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Chapter 1

Local Fields

1.1 Fractional Ideals
Let R be an integral domain and K its field of fractions. For R-submodules I, J of K, we can define

I ` J, I X J, IJ

as usual, and all of the operations above are commutative and associative. Moreover, for R-submodules
I, I1, I2 of K,

IpI1 ` I2q “ II1 ` II2

For an R-submodule I of K, define

I´1 “ tx P K | xI Ď Ru “ pR : Iq

RpIq “ tx P K | xI Ď Iu “ pI : Iq

It is easy to see that

1. RpIq Ě R Ě II´1;

2. if I Ď R, then I´1 Ě R.

Definition. An R-submodules I of K is a fractional ideal of R if

• I ‰ 0;

• there exists a P Kˆ such that aI Ď R.

Note that a can always be chosen to lie in R; in particular, IXR ‰ H. If R “ II´1, we say I is invertible.

Lemma 1.1. If I, I1, I2 are fractional ideals, then so are I1 ` I2, I1 X I2, I1I2, I
´1, RpIq.
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Proof. It’s clear for the first three. For the last two, we prove a more general statement. If I1, I2 are
fractional, so is

J “ tx P K | xI2 Ď I1u “ pI1 : I2q

• J is nonzero: Let a, b P Rzt0u be such that aI2 Ď R, b P I1 X R. Then baI2 Ď bR Ď I1 so that
ab P Jzt0u and J is nonzero.

• J is fractional: Let c, d P Kˆ such that cI1 Ď R, d P I2. Then for x P J , cdx P cxI2 Ď cI1 Ď R, so
cdJ Ď R.

Lemma 1.2. Suppose R is Noetherian. A nonzero R-submodule I of K is fractional iff I is finitely
generated.

Proof. Suppose I is fractional. Then I – aI Ď R pa P Rq is finitely generated. Conversely, if I is finitely
generated, pick a P R to be the product of the denominators of a finite generating set of I; then aI Ď R.

Lemma 1.3. Let I be fractional.

1. If I is invertible, then I is finitely generated.

2. I is invertible if and only if I is a projective R-module

Proof. Assume II´1 “ R. Then 1 “
řn
i“1 aibi for some ai P I, bi P I´1, and for each a P I,

a “ a1 “

n
ÿ

i“1

aipabiq

Since bi P I´1, abi P R. Hence I “ pa1, . . . , anqR. Let
n
À

i“1

Rxi
π

Ñ I defined by πpxiq “ ai. Define

f : I
n
À

i“1

Rxi

a
n
ÿ

i“1

pabiqxi

Then

pπ ˝ fqpajq “ π

˜

n
ÿ

i“1

ajbixi

¸

“

n
ÿ

i“1

ajbiai “ aj

so that the exact sequence 0 Ñ kerπ Ñ Rn π
Ñ I Ñ 0 splits.
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Conversely, suppose I is projective. Let tasusPS be a generating set, and define
À

sPS

Rxs
π

Ñ I defined

by πpxsq “ as. Then we can lift idI to a map f : I Ñ R‘S. Write f “ pfsqsPS. Then the fs satisfy the
property: for all x P I, fspxq “ 0 for all but finitely many s P S, and for any a P I,

a “
ÿ

sPS

fspaqas

Now let b P Izt0u and let fs1 , . . . , fsn , si P S be all the maps that fspbq ‰ 0. Let r P I´1 X Rzt0u. Then
for each a P I, s P S,

brfspaq “ fspbraq “ fspbqra

so that fspaq “ b´1fspbqa. This show fs1 , . . . , fsi are the only nontrivial maps in tfsusPS, and b´1fspbq P I´1

for each s P S.
Now, for a P Izt0u, we have

a “

n
ÿ

i“1

fsipaqasi “

n
ÿ

i“1

b´1fsipbqaasi “ a ¨

n
ÿ

i“1

b´1fsipbqasi

so that 1 “
n
ř

i“1

b´1fsipbqasi P I´1I. Hence I´1I “ R.

1.2 Discrete Valuation Rings
Let K be a field.

Definition. A map ν : K Ñ Z Y t8u is a discrete valuation of K if

1. ν : Kˆ Ñ Z is a surjective homomorphism;

2. νp0q “ 8;

3. νpx ` yq ě mintνpxq, νpyqu

- νp´1q ` νp´1q “ νp1q “ 0, so νp´1q “ 0. Thus νp´yq “ νp´1q ` νpyq “ νpyq.

- Rˆ
ν “ tx P K | νpxq “ 0u.

- If νpxq ‰ νpyq, then νpx ` yq “ mintνpxq, νpyqu.

Proof. Suppose νpxq ă νpyq. Then

νpx ` yq ě νpxq “ νpx ` y ´ yq ě mintνpx ` yq, νpyqu “ νpx ` yq

7



- The set Rν “ tx P K | νpxq ě 0u is an integral domain with quotient field K. This is called the
valuation ring of v.

Theorem 1.4. A discrete valuation ν of a field K can uniquely be extended to a discrete valuation on the
completion K of K with respect to the valuation topology. Additionally, νpKq “ νpKq.

Proof. Fix 0 ă ρ ă 1 and define |x|ν “ ρνpxq for each x P K. Then | ¨ |ν is a metric on K. Let K be
the completion of K with respect to | ¨ |ν ; the addition, multiplication and inverse are continuous on K so
they’re well-defined on K, making K a complete field. The uniqueness is clear for K is dense in K.

• | ¨ |ν is non-Archimedean. Let x, y P K and let xn Ñ x, ym Ñ y in K. Then |xn ` ym|ν ď

maxt|xn|ν , |ym|νu. Taking limit, we see |x ` y|ν ď maxt|x|ν , |y|νu.

• The image group is the same. Let x P K and let a P K be such that |x ´ a|ν ă |x|ν . Then
|a|ν “ maxt|a ´ x|ν , |x|νu “ |x|ν .

Define ν : K Ñ Z Y t8u by νpxq “ logρ |x|ν . Then ν is a discrete valuation on K extending ν.

Choose an element π P K with νpπq “ 1; such an element is called a uniformizer. Then every a P Kˆ

has a unique representation
a “ πνpaqu, u P Rˆ

ν

This gives a (non-canonical) isomorphism Kˆ – Z ˆ Rˆ
ν . We turn to the fractional ideals of Rν .

Proposition 1.5. Rν is a local PID with maximal ideal pν “ tx P K | νpxq ą 0u.

Proof. Let I be a nonzero ideal of Rν . Let x P Izt0u be such that νpxq “ mintνpyq | y P Izt0uu.

Claim. I is generated by x, and I “ ty P I | νpyq ě νpxqu.

Indeed, for y P Izt0u, we have νpyx´1q “ νpyq ´ νpxq ě 0, so yx´1 P Rν . This shows I Ď xRν Ď I, and
hence I “ xRν .

For each n P N Y t0u, define In :“ tx P Rν | νpxq ě nu. Then we have a descending chain of ideals

Rν “ I0 Ľ I1 Ľ I2 Ľ ¨ ¨ ¨

consisting of all nonzero ideals of Rν . Together with the above results, Rν is PID with the unique maximal
ideals I1 “ pν .

Corollary 1.5.1. Every fractional ideal I of Rν takes the form p
νpIq
ν , where νpIq “ mintνpxq | x P Iu.

Definition. A discrete valuation ring, or DVR for short, R is a local principal ideal domain but not
a field.

Proposition 1.6. Let K be a field with discrete valuation ν, and pR, pq be its valuation ring. Then the
valuation ring of the completion K of K at ν is pR, pq, where ¨ denotes the closure of ¨ in K. Moreover,
p “ pR.
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Proof. Let x P K with νpxq ě 0. Find a1 P K such that νpx ´ a1q ą νpxq. Then νpa1q “ mintνpx ´

a1q, νpxqu “ νpxq, so a1 P R. Inductively we find an P K such that

νpx ´ pa1 ` ¨ ¨ ¨ ` an´1 ` anqq ą νpx ´ pa1 ` ¨ ¨ ¨ ` an´1qq

with a1, . . . , an P R. Then a1 ` ¨ ¨ ¨ ` an Ñ x as n Ñ 8, so that x P R. Conversely, if x P R, then we
can find a P R such that νpx ´ aq ą νpxq, and hence 0 ď νpaq “ νpxq. In the same way we can show the
maximal ideal of R is p.

Finally, let π be a uniformizer of R. Then π is also a uniformizer of R, so

pR “ πR “ p

Characterizations of DVR

Theorem 1.7. Every valuation ring Rν of a discrete valuation ν on K is a DVR.
Conversely, every DVR R is the valuation ring Rν for a unique discrete valuation of its field of fractional

K.

Proof. It remains to show the converse. Let p “ πR be the unique maximal ideal of R. R is a UFD, so
every nonzero element x P R has a unique representation

x “ πnu

for u a unit and n ě 0. For ab´1 P K, a, b P Rzt0u, write a “ πnu, b “ πmv. Thus ab´1 “ πn´mpuv´1q,
so allowing n P Z we see every x P Kˆ has the form as above. Define ν : K Ñ Z Y t8u by setting
νpxq “ n, νp0q “ 8. Then ν is a discrete valuation on K, and R “ Rν by definition.

If µ is another discrete valuation on K such that Rµ “ R, then pµ is the unique maximal ideal of
Rµ “ R, forcing that pµ “ pν ; in particular, µpπq “ 1. Hence µ “ ν.

Theorem 1.8. An integral domain R is a DVR iff it’s Noetherian, integrally closed and local, but not a
field.

Proof. A PID is necessarily Noetherian, and a UFD is integrally closed. This shows the necessity.
For sufficiency, let I be a fractional ideal. Then RpIq “ pI : Iq Ď K in a ring, and hence for all

x P RpIq Ď K, Rrxs is an R-submodule of RpIq. By lemmas in 1.1, RpIq is finitely generated, hence so is
Rrxs. This proves x is integral over R, i.e., x P R, and thus RpIq “ R.

Let p be the maximal ideal of R. We claim that p´1 ‰ R. Consider the collection

S :“ t0 ‰ I �R | I´1 ‰ Ru

this is nonempty, for aR P S for a ‰ 0 P p. Since R is Noetherian, let J P S be a maximal element. We
show J is a prime, and hence J “ p.
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Let x, y P R be such that xy P J, x R J . For z P J´1zR, we have zypxR ` Jq Ď R, and hence
zy P pxR ` Jq´1 “ R by maximality of J . Then zpyR ` Jq Ď R, so z P pyR ` Jq´1, showing that
pyR ` Jq´1 ‰ R. By maximality, yR ` J “ J ; in particular, y P J . This proves J “ p.

By lemmas in 1.1,
R Ě pp´1 Ě pR “ p

But pp´1 “ p would imply p´1 Ď Rppq “ R (in the second paragraph), a contradiction. Hence R “ pp´1.

Clearly, p´1 Ď R

ˆ

Ş

ně1

pn
˙

. If
Ş

ně1

pn ‰ 0, then
Ş

ně1

pn “ R and p´1 Ď R Ĺ p´1, a contradiction. Hence

č

ně1

pn “ 0 (1.1)

Choose a P pzp2. Then ap´1 Ď R. Since R “ pp´1, ap´1 Ę p. Hence ap´1 is an ideal of R contained in
any maximal ideal, so ap´1 “ R, and thus

p “ aR

is principal. By (1.1) every nonzero element of R has a unique representation anu, n ě 0, u P Rˆ: every
x P R lies in pnzpn`1 for some unique n ě 0. Hence R is a DVR.

Some associated groups

Let K be a field with a discrete valuation ν. Let pR, pq be its valuation ring. The quotient κ “ R{p is
called the residue class field.

The additive group of K is the union of open and closed subgroups pn pn P Zq whose intersection is
zero.

Lemma 1.9. For n P Z, there is an isomorphism

κ – pn{pn`1

of κ-modules.

Proof. Write p “ πR. Then the isomorphism is induced by multiplication by πn. Pictorially,

R pn pn{pn`1

κ “ R{pn

πn

We turn to the multiplicative group Kˆ of K. Note that the valuation induces an exact sequence

0 U Kˆ Z 0ν

10



where U “ Rˆ is the group of units of R. For each n ě 1, define

Un “ 1 ` pn

this is an open subgroup of U , with
Ş

ně1

Un “ t1u (for x P Un, if y P pn, then x ` y P Un). The subgroup

topology of U induced by the Un pn ě 1q coincides with the subspace topology of U Ď K.

Proposition 1.10.

1. The residue class map R Ñ κ gives rise to an isomorphisms

U{U1 – κˆ

as groups.

2. For each n ě 1, the map u ÞÑ u ´ 1 gives rise to an isomorphism

Un{Un`1 – pn{pn`1

Thus Un{Un`1 – κ.

Proof.

1. U “ R ´ p, so the image of U equals κˆ. Let x “ 1 ` πu P U1. Then x mod p “ 1 in κ, and thus
U1 “ kerpU Ñ κˆq.

2. For u, v P Un,

puv ´ 1q ´ pu ´ 1q ´ pv ´ 1q “ uv ´ u ´ v ` 1 “ pu ´ 1qpv ´ 1q P p2n

Proposition 1.11. Let p be the characteristic of κ.

1. If p ą 0 is a prime, then for n ě 1

Up
n Ď Un`1

2. If K is complete and if m P N not divisible by p, then for each n ě 1, the map u ÞÑ um is an
automorphism of Un.

Proof.

1. From the previous proposition, we have Un{Un`1 – κ for n ě 1, a multiplicative-to-additive homo-
morphism. Hence Up

n Ď Un`1.

11



2. Again by the mentioned isomorphism, the map f : u ÞÑ um on Un induces an isomorphism fq :

Uq{Uq`1 Ñ Uq{Uq`1 for q ě n. If x P ker f , then xm P Un`1, and hence x P Un`1. Repeatedly, we see
x P

Ş

qěn

Uq`1 “ t1u, proving that ker f “ t1u, that is, f is injective.

Let u P Un. To show f is surjective, start with v0 P Un, w1 P Un`1 such that u “ vm0 w1; this is
possible for fn is bijective. Inductively, let vq P Un`q, wq`1 P Un`q`1 such that wq “ vmq wq`1 for each
q ě 0. This gives

u “ vm0 w1 “ vm0 pvm1 w2q “ pv0v1q
mw2 “ ¨ ¨ ¨ “ pv0v1 ¨ ¨ ¨ vqq

mwq`1

Then the sequence twquqě0 tends to 1, and since K is complete, the product v0v1 ¨ ¨ ¨ vq converges to
an limit v P Un. But then u “ vm P Um

n , so u “ fpvq.

1.3 Hensel’s lemma
Theorem 1.12. Let K be a field complete with respect to a non-archimedean absolute value | ¨ |, and let
fpxq P orxs, where o is the ring of integers of | ¨ |. If

|fpα0q| ă |f 1pα0q|2

for some α0 P o, then there exists a unique α P o such that

fpαq “ 0, |α ´ α0| ď
|fpαq|

|f 1pαq|

Corollary 1.12.1. Let K be a field complete with respect to a non-archimedean absolute value | ¨ |, and
let fpxq P orxs, where o is the ring of integers of | ¨ |. If

fpα0q ” 0 pmod pq, f 1pα0q ı 0 pmod pq

for some α0 P κ “ o{p, then there exists a unique α P o such that

fpαq “ 0, |α ´ α0| ă 1

Proof. (of Theorem 1.12) Write

fpx ` tq “ fpxq ` f 1pxqt ` gpx, tqt2 (1.2)

f 1px ` tq “ f 1pxq ` f2pxqt ` hpx, tqt2 (1.3)

for some g, h P orx, ts. For n ě 0, define αn, βn P o by the equations

fpαnq ` βnf
1pαnq “ 0, αn`1 “ αn ` βn

12



For n ě 0, using (1.2) and the construction of the βn, we have

|fpαn`1q| “ |fpαn ` βnq| “ |β2
ngpαn, βnq| ď |βn|2 “

|fpαnq|2

|f 1pαnq|2
ď ¨ ¨ ¨ ď

|fpα0q|2
n`1

|f 1pαnq|2 ¨ ¨ ¨ |f 1pα0q|2
n`1 (1.4)

and using (1.3) gives

|f 1pαn`1q ´ f 1pαnq| ď |βn| “
|fpαnq|

|f 1pαnq|

We prove it by induction on n that
|f 1pαnq| “ |f 1pα0q|

The statements hold when n “ 0. In general, (1.4) and the assumption give

|f 1pαn`1q ´ f 1pαnq| ď
|fpαnq|

|f 1pαnq|
ď

|fpα0q|2
n`1

|f 1pα0q|2
n`2´1

“

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q2

ˇ

ˇ

ˇ

ˇ

2n`1

|f 1pα0q| ă |f 1pα0q| “ |f 1pαnq|

so |f 1pαn`1q| “ |f 1pαnq| “ |f 1pα0q|, and (1.4) again gives

|fpαn`1q| ď
|fpα0q|2

n`1

|f 1pα0q|2
n`2´2

“

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q
2

ˇ

ˇ

ˇ

ˇ

2n`1

|f 1pα0q|2

Also,

|βn| ď

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q
2

ˇ

ˇ

ˇ

ˇ

2n`1

|f 1pα0q|

Finally, for n ě 0,

|αn ´ α0| ď maxt|βn´1|, . . . , |β0|u ď

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q
2

ˇ

ˇ

ˇ

ˇ

2

|f 1pα0q| ă

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q

ˇ

ˇ

ˇ

ˇ

Since
ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q

ˇ

ˇ

ˇ

ˇ

ă 1, both fpαnq, βn Ñ 0 as n Ñ 8, and put α “ lim
nÑ8

αn P K. Hence

fpαq “ 0, |α ´ α0| ď

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q

ˇ

ˇ

ˇ

ˇ

The latter property and the assumption give α P o, for

|α| ď maxt|α ´ α0|, |α0|u ď maxt|f 1pα0q|, |α0|u ď 1

The uniqueness follows from (1.2) and |f 1pαq| “ |f 1pα0q| ‰ 0; indeed, if α1 P o is another solution with the
desired conditions, then, put t “ α1 ´ α,

|t| “ |α1 ´ α0 ` α0 ´ α| ď

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q

ˇ

ˇ

ˇ

ˇ

and
0 “ fpα ` tq “ fpαq ` f 1pαqt ` gpα, tqt2 “ f 1pαqt ` gpα, tqt2

If t ‰ 0, then
|f 1pα0q| “ |f 1pαq| “ |gpα, tqt| ď |t| ď

ˇ

ˇ

ˇ

ˇ

fpα0q

f 1pα0q

ˇ

ˇ

ˇ

ˇ

a contradiction to the assumption. Hence t “ 0.
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Corollary 1.12.2. Let R be a complete DVR and K its field of fractions. Put U “ Rˆ to be the group
of unit. Then for n ě 1 not divisible by the characteristic of κ, the n-power subgroup

Un “ txn | x P Uu

is open in R.

Proof. Let x P U and y P R such that |xn´y| ă 1; then y P U . Consider the equation fpXq :“ Xn´y “ 0.
We have |fpxq| “ |xn ´ y| ă 1 and |f 1pxq| “ |nxn´1| “ 1, so by Hensel’s lemma, there exists α P R such
that y “ αn. Since |y| “ 1, |α| “ 1 as well, implying α P U . Hence y P Un.

1.4 Localization
Let A be a commutative ring with identity, and S Ď A a multiplicatively closed subset containing 1; we
write S is an m.c.s. for short. Define an equivalence relation „ on A ˆ S:

pa, sq „ pb, rq ô s1par ´ bsq “ 0 for some s1 P S

Define a ring S´1A “ A ˆ S{„. Symbolically we write an element of S´1A as a
s
, a P A, s P S. This is

called the localization of R at S. We have the canonical map
ι : A S´1A

a
a

1

.

Example. Let p � A be an ideal. Then p is a prime if and only if S :“ A ´ p is multiplicatively closed.
In this case, we can form S´1A, and it is usually denoted as Ap, and called the localization of A at p.

We give the universal property of the localization S´1A. For any commutative ring B with identity,
define F pBq :“ tφ P HomRingpA,Bq | φpSq Ď Bˆu; then it is easily seen that F is a functor.

Theorem 1.13. The map
HomRingpS´1A,Bq F pBq

f f ˝ ι

is a functorial bijection in B.

Proof. For φ P F pBq, define fφ : S´1A Ñ B by fφpa{sq “ φpaqφpsq´1.

For an A-module M , we can define its localization at S as well. Define an equivalence relation „ on
M ˆ S:

pm, sq „ pn, rq ô s1pmr ´ nsq “ 0 for some s1 P S

Define an abelian group S´1M “ M ˆ S{„. Then it’s clear that S´1M is a S´1A-module. In fact,

Proposition 1.14. S´1M – M bA S
´1A as S´1A-modules.
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Proof. Define
φ :M ˆ S´1A S´1M

´

m,
a

s

¯ ma

s

ψ : S´1M M bA S
´1A

m

s
m b

1

s

Then φ induces a S´1A-homomorphism M bA S
´1A Ñ S´1M which we still denote by φ. Then

pψ ˝ φqpm b a{sq “ ψpma{sq “ ma b 1{s “ m b a{s

pφ ˝ ψqpm{sq “ φpm b 1{sq “ m{s

so that ψ and φ are mutually inverses.

The proposition in particular shows that S´1 : ModA Ñ ModS´1A is a functor. To be precise, for
f :M Ñ N , define S´1f :“ f b idS´1A :M bA S

´1A Ñ N bA S
´1A.

Proposition 1.15. S´1 is an exact functor. In other words, S´1A is a flat A-module.

Proof. Let M f
Ñ N

g
Ñ L be exact in ModA. Then

S´1M
S´1f
Ñ S´1N

S´1g
Ñ S´1L

is a complex. Now let n
s

P S´1N such that gpnq

s
“ 0 in S´1L. Then 0 “ s1gpnq “ gps1nq in L for some

s1 P S, so s1n “ fpmq for some m P M . Thus

n

s
“
s1n

s1s
“
fpmq

s1s

1.4.1 Ideals in the localization
Proposition 1.16. Let S be an m.c.s. and I � A an ideal.

1. S´1I “ S´1A if and only if S X I ‰ H.

2. For J � S´1A, J “ pJ X AqS´1A.

3.
tp P SpecpAq | p X S “ Hu SpecpS´1Aq

p pS´1A

is a bijection.

Proof.

1. For s P S, if 1

s
P S´1I, then s1pr ´ bsq “ 0 for some r, s1 P S, b P I, so that rs1 “ bss1 P S X I.

Conversely, pick r P S X I. Then for any s P S, 1
s

“
r

sr
P S´1I.

15



2. Clearly, pJ X AqS´1A Ď J . Conversely, for x
s

P J , x “ s ¨
x

s
P J X A, so that x

s
P pJ X AqS´1A.

3. For P P SpecpS´1Aq, since pPXAqS´1A “ P Ĺ S´1A, pPXAqXS “ H. Conversely, let p P SpecpAq

with p X S “ H. Then pS´1A is an ideal in S´1A.

Claim.

(a) pS´1A P SpecpS´1Aq.

(b) ppS´1Aq X A “ p

Proof.

(a) Let x
s
,
y

r
P S´1A with xy

sr
“
z

t
P pS´1A, z P p but x, y R p. Then s1xyt “ s1srt P pXS for some

s1 P S, a contradiction.

(b) Clearly, p Ď ppS´1Aq XA. Conversely, let a
1

“
x

s
P ppS´1Aq XA, x P p. Then spx´ raq “ 0 for

some s P S. If a P A ´ p, then p Q sx “ sra P A ´ p, a contradiction. (Note that S Ď A ´ p).

Note that IS´1A – I bA S
´1A – S´1I as S´1A-modules.

Corollary 1.16.1. If A is Noetherian, so is S´1A.

Proof. By the proposition, every ideal of S´1A is of the form IS´1A – S´1I for some I � A. A being
Noetherian, there is an exact sequence An Ñ I Ñ 0 for some n P N0. Since S´1A is flat over A,
pS´1Aqn Ñ S´1I Ñ 0 is exact. Hence S´1I finitely generated.

1.4.2 Integral dependence
Proposition 1.17. Let A Ď B be rings and C be the integral closure of A in B. Let S Ď A be an m.s.c.
Then S´1C is the integral closure of S´1A in S´1B.

Proof. Let bs´1 P S´1B integral over S´1A. Then fpbs´1q “ 0 for some monic f P S´1Arxs. Multiplying
a multiple of denominators of coefficients, we obtain

anb
n ` an´1sb

n´1 ` ¨ ¨ ¨ ` a1s
n´1b ` a0s

n “ 0

for some ai P A and an P S. Then anb P B is integral over A, implying anb P C. Hence b
s

“
anb

ans
P S´1C.

Conversely, it is easy to see every element in S´1C is integral over S´1A.
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1.5 Dedekind Domains
In this section R always means an integral domain with K its field of fraction. If p P SpecR, define the
local ring of fractions at p by

Rp “ txy´1 P K | x, y P R, y R pu

Proposition 1.18.

1. Rp is a local ring with maximal ideal pRp.

2. p “ pRp X R.

3. If J �Rp, then J “ pJ X RqRp.

Proof. We have already seen 2, 3 in the section for localization. For 1., it suffices to show Rˆ
p “ Rp ´ pRp.

• If xy´1 P Rˆ
p , then x´1 P Rp, so that x R p. Hence xy´1 P Rp ´ pRp.

• If xy´1 P Rp ´ pRp, then x R p so that x´1y P Rp.

Theorem 1.19. Let R be an integral domain. Then TFAE:

1. R is Noetherian, integrally closed and its nonzero primes are maximal.

2. R is Noetherian, any for any non-zero prime p, Rp is a DVR.

3. All fractional ideals are invertible.

Proof. If R “ K is a field, then everything holds trivially. In the following we assume R is not a field.

1. ñ 2. We invoke Theorem 1.8. To show Rp is a DVR, it suffices to show it is Noetherian, integrally closed
and local but not a field. We will implicitly use the results in the section of localization.

Since R is Noetherian and integrally closed, so is Rp. Since p ‰ 0, Rp is local with maximal ideal
pRp ‰ 0.

2. ñ 3. Let I be a fractional ideal. By lemmas in 1.1, I is finitely generated; say I “ pa1, . . . , anqR. Let
x “

n
ř

i“1

riai P I. Denote by νp the valuation in Rp. Then

νppxq ě inf
i“1,...,n

νppriaiq ě inf
i“1,...,n

νppaiq

Now assume that a1 is such that νppa1q “ inf
i“1,...,n

νppaiq. Then IRp “ a1Rp.

Now let a´1
1 ai “ xiy

´1
i with xi, yi P R and yi R p. Put y “ y1 ¨ ¨ ¨ yn. Then ya´1

1 ai P R, so that
ya´1

1 P I´1, whence y P II´1. However y R p, so II´1 Ę p. Since this is true for all maximal p,
II´1 “ R.
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3. ñ 1. By lemmas in 1.1, every invertible ideal are finitely generated, so that R is Noetherian.

Let x P K be integral over R. Then S :“ Rrxs Ď K is finitely generated. By lemmas in 1.1, S is
fractional. Since S is a ring, S2 “ S. Thus

S “ SR “ SpSS´1q “ S2S´1 “ SS´1 “ R

so x P R. Therefore R is integrally closed.

Let p P SpecpRq be nonzero and m P mSpecpRq containing p. Then pm´1 Ď pp´1 “ R and
ppm´1qm “ p. Since p is a prime, we have either m Ď p or pm´1 Ď p; if the latter were to happen,

m´1 Ď p´1p “ R

so that m´1 Ď R, i.e., m “ R, a contradiction. Hence m Ď p, and thus p is maximal.

Definition. If R is an integral domain satisfying any of the statements in Theorem 1.19, we call R a
Dedekind domain.

• If p is a nonzero prime of R, we denote by νp the valuation on the field of fractions K of R with
valuation ring Rp.

• If | ¨ | is a nontrivial absolute value (i.e., |x| ‰ 1 for some x P K) on K with |R| ď 1. Then |x| “ ρνppxq

for some 0 ă ρ ă 1 and some nonzero prime p of R.

Proof. Let p “ tx P R | |x| ă 1u. Then p P SpecpRq is nonzero. We show

|x| “ |π|ρppxq

where π is the uniformizer of Rp.

– Write π “ ab´1 with a, b P R, a P p S b. Then |b| “ 1 and a “ bπ P p, so |π| ă 1. Since π ‰ 0,
|π| ą 0.

– For u P Rˆ
p , write u “ xy´1 with x, y P R ´ p. Then |u| “ |xy´1| “ 1. Now for every x P Kˆ,

write x “ πnu for some unique u P Rˆ
p , n P Z. Then |x| “ |π|n|u| “ |π|n “ |π|νppxq.

• For H ‰ I Ď K, define νppIq :“ inf
xPI

νppxq P Z Y t˘8u.

Theorem 1.20. Let R be a Dedekind domain.

1. The fractional ideals of R form an abelian group IpRq under multiplication.
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2. IpRq is free on the nonzero primes of R.

3. For a fractional ideal I,
I “

ź

p

pνppIq

Also, IRp “ ppRpq
νppIq

Proof. The first follows from Theorem 1.19 and lemmas in 1.1. To show the nonzero primes generate IpRq,
it suffices to show every integral ideal I Ď R is a product of primes. If I ‰ R, then I Ď p for some p, and
I Ď Ip´1 Ď R. Continuing in this way on Ip´1. the result then follows since R is Noetherian.

For each p, we have a surjective homomorphism

fp : IpRq IpRpq

I IRp

• If fpppnq “ ppRpq
n “ Rp, then n “ 0.

• If q ‰ p, then q X pR ´ pq ‰ H so that fppqq “ Rp.

Hence ker fp contains all nonzero primes other than p. This shows IpRq is free on the set of nonzero primes.
Finally, write

I “
ź

p

pnp

Then IRp “ fppIq “ ppRpq
np , so that

np “ νppIRpq “ νppIq ` νppRpq “ νppIq

Corollary 1.20.1. If a P Kˆ, then νppaq “ 0 for almost all p.

Corollary 1.20.2. Let I, J P IpRq.

1. νppIJq “ νppIq ` νppJq;

2. νppI´1q “ ´νppIq;

3. νppI ` Jq “ inftνppIq, νppJqu;

4. νppI X Jq “ suptνppIq, νppJqu.

Corollary 1.20.3. The maps fp induces a group isomorphism

IpRq –
à

p

IpRpq

Let Rp be the valuation ring of the completion of K at νp. By Proposition 1.6, IpRpq – IpRpq. Hence

Corollary 1.20.4.
IpRq –

à

p

IpRpq
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1.5.1 Modules and Bilinear Forms
Throughout this subsection, let R be a Dedekind domain, K its fraction field, U an n ą 0 dimensional
K-vector space. The symbols L,M,N stand for finite R-submodules of U which span U .

Lemma 1.21. For an R-submodule T of U , we have

T “
č

pPSpecpRq

Tp “
č

pPmSpecpRq

Tp

Lemma 1.22. Given M,N , there is a nonzero element a of K with aM Ď N .

Proof. Let tuiu be a basis of U contained in N . For a finite generating twju set of M , choose a P R to
eliminate the denominators of coefficients of the wj with respect to tuiu.

Lemma 1.23. For almost all p, Mp “ Np.

Proof. By Lemma, we find a, b P Kˆ with aM Ď N Ď bM . Hence Mp “ Np if νppaq “ 0 “ νppbq, which is
the case for almost all p.

Suppose for a while that M,N are free over R, hence of rank n. Then there exists ℓ P GLpUq such that
Mℓ “ N . The determinant detpℓq is non-zero, and solely depends on M,N up to a unit in R. Hence the
fractional ideal

rM : N s :“ R detpℓq

solely depends on M,N .
Now drop the condition that M,N are free. Nevertheless, for each p P SpecpRq, we see Mp, Np are

contained in U , and hence they are torsion-free. This shows Mp and Np are free over Rp of the same rank
n, so the fractional ideal rMp : Nps is well-defined. Moreover, by Lemma above, rMp : Nps “ Rp for almost
all p.

Definition. The module index rM : N s “ rM : N sR is defined to be the unique fractional ideal such
that

rM : N sRp “ rMp : Nps

for all p P SpecpRq; both existence and uniqueness follow from Corollary 1.20.3.

• When M,N are free, two definition clearly agree.

• When R “ Z and N Ď M , rM : N s is just the ordinary group index.

Property 1.24. Let U,M,N,L as above. Then

1. rM : N srN : Ls “ rM : Ls and rM :M s “ R.

2. If N Ď M , then rM : N s Ď R, and rM : N s “ R iff M “ N .
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3. If t P GLpUq, then rMt : Nts “ rM,N s.

Proof. Locally, we can suppose M,N,L are free, and all are clear. Then use Lemma 1.21 to obtain the
global result.

Proposition 1.25. rM : N s is a principal fractional ideal if and only if M – N .

Definition. Let B : U ˆ U Ñ K be a nondegenerate, symmetric K-bilinear form on U .

1. For a K-basis tuiu for U , its dual basis tvju is defined by Bpui, vjq “ δij.

2. The dual module of T is defined by

DpT q “ DRpT q :“ tu P U | Bpu, T q Ď Ru

• If M is the free R-module on tuiu, then DpMq is the free R-module on the dual basis tvju, and
DpDpMqq “ M .

• In the following we put D “ DR and Dp “ DRp .

Property 1.26.

1. DpMq is a finite R-module spanning U .

2. DpMqp “ DppMpq.

3. DpMq “
Ş

pPSpecpRq

DppMpq.

4. DpDpMqq “ M .

5. rDpMq : DpNqs “ rN :M s.

Proof.

1. M contains a free R-module N spanning U , and by previous lemma M is contained in L “ bN for
some b P Kˆ. Hence N Ď M Ď L implies

DpNq Ě DpMq Ě DpLq

We know DpLq generates U and DpNq is finite over R, and hence DpMq has the desired properties.

2. Say twiu is a finite generating set of M . Suppose v P DppMpq. Then for all i, Bpv, wiq “ b´1ai with
ai, b P R and b R p. Hence v P DpMqb´1 Ď DpMqp. Conversely, we have

BpDpMqp,Mpq Ď BpDpMq,MqRp Ď Rp
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3. Use 2. and Lemma 1.21.

4. DpDpMqqp “ DppDppMpqq “ Mp. Use Lemma 1.21.

5. Locally we can assume M,N are free. Suppose tuiu and tvju are dual bases and tuiℓu and tvjℓ
˚u are

dual basis, then we must have detpℓq detpℓ˚q “ 1. Say ui is a basis for N and uiℓ is a basis for M ,
Then

rN :M s “ detpℓqR “ detpℓ˚ ´1qR “ rDpMq : DpNqs

Definition. For a finite R-submodule M of U which spans U , define the discriminant of M to be

dpMq “ dpM{Rq :“ rDRpMq :M sR

Property 1.27. Let M,N as above.

1. dpNq “ dpMqrM : N s2.

2. dpMp{Rpq “ dpM{RqRp.

3. If M is the free R-module on tuiu, then dpMq is the fractional ideal generated by detBpui, ujq.

4. If N Ď M , then dpMq | dpNq, and dpMq “ dpNq iff M “ N .

Proof.

1. rDpNq : N s “ rDpNq : DpMqsrDpMq :M srM : N s “ rDpMq :M srM : N s2.

2. rDppMpq :Mps “ rDpMqp :Mps “ rDpMq :M sRp.

3. Let tvju be the dual basis of tuiu and write ui “ viℓ. Then rDpMq : M s “ detpℓqR. On the other
hand,

detBpui, ujq “ detBpui, vjℓq “ detpℓq detBpui, vjq “ detpℓq

4. Since N Ď M , rM : N s is integral, and equals R iff N “ M . Then it follows from 1.

Proposition 1.28. Let Ui be a finite dimensional K-vector space and Mi, Ni are R-submodules of Ui that
span Ui. Set U “ U1 ‘ U2, and similar for M,N .

1. rM : N s “ rM1 : N1srM2 : N2s.

Suppose moreover that BpU1, U2q “ 0. Then

2. DpMq “ DpM1q ‘ DpM2q.
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3. dpMq “ dpM1qdpM2q

Let R be a Dedekind domain containing R with quotient field K. Embed U into the vector space
U :“ U bK K. B can be extended uniquely to a non-degenerate symmetric K-bilinear form B on U .

Proposition 1.29.

1. rMR : NRsR “ rM : N sRR.

2. DRpMRq “ DRpMqR.

3. dpMR{Rq “ dpM{RqR.

1.6 Extensions
Let R be a Dedekind domain with fraction field K. Let L be a finite extension of K, and let S be the
integral closure of R in L. We know that S bR Rp is the integral closure of Rp in L for each p P SpecpRq.

Definition. A prime P P SpecpSq is said to lie over the prime ideal p P SpecpRq if P X R “ p. If it is
the case, we write P | p.

1.6.1 Krull-Akizuki
We temporarily drop the notation set above. Suppose now A is a Noetherian domain of dimension 1 and
K its fraction field. Let M be a torsion-free A-module. Set rankM “ dimK K bAM .

Lemma 1.30. For x P A, we have

lengthApM{xMq ď rankpMq lengthApA{xAq

with equality if M is finite over A.

Proof. Set r “ rankpMq; if M is finite over A, then r ă 8. If r “ 8, there is nothing to prove, so we may
assume r ă 8.

Assume M is finite over A, and pick m1, . . . ,mr P M such that they form a K-basis for K bAM . Let
α : Ar Ñ M be a homomorphism sending a basis of Ar to the mi; by construction α is injective, so we may
assume Ar as a submodule of M . Put N “ M{Ar; we have K bA N “ 0. Consider the exact sequence

0 Ar M N 0

Tensoring with A{xA, we have an exact sequence

TorA1 pM,A{xAq TorA1 pN,A{xAq Ar{xAr M{xM N{xN 0
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Using the free resolution 0 Ñ A
x

Ñ A Ñ A{xA Ñ 0 of A{xA, we see TorA1 pM,A{xAq “ tm P M | xm “ 0u

and similar for TorA1 pN,A{xAq. Since M is torsion-free, TorA1 pM,A{xAq “ 0. Also, consider the exact
sequence

0 TorA1 pN,A{xAq N N N{xN 0x

Since K bA N “ 0 and N is finite over A, there exists f P A ´ t0u with fN “ 0, making the modules
appearing in the above complex A{fA-module. Since dimA “ 1, dimA{fA “ 0, implying the modules
above are of finite length. Hence

lengthTorA1 pN,A{xAq “ lengthpNq ´ lengthpNq ` lengthpN{xNq “ lengthpN{xNq

Using the complex involving M{xM above, and noting that they are all A{xA-module, we have

lengthpM{xMq “ lengthpAr{xArq ` lengthpN{xNq ´ lengthTorA1 pN,A{xAq

“ lengthpAr{xArq

“ r lengthpA{xAq

proving the equality when M is finite over A.
Now drop the condition that M is finite over A. Suppose the inequality in Lemma does not hold, i.e.

lengthpM{xMq ą r lengthpA{xAq. Choose a finite submodule M 1 of M whose image N 1 in M{xM has
length ą r lengthpA{xAq, which is possible. Indeed, we can find a filtration

0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mℓ Ď M{xM

with ℓ ą r lengthpA{xAq. Pick mi P M such that pmi mod xMq P MizMi´1, and define M 1 “
ℓ
ř

i“1

miA.

Put M 1
i “ ppMi ` xMq X M 1q{xM 1 Ď M 1{xM 1. Then M 1{xM admits a filtration

0 Ĺ M 1
1 Ĺ ¨ ¨ ¨ Ĺ M 1

ℓ Ď M 1{xM 1

by our construction. Hence lengthpM 1{xM 1q ě ℓ as we wish. But then

lengthpM 1{xM 1q ě lengthN 1 ą r lengthpR{xRq ě rankpM 1q lengthpR{xRq

contradicting to the equality proved in the finite case.

Theorem 1.31 (Krull-Akizuki). Let R be a Noetherian domain of dimension 1 with fraction field K and
L{K a finite field extension. Let S be any subring of L containing R. Then

1. S is Noetherian and of dimension ď 1.

2. For any nonzero ideal J of S, lengthR S{JS ă 8.

3. SpecpSq Ñ SpecpRq has finite fibres.
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Proof. Let 0 ‰ J �S be an ideal. We first show J XR ‰ 0. Pick x P J . Then x satisfies a polynomial over
K; eliminating the denominators, we may assume the polynomial has coefficients in R. Then the constant
term lies in J XR. We contend J{aS is a module of finite length. Since J{aS Ď S{aS and S is torsion-free
R-module of finite rank, Lemma applies, showing that S{aS has finite length, thus so does J{aS. This
implies J is a finite S-module, and hence S is Noetherian.

If J is a nonzero prime, so is J X R; since dimR “ 1, J X R “: m is a maximal ideal of R. What we
proved above show S{mS has finite length, and thus S{mS is Artinian. Hence every nonzero prime of S
containing mS is maximal and there are in finite number. This shows J is maximal, proving dimS ď 1.

Corollary 1.31.1. Let R be a Dedekind domain with fraction field K and L{K a finite extension. Then
the integral closure of R in L is a Dedekind domain.

1.6.2 Trace form
Definition. For a finite field extension L{K, the trace TrL{Kpxq of x P L is defined to be the trace of the
K-linear map Tx : L Ñ L defined by multiplication by x on L.

• TrL{K : L Ñ K is a K-linear map.

• Let U be a finite dimensional L-vector space and φ P EndLpUq. Then traceKpφq “ TrL{KptraceLpφqq.

Proof. Say teiu is an L-basis for U . The identity is L-linear on both side, so we may assume
φpeiq “ aej pa P Lˆq and zero on other basis elements. Let tαju be a K-basis for L. Then φpαsekq “

δkiTapαsqej. If i ‰ j, then traceKpφq “ 0 “ TrL{KptraceLpφqq. If i “ j, then

traceKpφq “ traceKpTaq “ TrL{Kpaq “ TrL{K traceLpφq

• For a tower of finite extensions K Ď L Ď M , TrM{K “ TrL{K ˝TrM{L.

• The characteristic polynomial of Tα P EndKpLq equals me
α,K with e degpmα,Kq “ rL : Ks.

Proof. Say tβiu
e
i“1 is a basis for L{Kpαq; then e degpmx,Kq “ rL : Ks and L “

e
À

i“1

Kpαqβi is a

decomposition of L into α-invariant subspace. Hence the characteristic polynomial of Tα P EndKpLq

equals that of Tα P EndKpKpαqq to the power of e.

Now we can assume L “ Kpαq. By Cayley-Hamilton we have mα,K | CharTα . Since they are both
monic of degree rKpαq : Ks, they are the same.

Proposition 1.32. Let L{K be a finite field extension. Put Tr “ TrL{K . TFAE:
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1. L{K is separable.

2. Tr is not identically zero, or equivalently, surjective.

3. The pairing Q : L ˆ L Ñ K defined by Qpx, yq “ Trpxyq is non-degenerate.

Proof. 3 ñ 2 is clear. Conversely, say Trpxq ‰ 0. Then for each y P Lˆ, Qpy, x{yq “ Trpxq ‰ 0.
Now suppose L{K is separable. By transitivity of trace together with the induction, we can assume L

is a simple extension of K. Let α1, . . . , αn be all conjugates of α over K; they are distinct by separability,
and they are the eigenvalues of the map Tα : x ÞÑ αx. Put χi : Z Ñ L to be χiprq “ αri . By independence
of characters, there exists e P Z such that χ1peq ` ¨ ¨ ¨ ` χnpeq ‰ 0, so that Trpαeq ‰ 0.

Now suppose L{K is not separable. Then by transitivity we have TrL{K “ TrLsep{LTrL{Lsep , so it
suffices to show TrL{Lsep is identically zero. Hence we can assume L{K is purely inseparable, and let
p “ CharpKq ą 0. As above we can assume L “ Kpαq for some α P Lˆ. We have mα,Kpxq “ fpxp

k
q for

some irreducible separable f P Krxs and some k P Z ´ t0u, so αpk P K. Replace α by αpk´1 , we assume
αp P K. Now we can obtain TrL{Kpαiq “ 0 for each i P Z, showing that TrL{K ” 0.

Proposition 1.33. Let R be a Noetherian integrally closed domain with fraction field K and L{K a finite
separable extension. Then the integral closure S of R in L is finite over R.

Proof. Pick a basis tuiu for L{K such that ui P S. Since L{K is separable, TrL{K is non-degenerate;
let tvju be the dual basis of tuiu. Now for each x P S, write x “

ř

aiui. Since xvj P S, we have
TrL{Kpxvjq “ aj P R, showing S Ď

ř

Rui.

1.7 Ramification
Lemma 1.34. Let R be a ring and M an R-module of finite length. Let 0 “ M0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mn “ M

be a composition series of M . Then

1. Mi{Mi´1 – A{mi for some maximal ideal mi.

2. For each m P mSpecpAq, we have #ti | mi “ mu “ lengthAm
Mm.

Proof. Since the Mi is a composition series, each successive quotient is simple, so 1. follows. Now since
the localization functor is exact, we then obtain a filtration of Mm:

0 “ pM0qm Ĺ pM1qm Ĺ ¨ ¨ ¨ Ĺ pMnqm “ Mm

Last, we have

pR{m1qm “

#

0 , m ‰ m1

Rm{mRm , m “ m1

From these the second statement follows at once.
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Proposition 1.35. Let pA,mq be a local ring, B an A-algebra andM a B-module of finite length. Suppose
B is semilocal with maximal ideal n1, . . . , nq, each of which lying over m. Then

lengthAM “

q
ÿ

i“1

rκpniq : κpmqs lengthBni
Mni

Proof. Let 0 “ M0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mn “ M be a composition series of M . Then by Lemma,

lengthAM “

n
ÿ

i“1

lengthAMi{Mi´1 “

q
ÿ

i“1

lengthAB{ni ¨ lengthBni
Mni “

q
ÿ

i“1

rκpniq : κpmqs lengthBni
Mni

Corollary 1.35.1. Let pA,mq be a Noetherian local ring of dimension 1 and B a finite A-algebra. Suppose
B is semilocal with maximal ideal n1, . . . , nq, each of which lying over m. Then

(a) For b P B regular, we have

lengthApB{bBq “

q
ÿ

i“1

rκpniq : κpmqs lengthBni
pBni{bBniq

(b) If B is free of finite rank n over A, then

n “

q
ÿ

i“1

rκpniq : κpmqs lengthBni
pBni{mBniq

Proof. Since B is finite over A, dimB ď dimA “ 1.

1. Since b is regular, dimB{bB “ 0, implying that lengthB B{bB ă 8. Apply Proposition with
M “ B{bB.

2. We have B{mB “ pA{mqn, a product of field, and thus B{mB has finite length over A, and a fortiori
over B.
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Chapter 2

Global Fields

2.1 Valuations

2.2 Types of Valuation

2.3 Examples of Valuations

2.4 Topology

2.5 Completeness

2.6 Independence
Lemma 2.1 (Weak approximation theorem). Let | ¨ |n p1 ď n ď Nq be inequivalent non-trivial valuations
of a field k. For each n let kn be the topological space k with topology induced by | ¨ |n. Then the diagonal

embedding k Ñ

N
ź

n“1

kn has dense image.

Proof. Note that it suffices to find θn P k such that |θn|n ą 1 and |θm|m ă 1 for n ‰ m for all 1 ď n,m ď N .
For then

lim
rÑ8

θrn
1 ` θrn

“ lim
rÑ8

1

1 ` θ´r
n

“

#

1 with respect to | ¨ |n

0 with respect to | ¨ |m for m ‰ n

To approximate pα1, . . . , αNq, it is then enough to take ξ “

N
ÿ

n“1

θrn
1 ` θrn

αn with sufficiently large r.

It is enough to consider the case when n “ 1. We do this by induction on N . When N “ 2, since | ¨ |1

and | ¨ |2 are inequivalent, we can find α P k such that |α|1 ă 1 but |α|2 ě 1, and similarly β P k such that
|β|1 ě 1 but |β|2 ă 1. Then θ1 “ βα´1 does the job.
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For N ě 3, by induction hypothesis we can find ϕ P k such that |ϕ|1 ą 1 but |ϕ|n ă 1 for 2 ď n ď N´1,
and by the case N “ 2 we can find ψ P k with |ψ1| ą 1 and |ψN | ă 1. Now put

θ “

$

’

’

&

’

’

%

ϕ if |ϕ|N ă 1

ϕrψ if |ϕ|N “ 1
ϕr

1 ` ϕr
ψ if |ϕ|N ą 1

with r P Z sufficiently large.

Note that when k “ Q and the | ¨ |n are non-archimedean, this lemma follows from Chinese Remainder
theorem.

2.7 Finite Residue Field Case
Let k be a field with non-archimedean valuation | ¨ |. We set the following notation.

• o :“ tα P k | |α| ď 1u is called the ring of integers for | ¨ |.

• oˆ “ tα P k | |α| “ 1u is called the group of units.

• p :“ tα P k | |α| ă 1u is a maximal ideal of o.

We consider the case #o{p “: P ă 8 is finite. Suppose further that | ¨ | is discrete, i.e., p “ pπq is principal.
Let o, p be defined with respect to the completion k of k; then o{p “ o{p and p “ πo.

Lemma 2.2. Suppose k is complete with respect to | ¨ |. Then o is precisely the set of

α “

8
ÿ

j“0

ajπ
j (♠)

where the aj run independently through some set A of representatives in o of o{p.

Proof. Series of the form p♠q clearly converge in o. Conversely, for α P o let a0 P A be the unique element
such that |α ´ a0| ă 1; then α1 :“ π´1pα ´ a0q P o. Take inductively that an P A such that |αn ´ an| ă 1

and put αn`1 “ π´1pαn ´ anq. Then α “
8
ř

j“0

ajπ
j.

Theorem 2.3. Suppose k is complete with respect to | ¨ |. Then o is complete. In particular, k is locally
compact.

Proof. Let tUiu be an open cover of o. We must show that the Ui admits a finite subcover of o. Suppose
otherwise.

Let A be a set of representative of o{p. Then

o “
ğ

aPA

a ` πo
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Then there exists a0 P A such that a0 ` πo cannot be covered by finitely many of the Ui. Inductively find
an P A such that a0 ` a1π ` ¨ ¨ ¨ ` anπ

n ` πn`1o is not finitely covered by the Ui. Let α “
8
ř

j“0

ajπ
j; then

α P Ui0 for some i0. Since Ui0 is open, α ` πmo for some m P N, a contradiction.

Theorem 2.4. Let k be a locally compact field with a non-archimedean valuation | ¨ |. Then

(1) k is complete.

(2) The residue field is finite.

(3) The valuation is discrete.

Proof. Since k is locally compact, there exists a compact neighborhood K of 0; then πνo Ď K for ν " 0.
Hence o is compact (for πνo is closed), and thus (1) holds. Let paαqα be a set of representative in o of
o{p. Then the open sets tx P o | |x ´ aα| ă 1u cover o, so it admits a finite subcover and hence (2) holds.
Finally, since p “ πo is compact, the cover Sn “ tα P k | |α| ă 1 ´ 1

n
u of p has a finite subcover, and thus

p “ SN for some N , i.e. (3) holds.

Since k is locally compact Hausdorff, there exists a Haar measure µ on k, invariant under translation,
and it is unique up to a positive scalar. Let us normalize µ in the way that µpoq “ 1. That µ is invariant
together with the disjoint union decomposition

o “
ğ

a ` πo

gives 1 “ Pµpπoq. Inductively we have µpπνoq “ P´ν for ν P Z.

Definition. Let k be a field with discrete valuation | ¨ | and residue class field with P ă 8 elements. We
say that | ¨ | is normalized if |π| “ P´1, where p “ πo.

Theorem 2.5. Let k be as in Theorem 2.3 and suppose | ¨ | is normalized. Then µpα ` βoq “ |β|, where
µ is the normalized Haar measure on k such that µpoq “ 1.

Proof. Write β “ πνu with ν P Z and u P oˆ. Then |β| “ P´ν and µpα ` βoq “ µpπνoq “ P´ν , as shown
above.

Consider the multiplicative group kˆ which is open in k. The group of unit oˆ is compact, by virtue
of the isomorphism oˆ{p1 ` pq – po{pqˆ, and thus kˆ is locally compact.

Let k and µ be as above. The additive measure µ on 1` p is also invariant under multiplication in oˆ;
indeed, for u P o,

µpupα ` pnqq “ µpuα ` pnq “ µppnq

This defines a Haar measure ν on kˆ, namely, µpxq :“
dµpxq

|x|
. From the isomorphism oˆ{p1` pq – po{pqˆ,

we have
oˆ “

ğ

αPpo{pqˆ

fpαq ` p
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where f : po{pqˆ Ñ oˆ is a section of oˆ Ñ po{pqˆ. Then

νpoˆq “

ż

oˆ

dνpxq “ µpoˆq “
ÿ

αPpo{pqˆ

µpfpαq ` pq “ pP ´ 1qP´1 “ 1 ´ P´1

Lemma 2.6. k and kˆ are totally disconnected.

Proof. They admit a base consisting of compact open sets.

If Char k “ 0, then k and kˆ are locally isomorphic, for we have the exponential map

α ÞÑ expα “

8
ÿ

n“0

αn

n!

valid for all sufficiently small α with its inverse

logα “

8
ÿ

n“1

p´1qn´1pα ´ 1qn

n

valid for all α sufficiently near to 1.

2.8 Normed Spaces

2.9 Tensor Product
Let A,B be commutative rings containing a field k and suppose N :“ dimk B ă 8, say with the basis
ω “ 1, ω2, . . . , ωN . Then B is determined up to isomorphism by the multiplication table

ωℓωm “

N
ÿ

n“1

cℓmnωn cℓmn P k

We can define a new ring C containing k whose elements are expressions of the type
N
ÿ

m“1

amωm am P A

where the ωm have the same multiplication rule

ωℓωm “

N
ÿ

n“1

cℓmnωn

as the ωm. There are injective ring homomorphisms

i : A C

a aω1

and
j : B C

ř

λmωm
ř

λmωm

of A and B into C.
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Lemma 2.7.

1. C is independent of the choice of the basis ωm of B.

2. pC, i, jq is a tensor product of the rings A and B over k.

We will write C “ A bk B.

Proof. Let D be a commutative ring containing a field k and f : A Ñ N, g : B Ñ N such that the diagram

A N

k B

f

g

commutes. Define φ : C Ñ N by φpaq “ fpaq and φpωq “ gpωiq. It is clearly well-defined, and it is the
unique map making the diagram

N

A C

k B

f

i

φ

j
g

commutes.

Suppose further that A is a topological ring. There is an abelian group isomorphism

C AN

ř

amωm pa1, . . . , aNq

We use this map to give C the product topology. In fact, this topology is the same as the initial topology
induced by the maps idA bf : C Ñ A, where f P HomkpB, kq. To see this, note that HomkpB, kq has a
basis fi, 1 ď i ď N , where fi : B Ñ k is given by fipωjq “ δij, so by linearity the initial topology described
above the same as that induced by the fi. From the above isomorphism each fi corresponds to the i-th
projection of AN to A, whence the the initial topology is the same as the product topology on AN .

Lemma 2.8.

1. The topology on C is independent of the choice of the basis ωi.

2. C is a topological ring.

We speak of this topology on C the tensor product topology.

Proof.
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1. This is clear from the discussion right above.

2. The addition is clearly continuous. The multiplication is given by the map

AN ˆ AN AN

pa1, . . . , aN , b1, . . . , bNq

˜

N
ř

i,j“1

aibjcij1, . . . ,
N
ř

i,j“1

aibjcijN

¸

The map continuous if and only if each component
N
ř

i,j“1

aibjcijk pk “ 1, . . . , Nq is continuous; but it

is the composition of the continuous maps

AN ˆ AN A2N A

pa1, . . . , aN , b1, . . . , bNq paibjcijkq1ďi,jďN

pxijq1ďi,jďN

N
ř

i,j“1

xij

hence the multiplication is continuous.

Let us drop our condition that A has a topology, but suppose that A, B are not merely rings but fields.

Lemma 2.9. Let A,B be field extensions of k, and suppose B{k is finite separable of degree N . Then
C “ A bk B is the direct sum of a finite number of fields Kj, each containing an isomorphic image of A
and an isomorphic image of B.

Proof. Say B “ kpβq, where the minimal polynomial f over k of β is separable of degree N . Then
1, β, . . . , βN´1 is a basis for B{k, so A bk B “ Arβs, where 1, β, . . . , β

N´1 are A-linear independent and
fpβq “ 0.

Write fpXq “
J
ś

j“1

gjpXq, where gjpXq P ArXs is irreducible. The gj are distinct, for f is separable. By

Chinese Remainder Theorem

pp1, . . . , pJq : A bk B
J
À

i“1

ArXs{pgjpXqq
„

Each Kj :“ ArXs{pgjpXqq is a field. It remains to show

λj : B A bk B Kj

pj

is injective, and it only needs to show λj is nontrivial, which is clear.
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Corollary 2.9.1. Let α P B and let F pXq P krXs, GjpXq P ArXs p1 ď j ď Jq be the characteristic
polynomial of α over k and of the image of α under

B A bk B Kj

pj

over A respectively. Then
F pXq “

ź

1ďjďJ

GjpXq (♠)

Proof. Let T be the characteristic polynomial of the image of α in Abk B over A. We claim both sides of
p♠q equal T .

• Computing in terms of the basis ω1, . . . , ωN , where ω1, . . . , ωN is a basis for B{k, we obtain T pXq “

F pXq.

• Using a basis of A bk B “
À

1ďjďJ

Kj composed of bases of the individual Kj{A, we obtain T pXq “

ś

1ďjďJ

GjpXq.

Corollary 2.9.2. For α P B, we have

NormB{kα “
ź

1ďjďJ

NormKj{Aα

TraceB{kα “
ÿ

1ďjďJ

TraceKj{Aα

2.10 Extension of Valuations
Let k Ď K be fields and | ¨ |, ∥¨∥ be valuations on k and K respectively. We say ∥¨∥ extends | ¨ | if
∥¨∥ |k “ | ¨ |.

Theorem 2.10. Let k be complete with respect to the valuation k and let K be an extension of k with
rK : ks “ N ă 8. Then there is precisely one extension of | ¨ | to K namely

∥α∥ “ |NormK{kα|
1
N

Theorem 2.11. Let K{k be a separable extension of degree N ă 8. Then there are at most N extensions
of a valuation | ¨ | of k to K, say ∥¨∥j p1 ď j ď Jq. Let k, Kj are the completions of k and K with respect
to | ¨ | and ∥¨∥j, respectively. Then

k bk K “
à

1ďjďJ

Kj (♡)

algebraically and topologically, where the RHS is given the product topology.
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Proof. We already know that kbkK is of the shape p♡q, where the Kj{k are finite extensions of k (Lemma
2.9). Hence there is a unique extension | ¨ |˚

j of | ¨ | to the Kj, and each Kj is complete with respect to the
extended valuation. In the proof of Lemma 2.9, we have the injective homomorphisms λj, so we get the
extensions ∥¨∥j of | ¨ | to K by putting

∥β∥j “ |λjpβq|˚
j

Further, K – λjpKq is dense in Kj with respect to ∥¨∥j for K “ k bk K is dense in k bk K. Hence Kj is
exactly the completion of K.

We show that ∥¨∥j are distinct and that they are the only extensions of | ¨ | to K. Let ∥¨∥ be any
extension to K of | ¨ |. Then it extends by continuity to a real-valued function on k bk K, still denoted by
∥¨∥. By continuity we have

∥α ` β∥ ď maxt∥a∥ , ∥b∥u

∥αβ∥ “ ∥a∥ ∥β∥

for all α, β P kbkK. We consider its restriction to the Kj; they are either identically 0 on Kj or valuations
on Kj. Further, ∥¨∥ cannot restrict to two nonzero valuations on the Kj, for the sake of ∥αβ∥ “ ∥a∥ ∥β∥.
Hence ∥¨∥ induces a valuation in precisely one of the Kj, and it clearly extends the given valuation | ¨ | of
k. Hence ∥¨∥ “ ∥¨∥j for precisely one j by Theorem 2.10.

It remains to show that p♡q is a homeomorphism. For pβ1, . . . , βJq P K1 ‘ ¨ ¨ ¨ ‘ KJ , put

∥pβ1, . . . , βJq∥0 :“ max
1ďjďJ

∥βj∥j

Clearly, ∥¨∥0 is a norm on RHS of p♡q, considered as a k-vector space, and it induces the product topology.
On the other hand, any two norms are equivalent by virtue of the completeness of k, and so ∥¨∥0 induces
the tensor product topology on the LHS of p♡q.

Corollary 2.11.1. Let K “ kpβq and let f P KrXs be the irreducible polynomial of β over k. Suppose
that

fpXq “
ź

1ďjďJ

gjpXq

in krXs, where the gj are irreducible. Then Kj “ kpβjq where gjpβjq “ 0.

2.11 Extension of Normalized Valuations

2.12 Global Fields
Definition. A global field k is either a finite extension of Q or a finite separable extension of Fqptq, where
q is a rational prime power and t is transcendental over Fq.

Lemma 2.12. Let α ‰ 0 be in the global field k. Then there are only finitely many unequivalent valuations
| ¨ | of k for which |α| ą 1.
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Proof. It is clear for Q and Fqptq. Since there are only finitely many archimedean valuations on k, it suffices
to consider the non-archimedean ones. Write

αn ` a1α
n´1 ` ¨ ¨ ¨ ` an “ 0

for some n and a1, . . . , an in either Q or Fqptq. Then

|α|n “ | ´ a1α
n´1 ´ ¨ ¨ ¨ ´ an| ď maxt1, |α|n´1u max

1ďiďn
|ai|

and so
|α| ď maxt1, |a1|, . . . , |an|u

The result then follows from the case for Q and Fqptq.

Let K be a finite separable extension of the global field k. Then for every valuation ν of k we have an
isomorphism (Theorem 2.11)

kν bk K “ K1 ‘ ¨ ¨ ¨ ‘ KJ

where kν is the completion of k with respect to ν and K1, . . . , KJ are the completions of K with respect
to the extensions w1, . . . , wJ of ν to K; the number J :“ Jpνq depends on ν.

Lemma 2.13. Let ω1, . . . , ωN be a basis for K{k. Then for almost all normalized ν we have

ω1o ‘ ¨ ¨ ¨ ‘ ωNo “ O1 ‘ ¨ ¨ ¨ ‘ OJ (♣)

where N “ rK : ks, o “ oν is the ring of integers of k for | ¨ |ν and Oj Ď Kj is the ring of integers for
| ¨ |wj

p1 ď j ď Jq. Here we have identified α P K with its canonical image in kν b K.

Proof. The LHS of p♣q is contained in the RHS provided that |ωn|wj
ď 1 for 1 ď n ď N and 1 ď j ď J .

Since |α|w ď 1 for almost all w, it follows that LHSĎRHS for almost all ν.
To get an inclusion the other way we use the discriminant

Dpγ1, . . . , γNq :“ detpTrK{kpγmγnqqm,n

where γ1, . . . , γN P kν bk K. If γn PRHS (1 ď n ď N), we have (Lemma 2.9.2)

TrK{kpγmγnq “
ÿ

1ďjďJ

TrKj{kν pγmγnq P o

and so Dpγ1, . . . , γNq P o.
Now suppose that

β “

N
ÿ

n“1

bnωn P RHS pbn P kνq

Then for any 1 ď m ď N we have

Dpω1, . . . , ωm´1, β, ωm`1, . . . , ωNq “ b2mDpω1, . . . , ωNq

and so b2mDpω1, . . . , ωNq P o by the discussion in the second paragraph. But since K{k is separable,
Dpω1, . . . , ωNq ‰ 0, and so |Dpω1, . . . , ωNq|ν “ 1 for almost all ν. Thus for almost all ν we have bm P oν ,
and hence RHSĎLHS.
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2.13 Restricted Topological Product
Definition. Let Ωλ pλ P Λq be a family of topological spaces together with Θλ Ď

open
Ωλ for all but finitely

many λ P Λ. The restricted product of the Ωλ with respect to the Θλ is the set
ź1

λPΛ

Ωλ :“

#

pxλq P
ź

λPΛ

Ωλ | xλ P Θλ for all finitely many λ P Λ

+

with topology whose basis consists of sets of the form
ś

λPΛ

Γλ, where Γλ Ď
open

Ωλ for all λ and Γλ “ Θλ for

all but finitely many λ P Λ.

• Let S Ď Λ be a finite subset and put

ΩS :“
ź

λPS

Ωλ ˆ
ź

λRS

Θλ

Then ΩS is open in
ź1

λPΛ
Ωλ, and the open cover ΩS induces the same topology on

ź1

λPΛ
Ωλ as

defined above.

• If Θ1
λ Ď

open
Ωλ is defined for all but finitely many λ, and Θλ “ Θ1

λ for all but finitely many λ. Then
they define the same (canonically isomorphic) restricted product.

Lemma 2.14. Let the notation be as above. Suppose the Ωλ are locally compact and the Θλ are compact.
Then the restricted product is locally compact.

Proof. Let S Ď Λ be finite. Then ΩS is locally compact because a finite product of locally compact spaces is
locally compact. Since the ΩS form the basis for the restricted product, the local compactness follows.

Definition. Let the notation be as above. Suppose that measures µλ are defined on the Ωλ with µλpΘλq “ 1

when Θλ is defined. Define the product measure µ on
ź1

λPΛ

Ωλ to be that for which a basis of measurable

sets in the
ź

λ

Mλ

where Mλ Ď Ωλ has finite µλ-measure and Mλ “ Θλ for almost all λ, and where

µ

˜

ź

λ

Mµ

¸

“
ź

λ

µλpMλq

2.14 Adele Ring
Lemma 2.15. Let K{k be a finite separable extension of the global field k. Then

Ak bk K “ AK (♠)

algebraically and topologically. In this correspondence k bk K “ K Ď Ak bk K, where k Ď Ak, is mapped
identically onto K Ď AK
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Proof. Let ω1, . . . , ωN be a basis for K{k and let ν run through the normalized valuations of k. Then
Ak bk K, with the tensor product topology, is just the restricted product of the

kν bk K “ kνω1 ‘ ¨ ¨ ¨ ‘ kνωN

with respect to the oνω1 ‘ ¨ ¨ ¨ ‘oνωN . Indeed, the topology on Ak bkK is the initial topology with respect
to the map

Ak bk K AN
k

N
ř

i“1

aiωi pa1, . . . , aNq

It is easy to see AN
k is isomorphic to the mentioned restricted product as topological rings (the multiplication

on AN
k is given by that on Ak bk K). By Theorem 2.11,

kν bk K “ kνω1 ‘ ¨ ¨ ¨ ‘ kνωN “
à

1ďjďJ

Kwj

where w1, . . . , wJ | ν are normalized extensions of ν to K. Further, this identification also identifies
(Lemma 2.13)

oνω1 ‘ ¨ ¨ ¨ ‘ oνωN “ Ow1 ‘ ¨ ¨ ¨ ‘ OwJ

for almost all ν. Hence the LHS of p♠q is the restricted product of the Kw with respect to the Ow, where
w runs over all the normalized valuations of K, and this is just the RHS of p♠q.

Corollary 2.15.1. AK “ Ak ‘ ¨ ¨ ¨ ‘ Ak
looooooomooooooon

N -copies

as additive topological groups, where N “ rK : ks. In this

isomorphism, the principal adele K Ď AK is mapped into k ‘ ¨ ¨ ¨ ‘ k.

Proof.
AK “ Ak bk K “ Akω1 ‘ ¨ ¨ ¨ ‘ AkωN “ Ak ‘ ¨ ¨ ¨ ‘ Ak

Theorem 2.16. k is discrete in Ak, and Ak{k is compact in the quotient topology.

Proof. The previous topology shows that it suffices to consider the case for Q and Fqptq. For the first
assertion, since Ak is a topological group, it suffices to show 0 P k is isolated, and we shall do this by
constructing a neighborhood U of 0 that contains no other elements of k.

• k “ Q. Take
U “ tpανqν P AQ | |α8|8 ă 1, |αp|p ď 1 for all p ă 8u

where | ¨ |8 and | ¨ |p are respectively the usual and p-adic absolute values on Q. If b P Q X U , then
b P Z for |b|p ď 1 for all p. Since |b|8 ă 1, b “ 0.
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• k “ Fqptq. Take
U “ tpανqν P Ak | |α8|8 ą 1, |αp|p ď 1 for all pu

where p runs over all irreducible polynomials in Fqptq, | ¨ |p and | ¨ |8 are the normalized absolute
values corresponding to pptq and t´1. If f P Fqptq X U , then f P Fqrts for |f |p ď 1 for all p, and this
also implies |f |8 “ c´deg f for some chosen 0 ă c ă 1; c´deg f ą 1 implies deg f ă 0, i.e. f “ 0.

We proceed to prove the second assertion separately.

• k “ Q. Let β “ pβνqν P AQ. For each finite p, choose rp “ zpp
´xp with zp P Z and xp ě 0 such that

|βp ´ rp|p ď 1; since x is an adele, we can take rp “ 0 for almost all p, and thus r :“
ř

pă8

rp P Q is

well-defined. Thus |βp ´ r| ď 1 for all p ă 8. Now choose s P Z such that |β8 ´ r´ s| ď
1

2
, and put

b “ r ` s. Then β ´ b P W , where

W :“

"

pανqν P AQ | |α8|8 ď
1

2
, |αp|p ď 1 for all p ă 8

*

In sum, we have proved AQ “ Q ` W .

• k “ Fqptq. Let β “ pβνqν P Ak. Similar to the case Q, we can find r P Fqptq such that |βp ´ r|p ď 1

for all irreducible pptq. Note that pFqptqq8 “ Fqpp1{tqq. Write β8 ´ r “
ř

n"´8

cnt
´n “

ř

n!8

c´nt
n, and

let sptq “
ř

ně0

c´nt
n. Then

|β8 ´ r ´ s|8 “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ną0

cnt
´n

ˇ

ˇ

ˇ

ˇ

ˇ

“ cmincn‰0, ně1 n ď c ă 1

where 0 ă c ă 1 is a chosen constant. Since s P Fqrts, |s|p ď 1 for all p. Hence β ´ r ´ s P W , where

W :“ tpανqν P Ak | |α8|8 ď c, |αp|p ď 1 for all pu

In sum, we obtain a similar result AFqptq “ Fqptq ` W .

In either case, we have Ak “ k ` W , and hence a surjective continuous map W Ñ Ak{k induced by the
quotient map Ak Ñ Ak{k. By Tychonov’s theorem, W is compact, and being a continuous image of W ,
Ak{k is also compact.

Corollary 2.16.1. There is a subset U of Ak defined by the inequalities of the type |ξν |ν ď δν where
δν “ 1 for almost all ν, such that

Ak “ k ` U

Proof. Let ω1, . . . , ωN be a basis for k{k1. Then

Ak “ Ak1 bk1 k “ Ak1ω1 ‘ ¨ ¨ ¨ ‘ Ak1ωN

where k1 “ Q or Fqptq, and k is mapped into k1ω1 ‘ ¨ ¨ ¨ ‘ k1ωN . Take U 1 “ Wω1 ‘ ¨ ¨ ¨ ‘WωN , where W is
the subset constructed in the proof of the Theorem. Note that for almost all ν on k, |ωi|ν ď 1. Then it is
clear from the definition of W that U 1 is contained in some U of the type described above.
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We give Ak a measure by the way described in the previous section; it is a Haar measure on Ak (invariant
under translation). Since k is discrete, the Haar measure on k can be chosen to be the counting measure,
and we always make this choice.

Corollary 2.16.2. Ak{k has finite measure in the quotient measure induced by the Haar measure on Ak

and the counting measure on k.

Proof. For Ak{k is compact.

Corollary 2.16.3 (Product Formula).
ś

ν

|ξ|ν “ 1 for all ξ P kˆ.

Proof. We use the surjectivity of the map

CcpGq CcpG{Hq

f

„

fH : xH ÞÑ

ż

H

fpxhqdh

ȷ

where G is an LCH group and H ď G is a closed subgroup, and the quotient integral formula
ż

G

fpxqdx “

ż

G{H

ż

H

fpxhqdhdx

Put K “ Ak{k. Since ξk Ď k, we have ξK “ K. Let f P CcpAkq such that fk “ 1K , the characteristic
function of K. Then

ż

K

1ξKpβqdβ “

ż

K

1Kpξ´1βqdβ “

ż

K

ż

k

fpξ´1pβ ` rqqdrdβ “

ż

Ak

fpξ´1xqdx

By Theorem 2.5, for a measurable set M in Ak and β P Ak, we have volpβMq “ volpMq
ś

ν

|βν |. Hence

ż

K

1ξKpβqdβ “

ż

Ak

fpξ´1xqdx “
ź

ν

|ξ|ν

ż

Ak

fpxqdx “
ź

ν

|ξ|ν

ż

K

1Kpβqdβ

Since ξK “ K and K is compact (so the integral is finite), it follows that
ś

ν

|ξ|ν “ 1.

Lemma 2.17. There is a constant C ą 0 depending only on the global field k with the following property:
let α P Ak be such that

ś

ν

|αν |ν ą C. Then there exists a principal adele β P k Ď Ak, β ‰ 0 such that

|β|ν ď |αν |ν for all ν.

Proof. Let c0 be the total volume of Ak{k, and let c1 be that of the set
"

γ P Ak | |γν |ν ď
1

10
for archimedean ν, |γν |ν ď 1 for non-archimedean ν

*

Then 0 ă c0 ă 8 and 0 ă c1 ă 8 for the number of archimedean places is finite. We show that C “
c0
c1

will do.

40



The set

T “

"

τ P Ak | |τν |ν ď
1

10
|γν |ν for archimedean ν, |τν |ν ď |γν |ν for non-archimedean ν

*

has measure c1
ś

ν

|αν |ν ą c1C “ c0 by Theorem 2.5. Hence in the quotient Ak{k, there must be a pair of

distinct points of T which have the same image in Ak{k, say τ 1, τ 2 P T and τ 1 ´ τ 2 “: β P k. Then

|β|ν “ |τ 1
ν ´ τ 2

nu| ď |αν |ν

for all ν, as required.

Remark 2.18. Let M Ď Ak be measurable such that the restriction to M of the quotient map π : Ak Ñ

Ak{k is injective. We claim
ż

Ak

1Mpxqdx “

ż

Ak{k

1πpKqpxqdx

By the quotient integral formula, one has
ż

Ak

1Mpxqdx “

ż

Ak{k

ż

k

1Mpx ` hqdhdx

We have a bijection
th P k | x ` h P Mu ÐÑ tα P M | α ´ x P ku

Since the measure on k is the counting measure, we have
ż

k

1Mpx ` hqdh “ #th P k | x ` h P Mu “ #tα P M | α ´ x P ku

Now consider πpMq. We have x ` k P πpMq ô #tg P M | g ´ x P ku ě 1, which implies the inequality
ż

Ak{k

1πpMqpxqdx ď

ż

Ak{k

#tg P M | g ´ x P Hudx

with inequality #tg P M | g ´ x P ku “ 1 for almost every x such that x ` k P πpMq. In particular, since
π|M is injective, #tg P M | g´x P ku “ 1 for every x (if g1, g2 P k lie in that set, then g1`k “ x`k “ g2`k,
so g1 “ g2 by injectivity). Hence in our case, we have

ż

Ak

1Mpxqdx “

ż

Ak{k

#tg P M | g ´ x P Hudx “

ż

Ak{k

1πpMqpxqdx

From the above discussion we also see that in general there is an inequality
ż

Ak

1Mpxqdx ě

ż

Ak{k

1πpMqpxqdx

That is, π is measure-decreasing.

Corollary 2.17.1. Let ν0 be a normalized valuation and let δν ą 0 be given for all ν ‰ ν0 with δν “ 1 for
almost all ν. Then there exists a β ‰ 0 P k with |β|ν ď δν for all ν ‰ ν0

Proof. Choose αν P kν with 0 ă |αν |ν ď δν and |αν |ν “ 1 if δν “ 1. We then can choose αν0 P kν0 so that
ś

ν

|αν |ν ą C, where C is as in Lemma 2.17. The resulting β P k given by the same lemma does the job.
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2.15 Strong Approximation Theorem
Theorem 2.18. Let ν0 be any valuation of the global field k. Let V to be the restricted product of the
kν with respect to the oν , where ν runs through all normalized ν ‰ ν0. Then k is dense in V .

Proof. It is equivalent to proving the following statements: given ε ą 0 and a finite set S of valuations
ν ‰ ν0, together with elements αν P kν for ν P S, there exists β P k such that |β ´ αν |ν ă ε for all v P S

and |β|ν ď 1 for all ν R S, ν ‰ ν0.
Let δν and U Ď Ak be as in Corollary 2.16.1. By Corollary 2.17 there is a λ ‰ 0 P k such that

|λ|ν ď δ´1
ν ε pν P Sq

|λ|ν ď δ´1
ν pν R S, ν ‰ ν0q

Then we have Ak “ λU `k. Let α P Ak have component αν at ν P S and 0 elsewhere, and write α “ x`β

for x P λU and β P k. Then

• for ν P S, |αν ´ β|ν “ |α ´ β|ν “ |x|ν ď ε, and

• for ν R S, ν ‰ ν0, |β|ν “ | ´ x|ν ď 1.

2.16 Idele Group
Let R be a commutative topological ring. The group of units Rˆ need not be a topological group if
it is equipped with the subspace topology because the inversion need not be continuous. To make it a
topological group, we equip Rˆ with the topology generated by the subspace topology from R and the
final topology of the inversion x ÞÑ x´1. It is convenient to state this as follows. There is an injection

Rˆ R ˆ R

x px, x´1q

of Rˆ into the topological product RˆR. Topologize Rˆ with the subspace topology inherited from RˆR.
Then clearly Rˆ becomes a topological group, and the inclusion Rˆ Ñ R is continuous.

Definition. The idele group Ik is the group of units Aˆ
k in Ak with the topology defined above.

• For each rational prime p, let αp P IQ be such that αpp “ p and αpq “ 1 for q ‰ p. Then ap Ñ 1 as
p Ñ 8 in Ak, but not in the topology of IQ.

• The multiplicative group kˆ of k is naturally embedded into Ik. Elements of kˆ are called principal
ideles.
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• kˆ Ď Ik is a discrete subgroup. For since k Ď Ak is discrete, it follows that kˆ injects into Ak ˆ Ak

as a discrete subset.

• Ik is the restricted direct product of the kˆ
ν with respect to the units oˆ

ν .

For α P Ik, we write |α| :“
ś

ν

|α|ν , where ν runs over all normalized valuations of k. Then

Ik Rą0

α |α|

is a continuous homomorphism. Let I1k be the kernel of this homomorphism.

• By the product formula 2.16.3, we have kˆ Ď I1k .

Lemma 2.19. I1k is a closed subset of Ak, and the induced topology from Ak on I1k coincides with that of
from Ik.

Proof. Let α P AkzI1k . We must find an open neighborhood W of α in Ak that is disjoint from I1k .

• |α| ă 1. Then there is a finite set S of places such that

- S contains all the places ν with |αν |ν ą 1 and

-
ź

νPS

|αν |ν ă 1.

Now take 0 ă ε ă min
νPS

|α|ν and define

W :“ tx “ pxνq P Ak | |xν ´ αν |ν ă ε for ν P S, |xν |ν ď 1 for ν R Su

Clearly, every element x in W has |x| ă 1.

• |α| ą 1. Put C “
ź

ν : |αν |νą1

|αν |ν ą 1. Then there is a finite set S of places such that S contains

- all the places ν with |αν |ν ą 1,

- all archimedean places, and

- all non-archimedean places ν with Np ď 2C.

For ε ą 0 define

W :“ tx “ pxνq P Ak | |xν ´ αν |ν ă ε for ν P S, |xν |ν ď 1 for ν R Su

Take ε ą 0 small enough so that x P W implies 1 ă
ź

νPS

|xν | ă 2C. Then for x P W , if |xν |ν “ 1 for

all ν R S, then
|x| “

ź

νPS

|xν |ν ą 1
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Otherwise, if |xν |ν ă 1 for some ν R S, then |xν |ν ď pNpq´1 ă C´1 so that

|x| ă

˜

ź

νPS

|xν |ν

¸

p2Cq´1 ă 1

It remains to show the second statement. Let α P I1k . A neighborhood basis of α in Ak consists of sets of
the form

W “ Wε,S :“ tx P Ak | |xν ´ αν |ν ă ε for ν P S, |xν |ν ď 1 for ν R Su

where ε ą 0 and S is a finite set of primes. By replacing ď with “, we see every such a set contains a
neighborhood of α in Ik. Conversely, a neighborhood basis of α in Ik consists of sets of the form

H “ Hε,S :“ tx P Ik | |xν ´ αν |ν ă ε for ν P S, |xν |ν “ 1 for ν R Su

where ε ą 0 and S is a finite set of places containing all archimedean places and all ν with |αν |ν ‰ 1. We
claim for ε small enough

Hε,S X I1k “ Wε,S X I1k

Ď is clear. Let x P Wε,S X I1k . Let ε small enough so that |xν |ν “ |αν |ν for all non-archimedean places ν in
S. Since x is an idele, we then have |xν |ν “ 1 for almost all ν R S. Now it follows from the discreteness of
ν R S that it we take ε far smaller, then we must have |xν |ν “ 1 for all ν R S. (The argument is similar to
that of |α| ą 1 case in the proof of the first statement.)

Theorem 2.20. The quotient I1k{kˆ is compact.

Proof. By the previous lemma it suffices to find a compact subset W of Ak such that the projection
W X I1k Ñ I1k{kˆ is surjective.

Let C be as in Lemma 2.17, and take α P Ik such that |α| ą C. Take

W “ tx P Ak | |xν |ν ď |αν |ν for all νu

Let y P I1k . By the same lemma there exists r P kˆ such that |r|ν ď |y´1
ν αν | for all ν. Then ry P W , as

required.

2.17 Ideal and Divisors
First let k be a number field. The set of all fractional ideals forms an abelian group Ik free on the set of
finite primes of the ring of integers ok of k. Denote by Pk the subgroup of all principal fractional ideals in
k.

Definition. The ideal class group of k is the quotient Clpkq :“ Ik{Pk
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Equip Ik with the discrete topology. Then the natural map

Ik Ik

α
ś

p

pordp α

is continuous, and the image of kˆ Ď Ik is exactly the subgroup of principal ideals.

Theorem 2.21. #Clpkq ă 8.

Proof. The continuous map Ik Ñ Ik is surjective, and so is the induced map Ik{kˆ Ñ Clpkq. Since Ik{kˆ

is compact by Theorem 2.20, so is the continuous image Clpkq. But Clpkq is equipped with the discrete
topology, this means Clpkq is a finite group.

Now consider a finite separable extension k of Fqptq, where t is transcendental over the finite field Fq.

2.18 Units
Let S be a finite set of places containing all archimedean places. The intersection kS :“ Ik,S X kˆ is called
the group of S-units. Explicitly,

kS :“ tr P kˆ | |r|ν “ 1 for all ν R Su

When S “ S8 consists of only archimedean places of k, then kS8 is the usual group of units oˆ
k .

Lemma 2.22. Let 0 ă c ď C ă 8. Then the set

tr P kS | c ď |x|ν ď C for ν P Su

is finite.

Proof. We have

tr P kS | c ď |x|ν ď C for ν P Su “ kˆ X Ik,S X tx P Ik | c ď |x|ν ď C for ν P Su

kˆ is discrete and the latter two sets are compact, so the required set is both discrete and compact, whence
finite.

Lemma 2.23. The set

tr P k | |r|ν “ 1 for all places νu

is finite, and consists of all roots of unity of k.
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Proof. A root of unity r P kˆ clearly satisfies |r|ν “ 1 for all ν. Conversely, by the previous lemma with
c “ C “ 1 and any S we see #tr P k | |r|ν “ 1 for all places νu ă 8, and since they form a (finite) group,
they are all roots of unity.

Theorem 2.24. kS is a direct sum of a finite cyclic group and a free abelian group of rank s ´ 1, where
s “ #S.

Proof. Let IS consist of ideles α with |αν |ν “ 1 for all ν R S. By definition, this is an open subgroup of Ik.
If we put

I1S :“ IS X I1k

then I1S is an open subgroup of I1k , and

I1S{kS “ I1S{pI1S X kˆq Ď I1S{kˆ

is also open. Since it is a subgroup, it is also closed, and hence compact by Theorem 2.20.
Consider the map

log : IS RS

α plog |αν |νqνPS

where ν1, . . . , νs are the places in S. We have the following properties.

(i) kS X ker log is a finite group consisting of roots of unity of k. This follows from Lemma 2.23.

(ii) log kS is discrete. This is because by Lemma 2.22

tr P kS | 2´1 ď |r|ν ď 2 for all ν P Su

is a finite set.

(iii) log IS “
ź

νPS, ν-8

Z log p#oν{pνq ˆ
ź

νPS, ν|8

R. This is clear.

(iv) log I1S “

"

pxνqνPS P log IS |
ř

νPS

xν “ 0

*

. Indeed, α P I1S if and only if
ś

νPS

|αν |ν “ 1, or
ř

νPS

log |αν |ν “ 0.

Since I1S{kS is compact and log is continuous, it follows that log I1S{ log kS is compact as well. Hence,
R b log kS is the same rank as R b log I1S. But it follows from (iii) and (iv) that dimR b log I1S “ #S ´ 1.
This finishes the proof.

2.19 Inclusion and Norm Maps for Adeles, Ideles and Ideals
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Chapter 3

Cyclotomic Fields and Kummer Extensions

3.1 Cyclotomic Fields

3.2 Kummer Extensions
Lemma 3.1. The discriminant of Kp n

?
aq over K divides nnan´1; p is unramified if p - na. If af is the

least power of a such that xn ´ af ” 0 pmod qp is solvable, then f is the residue class degree.
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Chapter 4

Cohomology of Groups

4.1 Definition of Cohomology

4.2 The Standard Complex

4.3 Homology

4.4 Change of Groups
Let A be a G-module and A1 a G1-module. If φ : G1 Ñ G is a group homomorphism and f : A Ñ A1 is a
Z-homomorphism with the property that for each g1 P G1 and a P A

fpφpg1qaq “ g1fpaq

then the pair pφ, fq induces a cochain map on the HomGpP,Aq Ñ HomG1pP 1, Aq (with P, P 1 the standard
complex)

HomGpPi, Aq HomG1pP 1
i , Aq

ZrGi`1s
α

Ñ A ZrG1i`1s
f˝α˝φ
ÝÑ A1

hence a homomorphism on cohomology class

pφ, fq˚ : HqpG,Aq HqpG1, A1q

for any G-module A, where we regard A as a G1-module via f. On the other hand,

• Take G1 “ H ď G and φ : H Ñ G to be the embedding. Then the induced map is called the
restriction homomorphism

res “ pφ, idq˚ : HqpG,Aq HqpH,Aq
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• Take G1 “ H � G and φ : G Ñ G{H to be the quotient map. For any G-module A we have a
G{H-module AH and the natural inclusion ι : AH Ñ A. The map

inf “ pφ, ιq˚ : HqpG{H,AHq HqpG,Aq

is called the inflation homomorphism.

• Let t P G. Take φ : s ÞÑ tst´1 and f : a ÞÑ t´1a. Then we have the map

σt “ pφ, fq˚ : HqpG,Aq HqpG,Aq

Proposition 4.1. σt defined right above is the identity map for all q ě 0.

Proof. When q “ 0, we think of σt as the composition

AG AG AG
φ˚ f˚

on which the G-action on the second A is via φ; for clarity we denote it by B. φ˚ gives an isomorphism
t.AG – B, and f˚ is just the multiplication by t´1. Hence σt is the identity map when q “ 0. For general
case, we conduct dimension shifting. We have a commutative diagram

HqpG, JG bG Aq Hq`1pG,Aq Hq`1pG,ZrGs bG Aq “ 0

HqpG, JG bG Aq Hq`1pG,Aq Hq`1pG,ZrGs bG Aq “ 0

σt„

δ

σt

δ
„

By induction hypothesis the leftmost arrow is identity, and hence so is the middle one. Here JG is defined
by the exact sequence 0 Ñ Z Ñ ZrGs Ñ JG Ñ 0.

Now consider homology. A group homomorphism φ : G1 Ñ G induces a chain map φ b id : P 1 bG1 A Ñ

P bG A, and hence a homomorphism of homology class

φ˚ : HqpG
1, Aq HqpG,Aq

• Take G1 “ H ď G and φ : H Ñ G to be the embedding. The induced map

cores “ φ˚ : HqpH,Aq HqpG,Aq

is called the corestriction map.

Let H ď G and A an H-module. Form a G-module indGH A :“ HomHpZrGs, Aq on which G acts by
pσfqpgq :“ fpgσq; this makes indGH A a left G-module. Consider the homomorphism

f : indGH A A

φ φp1q

which is compatible with the inclusion ι : H Ñ G. Hence the pair pι, fq induces a map on cohomology
class

pι, fq˚ : HqpG, indGH Aq HqpH,Aq
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Proposition 4.2 (Shapiro’s lemma). The map pι, fq˚ is an isomorphism.

Proof. Suppose q “ 0; the map becomes

pindGH AqG “ H0pG, indGHpAqq H0pH,Aq “ AH

φ : G Ñ A φp1q

Since φ is fixed by G, φpgq “ σφpgq “ φpgσq for all σ, g P G; taking g “ 1, we obtain φp1q “ φpσq for all
σ P G. Hence it is an isomorphism. The general q ą 0 case follows from dimension shifting.

4.5 The Restriction-Inflation Sequence

4.6 The Tate Groups
Proposition 4.3. If rG : Hs “ n, then cores ˝ res “ n.

Corollary 4.3.1. If #G “ n, then all the groups ĤqpG,Aq are annihilated by n.

Corollary 4.3.2. If A is a finite G-module, then all the groups ĤqpG,Aq are finite.

Corollary 4.3.3. Let S be a Sylow p-subgroup of G. Then

res : ĤqpG,Aq ĤqpS,Aq

is injective on the p-primary component of ĤqpG,Aq.

Corollary 4.3.4. If an element x P ĤqpG,Aq restricts to zero in ĤqpS,Aq for all Sylow subgroups S of G,
then x “ 0.

4.7 Cup-products
Theorem 4.4. Let G be a finite group. Then there exists one and only one family of homomorphisms

ĤqpG,Aq b ĤqpG,Bq Ĥp`qpG,A b Bq

a b b a.b

(the unadorned tensor product is over Z) defined for all integers p, q and all G-modules A,B such that

(i) These homomorphisms are functorial in A and B;

(ii) For p “ q “ 0 they are induced by the natural product

AG b BG pA b BqG
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(iii) If 0 Ñ A Ñ A1 Ñ A2 Ñ 0 is an exact sequence of G-modules, and if 0 Ñ A b B Ñ A1 b B Ñ

A2 b B Ñ 0 is exact, then for a2 P ĤqpG,A2q and b P ĤqpG,Bq we have

δpa2q.b “ δpa2.bq P Ĥp`q`1pG,A b Bq

(iv) If 0 Ñ B Ñ B1 Ñ B2 Ñ 0 is an exact sequence of G-modules, and if 0 Ñ A b B Ñ A b B1 Ñ

A b B2 Ñ 0 is exact, then for a P ĤppG,Aq and b2 P ĤqpG,B2q we have

a.pδb2q “ p´1qpδpa.bq P Ĥp`q`1pG,A b Bq

Proof. Let pPnqnPZ be a complete resolution for G. The proof of existence depends on constructing G-
module homomorphisms

φp,q : Pp`q Pp b Pq

for all pairs of integers p, q satisfying the following two conditions:

(1) φp,q ˝ d “ pd b 1q ˝ φp`1,q ` p´1qpp1 b dq ˝ φp,q`1

(2) pε b εq ˝ φ0,0 “ ε

where ε : P0 Ñ Z is defined by εpgq “ 1 for all g P G. Once the φp,q are defined, we proceed as follows. Let
f P HomGpPp, Aq, g P HomGpPq, Bq be cochains, and define the product cochain f.g P HomGpPp`q, AbBq

by
f.g “ pf b gq ˝ φp`q

Then it follows from (1) that

dpf.gq “ pf b gq ˝ φp`q ˝ d

“ pf b gq ˝ ppd b 1q ˝ φp`1,q ` p´1qpp1 b dq ˝ φp,q`1q

“ pdf b gq ˝ φp`1,q ` p´1qppf b dgq ˝ φp,q`1

“ df.g ` p´1qpf.dg

Hence if f, g are cocycles, so is f.g, and the cohomology class of f.g depends only on the classes of f, g: in
other words, we have a homomorphism

ĤqpG,Aq b ĤqpG,Bq Ĥp`qpG,A b Bq

(i) is clear, and (ii) follows from (2). For (iii), we compute directly. Consider the exact sequence

0 HomGpPp, Aq HomGpPp, A
1q HomGpPp, A

2q 0

Let α2 P HomGpPp, A
2q be a representative cocycle of the class a2, and lift α2 back to α1 P HompPp, A

1q;
dα1 has zero image in HomGpPp`1, A

2q and therefore lies in HomGpPp`1, Aq. The class of dα1 in Ĥp`1pG,Aq

is δpα2q. Hence if β P HomGpPp, Bq is a cocycle in the class b, then
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• α2.β represents the class a2.b;

• dpα1.βq represents δpa2.bq;

• dα1.β represents δa2.b.

But since dβ “ 0, we have dpα1.βq “ dα1.β; hence δpa2.bq “ δa2.b. The proof of (iv) is similar.
It remains to construct the φp,q which we shall do for the standard complete resolution (Pq “ ZrGq`1s

if q ě 0; P´q “ P_
q´1 if q ě 1). If q ě 1, P´q “ P_

q´1 has a Z-basis consisting of all pg˚
1 , . . . , g

˚
q q that sends

pg1, . . . , gqq to 1 and every other basis element to 0. In terms of this basis of P´q, the coboundary map
d : P´q Ñ P´q´1 is given by

dpg˚
1 , . . . , g

˚
q q “

ÿ

sPG

q
ÿ

i“0

p´1qipg˚
1 , . . . , g

˚
i , s

˚, g˚
i`1, . . . , g

˚
q q

and d : P0 Ñ P´1 by dpg0q “
ř

sPG

ps˚q.

Now define φp,q : Pp`q Ñ Pp b Pq as follows:

(a) if p ě 0 and q ě 0,
φp,qpg0, . . . , gp`qq “ pg0, . . . , gpq b pgp, . . . , gp`qq

(b) if p ě 1 and q ě 1,
φ´p,´qpg

˚
1 , . . . , g

˚
p`qq “ pg˚

0 , . . . , g
˚
p q b pg˚

p , . . . , g
˚
p`qq

(c) if p ě 0 and q ě 1,

φp,´p´qpg
˚
1 , . . . , g

˚
p q “

ÿ

pg1, s1, . . . , spq b ps˚
p , . . . , s

˚
1 , g

˚
1 , . . . , g

˚
q q

φ´p´q,ppg
˚
1 , . . . , g

˚
p q “

ÿ

pg˚
1 , . . . , g

˚
q , s

˚
1 , . . . , s

˚
pq b psp, . . . , s1, gqq

φp`q,´qpg0, . . . , gpq “
ÿ

pg0, . . . , gp, s1, . . . , sqq b ps˚
q , . . . , s

˚
1q

φ´q,p`qpg0, . . . , gpq “
ÿ

ps˚
1 , . . . , s

˚
q q b psq, . . . , sq, g0, . . . , gpq

Note that φ0,0pgq “ pgq b pgq, so (2) is verified easily. The verification of (1) is tedious but straightforward.
This proves the existence part. The uniqueness follows easily via dimension shifting.

Proposition 4.5. Let us use the identification A b B “ B b A and pA b Bq b C “ A b pB b Cq. Then

1. pa.bq.c “ a.pb.cq.

2. a.b “ p´1qdim a. dim bb.a.

3. respa.bq “ respaq. respbq.

4. corespa. respbqq “ corespaq.b.
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Proof.

1.

2.

3.

4. Let H ď G be a subgroup, a P ĤppH,Aq and b P ĤqpG,Bq. In the case p “ q “ 0, a is represented
by α P AH so corespaq is represented by NG{Hα P AG; b is represented by β P BG so that corespaq.b

is represented by
NG{Hα b β “

ÿ

siα b β “
ÿ

sipα b βq “ NG{Hpα b βq

On the other hand, a. respbq is represented by αbβ P pAbBqH so that corespa. respbqq is represented
by NG{Hpα b βq.

Now we apply dimension shifting to finish the general case. Let δ˚ : Ĥ0pG,A˚q
„
Ñ Ĥ˚pG,Aq be the

connecting homomorphisms (˚ “ p, q). Then for a P Ĥp and b PP Ĥq

corespa. respbqq “ corespδpa
1. respδqb

1qq

“ corespδppa
1.δqpres b

1qqq

“ δp corespp´1qpδqpa
1. res b1qq

“ p´1qpδpδq corespa
1. res b1q

“ p´1qpδpδqpcorespa
1q.bq “ ¨ ¨ ¨ ¨ ¨ ¨ “ corespaq.b

Here we use the fact that res and cores commute with δ‚.

Proposition 4.6. Let H �G, p, q ą 0, α P HppG{H,Aq and β P HqpG{H,Bq. Then

infG{Hpαq Y infG{Hpβq “ infG{Hpα Y βq P Hp`qpG,A b Bq

Proof. This follows at once from the definition of inflation and that of cup product in positive dimension.

Let A,B,C be G-modules and φ : A b B Ñ C a G-homomorphism. Then we have a map

ĤppG,Aq b ĤqpG,Bq ĤqpG,A b Bq ĤqpG,Cq

a b b φ˚pa Y bq

Y φ˚

called the cup-product relative to φ.
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4.8 Computations of Cup Products in Low Dimensions
In the following G denotes a finite group, and A,B, . . . are G-modules. If a P AG, we denote by a0 its
image in Ĥ0pG,Aq. If a P A with Na “ 0, denote by a0 its image in Ĥ´1pG,Aq.

Lemma 4.7. Let a P AG, fa P HomGpZ, Aq such that fap1q “ a and x P ĤnpG,Bq. Then the cup product

a0 Y x P ĤnpG,A b Bq

equals the image of x under the homomorphism induced by fa b 1 : B “ Z b B Ñ A b B.

Proof. Consider first the case n ě 0, and we deal with it by induction. Say x is represented by the cycle
ξ. When n “ 0, a0 Y x is represented by a b ξ, and pfa b 1qpξq “ fap1q b ξ “ a b ξ. For n ą 0, consider
the exact sequence

0 Z ZrGs JG 0

Since it splits, it remains exact after tensoring with B, and since ZrGs b B is free over G, the connecting
homomorphism

δ : Ĥn´1pG, JG b Bq ĤnpG,Bq

is an isomorphism; say x “ δy, y P Ĥn´1. Then

a0 Y x “ a0 Y δy “ δpa0 Y yq “ δppfa b 1q˚pyqq “ pfa b 1q˚pδyq “ pfa b 1q˚pxq

For the case n ě 0, use another exact sequence, namely

0 IG ZrGs Z 0

to do dimension shifting.

Lemma 4.8. Given a P A with Na “ 0, and let f : G Ñ B be a 1-cocycle, f P Ĥ1pG,Bq its cohomology
class. Then

a0 Y f “ c0 P Ĥ0pG,A b Bq

with
c “ ´

ÿ

tPG

ta b fptq

Proof. Use the exact sequence as above.

0 Z ZrGs JG 0

Since Ĥ1pG,ZrGs b Bq “ 0, there exists b1 P ZrGs b B such that fptq “ db1ptq “ tb1 ´ b1 for all t P G. Let
b2 P B2 :“ JG b B be the image of b1; then f “ δpb2q P Ĥ1pG,Bq. By the preceding lemma

a0 Y f “ ´δpa0 Y b2q “ ´δpa b b2q
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Recall that δ : Ĥ´1pG,A b B2q Ñ Ĥ0pG,A b Bq is defined by norm. Thus

´δpa b b2q “ ´NGpa b b1q “ ´
ÿ

tPG

ta b tb1

But
´
ÿ

tPG

ta b tb1 “ ´
ÿ

tPG

ta b fptq `
ÿ

tPG

ta b b1 “ ´
ÿ

tPG

ta b fptq

for Na “ 0.

Recall the exact sequence

0 IG ZrGs Z 0

Also, for s P G denote by is the element s ´ 1 P IG. Then pisq0 P Ĥ´1pG, IGq. Let s P Ĥ´2pG,Zq be such
that ds “ pisq0; this defines by passing to the quotient the canonical isomorphism

G{G1 Ĥ´2pG,Zq

s s

Lemma 4.9. Let f : G Ñ B be a 1-cocycle and f P H1pG,Bq its cohomological class. Then for every
s P G,

s Y f “ fpsq0 P Ĥ´1pG,Bq

where we identity Z b B with B.

Proof. The connecting homomorphism δ : Ĥ´1pG,Bq Ñ Ĥ0pG, IG b Bq is an isomorphism, so it suffices
to show δps Y fq “ δpfpsq0q P Ĥ0pG,B b IGq. By definition,

δpfpsq0q “
ÿ

tPG

t b tfpsq

On the other hand, by the preceding lemma

δps Y fq “ δpsq Y f “ pisq0 Y f “ ´
ÿ

tPG

tis b fptq “
ÿ

tPG

pt ´ tsq b fptq

But fptq “ fptsq ´ tfpsq, we then have
ÿ

tPG

pt ´ tsq b fptq “
ÿ

tPG

t b fptq ´
ÿ

tPG

ts b pfptsq ´ tfpsqq

“
ÿ

tPG

t b fptq ´
ÿ

tPG

ts b fptsq `
ÿ

tPG

ts b tfpsq

“
ÿ

tPG

ts b tfpsq

Finally,
ÿ

tPG

ts b tfpsq ´
ÿ

tPG

t b tfpsq “ Npps ´ 1q b fpsqq
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Lemma 4.10. Let u : G ˆ G Ñ B be a 2-cocycle, u P H2pG,Bq its cohomological class. Then for all
s P G,

s Y u “ a0 P Ĥ0pG,Bq

where a “
ř

tPG

upt, sq.

Proof. Use the exact sequence

0 B B1 B2 0

Since H2pG,B1q “ 0, u “ du1 for some 1-cocycle u1 : G Ñ B1. Let u2 : G Ñ B2 be the image of u1; then
δpu2q “ u. Then by the preceding lemma

s Y δu2 “ δpu2psq0q “
ÿ

tPG

tu1psq

But upt, sq “ du1pt, sq “ tu1psq ´ u1ptsq ` u1ptq, hence
ÿ

tPG

tu1psq “
ÿ

tPG

upt, sq ` u1ptsq ´ u1ptq “
ÿ

tPG

upt, sq

Corollary 4.10.1. Let G be a finite group of order n. Then the cupping

Ĥ´2pG,Zq ˆ H2pG,Zq Ĥ0pG,Zq “ Z{nZ

is given by s Y δχ “ nχpsq mod n, where χpsq P Q is such that χpsq ” χpsq pmod 1q.

Proof. Define δχ : G ˆ G Ñ Z by

δχpτ, σq :“ χpτq ` χpσq ´ χpτσq

Then δχ represents δχ P H2pG,Zq. Summing over τ P G, we obtain
ÿ

τPG

δχpτ, σq “ nχpσq

The result follows from Lemma above.

Corollary 4.10.2. Let G be a finite cyclic group of order n, A a G-module and φ a generator of G. Let
χ be a generator of HomZpG,Q{Zq. Then cupping with δχ and with φ give mutually inverse isomorphism

ĤppG,Aq Hp`2pG,Aq

Yδχ

Yφ

Proof. Indeed, we have s Y δχ “ δχ Y s “ nχpφq ” 1 pmod nq.
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4.9 Cyclic Groups: Herbrand Quotient
Lemma 4.11. Let G be a finite group and let MM 1 be two finite-dimensional QrGs-modules such that
MR “ M bQ R and M 1

R “ M 1 bQ R are isomorphic as RrGs-modules. Then M, M 1 are isomorphic as
QrGs-modules.

Proof. Let K be any field, L{K be a field extension and A a K-algebra. If V is any K-vector space denote
by VL the L-vector space V bKL. LetM, M 1 be A-modules which are finite dimensional as K-vector space.
An A-homomorphism φ :M Ñ M 1 induces an AL-homomorphism φb 1 :ML Ñ M 1

L, and φ ÞÑ φb 1 gives
rise to an L-isomorphism

HomApM.M 1qL – HomAL
pML,M

1
Lq

Now take K “ Q, L “ R, A “ QrGs, so that AL “ RrGs. The hypotheses imply M, M 1 have the same
dimension over Q, so by choosing bases of M, M 1 we can speak of the determinant of an element of
HomQrGspM,M 1q, or of HomRrGspMR,M

1
Rq. (It will of course depends on the bases chosen.)

From the isomorphism above it follows that if ξi are a Q-basis of HomQrGspM,M 1q, they are also an R-
basis of HomRrGspMR, M

1
Rq. SinceMR, MR1 are RrGs-isomorphic, there exist ai P R such that detp

ř

aiξiq ‰

0. Hence the polynomial
F ptq :“ detp

ÿ

tiξiq P Qrt1, . . . , tms

where ti are independent indeterminants over Q, are not identically zero, since F paq ‰ 0. Since Q is
infinite, there exist bi P Q such that F pbq ‰ 0, and then

ř

biξi is a QrGs-isomorphism of M onto M 1.

Proposition 4.12. Let E be a finite-dimensional real representation space of G, and let L, L1 be two
lattices of E which span E and are invariant under G. Then if either of hpLq, hpL1q is defined, so is the
other, and they are equal.

Proof. Apply Lemma with M “ LbQ, M 1 “ L1 bQ; MR and M 1
R are RrGs-isomorphic to E. Hence there

exists a QrGs-isomorphism ε : L b Q Ñ L1 b Q. Say φpLq Ď
1

N
L1 for some N P N. Hence f “ Nφ maps

L injectively into L1. Consider the exact sequence

0 L L1 cokerpfq 0
f

Since L, L1 have the same rank as abelian groups, cokerpfq is finite, and hence hpLq “ hpL1q if either one
is defined.

4.10 Coholomogical Triviality
A G-module A is cohomologically trivial if for every subgroup H ď G, ĤqpH,Aq “ 0 for all q P Z.

Lemma 4.13. Let p be a prime number, G a p-group and A a G-module such that pA “ 0. TFAE

(i) A “ 0.
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(ii) H0pG,Aq “ 0.

(iii) H0pG,Aq “ 0.

Proof. Clearly (i) implies (ii) and (iii).
Assume (ii). Suppose A ‰ 0 and pick a nonzero element x P A. The submodule B “ xZrGs is finite

of order a power of p. Consider the G-orbit of the elements of B; the orbit-stabilizer formula tells us that
every orbit is of p-power order. There is at least one fixed point, namely 0, so there are at least p fixed
point; hence H0pG,Aq “ AG ‰ 0.

Assume (iii). Consider H0pG,HomFppA,Fpqq “ pHomFppA,FpqqG “ HomGpA,Fpq “ HomFppAG,Fpq.
Since AG “ H0pG,Aq “ 0, it follows H0pG,HomFppA,Fpqq “ 0, and thus HomFppA,Fpq “ 0. Hence
A “ 0.

Lemma 4.14. With the same hypothesis as above, suppose H1pG,Aq “ 0. Then A is a free module over
FprGs.

Proof. Since pA “ 0, pH0pG,Aq “ 0, and therefore H0pG,Aq is a Fp-vector space. Take a basis eλ of this
space and lift each eλ to aλ P A. Let A1 be the submodule of A generated by the aλ, and let A2 “ A{A1.
We then have an exact sequence

H0pG,A1q H0pG,Aq H0pG,A
2q 0α

where by our construction α is an isomorphism. Hence H0pG,A
2q “ 0, and by Lemma 4.13 A2 “ 0. Thus

the aλ generate A as a G-module, and hence define a surjective FprGs-homomorphism φ : L Ñ A where L
is a free FprGs-module. Since H1pG,Aq “ 0, there is an exact sequence

0 H0pG, kerφq H0pG,Lq H0pG,Aq 0
β

By construction β is an isomorphism, so H0pG, kerφq “ 0 and hence kerφ “ 0 by Lemma 4.13. Thus
φ : L Ñ A is an isomorphism.

Theorem 4.15. Let G be a p-group and A a G-module such that pA “ 0. TFAE

(i) A is a free FprGs module.

(ii) A is an induced module.

(iii) A is cohomologically trivial.

(iv) ĤqpG,Aq “ 0 for some q P Z.

Proof. Clearly (i)ñ(ii)ñ(iii)ñ(iv). Now suppose (iv). By dimension shifting we construct a module B
such that pB “ 0 and ĤnpG,Aq “ Ĥn´q´2pG,Bq for all n.

• n “ q: Then 0 “ ĤqpG,Aq “ Ĥ´2pG,Bq “ H1pG,Bq. Thus B is free over FprGs by Lemma 4.14.
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• n “ ´2: H1pG,Aq “ Ĥ´2pG,Aq “ Ĥ´q´4pG,Bq “ 0, for B is free. Hence A is free over FprGs by
Lemma 4.14.

Theorem 4.16. Let G be a p-group and A a G-module without p-torsion. TFAE:

(i) A is cohomologically trivial.

(ii) ĤqpG,Aq “ Ĥq`1pG,Aq “ 0 for some q P Z.

(iii) A{pA is free over FprGs.

Proof. (i)ñ(ii) is clear. Assume (ii). Consider the exact sequence

0 A A A{pA 0
p

Passing to the cohomology gives the exact sequence

ĤqpG,Aq ĤqpG,Aq ĤqpG,A{pAq Ĥq`1pG,Aq Ĥq`1pG,Aq

Then ĤqpG,A{pAq “ 0, and thus A{pA is free over FprGs by Theorem 4.15 above. Finally, assume (iii).
From the same exact sequence we see ĤqpH,Aq “ 0 for all q and all subgroups H ď G (note that A{pA is
also FprHs-free).

Corollary 4.16.1. Let A be a G-module free over Z satisfying the equivalent conditions of Theorem 4.16.
Then for any torsion-free G-module B, the G-module N “ HomZpA,Bq is cohomologically trivial.

Proof. Since A is free over Z, the exact sequence

0 B B B{pB 0
p

gives an exact sequence

0 N N HomZpA,B{pBq 0
p

so that N has no p-torsion point and N{pN – HomZpA,B{pBq “ HomZpA{pA,B{pBq. Since A{pA is
FprGs-free, it is a direct sum of the s.A1, where A1 ď A{pA is some subgroup. Hence N{pN is a direct
sum of the s.HomZpA1, B{pBq, and hence N{pN is induced. That N is cohomologically trivial now follows
from Theorem 4.15 and Theorem 4.16.

Theorem 4.17. Let G be a finite group, A a G-module which is Z-free, and Gp a Sylow p-subgroup of G.
TFAE

(i) For each prime p, the Gp-module A satisfies the equivalent conditions of Theorem 4.16.
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(ii) A is a projective G-module.

Proof. That (ii)ñ(i) is clear. Assume (i). Choose an exact sequence

0 Q G A 0

where F is a free G-module. Since A is Z-free, this gives an exact sequence

0 HomZpA,Qq HomZpA,F q HomZpA,Aq 0

By Corollary 4.16.1 HomZpA,Qq is cohomologically trivial as a Gp-module for all p, and hence the group
H1pG,HomZpA,Qqq is trivial by Corollary 4.3.4; it follows that HomGpA,F q Ñ HomGpA,Aq is surjective,
and hence the identity map idA extends to a G-homomorphism A Ñ F , i.e. A is G-projective.

Theorem 4.18. Let A be any G-module. TFAE

(i) For each prime p, ĤqpGp, Aq “ 0 for two consecutive values of q (which may depend on p).

(ii) A is cohomologically trivial.

(iii) There is an exact sequence 0 Ñ B1 Ñ B0 Ñ A Ñ 0 in which B0 and B1 are G-projective.

Proof. That (iii)ñ(ii)ñ(i) is clear. Assume (i) and choose an exact sequence

0 B1 B0 A 0

with B0 free over ZrGs. Then ĤqpGp, B1q – Ĥq´1pGp, Aq for all q and all p, and hence the condition (i)
holds for B1. Since B1 is a subgroup of B0, B1 is Z-free. Therefore B1 is G-projective by Theorem 4.17

4.11 Tate’s Theorem
Theorem 4.19. Let G be a finite group, B and C two G´modules and f : B Ñ C a G-homomorphism.
For each prime p, let Gp be a Sylow p-subgroup of G, and suppose that there exists an integer np such that

f˚
q : ĤqpGp, Bq ĤqpGp, Cq

is surjective for q “ np, bijective for q “ np `1 and injective for q “ np `2. Then for any subgroup H ď G

and any integer q,
f˚
q : ĤqpGp, Bq ĤqpGp, Cq

is an isomorphism.
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Proof. Let B˚ “ HomZpZrGs, Bq and let i : B Ñ B˚ be the injection defined by ipbqpgq “ gb. Then
pf, iq : B Ñ C ‘ B˚ is injective, so that we have an exact sequence

0 B C ‘ B˚ D 0

Since B˚ is cohomologically trivial, the cohomology of C ‘ B˚ is the same as that of C. Hence the
cohomology sequence and the assumption imply ĤqpGp, Dq “ 0 for q “ np and q “ np ` 1. It follows from
Theorem 4.18 that D is cohomologically trivial, whence the result.

Theorem 4.20. Let A,B,C be three G-modules and φ : A b B Ñ C a G-homomorphism. Let q be a
fixed integer and a a given element of ĤqpG,Aq. Assume that for each prime p there exists an integer np
such that the map

ĤqpGp, Bq ĤqpGp, Cq

b φ˚
q presG{Gppaq Y bq

is surjective for q “ np, bijective for q “ np ` 1 and injective for q “ np ` 2. Then for all subgroups H ď G

and all integers, the cup-product with resG{Hpaq induces an isomorphism

ĤnpH,Bq Ĥn`qpH,Cq

b φ˚
n`qpresG{Hpaq Y bq

Proof. The case q “ 0 is essentially Theorem 4.19. We have a P Ĥ0pG,Aq; choose α P AG representing a.
Then α also represented resG{Hpaq for all H ď G. Define

f : B C

β φpα b βq

Since α P AG, f is a G-homomorphism. We claim that for every b P ĤnpH,Bq

φ˚presG{Hpaq Y bq “ f˚pbq P ĤnpH,Cq (♠)

The n “ 0 is just definition, and the general case follows from dimension shifting: for example, consider
the commutative diagram with exact rows

0 B1 B˚ B 0

0 C 1 C˚ C 0

f 1 1bf f (˛)

where B˚ “ ZrGsbB and C˚ “ ZrGsbC. Then we have the commutative diagram with horizontal arrows
being isomorphisms

ĤnpH,Bq Ĥn`1pH,B1q

ĤnpH,Cq Ĥn`1pH,C 1q

f˚

δ

f 1˚

δ
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The diagram p˛q remains exact after tensoring with A over Z; let φ2 : AbB1 Ñ C 1 be the homomorphism
induced by φ : A b B Ñ C. Then by induction hypothesis

δpf˚pbqq “ f 1˚δpbq “ φ2˚presG{Hpaq Y δpbqq

“ φ2˚δpresG{Hpaq Y bq

“ δφ˚presG{Hpaq Y bq

Since δ is an isomorphism, the result follows.
The general case q P Z now follows by another piece of dimension shifting. For example, consider the

exact sequence
0 A1 A˚ A 0

where A˚ “ ZrGs bA; this gives rise to isomorphisms δ : ĤqpH,Aq Ñ Ĥq ` 1pH,A1q. Let u “ resG{Hpaq P

ĤqpH,Aq; then u1 “ δu “ resG{Hpδaq. Also φ : A b B Ñ C induces φ1 : A1 b B Ñ C 1. Consider the
diagram

ĤnpH,Bq Ĥn`qpH,A b Bq Ĥn`qpH,Cq

ĤnpH,Bq Ĥn`q`1pH,A1 b Bq Ĥn`q`1pH,C 1q

uY φ˚

δ

u1Y φ1˚

which is commutative, for

δφ˚pu Y bq “ φ1˚δpu Y bq “ φ1˚pδpuq Y bq “ φ1˚pu1 Y bq

By induction hypothesis, the bottom line is an isomorphism, and since δ is an isomorphism, so is the top
line.

Theorem 4.21. Let A be a G-module and a P H2pG,Aq. For each prime p, let Gp be a Sylow p-subgroup
of G, and assume that

(i) H1pGp, Aq “ 0.

(ii) H2pGp, Aq is generated by resG{Gppaq and has order equal to that of Gp.

Then for all H ď G and all integers n, cupping with resG{Hpaq induces an isomorphism

ĤnpH,Zq Ĥn`2pH,Aq

Proof. Take B “ Z, C “ A, q “ 2, np “ ´1 in Theorem 4.20.

• n “ ´1. The surjectivity follows from (i).

• n “ 0. Ĥ0pGp,Zq is cyclic of order #Gp, so the bijectivity follows from (ii).

• n “ 1. The injectivity follows from the fact that Ĥ1pGp,Zq “ HomZpGp,Zq “ 0.

Hence all the hypotheses of Theorem 4.20 are satisfied.
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Chapter 5

Local Class Field Theory

5.1 The Brauer Group of a Local Field
LetK be a local field and L a finite Galois extension ofK. We writeH2pL{Kq instead ofH2pGalpL{Kq, Lˆq.
By definition, the Brauer group BrpKq is the direct limit

BrpKq :“ lim
ÝÑ

L{K: finite Galois
H2pL{Kq “ H2pKsep{Kq.

In order to compute BrpKq we look first at the intermediate field Kur, the maximal unramified extension
of K. If k denotes the residue field of K, then the algebraic closure k of k is the residue field of K, and
the reduction GalpKur{Kq Ñ Galpk{kq is an isomorphism. We denote by FrobK the Frobenius element in
GalpKur{Kq pulling back from the one on k. Then the map

pZ GalpKur{Kq

ν Frobνk

is an isomorphism of topological groups.
Since Kur is a subfield of Ksep, H2pKur{Kq is a subgroup of BrpKq. In fact

Theorem 5.1. BrpKq “ H2pKur{Kq – H2ppZ, pKurqˆq.

Theorem 5.2. The evaluation ν : pKurqˆ Ñ Z defines an isomorphism

H2pKur{Kq Ñ H2ppZ,Zq.

5.1.1 Statements of Theorems

5.1.2 Computation of H2pKnr{Kq

Proposition 5.3. Let Kn be an unramified extension of K of degree n and let G “ GalpKn{Kq. Then
for all q P Z we have
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(1) HqpG,Unq “ 0, where Un “ UKn .

(2) the map v : HqpG,Kˆ
n q Ñ HqpG,Zq is an isomorphism.

5.1.3 Some Diagrams

5.1.4 Construction of a Subgroup with Trivial Cohomology
Let L{K be a finite Galois extension with Galois group G, where L and K are local fields. We already
know that UL has trivial cohomology when L{K is unramified.

Proposition 5.4. There exists an open subgroup V of UL with trivial cohomology, that is, HqpG, V q “ 0

for all q.

Corollary 5.4.1. Let L{K be a cyclic extension of degree n. Then we have hpULq “ 1 and hpLˆq “ n.

Corollary 5.4.2. Let L{K be a cyclic extension of degree n. Then H2pL{Kq is of order n “ rL : Ks.

5.1.5 An Ugly Lemma
Lemma 5.5. Let G be a finite group and let M be a G-module and suppose that ρ, q are non-negative
integers. Assume that

(a) H ipH,Mq “ 0 for all 0 ă i ă q and all subgroups H of G;

(b) if H � K ď G with K{H cyclic of prime order, then the order of HqpH,Mq (resp. Ĥ0pH,Mq if
q “ 0) divides rK : Hsρ.

Then the same is true of G. That is, HqpG,Mq (resp. Ĥ0pG,Mq) is of order dividing rG : 1sρ.

5.1.6 End of Proofs

5.1.7 An Auxiliary Results
Let A be an abelian group and let n be an integer ě 1. Consider the cyclic group Z{nZ with trivial action
on A. We shall denote the corresponding Herbrand quotient by hnpAq, whenever it is defined. We have

hnpAq “
#pA{nAq

# nA

where nA is the set of α P A such that nα “ 0. Alternatively, we could begin with the map A n
Ñ A and

take hnpAq to be
#cokerpnq

#kerpnq

Now let K be a local field. Then for α P K there is a normalized absolute value, denoted by |α|K . If
α P OK , then |α|K “

1

#pOK{αOKq
.
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Proposition 5.6. Let K be a local field and let n ě 1 be an integer prime to the characteristic of K.
Then hnpKˆq “

n

|n|K
.

5.2 Abelian Extension of Local Fields

5.2.1 Cohomological Properties

5.2.2 The Reciprocity Map

5.2.3 Characterization of pα,L{Kq by Characters
Let L{K be a Galois extension with Galois group G. We start from an α P Kˆ and we seek a characteri-
zation of pα,L{Kq P Gab. Let us set some notations.

• sα :“ pα,L{Kq.

• For χ P HomZpG,Q{Zq, let δχ P H2pG,Zq be its image under the connecting homomorphism δ :

H1pG,Q{Zq Ñ H2pG,Zq.

• Let α P Ĥ0pG,Lˆq “ Kˆ{NL{KL
ˆ be the image of α.

Proposition 5.7. χpsαq “ invKpα Y δχq.

Proof. Identifying sα with an element of Ĥ´2pG,Zq, one has sα Y uL{K “ α by definition. Then

α Y δχ “ uL{K Y psα Y δχq “ uL{K Y δpsα Y χq
4.9
“ uL{K Y δpχpsαq0q

If χpsαq “
r

n
for some r P Z, then δpχpsαq0q “ r. Hence

uL{K Y δpχpsαq0q “ uL{K Y r

and thus invKpα Y δχq “ invKpuL{K Y rq “
r

n
“ χpsαq

As an application we consider the following situation. Consider a tower of Galois extension K Ď L1 Ď L

with G “ GalpL{Kq and H “ GalpL{L1q.

Corollary 5.7.1. For α P Kˆ, we have pα,L{Kq|L1 “ pα,L1{Kq P pG{Hqab.

Proof. Let ψ P HomppG{Hqab,Q{Zq and put χ “ infG{H ψ. Then

ψppα,L{Kq|L1q “ χppα,L{Kqq

“ invKpα Y δχq

“ invKpα Y infG{H δψq

“ invKpinfG{Hpα Y δψqq

“ invKpα Y δψq “ ψppα,L1{Kqq
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The second last equality results from the very definition of Brauer group (inf is the inclusion map).

This compatibility allows us to define pα,L{Kq for any abelian extension; in particular, taking L “ Kab,
the maximal abelian extension of K, we get a homomorphism

θK : Kˆ GalpKab{Kq

α pα,Kab{Kq

The effect of pα,Kab{Kq on K Ď L Ď Kab is then that of pα,Kab{Kq|L :“ pα,L{Kq.

5.2.4 Variations with the Field Involved

5.2.5 Unramified Extensions
In this case it is possible to compute the norm residue symbol explicitly in terms of the Frobenius elements:

Proposition 5.8. Let L{K be an unramified extension of degree n and let normalized valuation. Let
α P Kˆ and let νpaq P Z be its normalized valuation. Then pα,L{Kq “ F νpαq.

Proof. Let χ P HomZpGalpL{Kq,Q{Zq. Then

χppα,L{Kqq “ invKpα Y δχq.

The map invK : H2pGalpL{Kq, Lˆq Ñ Q{Z has been defined as a composition

H2pGalpL{Kq, Lˆq H2pGalpL{Kq,Zq H1pGalpL{Kq,Q{Zq Q{Z.ν δ´1 γ

Hence

invKpα Y δχq “ γ ˝ δ´1 ˝ νpα Y δχq

Corollary 5.8.1. Let E{K be a finite abelian extension. The norm residue symbol Kˆ Ñ GalpE{Kq

maps UK onto the inertia subgroup I :“ IE{K of GE{K .

Proof. Put E0 “ EI ; then E0{K unramified. By Proposition 5.8, UK has trivial image in GalpE0{Kq so
that it is mapped into GalpE{Lq “ I Ď GalpE{Kq. Conversely, let t P I and let f “ rE0 : Ks. There
exists a P Kˆ such that t “ pa,E{Kq. Since t P I, Proposition 5.8 shows 1 “ pa,E{Kq|E0 “ Frob

νKpaq

E0{K , so
that f | νKpaq. Considering the ramification, one see there exists b P Eˆ such that νKpaq “ νKpNbq. If we
put u “ apNbq´1, we have u P UK and pu,E{Kq “ pa,E{Kq “ t.
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5.2.6 Norm Subgroups

5.2.7 Statements of the Existence Theorem
Theorem 5.9. A subgroup M of Kˆ is a norm subgroup if and only if it satisfies the following two
conditions

(1) The index rKˆ :M s is finite.

(2) M is open in Kˆ.

We give now some equivalent formulations.
Consider the reciprocity map θK : Kˆ Ñ GalpKab{Kq. By Proposition 5.8, the composition

Kˆ GalpKab{Kq GalpKnr{Kq “ pZθK

is just the valuation map ν : Kˆ Ñ Z. Hence we have a commutative diagram

0 UK Kˆ Z 0

0 IK GalpKab{Kq pZ 0

θ θ id

where IK “ GalpKab{Knrq is the inertia group of GalpKab{Kq.
The map θ : UK Ñ IK is continuous, and its image is dense by Corollary 5.8.1; since UK is compact, it

follows that θ is surjective.
We can now state two equivalent formulations of the existence theorem.

Theorem A The map θ : UK Ñ IK is an isomorphism.

Theorem B The topology induced on UK by the norm subgroups is the natural topology on UK .
The group IK is just lim

ÐÝ
UK{pM X UKq, where M runs over all norm subgroups of Kˆ (if M “ NLˆ,

then UK{pM X UKq “ IL{K is the inertia group of L{K, by Corollary 5.8.1). The equivalence of Theorem
A and Theorem B follows from this and a compacity argument. That Theorem 5.9 implies Theorem B is
clear. The converse follows from Proposition 5.8.

Corollary 5.9.1. The exact sequence 0 Ñ UK Ñ Kˆ Ñ Z gives by completion the exact sequence
0 Ñ UK Ñ K̃ Ñ pZ Ñ 0.

5.2.8 Some Characterization of pα,L{Kq

5.2.9 The Archimedean Case
For the global class field theory, it is necessary to extend these results to the (trivial) cases in which K is
either R or C. Let G “ GalpC{Rq. We have BrpCq “ 0 and BrpRq “ H2pG,Cˆq “ Rˆ{Rˆ

`.
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The invariant invR : BrpRq Ñ Q{Z has image t0, 1{2u Ď Q{Z, and invC : BrpCq Ñ Q{Z has image
t0u. The group H2pG,Cˆq “ H2pC{Rq is cyclic of order 2 and is generated by u P BrpRq such that
invRpuq “ 1{2.

Under the reciprocity law map (or rather its inverse) we have an isomorphism

G “ H´2pG,Zq ÝÑ H0pG,Cˆq “ Rˆ{Rˆ
`

5.3 Formal Multiplication in Local Fields
For our purposes, the main consequence will be

1. the construction of a cofinal system of abelian extension of a given local field K;

2. a formula giving pα,L{Kq explicitly in such extensions;

3. the Existence Theorem.

5.3.1 The Case K “ Qp

Theorem 5.10. Let Qcycl
p be the field generated over Qp by all roots of unity. Then Qcycl

p is the maximal
abelian extension of Qp.

In order to determine pα,L{Kq it is convenient to split Qcycl
p into parts. Define Qnr to be the field

generated over Qp by roots of unity of order prime to p (so Qnr is the maximal unramified extension of Qp)
and define Qp8 to be the field generated over Qp by pv-th roots of unity, v “ 1, 2, . . . , (so Qp8 is totally
ramified). Then Qnr and Qp8 are linearly disjoint we have a diagram

Qcycl
p

Qnr Qp8

Qp

Now GalpQnrq “ pZ and if σ P GalpQp8{Qpq, then σ is known by its action on the roots of unity. Let E be
the group of pv-th roots of unity, v “ 1, 2, . . . ,. As an abelian group, E is isomorphic to lim

ÝÑ
v

Z{pvZ “ Qp{Zp.

We shall view E as a Zp-module. There is a canonical map Zp Ñ EndpEq, defined in an obviously way
and this map is an isomorphism. The action of the Galois group on E defines a homomorphism

GalpQp8{Qpq ÝÑ AutpEq “ Up

and it is known that this is an isomorphism. If u P Up, we shall denote by rus the corresponding automor-
phism of Qp8{Qp.

68



Theorem 5.11. If α “ pnu where u P Up, then pα,Qcycl
p {Qpq “ σα is described by

1. on Qnr, σα induces the n-th power of the Frobenius automorphisms;

2. on Qp8 , σα induces the automorphism ru´1s.

5.3.2 Formal Groups
Definition. Let A be a commutative ring with 1 and let F P ArrX,Y ss. We say F is a commutative
formal group law if

(a) F pX,F pY, Zqq “ F pF pX,Y q, Zq;

(b) F p0, Y q “ Y and F pX, 0q “ X;

(c) there is a unique GpXq such that F pX,GpXqq “ 0;

(d) F pX,Y q “ F pY,Xq;

(e) F pX,Y q ” X ` Y pmod deg 2q

• One can show that (c) and (b) are consequences of (a) and (e).

Proof. Write F pX,Y q “ X ` Y `
ř

i,jě1

aijX
iY j. We prove by induction that a0j “ 0 “ aj0 for j ě 2.

Write F p0, Y q ” Y ` a0mY
m pmod deg m` 1q and F pX, 0q ” X ` am0X

m pmod deg m` 1q By (a)
one has

F pF pX, 0q, Y q “ F pX,F p0, Y qq

so that
F pX, 0q ` Y `

ÿ

i,jě1

aijF pX, 0qiY j “ X ` F p0, Y q `
ÿ

i,jě1

aijX
iF p0, Y qj

Then

X ` am0X
m ` Y `

ÿ

i,jě1

aijX
jY j ” X ` Y ` a0mY

m `
ÿ

i,jě1

X iY j pmod deg m ` 1q

from which we see am0 “ a0m. This shows (b). Suppose GpXq “
8
ř

k“0

bkX
k verifies F pX,GpXqq “ 0.

A computation gives

0 “ F pX,GpXqq “

8
ÿ

m“0

¨

˚

˚

˚

˚

˝

m
ÿ

ℓ“0

ÿ

jě0
k1`¨¨¨`kj“m´ℓ

0ďk1,...,kj

aℓjbk1 ¨ ¨ ¨ bkj

ˆ

m ´ ℓ

k1 ¨ ¨ ¨ kj

˙

˛

‹

‹

‹

‹

‚

Xm

Each coefficient has the form bm ` cm by (b), where cm involves no bm. Thus we can solve the bm
inductively.
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Definition. Let F,G be two formal group law over a commutative ring A with 1. A homomorphism
f : F Ñ G between two formal groups is a formal power series f P ArrXss such that fpF pX,Y qq “

GpfpXq, fpY qq.

Take A “ OK , and let F pX,Y q be a commutative formal group law defined over OK . If mK is the
maximal ideal of OK and x, y P mK , then F px, yq converges and it sum belongs to OK ; then mK is made
into a group via F which we denote by F pmKq.

The same argument applies to an extension L{K and the maximal ideal mL of OL. We then obtain a
group F pmLq defined for any algebraic extension of K by passage to inductive limit from the finite case.

If F pX,Y q “ X ` Y ` XY “ p1 ` Xqp1 ` Y q ´ 1, then we recover the multiplicative group law of
1 ` mK .

The elements of finite order of F pmKsq form a torsion group and GalpKs{Kq operates on this group.
The structure of this Galois module presents an interesting problem which up to now has been solved only
in special case.

5.3.3 Lubin-Tate Formal Group Laws
Let K be a local field, q “ Charpkq and choose a uniformizer π P OK . Let Fπ be the set of formal power
series f with:

(1) fpXq ” πX pmod deg 2q;

(2) fpXq ” Xq pmod πq

The second condition means that if we go to the residue field k and denote by fpXq the corresponding
element of krrXss, then fpXq “ Xq.

Example.

(a) fpXq “ πX ` Xq.

(b) K “ Qp, π “ p, fpXq “
p
ř

i“1

ˆ

p

i

˙

X i “ p1 ` Xqp ´ 1.

Proposition 5.12. Let f P Fπ. Then there exists a unique formal group law Ff with coefficients in A for
which f is an endomorphism on Ff .

Proposition 5.13. Let f P Fπ and let Ff be the corresponding group law in the above proposition. Then
for any a P A “ OK , there exists a unique rasf P ArrAss such that

(1) rasf commutes with f ;

(2) rasf ” aX pmod deg 2q

Moreover, rasf is then an endomorphism of the group law Ff .

70



From the above proposition we obtain a mapping

A EndpFf q

a rasf

For example, consider the case K “ Qp and fpXq “ p1 ` Xqp ´ 1; then Ff is the multiplicative law
X ` Y ` XY , and

rasf “ p1 ` Xqa ´ 1 :“
8
ÿ

i“1

ˆ

a

i

˙

X i

Proposition 5.14. The map a ÞÑ rasf is an injective ring homomorphism from A to EndpFf q.

Proposition 5.15. Let f, g P Fπ. Then the corresponding group laws are isomorphic.

5.3.4 Statements
Let K be a local field and let π be a uniformizer. Let f P Fπ and let Ff be the corresponding group law (of
Proposition 5.12). We denote by Mf “ Ff pmKsq the group of points is the separable closure equipped with
the group law deduced from F . Let a P A, x P Mf and put ax :“ rasfx. By Proposition 5.14, this defines
a structure of an A-module on Mf . Let Ef be the torsion submodule of Mf ; that is the set of elements of
Mf killed by a power of π.

Theorem 5.16. The following statements hold.

1. The torsion submodule Ef is A-isomorphic to K{A.

2. Let Kπ “ KpEf q be the field generated by Ef over K. Then Kπ is an abelian extension of K.

3. Let u be a unit in Kˆ. Then the element σu “ pu,Kπ{Kq of GalpKπ{Kq acts on Ef via ru´1sf .

4. The operation described in (c) defined an isomorphism UK Ñ GalpKπ{Kq.

5. The norm residue symbol pπ,Kπ{Kq is 1.

6. The field Knr and Kπ are linearly disjoint and Kab “ KnrKπ.

We may express the results of Theorem 5.16 as follows. We have diagram

Kab

Knr Kπ

K

Here GalpKnr{Kq “ pZ and GalpKπ{Kq “ UK . Moreover every α P Kˆ can be written in the form α “ uπn,
and σπ gives σ “ FrobK on Knr{K whilst σu gives ru´1s on Kπ{K.
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Example. Take K “ Qp, π “ p and fpXq “ p1 ` Xqp ´ 1. The formal group law is the multiplicative
group law; Ef is the set of pν-th roots of unity; Kπ is the field denoted by Qp8 in subsection 1, and we
recover Theorem 5.10.

5.3.5 Construction of Ff , rasf

Proposition 5.17. Let f, g P Fπ, n P N and let ϕ1pX1, . . . , Xnq be a linear form in X1, . . . , Xn with
coefficients in A. Then there exists a unique ϕ P ArrX1, . . . , Xnss such that

(i) ϕ ” ϕ1 pmod deg 2q;

(ii) f ˝ ϕ “ ϕ ˝ pg ˆ ¨ ¨ ¨ ˆ gq.

Moreover, ϕ is the only power series with coefficients in an extension of A, which is torsion free as an
A-module, satisfying (a) and (b).

Proof. We shall construct ϕ be successive approximation. More precisely, we construct a sequence pϕppqq

such that ϕppq P ArrX1, . . . , Xnss satisfies (a) and (b) pmod deg p`1q, and ϕppq is unique pmod deg p`1q.
We shall then define ϕ :“ limp ϕ

ppq, and this will be the ϕ whose existence is asserted.
Take ϕp1q “ ϕ1. Suppose that the approximation ϕ1 ` ¨ ¨ ¨ ` ϕp “ ϕppq has been constructed, that is,

f ˝ ϕppq ” ϕppq ˝ pg ˆ ¨ ¨ ¨ ˆ gq pmod deg p` 1q. For convenience, we shall replace g ˆ ¨ ¨ ¨ ˆ g by the single
variable g. Now write ϕpp`1q “ ϕppq `ϕp`1, where ϕp`1 is to be determined with ϕp`1 ” 0 pmod deg p`1q.
Write

f ˝ ϕppq ” ϕppq ˝ g ` Ep`1 pmod deg p ` 2q

where Ep`1 (“the error”) satisfies Ep`1 ” 0 pmod deg p ` 1q. Consider ϕpp`1q; by Taylor’s expansion we
have

f ˝ ϕpp`1q “ f ˝ pϕppq ` ϕp`1q ” f ˝ ϕppq ` πϕp`1 pmod deg p ` 2q

(recall fpXq ” πX pmod deg 2q) and

ϕppq ˝ g ` ϕp`1 ˝ g ” ϕppq ˝ g ` πp`1ϕp`1 pmod deg p ` 2q

Thus
f ˝ ϕpp`1q ´ ϕpp`1q ˝ g ” Ep`1 ` pπ ´ πp`1qϕp`1 pmod deg p ` 2q

These equations show that we must take

ϕp`1 “
´Ep`1

πp1 ´ πpq

The unicity is now clear and it remains to show that ϕp`1 has coefficients in A, that is, Ep`1 ” 0 pmod πq.
Now for ϕ P FqrrXss, we have ϕpXqq “ ϕpXqq and together with fpXq ” Xq pmod πq this gives

f ˝ ϕppq ´ ϕppq ˝ g ” pϕppqpXqqq ´ ϕppqpXqq ” 0 pmod πq

as wanted. So, given ϕppq we can construct a unique ϕpp`1q and the proof is completed by induction and
passage to the limit.
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Proof. (of Proposition 5.12) For each f P Fπ, let Ff pX,Y q be the unique solution of Ff pX,Y q ” X ` Y

pmod deg 2q and f ˝ Ff “ Ff ˝ pf ˆ fq whose existence and uniqueness is assured by Proposition 5.17. It
remains to show that Ff is a formal group law.

• Associativity. Note that both

Ff pFf pX,Y q, Zq and Ff pX,Ff pY, Zqq

are solutions to HpX,Y, Zq ” X ` Y ` Z pmod deg 2q and HpfpXq, fpY q, fpZqq “ fpHpX,Y, Zqq,
so by unicity part in Proposition 5.17, both expressions are identical.

• Commutativity. F pX,Y q and F pY,Xq are solutions to H ˝ pf ˆ fq “ f ˝ H and HpX,Y q ” X ` Y

pmod deg 2q.

Proof. (of Proposition 5.13) For each a P A and f, g P Fπ, let rasf,gpT q be the unique solution to rasf,gpT q ”

aT pmod deg 2q and f ˝ rasf,g “ rasf,g ˝ g. Now we have

Ff ˝ prasf,g ˆ rasf,gq “ rasf,g ˝ Fg

for each side is congruent to aX ` aY pmod deg 2q and

Ff prasf,ggpXq, rasf,ggpY qq “ Ff pfprasf,gpXqq, fprasf,gpY qqq “ fpFf prasf,gpXq, rasf,gpY qqq

and
rasf,gFgpgpXq, gpY qq “ rasf,gpgpFgpX,Y qqq “ fprasf,gFgpX,Y qq

so that by Proposition 5.17 the both sides coincide. Thus rasf,g : Fg Ñ Ff is a formal homomorphism, and
if we put rasf “ rasf,g, this shows that rasf P EndpFf q.

Proof. (of Proposition 5.14) In the same way as outlined above, one proves that

ra ` bsf,g “ Ff ˝ prasf,g ˝ rasf,gq

and
rabsf,h “ rasf,g ˝ rbsg,h

This shows a ÞÑ rasf is a ring homomorphism from A into EndpFf q. It is injective since the term of degree
1 of rasf is aX.

Proof. (of Proposition 5.15) If a P Aˆ, then rasf,g is invertible, so Fg – Ff by means of the isomorphism
rasf,g. Note that rπsf “ f and r1sf is the identity.
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5.3.6 First Properties of the Extension Kπ of K
From now on, we confine our attention to subfields of a fixed separable closure Ks of K. Given f P Fπ, let

• Ff : the corresponding formal group law;

• Ef : the torsion submodule of the A-module Ff pmKq;

• En
f :“ kerrπnsf , Kn

π :“ KpEn
f q and Kπ “

Ť

ně1

Kn
π .

• Gπ,n :“ GalpKpEn
f q{Kq, so that GalpKπ{Kq “ lim

ÐÝ
n

Gπ,n

Proposition 5.18. The natural homomorphism GalpKπ{Kq Ñ UK is an isomorphism.

Proof. We are free to choose f as we please by Proposition 5.15; take f “ πX ` Xq. Then

f pnq :“ f ˝ ¨ ¨ ¨ ˝ f
loooomoooon

n-times

“ rπnsf

Since f pnq is separable, #En
f “ #kerrπnsf “ qn. Pick λ P En

f zEn´1
f and consider the map

A En
f

a aλ

it has kernel A{πnA, and thus induces an injection A{πnA Ñ En
f . Since both sides have order qn, it follows

that A{πn – En
f . Then

EndpEn
f q – EndpA{πnAq “ A{πnA

and so
AutpEn

f q – pA{πnAqˆ “ UK{Un
K

where Un
K “ 1 ` πnA. This gives an injection GalpKn

π {Kq Ñ AutpEn
f q “ UK{Un

K . Define

ϕ “
f pnq

f pn´1q
“
fpf pn´1qq

f pn´1q

Since fpXq “ Xq ` πX, fpXq

X
“ Xq´1 ` π and hence

fpf pn´1qq

f pn´1q
“ pf pn´1qpXqqq´1 ` π

which is of degree qn ´ qn´1 and which is irreducible for it is Eisenstein. All elements of En
f zEn´1

f are roots
of ϕ, so the order #GalpKn

π {Kq ě pq ´ 1qqn´1. On the order hand, this is actually the order of UK{Un
K ,

hence GalpKn
π {Kq “ UK{Un

K . It follows that

GalpKπ{Kq “ lim
ÐÝ
n

GalpKn
π {Kq “ lim

ÐÝ
n

UK{Un
K “ UK

74



Corollary 5.18.1. KpEn
f q{K is totally ramified.

Proof. We have seen, in the proof above, that ϕ is Eisenstein, so that KpEn
f q{K is totally ramified.

Corollary 5.18.2. The element π is a norm from Kpλq “ Kn
π , where λ P En

f zEn´1
f is a primitive element.

Proof. The polynomial ϕ constructed above is monic with constant term π; hence NKn
π {Kp´λq “ π.

5.3.7 The Reciprocity Map
We shall study the compositum L “ KnrKπ and the symbol pα,L{Kq, α P Kˆ. We need to compare two
uniformizers π and ϖ “ πu, u P UK .

Let pKnr be the completion of Knr (remember that Knr is an increasing union of complete fields but is
not itself complete) and denote by pAnr and pmnr the ring of integers of pKnr and the valuation ideal. By
definition pKnr is complete; π is a uniformizer of pKnr. Let σ “ FrobK P GalpKnr{Kq and extend it to pKnr

by continuity.

Lemma 5.19.

(i) σ ´ 1 : pAnr Ñ pAnr is surjective with kernel A.

(ii) σ ´ 1 : pUnr Ñ pUnr is surjective with kernel Aˆ.

Proof. Let Anr be the ring of integers of Knr and mnr the maximal ideal; then pAnr “ lim
ÐÝ
n

Anr{m
n
nr and

pAnr{pmnr “ Anr{mnr “ k, where k is the residue field A{mK and k is its separable closure. We prove by
induction that for each n ě 1 there is an exact sequence

0 A{mn
K Anr{m

n
nr Anr{m

n
nr 0

σ´1

For n “ 1, it is simply the exact sequence

0 k k k 0
σ´1

(recall that GalpKnr{Kq is generated by σ “ FrobK .) For n ě 2 consider the commutative diagram

0 Anr{mnr Anr{m
n
nr Anr{m

n´1
nr 0

0 Anr{mnr Anr{m
n
nr Anr{m

n´1
nr 0

σ´1 σ´1 σ´1

By induction hypothesis and snake’s lemma we see the middle arrow is surjective and its kernel has order
qn. Since A{mn

K is contained in the kernel and it has order qn as well, it is the whole kernel. This finishes
the induction and passing to the inverse limit, we obtain (i).
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For (ii), note that pUnr “ lim
ÐÝ
n

Unr{U
n
nr, where Un

nr “ 1 ` mn
nr. Similar to the argument above, we show

there is an exact sequence

0 UK{Un
K Unr{U

n
nr Unr{U

n
nr 0

σ´1

When n “ 1, since UK{U1
K – kˆ under the quotient map A Ñ A{mK “ k (and the same for Unr), the

complex becomes
0 kˆ k

ˆ
k

ˆ
0

σ´1

which is clearly exact. The case for n ě 2, consider the commutative diagram

0 Un´1
nr {Un

nr Unr{U
n
nr Unr{U

n´1
nr 0

0 Un´1
nr {Un

nr Unr{U
n
nr Unr{U

n´1
nr 0

σ´1 σ´1 σ´1

The isomorphism Un´1
nr {Un

nr – k is σ-invariant (note that π P K), so the leftmost vertical arrow, under the
mentioned isomorphism, becomes k σ´1

Ñ k, which is surjective and its kernel has order q. Now by snake’s
lemma the middle arrow is surjective whose kernel has order qn´1pq ´ 1q. Since UK{Un

K lies in the kernel
and it has order exactly qn´1pq ´ 1q, it follows it is the whole kernel. The proof is finished by passing to
the limit.

Take f P Fπ and g P Fϖ.

Lemma 5.20. There exists a power series ϕ P pAnrrrXss with ϕpXq ” εX pmod deg 2q and ε a unit, such
that

(a) σϕ “ ϕ ˝ rusf ;

(b) ϕ ˝ Ff “ Fg ˝ pϕ ˆ ϕq;

(c) ϕ ˝ rasf “ rasf ˝ ϕ for all a P A.

Proof. For ψ P pAnrrrXss, denote by ψ´1 P pAnrrrXss such that ψ ˝ ψ´1 “ id “ ψ´1 ˝ ψ.

1° Since σ´ 1 is surjective on pUnr, we can find ε P pUnr such that σε “ εu. Now define ϕ1pXq “ εX. For
n ě 1, define ϕn`1pXq “ ϕnpXq ` bXn`1. Suppose we have found ϕn such that σϕn “ ϕn ˝ rusf `En

with En “ aXn`1 ` ¨ ¨ ¨ ” 0 pmod deg n ` 1q. We have
σϕn`1pXq´ϕn`1prusf pXqq “ En`σpbqXn`1´bprusfXqn`1 ” pa`σpbq´bun`1qXn`1 pmod deg n`2q

Write b “ εn`1b1; then

σpbq ´ bu “ σpεn`1b1q ´ b1εn`1u “ εn`1upσpb1q ´ b1q

Since σ ´ 1 is surjective on pAnr, we can find b1 P pAnr such that σpb1q ´ b1 “
´a

εn`1u
, so we finish

our construction of ϕn`1 with σϕn`1 ” ϕn`1 ˝ rusf pmod deg n ` 2q. Now taking limit we obtain
ϕ P pAnrrrXss satisfying ϕpXq ” εX pmod deg 2q and (a).
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2° We adjust ϕ so that g “ σϕ ˝ f ˝ ϕ´1. Put h “ σϕ ˝ f ˝ ϕ´1. Then

h “ σϕ ˝ f ˝ ϕ´1 “ ϕ ˝ rusf ˝ f ˝ ϕ´1 “ ϕ ˝ f ˝ rusf ˝ ϕ´1

Since f, rusf have coefficients in A, we have

σh “ σϕ ˝ f ˝ rusf ˝ σpϕ´1q “ σϕ ˝ f ˝ ϕ´1 “ h

for id “ σϕ ˝ σpϕ´1q “ ϕ ˝ rusf ˝ σpϕ´1q, so that h has coefficients in pAnr. Also,

hpXq ” σpεqπε´1X ” uπX pmod deg 2q

and
hpXq ” ϕq ˝ ϕ´1pXq ” ϕ ˝ ϕ´1pXqq ” Xq pmod mKq

so that h P Fϖ (ϖ “ πu). Now let φ “ r1sg,h ˝ ϕ; then φ still satisfies (a) and φpXq ” εX

pmod deg 2q, and, moreover,

σφ ˝ f ˝ φ´1 “ r1sg,h ˝
`

σϕ ˝ f ˝ ϕ´1
˘

˝ r1s´1
g,h “ r1sg,h ˝ h ˝ r1s´1

g,h “ g

From now on we replace ϕ by φ.

3° We prove Fg “ ϕ ˝ Ff ˝ pϕ ˆ ϕq´1. One has

ϕ ˝ Ff ˝ pϕ ˆ ϕq´1pX,Y q ” εpε´1X ` ε´1Y q ” X ` Y pmod deg 2q

and

g ˝ ϕ ˝ Ff ˝ pϕ ˆ ϕq´1 “ σϕ ˝ f ˝ Ff ˝ pϕ´1 ˝ ϕ´1q

“ σϕ ˝ Ff ˝ ppf ˝ ϕ´1q ˆ pf ˝ ϕ´1qq

“ σϕ ˝ Ff ˝ pppσϕq´1 ˝ gq ˆ ppσϕq´1 ˝ gqq

“ σϕ ˝ Ff ppσϕq´1 ˆ pσϕq´1q ˝ pg ˆ gq

“ ϕ ˝ rusf ˝ Ff prus´1
f ˆ rus´1

f q ˝ pϕ´1 ˆ ϕ´1q ˝ pg ˆ gq

“ ϕ ˝ Ff ˝ pϕ ˆ ϕq´1 ˝ pg ˆ gq

so by Proposition 5.17, Fg “ ϕ ˝Ff ˝ pϕˆ ϕq´1 so that (b) holds. The proof for (c) is similar to that
of (b).
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Computation of the norm reciprocity map in L{K

Let Lπ “ KnrKπ. Since Knr and Kπ are linearly disjoint (one unramified and one totally ramified), we
have

GalpLπ{Kq “ GalpKπ{Kq ˆ GalpKnr{Kq

For each uniformizer π P A of A, define rπ : Kˆ Ñ GalpLπ{Kq such that

• rπpπq “ 1 on Kπ, and is FrobK on Knr;

• for u P UK , rπpuq “ ru´1sf on Kπ and is 1 on Knr.

We want to prove that the field Lπ and the homomorphism rπ are independent of π. Let ϖ “ πu be the
second uniformizer.

First, Lπ “ Lϖ. For by Lemma 5.20, Ff and Fg are isomorphic over pKnr. Hence the field generated by
their division points are the same; so pKnrKπ “ pKnrKϖ. On taking completions we find

{KnrKπ “ {KnrKϖ

Lemma 5.21. Let E be any algebraic extension of a local field and let α P pE. If α is separable over E,
then α P E.

Proof. Let Es be the separable closure of E. It suffices to show pEXEs “ E. Let s P GalpEs{Eq. Since s is
continuous and is the identity on E, it extends to the identity on pE. Hence GalpEs{Eq “ GalpEs{ pEXEsq,
and by Galois theory, pE X Es “ E.

Hence, intersecting with the separable closure Ks of K, we obtain KnrKπ “ KnrKϖ, so that Lπ “: L

is independent of π.
We turn now to the homomorphism rπ : Kˆ Ñ GalpL{Kq. We shall show that rπpϖq “ rϖpϖq; this

will imply that rπpϖq is independent of π, and so the rπ’s coincide on the local uniformizer. Since these
generate Kˆ, the result will follow.

We look first at rϖpϖq. On Knr, rϖpϖq “ FrobK , and on Kϖ it is 1. On the other hand, rπpϖq is
σ “ FrobK on Knr; so we must look at rπpϖq on Kϖ.

Now Kϖ “ KpEgq, where g P Fϖ. Let ϕ P pArrXss be as in Lemma ??; ϕ determines an isomorphism of
Ef onto Eg. So if λ P Eg, then we can write λ “ ϕpµq with µ P Ef . We look at rπpϖqλ, and we want to
show that this is λ. Write s “ rπpϖq. We want to show sλ “ λ, or sϕpµq “ ϕpµq. Now rπpϖq “ rπpπqrπpuq.
Since ϕ has coefficients in pKnr, sϕ “ σϕ “ ϕ ˝ rusf by Lemma ??. But

spϕpµqq “ sϕpsµq “ sϕpru´1sf pµqq

Hence
sϕpµq “ ϕ ˝ rusf ˝ ru´1sf pµq “ ϕpµq

so rπ is the identity on Kϖ. We conclude that rπ is independent of π.
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5.3.8 The Existence Theorem
Let Kab be the maximal abelian extension of K; it contains Knr. We prove Theorem A: if IK “

GalpKab{Knrq is the inertia subgroup of GalpKab{Kq, then the reciprocity map θ : UK Ñ IK is an
isomorphism.

Let L “ KπKnr and let I 1
K “ GalpL{Knrq be the inertial subgroup of GalpL{Kq. Consider the map

UK IK I 1
K

θ e

where θ is the reciprocity map and e : IK Ñ I 1
K is the canonical map; both of them are surjective.

On the other hand, the composition e ˝ θ : UK Ñ I 1
K has just been computed. If we identify I 1

K with
UK , it is u ÞÑ u´1. Hence the composed map e ˝ θ is an isomorphism, and it follows that both of them are
isomorphisms.

• θ is an isomorphism. This gives Theorem A.

• e is an isomorphism. This implies L “ Kab, since both L and Kab contain Knr.

Alternatively, let us prove that every open subgroup M of Kˆ of finite index is a norm subgroup
corresponding to a finite subextension of L. This will prove both the existecne theorem and that L “ Kab.

Since M is open, Un
K Ď M for some n ě 1; since M is of finite index, πm P M for some m ě 1. Hence

M contains the subgroup Vn,m generated by Un
K and πm. Now let Km be the unramified extension of K of

degree m, and consider the subfield Ln,m “ Kn
πKm of L. If u P UK and a P Z, we know that puπa, Ln,m{Kq

is equal to ru´1s on Kn
π , and to FrobaK on Km; hence

puπa, Ln,m{Kq “ 1 ô u P Un
K and a ” 0 pmod mq ô uπa P Vn,m

This shows that Vn,m “ NLn,m, and since M contains Vn,m, M is the norm group of a subextension of
Ln,m.

5.4 Ramification Subgroups of Conductors
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Chapter 6

Global Class Field Theory

6.1 Action of the Galois Group on Primes and Completions

6.2 Frobenius Automorphisms

6.3 Artin’s Reciprocity Law
Proposition 6.1. The diagram

IS
1

GalpL1{K 1q

IS GalpL{Kq

FrobL1{K1

NK1{K θ

FrobL{K

are commutative, where N denotes “norm”.

Theorem 6.2. If L{K is a finite abelian extension, and S is the set of primes of K consisting of the
archimedean ones and those ramified in L, then there exists ε ą 0 such that if a P Kˆ and |a´ 1|ν ă ε for
all ν P S, then FrobL{KppaqSq “ 1.

Corollary 6.2.1. Let L,K, S be as in the theorem. If L{K are number fields, then the condition |a´1|ν ă ε

can be replaced by a P pKˆ
ν qn with n “ rL : Ks.

6.4 Chevalley’s Interpretation by Ideles
Proposition 6.3. LetK and S be as before, G be a complete abelian topological group and ϕ an admissible
homomorphism of IS into G. Then there exists a unique homomorphism ϕ : JK Ñ G such that

(i) ψ is continuous;

(ii) ψpKˆq “ 1;
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(iii) ψpxq “ ϕppxqSq for all x P JSK .

Conversely, if ψ : JK Ñ G is a continuous homomorphism such that ψpKˆq “ 1, then ψ comes from some
admissible pair pS, ϕq as defined above, provided that there exists a neighborhood of 1 in G such that t1u

is the only subgroup.

Corollary 6.3.1. The reciprocity law holds for a finite extension L{K if and only if there exists a contin-
uous homomorphism ψ : JK Ñ GalpL{Kq such that

(i) ψ is continuous;

(ii) ψpKˆq “ 1;

(iii) ψpxq “ FrobL{KppxqSq for all x P JSK , where S consists of all archimedean primes of K and those
ramified in L.

Proposition 6.4. If the reciprocity law holds for L{K and L1{K 1, then

JK1 GalpL1{K 1q

JK GalpL{Kq

ψL1{K1

NK1{K θ

ψL{K

is a commutative diagram.

Proof. Let S be a large finite set of primes of K, and S 1 be the set of primes of K 1 above S. We have then
a diagram

IS
1

K1

JS
1

K1 GalpL1{K 1q

ISK

JSK GalpL{Kq

FrobL1{K1

ψL1{K1

NK1{K θ

FrobL{K

ψL{K

The non-rectangular parallelograms are commutative by compatibility of ideal and idele norms, and by
Proposition 6.1. The triangles are commutative by Corollary 6.3.1.(iii). Thus the front rectangle is com-
mutative. But ψL{K ˝ NK1{K and θ ˝ ψL1{K1 take value 1 on principal ideles by Corollary 6.3.1.(ii), so they
coincide on pK 1qJS

1

K1 , which is a dense subset of JK1 by weak approximation. Since the two maps are
continuous, they coincide on the whole JK1 which is what we wished to prove.

Variant. Suppose L{K satisfies the reciprocity law, and K Ď M Ď L. Then ψL{KpNM{KJMq Ď

GalpL{Mq.
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6.5 Statement of the Main Theorem on Abelian Extensions
Theorem 6.5.

(A) Every abelian extension L{K satisfies the reciprocity law, i.e., there is an Artin map ψL{K : JK Ñ

GalpL{Kq.

(B) The Artin map ψL{K is surjective with kernel KˆNL{KJL and hence induces an isomorphism of
CK{NL{KCL onto GalpL{Kq.

(C) If M Ě L Ě K are abelian extensions, then the diagram

CK{NM{KCM GalpM{Kq

CK{NL{KCL GalpL{Kq

ψM{K

ψL{K

where the horizontal arrows are natural maps (note that NM{KCM Ď NL{KCL).

(D) (Existence theorem) For every open subgroup N of finite index in CK there exists a unique abelian
extension L{K (in a fixed separable closure of K) such that NL{KCL “ N .

The subgroup N of (D) are called norm groups, and the abelian extension L such that NL{KCL “ N is
called the class field belonging to N .

1. Given (A) and (B), then (C) is a special case of Proposition 6.4 (put K 1 “ K and L1 “ M)

2. The uniqueness part of (D) follows from the rest. Given the existence, let L and L1 be two finite
abelian extensions of K in a fixed separable closure of K and let M be the compositum of L and
L1 (which is again a finite abelian extension of K). Now consider the diagram in (C). Since the
horizontal arrows are isomorphisms by (B) we see that ker θ “ GalpM{Kq is the isomorphic images
under ψM{K of the group NL{KCL{NM{KCM . Thus L, as the fixed field of the group ker θ, is uniquely
determined, as a subfield of M , by NL{KCL. Applying the same reasoning with L replaced by L1, we
see that if NL1{K1CL1 “ NL{KCL, then L “ L1.

The commutative diagram of (C) allows us to pass to the inverse limit, as L runs over all finite abelian
extensions of K. We obtain a homomorphism

ψK : CK lim
ÐÝ
L

GalpL{Kq – GalpKab{Kq

where Kab is the maximal abelian extension of K; and then, by (D),

GalpKab{Kq – lim
ÐÝ
N

CK{N
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where the limit is taken over all open subgroups N of finite index in CK . Thus we know the Galois groups
of all abelian extensions of K from a knowledge of the idele class group of K. The nature of the homo-
morphism ψK : CK Ñ GalpKab{Kq is somewhat different in the function field and number field cases. The
facts, which are not hard to derive from the main theorem, but whose proofs we omit, are as follows:

Function Field Case. Here the map ψK is injective and its image is the dense subgroup of GalpKab{Kq

consisting of those automorphisms whose restriction to the algebraic closure K of the field of constants k
is simply an integer power of the Frobenius automorphism Fk.

Number Field Case. Here ψK is surjective and its kernel is the connected component DK of CK . So we
have obtained a canonical isomorphism CK{DK – GalpKab{Kq.

Example. Cyclotomic Fields.

Consider Qmc{Q, the maximal cyclotomic extension of Q. Let pZ :“ lim
ÐÝ
n

Z{nZ; by Chinese Remainder

theorem we have pZ –
ś

p

Zp, where Zp is the ring of p-adic integers.

(i) pZ acts on any abelian torsion group, for Z{nZ acts on any abelian group whose exponent divides n.

(ii) The invertible elements of pZ are those in
ś

p

Up, where Up “ Zˆ
p .

Now consider the torsion group µ consisting of all roots of unity. If ζ P µ, we can define ζu for all u P
ś

p

Up;

explicitly, if ζ is a primitivem-th root of unity, writemp the “p-primary part” ofm and up the p-component
of u. Take an n P Z that solves the simultaneous congruence n ” up pmod mpq for all p; then pn,mq “ 1

and n mod m is uniquely determined. Then ζu “ ζn.
u induces an automorphism on µ. On the other hand,

JQ – Qˆ ˆ R` ˆ
ź

p

Up

Indeed, if x “ px8, x2, x3, . . .q P JQ, we have x “ a ¨ pt, u2, u3, . . .q, where

a “ signx8 ¨
ź

p

pνppxpq P Qˆ

and where t ą 0 and up P Up for p “ 2, 3, . . .. Moreover, this decomposition is unique because 1 is the only
positive rational number which is a p-adic unit for all primes p. Hence we have a canonical isomorphism

CQ – R` ˆ
ź

p

Up

so there is a map of CQ onto
ś

p

Up, which is the Galois group of the maximal cyclotomic extension.

What in fact happens is the following.
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Lemma 6.6. If x P CQ and x ÞÑ u P
ś

p

Up, then ζψpxq “ ζu
´1 .

Proof. Suppose ζ is a primitive m-th root of unity and let S Ď MK consist of 8 and all prime factors of
m. We have three cases.

• x P R`. Let an P Q be such that an Ñ x at all places in S; particularly an P JSQ . Then

ψpxq “ ψpanxq “ lim
nÑ8

ψppanxqSq ¨ lim
nÑ8

ź

qPS

ψppanxqqq “ lim
nÑ8

FrobQpζq{QppanqSq

Write an “ bn{cn with bn, cn P Z coprime to m and bn ” cn pmod mq (the latter condition can be
satisfied by, for example, Fermat little theorem). Then

FrobQpζq{QppbnqSq.ζ “ ζbn “ ζcn “ FrobQpζq{QppcnqSq.ζ

so that FrobQpζq{QppanqSq “ 1.

• x P Up with p | m. Take an P Zą0 such that an Ñ x´1 at all finite places in S.

ψpxq “ ψpanxq “ lim
nÑ8

ψppanxq8q ¨ lim
nÑ8

ψppanxqSq ¨ lim
nÑ8

ź

qPSfin

ψppanxqqq “ lim
nÑ8

FrobQpζq{QppanqSq

Let us assume an ” px´1qq pmod mqq for all n ě 1. Then ζu´1
“ ζan . Since the an are coprime to m,

FrobQpζq{QppanqSq.ζ “ ζan

for each n.

• x P Up with p - m. In this case, ψpxq “ FrobQpζq{QppxqSq “ 1.

Proposition 6.7 (Kronecker-Weber). Qab “ Qmc.

Proof. From the lemma above we see kerψ “ R`, which is the connected component DQ of CQ. The
discussion above gives an exact sequence

0 DQ “ R` CQ
ś

p Up “ GalpQmc{Qq 0

Assuming (B) of the main theorem, we have

0 DQ CQ GalpQab{Qq 0
ψ

Adjusting in accordance with the above lemma, we see the natural map GalpQab{Qq Ñ GalpQmc{Qq is an
isomorphism, hence Qab “ Qmc.

84



6.6 Relation between Global and Local Artin Maps
We continue to deduce results on the assumption that the reciprocity law (but not necessarily the whole
main theorem) is true for an abelian extension L{K.

For each prime v of K, we let Kv denote the completion of K at v. If L{K is a finite Galois extension,
then the various completions of Lw with w over v are isomorphic. It is convenient to write Lv for “any one
of the completions Lw for w | v”, and we write Gv “ GalpLv{Kvq for the local Galois group, which we can
identity with a decomposition subgroup of G. In the abelian case this subgroup is unique, i.e. independent
of the choice of w.

Assume that L{K is abelian and that there exists an Artin map

ψL{K : JK Ñ GalpL{Kq “: G

For each prime v of K we have
Kˆ
v JK G

iv

jv

ψL{K

where

• iv : K
ˆ
v ãÑ JK maps x P Kˆ

v to the element of JK whose v-th component is x, and the others are 1;

• jv : JK Ñ Kˆ
v is the projection to v-th component.

Call ψv “ ψL{K ˝ iv; so ψv : Kˆ
v Ñ G. In fact

Proposition 6.8. If Kv Ď M Ď Lv, then ψvpNM{KvMˆq Ď GalpLv{Mq. In particular, ψvpKˆ
v q Ď Gv,

and ψvpNLv{KvpLvqˆq “ 1.

Proof. Let M “ L X M be the fixed field of GalpLv{Mq in L, so that GalpL{Mq is identified with
GalpLv{Mq under our identification of the decomposition group with the local Galois group. Then M “

Mv, where w is a prime above v, and the diagram

M “ Mv JM

Kv JK

iw

NM{Kv NM{K

iv

is commutative. By Variant of Proposition 6.4 we conclude that

ψvpNM{KvMˆq Ď ψL{KpNM{KJMq Ď GalpL{Mq – GalpLv{Mq
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We shall call ψv : Kˆ
v Ñ Gv the local Artin homomorphism, or by its classical name: norm

residue homomorphism. If x “ pxvq P JK , then we have

x “ lim
S

˜

ź

vPS

ivpxvq

¸

and consequently, by continuity, we have

ψL{Kpxq “
ź

v

ψvpxvq

this product is actually finite since if xv is a v-unit and v is not ramified, then it is a norm of Lv{Kv. Thus
knowledge of all the local Artin maps ψv is equivalent to knowledge of the global Artin map ψL{K .

6.7 Cohomology of Ideles
Let L{K be a finite Galois extension (not necessarily abelian) with Galois group G. Write AL for the adele
ring of L and JL for the idele group, the invertible elements in AL “ L bK AK , and G acts on L bK AK

by σ ÞÑ σ b 1; so G acts on JL.
However, we want to look at the action of G on the cartesian product structure of JL. Suppose x P JL,

then x “ pxwqwPML
; σ P G induces σw : Lw Ñ Lσw. Then pσxqσw “ σwxw. Indeed, the identification

AL “ L bK AK is given by
L bK Kv

ś

w|v

Lw

a b x piwpaqxqw

We transfer the G-module structure to RHS by this identification; using σ ˝ iw “ iσw ˝ σ, we see pσxqσw “

σwxw. Hence we have two commutative diagrams

Lˆ
w Lˆ

σw

JL JL

iw

σw

iσw

σ

Lˆ
w Lˆ

σw

JL JL

jw

σw

jσw

σ

Proposition 6.9. Let v P MK and w0 P ML with w0 | v. Then there are mutually inverse isomorphisms

Hr

˜

G,
ś

w|v

Lˆ
w

¸

HrpGw0 , L
ˆ
w0

q
cores .iw0

jw0 . res

and

Hr

˜

G,
ś

w|v

Uw

¸

HrpGw0 , Uw0q
cores .iw0

jw0 . res

where Uw denotes the group of units in Lw. The assertion remains valid when Hr is replaced by Ĥr.

86



Proof. This follows from Shapiro’s lemma once

indGGw0
Lˆ
w0

ś

w|v L
ˆ
w

f : G Ñ Lˆ
w0

pσfσ´1qσw0

and
ś

w|v L
ˆ
w indGGw0

Lˆ
w0

α fα : σ ÞÑ σασ´1w0

are shown to be mutually inverse.

Thus the cohomology groups HrpGw, L
ˆ
wq are canonically isomorphic for all w over v, so it is permissible

to use the notation HrpGv, pLvqˆq for any one of these.

Proposition 6.10.

(a) Under the inclusion JK Ď JL, one has JGL “ JK .

(b) ĤrpG, JLq –
À

vPMK

ĤrpGv, pLvqˆq.

Proof.

1. It is clear JK Ď JGL . Let x “ pxwqw P
ś

w|v

Lˆ
w . Suppose x is fixed by G; in particular, for each w | v,

xw is fixed by GalpLw{Kvq, so that xw P Kˆ
v . But if σw “ w1, then xw1 “ xσw “ pσxqσw “ σwxw.

Hence all xw P Kˆ
v are the same, and thus x P Kˆ

v .

2. Recall that
JL “ lim

ÝÑ
S

JL,S where JL,S :“
ź

vPS

ź

w|v

Lˆ
w ˆ

ź

vRS

ź

w|v

Uw

and S is a finite set of primes of K containing all the ramified primes in L{K and the archimedean
primes. The limit is taken over an increasing sequence of S with S Ñ MK . Note that

• the cohomology of finite groups commutes with direct limits, and

• any cohomology theory commutes with products

so it is enough to look at the cohomology of the various parts. By the above Proposition and
Proposition 5.3,

ź

vRS

ź

w|v

Uw has trivial cohomology for S contains all ramified primes. Hence

ĤrpG, JL,Sq –
ź

vPS

ĤrpGv, pLvqˆq –
à

vPS

ĤrpGv, pLvqˆq

by above Proposition, and

ĤrpG, JLq – lim
ÝÑ
S

à

vPS

ĤrpGv, pLvqˆq “
à

vPMK

ĤrpGv, pLvqˆq
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Corollary 6.10.1.

(a) H1pG, JLq “ 0.

(b) H2pG, JLq –
À

vPMK

ˆ

1

nv
Z{Z

˙

, where nv “ rLv : Kvs.

Proof. These follow from local class field theory.

6.8 Cohomology of Idele Class (I), The First Inequality
We recollect the exact sequence 0 Ñ Lˆ Ñ JL Ñ CL Ñ 0. The action of G on CL is that induced by its
action on JL.

Proposition 6.11. CK – CG
L .

Proof. The above exact sequence gives rise to the cohomology sequence

0 Ñ H0pG,Lˆq Ñ H0pG, JLq Ñ H0pG,CLq Ñ H1pG,Lˆq

that is
0 Ñ Kˆ Ñ JGL “ JK Ñ CG

L Ñ 0

Remark 6.12. Our object in the abelian case is to define

ψL{K : CK{NL{KCL Ñ GalpL{Kq “ G

By the above Proposition CK{NL{KCL “ Ĥ0pG,CLq, and on the other hand G “ Ĥ´2pG,Zq. Comparison
with local class field theory suggests that the global theorem we want to prove about the cohomology of
CL is essentially the same as the local theorem about the cohomology of Lˆ. This is in fact the case.
Abstracting the common features, one get the general notion of “class formation”.

We recollect that if G is cyclic and A a G-module, the Herbrand quotient is defined by

hpG,Aq “
#H2pG,Aq

#H1pG,Aq

if both these cardinalities are finite.

Theorem 6.13. Let L{K be a cyclic extension of degree n. Then hpG,CLq “ n.
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Proof. Take S P MK to be a finite containing all ramified primes of K in L, all archimedean primes of
K and all primes of K which lie below some primes that generates the ideal class group of L. Then
JL “ LˆJL,S, where

JL,S :“
ź

vPS

ź

w|v

Lˆ
w ˆ

ź

vRS

ź

w|v

Uw

Let T Ď ML collect those primes that lies above S. Then

CL – JL{Lˆ – JL,S{pLˆ X JL,Sq “ JL,S{LT

where LT “ Lˆ X JL,S is the set of T -units of L. It follows that

hpCLq “
hpJL,Sq

hpLT q

if the right hand side is defined.
First we determine hpJL,Sq. Since S contains all ramified primes,

ź

vRS

ź

w|v

Uw has trivial cohomology, so

that

hpJL,Sq “ h

¨

˝

ź

vPS

ź

w|v

Lˆ
w

˛

‚“
ź

vPS

h

¨

˝

ź

w|v

Lˆ
w

˛

‚

Now by Proposition 6.9 and Corollary 5.4.1

hpJL,Sq “
ź

vPS

nv

where nv “ rLv : Kvs is the local degree. This is the “local part” of the proof.
The “global part” consists in determining hpLT q; in order the prove that hpCLq “ n, we have the show

that nhpLT q “
ś

vPS

nv. We do this by constructing a real vector space, on which G acts, with two lattices

such that one has Herbrand quotient nhpLT q and the other has quotient
ś

vPS

nv.

Let V “ HomRpT,Rq – Rt, where t “ #T . Make G act on V by defining

pσfqpwq “ fpσ´1wq

for all f P V, σ P G, w P T (so that pσfqpσwq “ fpwq). Put

N “ tf P V | fpT q Ď Zu

Clearly, N spans V and is G-invariant. We have N –
ś

vPS

ś

w|v

Zw, where Zw – Z for all w, and the action

of G on N is to permute the Zw over a given v P S. Then by Shapiro’s lemma

ĤrpG,Nq –
ź

vPS

Ĥr

¨

˝G,
ź

w|v

Zw

˛

‚–
ź

vPS

ĤrpGv,Zq
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so that
hpNq “

ź

vPS

#Ĥ0pGv,Zq

#Ĥ1pGv,Zq
“
ź

vPS

nv

Now we define another lattice. Let λ : LT Ñ V given by λpaq “ fa, where fapwq “ log |a|w for all
w P T . The unit theorem tells us that kerλ is finite and λpLT q is a lattice M0 of V spanning the subspace
V 0 “ tf P V |

ř

fpwq “ 0u. Since kerλ is finite, hpLT q “ hpM0q. Now let V “ V 0 `Rg, where g : T Ñ V

is defined by gpwq “ 1 for all w P S. Our second lattice is M “ M0 ` Zg. Then M spans V and both
M0, Zg are invariant under G. Hence hpMq “ hpM0qhpZq “ nhpM0q “ nhpLT q.

Now M,N are lattices spanning the same vector space, so hpNq “ hpMq by Proposition 4.12. This
finishes the proof.

Corollary 6.13.1 (First inequality). If L{K is cyclic of degree n, then

#

ˆ

JK
KˆNL{KJL

˙

ě n

Proof. From the Theorem and Proposition 6.11, we have

n “ hpG,CLq ď #Ĥ0pG,CLq “ #

ˆ

JK
KˆNL{KJL

˙

Corollary 6.13.2. If L{K is a finite abelian extension and D ď JK is a subgroup such that

(a) D Ď NL{KJL,

(b) KˆD is dense in JK ,

then L “ K.

Proof. If L Ě L1 Ě K, then D Ď NL{KJL Ď NL1{KJL1 . Thus we may assume L{K is cyclic. From local
class field theory we know that the local norms NLw{KvL

ˆ
w are open in Kˆ

v which contains Uv for almost
all v; so NL{KJL and KˆNL{KJL are open, and hence closed in JK . By assumption KˆNL{KJL is dense in
JK , so JK “ KˆNL{KJL. By first inequality we obtain n “ 1.

Recall that in the Galois case an element x “ pxvq P JK is in NL{KJL if and only if it is a local norm
everywhere, i.e. xv P NLv{KvpLvqˆ for all v P MK .

Corollary 6.13.3. If S Ď MK is a finite set and L{K is a finite abelian extension, then GalpL{Kq is
generated by the elements FrobL{Kpvq for v R S, i.e. the map FrobL{K : IS Ñ GalpL{Kq is surjective.

Proof. Replacing S by G.S, we may assume S is G-invariant. Then the subgroup G1 ď GalpL{Kq generated
by the FrobL{Kpvq, v R S is normal. Let M be the fixed field of G1. For v R S, the FrobL{Kpvq viewed in
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GalpM{Kq – G{G1 are all trivial, so for all v R S, Mw “ kv if w P MM is over v. Trivially every element
of Kˆ

v is a norm of this extension.
Take D “ JSK , the subgroup of ideles with xv “ 1 for v R S. Then D Ď NM{KJM , as stated right before

the corollary. Now KˆJSK is dense in JK ; indeed, for x “ pxvq P JK , by weak approximation we can find
b P Kˆ such that b is closed to xv for v P S. Pick y P JSK with byv “ xv for v R S. Then by is closed to x
in JK . By Corollary 6.13.2 we have M “ K and thus G1 “ G.

Corollary 6.13.4. If L is a nontrivial abelian extension of K, there are infinitely many primes v of K
that do not split completely, i.e. FrobL{Kpvq ‰ 1.

Proof. Suppose there are only finitely such primes and let S Ď MK be a finite set containing those primes.
Then GalpL{Kq is generated by FrobL{Kpvq, v R S. But FrobL{Kpvq “ 1 for all v R S, so GalpL{Kq is
trivial, i.e. L “ K.

6.9 Cohomology of Idele Class (II), The Second Inequality
Theorem 6.14. Let L{K be a Galois extension of degree n, with Galois group G. Then

(1) #Ĥ0pG,CLq and #Ĥ2pG,CLq divide n.

(2) #Ĥ1pG,CLq “ 0.

Proof. The proof will be in several steps.

1° Suppose that the theorem has been proved when G is cyclic and n is prime. By Ugly Lemma, with
pρ, qq “ p1, 0q, p0, 1q it follows that #Ĥ0pG,CLq divides n and Ĥ1pG,CLq “ 0. Using the triviality
of Ĥ1, it follows again from Ugly Lemma, with pρ, qq “ p1, 2q, that #Ĥ2pG,CLq | n.

To see how the condition (b) of Ugly Lemma is satisfied, ifH�K ď G withK{H cyclic of prime order,
then LH{LK is cyclic with Galois groupK{H. By hypothesis Ĥ1pH,Mq “ 1 and Ĥ0pH,Mq | rK : Hs,
i.e. ĤqpH,Mq | rK : Hsρ for pρ, qq “ p1, 0q, p0, 1q.

2° Now assume that G is cyclic of prime order; in this case we know that Ĥ0 – Ĥ2 and by the first
inequality that #Ĥ0 “ n#Ĥ1. So it suffices to show that #Ĥ0pG,CLq “ rCK : NL{KCLs divides n.

(♠) We will make one assumption that in the function field case n is not equal to the characteristic of K
(so that the Kummer theory is valid).

3° We now show that we may further assume that K contains the n-th roots of unity.
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In fact, if we adjoin a primitive n-th root of unity ζ to K, we get an extension K 1 “ Kpζq whose
degree m divides pn ´ 1q, and so is prime to n. So

L1 “ LK K 1 “ Kpζq

L K

n

m m

n

The degree of LK 1 over K 1 is n, and L and K 1 are linearly disjoint over K. So there is a commutative
diagram with exact rows

CL CK CK{NCL 0

CL1 CK1 CK1{NCL1 0

CL CK CK{NCL 0

Con Con Con

N N N

Here Con is the conorm map and N ˝Con is simply raising to the m-th power. The group CK{NCL

is torsion in which each element has order n, for if a P CK , then an “ NL{Kpaq P NCL. Thus

NK1{KConK1{K : CK{NCL Ñ CK{NCL

is surjective since gcdpn,mq “ 1. Hence NK1{K : CK1{NCL1 Ñ CK{NCL is surjective; so if the index
rCK1 : NCL1s divides n, so does rCK : NCLs.

4° We are thus reduced to the case where n is a prime and K contains the n-th roots of unity. In fact
we call prove directly in this case the more general result.
Lemma Let K contain the n-th roots of unity and L{K be an abelian extension of prime exponent
n, with say GalpL{Kq “: G – pZ{nZqr. Then rCK : NL{KCLs divides rL : Ks “ nr.

Although, as we have just seen, the case of arbitrary r does follow from the case r “ 1, yet the
method to be used does no simplify at all if one puts r “ 1, and some of the construction in the
proof are useful for large r.

By Kummer theory, we know that L “ Kp n
?
a1, . . . , n

?
arq for some a1, . . . , ar P K. Take S to be a

finite set of (bad) primes, such that

(i) S contains all archimedean primes,

(ii) S contains all divisors of n,

(iii) JK “ KˆJK,S,
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(iv) S contains all factors for the numerators and denominators of any ai.

Condition (iv) just means that all the ai are S-units, that is, they belong to KS :“ K X JK,S: they
are units for all v R S.

Write M :“ Kp n
?
KSq for the field obtained from K by adjoining n-th roots of all S-units. By the

unit theorem the group KS has a finite basis, so this extension M{K is finite, and M is unramified
outside S by Kummer theory and condition (ii), (iv) (we know divisors of the discriminant ofM{K).
Now M Ě L Ě K and

KS “ pMˆqn X KS Ě pLˆqn X KS Ě pKˆqn X KS “ Kn
S

By Kummer theory with rM : Ks “ nt, rL : Ks “ nr and rM : Ks “ ns, we have

rKS : pLˆqn X KSs “ nt, rpLˆqn X KS : Kn
S s “ nr and rKS : Kn

S s “ ns (*)

respectively. We claim that s “ #S. By unit theorem, there are #S ´ 1 fundamental units, and the
roots of unity include the n-th roots of unity; so KS – Z#S´1ˆ(cyclic group of order divisible by n)
and

rKS : Kn
S s “ n#S “ ns where s “ t ` r

We recall we want to show that rCK : NL{KCLs divides nr, i.e. divides rpLˆqn X KS : Kn
S s. So we

need to show that NL{KCL is fairly large — we have to provide a lot of norms.

If w is a prime of L above a v R S, then FrobM{Lpwq is well-defined for M{K is unramified out-
side S. By Corollary 6.13.3, the FrobM{Lpwq generates GalpM{Lq. Choose w1, . . . , wt so that
FrobM{Lpwiq pi “ 1, . . . , tq are a basis for GalpM{Lq, and let v1, . . . , vt be primes of K below them.
We assert that FrobM{Lpwiq “ FrobM{Kpviq (the latter is well-defined for M{K is unramified at each
of them). The M{K decomposition group GalpM v{Kvq is a cyclic subgroup of pZ{nZqs, so is either
of prime order n or trivial. The w’s were chosen so that the FrobM{Lpwq were nontrivial, so that
GalpMw{Lwq ‰ 0; so that L{K decomposition group

GalpLw{Kvq – GalpM v{Kvq{GalpMw{Lwq

is trivial, i.e. v splits completely in L. Therefore GalpM v{Kvq “ GalpMw{Lwq and it is generated
by the FrobM{Lpviq “ FrobM{Kpwiq. Notice also that we have Lwi

“ Kvi for all i “ 1, . . . , t.

Write T “ tv1, . . . , vtu Ď MK . We claim that

pLˆqn X KS “ ta P KS | a P Kn
v for all v P T u (˛)

In fact, since Lw “ Kv for all v P T and w above v, it follows trivially that pLˆqn XKS is contained
in the right-hand side. Conversely, if a P KS, then n

?
a P M . If further a P Kn

v for all n P T , then
n
?
a P Kv for all v P T , and so is left fixed by all FrobM{Kpvq “ FrobM{Lpvq; these generate GalpM{Lq

so n
?
a P L. This proves p˛q.

93



Let
E “

ź

vPS

pKˆ
v qn ˆ

ź

vPT

Kˆ
v ˆ

ź

sRSYT

Uv

where Uv is the set of v-unit in Kv; so E Ď JK,SYT . Also E Ď NL{KJL – for every element of pKˆ
v qn

is a norm, since Kˆ
v {NLˆ

w – GalpLw{Kvq, which is killed by n; we have Kˆ
v “ Lˆ

w for all v P T , and
so all the elements of these Kˆ

v are norms, and the elements of Uv are all norms for v unramified.

Now
rCK : NL{KCLs “ rJK : KˆNL{KJLs

divides rJK : KˆEs because E Ď NL{KJL. The set S was chosen (condition (ii)) so that

JK “ KˆJK,S “ KˆJK,SYT

therefore rCK : NL{KCLs divides rKˆJK,SYT : KˆEs. A general formula for indices of group is

rCA : CBsrC X A : C X Bs “ rA : Bs

so to prove Lemma it will be enough to show that (with A “ JK,SYT , E “ B, C “ Kˆ)

rJK,SYT : Es

rKSYT : K X Es
“ nr (♣)

where KSYT “ Kˆ X JK,SYT .

First we calculate rJK,SYT : Es.

JK,SYT “
ź

vPS

Kˆ
v ˆ

ź

vPT

Kˆ
v ˆ

ź

vRSYT

Uv

so rJK,SYT : Es “
ś

vPS

rKˆ
v : pKˆ

v qns From Proposition 5.6 we see that the “trivial action” Her-

brand quotient hpKˆ
v q “

n

|n|v
, where | ¨ |v denotes the normed absolute value. But also hpKˆ

v q “

rKˆ
v : pKˆ

v qns

n
because the n-th roots of unity are in Kˆ

v . This means that rKˆ
v : pKˆ

v qns “
n2

|nv|
, and

rJK,SYT : Es “ n2s
ź

vPS

|n|´1
v “ n2s (♡)

by product formula and that |n|v “ 1 if v R S.

We will also need in a moment the formula

rUv : U
n
v s “

n

|n|v

which follows from the fact that hpUvq “
1

|n|v
(for Kˆ – U ˆ Z).
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By p♡q we see to prove p♣q, it will be enough to show that

rKSYT : Kˆ X Es “ n2s´r “ ns`t

As in (*), replacing S by S Y T , we have rKSYT : Kn
SYT s “ ns`t. Also Kˆ XE Ě Kn

SYT , so it will be
enough to show that Kˆ X E “ Kn

SYT .

It remains to prove
Kˆ X E Ď Kn

SYT

and this will result from the following lemma.

Lemma 6.15. Let K contain the n-th roots of unity. Let S be a subset of MK satisfying the
conditions (i)„(iv), and let T be a set of primes disjoint from S, and independent for KS in the sense
that the map KS Ñ

ś

vPT

Uv{U
n
v is surjective.

Suppose that b P Kˆ is an n-th power in S, arbitrary in T , and a unit outside SYT . Then b P pKˆqn.

Proof. Consider the extension K 1 “ Kp
n
?
bq; it will be enough to deduce that K 1 “ K. Put

D “
ź

vPS

Kˆ
v ˆ

ź

vPT

Un
v ˆ

ź

vRSYT

Uv

By argument similar to the ones used before (next to the proof of p˛q), D Ď NK1{KJK1 . By Corollary
6.13.2 it is sufficient to show KˆD “ JK . But by hypothesis, the map KS Ñ

ś

vPT

pUv{U
n
v q – JK,S{D

is surjective. Hence JK,S “ KSD and JK “ KˆJK,S “ KˆD as required.

To deduce Kˆ XE Ď Kn
SYT from Lemma, we have to check that T is independent for S in the sense

of Lemma. Let H denote the kernel of the map KS Ñ
ś

vPT

Uv{U
n
v . To prove that he map is surjective

it suffices tot show that rKS : Hs “
ś

vPT

rUv : Un
v s. The latter product is just nt (right below p♡q),

because |n|v “ 1 for v P T . On the other hand, by p˛q we have H “ KS X pLˆqn, and consequently
rKS : Hs “ nt by (*).

The proof of the theorem is now complete.

Remark 6.16. Even the case of the Lemma 6.15 with T “ H is interesting: if S satisfies conditions (i),
(ii) and (iii), then an S-unit which is a local n-th power at all primes in S is an n-th power.

Corollary 6.16.1. If L{K is abelian with Galois group G, and there is an Artin map ψ : Ĥ0pG,CLq “

CK{NCL Ñ G, then ψ must be an isomorphism.

Proof. From Corollary 6.13.3 we know ψ is surjective. Now #Ĥ0pG,CLq ď #G so ψ must be an isomor-
phism.

95



Corollary 6.16.2. Let n be a prime and let K be a field, not of characteristic n, containing the n-th roots
of unity. Let S be a finite set of primes of K satisfying the conditions (i), (i), (iii), and let M “ Kp n

?
KSq.

Then if the reciprocity law holds for M{K, we have

KˆNM{KJM “ KˆE, where E “
ź

vRS

pKˆ
v qn ˆ

ź

sRS

Uv

Proof. Consider the case L “ M of the proof of Theorem 6.14 (so that T “ H, t “ 0 and s “ r). Then
the E of that proof is as given above, and E Ď NM{KJM . By p♣q with L “ M , we have rJK : KˆEs “

ns “ rM : Ks. On the other hand, if the reciprocity law holds, we know that

rCK : NM{KCM s “ rJK : KˆNM{KJM s “ ns

This shows the result.

Corollary 6.16.3 (Albert-Brauer-Hasse-Noether). Let L{K be a finite (not necessarily abelian) Galois
extension. Then we have an injection

0 Ñ H2pG,Lˆq Ñ
à

vPMK

H2pGv, pLvqˆq

In other words, a central simple algebra over K splits over K if and only if it splits locally everywhere.

Proof. Since H1pG,CLq “ 0, the exact sequence 0 Ñ Lˆ Ñ JL Ñ CL Ñ 0 gives rise to a very short exact
sequence 0 Ñ H2pG,Lˆq Ñ H2pG, JLq. Now H2pG, JLq “

À

vPMK

H2pGv, pLvqˆq by Proposition 6.10, so

0 Ñ H2pG,Lˆq Ñ
à

vPMK

H2pGv, pLvqˆq

Corollary 6.16.4 (Hasse norm theorem). If a P Kˆ and L{K is cyclic, then a P NL{KL
ˆ if and only if

a P NLv{KvpLvqˆ for all v P MK .

Proof. Since GalpL{Kq is cyclic, Ĥ0 – Ĥ2, so the result follows from Corollary above.

Specializing further, take G of order 2, so L “ Kp
?
bq.

NL{Kpx ` y
?
bq “ x2 ´ by2

so (if the characteristic if not 2) we deduce that a has the form x2 ´ b2 if and only if it has this form locally
everywhere. It follows that a quadratic form Qpx, y, zq in three variables over K has a non-trivial zero
in K if and only if it has a non-trivial zero in every completion of K. Extending to n-variables, we may
obtain the Hasse-Minkowski theorem.

One may consider the general problem, “if a P Kˆ and a P NLvˆ for all v, is a P NLˆ?” Unfortunately,
the answer is not always yes!
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We return to the sequence

0 Ñ H2pG,Lˆq Ñ
à

vPMK

H2pGv, pLvqˆq

We write H2pL{Kq for H2pG,Lˆq and H2pLv{Kvq for H2pGv{Lvˆq. Thus it becomes

0 Ñ H2pL{Kq Ñ
à

vPMK

H2pGv{Lvˆq

From local class field theory, H2pGv{Lvˆq is cyclic of order nv “ rLv : Kvs, with a canonical generator.
Thus

H2pG, JLq “
à

vPMK

H2pGv{Lvˆq –
à

vPMK

ˆ

1

nv
Z{Z

˙

and
0 Ñ H2pL{Kq Ñ

à

vPMK

ˆ

1

nv
Z{Z

˙

(˛)

If α P
À

vPMK

ˆ

1

nv
Z{Z

˙

, or α P H2pL{Kq, we can find its local invariant invvpαq (more precisely invvpjvpαqq,

where jv is the projection on the v-component of α), which will determine it precisely.
We are interested in the functorial properties of the map invv. Let L Ě K Ě K be finite Galois

extensions withe groups
G1 “ GalpL1{Kq

and
G “ GalpL{Kq – G1{H

where H “ GalpL1{Lq. If α P H2pG, JLq, then inf α P H2pG1, JL1q, and

invvpinf αq “ invv α

Indeed, choosing a prime w1 of L1 above a prime w of L above v, one reduces this to the corresponding
local statement for the tower L1

w1 Ě Lw Ě Kv.
Thus nothing changes under inflation so we can pass in an invariant manner to the Brauer group of

K, and get the local invariants for α P BrpKq “ H2pK,Kq, where K is the algebraic closure of K, and
more generally for

α P H2pGalpK{Kq, JKq “ lim
ÝÑ
L

H2pGalpL{Kq, JLq

where JK :“ lim
ÝÑ
L

JL, by definition, the limits being taken over all finite Galois extensions L of K.

If now α P H2pG1, JL1q, then resG
1

H α P H2pH, JL1q and

invwpresG
1

H αq “ nw{v invv α (♠)

where w P ML lies above v P MK and nw{v “ rLw : Kvs. This again immediately reduces to the local
case. Moreover, L{K need not be Galois here.
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Finally we mention the result for corestriction. Again L{K need not be Galois. If α1 P H2pH, JL1q,
then coresG

1

H α1 P H2pG1, JL1q and
invvpcores

G1

H α1q “
ÿ

w|v

invw α
1

where the sum is over all primes w P ML over v P MK .

Corollary 6.16.5. Let α P BrpKq or H2pGalpK{Kq, JKq, where K is the separable algebraic closure of
K. Let L be finite Galois over K in K. Then resKL pαq “ 0 if and only if rLw : Kvs invv α “ 0 for every w
over v (this is only a finite condition, since almost all the invv α are zero).

Proof. There is an exact sequence

0 H2pL{Kq BrpKq BrpLq
inf res (♣)

Hence TFAE:

- resKL pαq “ 0.

- α P H2pL{Kq by p♣q.

- invwpresKL αq “ 0 for all w | v, by p˛q.

- rLw : Kvs invv α “ 0 for all w | v, by p♠q.

6.10 Proof of the Reciprocity Law
Let L{K be a finite abelian extension with Galois group G. Let the local Artin maps be denoted by
θv : K

ˆ
v Ñ Gv; we define the map

θ : JK G “ GalpL{Kq

x
ś

vPMK

θvpxvq

This is a proper definition, for θvpxvq “ FLv{Kvpvqvpxvq (vpxvq being the normalized valuation of xv) when v
is unramified, and vpxvq “ 0 if xv P Uv so that θvpxvq “ 0 for all but finitely many v. Also θ is continuous.

Take So Ď MK as the set of archimedean primes plus the primes ramified in L{K; then x P JSo
K implies

θ “ F ppxqSoq. Thus θ satisfies two of the conditions for an Artin map ((i) and (iii) in Corollary 6.3.1). It
remains to prove

θpaq “
ź

vPMK

θvpaq “ 1

for all a P Kˆ. We will simultaneously prove the following two theorems.
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Theorem 6.17. Every finite abelian extension L{K satisfies the reciprocity law, and the Artin map
θ : JK Ñ GalpL{Kq is given by θ “

ś

v

θv.

Theorem 6.18. If α P BrpKq, then
ř

vPMk

invvpαq “ 0. (It is a finite sum, for invvpαq :“ invvpjvαq “ 0 for

all but finitely many v.)

Logically, the proof is in four main steps.

1° Prove Theorem 6.17 for an arbitrary finite cyclotomic extension L{K.

2° Deduce Theorem 6.18 for α split by a cyclic cyclotomic extension.

3° Deduce Theorem 6.18 for arbitrary α P BrpKq.

4° Deduce Theorem 6.17 for all abelian extensions.

We first clarify the relation between 6.17 and 6.18 and deduce 2° that 6.17 implies 6.18 for cyclic extensions
and 4° that 6.18 implies 6.17 for arbitrary abelian extensions. Then we will prove 1° directly, and finally
push through 3°, by showing that every element of BrpKq has a cyclotomic splitting field.

6.17 is about Ĥ0 and 6.18 is about H2, so we need a lemma connecting them. Let L{K be a finite
abelian extension with Galois group G. Let χ P HompG,Q{Zq “ H1pG,Q{Zq be a character, where Q{Z is
a trivial G-module. If v P MK , denote by χv the restriction to the decomposition group Gv “ GalpLv{Kvq.
Let δ be the connecting homomorphism

δ : H1pG,Q{Zq H2pG,Zq

If x “ pxvq P JK , let x be its image in JK{NL{KJL – Ĥ0pG, JLq. Then the cup product x.δχ P H2pG, JLq.

Lemma 6.19. For each v we have
invvpx Y δχq “ χvpθvpxvqq

and so
ÿ

v

invvpx Y δvq “ χpθpxqq

Proof. The projection jv : JL Ñ pLvqˆ induces a map

jv res
G
Gv

: H2pG, JLq H2pGv, JLq H2pGv, pL
vqˆq

and as restriction commutes with the cup product, so

invvpx Y δχq
6.9,6.10
:“ invvpjv res

G
Gv

px Y δχqq

“ invvpxv Y δχvq

“ χvpθvpxvqq
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Then

χpθpxqq “ χ

˜

ź

v

θvpxvq

¸

“
ÿ

v

χvpθvpxvqq “
ÿ

v

invvpx Y δχq

To check 4°, apply the lemma with x “ a P Kˆ Ď JK . Denote by ã is image of a in Ĥ0pG,Lˆq. Then
ãY δχ P Ĥ2pG,Lˆq Ď BrpKq, as we need. The image of ãY δχ is H2pG, JLq is aY δχ, where a is the image
of a in Ĥ0pG, JLq, by functoriality of cup product, and by the lemma above,

ř

v

invvpa Y δχq “ χpθpaqq; so

if 6.18 is true for all α P BrpKq, it follows that χpθpaqq “ 0, and since it is true for all χ, thus θpaq “ 0.
This is 6.17.

To check 2°, take L{K cyclic. Choose χ : G Ñ Q{Z as a generating character, i.e. an injection. Then
cupping with δχ gives an isomorphism Ĥ0 „

Ñ Ĥ2 (Corollary 4.10.2), so every element of H2pGalpL{Kq, Lˆq

is of the form ã Y δχ. If 6.17 is true, then by the above lemma
ÿ

v

invvpa Y δχq “ χpθpaqq “ 0

for all a P Kˆ, which is 6.18.
We start to prove 1° in number field case. Let L{K be a finite cyclotomic extension; then L Ď Kpζq

for some root of unity ζ. We make some reduction.

• It suffices to consider the case L “ Kpζq. Indeed, set M “ Kpζq. Since the diagram

pKvqˆ GalpM v{Kvq

pKvqˆ GalpLv{Kvq

θv,M

θv,L

commutes, if
ś

vPMK

θv,Mpaq “ 1, then obviously
ś

vPMK

θv,Lpaq “ 1.

• It suffices to consider the case K “ Q. Put M “ Kpζq and L “ Qpζq; then M “ LK, and the
diagram

JK GalpM{Kq

JQ GalpL{Qq

θ

NK{Q i

θ

commutes for pNK{Qxqp “
ś

v|p

NKv{Qpxv, and the diagram

Kv GalpM v{Kvq

Qp GalpKv{Qpq

NKv{Qp i
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commutes whenever v | p. Thus iθ1pxq “ θNx for all x P JK , and so, in particular, iθ1a “ θNa for
all a P K. If 6.17 is true for L{Q, then θb “ 1 for all b P Q, and hence θ1a “ 1 for all a P K, for i is
injective.

Hence it suffices to deal with the case when L{Q is cyclotomic. We give two proofs.

First proof

Second proof We proceed entirely locally without using any result of the early section, but using the
explicit local computation of the norm residue symbol in cyclotomic extension, due originally to Dwork.

Let ζ be a root of unity. From local class field theory we know

• ζθ8pxq “ ζsignpxq for all x P Rˆ.

• ζθpppvuq “

#

ζp
v , if ζ has order prime to p

pζuq´1 , if ζ has p-power order
if x “ pvu P Qˆ

p with u P Zˆ
p and v P Z.

We need to check that
ś

p

θppaq “ 1 for all a P Qˆ, and to do this it is sufficient to prove

•
ś

p

θppqq “ 1 for all primes q ą 0;

•
ś

p

θpp´1q “ 1.

Furthermore, it is enough to consider the effect on ζ, and ℓ-th power root of unity (ℓ a prime). From above
we know

ζθpp´1q “

$

’

&

’

%

ζ´1 , p “ 8

ζ´1 , p “ ℓ

ζ , p ‰ 8, ℓ

ζθppqq “

$

’

’

’

&

’

’

’

%

ζ , p “ q “ ℓ

ζq , p “ q ‰ ℓ

ζq
´1

, p “ ℓ ‰ q

ζ , p ‰ q, p ‰ ℓ pincluding the case p “ 8q

Note that the Galois group is abelian.
Finally, we deal with 3° in number field case. It is enough to show that every element of BrpKq has a

cyclic cyclotomic splitting field; in other words, for every α P BrpKq there is a cyclic cyclotomic extension
L{K such that for every v P MK the local degree rLv : Kvs is a multiple of the denominator of invvpαq

(Corollary 6.16.5). Now invvpαq “ 0 for all but a finite number of primes and so we need only prove the

Lemma 6.20. Given a number field K, a finite set of primes S Ď MK and a positive integer m, there
exists a cyclic, cyclotomic extension L{K whose local degrees are divisible by m at the non-archimedean
primes v of S and divisible by 2 at real archimedean primes v of S (in other words, L is complex).
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Proof. It suffices to construct L in the case K “ Q. Indeed, if we can find L{Q such that L is complex
and mrK : Qs divides all local degrees at non-archimedean p P S 1, where S 1 Ď MQ consists of primes of
Q lying below those in S, then mrK : Qs divides rLp : Qps “ rLv : KvsrKv : Qps for some S Q v | p; this
implies m | rLv : Kvs as wanted.

Now take r " 0 and q an odd prime. The extension Lpqq “ Qp
qr
?
1q has a Galois group GalpLpqq{Qq –

Z{pq´ 1qZˆZ{qrZ, so it has a subextension L1pqq which is a cyclic cyclotomic over Q of degree qr´1. Now

rLpqq : L1pqqs “ q ´ 1

and so on localizing at a fixed prime p ‰ 8 of Q we have

rLpqqppq : L1pqqppqs ď q ´ 1

Note that lim
rÑ8

rLpqqppq : Qps “ 8; this follows for example from the fact that each finite extension of Qp

contains only a finite number of roots of unity. It follows that lim
rÑ8

rL1pqqppq : Qps “ 8. Therefore, since
rL1pqqppq : Qps is always a power of q, it is divisible by a sufficiently large power of q if we take r large
enough.

Now let q “ 2 and put Lp2q “ Qp
2r
?
1q; GalpLp2q{Qq – t˘1uˆZ{2r´2Z. Let ζ be a primitive 2r-th root

of unity, set ξ “ ζ ´ ζ´1 and L1p2q “ Qpξq. The automorphisms of Qpζq{Q are of the form σµ : ζ ÞÑ ζµ

for µ odd, and σµpξq “ ζµ ´ ζ´µ. Since ζ2r´1
“ ´1, one sees that σ´µ`2r´1pξq “ σµpξq; since either µ or

´µ ` 2r´1 is ” 1 pmod 4q, this implies that the automorphism of Qpξq{Q are induced by those σµ where
µ ” 1 pmod 4q and that they form a cyclic group of order 2r´2. Also, since σ´1ξ “ ´ξ, Qpξq is not real,
and so its local degree at an infinite real prime is 2.

Now rLp2q : L1p2qs “ 2 and the same argument as above shows that for p ‰ 8 we can make rL1p2qppq :

Qps divisible by as large a power of 2 as we like by taking r large enough.
If now the prime factors of m are q1, . . . , qn and possibly 2, then for large enough r, the compositum of

L1pq1q, . . . , L
1pqnq and possibly L1p2q is a complex cyclic cyclotomic extension of Q whose local degree over

Qp is divisible by m for all p P S.

Turn to the function field cases. The proof is on the same line, but the special role of “cyclic cyclotomic
extensions” in the proof is taken over by “constant field extensions”.

3° The proof goes through if we replace “cyclic cyclotomic extensions” by “constant field extensions”;
we have only to take for the L in the lemma the constant field extension whose degree is m times
the least common multiple of the degrees of the primes in S.

1° We check the reciprocity law directly for constant field extensions. Denote by σ the Frobenius
automorphism of k{k, where k is the constant field of K. Then for each prime v of K, the effect of
F pvq on k is just σdeg v, where deg v :“ rkpvq : ks. Hence the effect on k of θpaq is

ź

v

σvpaqdeg v “ σ

ř

v
vpaq deg v

“ 1
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for all a P Kˆ. The last equality results from the fact
ř

v

vpaq deg v “ 0, which is equivalent to saying
that the number of zeros of a rational function equals the number of poles.

Lemma 6.21. Let q be a power of some prime and let n P N. Then Fqrts Ñ Fqnrts is unramified.

Proof. Let f P Fqnrts be irreducible and let g P Fqrts be such that gFqrts “ fFqnrts X Fqrts; then g is
irreducible. Say g “ fh for some h P Fqnrts. Since g is irreducible over Fq, g is separable, implying f and
h are coprime. This proves Fqnrts{gFqnrts “ Fqnrts{fFqnrts.

Lemma 6.22. Let k be a finite field and a P kptq. Then
ř

v

vpaq deg v “ 0.

Proof. Suppose a “ g{h ‰ 0 with g, h P krts coprime and write the irreducible decomposition a “ f r11 ¨ ¨ ¨ f rnn
of a. Each fi correspond to distinct place vi, and deg vi “ deg f . On the other hand, there is a place v8

corresponding to t´1 with deg v “ 1 and vpaq “ deg h ´ deg g. Hence

ÿ

v

vpaq deg v “ pdeg h ´ deg gq `

n
ÿ

i“1

ri deg fi

Note deg g “
ř

i:rią0

ri deg fi and deg h “
ř

i:riă0

ri deg fi so that the above sum “ 0.

6.11 Cohomology of Idele Class (III), The Fundamental Class
Let K Ď L Ď E be finite Galois extensions of K. Then we have a following exact commutative diagram

0 0 0

0 H2pL{K,Lˆq H2pL{K, JLq H2pL{K,CLq

0 H2pE{K,Eˆq H2pE{K, JEq H2pE{K,CEq

0 H2pE{L,Eˆq H2pE{L, JEq H2pE{L,CEq

inf inf inf

res res res

where we have written H2pL{K,Lˆq for H2pGalpL{Kq, Lˆq, etc. We elaborate on the morphisms involved.

• The vertical lines are inflation-restriction sequences (c.f. Proposition 6.10.(a) and Proposition 6.11)
These are exact for Hilbert 90, Corollary 6.10.1.(a) and Theorem 6.14.(2).

• The horizontal lines result from the exact sequences 0 Ñ Lˆ Ñ JL Ñ CL Ñ 0, etc, and are exact by
Theorem 6.14.(2).

• The diagram commutes by functoriality.
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We pass to limit and let E Ñ K, where K is the separable algebraic closure of K, to obtain the new
commutative diagram

0 0 0

0 H2pL{K,Lˆq H2pL{K, JLq H2pL{K,CLq

0 H2pK,K
ˆ

q H2pK, JKq H2pK,CKq

0 H2pL,K
ˆ

q H2pL, JKq H2pL,CKq

γ1 ε1

γ2 ε2

γ3 ε3

where we have written H2pK,K
ˆ

q for H2pGalpK{Kq, K
ˆ

q, H2pL,K
ˆ

q for H2pGalpK{Kq, K
ˆ

q, etc. Next
we are going to enlarge the above diagram.

For the Galois extension L{K we have the map

inv1 “
ÿ

v

invv : H
2pL{K, JLq Ñ Q{Z

Theorem 6.18 tells use that the sequence

0 H2pL{K,Lˆq H2pL{K, JLq Q{Zγ1 inv1

is a complex. Since invvpinf αq “ invvpαq for all α P H2pL{K, JLq, by the universal property of direct
limits, we have a map inv2 : H

2pK, JKq Ñ Q{Z such that the diagram

H2pL{K, JLq Q{Z

H2pK, JKq Q{Z

inv1

inf id

inv2

(˚)

is commutative. Furthermore, the sequence

0 H2pK,K
ˆ

q H2pK, JKq Q{Zγ2 inv2

is a complex. In a similar manner we have a complex

0 H2pL,K
ˆ

q H2pL, JKq Q{Zγ3 inv3

But now invwpresαq “ nw{v invvpαq, where α P H2pK, JKq, w is a prime of L over v of K and nw{v “ rLw :

Kvs. Thus we have the commutative diagram

H2pK, JKq Q{Z

H2pL, JKq Q{Z

inv2

n

inv3
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as the sum of the local degrees
ř

w|v

nw{v “ n “ rL : Ks.

Now put H2pK,CKqreg “ Im ε2 and H2pL,CKqreg “ Im ε3. It follows that we have the induced maps

β2 : H
2pK,CKqreg Ñ Q{Z

β3 : H
2pL,CKqreg Ñ Q{Z

induced by inv2 and inv3 respectively. Define

H2pL{K,CLqreg :“ ta P H2pL{K,CLq | inf a P H2pK,CKqregu

Since nβ2 inf a “ 0, β2 induces a homomorphism

β1 : H
2pL{K,CLqreg Ñ

1

n
Z{Z

such that β1paq “ β2pinf aq. We put all information above together to obtain a extended commutative
3-dimensional diagram

0 0 0

0 H2pL{K,Lˆq H2pL{K, JLq H2pL{K,CLqreg 0

1

n
Z{Z

0 H2pK,K
ˆ

q H2pK, JKq H2pK,CKqreg 0

Q{Z

0 H2pL,K
ˆ

q H2pL, JKq H2pL,CKqreg 0

Q{Z

γ1 ε1

inv1 β1

i
γ2 ε2

inv2 β2

n
γ3

inv3

ε3

β3

(♡)

where i is the inclusion map, n is the multiplication by n, the “bent” sequences are complex and the
horizontal and vertical sequences are exact.

We propose to show that
H2pK,CKqreg “ H2pK,CKq – Q{Z

Now Impinv1q Ď
1

n
Z{Z is the subgroup 1

n0

Z{Z, where n0 is the lowest common multiple of all the local
degrees of L{K by Corollary 6.10.1.(b), and so since Im β1 Ě Im inv1 we have the inequalities

n ě #H2pL{K,CLq ě #H2pL{K,CLqreg ě #Im β1 ě #Im inv1 “ n0
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by the second inequality. It follows that if n “ n0 for this particular finite extension L{K, then we have
equality throughout so that β1 is bijective and the sequence

0 H2pL{K,Lˆq H2pL{K, JLq Q{Zγ1 inv1 (♠)

is exact, for if 0 “ inv1pbq “ β1ε1pbq, then ε1b “ 0 and b P Im γ1.
Suppose L{K is a finite cyclic extension. Then n “ n0 for the Frobenius elements FL{Kpvq, whose

orders are equal to the local degrees nv, generates the cyclic group GalpL{Kq by Corollary 6.13.3. So if,
in particular, the extension L{K is cyclic cyclotomic, then the sequence p♠q is exact. But by Lemma 6.20
says that the group H2pK,K

ˆ
q and H2pK, JKq are the unions (of the isomorphic images under inflation)

of the groups H2pL{K,Lˆq and H2pL{K, JLq, where L runs over all cyclic cyclotomic extensions of K.
Consequently, in p♡q

0 H2pK,K
ˆ

q H2pK, JKq Q{Zγ2 inv2

and
0 H2pL,K

ˆ
q H2pL, JKq Q{Zγ3 inv3

are exact (direct limits are exact functors). Therefore kerpinv2q “ ker ε3, so β2 (and similarly β3) must be
injective maps into Q{Z. They are surjective, since there exist finite extensions with arbitrary high local
degrees (Lemma 6.20) and consequently even inv2 and inv3 are surjective.

Now letting L be an arbitrary finite Galois extension, by an easy diagram chasing we conclude that β1
is a bijection:

H2pL{K,CLqreg –
1

n
Z{Z

ButH2pL{K,CLqreg is a subgroup ofH2pL{K,CLq which has order dividing n, it is the whole ofH2pL{K,CLq.
Letting L Ñ K we see that

H2pK,CKqreg “ H2pK,CKq

Thus we can remove the subscript “reg” from our diagram p♡q. Also we have proved the following

Proposition 6.23. H2pL{K,CLq is cyclic of order n, and it has a canonical generator uL{K , called the
fundamental class of L{K, with invariant 1

n
, i.e., inv1puL{Kq “

1

n
.

The two lower layers of diagram p♡q and the vertical arrow between them make sense for an arbitrary
finite separable extension L{K of finite degree n, and in this more general case, that much of the diagram
is still commutative, because the argument showing the commutativity of p˚q did not require L{K to be
Galois. Using this, and replacing L by K 1, we see that if L Ě K 1 Ě K with L{K Galois, then restricting
uL{K from L{K to L{K 1 gives the fundamental class uL{K1 . It follows from Tate’s theorem the cup product
with the fundamental class uL{K gives isomorphisms

ĤrpGalpL{Kq,Zq
„

ÝÑ Ĥr`2pGalpL{Kq, CLq
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for ´8 ă r ă 8, such that for L Ě K 1 Ě K with L{K Galois the diagrams

ĤrpGalpL{Kq,Zq Ĥr`2pGalpL{Kq, CLq

ĤrpGalpL{K 1q,Zq Ĥr`2pGalpL{K 1q, CLq

„

res res

„

and
ĤrpGalpL{Kq,Zq Ĥr`2pGalpL{Kq, CLq

ĤrpGalpL{K 1q,Zq Ĥr`2pGalpL{K 1q, CLq

„

cores cores

„

are commutative.

Applications
Case r “ ´2. There is a canonical isomorphism

GalpL{Kqab ÝÑ CK{NL{KCL “ JK{KˆNL{KJL

which is inverse to the Artin map. Using this as a definition in the local case, Serre deduced the formula
invpa.∆χq “ χpθpaqq; we have proved the formula in the global case, so one can reverse the argument. (The
isomorphism Gab – H´2pG,Zq is chosen in such a manner that for χ P HompG,Q{Zq – H1pG,Q{Zq and
σ P G, we have χ.σ “ χpσq upon identifying 1

n
Z{Z with H´1pG,Q{Zq via the connecting homomorphism.)

Reversing the horizontal arrows in the diagrams above, with r “ ´2, and letting L Ñ K, we obtain
the commutative diagrams

CK GalpKab{Kq

CK1 GalppK 1qab{K 1q

ψ

con V

ψ1

and
CK GalpKab{Kq

CK1 GalppK 1qab{K 1q

ψ

N

ψ1

where the ψ’s are the Artin map and V is the transfer map. The right diagram expresses the so-called
translation theorem.

Application to the Cohomology of Lˆ

The general idea is to determine the cohomology of Lˆ from a knowledge of the cohomology of the ideles
and the idele classes.

Let L{K be a finite extension, with Galois group G. Then the exact sequence 0 Ñ Lˆ Ñ JL Ñ CL Ñ 0

gives an exact sequence

¨ ¨ ¨ Ĥr´1pG, JLq Ĥr´1pG,CLq ĤrpG,Lˆq ĤrpG, JLq ¨ ¨ ¨
g f

in which ker f – coker g. We know

Ĥr´1pG, JLq “
à

vPMK

Ĥr´1pGv, Lvˆq “
à

vPMK

Ĥr´3pGv,Zq
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and
Ĥr´1pG,CLq “ Ĥr´3pG,Zq

so the kernel of
f : ĤrpG,Lˆq

À

vPMK

ĤrpGv, Lvˆq

is isomorphic ot the cokernel of

g1 :
À

vPMK

Ĥr´3pGv,Zq Ĥr´3pG,Zq

where g1 is given by g1
ˆ

ř

v

zv

˙

“
ř

v

coresGv
G zv. Using the fundamental duality theorem in the cohomology

of finite groups, which states that the cup product pairing

ĤrpG,Zq ˆ ĤrpG,Zq ÝÑ Ĥ0pG,Zq – Z{nZ

is a perfect duality of finite groups, one sees that the cokernel of g1 is the dual of the kernel of the map

h : Ĥ3´rpGZq ÝÑ
ź

vPMK

Ĥ3´rpGv,Zq

which is defined by phpzqqv “ resGGv
pzq for all v P MK .

Case r “ 0.
Case r “ 3. H3pG,Lˆq is cyclic of order n{n0, the global degree divided by the lower common multiple
of the local degrees, generated by the Teichmüller 3-class δuL{K , where δ : H2pG,CLq Ñ H3pG,Lˆq.
This can be killed by inflation (replace L by a bigger L1 so that the n0 for L1 is divisible by n); so
H3pK{K,K

ˆ
q “ 0.

Group Extensions. Consider extensions K Ď L Ď M , where L{K is Galois with group G, and M{K is
Galois with group E and M is a class field over L with abelian Galois group A. So 1 Ñ A Ñ E Ñ G is
exact. By the Artin isomorphism A – CL{NM{LCM . We want to know about E.

Theorem 6.24.

(i) Let σ P E have image σ P G. Let x P CL. Then ψpσxq “ σψpxqσ´1, where ψ : CL Ñ A is the Artin
map.

(ii) Let v P H2pG,Aq be the class of the group extension E. Then v “ ψ˚puL{Kq, where ψ˚ : H2pG,CLq Ñ

H2pG,Aq is the map induced by ψ : CL Ñ A and where uL{K is the fundamental class for L{K.

Proof. We only prove (i). Let S be a finite set of primes consisting of the archimedean primes of L and
those ramified in M . For x “ pxvqv P JL by weak approximation we can find an P Lˆ such that an Ñ x´1

v

as n Ñ 8 at all v P S. Then (with an obvious notation)

ψpxq “ lim
nÑ8

ψpanxq “ lim
nÑ8

ψppanxq1 ¨ lim
nÑ8

ψppanxq2q “ lim
nÑ8

ψppanxq1q
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for ψpKˆq “ 1. Hence it suffices to consider the case x P JSL ; in this case we have ψpxq “ FrobM{LppxqSq,
where FrobM{L is the Frobenius substitution and pxqS “

ř

v

pordv xqv. By linearity one reduces to show the

identity FrobM{Lpσvq “ σFM{Lpvqσ´1. For x P Lv, by definition FrobM{Lpvqpxq ” xNv pmod Pq for some
P | v so that

FrobM{Lpσvqpσxq ” pσxqNσpvq “ pσxqNv “ σpxNvq ” σ FrobM{Lpvqpxq pmod σPq

Hence FrobM{Lpσvq “ σ FrobM{Lpvqσ´1.

6.12 Proof of the Existence Theorem
If H is an open subgroup of CK of finite index, we say temporarily that H is normic if and only if there
is an abelian extension L{K such that H “ NL{KCL. The existence theorem asserts that every open
subgroup H of finite index in CK is normic. (We have already shown that if L{K is abelian, then NL{KCL

is an open subgroup of CK of finite index.)
First, two obvious remarks:

• If H1 Ě H and H is normic, then H1 is normic. Say H “ NL{KCL for some abelian L{K and consider
the composition

CK GalpL{Kq GalpLψpH1q{Kq “
GalpL{Kq

GalpL{LψpH1qq
“

GalpL{Kq

ψpH1q

ψ

where ψ is the Artin map. The kernel of the whole map is ψ´1pψpH1qq “ H1 ` H “ H1. Hence we
have a diagram with all vertical maps being invertible (with M “ LψpH1q)

CK{H GalpL{Kq

CK{H1 GalpM{Kq

ψ

„

ψ1

„

But by functoriality we know kerψ1 “ NM{KCM , so that H1 is normic.

• If H1 and H2 are normic, so is H1 X H2. Say H1 “ NL{KCL and H2 “ NM{KCM . Consider the
Artin map ψ : CK Ñ GalpLM{Kq Ď GalpL{Kq ˆ GalpM{Kq; the kernel of ψ is H1 X H2, so that
H1 X H2 “ NLM{KCLM is normic.

Key Lemma Let n be a prime and K a field not of characteristic n containing the n-th roots of unity.
Then every open subgroup H of index n in CK is normic.
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Proof. Suppose H ď CK is open of index n. Let H 1 be the inverse image of H in JK ; then H 1 ď JK is
open, so there is a finite set S Ď MK such that

H 1 Ě
ź

vPS

p1q ˆ
ź

vRS

Uv “: US

Furthermore, n “ rCK : Hs so that H 1 Ě JnK . Therefore

H 1 Ě
ź

vPS

pKˆqn ˆ
ź

vRS

UV
say
“ E

and from Corollary 6.16.2 (extend S large enough to match the condition) we obtain KˆNM{KJM “ KˆE

for some abelian M{K. Hence EKˆ{Kˆ is a normic subgroup contained in H “ H 1{Kˆ, and from above
we know H is normic as well.

Lemma 6.25. If L{K is cyclic and H ď CK , and if N´1
L{KpHq ď CL is normic for L, then H is normic for

K.

Proof. Put H 1 “ N´1
L{KpHq and letM{L be the class field of H 1. We claimM{K is abelian, and NM{KCM Ď

H, so H is normic. For the latter, we have

NM{KCM “ NL{KNM{LCM “ NL{KH
1 Ď H

by transitivity of norm. It remains to show the first, which is the main difficulty.
M{K is Galois for H 1 is invariant under GalpL{Kq. The Galois group E “ GalpM{Kq is a group

extension
0 A E G 1

Since E{A – G “ GalpL{Kq is cyclic, it is enough to show that A “ GalpM{Lq lies in the center of E.
We use Theorem 6.24.(i). Let ψ : CL Ñ A be the Artin map. To show A lies in the center, it is enough to
check that

ψpxq “ σψpxqσ´1 (i)
“ ψpσxq

for all x P CL and σ P E. Now ψ : CL Ñ A has kernel H 1, so we want to check that σx{x P H 1, which is
clear since NL{Kpσx{xq “ 1 P H.

Proceed to prove the Existence theorem. Use induction on the index of H in CK . If rCK : Hs “ 1,
everything is clear. Now let n be a prime dividing the index. Adjoin the n-th roots of unity to K to
get K 1, and replace H by H 1 “ N´1

K1{KpHq. By the last lemma it suffices to consider H 1. We have
rCK1 : H 1s | rCK : Hs, and by induction we may assume rCK1 : H 1s “ rCK : Hs.

So n | rCK1 : H 1s. Take H 1
1 so that H 1

1 ě H and rCK1 : H 1s “ n. By Key Lemma H 1
1 is normic; let L be

its class field and put H2 “ N´1
L{K1pH 1q. Then

rCL : H2s ă rCK1 : H 1s “ rCK : Hs
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for CL{H2
NL{K1

ÝÑ CK1{H 1 is injective with image H 1
1{H

1 properly contained in CK1{H 1. Hence H2 is normic
by induction hypothesis; L{K 1 is cyclic (GalpL{K 1q – CK1{H 1

1 has prime order), so we can apply the last
lemma again; so H 1 is normic.

L H2 CL CL{H2

K 1 H 1
1 CK1 C 1

K{H 1
1 GalpL{K 1q

H 1
1{H

1

K 1 “ Kp
n
?
1q H 1 CK1 CK1{H 1

K H CK CK{H

H 1
1cyclic ˝

n „

Key Lemma

cyclic ˝

111



Chapter 7

Fourier Analysis in Number Fields and
Hecke’s Zeta Functions

7.1 The Local Theory
In this section, let k denote the completion of an algebraic number field at a place p. Accordingly,

• if p is archimedean, then k is either real or complex;

• if p is non-archimedean, k is an finite extension of Qp, where p is the rational prime lying below p.

In the latter case, we denote by o the ring of integer in k, and Np “ #o{p. We select the following norm:

• k real. Choose | ¨ | to be the ordinary absolute value on R;

• k complex. Then |z| “ zz for all z P C “ k;

• k p-adic. Then |α| “ pNpq´νppaq.

Lemma 7.1. k is locally compact. More precisely, a subset A Ď k is relatively compact if and only if A
is bounded in absolute value.

Proof. It is clear when k is real or complex. When k is p-adic, it is Theorem 2.3.

7.1.1 Additive Characters and Measure
Denote by k` the additive group of k, as a locally compact abelian group, and denote by xk` the group of
characters, i.e., continuous homomorphisms χ : k` Ñ S1. It can be shown that xk` is, equipped with the
compact open topology, also a locally compact abelian group.

Lemma 7.2. A continuous homomorphism f : k` Ñ Cˆ has image in S1.

112



Proof. Every pn pn P Zq is a compact subgroup of k`, so fppnq Ď S1. Since k` “
8
Ť

n“1

p´n, it follows

fpk`q Ď S1.

Lemma 7.3. Suppose χ P xk` is a nontrivial character. Then the map

k`
xk`

x rχx : y ÞÑ χpxyqs

is an isomorphism of topological groups.

Proof.

1) We first show that if y P k is such that χpxyq “ 1 for all x P k, then y “ 0. Since χ is nontrivial, we
can find z P k such that χpzq ‰ 1. If y ‰ 0, then 1 “ χppzy´1qyq “ χpzq ‰ 1, a contradiction; thus
y “ 0. This shows x ÞÑ χx is injective.

2) We claim the set H :“ tχx | x P ku is dense in xk`, or equivalently, xk`{H “ 0. By Pontryagin duality,
it is equivalent to saying

0 “

´

xk`{H
¯^

– H
K

“ HK

where HK :“ ty P k | χxpyq “ 0 for all x P ku. But as said in the first paragraph, HK “ 0, so H “ xk`

as desired.

3) We show the map is a topological embedding.

• Continuity. Let N P Z and φ ą 0. We must show the set

A “ AN,ε :“ tx P k | |χxppNq ´ 1| ă εu

is a neighborhood of 0 in k`. Since χ is a continuous group homomorphism, we can find M " 0

such that χppMq “ 1. Then it is clear that pM Ď A; this shows the continuity.
• Continuous inverse.

p discrete. Let n P Z. We must show B “ Bn :“ tχx | x P pnu is a neighborhood of the trivial
character 1. Let ξ P pMzpM`1 such that χpξq ‰ 1. Then we claim tχx | |χxppM`1´nq ´ 1| ă

|χpξq ´ 1|u Ď B. Indeed, if 0 ‰ x P k is such that |χxppM`1´nq ´ 1| ă |χpξq ´ 1|, then in
particular, ξ R xpM`1´n. Say x P pmzpm`1; then ξ R pM`1´n`m, i.e., n ` 1 ă m. Hence
x P pm Ď pn, or x P B.
p archimedean. For each r ą 0, we show that B “ Br :“ tχx | x P Brp0qu is a neighborhood of
the trivial character 1. Let ξ ‰ 0 such that χpξq ‰ 1. Then we claim tχx | |χxpB|ξ|{rp0qq ´ 1| ă

|χpξq ´ 1|u Ď B. For if 0 ‰ x P k is such that |χxpB|ξ|{rp0qq ´ 1| ă |χpξq ´ 1|, then in particular,

ξ R xB|ξ|{rp0q “ B|x||ξ|{r, i.e.
|x||ξ|

r
ă |ξ|, or |x| ă r. (Here | ¨ | denote the usual euclidean

distance.)
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4) Thus, we see tχx | x P k`u is a locally compact subgroup of xk`. To complete the proof we need to
show it is surjective. For this, we apply the following interesting lemma.

Lemma 7.4. Let G be a Hausdorff topological group and H ď G be a locally compact subgroup.
Then H is closed in G.

Proof. Replacing G with the closure of H in G, we may assume H is dense in G. Let x P H and
choose a neighborhood U of x in H with compact closure C. Write U “ V X H for some open
V Ď G. Since C is compact and G is Hausdorff, C is closed in G, and thus V zC is open in G. But
for V X H “ U Ď C, it forces pV zCq X H “ H, and since H is dense in G, it must be the case
V Ď C; in particular, V Ď H. This shows H is open in G, and since they are topological groups, H
is closed in G.

This means tχx | x P k`u is closed in xk`, and since we already saw the former set is dense in the
latter in the second paragraph, it turns out that tχx | x P k`u “ xk`.

To fix the identification of k` with its character group promised by the proceeding lemma, we must
construct a special non-trivial character. Let p be the rational place lying below p, and Qp the completion
of the rational field at p. Define a map

λ : Qp R{Z

as follows:

• p “ 8, so Q8 “ R. Let λpxq ” ´x pmod 1q.

• p ă 8. Write x “
ř

něN

aip
n and put λpxq ”

ř

0ąněN

aip
n pmod 1q.

Lemma 7.5. λ : Qp Ñ R{Z is a nontrivial character.

Proof. The case p “ 8 is clear. Suppose p ă 8. Then λ is clearly a continuous additive group homomor-
phism, and it is nontrivial for λpxq “ 0 if and only if x P Zp.

Return to the local field k`. Define

Λ : k` R R{Z

x Trk{Rpxq λpTrk{Rpxqq

Then we have an isomorphism
k`

xk`

x ry ÞÑ e2πiΛpxyqs

Denote by d the (absolute) different of k, i.e., the inverse of the fractional ideal tx P k | Trk{Rpxoq Ď oRu.
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Lemma 7.6. Suppose p is non-archimedean. Then ry ÞÑ e2πiΛpxyqs is trivial if and only if x P d´1.

Proof. For x P k, we have Λpxoq “ 0 ô λpTrk{Qppxoqq “ 0 ô Trk{Qppxoq Ď Zp ô x P d´1.

Lemma 7.7. Let µ be a Haar measure on k`. Then for each α P kˆ and measurable M , one has
µpαMq “ |α|µpMq.

Proof. The case k being archimedean is clear by our choice of | ¨ |. The case k being p-adic is Theorem
2.5.

Let us now select a fixed Haar measure for our additive group k`, and write dx instead of dµpxq for
this measure.

• dx is the usual Lebesgue measure on R if k is real.

• dx is twice the usual Lebesgue measure on C if k is complex.

• dx is the Haar measure for which o has measure pNdq´ 1
2 if k is p-adic. (For an integral ideal a Ď o,

Na :“ #po{aq.)

Define the Fourier transform f̂ of a function f P L1pk`q by

f̂pxq :“

ż

k

fpyqe´2πiΛpxyqdy

Theorem 7.8. With our choice of measure, the inversion formula

fpxq “

ż

k

f̂pyqe2πiΛpxyqdy “
ˆ̂
fp´xq

holds for f P invpk`q. Here for a LCA group G

invpGq :“ tf P L1pGq X CpGq | f̂ P L1pĜqu

Proof. It suffices to show the inversion formula holds for one non-trivial function, since from abstract
Fourier analysis we know it is true.

• k real. Take fpxq “ e´πx2 . Using Cauchy integral formula, we compute

f̂pxq “

ż

R
e´πy2e2πixydy “

ż

R
e´πpy´ixq2´πx2dy

“ e´πx2

˜

lim
MÑ8

ż x

0

e´πp´M´itq2dt ` lim
NÑ8
MÑ8

ż N

´M

e´πy2dy ` lim
NÑ8

ż x

0

e´πpN´itq2dt

¸

“ e´πx2
ż

R
e´πy2dy “ e´πx2 “ fpxq
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• k complex. Take fpzq “ e´2π|z| (recall |z| “ zz here). Writing z “ σ ` iτ , we have

f̂pzq “ 2

ż

R

ż

R
e´2πpx2`y2qe4πipσx´τyqdxdy “ e´πp

?
2σq2e´πp

?
2τq2 “ e´2π|z| “ fpzq

• k p-adic. Take fpxq “ 1opxq, the characteristic function of o. By Lemma 7.6, we have

f̂pxq “

ż

k

1opyqe´2πiΛpxyqdy “

ż

o

e´2πiΛpxyqdy “ µpoq1d´1pxq

and
y1d´1pxq “

ż

k

1d´1pyqe´2πiΛpxyqdy “

ż

d´1

e´2πiΛpxyqdy “ µpd´1q1opxq

Write d´1 “ pn; then Nd “ pNpqn and µppnq “ µpoqpNpq´n, so

µpoqµpd´1q “ µpoqµpp´nq “ µpoq2pNpqn “ pNdq´1Nd “ 1

7.1.2 Multiplicative Characters and Measure
Let U “ Uk :“ tx P k | |x| “ 1u Ď kˆ; then we have an exact sequence

0 U kˆ Rą0 0
|¨|

In all cases, U is compact, and in case k is p-adic, U is also open.

Definition.

1. A quasi-character is a continuous group homomorphism c : kˆ Ñ Cˆ.

2. A quasi-character c is unramified if χpUq “ t1u.

Lemma 7.9. The unramified quasi-characters are precisely the maps of the form

cpxq “ |x|s :“ es log |x| px P kˆq

where s is a complex number. When p is archimedean, s is uniquely determined by c, while in case p is
non-archimedean, s is determined mod 2πi

logNp
.

Proof. For any s, x ÞÑ |x|s is obviously an unramified quasi-character. Conversely, suppose c : kˆ Ñ Cˆ is
an unramified quasi-character. In all cases, the value of cpxq depends only on |x|.

116



• k real. Consider f :“ c|Rą0 : Rą0 Ñ Cˆ. Then g :“ f ˝ exp : R Ñ Cˆ is a continuous function such
that gpx ` yq “ gpxqgpyq and gp0q “ 1. Taking γ P R such that A :“

ż γ

0

gptqdt ‰ 0. Then

Agpxq “

ż γ

0

gpt ` xqdt “

ż x`γ

x

gptqdt

is differentiable. Applying B

By

ˇ

ˇ

ˇ

ˇ

y“0

to the equation gpx ` yq “ gpxqgpyq, we see g1pxq “ g1p0qgpxq so

that gpxq “ esx with uniquely determined constant s “ g1p0q. Thus fpxq “ xs, and hence cpxq “ |x|s.

• k complex. Similarly, consider f :“ c|Rą0 : Rą0 Ñ Cˆ. As in the case k real, we see fpxq “ xs for
some unique s P C. Thus cpzq “ fp|z|1{2q “ |z|s{2 “ zs{2zs{2.

• k p-adic. Fix a uniformizer ϖ of k. Then

cpxq “ cpxϖ´ ordppxqϖordppxqq “ cpϖordppxqq “ cpϖqordp x “ cpϖq´ logNp |x|

Write cpϖq “ Re2πiθ; then

cpϖq´ logNp |x| “ R´ logNp |x|e´2πiθ logNp |x| “ |x|´ logNpR|x|
´2πiθ
logNp

Since θ is determined mod 1, s :“ ´ logNpR `
2πiθ

logNp
is determined mod 2πi

logNp
.

When p is archimedean, there is an canonical decomposition kˆ – U ˆ Rą0, while p is discrete, by
choosing a uniformizer ϖ, we still have a non-canonical decomposition kˆ – U ˆ Z. Thus for an element
x P kˆ, we can write x “ x̃ρ with x̃ P U according to the aforementioned decomposition.

Theorem 7.10. The quasi-characters of kˆ are precisely the maps of the form

cpxq “ c̃px̃q|x|s

where c̃ is any character of U . c̃ is uniquely determined by c, and s is determined as in the preceding
lemma.

Proof. A map of the described form is obviously a quasi-character. Conversely, suppose c : kˆ Ñ Cˆ is
a quasi-character. Define c̃ :“ c|U ; since U is compact, c̃ has image contained in S1, and hence it is a
character on U . The map x ÞÑ cpxq{c̃px̃q is then an unramified quasi-character, and therefore is of the
form |x|s according to the preceding lemma.

The problem of quasi-characters of kˆ therefore boils down to that of the characters c̃ to U .

• k real. Then U “ t˘1u, and the characters are c̃px̃q “ x̃n, n “ 0, 1.
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• k complex. Then U “ S1. Since the continuous endomorphisms on R have the form x ÞÑ ax with
a P R, we see that the characters on S1 are c̃px̃q “ x̃n, n P Z (by viewing S1 as R{Z).

• k p-adic. The subgroup 1 ` pν , ν ą 0 of U form a fundamental system of neighborhoods of 1 in U ;
we must have then that c̃p1 ` pνq “ 1 for ν " 0. Selecting ν minimal (ν “ 0 if c̃ ” 1), we call the
ideal f :“ pν the conductor of c̃. Then c̃ is a character of the finite group U{1 ` f.

From the expression cpxq “ c̃px̃q|x|s in the Theorem, we see |cpxq| “ |x|σ, where σ :“ Repsq is uniquely
determined by cpxq, called the exponent of c.We shall denote it by Repcq. A quasi-character is a character
if and only if its exponent is 0.

We now choose a Haar measure dˆx on kˆ.

• p archimedean. Choose dˆx :“
dx

|x|
.

• p discrete. Choose dˆx :“
Np

Np ´ 1

dx

|x|

Lemma 7.11. In case p is discrete, volpU, dˆxq “ pNdq´ 1
2 .

Proof. By definition,
ż

U

dˆx “
Np

Np ´ 1

ż

U

dx

|x|
“

Np

Np ´ 1

ż

U

dx

Since U “
Ů

aPpo{pqˆ

ap1 ` pq, it follows

ż

U

dx “ pNp ´ 1q

ż

1`p

dx “
Np ´ 1

Np

ż

o

dx “
Np ´ 1

Np
pNdq´ 1

2

so that volpU, dˆxq “ pNdq´ 1
2 .

7.1.3 The Local ζ-function; Functional Equation
Denote by z the class of all functions satisfying the following two conditions:

z1q f P invpk`q (as in Theorem 7.8);

z2q fpxq|x|σ and f̂pxq|x|σ are in L1pkˆq for σ ą 0.

Definition. For f P z and a quasi-character c of exponent ą 0, define a ζ-function

ζpf, cq :“

ż

kˆ

fpxqcpxqdˆx

Two quasi-characters on kˆ are called equivalent if their quotient is an unramified quasi-character. By
Lemma 7.9, an equivalence class consists of all quasi-characters of the form cpxq “ c0pxq|x|s, where c0pxq

is a fixed representative of the class and s P C. By introducing this complex parameter s, we may view
each class as a Riemann surface.
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• p archimedean. Since s is uniquely determined by c, the Riemann surface is isomorphic to the
complex plane C.

• p discrete. Since s is determined mod 2πi

logNp
, the Riemann surface is isomorphic to C quotient by

Z
2πi

logNp
.

Thus it is clear that what we mean when we talk of the holomorphicity of a function of quasi-characters
at a point or in a region, or of singularity. We may also consider the question of analytic continuation of
such a function, though this must of course be carried out on each surface (class) separately.

Lemma 7.12. For f P z and a quasi-character c of exponent ą 0, the integral
ż

kˆ

fpxqcpxq|x|sdˆx

defines a holomorphic function of s near s “ 0. In other words, a ζ-function is holomorphic in the domain
of all quasi-characters of exponent greater than 0.

Proof. Write cpxq “ c̃px̃q|x|t; by assumption Reptq ą 0. By z2q, we see the integral is absolutely convergent
for all s near 0 (precisely, those s such that Reps ` tq ą 0). The same holds for the integral

ż

kˆ

fpxqcpxq|x|s log |x|dˆx

for lim
xÑ0

xϵ log x “ 0 whenever ϵ ą 0. Thus we can differentiate under the integral sign (by DCT), proving
our assertion.

It is our aim to show that the ζ-functions have a meromorphic continuation to the domain of all
quasi-characters by means of a simple functional equation.

Lemma 7.13. For the quasi-character c with 0 ă Repcq ă 1, we have

ζpf, cqζpĝ, ĉq “ ζpf̂ , ĉqζpg, cq

for any f, g P z, where ĉpxq :“ |x|c´1pxq.

Proof. Note that ĉpxq “ |x|c´1pxq has exponent ą 0 under our condition. Write ζpf, cqζpĝ, ĉq as a double
integral

ζpf, cqζpĝ, ĉq “

żż

kˆˆkˆ

fpxqĝpyqcpxy´1q|y|dˆxdˆy

which is absolutely convergent. Under the translation px, yq ÞÑ px, xyq, it becomes
żż

kˆˆkˆ

fpxqĝpxyqcpy´1q|xy|dˆxdˆy
Fubini’s

“

ż

kˆ

ˆ
ż

kˆ

fpxqĝpxyq|x|dˆx

˙

cpy´1q|y|dˆy
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By writing down the definition, the parenthetical term is
ż

kˆ

fpxqĝpxyq|x|dˆx “

ż

kˆ

ˆ
ż

k

gpzqe´2πiΛpxyzqdz

˙

fpxq|x|dˆx

Using Fubini’s again, we obtain

ζpf, cqζpĝ, ĉq “

żżż

kˆkˆk

fpxqgpzqcpy´1qe´2πiΛpxyzqdxdydz

The RHS is symmetric in f, g, and this proves the lemma.

Theorem 7.14. A ζ-function has an analytic continuation to the domain of all quasi-characters given by
a functional equation of the type

ζpf, cq “ ρpcqζpf̂ , ĉq

The factor ρpcq, which is independent of the function f , is a meromorphic function of quasi-characters
defined in the domain 0 ă Repcq ă 1 by the functional equation, and for all quasi-characters by analytic
continuation. The function ρ satisfies the following properties:

1. ρpcqρpĉq “ cp´1q.

2. ρpcq “ cp´1qρpcq.

3. |ρpcq| “ 1 if Repcq “
1

2
.

Proof. In the next subsection we will find for each equivalence class C of quasi-character a function fC P z

such that ζpf̂C , ĉq is not identically zero for 0 ă Repcq ă 1 on C, and thus the function

ρpcq :“
ζpfC , cq

ζpf̂C , ĉq

is defined on the same domain. Moreover, our explicit formula for ρ will show ρ has a analytic continuation.
We now prove the described properties for ρ by the functional equation.

1. We have ζpf, cq “ ρpcqζpf̂ , ĉq “ ρpcqρpĉqζp
ˆ̂
f, ˆ̂cq. Now

ζp
ˆ̂
f, ˆ̂cq “

ż

kˆ

ˆ̂
fpxqˆ̂cpxqdˆx “

ż

kˆ

fp´xqcpxqdˆx “ cp´1qζpf, cq

so that ζpf, cq “ ρpcqρpĉqcp´1qζpf, cq.

2. ζpf, cq “ ζpf, cq “ ρpcqζpf̂ , ĉq. But

f̂pxq “

ż

k

fpyqe´2πiΛpxyqdy “

ż

k

fpyqe´2πiΛp´xyqdy “ f̂p´xq

and by writing cpxq “ χpxq|x|s with χpxq :“ c̃px̃q,

ĉpxq “ |x|c´1pxq “ |x|χpxq|x|s
´1

“ |x|χpxq|x|´s “ |x|c´1pxq “ |x|c´1pxq “ ĉpxq
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we then have
ζpf, cq “ ρpcqcp´1qζpf̂ , ĉq “ ρpcqcp´1qζpf̂ , ĉq

On the other hand, ζpf, cq “ ρpcqζpf̂ , ĉq, and therefore ρpcqcp´1q “ ρpcq.

3. Since Repsq “
1

2
, it follows cpxqcpxq “ |cpxq|2 “ |x| “ cpxqĉpxq, and thus cpxq “ ĉpxq. By 1. and 2.,

|ρpcq|2 “ ρpcqρpcq “ 1.

7.1.4 Computation of ρpcq by Special ζ-functions
Real

There are two equivalence classes of quasi-characters: one of the form x ÞÑ |x|s ps P Cq, and the other
of the form x ÞÑ signpxq|x|s ps P Cq. We consider fpxq “ e´πx2 and gpxq “ xe´πx2 . We already saw in
Theorem 7.8 that f̂ “ f ; explicitly,

e´πx2 “

ż

R
e´πy2`2πixydy

By applying d

dx
to both sides, we obtain

´2πxeπx
2

“

ż

R
2πixe´πy2`2πixydy

or ig “ ĝ. This shows f, g P z. Now we compute the ζ-functions.

ζpf, | ¨ |sq “

ż

Rˆ

e´πx2 |x|s
dx

|x|
“ 2

ż 8

0

e´πx2xs
dx

x
“ 2π´ s

2

ż 8

0

e´x2xs
dx

x
“ π´ s

2

ż 8

0

e´xx
s
2
dx

x
“ π´ s

2Γ
´s

2

¯

ζpg, sign| ¨ |sq “

ż

Rˆ

xe´πx2signpxq|x|s
dx

|x|
“ 2

ż 8

0

xe´πx2xs
dx

x
“ π´ s`1

2 Γ

ˆ

s ` 1

2

˙

ζpf̂ ,y| ¨ |sq “ ζpf, | ¨ |1´sq “ π´ 1´s
2 Γ

ˆ

1 ´ s

2

˙

ζpĝ, {sign| ¨ |sq “ iζpg, sign| ¨ |1´sq “ iπ´
p1´sq`1

2 Γ

ˆ

p1 ´ sq ` 1

2

˙

From these we can derive explicit expression for ρ :

ρp| ¨ |sq “
π´ s

2Γ
´s

2

¯

π´ 1´s
2 Γ

ˆ

1 ´ s

2

˙ “ 21´sπ´s cos
πs

2
Γpsq

ρpsign| ¨ |sq “

π´ s`1
2 Γ

ˆ

s ` 1

2

˙

iπ´
p1´sq`1

2 Γ

ˆ

p1 ´ sq ` 1

2

˙ “ ´i21´sπ´s sin
πs

2
Γpsq
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where the second equality follows from the Legendre’s duplication formula:

ΓpsqΓps `
1

2
q “ π

1
221´2sΓp2sq

and the Euler’s reflection formula

ΓpsqΓp1 ´ sq “
π

sin πs

Complex

The characters cnpreiθq “ einθ, n P Z represent the different equivalence classes, and the n-th class consists
of the quasi-characters cnpzq|z|s ps P Cq. Consider the functions

fnpzq :“

#

z|n|e´2πzz , if n ě 0

z|n|e´2πzz , if n ď 0

We contend that (which also shows fn P z)

f̂npzq “ i|n|f´npzq for all n P Z

Induction on n ě 0, n “ 0 being shown in Theorem 7.8. Suppose we have proved the contention for some
n ě 0, i.e., we have established the formula

ż

C
sne´2πsse´2πiΛpszqds “ inzne´2πzz

Applying the operator B

Bz
to both sides, we obtain

ż

C
sne´2πsse´2πiΛpszq p´2πip´sqq ds “ inznp´2πzqe´2πzz

or
ż

C
sn`1e´2πsse´2πiΛpszq “ in`1zn`1e´2πzz

which is the contention for n` 1. The induction step is carried out. For the case n ă 0, put a roof on the
formula ˆf´npzq “ i|n|fnpzq, which we have already proved, and remember that

ˆ̂
f´npzq “ f´np´zq “ p´1q|n|f´npzq

Now we compute the ζ-function. Write z “ reiθ; then

fnpzq “ r|n|e´inθe´2πr2
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|z|s “ r2s and that dˆz “
2rdrθ

r2
. Thus

ζpfn, cn| ¨ |sq “

ż 8

0

ż 2π

0

r|n|e´inθe´2πr2einθr2s
2rdrdθ

r2
“ 2π

ż 8

0

pr2qs´1`
|n|

2 e´2πr2dpr2q “ p2πq1´s`
|n|

2 Γ

ˆ

s `
|n|

2

˙

ζpf̂n,{cn| ¨ |sq “ ζpi|n|f´n, c´n| ¨ |1´sq “ i|n|p2πqs`
|n|

2 Γ

ˆ

1 ´ s `
|n|

2

˙

Thus

ρpcn| ¨ |sq “ p´iq|n|

p2πq1´sΓ

ˆ

s `
|n|

2

˙

p2πqsΓ

ˆ

1 ´ s `
|n|

2

˙

p-adic

Let cnpxq pn ě 0q be any character of kˆ with conductor exactly pn such that cnpπq “ 1. (c.f. discussion
below Theorem 7.10). These characters represent the different equivalence classes of quasi-characters.
Consider the functions

fnpxq “ e2πiΛpxq1d´1p´npxq

Then
f̂npxq “ pNbq

1
2 pNpqn11`pnpxq

Indeed,
f̂npxq “

ż

k

fnpyqe´2πiΛpxyqdy “

ż

d´1p´n

e´2πiΛppx´1qyqdy

If x´ 1 P pn, then Λppx´ 1qyq “ 0 for y P d´1p´n, and thus the integrand is a trivial character. Otherwise,
the character is not trivial, and since d´1p´n is a compact subgroup, the integral vanishes. Thus

f̂npxq “ volpd´1p´n, dyq11`pnpxq “ pNbq
1
2 pNpqn11`pnpxq

Now we compute the ζ-function. We first treat the unramified case: n “ 0. The only character of type c0
is the identity character, and f0 is the characteristic function of d´1. Let d “ pd. Then

ζpf0, | ¨ |sq “

ż

p´d

|x|sdˆx “

8
ÿ

m“´d

ż

pmzpm`1

|x|sdˆx

“

8
ÿ

m“´d

pNpq´ms

ż

oˆ

dˆx “
pNpqds

1 ´ pNpq´s
pNdq´ 1

2 “
pNdqs´ 1

2

1 ´ pNpq´s

ζpf̂0,y| ¨ |sq “ ζppNdq
1
21o, | ¨ |1´sq “ pNbq

1
2

ż

o

|x|1´sdˆx

“ pNdq
1
2

8
ÿ

m“0

pNpq´mp1´sq

ż

oˆ

dˆx “
1

1 ´ pNpqs´1
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For the ramified case, n ą 0.

ζpfn, cn| ¨ |sq “

ż

d´1p´n

e2πiΛpxqcnpxq|x|sdˆx “

8
ÿ

m“´d´n

pNpq´ms

ż

pmzpm`1

e2πiΛpxqcnpxqdˆx

We contend that
ż

pmzpm`1

e2πiΛpxqcnpxqdˆx “ 0 for m ą ´d ´ n

• m ě ´d. Then pmzpm`1 Ď d´1, so e2πiΛpxq “ 1 on pmzpm`1, and thus the integral is
ż

pmzpm`1

cnpxqdˆx “

ż

oˆ

cnpxφmqdˆx “

ż

oˆ

cnpxqdˆx “ 0

• ´d ą m ą ´d´n. Break pmzpm`1 into a disjoint union of the sets of the form a`d´1 “ ap1`p´d´mq,
on which Λ is a constant Λpaq, and thus

ż

a`d´1

e2πiΛpxqcnpxqdˆx “ e2πiΛpaqcnpaq

ż

1`p´d´m

cnpxqdˆx

The character cn is not trivial on the subgroup 1 ` p´d´m, for

1 ` pn Ĺ 1 ` p´d´m ô pn Ĺ p´d´m ô n ą ´d ´ m ô m ą ´d ´ n

Hence the last integral vanishes, and the contention is proved.

We have now shown

ζpfn, cn| ¨ |sq “ pNpqpd`nqs

ż

p´d´nzp´d´n`1

e2πiΛpxqcnpxqdˆx

To write this in a better form, let tεu be a set of representatives of oˆ{p1 ` pnq in oˆ, so that oˆ “
Ů

ε εp1 ` pnq. Then
ż

p´d´nzp´d´n`1

e2πiΛpxqcnpxqdˆx “
ÿ

ε

ż

1`pn
e2πiΛpεxϖ´d´nqcnpεxϖ´d´nqdˆx “

ÿ

ε

e2πiΛpεϖ´d´nqcnpεq

ż

1`pn
dˆx

The pay-off comes in computing

ζpf̂n,{cn| ¨ |sq “ pNbq
1
2 pNpqnζp11`pn , c

´1
n | ¨ |1´sq “ pNbq

1
2 pNpqnζp11`pn , 1q “ pNbq

1
2 pNpqn

ż

1`pn
dˆx

for on the set 1 ` pn, c´1
n | ¨ |1´s is trivial. Finally,

ρp| ¨ |sq “ pNdqs´ 1
2
1 ´ pNpqs´1

1 ´ pNpq´s

ρpc| ¨ |sq “ pNdfqs´ 1
2ρ0pcq
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where c is a ramified character with conductor f such that cpπq “ 1, where

ρ0pcq “ pN fq´ 1
2

ÿ

ε

cpεqe2πiΛpεϖ´ ord dfq

is a so-called root number and has absolute value 1, and where tεu is a set of representatives of oˆ{p1` fq

in oˆ. The fact that |ρ0pcq| “ 1 results from Theorem 7.14.(3); namely,

1 “ |ρpc| ¨ |
1
2 q| “ |ρ0pcq|

for c is a character, c| ¨ |
1
2 has exponent 1

2
.

7.2 Abstract Restricted Direct Product
We consider the restricted product defined in 2.13. Let tpu be an index set. For each p let Gp be an LCA
group and for all but finitely many p let Hp ď Gp be a compact open subgroup. We can form the restricted
product G :“

ź1

p

Gp of the Gp with respect to Hp.

• G is naturally a group whose multiplication is defined componentwise and is a topological group.

• For a finite subset S Ď tpu (when saying this, S is always required to contain those p such that Hp

is not defined) we put

GS :“
ź

pPS

Gp ˆ
ź

pRS

Hp

Then the GS induce a neighborhood system of identity in G. The GS and G are LCA groups.

• We naturally identify Gp with the subgroup of G. For a finite set S Ď tpu, define

GS :“
ź

pPS

t1u ˆ
ź

pRS

Hp

Then GS is naturally isomorphic to the compact group
ź

pRS

Hp, and we have the identification

GS “
ź

pPS

Gp ˆ GS

Lemma 7.15. A subset C Ď G is relatively compact if and only if it is contained in
ź

p

Bp, where Bp Ď Gp

is compact for all p, and Bp “ Hp for all but finitely many p.

Proof. Every compact subset of G is contained in some GS, for the GS cover G and a finite union of the
GS is again of type GS. Any compact subset of a GS is contained in a set described in the statement, for
it is contained in the cartesian product of its projection onto the component Gp.
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Let c : G Ñ Cˆ be a quasi-character, i.e., a continuous group homomorphism into Cˆ. Denote by cp
the restriction of c to Gp; then cp is a quasi-character of Gp.

Lemma 7.16. cp is trivial on Hp for all but finitely many p, and we have for a “ papq P G

cpaq “
ź

p

cppapq

Proof. For Cˆ has no small subgroup.

Lemma 7.17. For each p let cp be a given quasi-character of Gp and cp is trivial on Hp for all but finitely
many p. Then c : G Ñ Cˆ defined by

cpaq “
ź

p

cppapq

is a quasi-character.

Proof. c is clearly multiplicative. To see continuity let S Ď tpu be a finite subset consisting of all p with
cppHpq ‰ 1 and let s “ #S. Given a neighborhood U of 1 in Cˆ choose a neighborhood V of 1 such that
V s Ď U . Let Np be a neighborhood of 1 in Gp such that cppNpq Ď V for all p P S, and let Np “ Hp for
p R S. Then

c

˜

ź

p

Np

¸

Ď V s Ď U

Now consider the (unitary) characters. Note that cpaq “
ś

p

cppapq defines a character if and only if all

cp are characters.

• For each p let xGp denote the character group of Gp.

• For those p where Hp is defined, let HK
p ď xGp be the subgroup of all cp P xGp which are trivial on Hp.

That Hp is compact implies xHp – pGp{H
K
p is discrete, and thus HK

p is open. Also, since Hp is open, Gp{Hp

is discrete, and thus HK
p – {Gp{Hp is compact.

Theorem 7.18. The restricted product of the groups xGp with respect to the subgroups HK
p is naturally

isomorphic to the character group pG of G as topological groups.

Proof. The isomorphism is given by
ź1

p

xGp
pG

pcpq c :“
ś

p

cp
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The preceding lemmas show that this is an abstract group isomorphism. It remains to show it is a
homeomorphism. Let K be a compact set in G and ε ą 0. We may assume K “

ź

p

Bp as described in

Lemma 7.15. Let S consist of all p with Bp ‰ Hp and n “ #S. Then

c P tχ P pG | |χpKq ´ 1| ă εu ô

ˇ

ˇ

ˇ

ˇ

ˇ

ź

p

cppBpq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε

For p P S let Vp :“ tχ P xGp | |χpBpq ´ 1| ă ρ :“ pε ` 1q
1
n ´ 1u, and for p R S let Vp “ HK

p . Now for
pcpq P

ź

p

Vp, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ź

p

cppBpq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ă p1 ` ρqn ´ 1 “ ε

so that pcpq ÞÑ c is continuous. Conversely, let S Ď tpu be a finite set with #S “ n and 1 ą ε ą 0. For
p P S let Kp be a compact set in Gp and put Vp “ tχ P xGp | |χpKpq ´ 1| ă εu, and for p R S put Vp “ HK

p .

Put S “ tp1, . . . , pnu and let K “

˜

t1u ˆ ¨ ¨ ¨ ˆ t1u Y

n
ď

i“1

˜

Kpi ˆ
ź

j‰i

t1u

¸¸

ˆ
ź

pRS

Hp which is a compact

set in G. Then for c P pG with |cpKq ´ 1| ă ε, we have the following:

• |cppHpq ´ 1| ă ε for p R S. This implies cppHpq “ 1 because cppHpq is a subgroup of S1.

• |cpipKpiq ´ 1| ă ε for 1 ď i ď n.

Hence pcpq P
ź

p

Vp, showing c ÞÑ pcpq is continuous.

Finally we consider the measure on the restricted product G. For each p let dxp be a Haar measure on
Gp such that volpHp, dxpq “ 1 for all but finitely many p. Define a measure dx “

â

p

dxp on G as in 2.13.

Then for S Ď tpu finite, the restriction of dx to GS is dxS :“
â

pPS

dxp b dxS, where dxS is the measure on

the compact group GS such that volpGS, dxSq “
ź

pRS

volpHp, dxpq “ 1.

Lemma 7.19. Let f : G Ñ C be a function. Then
ż

G

fpxqdx “ lim
SĎtpu,#Să8

ż

GS

fpxqdx

if either

(i) f is measurable and f ě 0, in which case `8 is allowed as value of the integral; or

(ii) f P L1pGq.
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Proof. In either case,
ż

G

fpxqdx “ lim
K Ď

cpt
G,KÕG

ż

K

fpxqdx

and the result follows from Lemma 7.15.

Lemma 7.20. For each p let fp P L1pGpq be continuous and fppHpq “ 1 for all but finitely many p. Define
f : G Ñ C by

fpxq “
ź

p

fppxpq

Then f is continuous on G, and for any set S containing at least those p for which either fppHpq ‰ 1 or
volpHp, dxpq ‰ 1, we have

ż

GS

fpxqdx “
ź

pPS

ż

Gp

fppxpqdxp

Proof. f is clearly continuous on each GS, whence continuous on the entire G. For the second, note that
if x P GS, then fpxq “

ź

pPS

fppxpq. Hence

ż

GS

fpxqdx “

ż

GS

fpxqdxS “

ż

GS

ź

pPS

fppxpq

˜

â

pPS

dxp b dxS

¸

“
ź

pPS

ż

Gp

fppxpqdxp ¨

ż

GS

dxS

“
ź

pPS

ż

Gp

fppxpqdxp

Theorem 7.21. Let fp and f be defined as above, and if furthermore
ź

p

ż

Gp

|fppxpq|dxp “ lim
SĎtpu,#Să8

ź

pPS

ż

Gp

|fppxpq|dxp ă 8

then f P L1pGq, and
ż

G

fpxqdx “
ź

p

ż

Gp

fppxpqdxp

Let dcp be the measure on xGp dual to the measure dxp on Gp. Note that if fp “ 1Hp , then the Fourier
transform

pfppcpq “

ż

Gp

fppxpqcppxpqdxp
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is volpHp, dxpq1HK
p
. A consequence of this fact and the inversion formula is that

volpHp, dxpq volpH
K
p , dcpq “ 1

Therefore volpHp, dcpq “ 1 for all but finitely many p, and we may put dc “
â

p

dcp.

Lemma 7.22. If fp P invpGpq for all p and fp “ 1Hp for all but finitely many p, then the function
fpxq :“

ź

p

fppxpq has the Fourier transform

pfpcq “
ź

p

pfppcpq

and f P invpGq.

Proof. Apply the previous theorem to the function fpxqcpxq to see the first statement. Since fp P invpGpq,
pfp P L1pxGpq (by definition) for all p. For all but finitely many p we have pfp “ 1HK

p
as said above, so

pf P L1p pGq, whence f P invpGq.

Corollary 7.22.1. The measure dc “
â

p

dcp is dual to dx “
â

p

dxp.

Proof. Apply the preceding lemma to the group pG with the measure dc and the “product” functions. To
be precise, we have

p

pfpxq “
ź

p

p

pfppxpq “
ź

p

fpp´xpq “ fp´xq

7.3 The Theory in the Large

7.3.1 Additive Theory
Let k denote an algebraic number field and p the generic prime divisor of k. The completion of k at p is
denoted by kp, and all the symbol o, Λ, d, | ¨ |, c, etc. defined before for this local field kp will also receive
the subscript p, namely op, Λp, dp, | ¨ |p, cp, etc.

Definition. The ring of adele Ak of k is the restricted product of the additive groups kp (over all prime
divisors p) with respect to the subgroups op.

• The multiplication on Ak is defined componentwise.
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• From Theorem 7.18, Lemma 7.3 and Lemma 7.6, we see the continuous dual xAk of Ak is naturally
isomorphic to the restrict product of the kp with respect to the d´1

p . Since dp “ op for all but finitely
many p (dp is the closure of d Ď ok in kp), so xAk – Ak, namely, Ak is self-dual.

Explicitly, there is an isomorphism

Ak
xAk

η “ pηpq rx “ pxpq ÞÑ
ź

p

expp2πiΛppηpxpqqs

Let us define the additive function Λpxq :“
ÿ

p

Λppxpq on Ak. Then

ź

p

expp2πiΛppηpxpqq “ exp

˜

2πi
ÿ

p

Λppηpxpq

¸

“ e2πiΛpηxq

• On Ak we have the measure dx “
â

p

dxp described in the previous section, where dxp is the local

measure chosen to be self-dual (see the discussion before Theorem 7.8). Then by Corollary 7.22.1,
the measure dx is also self-dual.

Theorem 7.23. For f P L1pAkq define the Fourier transform

pfpηq “

ż

Ak

fpxqe´2πiΛpηxqdx

Then for f P invpAkq the inversion formula

fpxq “

ż

Ak

pfpηqe2πiΛpηxqdη

holds.

Lemma 7.24. For a P Aˆ, dpaxq “ |a|dx, where |a| :“
ź

p

|ap|p.

Proof. Let N “
ź

p

Np be a compact neighborhood of 0 in V . Then

volpaN, dxq “
ź

p

volpapNp, dxpq “ |a|
ź

p

volpNp, dxpq “ |a| volpN, dxq

Lemma 7.25. Let S8 denote the set of all infinite places of k.

1. k X Ak,S8 “ o.
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2. k ` Ak,S8 “ Ak.

Proof. 1. is simply the statement that an element in k is an algebraic integer if and only if it is an integer
at all finite primes. 2. is the Chinese Remainder theorem.

In the following we write A “ Ak and denote by A8 the infinite part of A, i.e., the cartesian product of
the archimedean completions of k. Suppose k has r1 real places and r2 pairs of conjugate non-real places;
then A8 – Rr1 ˆCr2 is naturally a real vector space of dimension n “ r1 ` 2r2 “ rk : Qs. For x P A let x8

denote its projection onto A8.

Lemma 7.26. If tω1, . . . , ωnu is an integral basis for o, then tω1,8, . . . , ωn,8u is an R-basis for A8. The
parallelotope

D8 “

#

n
ÿ

ν“1

xνων,8 | 0 ď xν ă 1 for 1 ď ν ď x

+

Ď A8

has volume
a

| disc k|, where disc k is the absolute discriminant of k and we use the measure dx8 :“
â

pPS8

dxp.

Proof. This is the classical Minkowski theory. Note that for complex p the measure we choose is twice the
ordinary measure on the complex plane.

Definition. The set D :“
ź

p-8

op ˆ D8 is called the additive fundamental domain.

Theorem 7.27.

1. D deserves its name, i.e., every element x P A is congruent mod k to one and only one element in D.

2. volpD, dxq “ 1.

Proof.

1. Let x P A. Use Chinese Remainder theorem to find a unique element modulo o that brings x into
AS8 , and find a unique element in o which takes x into D8.

2.

volpD, dxq “ volpD, dxS8q “ volpD8, dx8q volpAS8 , dxS8q “
a

| disc k|
ź

pRS8

pNpdpq
´ 1

2

As ideals, disc k is the norm of the absolute different d of k, and d is the product of the local differents
dp, we have

| disc k| “
ź

p-8

Npdp

and thus volpD, dxq “ 1.
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Corollary 7.27.1. k Ď A is discrete and A{k is compact.

Proof. k is discrete since D has an interior, and A{k is compact since D is relatively compact.

Lemma 7.28. Λpξq “ 0 for all ξ P k.

Proof.

Λpξq “
ÿ

p

Λppξq “
ÿ

p

λppTrkp{Qppξqq “
ÿ

p

λp

¨

˝

ÿ

p|p

Trkp{Qppξq

˛

‚“
ÿ

p

λppTrk{Qpξqq

since the trace is the sum of the local traces. Since Trk{Qpξq P Q, it suffices to show
ÿ

p

λppxq ” 0 pmod 1q

for x P Q. For any finite prime q
ÿ

p

λppxq “
ÿ

p‰q,8

λppxq ` λqpxq ` λ8pxq “
ÿ

p‰q,8

λppxq ` pλqpxq ´ xq

is a q-adic integer. This shows
ÿ

p

λppxq ” 0 pmod 1q.

Theorem 7.29. We have kK “ k, i.e., Λpxξq “ 0 for all ξ P k if and only if x P k.

Proof. Since kK “ yA{k and A{k is compact, kK is discrete. By Lemma 7.28, kK contains k. We consider
the quotient kK{k. As a discrete subgroup of the compact group A{k, #kK{k ă 8 (a discrete subgroup is
locally compact, so it is closed by Lemma 7.4). Since kK is also a vector space over k and k is not a finite
field, #kK{k cannot be finite unless #kK{k “ 1, i.e., kK “ k.

7.3.2 Riemann-Roch Theorem
We use the notations in the previous subsection.

Definition. A function φ : Ak Ñ C is called periodic if φpx ` rq “ φpxq for all x P Ak and r P k.

Lemma 7.30. If φ : Ak Ñ C is continuous and periodic, then
ż

D

φpxqdx “

ż

Ak{k

φpxqdx

where φpxq : Ak{k Ñ C is the map induced by φ, and dx is the Haar measure on Ak{k such that
volpAk{k, dxq “ 1.

Proof. The map φ ÞÑ

ż

D

φpxqdx defines a Haar integral on Ak{k, and it has norm 1 since volpD, dxq “ 1

(c.f. Theorem 7.27.2).
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By Theorem 7.29, zAk{k – kK “ k. The Fourier transform of a continuous function on Ak{k induced
by φ : Ak Ñ C is then represented by

pφprq “

ż

D

φpxqe´2πiΛpxrqdx

where r P k.

Lemma 7.31. If φ : Ak Ñ C is continuous and periodic and
ÿ

rPk

|pφprq| ă 8, then

φpxq “
ÿ

rPk

pφprqe2πiΛpxrq

Proof. The hypothesis
ÿ

rPk

|pφprq| ă 8 means pφ P L1pkq “ L1pzAk{kq, so the inversion formula holds, whence

the asserted identity in L1 sense. Since the series on RHS defines a continuous function, the identity in
fact holds for every x P Ak.

Lemma 7.32. Let f : Ak Ñ C be continuous and integrable. Suppose
ř

rPk

|fpx`kq| is uniformly convergent

for x P D. Then for the resulting continuous periodic function φpxq :“
ř

rPk

fpx ` rq, we have pφpyq “ pfpyq.

Proof.

pφpyq “

ż

D

φpxqe´2πiΛpxyqdx

“

ż

D

˜

ÿ

rPk

fpx ` rqe´2πiΛpxyq

¸

dx

“
ÿ

rPk

ż

D

fpx ` rqe´2πiΛpxyqdx

“
ÿ

rPk

ż

r`D

fpxqe´2πiΛppx´rqyqdx

“
ÿ

rPk

ż

r`D

fpxqe´2πiΛpxyqdx

“

ż

Ak

fpxqe´2πiΛpxyqdx

“ pfpyq

We explain some equalities. The third equality is due to the uniform convergence and that volpD, dxq ă 8.
Precisely, for each ε ą 0 we can find a finite S Ď k such that |

ř

rPk fpx ` rq ´
ř

rPS fpx ` rq| ă ε for all
x P D. Hence

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D

˜

ÿ

rPk

fpx ` rqe´2πiΛpxyq

¸

dx ´
ÿ

rPS

ż

D

fpx ` rqe´2πiΛpxyqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

D

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

rPk

fpx ` rq ´
ÿ

rPS

fpx ` rq

ˇ

ˇ

ˇ

ˇ

ˇ

dx ă volpD, dxqε
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The fifth equality follows from Lemma 7.28, and the sixth results from the fact Ak “
Ů

rPk

r ` D.

Lemma 7.33 (Poisson summation formula). Let f : Ak Ñ C be a continuous and integrable map. If

•
ř

rPk

|fpx ` rq| converges uniformly for x P D and

•
ř

rPk

| pfprq| converges,

then we have
ÿ

rPk

pfprq “
ÿ

rPk

fprq

.

Proof. Consider the series φpxq :“
ř

rPk

fpx ` rq. By Lemma 7.32 we see pφpxq “ pfpxq, and by Lemma 7.31
ÿ

rPk

fpx ` rq “ φpxq “
ÿ

rPk

pφprqe2πiΛpxrq “
ÿ

rPk

pfprqe2πiΛpxrq

Now the result following once we taking x “ 0 in the above identity.

Theorem 7.34 (Riemann-Roch). Let f : Ak Ñ C be a continuous and integrable map. If

•
ř

rPk

|fpapx ` rqq| converges for all a P Aˆ
k and x P Ak and converges uniformly for x P D, and

•
ř

rPk

| pfparq| converges for all ideles a P Aˆ
k ,

then for all a P Aˆ
k we have

1

|a|

ÿ

rPk

pf
´r

a

¯

“
ÿ

rPk

fparq

Proof. Let a P Aˆ
k . Define g : Ak Ñ C by gpxq :“ fpaxq. We have

pgpxq “

ż

Ak

fpayqe´2πiΛpxyqdy “
1

|a|

ż

Ak

fpyqe´2πiΛpxy{aqdy “
1

|a|
pf
´x

a

¯

and from this equality we can easily see that g satisfies all assumptions in Poisson summation formula.
Therefore we obtain

1

|a|

ÿ

rPk

pf
´r

a

¯

“
ÿ

rPk

pgprq “
ÿ

rPk

gprq “
ÿ

rPk

fparq

Remark 7.35. Suppose we do not know volpD, dxq. Then the Poisson summation formula would read
1

volpD, dxq

ÿ

rPk

pfprq “
ÿ

rPk

fprq

Iteration of this yields volpD, dxq2 “ 1, whence volpD, dxq “ 1.

Remark 7.36. For the relation between Theorem 7.34 and the classical Riemann-Roch, see GTM186.
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7.3.3 Multiplicative Theory
Definition. The idele group Aˆ

k is topologized as the restricted product of the group kˆ
p with respect to

the unit groups oˆ
ν .

• For each p we choose a local measure dˆxp as in the discussion preceding Lemma 7.11, and patch
them together to obtain a Haar measure dˆx on Aˆ

k by the method of 2.13.

• The natural map
φ : Aˆ

k tall fractional ideals of ku

x
ź

pRS8

pordp xp

is a continuous homomorphism from Aˆ
k onto the discrete group of fractional ideals with kernel Aˆ

k,S8
.

• We embed kˆ into Aˆ
k diagonally.

Theorem 7.37 (Product formula). For all r P kˆ, |r| :“
ź

p

|r|p “ 1.

Proof. This is Corollary 2.16.3. Alternatively, we can argue as follows. Consider an additive fundamental
domain D. Since rk “ k, rD is also an additive fundamental domain. Since volprD, dxq “ |r| volpD, dxq

by Lemma 7.24, it suffices to show volprD, dxq “ volpD, dxq. We have

D “ D X Ak “ D X
ğ

αPk

pα ` rDq “
ğ

αPk

D X pα ` rDq

and

rD “ rD X Ak “ rD X
ğ

αPk

p´α ` Dq “
ğ

αPk

rD X p´α ` Dq

Since dx is a Haar measure, volpD X pα ` rDq, dxq “ volpp´α ` Dq X rD, dxq, and thus

volpD, dxq “
ÿ

αPk

volpD X pα ` rDq, dxq “
ÿ

αPk

volpp´α ` Dq X rD, dxq “ volprD, dxq

Definition. The kernel of the surjective continuous homomorphism

Aˆ
k Rą0

x |x| “
ź

p

|xp|p

is denoted by pAˆ
k q1, and it consists of ideles of norm 1.
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• By the product formula, we have kˆ Ď pAˆ
k q1.

Let p0 be an arbitrary archimedean prime of k, and let

T :“
␣

papq P Aˆ
k | ap0 ą 0 and ap “ 1 if p ‰ p0

(

An idele in T is uniquely determined by its norm, so it will cause no confusion if we denote an idele in
T simply by the real number which is its norm. Thus a positive real number t also stands either for the
idele pt, 1, 1, . . .q or for the idele p

?
t, 1, 1, . . .q depending on whether p0 is real or complex. For each idele

x P Aˆ
k , we can write it uniquely as x “ |x|x1 with |x| P T and x1 “ x|x|´1 P pAˆ

k q1, so Aˆ
k – T ˆ pAˆ

k q1.
On T we choose the Haar measure dˆt “ t´1dt; then there exists a unique Haar measure d1x on pAˆ

k q1

such that the integration formula
ż

Aˆ
k

fpxqdˆx “

ż 8

0

˜

ż

pAˆ
k q1

fptxqd1x

¸

dt

t
“

ż

pAˆ
k q1

ˆ
ż 8

0

fptxq
dt

t

˙

d1x

is valid for all f P L1pAˆ
k q.

We wish to describe a fundamental domain for pAˆ
k q1 mod kˆ. Let S 1

8 be the set of all archimedean
primes except p0. Consider the log map

ℓ : pAˆ
k q1S8

:“ pAˆ
k q1 X

`

Aˆ
k

˘

S8
Rr1`r2´1

x plog |x|pqpPS1
8

where r1 is the number of real primes and r2 the number of complex primes. This is a surjective continuous
homomorphism. The surjectivity is because we can adjust the p0-component.

The subgroup kˆ X pAˆ
k q1S8

is simply the unit group oˆ of the ring o. The units ζ P oˆ for which
ℓpζq “ 0 are the roots of unity in k and form a finite cyclic group. By Dirichlet unit theorem, oˆ modulo
the group of roots of unity in k is a free abelian group of rank r :“ r1 ` r2 ´ 1; say tεiu1ďiďr is a basis.
Then tℓpεiqu1ďiďr forms a basis for Rr, and we may write for any x P pAˆ

k q1S8

ℓpxq “

r
ÿ

i“1

xiℓpεiq

with unique real numbers xi. Let P be the fundamental parallelotope in Rr spanned by the ℓpεiq, 1 ď i ď r,
that is

P :“

#

r
ÿ

i“1

xiℓpεiq P Rr | 0 ď xi ă 1, 1 ď i ď r

+

and let Q denote the unit cube in Rr, i.e., Q :“
␣

pxpqpPS1
8

P Rr | 0 ď xp ă 1 for all p P S 1
8

(

.

Lemma 7.38. We have

volpℓ´1pP q, d1xq “
2r1p2πqr2
a

| disc k|
R
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where

R “ ˘ detplog |εi|pq1ďiďr, pPS1
8

ą 0

is the regulator of k.

Proof. Since ℓ is a continuous surjective homomorphism (with compact kernel), we have

volpℓ´1pP qq

volpℓ´1pQqq
“

volpP q

volpQq
“ ˘ detplog |εi|pq “ R

so we only need to show volpℓ´1pQqq “
2r1p2πqr2
a

| disc k|
.

ℓ´1pQq consists of x P pAˆ
k q1S8

with 1 ď |x|p ă e for all p P S 1
8 (where e is the Euler number). Let Q˚

be the set of all x P pAˆ
k qS8 with 1 ď |x|p ă e for all p P S8. Then

volpQ˚q “

ż

pAˆ
k q1

ˆ
ż

txPQ˚

dt

t

˙

d1x “

ż

ℓ´1pQq

˜

ż e|x|´1
p0

|x|´1
p0

dt

t

¸

d1x “

ż

ℓ´1pQq

d1x “ volpℓ´1pQqq

because tx P Q˚ if and only if x P ℓ´1pQq and 1 ď |tx|p0 ă e. Thus it suffices to show volpQ˚q “
2r1p2πqr2
a

| disc k|
.

Write Q˚ “
ź

pPS8

Qp ˆ pAˆ
k qS8 , where Q˚

p :“
␣

r P kˆ
p | 1 ď |r|p ă e

(

pp P S8q. By nature of the measure

dˆx, it suffices to compute the volume of each component with respect to the local measure. For p real,

volpQpq “ 2

ż e

1

dt

t
“ 2

for p complex,

volpQpq “

ż 2π

0

ż

?
r

1

2drdθ

r
“ 2π

and by Lemma 7.11

volppAˆ
k qS8q “

ź

pRS8

volpoˆ
p q “

ź

pRS8

pNpdpq
´ 1

2 “
1

a

| disc k|

The last equality is explained in Theorem 7.27.

Let h “ #Clpkq be the class number of k, and choose xp1q, . . . , xphq P pAˆ
k q1 such that the corresponding

ideals φpxp1qq, . . . , φpxphqq represent the different ideal classes. Let w be the number of roots of unity in k.
Let

E0 :“

"

x P ℓ´1pP q | 0 ď Arg bp0 ă
2π

w

*

We define the multiplicative fundamental domain E for pAˆ
k q1 mod kˆ to be

E “ E0x
p1q Y ¨ ¨ ¨ Y E0x

phq
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Theorem 7.39.

1. pAˆ
k q1 “

Ů

rPkˆ

rE, so E deserves its name.

2. volpE, d1xq “
2r1p2πqr2hR

w
a

| disc k|
.

Proof.

1. Let x P pAˆ
k q1. There is a unique xpiq such that φpx{xpiqq represents a principal ideal; say φpx{xpiqq “

αo (α is unique modulo units). Then φpα´1x{xpiqq “ o, so α´1x{xpiq P pAˆ
k q1S8

. Up to a unique
product of fundamental units εj, we may assume α´1x{xpiq P ℓ´1pP q. Multiplication by a root of
unity in k we can further assume α´1x{xpiq P E0, or x P αxpiqE0.

2. By E “
h
Ů

i“1

xpiqE0 and ℓ´1pP q “
Ů

ζPµpkq

ζE0, we have

volpEq “ h volpE0q “
h

w
volpℓ´1pP qq “

2r1p2πqr2hR

w
a

| disc k|

Corollary 7.39.1. kˆ is a discrete subgroup of pAˆ
k q1 (hence of Aˆ

k ), and the quotient pAˆ
k q1{kˆ is compact.

Proof. It is clear that E has nonempty interior and is contained in some compact set.

Definition. A Hecke character is a quasi-character χ : Aˆ
k {kˆ Ñ Cˆ of the idele class group of k.

• Since pAˆ
k q1{kˆ is compact, the restriction of a Hecke character to pAˆ

k q1 is a (unitary) character.

• A Hecke character that is trivial on pAˆ
k q1 has the form x ÞÑ |x|s for some complex number s.

Indeed, if c : Aˆ
k Ñ Cˆ is such a map, then cpxq “ cp|x|px{|x|qq “ cp|x|q for each x P Aˆ

k . Since every
continuous homomorphism from Rą0 to Cˆ is of the form t ÞÑ ts, so cp|x|q “ |x|s for some s P C.

• To each Hecke character c : Aˆ
k Ñ Cˆ there exists a unique real number σ such that |cp¨q| “ | ¨ |σ.

The number wtpcq :“ σ is called the exponent / weight of c. A quasi-character is a character if
and only if its exponent is 0.

7.3.4 The ζ-function; Functional Equation
As in the local case, denote by z the class of all functions f : Ak Ñ C satisfying the following three
conditions.

z1q f P invpAkq (as in Theorem 7.8);
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z2q The series
ÿ

rPk

fpαpx ` rqq and
ÿ

rPk

pfpαpx ` rqq are both uniformly convergent for pα, xq P K ˆ D,

where D is the additive fundamental domain of Ak{k and K is some fixed compact subset of Aˆ
k .

z3q fpxq|x|σ and f̂pxq|x|σ are in L1pAˆ
k q for σ ą 1.

Note that if f : Ak Ñ C is continuous, its restriction to the idele group Aˆ
k is still continuous, for the

topology we have adopted in Aˆ
k is stronger than the subspace topology on Aˆ

k induced from Ak.
In view of pz1q and pz2q, the Riemann-Roch theorem is valid for functions in z. The purpose of pz3q is

the following.

Definition. For each f P z and Hecke character c of k with exponent greater than 1, we define the
ζ-integral

ζpf, cq :“

ż

Aˆ
k

fpxqcpxqdˆx

Two Hecke-characters are called equivalent if they coincide on pAˆ
k q1. Then an equivalence class consists

of all Hecke characters of the form cpxq “ c0pxq|x|s, where c0 is a fixed representative from the class and
s is a complex number. As in the local case, the parametrization by s P C lets us think of a class as a
Riemann surface, and we can show by pz3q that for each Hecke character c of exponent ą 1, the integral

ż

Aˆ

fpxqcpxq|x|sdˆx

defines a holomorphic function of s near s “ 0.

Theorem 7.40. A ζ-function ζpf, cq has an analytic continuation to the domain of all Hecke characters
which is entire except at c “ 1 and c “ | ¨ |, where it has simple poles with residue ´κfp0q and κ pfp0q,
respectively, where κ is the volume of the multiplicative fundamental domain (c.f. Theorem 7.39).
The function ζpf, cq satisfies the functional equation

ζpf, cq “ ζp pf,pcq

where pcpxq :“ |x|c´1pxq is defined as in the local theory.

Proof. Let c be a Hecke character of exponent ą 1. We have

ζpf, cq “

ż

Aˆ
k

fpxqcpxqdˆx “

ż 8

0

˜

ż

pAˆ
k q1

fptxqcptxqd1x

¸

dt

t

say
“

ż 8

0

ζtpf, cq
dt

t

Here for almost all t the integral

ζtpf, cq “

ż

pAˆ
k q1

fptxqcptxqd1x

is absolute convergent for c of all exponents, because it is convergent for some c and |cptxq| “ twtpcq is
constant for x P pAˆ

k q1.
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Lemma 7.41. For all Hecke characters c we have

ζtpf, cq ` fp0q

ż

E

cptxqdˆx “ ζ1{tp pf,pcq ` pfp0q

ż

E

pc
´x

t

¯

dˆx

where E is the multiplicative fundamental domain.

Proof. Since pAˆ
k q1 “

Ů

αPkˆ

αE, we have

ζtpf, cq ` fp0q

ż

E

cptxqdˆx “
ÿ

αPkˆ

ż

αE

fptxqcptxqd1x ` fp0q

ż

E

cptxqd1x

“
ÿ

αPkˆ

ż

E

fpαtxqcptxqd1x ` fp0q

ż

E

cptxqd1x

By pz2q for f , the sum
ÿ

αPkˆ

fpαtxq converges compactly in E, and a similar argument to Lemma 7.32 says

we can interchange the sum and the integral. Thus

ζtpf, cq “

ż

E

˜

ÿ

αPkˆ

fpαtxq

¸

cptxqd1x ` fp0q

ż

E

cptxqd1x

“

ż

E

˜

ÿ

αPk

fpαtxq

¸

cptxqd1x

pRiemann-Rochq “

ż

E

˜

ÿ

αPk

pf
´ α

tx

¯

¸

1

|tx|
cptxqd1x

x ÞÑx´1

“

ż

E

˜

ÿ

αPk

pf
´αx

t

¯

¸

pc
´x

t

¯

d1x

Reversing the steps completes the proof.

Lemma 7.42.
ż

E

cptxqd1x “

#

κts , if cpxq “ |x|s

0 , if c|pAˆ
k q1 ‰ 1

Proof. This is clear since integration of cpxq over E is the same as integration over of cpxq the compact
group pAˆ

k q1{kˆ, and cptq “ |t|s “ ts.

To prove the theorem, for c of exponent ą 1 write

ζpf, cq “

ż 8

0

ζtpf, cq
dt

t
“

ż 1

0

ζtpf, cq
dt

t
`

ż 8

1

ζtpf, cq
dt

t

The latter term
ż 8

1

ζtpf, cq
dt

t
“

ż

|x|ě1

fpxqcpxqdˆx
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converges absolutely for all Hecke characters c, for we already know it converges for those of exponent ą 1,
and the less the exponent is, the better it converges. For the former term, we use the lemmas.

ż 1

0

ζtpf, cq
dt

t
“

ż 1

0

ζ1{tp pf,pcq
dt

t
`

#

ż 1

0

κ pfp0q

ˆ

1

t

˙1´s
dt

t
´

ż 1

0

κfp0qts
dt

t

+

The curly bracket term appears only when c is trivial on pAˆ
k q1, in which case we assume cpxq “ |x|s. Since

we are assuming wtpcq ą 1, that term makes sense, and equals

κ pfp0q

s ´ 1
´
κfp0q

s

Making the substitute t ÞÑ 1{t in the main part, we obtain
ż 1

0

ζtpf, cq
dt

t
“

ż 8

1

ζtp pf,pcq
dt

t
`

#

κ pfp0q

s ´ 1
´
κfp0q

s

+

whence

ζpf, cq “

ż 8

1

ζtpf, cq
dt

t
`

ż 8

1

ζtp pf,pcq
dt

t
`

#

κ pfp0q

s ´ 1
´
κfp0q

s

+

“

ż

|x|ą1

fpxqcpxqdˆx `

ż

|x|ą1

pfpxqc´1pxq|x|dˆx `

#

κ pfp0q

s ´ 1
´
κfp0q

s

+

The two integrals converge absolutely for all Hecke characters c (of arbitrary exponent), so it gives an
analytic continuation of ζpf, cq, and from which we can directly read off the poles and residues. Observe
also that this expression remains unchanged if we replace pf, cq by p pf,pcq, so the functional equation holds.

7.3.5 Comparison with the Classical Theory
In this subsection we shall exhibit for each equivalence class C of Hecke characters an explicit function f P z

such that the corresponding ζ-function is nontrivial on C. These special ζ-functions will turn out to be,
essentially, the classical ζ-functions and L-series. The analytic continuation and the functional equation
for our ζ-functions will yield the same for the classical functions.

Each class of Hecke characters can be represented by a unitary Hecke character. To describe this in
detail, we fix a finite set of primes S containing all archimedean primes, and discuss the characters which
are unramified outside S. A character of this type is nothing more nor less than a product

cpxq “
ź

p

cppxpq

of local characters cp satisfying the two conditions

(1) cp unramified outside S (i.e. cp|oˆ
p

“ 1).
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(2)
ź

p

cppαq “ 1 for all α P kˆ.

To construct such characters and express them in more concrete terms, we write for p P S:

cppxpq “ rcpprxpq|xp|
itp
p

rcp being a character of oˆ
p , tp a real number (c.f. Theorem 7.10). For p R S we throw all the local characters

together into a single character, say

c˚pxq “
ź

pRS

cppxpq

and interpret c˚ as coming from an ideal character. Namely: The map

x ÞÑ φSpxq :“
ź

p

pordp x

is a homomorphism of the idele group onto the multiplicative group of ideals prime to S. Its kernel is
pAˆqS. Since c˚pxq is identity on pAˆqS, we have

c˚pxq “ χpφSpxqq

for some character χ of the group of ideals prime to S. Our character cpxq is now written in the form

cpxq “
ź

pPS

rcpprxpq ¨
ź

pPS

|xp|
itp
p ¨ χpφSpxqq

To construct such characters we must select our rcp, tp and χ such that cpxq “ 1 for all x P kˆ. For this
purpose we first look at the S-units ε of k, i.e., the elements of kˆ X pAˆqS for which φSpεq “ o. Assume
S contains m` 1 primes; let ε0 be a primitive root of unity in k and let tε1, . . . , εmu be a basis for the free
abelian group of S-units modulo roots of unity. For c to be trivial on the S-units it is then necessary and
sufficient that cpενq “ 1, 0 ď ν ď m. The requirement cpε0q “ 1 is simply a condition on the rcp:

ź

p

rcppε0q “ 1 (A)

We therefore first select a set of rcp for p which satisfies (A). The requirements cpενq “ 1, 1 ď ν ď m gives
the conditions on the tp:

ź

pPS

|εν |
itp
p “

ź

pPS

rc´1
p prενpq, 1 ď ν ď m

which will be satisfied if and only if the numbers tp solve the real linear equations

ÿ

pPS

tp log |εν |p “ i log

˜

ź

pPS

rcpprενpq

¸

, 1 ď ν ď m (B)

142



for some value of the logarithms on the right hand side. We now select a set of values for those logarithms
and a set of numbers tp solving the resulting equation (B). It is well-known that the rank of the matrix
plog |εν |pq is m, so there always exist solutions tp. And since

ř

pPS

log |εν |p “ 0 for all ν, the most general

solution is then tp ` t for any t. Having selected the rcp and tp, the requirement cpαq “ 1 for all α P kˆ

means that χ must satisfy the condition

χpφSpαqq “
ź

pPS

rc´1prαpq|α|
´itp
p (C)

for all ideals of the form φSpαq, the ideals obtained from principal ideals by cancelling the powers of primes
in S from their factorization. These ideals form a subgroup of finite index hS in the group of all ideals
prime to S. Since the multiplicative function of α on the right hand side of condition (C) has been fixed
up to be trivial on the S-units, it amounts to a character of this subgroup of ideals of the form φSpαq.
We then must select χ to be one of the finite number hS of extensions of this character to the group of all
ideals prime to S.

Having selected a character

cpxq “
ź

p

cpxpq “
ź

pPS

rcpprxpq ¨
ź

pPS

|xp|
itp
p ¨ χpφSpxqq

unramified outside S, we wish to find a simple function f P z whose ζ-function is nontrivial on the surface
on which cpxq lies. To this effect we choose for each p P S some function fp P zp whose (local) ζ-function
is nontrivial on the surface on which cp lies (for instance select fp to be the function used to compute
ρppcp| ¨ |sq previously). For p R S, we choose fp “ 1op . We then put

fpxq “
ź

p

fppxpq

We will show in the course of our computations that the function f is in the class z.
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Chapter 8

Exercise

8.1 The Power Residue Symbol
Let m be a fixed natural number and K a fixed global field containing the group µm of m-th roots of
unity. Let S denote the set of primes of K consisting of the archimedean ones and those dividing m. For
a1, . . . , ar P Kˆ, put

Spa1, . . . , arq “ S Y tν P MK | |ai|ν ‰ 1 for some i “ 1, . . . , ru

Definition. For a P Kˆ and b P ISpaq, the symbol
´a

b

¯

is defined by the equation

p m
?
aqFrobL{Kpbq “

´a

b

¯

m
?
a

where L “ Kp m
?
aq.

Lemma 8.1.
´a

b

¯

P µm and is independent of the choice of m
?
a.

Proof. Since FrobL{Kpbq P GalpL{Kq, it sends m
?
a to one of its conjugates. Every conjugate of m

?
a takes

the form ζ m
?
a with ζ P µm; this proves the first assertion. For the second, if we take ξ m

?
a instead, where

ξ P µm, since µm Ď K, ξ is fixed by FrobL{Kpbq; hence

pξ m
?
aqFrobL{Kpbq

ξ m
?
a

“
ξp m

?
aqFrobL{Kpbq

ξ m
?
a

“
p m

?
aqFrobL{Kpbq

m
?
a

Lemma 8.2.

1. For a, a1 P Kˆ and b P ISpa,a1q, one has
ˆ

aa1

b

˙

“

´a

b

¯

ˆ

a1

b

˙

.

2. For a P Kˆ and b, b1 P ISpaq, one has
´ a

bb1

¯

“

´a

b

¯´ a

b1

¯

.
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Proof.

1. Recall that if L Ď M Ď N are abelian extensions with ν P ML unramified in N , then FN{Lpνq|M “

FM{Lpνq. Hence to compute
ˆ

aa1

b

˙

, we can work in the field L1 “ Kp m
?
a, m

?
a1q instead of Kp

m
?
aa1q.

By the same reason, we have
ˆ

aa1

b

˙

m
?
aa1 “ p

m
?
aa1qFrobL1{Kpbq “ p

m
?
a1qFrobKp m?aq{Kpbqp

m
?
a1q

Frob
Kp

m?
a1q{K

pbq
“

´a

b

¯

m
?
a

ˆ

a1

b

˙

m
?
a1

2. This is clear since FL{K is a homomorphism.

Corollary 8.2.1. For a P Kˆ and b “
ř

nνν P ISpaq, one has
´a

b

¯

“
ź

νRSpaq

´a

ν

¯nν

Lemma 8.3. If ν R S, then the map

α : µmpKq µmpκpνqq

ζ ζ mod pν

is an isomorphism of groups.

Proof. Suppose ζ P µpKq is 1 modulo pν , write ζ “ 1 ` πa for some a P o (o denotes the ring of integers
in K). Then

1 “ ζm “ p1 ` πaqm “ 1 `

m
ÿ

k“1

ˆ

m

k

˙

akπk

so that 0 “ mπa `
mpm´1q

2
π2a2 ` ¨ ¨ ¨ ; this gives ma P pν , and since p - m, it forces a P pν . Write a “ πa1

for some ai P o and consider ζ “ 1 ` πa “ 1 ` π2a1. Following the same procedure we obtain a1 P p2v.
Continuing in this way we see a P

Ş

ně1

pn “ 0. Hence ζ “ 1, namely α is injective. Since the codomain is

of size at most m, it follows that α is a bijection.

Lemma 8.4. If ν R Spaq, then m | pNν ´ 1q, where Nν “ #κpνq, and
´a

ν

¯

is the unique m-th root of
unity such that

´a

ν

¯

” a
Nν´1

m pmod pνq

Proof. Note that m | Nν´1 is equivalent to µm Ď κpνq; the latter follows from 8.3, and hence m | Nν´1.
For the last assertion, by definition

´a

ν

¯

“
pa1{mqFrobL{Kpνq

a1{m
”

pa1{mqNν

a1{m
“ a

Nν´1
m pmod pνq

The uniqueness results from 8.3.
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Lemma 8.5. For ν R Spaq, TFAE:

(i)
´a

ν

¯

“ 1.

(ii) The congruence xm ” a pmod pνq is solvable with x P oν .

(iii) The equation xm “ a is solvable with x P Kν .

Proof. In the proof of 8.4 we see
´a

ν

¯

“ 1 if and only if
´a

ν

¯

” 1 pmod pνq. Suppose (ii) holds; then 8.4

implies
´a

ν

¯

” a
Nv´1

m ” xNv´1 ” 1 pmod pνq, and hence (i). Suppose (i) holds. Since κpνqˆ is cyclic of
order Nν ´ 1, let γ be a generator of κpνqˆ. Write a “ γn for some n. Then

1 “ a
Nv´1

m “ γ
npNv´1q

m

implies Nv ´ 1 |
npNv´1q

m
. Hence m | n, and thus a “ pγn{mqm.

That (ii)ñ (iii) follows from Hensel’s lemma. Now suppose (iii). Taking absolute value, we see |x|mν “

|a|ν ď 1, so that x lies in the ring of integers of Kν . Then x mod pν verifies (ii).

Lemma 8.6. If b is an integral ideal prime to m, then
ˆ

ζ

b

˙

“ ζ
Nb´1

m for ζ P µm

Proof. When b “ ν is a prime, this follows from the uniqueness part of 8.4. For general b “
ř

nνν, putting
Nν “ 1 ` mrν we have

Nb “
ź

p1 ` mrνqν ” 1 ` m
ÿ

nνrν pmod m2q

Now by linearity
ˆ

ζ

b

˙

“
ź

ˆ

ζ

ν

˙nν

“
ź

ζnν
Nν´1

m “ ζ
ř

nνrν “ ζ
Nb´1

m

Lemma 8.7. If a and b P ISpaq are integral, and if a1 ” a pmod qb, then
ˆ

a1

b

˙

“

´a

b

¯

Proof. We may assume b “ ν is a prime. Since a1 ” a pmod pνq, aNν´1
m ” a1Nν´1

m pmod pνq, and the result
follows from the uniqueness part of 8.4.

Lemma 8.8. Let a P Kˆ. If b, b1 P ISpaq are such that b1b´1 “ pcq is the principal ideal of an element
c P Kˆ such that c P pKˆ

ν qm for all ν P Spaq, then
´ a

b1

¯

“

´a

b

¯
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8.2 The Norm Residue Symbol

8.3 The Hilbert Class Field
Definition. Let L{K be a finite global field extension and v P MK a place. v is said to split completely
if there are precisely rL : Ks extensions of v to K.

(i) v real archimedean: this is equivalent to saying that Lw “ Kv “ R for each ML Q w | v.

(ii) v non-real archimedean: v splits completely automatically.

(iii) v non-archimedean: then v is unramified and GalpLw{Kvq “ 1 for each ML Q w | v.

For convenience, we say an archimedean place is unramified if it split completely.

§

Let L{K be a global abelian extension, v P MK , and iv : Kˆ
v Ñ JK the canonical extension.

Lemma 8.9. v splits completely in L if and only if ivpKˆ
v q Ď KˆNL{KJL.

Proof. we have the local Artin map given by

ψv : K
ˆ
v JK GalpL{Kq

iv ψL{K

From class field theory we know kerψν “ NLvˆ “ i´1
v pKˆNL{KJL X ivpK

ˆ
v qq and ψv : Kˆ

v {NLvˆ –

GalpLv{Kvq. Hence

v splits completely in L ô v is unramified and GalpLv{Kvq “ 1

ñ Kˆ
v “ NLvˆ

ô Kˆ
v “ i´1

v pKˆNL{KJL X ivpK
ˆ
v qq

ô ivpK
ˆ
v q Ď KˆNL{KJL

Suppose ivpKˆ
v q Ď KˆNL{KJL. Then Lemma 8.10 says v is unramified, and the second ñ above can be

replaced by ô.

Lemma 8.10. v is unramified in L if and only if ivpUvq Ď KˆNL{KJL. (Recall that Uv “ Kˆ
v by definition

when v is archimedean.)

Proof. Let w P ML lying above v. If v is unramified, then NLw{KvUw “ Uv so ivpUvq Ď KˆNL{KJL.
Conversely, suppose ivpUvq Ď KˆNL{KJL. Then ivpUvq Ď KˆNL{KJL X ivpKvq “ ivpNL

vˆq so that
Uv Ď NLvˆ.

• For a non-archimedean prime, note that for an element x P Lvˆ to satisfy Nx P Uv, x must have
absolute value 1, namely x P Uw.
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• Suppose v is archimedean. If v is non-real, then Uv Ď NLvˆ means Cˆ Ď Rą0, which is absurd.
Hence v is real, and it must be the case Lv “ R, for otherwise Rˆ Ď Rą0.

It suffices to deal with the non-archimedean prime; in this case we obtain Uv “ NUw. By Corollary 5.8.1
Uv{pUv XNLw{KvL

ˆ
wq “ Uv{NUw is isomorphic to the inertia group of GalpLw{Kvq; thus Uv “ NUw implies

ew{v “ 1, i.e. v is unramified.

Lemma 8.11. Let S denote the set of archimedean primes. The class field to the group KˆJK,S is the
maximal abelian extension of K which is unramified at all primes (including archimedean primes).

Proof. By 8.10, it suffices to show that L{K is a unramified abelian extension, then KˆJK,S Ď KˆNL{KJL.
But this is clear, since the ivpUvq, v P MK are precisely those “v-component” of JK,S; precisely, Uv “

jvpJK,Sq for each v.

Definition. Keep the notation above. The class field to KˆJK,S is called the Hilbert class field of K;
we will denote it by K 1.

Lemma 8.12. The Frobenius homomorphism FrobK1{K induces an isomorphism of the ideal class group
ClpKq “ IK{PK of K onto the Galois group GalpK 1{Kq.

Proof. By global class field theory we have an isomorphism

ψ : JK{KˆJK,S GalpK 1{Kq

Notice that there is an surjective homomorphism

JK IK

pavqv
ř

v-8
ordvpavqv

with kernel JK,S, and under this map Kˆ can be identified with the group of principal fractional ideals;
hence JK{KˆJK,S – IK{PK “ ClpKq.

Let us write the isomorphism more explicitly. For each ideal class C, choose a representative I and
write I as a sum of finite primes I “

ř

v

avv. Let πv be a uniformizer of Kv for each v. Form an idele pπavv q

whose infinite components are all 1. Then C is mapped to the element

ψppπavv qvq “ FrobK1{Kppπavv qSq “
ź

v

FrobK1{Kpvqav

Hence our isomorphism takes the form

ClpKq GalpK 1{Kq

«

ÿ

v

avv

ff

ź

v

FrobK1{Kpvqav
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Corollary 8.12.1. Let H be a number field and H 1 be its Hilbert class field.

1. hK :“ #ClpKq “ rH 1 : Hs.

2. A prime ideal in K splits completely in K 1 if and only if it is a principal prime.

3. An arbitrary ideal I in K is principal if and only if FrobK1{KpIq “ 1.

8.3.1 Hilbert class fields of imaginary quadratic fields

8.3.2 Big Hilbert class fields
Let J`

S denote the group of ideles which are positive at the real primes of K and are units at the non-
archimedean primes. The class field over K with norm group KˆJ`

S is the maximal abelian extension
which is unramified at all non-archimedean primes, but with no condition at the archimedean primes; let
us denote it by K1.

Definition. Let K be a number field. An element a P K is totally positive if for all real embedding
σ : K Ñ R of K, σpaq ą 0.

Let P`
K denote the group of principal ideals of the form paq, where a is a totally positive element of K.

Lemma 8.13. The Frobenius homomorphism FrobK1{K gives an isomorphism IK{P`
K – GalpK1{Kq.

Proof. We have the isomorphism

ψ : JK{KˆJ`
S GalpK1{Kq

Let Kˆ
` denote the set of totally positive elements in Kˆ. We claim the equality Kˆ

`JK,S “ KˆJ`
S .

• Let ax P KˆJ`
S with a P Kˆ, x P J`

S . Then ax “ a2pa´1xq P Kˆ
`JK,S.

• Let ax P Kˆ
`JK,S with a P Kˆ

` , x P JK,S. Let M be the set of all real embedding. Let ε ą 0 be such
that for all σ P M and for all y P Kˆ, if |y ´ xσ|σ ă ε, then σpyqσpxσq ą 0. By weak approximation
there is an y P Kˆ such that |y ´ xσ|σ ă ε for all σ P M . Then ax “ ay´1pyxq P KˆJ`

S .

Now under the usual isomorphism JK{JK,S – IK , P`
K is identified with the subgroup Kˆ

`JK,S{JK,S, so that
we have

JK{KˆJ`
S “ JK{Kˆ

`JK,S IK{P`
K

„

Corollary 8.13.1. GalpK1{K
1q – PK{P`

K is an elementary abelian 2-group.

Proof. The isomorphism is clear from 8.12 and 8.13. For the last assertion, it is obviously that PK{P`
K has

exponent 2.
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Lemma 8.14. Let r be the number of real primes in K and K`
S “ Kˆ X J`

S . Then

rPK : P`
K srKS : K`

S s “ 2r1

Proof. We have a commutative diagram with exact rows

0 Kˆ X J`
S Kˆ

` P`
K 0

0 Kˆ X JK,S Kˆ PK 0

where the horizontal maps are natural inclusions. Hence we have

rPK : P`
K srKS : K`

S s “ rKˆ : Kˆ
` s

It suffices to show rKˆ : Kˆ
` s “ 2r. Let M be the set of real embeddings of K. For each σ P M , we must

find a P Kˆ such that σpaq ą 0 but τpaq ă 0 for any other τ P M ´ tσu. But this follows from weak
approximation.
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