isomorphism.

Proof. From Corollary 6.13.3 we know 4 is surjective. Now #H %(G,CL) < #G so 1 must be an isomor-
phism. Il
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Corollary 6.16.2. Let n be a prime and let K be a field, not of characteristic n, containing the n-th roots
of unity. Let S be a finite set of primes of K satisfying the conditions (i), (i), (iii), and let M = K(3/Ks).
Then if the reciprocity law holds for M /K, we have

K*NyyJy = K*E, where E = | [(K;)" < | [ U,
vgS s¢S

Proof. Consider the case L = M of the proof of Theorem 6.14 (so that T'= ¢, t = 0 and s = r). Then
the F of that proof is as given above, and £ = Ny Jy. By (&%) with L = M, we have [Jg : K*E| =
n® = [M : K]. On the other hand, if the reciprocity law holds, we know that

[CK : NM/KCM] = [JK : KXNM/KJM] =n’
This shows the result. OJ

Corollary 6.16.3 (Albert-Brauer-Hasse-Noether). Let L/K be a finite (not necessarily abelian) Galois

extension. Then we have an injection

0— H*G,L*) — @ HG",(L")")

UEMK

In other words, a central simple algebra over K splits over K if and only if it splits locally everywhere.

Proof. Since H'(G,Cp) = 0, the exact sequence 0 — L* — J;, — C — 0 gives rise to a very short exact
sequence 0 — H?*(G, L*) — H*(G, J;). Now H*(G,J;) = P H*(GY,(L")*) by Proposition 6.10, so

’UEMK

0— H*G,L*) - P H*G", (L")

’UEMK

]

Corollary 6.16.4 (Hasse norm theorem). If a € K* and L/K is cyclic, then a € Ny /xL* if and only if
a € Npvk,(L)* for all ve M.

Proof. Since Gal(L/K) is cyclic, H® =~ H?, so the result follows from Corollary above. O

Specializing further, take G of order 2, so L = K (/).
NL/K(m + y\/g) = 1'2 — by2

so (if the characteristic if not 2) we deduce that a has the form x? —? if and only if it has this form locally
everywhere. It follows that a quadratic form Q(z,y, z) in three variables over K has a non-trivial zero
in K if and only if it has a non-trivial zero in every completion of K. Extending to n-variables, we may
obtain the Hasse-Minkowski theorem.

One may consider the general problem, “if a € K* and a € NL"* for all v, is a € NL*?” Unfortunately,

the answer is not always yes!
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We return to the sequence

0— H*G,L*) - P H*G", (L")

'l)EMK

We write H*(L/K) for H*(G, L*) and H*(L"/K,) for H*(G"/L"*). Thus it becomes

0— H*(L/K)— @ H*(G'/L")
UEMK
From local class field theory, H*(GV/L"*) is cyclic of order n, = [LY : K,|, with a canonical generator.
Thus
1
HYG,J,) = @ HYG'/L"™)= P (—Z/Z)
veM veM nv
and

0 BAL/K) — @ (iZ/Z) (o)

veEM i v

1
Ifae P (—Z/Z) ,or a € H*(L/K), we can find its local invariant inv,(«) (more precisely inv,(j,(a)),

veEM v
where j, is the projection on the v-component of «), which will determine it precisely.

We are interested in the functorial properties of the map inv,. Let L © K 2 K be finite Galois
extensions withe groups
G' = Gal(L'/K)

and
G=Gal(L/K)>~G'/H

where H = Gal(L'/L). If « € H*(G, J1.), then inf o € H*(G', Jy/), and
inv, (inf ) = inv, a

Indeed, choosing a prime w’ of L’ above a prime w of L above v, one reduces this to the corresponding
local statement for the tower L!, 2 L,, 2 K.

Thus nothing changes under inflation so we can pass in an invariant manner to the Brauer group of
K, and get the local invariants for a € Br(K) = H?(K, K), where K is the algebraic closure of K, and
more generally for

a e H*(Gal(K/K), Jg) = lim H*(Gal(L/K), Jp)

L

where Jz := lim Jy, by definition, the limits being taken over all finite Galois extensions L of K.
L
If now o € H*(G’, Jp/), then res$ o € H*(H, ;) and

inv,, (res @) = nyy, inv, o (M)

where w € M, lies above v € Mk and n,p, = [L, : K,]. This again immediately reduces to the local

case. Moreover, L/K need not be Galois here.

97



Finally we mention the result for corestriction. Again L/K need not be Galois. If o/ € H*(H, Jy/),
then cores% o € H*(G', J/) and
inv,(cores o) = Z inv,, o
wlv

where the sum is over all primes w € M, over v € M.

Corollary 6.16.5. Let a € Br(K) or H*>(Gal(K/K), Ji), where K is the separable algebraic closure of
K. Let L be finite Galois over K in K. Then resk (a) = 0 if and only if [L,, : K,]inv, a = 0 for every w

over v (this is only a finite condition, since almost all the inv, « are zero).

Proof. There is an exact sequence
0 —— H*(L/K) L5 Br(K) —= Br(L) ()
Hence TFAE:
- resB(a) = 0.
- a€ HXL/K) by (é&).
K

- invy(res) a) = 0 for all w | v, by ().

- [Ly : Ky]inv, a =0 for all w | v, by ().

6.10 Proof of the Reciprocity Law

Let L/K be a finite abelian extension with Galois group G. Let the local Artin maps be denoted by
0, : K — G"; we define the map

0:Jx — G=Gal(L/K)

xr——— [] 0Ou(x,)
UGMK

This is a proper definition, for 0,(z,) = Fr./k, (v)*@) (v(z,) being the normalized valuation of ) when v
is unramified, and v(z,) = 0 if x, € U, so that 6,(x,) = 0 for all but finitely many v. Also 6 is continuous.

Take S, © My as the set of archimedean primes plus the primes ramified in L/K; then x € Jf;" implies
0 = F((x)%). Thus 6 satisfies two of the conditions for an Artin map ((i) and (iii) in Corollary 6.3.1). It

remains to prove

0(a) = [ 0ula) =1

veEM

for all a € K*. We will simultaneously prove the following two theorems.
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Theorem 6.17. Every finite abelian extension L/K satisfies the reciprocity law, and the Artin map
0 : Jx — Gal(L/K) is given by 6 = [ 6,.

Theorem 6.18. If a € Br(K), then ), inv,(a) = 0. (It is a finite sum, for inv,(a) := inv,(j,a) = 0 for
ve M,
all but finitely many v.)

Logically, the proof is in four main steps.
1° Prove Theorem 6.17 for an arbitrary finite cyclotomic extension L/K.
2° Deduce Theorem 6.18 for « split by a cyclic cyclotomic extension.
3° Deduce Theorem 6.18 for arbitrary a € Br(K).
4° Deduce Theorem 6.17 for all abelian extensions.

We first clarify the relation between 6.17 and 6.18 and deduce 2° that 6.17 implies 6.18 for cyclic extensions
and 4° that 6.18 implies 6.17 for arbitrary abelian extensions. Then we will prove 1° directly, and finally
push through 3°; by showing that every element of Br(K) has a cyclotomic splitting field.

6.17 is about H° and 6.18 is about H2, so we need a lemma connecting them. Let L/K be a finite
abelian extension with Galois group G. Let x € Hom(G, Q/Z) = H'(G,Q/Z) be a character, where Q/Z is
a trivial G-module. If v € M, denote by x, the restriction to the decomposition group G* = Gal(L"/K,).

Let ¢ be the connecting homomorphism
§: HY(G,Q/Z) —— H?*(G,7Z)

If x = (x,) € Jk, let T be its image in Jx/Np/xJp, = H°(G, Jp,). Then the cup product Z.6, € H*(G, .J,).

Lemma 6.19. For each v we have
inv, (T U dy) = xu(0u(zy))

and so

Zinvv(f U d,) = x(0(z))

v

Proof. The projection j, : J, — (L") induces a map
juresé  H*(G, J,) —— H*(G,, Jp) —— H?*(G,, (LY)*)

and as restriction commutes with the cup product, so

inv, (T U 0y) HRLt inv, (j, resg (T U 6y))

= inv, (T, U dy,)

= Xv(ev (xv))
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Then

v

x(0(x)) = x (]_[ M%)) = > Xo(0u(,)) = Y v, (T U 6)
]

To check 4°, apply the lemma with x = a € K* < Jg. Denote by a is image of a in F[O(G, L*). Then
aud, € H*(G, L) € Br(K), as we need. The image of a u 8, is H2(G, J;,) is @ U dy, where @ is the image
of a in H°(G, Jy,), by functoriality of cup product, and by the lemma above, 3 inv, (@ U &,) = x(6(a)); so
if 6.18 is true for all o € Br(K), it follows that x(f(a)) = 0, and since it is true for all X, thus 6(a) = 0.
This is 6.17.

To check 2°, take L/K cyclic. Choose x : G — Q/Z as a generating character, i.e. an injection. Then
cupping with d, gives an isomorphism H® = H? (Corollary 4.10.2), so every element of H2(Gal(L/K), L*)

is of the form a U ¢,. If 6.17 is true, then by the above lemma

Einvv(a U dy) =x(0(a)) =0

v

for all a € K*, which is 6.18.
We start to prove 1° in number field case. Let L/K be a finite cyclotomic extension; then L < K(()

for some root of unity (. We make some reduction.

o It suffices to consider the case L = K((). Indeed, set M = K (). Since the diagram

(K7 2 Gal(MY/K,)

| |

(K*) 2 Gal(LY/K,)

commutes, if [[ 6, m(a) =1, then obviously [] 6,.(a) =1.

’l)EMK ’UEMK

o It suffices to consider the case K = Q. Put M = K({) and L = Q((); then M = LK, and the
diagram
Jx —— Gal(M/K)

e |

Jo —— Gal(L/Q)

commutes for (Ng/qx), = [ [ Nk, /0,%v, and the diagram
vlp

K, — Gal(M?/K,)

Ny, /@pl lz

Q, — Gal(K,/Q,)
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commutes whenever v | p. Thus i0’'(x) = O Nz for all x € Jg, and so, in particular, i#'a = §Na for
all a € K. If 6.17 is true for L/Q, then 6b = 1 for all b € Q, and hence §’a = 1 for all a € K, for i is

injective.

Hence it suffices to deal with the case when L/Q is cyclotomic. We give two proofs.
First proof

Second proof We proceed entirely locally without using any result of the early section, but using the
explicit local computation of the norm residue symbol in cyclotomic extension, due originally to Dwork.

Let ¢ be a root of unity. From local class field theory we know

o (0o(@) = (sien(@) for all 2 € R*.

. P ifCh d ime t
. CGp(pu):{ (C if ¢ has order prime to p if z=p'ueQy withueZ; and veZ.

¢*)~t | if ¢ has p-power order

We need to check that [[6,(a) =1 for all a € Q*, and to do this it is sufficient to prove
P
e []6,(q) =1 for all primes ¢ > 0;
P

e T16,(-1) = 1.

Furthermore, it is enough to consider the effect on ¢, and ¢-th power root of unity (¢ a prime). From above

we know
D =y Orl@) — qul ,p=q#!
¢ .y ¢ p=L#Fg
P 7 ¢ , P # q, p # ¢ (including the case p = o0)

Note that the Galois group is abelian.

Finally, we deal with 3° in number field case. It is enough to show that every element of Br(K) has a
cyclic cyclotomic splitting field; in other words, for every a € Br(K) there is a cyclic cyclotomic extension
L/K such that for every v € M the local degree [LY : K,] is a multiple of the denominator of inv,(«)

(Corollary 6.16.5). Now inv,(«) = 0 for all but a finite number of primes and so we need only prove the

Lemma 6.20. Given a number field K, a finite set of primes S © My and a positive integer m, there
exists a cyclic, cyclotomic extension L/K whose local degrees are divisible by m at the non-archimedean

primes v of S and divisible by 2 at real archimedean primes v of S (in other words, L is complex).
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Proof. Tt suffices to construct L in the case K = Q. Indeed, if we can find L/Q such that L is complex
and m[K : Q] divides all local degrees at non-archimedean p € ', where 5" € My consists of primes of
Q lying below those in S, then m[K : Q] divides [L? : Q,] = [L" : K,][K, : Q] for some S 3 v | p; this
implies m | [LY : K,] as wanted.

Now take 7 » 0 and ¢ an odd prime. The extension L(q) = Q( 4/1) has a Galois group Gal(L(q)/Q) =
7)(q—1)Z x Z/q"Z, so it has a subextension L'(q) which is a cyclic cyclotomic over Q of degree ¢"~*. Now

[L(g) : L'(q)] =q -1
and so on localizing at a fixed prime p # o of Q we have
[L(g)® : L'(q)®P] < q—1

Note that lim[L(q)® : Q,] = co; this follows for example from the fact that each finite extension of Q,
r—00
contains only a finite number of roots of unity. It follows that lim [L/(q)® : Q,] = co. Therefore, since
T—00

[L'(q)®) : Q,] is always a power of ¢, it is divisible by a sufficiently large power of ¢ if we take r large
enough.

Now let ¢ = 2 and put L(2) = Q( ¥/1); Gal(L(2)/Q) = {£1} x Z/2"2Z. Let ¢ be a primitive 2"-th root
of unity, set £ = ¢ — (' and L'(2) = Q(&). The automorphisms of Q(¢)/Q are of the form o, : ¢ — ¢*
for p odd, and o,(§) = ¢* — ¢(7*. Since ¢ = —1, one sees that o_py2r-1(§) = 0,(&); since either p or
—p+2"1is =1 (mod 4), this implies that the automorphism of Q(§)/Q are induced by those o, where
p =1 (mod 4) and that they form a cyclic group of order 2”72, Also, since 0_1& = —&, Q(€) is not real,
and so its local degree at an infinite real prime is 2.

Now [L(2) : L'(2)] = 2 and the same argument as above shows that for p # o we can make [L'(2)® :
Q,] divisible by as large a power of 2 as we like by taking r large enough.

If now the prime factors of m are q1, ..., g, and possibly 2, then for large enough 7, the compositum of
L'(q1),-..,L'(g,) and possibly L'(2) is a complex cyclic cyclotomic extension of @ whose local degree over
Q, is divisible by m for all pe S. 0

Turn to the function field cases. The proof is on the same line, but the special role of “cyclic cyclotomic

extensions” in the proof is taken over by “constant field extensions”.

3° The proof goes through if we replace “cyclic cyclotomic extensions” by “constant field extensions”;
we have only to take for the L in the lemma the constant field extension whose degree is m times

the least common multiple of the degrees of the primes in S.

1° We check the reciprocity law directly for constant field extensions. Denote by o the Frobenius
automorphism of k/k, where k is the constant field of K. Then for each prime v of K, the effect of
F(v) on k is just 098", where degv := [k(v) : k]. Hence the effect on k of §(a) is

Ho.v(a)degv _ O_%}v(a) degv 1
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for all a € K*. The last equality results from the fact > v(a)degv = 0, which is equivalent to saying

v
that the number of zeros of a rational function equals the number of poles.

Lemma 6.21. Let ¢ be a power of some prime and let n € N. Then F,[t] — F,»[t] is unramified.

Proof. Let f € F,n[t] be irreducible and let g € F,[t] be such that gF,[t] = fFq[t] n F,[t]; then ¢ is
irreducible. Say g = fh for some h € F,.[t]. Since g is irreducible over F,, g is separable, implying f and
h are coprime. This proves Fyu[t]/gFn[t] = Fon[t]/fFqn[t]. O

Lemma 6.22. Let k be a finite field and a € k(t). Then > v(a)degv = 0.

Proof. Suppose a = g/h # 0 with g, h € k[t] coprime and write the irreducible decomposition a = fi* --- fI»
of a. Each f; correspond to distinct place v;, and degv; = deg f. On the other hand, there is a place vy,
corresponding to ¢~! with degv = 1 and v(a) = degh — deg g. Hence

Zv(a) degv = (degh — degg) + Z r; deg f;

v =1
Note degg = >, r;deg fi and degh = > r;deg f; so that the above sum = 0. ]

2:r; >0 2:r; <0

6.11 Cohomology of Idele Class (I1I), The Fundamental Class

Let K € L < E be finite Galois extensions of K. Then we have a following exact commutative diagram

0 0 0

~ 2 ~

0 —— H*L/K,L*) —— H*L/K,J;) — H*L/K,C})

inf inf inf
~ ~ ~

0 —— H?(E/K,E*) — H*(E/K,Jp) —— H*(E/K,CE)

res res res

2 2 2

0 —— H2(E/L,EX) — H*(E/L, J5) — H2(E/L,Cy)
where we have written H*(L/K, L*) for H*(Gal(L/K), L*), etc. We elaborate on the morphisms involved.

o The vertical lines are inflation-restriction sequences (c.f. Proposition 6.10.(a) and Proposition 6.11)
These are exact for Hilbert 90, Corollary 6.10.1.(a) and Theorem 6.14.(2).

o The horizontal lines result from the exact sequences 0 — L* — J;, — C, — 0, etc, and are exact by
Theorem 6.14.(2).

o The diagram commutes by functoriality.
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We pass to limit and let £ — K, where K is the separable algebraic closure of K, to obtain the new

commutative diagram

~ ~ ~

0 — H*L/K,L*) —— H*(L/K,J;) —— H*(L/K,Cp)

~
2 2

0 —— H*K,K') —2— H*K, Jz) —2=— H*K,C%)

~
v v

0 —— H*L,K') —2— H*L,Jz) —=— H*(L,C%)

where we have written H*(K, K ) for H*(Gal(K/K), K "), H*(L,K ) for H*(Gal(K/K),K "), etc. Next
we are going to enlarge the above diagram.

For the Galois extension L/K we have the map

inv; = Y inv, : H*(L/K, J,) — Q/Z

v

Theorem 6.18 tells use that the sequence
0 —— H2(L/K,L*) - H*(L/K,J;) - Q/Z

is a complex. Since inv,(inf o) = inv,(«) for all a € H?(L/K,Jr), by the universal property of direct
limits, we have a map invy : H*(K, Ji) — Q/Z such that the diagram

HA(L/K, J) = Q/Z

lmf lid (%)

HA(K, Jg) —* Q/Z.
is commutative. Furthermore, the sequence
0 — HX(K,K') 2 HYK,Jg) =2 Q/Z
is a complex. In a similar manner we have a complex
0 — H2(L,K") —2 H2(L, Jg) =2 Q/Z

But now inv,,(res &) = n,, inv, (), where o € H*(K, J), w is a prime of L over v of K and ny,, = [Ly, :

K,]. Thus we have the commutative diagram

HA(K, Jg) =2 Q/Z,

| "

H(L, Jg) = Q/Z
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as the sum of the local degrees ) n,, =n = [L: K].
wlv
Now put H*(K, Cg)reg = Imey and H?*(L, C)req = Imes. It follows that we have the induced maps
52 . H2(K7 Of)reg - @/Z

53 : HZ(Lac’?)reg - Q/Z

induced by invy and invs respectively. Define
H*(L/K,Cp)reg :={a € H*(L/K,Cy) | infa € H*(K, Cg)req}
Since nfyinf a = 0, By induces a homomorphism
Bi: H*(L/K,CL)reg — %Z/Z

such that 8i(a) = fa(infa). We put all information above together to obtain a extended commutative

3-dimensional diagram

0 0 0
0 —— H*(L/K,L*) —— H*(L/K,J;) —— H*(L/K,CL)req 0
invq 51
1
~7)7
- /
0 —— H}(K,K') —2— H*(K,Jg) —2— H*(K,Cx)rg — 0 i ()
\ invag B2
Q/Z
0 —— HX(L,K) —2— H*L,Jz) —2— H*(L,Cx)reg — 0 n
invs B3
Q/Z

where ¢ is the inclusion map, n is the multiplication by n, the “bent” sequences are complex and the
horizontal and vertical sequences are exact.
We propose to show that
HQ(K, Cf)reg = Hz(K, Cf) = Q/Z
1 1
Now Im(invy) € —Z/Z is the subgroup —Z/7Z, where ng is the lowest common multiple of all the local
n n

0
degrees of L/K by Corollary 6.10.1.(b), and so since Im 51 2 Iminv; we have the inequalities
n>#H*(L/K,CL) = #H*(L/K,CL)weg = #1m 31 > # Iminv, = ng
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by the second inequality. It follows that if n = ng for this particular finite extension L/K, then we have

equality throughout so that g; is bijective and the sequence
0 —— HXL/K,L*) — H*(L/K,J;) - Q/Z (W)

is exact, for if 0 = invy(b) = P1£1(D), then 10 = 0 and b € Im ;.

Suppose L/K is a finite cyclic extension. Then n = ng for the Frobenius elements Fyx(v), whose
orders are equal to the local degrees n,, generates the cyclic group Gal(L/K) by Corollary 6.13.3. So if,
in particular, the extension L/K is cyclic cyclotomic, then the sequence (#) is exact. But by Lemma 6.20
says that the group H?(K, K ) and H%(K,.J%) are the unions (of the isomorphic images under inflation)
of the groups H*(L/K,L*) and H*(L/K, Jr), where L runs over all cyclic cyclotomic extensions of K.
Consequently, in (O)

0 —— HXK,K") -2 HY(K, Jg) =2, Q/Z

and
0 —— HYL,K*) -2 H(L, Jz) 22 Q/Z

are exact (direct limits are exact functors). Therefore ker(invy) = keres, so B2 (and similarly 83) must be
injective maps into Q/Z. They are surjective, since there exist finite extensions with arbitrary high local
degrees (Lemma 6.20) and consequently even invy and invg are surjective.
Now letting L be an arbitrary finite Galois extension, by an easy diagram chasing we conclude that ;
is a bijection:
H(L/K, Cy)g = - /7

But H%(L/K, C,).eq is a subgroup of H%(L/K, C1,) which has order dividing n, it is the whole of H*(L/K, Cy,).
Letting L — K we see that
H2(K7 Of)reg = HZ(Kﬂ Of)

Thus we can remove the subscript “reg” from our diagram (Q). Also we have proved the following

Proposition 6.23. H*(L/K,C},) is cyclic of order n, and it has a canonical generator uyx, called the
1

fundamental class of L/K, with invariant %, ie., invy(up k) = .

The two lower layers of diagram (©) and the vertical arrow between them make sense for an arbitrary
finite separable extension L/K of finite degree n, and in this more general case, that much of the diagram
is still commutative, because the argument showing the commutativity of (*) did not require L/K to be
Galois. Using this, and replacing L by K’, we see that if L © K’ © K with L/K Galois, then restricting
ur/k from L/K to L/K' gives the fundamental class uy k. It follows from Tate’s theorem the cup product

with the fundamental class uy/x gives isomorphisms

H'(Gal(L/K),Z) = H""*(Gal(L/K),C})
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for —co < r < o0, such that for L 2 K’ © K with L/K Galois the diagrams

H"(Gal(L/K),Z) —— H™*?(Gal(L/K),CL) H"(Gal(L/K),Z) —— H™2(Gal(L/K),C})
lI‘OS lrcs a‘nd TCOI‘CS TCOI‘OS
H(Gal(L/K"),Z) —— H"(Gal(L/K"),C}) H'(Gal(L/K"),Z) —— H"*2(Gal(L/K"),C})

are commutative.

Applications

Case r = —2. There is a canonical isomorphism
Gal(L/K)ab I CK/NL/KCL = JK/KXNL/KJL

which is inverse to the Artin map. Using this as a definition in the local case, Serre deduced the formula
inv(a.A,) = x(f(a)); we have proved the formula in the global case, so one can reverse the argument. (The
isomorphism G* ~ H~2(G,Z) is chosen in such a manner that for x € Hom(G,Q/Z) ~ H'(G,Q/Z) and
o € G, we have x.0 = x(0) upon identifying %Z/Z with H~1(G,Q/Z) via the connecting homomorphism.)

Reversing the horizontal arrows in the diagrams above, with r = —2, and letting L — K, we obtain

the commutative diagrams

Cx —Y s Gal(K™/K) Cx —2— Gal(K®/K)
Jom o I
Crr —2 Gal((K")*/K") Cror — Gal((K')*/K")

where the ¢’s are the Artin map and V is the transfer map. The right diagram expresses the so-called

translation theorem.

Application to the Cohomology of L*

The general idea is to determine the cohomology of L* from a knowledge of the cohomology of the ideles
and the idele classes.
Let L/K be a finite extension, with Galois group G. Then the exact sequence 0 — L* — J, — C, — 0

gives an exact sequence

s HYG, ) —2 BTG, CL) —— HY(G, LX) —L HY(G,Jp) —— -

in which ker f =~ coker g. We know

f{T—l(G’ JL) _ (_B f{r—l(Gv,va> _ @ IA{T_?’(GU,Z)

UEMK UEMK
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and
HYG,Cp) = H (G, 7)

so the kernel of
f . ﬁT(G,Lx) SN @ [:[T(Gv,LUX)

vGMK

is isomorphic ot the cokernel of

g: @ H3(G",Z) — H 3G, 7)

’UEMK

where ¢, is given by ¢; (Z zv> = Y coress” z,. Using the fundamental duality theorem in the cohomology

of finite groups, which states that the cup product pairing
H'(G,2) x H'(G,Z) — H(G,Z) = Z/nZ
is a perfect duality of finite groups, one sees that the cokernel of ¢, is the dual of the kernel of the map

h:H(GZ) — [ (G, Z
veMx

which is defined by (h(2)), = resg, (2) for all v e M.
Case r = 0.
Case r = 3. H3(G, L*) is cyclic of order n/ng, the global degree divided by the lower common multiple
of the local degrees, generated by the Teichmiiller 3-class duy x, where 6 : H*(G,Cr) — H*(G,L*).
This can be killed by inflation (replace L by a bigger L’ so that the ny for L’ is divisible by n); so
H}EK/K,K*)=0.
Group Extensions. Consider extensions K € L < M, where L/K is Galois with group G, and M/K is
Galois with group E and M is a class field over L with abelian Galois group A. So 1 - A - EF — G is
exact. By the Artin isomorphism A = C1,/Ny;Cy. We want to know about .

Theorem 6.24.

(i) Let o € E have image 7 € G. Let z € Cr. Then ¢ (cx) = oy)(z)o~!, where ¢ : C, — A is the Artin

map.

(ii) Let v € H*(G, A) be the class of the group extension E. Then v = ¢, (ur,/x), where ¢, : H*(G,Cp) —
H?*(G, A) is the map induced by ¢ : C;, — A and where upf is the fundamental class for L/K.

Proof. We only prove (i). Let S be a finite set of primes consisting of the archimedean primes of L and

those ramified in M. For z = (z,), € J, by weak approximation we can find a, € L* such that a, — z,!

as n — o at all v € S. Then (with an obvious notation)

Y(x) = lim ¥(a,x) = lim ¥((a,x)1 - lim ¥((a,x)2) = lim ¥((a,x)1)

n—o0 n—00 n—0o0 n—0
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for ¢)(K*) = 1. Hence it suffices to consider the case x € J7; in this case we have ¢ (z) = Froby((x)%),

where Frob,,;, is the Frobenius substitution and (z)® = }(ord, z)v. By linearity one reduces to show the

identity Frobyr(ov) = 0Fyy(v)o~t. For x € L, by definition Froby/r,(v)(z) = 2V (mod ) for some
B | v so that

No(v) Nv

Frobyp(ov)(ox) = (ox) = (o)’ = o(2N") = o Frobyz(v)(z)  (mod o%B)

Hence Frob/r,(ov) = o Froby(v)o ™. O

6.12 Proof of the Existence Theorem

If H is an open subgroup of C'x of finite index, we say temporarily that H is normic if and only if there
is an abelian extension L/K such that H = NpxCr. The existence theorem asserts that every open
subgroup H of finite index in Cx is normic. (We have already shown that if L/K is abelian, then Ny /xCy
is an open subgroup of C of finite index.)

First, two obvious remarks:

e If H 2 H and H is normic, then H; is normic. Say H = Ny C}, for some abelian L/K and consider

the composition

where 1) is the Artin map. The kernel of the whole map is ¥~ (¢(H,)) = H, + H = H,. Hence we

have a diagram with all vertical maps being invertible (with M = L¥U1))

Cx/H —2— Gal(L/K)

| |

Ox/H, —2— Gal(M/K)
But by functoriality we know ker ¢’ = Ny /xChy, so that H; is normic.

o If Hy and H, are normic, so is Hy n Hy. Say H; = Np/xCp and Hy = NygCy. Consider the
Artin map ¢ : Cx — Gal(LM/K) < Gal(L/K) x Gal(M/K); the kernel of ¢ is Hy n H, so that
Hy n Hy = NppyyxCra is normic.

Key Lemma Let n be a prime and K a field not of characteristic n containing the n-th roots of unity.

Then every open subgroup H of index n in Ckx is normic.
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Proof. Suppose H < C is open of index n. Let H' be the inverse image of H in Jg; then H' < Jy is

open, so there is a finite set S © My such that

H’Qn(l) XHUUI

vES vES

Furthermore, n = [Ck : H] so that H' 2 Jj:. Therefore

Ho[[E ) <]]ov 2 E

veS vgS

and from Corollary 6.16.2 (extend S large enough to match the condition) we obtain K* Ny /xJy = K*E
for some abelian M /K. Hence EK*/K* is a normic subgroup contained in H = H'/K* and from above

we know H is normic as well. ]

Lemma 6.25. If L/K is cyclic and H < Ck, and if NL/K(H) < C, is normic for L, then H is normic for
K.

Proof. Put H' = NL_/K(H) and let M /L be the class field of H'. We claim M /K is abelian, and Ny xCy <

H. so H is normic. For the latter, we have
NuykCu = NpygNayCy = NpyywH' < H

by transitivity of norm. It remains to show the first, which is the main difficulty.
M/K is Galois for H' is invariant under Gal(L/K). The Galois group E = Gal(M/K) is a group
extension

0 | s B s G s 1

Since E/A =~ G = Gal(L/K) is cyclic, it is enough to show that A = Gal(M /L) lies in the center of E.
We use Theorem 6.24.(i). Let ¢ : C, — A be the Artin map. To show A lies in the center, it is enough to
check that

U(x) = ov(@)o L (ox)

for all z € C, and 0 € E. Now ¢ : C, — A has kernel H', so we want to check that ox/x € H', which is
clear since Ny k(ox/x) =1€ H. O

Proceed to prove the Existence theorem. Use induction on the index of H in Ck. If [Ck : H| = 1,
everything is clear. Now let n be a prime dividing the index. Adjoin the n-th roots of unity to K to
get K', and replace H by H' = N, /K(H ). By the last lemma it suffices to consider H'. We have
[Ckr : H'] | [Ck : H], and by induction we may assume [C : H'] = [Ck : H].

Son | [Ck: : H']. Take H{ so that H{ > H and [Ck' : H'] = n. By Key Lemma H{ is normic; let L be

its class field and put H” = NL/K/(H’) Then
[CL H”] [CK/ZH,]Z[CKZH]
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N ’
for Cp/H" =5 Cy/H' is injective with image H|/H' properly contained in Cx/H’. Hence H” is normic

by induction hypothesis; L/K’ is cyclic (Gal(L/K') =~ Ck//H; has prime order), so we can apply the last
lemma again; so H' is normic.

L H” > CL > CL/H”
cyclic | Hj m] l
K’ H{ ° CK’ > O}(/H{ m) GaI(L/K’)
H!/H
K' = K(3/1) H' y Crer s Crr/H'
cyclic o l
K H > CK > CK/H
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Chapter 7

Fourier Analysis in Number Fields and
Hecke’s Zeta Functions

7.1 The Local Theory

In this section, let k£ denote the completion of an algebraic number field at a place p. Accordingly,
o if p is archimedean, then k is either real or complex;
« if p is non-archimedean, k is an finite extension of Q,, where p is the rational prime lying below p.
In the latter case, we denote by o the ring of integer in k, and Np = #o/p. We select the following norm:
 k real. Choose | -| to be the ordinary absolute value on R;
o k complex. Then |z| = 2Z for all z € C = k;
e k p-adic. Then |a| = (Np)~» (@,

Lemma 7.1. k is locally compact. More precisely, a subset A < k is relatively compact if and only if A

is bounded in absolute value.

Proof. 1t is clear when k is real or complex. When £ is p-adic, it is Theorem 2.3. [

7.1.1 Additive Characters and Measure

Denote by k™ the additive group of k, as a locally compact abelian group, and denote by i+ the group of
characters, i.e., continuous homomorphisms y : k* — S!. It can be shown that k* is, equipped with the

compact open topology, also a locally compact abelian group.

Lemma 7.2. A continuous homomorphism f : k¥ — C* has image in S?.
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0
Proof. Every p"(n € Z) is a compact subgroup of kT, so f(p™) < S'. Since k™ = |J p™, it follows
n=1

f(kT) < St
[

Lemma 7.3. Suppose x € i+ is a nontrivial character. Then the map
Bt —————— kY
x> [Xa 1y = x(2y)]

is an isomorphism of topological groups.

Proof.

1) We first show that if y € k is such that y(zy) = 1 for all x € k, then y = 0. Since x is nontrivial, we
can find z € k such that x(z) # 1. If y # 0, then 1 = x((zy~')y) = x(2) # 1, a contradiction; thus

y = 0. This shows z — x, is injective.

2) We claim the set H := {x, | z € k} is dense in k;/}f, or equivalently, = /H = 0. By Pontryagin duality,
it is equivalent to saying
0= <k+/ﬁ) ~H =gt

where H* := {y € k | x.(y) = 0 for all € k}. But as said in the first paragraph, H* = 0, so H = k™

as desired.
3) We show the map is a topological embedding.
o Continuity. Let N € Z and ¢ > 0. We must show the set
A=Ay, ={zek||x.0V) - 1] < ¢}

is a neighborhood of 0 in k™. Since y is a continuous group homomorphism, we can find M » 0
such that x(p™) = 1. Then it is clear that p* < A; this shows the continuity.

» Continuous inverse.

p discrete. Let n € Z. We must show B = B,, := {x, | © € p"} is a neighborhood of the trivial
character 1. Let & € pM\pM*! such that x(£) # 1. Then we claim {y, | [x.(p™ ™) — 1] <
Ix(€) — 1]} < B. Indeed, if 0 # z € k is such that |x,(pM ") — 1| < [x(§) — 1], then in
particular, ¢ ¢ xpMti=". Say x € p™\p™*t!; then € ¢ pM T ie. n+ 1 < m. Hence
repmcp’ orzeB.

p archimedean. For each r > 0, we show that B = B, := {x, | z € B,(0)} is a neighborhood of
the trivial character 1. Let £ # 0 such that x(&) # 1. Then we claim {x; | |x2(Bj¢-(0)) — 1| <

Ix(§) — 1]} < B. For if 0 # x € k is such that |x,(B¢»(0)) — 1| < [x(§) — 1], then in particular,

£ ¢ xBigr(0) = By, iee. Jzll€] < ], or |z| < r. (Here | - | denote the usual euclidean

, r
distance.)
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4) Thus, we see {x, | * € k™} is a locally compact subgroup of k+. To complete the proof we need to

show it is surjective. For this, we apply the following interesting lemma.

Lemma 7.4. Let G be a Hausdorff topological group and H < G be a locally compact subgroup.
Then H is closed in G.

Proof. Replacing G with the closure of H in GG, we may assume H is dense in G. Let x € H and
choose a neighborhood U of z in H with compact closure C. Write U = V n H for some open
V < G. Since C' is compact and G is Hausdorff, C' is closed in GG, and thus V\C' is open in G. But
for VA H =U < C, it forces (V\C) n H = ¢, and since H is dense in G, it must be the case
V < () in particular, V € H. This shows H is open in G, and since they are topological groups, H
is closed in G. ]

This means {y, | z € k*} is closed in J*, and since we already saw the former set is dense in the

latter in the second paragraph, it turns out that {x, | v € k*} = .
]

To fix the identification of k™ with its character group promised by the proceeding lemma, we must
construct a special non-trivial character. Let p be the rational place lying below p, and Q, the completion

of the rational field at p. Define a map
A:Q, — R/Z

as follows:
e p=,50 Qp=R. Let A\(z) = —z (mod 1).

e p<oo. Write z = > a;p™ and put A(z) = > a;p" (mod 1).

n=N 0>n>=N

Lemma 7.5. A : Q, — R/Z is a nontrivial character.

Proof. The case p = oo is clear. Suppose p < o0. Then A is clearly a continuous additive group homomor-

phism, and it is nontrivial for A(z) = 0 if and only if = € Z,.

]

Return to the local field £*. Define
A kT > R > R/Z

& ——— Tryp(x) —— AM(Trg/r(x))
Then we have an isomorphism
P — T
2riA(zy)]

r—— [y—e

Denote by 9 the (absolute) different of k, i.e., the inverse of the fractional ideal {z € k | Try/g(x0) < og}.
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2”/‘(“’9)] is trivial if and only if z € 071,

Lemma 7.6. Suppose p is non-archimedean. Then [y — e
Proof. For x € k, we have A(zo) = 0 < A(Tryqg,(z0)) = 0 < Tryq,(x0) = Z, < zed . O

Lemma 7.7. Let u be a Haar measure on k*. Then for each o € k* and measurable M, one has
u(aM) = |alu(M).

Proof. The case k being archimedean is clear by our choice of | - |. The case k being p-adic is Theorem
2.5. [

Let us now select a fixed Haar measure for our additive group k¥, and write dx instead of du(x) for

this measure.
o dx is the usual Lebesgue measure on R if k is real.
o dx is twice the usual Lebesgue measure on C if k is complex.

e dx is the Haar measure for which o has measure (N D)_% if k is p-adic. (For an integral ideal a < o,

Na := #(o0/a).)
Define the Fourier transform f of a function f € L'(k*) by
Fla) = [ sy
Theorem 7.8. With our choice of measure, the inversion formula
fla) = | Sy = f-a
holds for f € inv(k*). Here for a LCA group G
inv(G) = {f e L'(G) n C(G) | f e L'(G)}

Proof. Tt suffices to show the inversion formula holds for one non-trivial function, since from abstract

Fourier analysis we know it is true.

« kreal. Take f(x) = e ™. Using Cauchy integral formula, we compute

f(ZE) _ f e—7ry2627ri93ydy _ J e—ﬂ'(y—i.’E)Z—ﬂ'IQdy
R

R
2 * S\ 2 N 2 r 1\2
=e ™ | lim J e ™M= g 4+ Tim J eT™ dy + lim | e ™V gy
M —o0 0 ]\]\/9:%% M N—o0 0

= e‘”QJ e dy = e ™ = f(x)
R
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o k complex. Take f(z) = e ?7*l (vecall |z| = 2Z here). Writing z = o + i7, we have

~

f(z) = 2f f 2@ ) Amilon—y) g gy — o~V (VIR _ gm2mlal _ f(y
R JR

o k p-adic. Take f(x) = 1,(x), the characteristic function of 0. By Lemma 7.6, we have

f(z) = f 1,(y)e 2N gy f 2N gy = (o) 151 ()
k 0
and
To1(z) = f Ly (y)e TN dy = f e PN dy — (071, (x)
k -1

Write 971 = p™; then No = (Np)™ and u(p"™) = p(o)(Np)™", so

7.1.2 Multiplicative Characters and Measure
Let U = Uy :={z € k| |z| = 1} < k*; then we have an exact sequence

0 > U > kX > Rog —— 0

In all cases, U is compact, and in case k is p-adic, U is also open.
Definition.
1. A quasi-character is a continuous group homomorphism ¢ : £* — C*.
2. A quasi-character ¢ is unramified if x(U) = {1}.
Lemma 7.9. The unramified quasi-characters are precisely the maps of the form
o(z) = |z]® = eslosll (1 e k)
where s is a complex number. When p is archimedean, s is uniquely determined by ¢, while in case p is

211

log Np~

non-archimedean, s is determined mod

Proof. For any s, z — |z|® is obviously an unramified quasi-character. Conversely, suppose ¢ : k* — C* is

an unramified quasi-character. In all cases, the value of ¢(z) depends only on |z|.
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o kreal. Consider f :=c|g_, : Rog — C*. Then g := foexp: R — C* is a continuous function such
Y

that g(x +y) = g(x)g(y) and ¢g(0) = 1. Taking v € R such that A := f g(t)dt # 0. Then
0

T4y

g(t+:z:)dt=f o(b)dt

T

o

A4g(x)==‘f

0

0

is differentiable. Applying 2 to the equation g(z + y) = g(x)g(y), we see ¢'(z) = ¢'(0)g(x) so
Y1y

that g(x) = e*® with uniquely determined constant s = ¢/(0). Thus f(z) = z°, and hence ¢(z) = |z|*®.

o k complex. Similarly, consider f := c|g_, : Rog — C*. As in the case k real, we see f(z) = z* for

some unique s € C. Thus c(z) = f(|z|"/?) = |z]¥/? = 2*/2z%2.
e k p-adic. Fix a uniformizer w of k. Then
C(CL’) _ C(Iw—ordp(z)wordp(z)) _ c<w0rdp(a:)) _ C(w)ordp:c _ C(w)—long |z

Write ¢(w) = Re?™; then

—27i6

C(w)—long || _ R log |ac|€—27ri0 logny || _ ‘x|—long R|l‘|7log Np

. : : mo . ) 2mi
Since 6 is determined mod 1, s := —logy, R + ———— is determined mod .
log Np log Np

]

When p is archimedean, there is an canonical decomposition £* = U x R.q, while p is discrete, by
choosing a uniformizer w, we still have a non-canonical decomposition £* =~ U x Z. Thus for an element

x € kX, we can write x = zp with £ € U according to the aforementioned decomposition.

Theorem 7.10. The quasi-characters of £ are precisely the maps of the form
c(z) = @)z

where ¢ is any character of U. ¢ is uniquely determined by ¢, and s is determined as in the preceding

lemma.

Proof. A map of the described form is obviously a quasi-character. Conversely, suppose ¢ : k* — C* is
a quasi-character. Define ¢ := c|y; since U is compact, ¢ has image contained in S', and hence it is a
character on U. The map = — c¢(x)/é(Z) is then an unramified quasi-character, and therefore is of the

form |z|* according to the preceding lemma. ]
The problem of quasi-characters of k£* therefore boils down to that of the characters ¢ to U.

o kreal. Then U = {+1}, and the characters are ¢(z) = ", n = 0, 1.
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e k complex. Then U = S'. Since the continuous endomorphisms on R have the form z +— ax with

a € R, we see that the characters on S are ¢(z) = ", n € Z (by viewing S* as R/Z).

e k p-adic. The subgroup 1+ p”, v > 0 of U form a fundamental system of neighborhoods of 1 in U;
we must have then that ¢(1 + p”) = 1 for v » 0. Selecting v minimal (v = 0 if ¢ = 1), we call the
ideal f := p” the conductor of ¢. Then ¢ is a character of the finite group U/1 + §.

From the expression c¢(x) = ¢(Z)|x|® in the Theorem, we see |c(x)| = |z|”, where o := Re(s) is uniquely
determined by ¢(z), called the exponent of ¢. We shall denote it by Re(c). A quasi-character is a character
if and only if its exponent is 0.

We now choose a Haar measure d*x on k*.

o p archimedean. Choose d*z := |d_x"
x
N
o p discrete. Choose d”z := Np i : %

Lemma 7.11. In case p is discrete, vol(U,d*z) = (Nd)~ 2.

Proof. By definition,

y Nyp dx Nyp
d*zr = — = dx
U Np—1Jylz] Np—-1Jy

Since U = || a(l+ p), it follows

ae(o/p)*
Np—lf Np—1 _
de = (Np —1 dx = dx = No
JU ( F )£+p Np 0 Np ( )

so that vol(U,d*z) = (N?)~z. O

D=

7.1.3 The Local (-function; Functional Equation
Denote by 3 the class of all functions satisfying the following two conditions:
31) feinv(k?) (as in Theorem 7.8);
32) f(x)|z]” and f(z)|z|” are in L'(k*) for o > 0.
Definition. For f € 3 and a quasi-character ¢ of exponent > 0, define a (-function

((fie):= . f(@)e(x)d™x

Two quasi-characters on k* are called equivalent if their quotient is an unramified quasi-character. By
Lemma 7.9, an equivalence class consists of all quasi-characters of the form c¢(x) = ¢y(z)|x|®, where ¢o(z)
is a fixed representative of the class and s € C. By introducing this complex parameter s, we may view

each class as a Riemann surface.
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o p archimedean. Since s is uniquely determined by ¢, the Riemann surface is isomorphic to the

complex plane C.

o p discrete. Since s is determined mod , the Riemann surface is isomorphic to C quotient by

e

log Np
271

log Np’

Thus it is clear that what we mean when we talk of the holomorphicity of a function of quasi-characters
at a point or in a region, or of singularity. We may also consider the question of analytic continuation of

such a function, though this must of course be carried out on each surface (class) separately.

Lemma 7.12. For f € 3 and a quasi-character ¢ of exponent > 0, the integral
f(@)e(z)|z)*d”x
kX

defines a holomorphic function of s near s = 0. In other words, a (-function is holomorphic in the domain

of all quasi-characters of exponent greater than 0.

Proof. Write ¢(x) = ¢(z)|x|"; by assumption Re(t) > 0. By 32), we see the integral is absolutely convergent
for all s near 0 (precisely, those s such that Re(s + ¢) > 0). The same holds for the integral

f(z)e(z)|x]* log |z|d™x
k)(
for lir% z¢logx = 0 whenever € > 0. Thus we can differentiate under the integral sign (by DCT), proving
our assertion. O

It is our aim to show that the (-functions have a meromorphic continuation to the domain of all

quasi-characters by means of a simple functional equation.

Lemma 7.13. For the quasi-character ¢ with 0 < Re(c) < 1, we have

A

¢(f¢)¢(g,¢) = C(f. €)¢(g, )
for any f, g € 3, where ¢(x) := |z|c(z).

Proof. Note that é(z) = |z|c™'(x) has exponent > 0 under our condition. Write ((f,c)((g,¢) as a double

integral
e = || rwawetar iy

which is absolutely convergent. Under the translation (x,y) — (z,zy), it becomes

X

”k F@)g(ay)e(y™)|wyld*zd*y "= J (J f(fc)g(xy)lﬂdxw) ey "lyld*y
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By writing down the definition, the parenthetical term is

r@itenlelte = ([ ez fofela
kX x \Jk
Using Fubini’s again, we obtain

()3, 6) = f j f gl dudyd:

The RHS is symmetric in f, g, and this proves the lemma. ]

Theorem 7.14. A (-function has an analytic continuation to the domain of all quasi-characters given by
a functional equation of the type

C(f.) = p(e)S(f,¢)
The factor p(c), which is independent of the function f, is a meromorphic function of quasi-characters
defined in the domain 0 < Re(c) < 1 by the functional equation, and for all quasi-characters by analytic

continuation. The function p satisfies the following properties:

L p(e)p(é) = e(~1).

2. p(e) = c(—=1)p(c).

3. 1p(c)| = 1 if Re(c) %

~—

Proof. In the next subsection we will find for each equivalence class C' of quasi-character a function fo € 3
such that ¢(fe,¢) is not identically zero for 0 < Re(c¢) < 1 on C, and thus the function

p(C) i C(f07 C)
g(f (o}) 6)
is defined on the same domain. Moreover, our explicit formula for p will show p has a analytic continuation.

We now prove the described properties for p by the functional equation.

~

1. We have ¢(f,c) = p(c)¢(f,¢) = p(c)p(¢)¢(f, ¢). Now

.8 = | i = | paela)dts = d-1c(f.0)

and by writing ¢(z) = x(x)|z|* with x(z) := é(z),

~

&) = |ofe ™ (w) = elx(@)al = |alx(@)l = |elc @) = [olc(2) = &)
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we then have

((f.¢) = p@c(—1)C(f, ) = p(@)c(~1)¢(f, 0)

On the other hand, ((f,c) = p(c)((f,¢), and therefore p(¢)c(—1) = p(c).

3. Since Re(s) = %, it follows c(x)c(x) = |c(x)|* = |z| = c(x)

o>

(x), and thus ¢(z) = ¢(z). By 1. and 2.,

[* = ple)p(c) = 1.

|p(c)

7.1.4 Computation of p(c) by Special (-functions
Real

There are two equivalence classes of quasi-characters: one of the form x — |z|* (s € C), and the other
of the form z — sign(x)|z|* (s € C). We consider f(z) = e™™ and g(z) = ze ™. We already saw in
Theorem 7.8 that f = f; explicitly,

e—mc2 _ J 6—7ry2+2m':cydy
R
. d . .
By applying T to both sides, we obtain

2 . _ 2 ;
—2mxe™ = f 2mize” ™ T2y
R

or ig = g. This shows f, g € 3. Now we compute the (-functions.

d @ d s [ d . [ sd s
C(fy |- 1) = e‘”Q\x\s—x —o| et _ops i G et aosr (2
x x x

d @ d s +1
g.sign|- ") = | ze ™ sign(z)|x s _ 9| gem sl (2
||
% 0

CETTF) = Ch]- 79 = 51 (12 S)

— s 1— 1
C(Q,Sign| : |s) = ZC(97SIgn| : |1_8) = iﬂ-_u 2)+1F <%)

From these we can derive explicit expression for p :
()
PP = ———77
()
2
o 3-5—1F (S + 1)
2

plsign]| - [°) = — 2" sin ?r(s)

Z,Wf(l—;)ﬂr <(1 — ;) + 1)
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where the second equality follows from the Legendre’s duplication formula:
1 1
['(s)[(s + 5) = 2217%T(2s)
and the Euler’s reflection formula

™

L(s)I'(1—s) =

Sin s

Complex

0

The characters ¢, (re??) = ™, n € Z represent the different equivalence classes, and the n-th class consists

of the quasi-characters ¢,(z)|z|* (s € C). Consider the functions
=|n| ,—272Z if
z™e ,if n
fal(2) = { In| ,—2m22  ;
z™e ,if n
We contend that (which also shows f,, € 3)

fn(z) = i‘"'f,n(z) forall ne Z

Induction on n = 0, n = 0 being shown in Theorem 7.8. Suppose we have proved the contention for some

n = 0, i.e., we have established the formula

f gne—Qﬂsse—QﬂzA(sz) ds = inzne—%rzz
C

0
Applying the operator = to both sides, we obtain
z
f §n6—27rs§6—27ri/\(sz) (—27TZ(—§)) ds = inzn(_Qﬂ_z)e—szz
C
or
z

J §n+16—27rss€—27rz/\(sz) _ ,L'n+1 n+16—27rzz
C

which is the contention for n + 1. The induction step is carried out. For the case n < 0, put a roof on the

formula f_,(z) = il"lf,(2), which we have already proved, and remember that

fon(2) = fon(=2) = (=D f0(2)
Now we compute the (-function. Write z = re?; then

fn<z> _ T|n|€—in€€—27rr2
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2rdrf
r2

27
(fn,Cn’ J J rlnl g—inb —271-r cinf 252Td7‘d9 - foo(r2>s—1+|gle—27rr2d<r2) _ (27)1—s+@r (8 n @)

r? 0

. Thus

|z|* = r? and that d*z =

C(frnl - J2) = CEM fopycon] - [170) = iMl(2m)t 5 T <1_5+’_g|)

Thus

(2m)*T (1 —s+ 2')

Let ¢,(z) (n = 0) be any character of k£* with conductor exactly p” such that ¢,(7) = 1. (c.f. discussion

p-adic

below Theorem 7.10). These characters represent the different equivalence classes of quasi-characters.

Consider the functions
fulz) = 627”:A(w)1a—1p—n (x)

Then

~

fn(x) = (ND)

(NI

(Np)" Ly ypn ()
Indeed,
_ f fn(y)e—QﬂiA(:cy)dy _ f e—27riA((x—1)y)dy
k h] lp n

If v —1 € p”, then A((x—1)y) = 0 for y € 0~ 'p~", and thus the integrand is a trivial character. Otherwise,

the character is not trivial, and since 9~'p~" is a compact subgroup, the integral vanishes. Thus

A

falz) = Vol(b_lp_”,dy)aln(:L') = (Nb)

NI

(Np)”aln (7)

Now we compute the (-function. We first treat the unramified case: n = 0. The only character of type ¢y

is the identity character, and f; is the characteristic function of 9~!. Let 0 = p¢. Then

<<fo,|.|s>:f_ 2l d e 2 fm\pw o d*a
S s [ e (Np)® L (Noy:
_ m_Zdwp) J t = o Vo) - (S

-~ —_—

o[ F) = SN L |- [2) = (V0)} [ faf'~*a"a

L = 1
_ 5 —ml s) X
0% 2, (Vp) J R

m=0 0
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For the ramified case, n > 0.
. w .
C(fnacn| . |s) _ J 627rzA(a:)cn<m)|l,|sdxx _ 2 (Np)—msf 627”A(I)Cn($)dxl'
D—lp—n

We contend that

J D e (2)d*x = 0 form > —-d—n
pm\perl

e m = —d. Then p™\p™*t € 07!, s0 2™ =1 on p™\p™*!, and thus the integral is

f cp(x)d*x = f Cn(z™)d*x = f en(z)d =0
pm\pm+l oX

o><

e —d >m > —d—n. Break p™\p™*! into a disjoint union of the sets of the form a+071 = a(1+p~¢ ™),

on which A is a constant A(a), and thus
f eQm’A(x)cn(x)dxx _ e?m’A(a)cn(a> f Cn(ﬂf)dxl’
a+0~1 14p—d—m
The character ¢, is not trivial on the subgroup 1 + p~¢=™, for

—d

l+p'cl+p i™mMep'cp?i™™en>—d-mem>—-d—n

Hence the last integral vanishes, and the contention is proved.

We have now shown

C(foren] - °) = (Np)@m? f T (o)1

p*d*’n\pfd*n“’l

To write this in a better form, let {e} be a set of representatives of 0”/(1 + p") in 0%, so that 0o* =
| l.e(1+p™). Then

L_d_n\p_d_n+l 627riA(ac)cn(l,)d><x _ Z

£

J 62WiA(6xw—d7n)cn <5l‘w_d_n)dxx _ Z GQWiA(éw*d*n)cn (5) f dxx
14+p™

& 1+pm

The pay-off comes in computing

N

C(fsal - F) = (NO)E(NP)"C(Liapn, ] - %) = (NB)3(Np)"¢(Liapn, 1) = (Nb)2 (Np)” Lpn d*x

for on the set 1+ p™, ¢, !| - |*7* is trivial. Finally,

ol -1 = (a1 TP

ple] - ') = (NO)* 2 po )

124



where ¢ is a ramified character with conductor f such that ¢(m) = 1, where
po(c) = (Nf)~2 S ¢(e)erritem )
3

is a so-called root number and has absolute value 1, and where {¢} is a set of representatives of 0™ /(1 +§)

in 0. The fact that |po(c)| = 1 results from Theorem 7.14.(3); namely,
L= |p(e] - 2)] = |po(c)]

. 1 1
for ¢ is a character, ¢| - |2 has exponent 3

7.2 Abstract Restricted Direct Product

We consider the restricted product defined in 2.13. Let {p} be an index set. For each p let G, be an LCA
group and for all but finitely many p let H, < G, be a compact open subgroup. We can form the restricted

product G := H/ Gy of the G, with respect to H,.
p

e (5 is naturally a group whose multiplication is defined componentwise and is a topological group.

« For a finite subset S < {p} (when saying this, S is always required to contain those p such that H,
is not defined) we put

GS = HGp X HHP
pes pES

Then the Gg induce a neighborhood system of identity in G. The Gg and G are LCA groups.

« We naturally identify G|, with the subgroup of G. For a finite set S < {p}, define

G = n{l} X HHP

pesS pe¢S

Then G* is naturally isomorphic to the compact group l_[ H,, and we have the identification
pES

Gs=]]GyxG*

peS

Lemma 7.15. A subset C' < G is relatively compact if and only if it is contained in 1_[ By, where B, < G,
p

is compact for all p, and B, = H, for all but finitely many p.
Proof. Every compact subset of GG is contained in some Gg, for the Gg cover GG and a finite union of the
G is again of type Gg. Any compact subset of a GGg is contained in a set described in the statement, for

it is contained in the cartesian product of its projection onto the component G,.
O
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Let ¢ : G — C* be a quasi-character, i.e., a continuous group homomorphism into C*. Denote by ¢,

the restriction of ¢ to Gy; then ¢, is a quasi-character of Gj.

Lemma 7.16. ¢, is trivial on H, for all but finitely many p, and we have for a = (a,) € G
c(a) = Hcv(ap)
p

Proof. For C* has no small subgroup. ]

Lemma 7.17. For each p let ¢, be a given quasi-character of G, and ¢, is trivial on H, for all but finitely
many p. Then ¢ : G — C* defined by

c(a) = H cp(ap)
p

is a quasi-character.

Proof. ¢ is clearly multiplicative. To see continuity let S < {p} be a finite subset consisting of all p with
cp(Hy) # 1 and let s = #5. Given a neighborhood U of 1 in C* choose a neighborhood V' of 1 such that
Ve < U. Let N, be a neighborhood of 1 in G, such that ¢,(N,) < V for all p € S, and let N, = H, for
p ¢ S. Then

C(HNP> cVicU
p
[

Now consider the (unitary) characters. Note that c(a) = [ ¢,(a,) defines a character if and only if all

P
¢y are characters.

o For each p let é; denote the character group of G,.
« For those p where H, is defined, let Hpl < é\p be the subgroup of all ¢, € é\p which are trivial on H,.

That H, is compact implies fl\p x> @p/le is discrete, and thus le is open. Also, since H, is open, G,/H,
is discrete, and thus HpL ~ (,/H, is compact.

Theorem 7.18. The restricted product of the groups é\p with respect to the subgroups HpL is naturally

isomorphic to the character group G of G as topological groups.

Proof. The isomorphism is given by
15—
p

(¢p) —— c:= 1;[0,,



The preceding lemmas show that this is an abstract group isomorphism. It remains to show it is a

homeomorphism. Let K be a compact set in G and € > 0. We may assume K = H B, as described in

P
Lemma 7.15. Let S consist of all p with B, # H, and n = #S. Then

n ¢p(By) — 1

b

ce{yeG|x(K)—1 <e} = <e

For p e S let V, := {Xeé\p | [x(By) — 1| < p := (e + 1)w — 1}, and for p ¢ S let V, = H;. Now for
(cp) € HV;J, we have
p

<(I+p—-1=c¢

HCP(BP) -1
p

so that (¢,) — c is continuous. Conversely, let S < {p} be a finite set with #S = n and 1 > ¢ > 0. For
p e S let K, be a compact set in Gy, and put V, = {x € C/J; | [X(K,) — 1| < e}, and for p ¢ S put V, = H.

Put S = {p1,...,p,} and let K = ({1} x o x {1} U U (Kpi X H{l})) X HHP which is a compact
i=1 i pES
set in G. Then for ¢ € G with |¢(K) — 1| < &, we have the following:

e |cp(Hp) — 1] < e for p ¢ S. This implies ¢,(H,) = 1 because ¢,(H,) is a subgroup of S*.
o |ep(Kyp,) — 1] <eforl<i<n.

Hence (¢,) € 1_[ V4, showing ¢ — (¢,) is continuous. O
b

Finally we consider the measure on the restricted product G. For each p let dx, be a Haar measure on
G, such that vol(H,, dz,) = 1 for all but finitely many p. Define a measure dz = (X)dz, on G as in 2.13.
p
Then for S < {p} finite, the restriction of dz to G¥ is drg := (X) dz, @ dz°, where dz* is the measure on
pesS

the compact group G such that vol(G*, dz%) = HVOI(HP, dz,) = 1.
peS

Lemma 7.19. Let f: G — C be a function. Then

z)dr = lim z)dx
fo< o=l Lsf( )
if either

(i) f is measurable and f > 0, in which case +0o0 is allowed as value of the integral; or

(i) fe LY(Q).
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Proof. In either case,

J s = i L f(@)da

and the result follows from Lemma 7.15. ]

Lemma 7.20. For each p let f, € L'(G,) be continuous and f,(H,) = 1 for all but finitely many p. Define
f:G—Chby

= pr(xp)
p

Then f is continuous on G, and for any set S containing at least those p for which either f,(H,) # 1 or
vol(H,, dxy,) # 1, we have

f da:—l_[ fp xp)d,
pes

Proof. f is clearly continuous on each GGg, whence continuous on the entire G. For the second, note that
if x € Gg, then f(z H fo(xy). Hence

pesS
f(z)dz = r)drg = f pr Tp) (@ dx, ®dx5)
Gs Gs pes pes
- H fp p)da, - J dz®
pesS G?
= HJ fo(@p)dy
pesS

Theorem 7.21. Let f, and f be defined as above, and if furthermore

dz, = li )|dx, < o0
[] J, st =t T i

peS

then f e L'(G), and
f flx dx—H fp xp)d,

Let dc, be the measure on G dual to the measure dz, on G,. Note that if f, = 1p,, then the Fourier

transform

J?;J(Cp) = JG fo(zp)cp(xp)dy,
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is vol(Hy, dzy)1py:. A consequence of this fact and the inversion formula is that
vol(H,, dzy) vol(Hy, dc,) = 1

Therefore vol(H,, dc,) = 1 for all but finitely many p, and we may put dc = ® dcy.
p

Lemma 7.22. If f, € inv(G,) for all p and f, = 1p, for all but finitely many p, then the function

f(z) = H fo(xy) has the Fourier transform
P

and f € inv(G).

Proof. Apply the previous theorem to the function f(x)c(x) to see the first statement. Since f, € inv(G,),
fp e L*(G,) (by definition) for all p. For all but finitely many p we have ]?p = 1y as said above, so
fe LY(G), whence f € inv(G). O

Corollary 7.22.1. The measure dc = ®dcp is dual to dx = @ dx,,.
p p

Proof. Apply the preceding lemma to the group G with the measure de and the “product” functions. To

be precise, we have

@) =TT hw) = [T fo(=) = f(=2)

7.3 The Theory in the Large

7.3.1 Additive Theory

Let k denote an algebraic number field and p the generic prime divisor of k. The completion of k at p is
denoted by k,, and all the symbol 0, A, 9, |- |, ¢, etc. defined before for this local field k, will also receive
the subscript p, namely oy, Ay, 0y, | - |p, ¢p, etc.

Definition. The ring of adele A, of k is the restricted product of the additive groups k&, (over all prime
divisors p) with respect to the subgroups o,.

o The multiplication on A, is defined componentwise.
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e From Theorem 7.18, Lemma 7.3 and Lemma 7.6, we see the continuous dual f&; of Ay is naturally
isomorphic to the restrict product of the k, with respect to the 0, 1. Since 9, = o, for all but finitely

many p (9, is the closure of 9 < oy, in k), so Ay, = Ay, namely, Ay, is self-dual.

Explicitly, there is an isomorphism

Ak > Ak

= () —— [z = (z,) = | [exp(2mify(nyz;))]
p

Let us define the additive function A(x) := ZAp(mp) on Ay. Then
b

H exp(2mily (M) = exp (27”2 Ay (prp)> = M)
P

p

e On A, we have the measure dzr = @dxp described in the previous section, where dx, is the local

P
measure chosen to be self-dual (see the discussion before Theorem 7.8). Then by Corollary 7.22.1,

the measure dz is also self-dual.

Theorem 7.23. For f € L'(Ay) define the Fourier transform

fy = | fla)e*m0mdy
Ay

Then for f € inv(Ay) the inversion formula

holds.

Lemma 7.24. For a € A*, d(ax) = |a|dx, where |a| := 1_[ ap]p-
P

Proof. Let N = H N, be a compact neighborhood of 0 in V. Then
p

vol(aN, dz) = Hvol(apr,dxp) = |a| Hvol(Np,dxp) = |a| vol(NV, dx)
P P

Lemma 7.25. Let S, denote the set of all infinite places of k.
1. kn A;@SOO = 0.
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2. k+ A;@Sw = A,.

Proof. 1. is simply the statement that an element in £ is an algebraic integer if and only if it is an integer

at all finite primes. 2. is the Chinese Remainder theorem. Il

In the following we write A = A, and denote by A, the infinite part of A i.e., the cartesian product of
the archimedean completions of k. Suppose k has r; real places and 7, pairs of conjugate non-real places;
then A, = R™ x C' is naturally a real vector space of dimension n = 1y 4+ 2ry = [k : Q]. For x € A let x4

denote its projection onto A.

Lemma 7.26. If {w,...,w,} is an integral basis for o, then {w; o, ...,wn o} is an R-basis for A,,. The

parallelotope

Doc—{Zmyw,,’oo\O<x,,<1for1<1/<w}§Aoo
v=1

has volume 4 /| disc k|, where disc k is the absolute discriminant of k£ and we use the measure dz, := @ dx,.
PESw

Proof. This is the classical Minkowski theory. Note that for complex p the measure we choose is twice the

ordinary measure on the complex plane. Il

Definition. The set D := H 0y X Dy, is called the additive fundamental domain.
pfoo

Theorem 7.27.
1. D deserves its name, i.e., every element x € A is congruent mod k to one and only one element in D.
2. vol(D,dx) = 1.

Proof.

1. Let x € A. Use Chinese Remainder theorem to find a unique element modulo o that brings x into

Ag ., and find a unique element in o which takes z into D,,.

vol(D, dz) = vol(D, dws,,) = vol(Deg, dase) vol(A%* dz*) = /[ disc k| [ | (Nyd,) 72
Pé¢Swo
As ideals, disc k is the norm of the absolute different 0 of k£, and 9 is the product of the local differents

0y, we have

|disck| = [ [ N0,
pfoo

and thus vol(D, dx) = 1.
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Corollary 7.27.1. k < A is discrete and A/k is compact.

Proof. k is discrete since D has an interior, and A/k is compact since D is relatively compact. O
Lemma 7.28. A(§) =0 for all £ € k.

Proof.

A(€) = Y M) = Do Ap(Triy g, (€) = Do A | D2 Ty, (6) | = DS (T (€))

p p P plp

since the trace is the sum of the local traces. Since Try/g(§) € Q, it suffices to show Z Ap(z) =0 (mod 1)
p

for x € Q. For any finite prime ¢

Do) = D5 Ap(@) + Ag(@) F A(2) = D) (@) + (Ag(2) —2)

P#q,0 PF#q,0

is a g-adic integer. This shows Z Ap(2) =0 (mod 1). O

p

Theorem 7.29. We have k- =k, i.e., A(z€) = 0 for all £ € k if and only if z € k.

Proof. Since k*+ = .&/\k and A/k is compact, k* is discrete. By Lemma 7.28, k* contains k. We consider
the quotient k*/k. As a discrete subgroup of the compact group A/k, #k*/k < o (a discrete subgroup is
locally compact, so it is closed by Lemma 7.4). Since k' is also a vector space over k and k is not a finite

field, #k*/k cannot be finite unless #k*/k =1, i.e., kt = k. ]

7.3.2 Riemann-Roch Theorem

We use the notations in the previous subsection.
Definition. A function ¢ : Ay — C is called periodic if ¢(z + 7) = ¢(x) for all z € Ay and r € k.

Lemma 7.30. If ¢ : A, — C is continuous and periodic, then

L p(z)dr = J o(T)dT

Ap/k

where ¢(Z) : Ag/k — C is the map induced by ¢, and d7 is the Haar measure on Ag/k such that
vol(Ag/k,dT) = 1.

Proof. The map ¢ — J ¢(x)dx defines a Haar integral on A/k, and it has norm 1 since vol(D,dz) = 1
D
(c.f. Theorem 7.27.2). O
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By Theorem 7.29, m ~ k' = k. The Fourier transform of a continuous function on Ay /k induced
by ¢ : Ay — C is then represented by

20) = | plae e
D

where 7 € k.

Lemma 7.31. If p : Ay — C is continuous and periodic and Z |o(r)| < oo, then

rek
90($) _ Z {5(7“)62MA(W)
rek
Proof. The hypothesis Z |5(r)| < o0 means @ € L'(k) = Ll(m% so the inversion formula holds, whence

rek
the asserted identity in L' sense. Since the series on RHS defines a continuous function, the identity in

fact holds for every = € Ay. O
Lemma 7.32. Let f : Ay — C be continuous and integrable. Suppose > | f(z+ k)| is uniformly convergent
rek
for x € D. Then for the resulting continuous periodic function ¢(x) := >, f(z + r), we have ¢(y) = f(y).
rek

Proof.

Ply) = f p(z)e ™M) 4y
D

= J (Z flx+ r)e_%m(xy)) dx

rek
. ZJ f T —|-’I“ —27rzA(xy)d
rek
_ Z f( ) —2miA(( )y)dl’
rek r+D
_ Z f( ) —2miA( zy)dx
rek r+D
f(x)e—%riA(zy)dx
Ay
= f(y)

We explain some equalities. The third equality is due to the uniform convergence and that vol(D, dz) < oo.
Precisely, for each ¢ > 0 we can find a finite S < k such that |}, . f(z+7) = >, .o f(z +7)] < e for all

xr € D. Hence

f <fo+7" 2’”“@/)) d:U—EJ flx + r)e2miMa) gy
D

rek reS
f Zf x+r) Zf(:c—i—r) dx < vol(D,dz)e
rek resS
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The fifth equality follows from Lemma 7.28, and the sixth results from the fact Ay = | | r + D. ]

rek

Lemma 7.33 (Poisson summation formula). Let f: Ay — C be a continuous and integrable map. If

> |f(z + 7)| converges uniformly for z € D and
rek

> \f(r) | converges,

rek

then we have

WIGEDWIG)

rek rek

Proof. Consider the series ¢(x) := > f(z + r). By Lemma 7.32 we see () = f(:v), and by Lemma 7.31

rek
Zf(x + ’l“) _ QO(ZU) _ Z@(T, 2miA(zr) Zf 27riA(xr)
rek rek rek
Now the result following once we taking x = 0 in the above identity. [

Theorem 7.34 (Riemann-Roch). Let f: Ay — C be a continuous and integrable map. If

> | f(a(x 4+ r))| converges for all a € A} and x € A and converges uniformly for z € D, and
rek

> \f(ar)\ converges for all ideles a € A},

rek

then for all a € A} we have

me( ) =2 far)

rek
Proof. Let a € Aj. Define g : Ay — C by g(z) := f(ax). We have
1 ~
‘E]\(.’E) f(ay) —2mi\(zy) dy _ f f —27rzA(a:y/a)dy <_>
Ay Ja] Ja]

and from this equality we can easily see that g satisfies all assumptions in Poisson summation formula.

Therefore we obtain

IMZ (>:Zﬂ”22m0=2ﬂw)

rek rek rek rek

O

Remark 7.35. Suppose we do not know vol(D, dx). Then the Poisson summation formula would read

1 ~
mz;:f(r) :Zf(T)

rek

Tteration of this yields vol(D, dz)* = 1, whence vol(D, dx) = 1.
Remark 7.36. For the relation between Theorem 7.34 and the classical Riemann-Roch, see GTM186.
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7.3.3 Multiplicative Theory

Definition. The idele group A/ is topologized as the restricted product of the group &, with respect to

the unit groups o

o For each p we choose a local measure d*z, as in the discussion preceding Lemma 7.11, and patch

them together to obtain a Haar measure d*x on A} by the method of 2.13.

e The natural map
¢+ Ay ——— > {all fractional ideals of k}

T N H pordv Tp

p¢Soo

is a continuous homomorphism from A} onto the discrete group of fractional ideals with kernel A,:} S
o We embed £* into A} diagonally.

Theorem 7.37 (Product formula). For all r € k%, |r| := H Irl, = 1.
P

Proof. This is Corollary 2.16.3. Alternatively, we can argue as follows. Consider an additive fundamental
domain D. Since rk = k, rD is also an additive fundamental domain. Since vol(rD,dz) = |r|vol(D, dz)
by Lemma 7.24, it suffices to show vol(rD, dx) = vol(D, dz). We have

D=DnA,=Dn| |[(a+rD)=| |Dn(a+rD)

acgk aek

and

rD=rDnAy=rDn| |[(~a+D)=| |rDn(-a+D)

a€k aek

Since dx is a Haar measure, vol(D n (a + D), dz) = vol((—a + D) n rD,dz), and thus

vol(D, dzx) Z vol(D n (a+ rD),dx) Z vol((—a + D) nrD,dx) = vol(rD, dx)

ack ack

Definition. The kernel of the surjective continuous homomorphism

X \
Ak 7 R>0

[z = ] Jlaply
p

is denoted by (A;)!, and it consists of ideles of norm 1.
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« By the product formula, we have k* < (A;)".
Let po be an arbitrary archimedean prime of k, and let
T :={(ay) € A} | ap, >0 and a, = 1 if p # po}

An idele in T is uniquely determined by its norm, so it will cause no confusion if we denote an idele in
T simply by the real number which is its norm. Thus a positive real number ¢ also stands either for the
idele (t,1,1,...) or for the idele (v/¢,1,1,...) depending on whether p; is real or complex. For each idele
r € A, we can write it uniquely as z = |z|2’ with |z| € T and 2/ = z|z|™" € (A)}, so A =T x (A)"
On T we choose the Haar measure d*t = t~'dt; then there exists a unique Haar measure d'z on (A})!

such that the integration formula

= L ’ ( j( . f(tx)d1x> 2 J( . ( L - f(m% e

k

is valid for all f e L*(A)).
We wish to describe a fundamental domain for (A;)! mod k*. Let S/, be the set of all archimedean

primes except po. Consider the log map

(AN, = (A (A) g, — Rt

T > (log [2]p)pess,

where rq is the number of real primes and 75 the number of complex primes. This is a surjective continuous
homomorphism. The surjectivity is because we can adjust the po-component.

The subgroup k* n (A} ) is simply the unit group o* of the ring 0. The units ¢ € 0* for which
¢(¢) = 0 are the roots of unity in k£ and form a finite cyclic group. By Dirichlet unit theorem, 0 modulo
the group of roots of unity in k is a free abelian group of rank r := r| + ry — 1; say {€;}1<i< iS a basis.

Then {((¢;)}1<i<, forms a basis for R, and we may write for any = € (A})§_

with unique real numbers x;. Let P be the fundamental parallelotope in R” spanned by the ¢(¢;), 1 <i < r,
that is

P = {iné(si)ERr\0<$i<l, 1<i<r}
i=1
and let @) denote the unit cube in R", i.e., @ := {(l’p)pegéo eR"|0<z,<1lforallpe Séo}
Lemma 7.38. We have

2" (27)"2

——R
/| disc k|

vol(¢~Y(P),d'z) =
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where
R = £ det(log |ei]p)1<i<r pesy, > 0
is the regulator of k.

Proof. Since / is a continuous surjective homomorphism (with compact kernel), we have

vol((7H(P)) _ wol(P) _ 4o 1oy —
vol((=1(Q))  vol(Q) tdet{log |edy) = R

21 (27r)"2

V] disc k|

(71(Q) consists of x € (A)y, with 1 < |z|, < e for all p € S, (where e is the Euler number). Let Q*
be the set of all z € (A[)s, with 1 < |z|, <e for all p € S,,. Then

eloly
vol(Q*):f U dt) d'z J J A g J d'z = vol((-1(Q))
@) \Jizex 1 1@ \Jlely! t Q)

so we only need to show vol({71(Q)) =

2T1 2 72
because tx € Q* if and only if z € £71(Q) and 1 < |tz],, < e. Thus it suffices to show vol(Q*) = ﬁ
isc
Write Q* = H Qp x (A))%*, where Qi :={reky|1<|rl, <e} (peSy). By nature of the measure
PESw
d*z, it suffices to compute the volume of each component with respect to the local measure. For p real,
¢ dt
vol(Qp) = 2 =2
1 t
for p complex,
(VT 2drdd
e
0 Ji r
and by Lemma 7.11
1 1
vol(( vol(o (NpOp) 2 = —/——
pgo Pgo V| disck|

The last equality is explained in Theorem 7.27. 0

Let h = # Cl(k) be the class number of k, and choose (V... 2™ e (AJ)! such that the corresponding
ideals p(x™M), ..., o(z™) represent the different ideal classes. Let w be the number of roots of unity in .
Let

2
Ey = {x e ("H(P) | 0< Argb,, < W}
We define the multiplicative fundamental domain F for (A;)! mod k* to be
E = FEuxW U - U Egz™
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Theorem 7.39.

1. (AY)' = || rFE, so E deserves its name.

rekx
2r (22 hR
2. vol(E,d'z) = L
w4/ | disc k|

Proof.

1. Let x € (AY)!. There is a unique @ such that ¢(x/x®) represents a principal ideal; say p(z/z) =

@o (a is unique modulo units). Then p(a™'z/z¥) = o, so atz/z) € (Af)L, . Up to a unique

product of fundamental units ¢;, we may assume a~lz/z® e (~}(P). Multiplication by a root of

unity in k& we can further assume a'z/z%) € Ey, or z € arWE|,.

h
2. By E=||2WEyand (~4(P) = || (FE,, we have

i=1 Cen(k)

2 (27)hR

w4/ | disc k|

h
vol(E) = hvol(Ey) = — vol({~(P))
w
O
Corollary 7.39.1. k> is a discrete subgroup of (A;)! (hence of A}), and the quotient (A;)!/k* is compact.
Proof. 1t is clear that E has nonempty interior and is contained in some compact set. 0
Definition. A Hecke character is a quasi-character x : A /k* — C* of the idele class group of k.

o Since (A])'/k* is compact, the restriction of a Hecke character to (A;)! is a (unitary) character.

o A Hecke character that is trivial on (A;)! has the form z +— |z|* for some complex number s.
Indeed, if ¢ : A — C* is such a map, then ¢(z) = ¢(|z|(z/|z|)) = c(|z|) for each x € A} . Since every

continuous homomorphism from R.y to C* is of the form ¢ — t°, so ¢(|z|) = |z|* for some s € C.

+ To each Hecke character ¢ : A — C* there exists a unique real number ¢ such that [c(-)] = |- |°.
The number wt(c) := o is called the exponent / weight of c. A quasi-character is a character if

and only if its exponent is 0.

7.3.4 The (-function; Functional Equation

As in the local case, denote by 3 the class of all functions f : A, — C satisfying the following three

conditions.

31) feinv(Ay) (as in Theorem 7.8);
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32) The series Zf(a(:r; + 7)) and 2]?(04(:1: + 7)) are both uniformly convergent for (a,z) € K x D,
rek rek
where D is the additive fundamental domain of A;/k and K is some fixed compact subset of A} .

33) f(z)|z] and f(z)|z|” are in LY(A)) for o > 1.

Note that if f : Ay — C is continuous, its restriction to the idele group A} is still continuous, for the
topology we have adopted in A} is stronger than the subspace topology on A; induced from Ay.
In view of (31) and (32), the Riemann-Roch theorem is valid for functions in 3. The purpose of (33) is

the following.

Definition. For each f € 3 and Hecke character ¢ of k with exponent greater than 1, we define the

(-integral

C(f,c):= f(x)e(x)d™

A
Two Hecke-characters are called equivalent if they coincide on (A;*)'. Then an equivalence class consists
of all Hecke characters of the form c(z) = co(x)|z|*, where ¢q is a fixed representative from the class and

s is a complex number. As in the local case, the parametrization by s € C lets us think of a class as a

Riemann surface, and we can show by (33) that for each Hecke character ¢ of exponent > 1, the integral

f(@)e()|ad
AX
defines a holomorphic function of s near s = 0.

Theorem 7.40. A (-function ((f,c) has an analytic continuation to the domain of all Hecke characters

~

which is entire except at ¢ = 1 and ¢ = | - |, where it has simple poles with residue —xf(0) and xf(0),

respectively, where « is the volume of the multiplicative fundamental domain (c.f. Theorem 7.39).

The function ((f, c) satisfies the functional equation

where ¢(x) := |x|c"(z) is defined as in the local theory.

Proof. Let ¢ be a Hecke character of exponent > 1. We have
x ” L\ dEsay [ dt
C(fe) = f@)e(@)d z = fltz)elte)d’a | = = | G(fic)—

A 0 (AT

Here for almost all ¢ the integral

G(f.c) = J f(tx)e(tr)d'x

(A

is absolute convergent for ¢ of all exponents, because it is convergent for some ¢ and |c(tz)| = " is

constant for z € (A))". O

139



Lemma 7.41. For all Hecke characters ¢ we have
« ~ ~ ~ ~ ‘/I/‘ «
Glf.0)+ 10) | cltr)a s = cu(F.o)+ 7o) | 2(2)d
E g

where F is the multiplicative fundamental domain.

Proof. Since (A})' = || aF, we have

aekX

G(f,e) + f(O >f = Y| fltw)c(t)d 1w+f(0)Lc(tx)d1x

E ackX aF

ZJfatx (t)d x+f()J c(t)d"

By (32) for f, the sum Z f(atz) converges compactly in F, and a similar argument to Lemma 7.32 says

ackX
we can interchange the sum and the integral. Thus

-
G(f,c) = Z f(at;v)) c(tz)d'z + f(O)J c(tz)d'z
JE ackX> E
-
= Z f(at:v)) c(tz)d'x
JE \ ek
Lo [ ~lQ 1 1 zozl ~rar\ \ ~ [T\ 4
(Riemann-Roch) = ], ;f (tx)> 7 |c(ta:)d r = JE (;f( ; )> c <t) d'x
Reversing the steps completes the proof. O

Lemma 7.42.

fdMM%:{“ﬁ’ﬁd@=mf

Proof. This is clear since integration of ¢(x) over E is the same as integration over of ¢(z) the compact

group (A)/k*, and c(t) = [¢|* = t°. O

To prove the theorem, for ¢ of exponent > 1 write

- [Tar ot = [ e+ [Taraf

[ avof-] s

The latter term
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converges absolutely for all Hecke characters ¢, for we already know it converges for those of exponent > 1,

and the less the exponent is, the better it converges. For the former term, we use the lemmas.

[atrat = [ autat+ {f nf()()ls%—f:f@ﬂmf%}

The curly bracket term appears only when c is trivial on (A;)}, in which case we assume ¢(z) = |z|*. Since

we are assuming wt(c) > 1, that term makes sense, and equals

kF(0)  Kf(0)

s—1 S

Making the substitute ¢ — 1/t in the main part, we obtain

Llct(f dt JC d7 {Zf_(ol)_mf;o)}
ZLOOCt(f dt JCt {Sf_(l) KfS(O)}

:J F@)e(x)d s +f F@)e (@) |2 d*z + {’Zf_(ol) _ ’{fs(o)}
|z|>1 |z|>1

whence

The two integrals converge absolutely for all Hecke characters ¢ (of arbitrary exponent), so it gives an
analytic continuation of {(f,c), and from which we can directly read off the poles and residues. Observe

also that this expression remains unchanged if we replace (f,c) by (f, ¢), so the functional equation holds.

7.3.5 Comparison with the Classical Theory

In this subsection we shall exhibit for each equivalence class C' of Hecke characters an explicit function f € 3
such that the corresponding (-function is nontrivial on C. These special (-functions will turn out to be,
essentially, the classical (-functions and L-series. The analytic continuation and the functional equation
for our (-functions will yield the same for the classical functions.

Each class of Hecke characters can be represented by a unitary Hecke character. To describe this in
detail, we fix a finite set of primes S containing all archimedean primes, and discuss the characters which

are unramified outside S. A character of this type is nothing more nor less than a product

c) = | Jepl(ay)

p

of local characters ¢, satisfying the two conditions
(1) ¢, unramified outside S (i.e. cp]%x =1).
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(2) Hcp(a) =1 for all a e k*.
p

To construct such characters and express them in more concrete terms, we write for p € S:

~ [~ it
cp(zy) = Cp(xp)|33p|;p

Cp being a character of o, t, a real number (c.f. Theorem 7.10). For p ¢ S we throw all the local characters

together into a single character, say
*(z) = Hcp(xp)
pES

and interpret ¢* as coming from an ideal character. Namely: The map
os ps(a) = [ et
p

is a homomorphism of the idele group onto the multiplicative group of ideals prime to S. Its kernel is
(A*)g. Since ¢*(x) is identity on (A*)g, we have
c*(z) = x(ps(z))
for some character x of the group of ideals prime to S. Our character ¢(z) is now written in the form
~ o~ it
clw) = [ [&@) -] [lzsls” - x(s(@))
pesS pesS

To construct such characters we must select our ¢, ¢, and x such that c(z) = 1 for all x € k*. For this
purpose we first look at the S-units € of k, i.e., the elements of £* n (A*)g for which ¢g(¢) = 0. Assume
S contains m + 1 primes; let £y be a primitive root of unity in k and let {e1,...,e,,} be a basis for the free
abelian group of S-units modulo roots of unity. For ¢ to be trivial on the S-units it is then necessary and

sufficient that c(e,) = 1, 0 < v < m. The requirement c(gg) = 1 is simply a condition on the ¢,:
| [&(0) =1 (A)
P

We therefore first select a set of ¢, for p which satisfies (A). The requirements c¢(e,) = 1, 1 < v < m gives

the conditions on the ¢,:

[Tl =T15'E, 1<v<m

pesS pesS

which will be satisfied if and only if the numbers ¢, solve the real linear equations

th log |, |, = ilog (H Ep(g,,p)> , I<v<m (B)

pesS pesS
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for some value of the logarithms on the right hand side. We now select a set of values for those logarithms
and a set of numbers ¢, solving the resulting equation (B). It is well-known that the rank of the matrix

(log |ey]p) is m, so there always exist solutions ¢,. And since )] log|e,|, = 0 for all v, the most general
pesS

solution is then t, 4+ ¢ for any ¢. Having selected the ¢, and t,, the requirement c(a)) = 1 for all a € k*

means that xy must satisfy the condition

X(ps(a) = [ [ @)lal,™ (C)
pes

for all ideals of the form g (), the ideals obtained from principal ideals by cancelling the powers of primes
in S from their factorization. These ideals form a subgroup of finite index hg in the group of all ideals
prime to S. Since the multiplicative function of o on the right hand side of condition (C) has been fixed
up to be trivial on the S-units, it amounts to a character of this subgroup of ideals of the form @g(a).
We then must select y to be one of the finite number hg of extensions of this character to the group of all
ideals prime to S.

Having selected a character

c(z) = | Jelay) = [ [&@) - [ [lzols® - x(ws(@))
p

peS pesS

unramified outside S, we wish to find a simple function f € 3 whose (-function is nontrivial on the surface
on which ¢(z) lies. To this effect we choose for each p € S some function f, € 3, whose (local) (-function
is nontrivial on the surface on which ¢, lies (for instance select f, to be the function used to compute

pp(cp| - |*) previously). For p ¢ S, we choose f, = 1,,. We then put
f(z) = Hﬁu(%)
P

We will show in the course of our computations that the function f is in the class 3.
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Chapter 8

Exercise

8.1 The Power Residue Symbol

Let m be a fixed natural number and K a fixed global field containing the group u,, of m-th roots of
unity. Let S denote the set of primes of K consisting of the archimedean ones and those dividing m. For

ai,...,a, € K*, put
S(ay,...,a.) =S u{ve Mg]|la, # 1 for somei=1,...,7}

Definition. For a € K* and b € I°(%) the symbol <b> is defined by the equation
m/ \Frobp i (b) _ ﬁ m
(¥a) (5) va
where L = K( ¥/a).

Lemma 8.1. (%) € [, and is independent of the choice of §/a.

Proof. Since Frobyk(b) € Gal(L/K), it sends %/a to one of its conjugates. Every conjugate of %/a takes
the form ¢ ¥/a with ¢ € p,,; this proves the first assertion. For the second, if we take & §/a instead, where
€ € ftm, since p,, = K, £ is fixed by Frobyk(b); hence

(5 %)FrobL/K(b) 5( %)F‘robL/K(b) ( %)F‘robL/K(b)

§/a Efa Ya

Lemma 8.2.

1. For a,a’ € K* and b e I°(@%) one has (

v
|
WI@
N
o | ]
~_

aa’
b
2. For a € K* and b, b’ € [5(®) onehas( > <)< )



Proof.

1. Recall that if L € M < N are abelian extensions with v € M}, unramified in N, then Fy,(v)|ym =
Fyy(v). Hence to compute (%) , we can work in the field L' = K( ¥/a, ¥/d’) instead of K ( ¥/aa’).

By the same reason, we have

/

2. This is clear since F/k is a homomorphism.

Corollary 8.2.1. For a € K* and b = Y. n,v e I°®, one has
G- 11 E)
b v¢S(a) v
Lemma 8.3. If v ¢ S, then the map
i (K) —— pm(K(v))
( ——— ¢ mod p,
is an isomorphism of groups.

Proof. Suppose ¢ € u(K) is 1 modulo p,, write ( = 1 4+ wa for some a € o (0 denotes the ring of integers
in K). Then

= (m
1=("=14+ma)" =1+ ak "
¢ = ) ;<k)

mm=1) 7242 4 ... this gives ma € p,, and since p  m, it forces a € p,. Write a = 7a;

2
for some a; € 0 and consider ¢ = 1 + ma = 1 + m2a;. Following the same procedure we obtain a; € p2.

so that 0 = mma +

Continuing in this way we see a € [ p" = 0. Hence ¢ = 1, namely « is injective. Since the codomain is
n=1
of size at most m, it follows that « is a bijection. ]

Lemma 8.4. If v ¢ S(a), then m | (Nv — 1), where Nv = #k(v), and <E> is the unique m-th root of
v
unity such that

a Nv—1

— = “m d v

(U) a (mod p,)

Proof. Note that m | Nv—1 is equivalent to p,, € x(v); the latter follows from 8.3, and hence m | Nv — 1.

For the last assertion, by definition

a (al/m)FrobL/K(V) B (al/m)NV N1
(;) = Y =" g e (mod p,)
The uniqueness results from 8.3. [
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Lemma 8.5. For v ¢ S(a), TFAE:
a
) (2) =1.
o ()
(ii) The congruence ™ = a (mod p,) is solvable with z € o,.

(iii) The equation 2™ = a is solvable with z € K.

Proof. In the proof of 8.4 we see (ﬂ) = 1 if and only if <2> =1 (mod p,). Suppose (ii) holds; then 8.4
v

v
implies <g =a"w =2¥*1 =1 (mod p,), and hence (i). Suppose (i) holds. Since r(r)* is cyclic of
v

order Nv — 1, let v be a generator of x(v)*. Write a = 4™ for some n. Then

n(Nv— 1)

implies Nv — 1 | Hence m | n, and thus a = (y/™)™.

That (ii) = (iii) follows from Hensel’s lemma. Now suppose (iii). Taking absolute value, we see |z|" =

la|, < 1, so that z lies in the ring of integers of K,. Then x mod p, verifies (ii). O

Lemma 8.6. If b is an integral ideal prime to m, then

(-

Proof. When b = v is a prime, this follows from the uniqueness part of 8.4. For general b = >’ n,v, putting

for ¢ € ppm,

Nv =1+ mr, we have

Nb = H(l +mr,) =1+ mZnVr,, (mod m?)

Now by linearity

) - H (%) Y _ HCnVN:n_l _ CZner _ g%

0
Lemma 8.7. If a and b € I are integral, and if ¢’ = @ (mod )b, then
v) = (5)
b) \b
Proof. We may assume b = v is a prime. Since @’ = a (mod p,), a" = =a' = (mod p,), and the result
follows from the uniqueness part of 8.4. ]

Lemma 8.8. Let a € K*. If b, b’ € I°@ are such that b’b~! = (c) is the principal ideal of an element
c € K* such that ¢ € (K)™ for all v € S(a), then

(&)= (6)
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8.2 The Norm Residue Symbol

8.3 The Hilbert Class Field

Definition. Let L/K be a finite global field extension and v € M a place. v is said to split completely

if there are precisely [L : K| extensions of v to K.
(i) v real archimedean: this is equivalent to saying that L, = K, = R for each M, s w | v.

(ii) v non-real archimedean: v splits completely automatically.

(iii) v non-archimedean: then v is unramified and Gal(L,,/K,) = 1 for each My > w | v.
For convenience, we say an archimedean place is unramified if it split completely.

§

Let L/K be a global abelian extension, v € Mg, and i, : K — Jx the canonical extension.
Lemma 8.9. v splits completely in L if and only if ,(K)) € K*Np/kJp.

Proof. we have the local Artin map given by

i YK

Yy K —— Jx —— Gal(L/K)

From class field theory we know kerv, = NLY* = i '(K*NpkJy 0 i,(K))) and ¢, : KS/NL" =
Gal(L'/K,). Hence

v splits completely in L < v is unramified and Gal(L’/K,) =1
— KX = NL"™
= K =i, (K*NprJr 0iy(K)))
< i,(K)) < K*NykJr

Suppose i,(K) & K*Np/gJr. Then Lemma 8.10 says v is unramified, and the second = above can be

replaced by <. [

Lemma 8.10. v is unramified in L if and only if 4,(U,) & K* Ny i Jr. (Recall that U, = K. by definition

when v is archimedean.)

Proof. Let w € Mj, lying above v. If v is unramified, then Ny, /k U, = U, so i,(U,) & K*Np/kJr.
Conversely, suppose i,(U,) = K*NpxJr. Then i,(U,) & K*NpkJp 0 iy(K,) = i,(NL"™) so that
U, < NL"™.

o For a non-archimedean prime, note that for an element x € L"* to satisfy Nz € U,, x must have

absolute value 1, namely x € U,,,.

147



e Suppose v is archimedean. If v is non-real, then U, <€ NL"* means C* < R.j, which is absurd.

Hence v is real, and it must be the case L” = R, for otherwise R* < R..

It suffices to deal with the non-archimedean prime; in this case we obtain U, = NU,,. By Corollary 5.8.1
U,/(Uyn N, /i, L) = Uy/NU, is isomorphic to the inertia group of Gal(L,,/K,); thus U, = NU,, implies

w

€w/n = 1, 1.e. v is unramified. ]

Lemma 8.11. Let S denote the set of archimedean primes. The class field to the group K*Jg g is the

maximal abelian extension of K which is unramified at all primes (including archimedean primes).

Proof. By 8.10, it suffices to show that L/K is a unramified abelian extension, then K*Jx ¢ © K* Nk Jr.
But this is clear, since the i,(U,), v € Mg are precisely those “v-component” of Jk g; precisely, U, =

Ju(JK s) for each v. .

Definition. Keep the notation above. The class field to K*Jg g is called the Hilbert class field of K;
we will denote it by K’.

Lemma 8.12. The Frobenius homomorphism Frobg/k induces an isomorphism of the ideal class group
ClIK) = Ix/Pk of K onto the Galois group Gal(K'/K).

Proof. By global class field theory we have an isomorphism
Y Jg/K*Jgs — Gal(K'/K)
Notice that there is an surjective homomorphism
Jy ——— I

(ay)y — ;ordv(av)v

with kernel Jk g, and under this map K can be identified with the group of principal fractional ideals;
hence JK/KXJ[QS = ]K/PK = Cl(K)
Let us write the isomorphism more explicitly. For each ideal class C, choose a representative I and

write I as a sum of finite primes I = > a,v. Let m, be a uniformizer of K, for each v. Form an idele (7%)

whose infinite components are all 1. rlghen C' is mapped to the element
Y((w57),) = Frobgric((mg)) = | [ Frobue i (v)™

Hence our isomorphism takes the form

Cl(K) —— Gal(K'/K)

[Z avv] — H Frob g g (v)*

v v
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Corollary 8.12.1. Let H be a number field and H' be its Hilbert class field.
1. hg:=#ClUK)=[H': H]|.
2. A prime ideal in K splits completely in K’ if and only if it is a principal prime.

3. An arbitrary ideal I in K is principal if and only if Frobg k(1) = 1.

8.3.1 Hilbert class fields of imaginary quadratic fields
8.3.2 Big Hilbert class fields

Let J¢ denote the group of ideles which are positive at the real primes of K and are units at the non-
archimedean primes. The class field over K with norm group K*JJ is the maximal abelian extension
which is unramified at all non-archimedean primes, but with no condition at the archimedean primes; let

us denote it by Kj.

Definition. Let K be a number field. An element a € K is totally positive if for all real embedding
0: K —>Rof K, o(a) > 0.

Let P denote the group of principal ideals of the form (a), where a is a totally positive element of K.
Lemma 8.13. The Frobenius homomorphism Froby, /x gives an isomorphism I /Py =~ Gal(K;/K).
Proof. We have the isomorphism
VY Jg/K*J§ —— Gal(K;/K)
Let K denote the set of totally positive elements in K*. We claim the equality K} Jx g = K*Jd.
o Let ar e K*J¢ withae K*, x € J&. Then ar = a®(a™'z) € K Jks.

o Let arv e K Jgs with ae K, x € Jxg. Let M be the set of all real embedding. Let ¢ > 0 be such
that for all 0 € M and for all y € K*, if |y — z,|, < &, then o(y)o(z,) > 0. By weak approximation
there is an y € K* such that |y — x,|, < ¢ for all 0 € M. Then az = ay*(yz) € K*J¢.

Now under the usual isomorphism Jx/Jx s = Ik, PE is identified with the subgroup K3 Jk s/Jk s, so that

we have
JK/KXJ; = JK/K:J[QS — IK/P;(F

Corollary 8.13.1. Gal(K,/K') =~ Px/P; is an elementary abelian 2-group.

Proof. The isomorphism is clear from 8.12 and 8.13. For the last assertion, it is obviously that Pk /Py has

exponent 2. Il
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Lemma 8.14. Let r be the number of real primes in K and K§ = K* n J&. Then
[Pk : PE|[Ks: Ki]=2"

Proof. We have a commutative diagram with exact rows

0 —— K*nJi —— K > Pt > 0
0 — K*nJgg —— K~ > Pr > 0

where the horizontal maps are natural inclusions. Hence we have
[Py : PF|[Ks: K| =[K*: K]

It suffices to show [K* : K[| =2". Let M be the set of real embeddings of K. For each o € M, we must
find a € K* such that o(a) > 0 but 7(a) < 0 for any other 7 € M — {o}. But this follows from weak
approximation. L]
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