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Preface

This is originally the note I took when reading [DE14]. It gradually becomes a place for me to collect
what I learnt and what I thought. The main subjects are of course number theory and representation
theory of locally compact groups. Familiarity with undergraduate analysis, algebra, topology and
measure theory are assumed. At some point classical basic algebraic number theory is also assumed,
but some effort is made to make the discussion self-contained.
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Chapter 1

Topological groups

We begin with some abstract nonsense. Fix a category C with finite products, i.e., with binary
product and final object. Assume further there exists a faithful functor ω : C Ñ Set that preserves
finite products.

Definition. A group object in C is an object G together with morphisms

mult “ multG : GˆG Ñ G, inv “ invG : G Ñ G, e “ eG : ˚ Ñ G

in C such that the following hold

(i) Associativity:
Gˆ pGˆGq GˆG

G

pGˆGq ˆG GˆG

„canonical

idG ˆmult

mult

multˆidG

mult

(ii) Left and right identity:

Gˆ ˚ GˆG

G G

˚ ˆG GˆG

idG ˆe

„

mult

idG

„

eˆidG

mult

(iii) Left and right inverse:

GˆG GˆG

G ˚ G

GˆG GˆG

idG ˆinv

mult∆

∆

f e

invˆidG

mult
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Example 1.0.1.

(i) Group objects in Set are exactly all abstract groups.

(ii) Group objects in Gp are exactly all abelian groups.

Proof. Let pG,m, inv, eq be a group object in Gp. Since the initial object ˚ in Gp is the
one-point group and e : ˚ Ñ G is a homomorphism, the image of e in G is 1G. Let’s identify
e with 1G. Since m : GˆG Ñ G is a homomorphism, we have

mpg, hqmpx, yq “ mpgx, hyq

Then

mpx, yq “ mpxe, eyq “ mpx, eqmpe, yq “ xy

and

mpx, yq “ mpex, yeq “ mpe, yqmpx, eq “ yx

so xy “ yx. We also prove that mpx, yq “ xy, i.e., pG,m, inv, eq coincides with itself.

Lemma 1.0.2. An object G in C is a group object if and only if the reprensentable functor hG :

Cop Ñ Set factors through the forgetful functor Gp Ñ Set.

Proof. Say G is a group object. The morphisms multG : GˆG Ñ G, invG : G Ñ G and eG : ˚ Ñ G

give rise to natural transformations

hG ˆ hG Ñ hG, hG Ñ hG, h˚ Ñ hG

Then hGpXq “ HomCpX,Gq is a group for each object X in C, and hGpfq : hGpY q Ñ hGpXq is
a group homomorphism for each morphism f P HomCpX,Y q. Conversely, say hG : Cop Ñ Set
factors through Gp Ñ Set. Then each hGpXq is a group, and the group law hGpXq ˆ hGpXq Ñ

hGpXq defines a natural transformation hG ˆ hG Ñ hG. Indeed, this follows as hGpfq is a group
homomorphism for each morphism f P HomCpX,Y q. Similarly the inversions and the identities glue
to natural transformations hG Ñ hG, h˚ Ñ hG. By Yoneda lemma they correspond to morphisms
G ˆ G Ñ G, G Ñ G, ˚ Ñ G. The compatibility of among the transformations shows that these
morphisms make G a group object.

Hence a group object in C is exactly a pair

pG,FGq P C ˆ rCop,Gps

subject to the condition hG “ ϕ ˝ FG, where ϕ : Gp Ñ Set is the forgetful functor. For such two
pairs pG,FGq, pH,FHq, we say a morphism f : G Ñ H in C defines a morphism pG,FGq Ñ pH,FHq

of the pair if

Xhpfq : hGpXq Ñ hHpXq

is a group homomorphism. Here hGpXq “ FGpXq and hHpXq “ FHpXq as sets, so they are
equipped with group structures. Alternatively (and more concretely), define the category GppCq of
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group objects in C as follows. Objects in GppCq are group objects in C. For two group objects G,H,
define

HomGppCqpG,Hq “ tϕ P HomCpG,Hq | multH ˝ pϕˆ ϕq “ ϕ ˝ multGu.

There is an obvious forgetful functor φ : GppCq Ñ C. Recall C is equipped with a functor ω : C Ñ Set
that preserves finite products. For each group object pG,mult, inv, eq in C, the pair

pωpGq, ωpmultq, ωpinvq, ωpeqq

defines a group structure on ωpGq. Similarly a morphism in GppCq maps to a group homomorphism
under ωφ. This defines a functor

ω : GppCq ÝÑ Gp

fitting into the commutative diagram

GppCq Gp

C Set

φ

ω

ϕ

ω

Lemma 1.0.3. If C is complete, then so is GppCq.

Proof. Let F : J Ñ GppCq be a diagram in C. Since C is complete, the limit limφ ˝ F exists in C.
We must show there exists a natural group structure on limφ ˝ F . As limits commute, we have

limpφ ˝ F q ˆ limpφ ˝ F q “ lim ppφ ˝ F q ˆ pφ ˝ F qq ˝ ∆J

where ∆J : J Ñ J ˆ J is the diagonal embedding. So to have a morphism

limφ ˝ F ˆ limφ ˝ F limφ ˝ F

it suffices to construct natural transformation ppφ ˝ F q ˆ pφ ˝ F qq ˝∆J Ñ φ ˝F . The multiplication
map on each φ˝F piq gives such a map, and it is natural as F takes values in GppCq, i.e., F piq Ñ F pjq

commutes with multiplication. Hence we obtain a map

mult : limφ ˝ F ˆ limφ ˝ F limφ ˝ F

Inversion inv and the identity map e on limφ ˝ F are defined in a similar way. It makes limφ ˝ F

into a group object in C, and the map limφ ˝ F Ñ φ ˝ F piq commutes with multiplication. Now
define limF to be this group object together with the limit cone limφ ˝ F Ñ φ ˝ F piq. It is evident
that limF represents the limit of F in GppCq.

Lemma 1.0.4. If ω : C Ñ Set preserves limits, then so does the functor ω : GppCq Ñ Gp.

Proof. This follows from the construction of limits in GppCq and that of the functor ω : GppCq Ñ

Gp.
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1.1 Topological groups
Definition. A topological group is a group object in Top. Put

TopGp “ GppTopq

and call it the category of topological groups.

Lemma 1.1.1. A topological group G is T2 if and only if it is T1, if and only if t1Gu is closed.

Proof. The last equivalence holds since translation is a homeomorphism. T2 ñ T1 is clear. Assume
G is T1. The diagonal ∆G Ď G ˆ G is exactly the inverse image of 1G under the continuous map
GˆG Ñ G given by px, yq ÞÑ x´1y. Hence ∆G is closed, proving G is T2.

1.1.1 Uniform structure
A topological group G has two uniform structures on hand. For each unit-neighborhood V , put

Vl :“ tpx, yq P GˆG | y P xV u

Vr :“ tpx, yq P GˆG | y P V xu

We call tVl | V is a unit-neighborhood of Gu (resp. tVr | V is a unit-neighborhood of Gu) the left
(resp. right) uniform structure on G.

Lemma 1.1.2. Both the left and the right uniform structures recover the topology on G.

Proof. This is straightforward. For instance we verify the left uniform structure induces the topology
on G. For each unit-neighborhood V of G, we have

Vlpeq :“ ty P G | pe, yq P Vlu “ ty P G | y P V u “ V.

Now the lemma follows from Proposition B.1.3.

Corollary 1.1.2.1. A T2 topological group is regular.

Proof. This is Corollary B.1.4.4.

Definition. Let X be a uniform space and f : G Ñ X be a function.

(i) f is left (resp. right) uniformly continuous if it is uniformly continuous with respect to
the left (resp. right) uniform structure.

(ii) f is called uniformly continuous if it is both left and right uniform continuous.

Lemma 1.1.3. Let X be a metrizable TVS. Then any function f P CcpG,Xq is uniformly contin-
uous.

Proof. Fix a metric d on X. Let K “ supppfq. Fix ε ą 0 and a compact unit-neighborhood V .
Since f is continuous, for every x P G there exists a unit-neighborhood Vx Ď V such that if y P xVx,
then dpfpyq, fpxqq ă ε{2. Let Ux be the symmetric open unit-neighborhood with U2

x Ď Vx. Then the
sets xUx px P KV q form an open cover of the compact set KV , so there exists x1, . . . , xn P KV such
that KV Ď x1Ux1

Y ¨ ¨ ¨ Y xnUxn
. Put Ui “ Uxi

and U “ U1 X ¨ ¨ ¨ X Un; note that U is symmetric.
Let x, y P G with x´1y P U .

4



• If x R KV , then y R K, for x P yU´1 “ yU Ď yV . Then fpxq “ fpyq “ 0.

• If x P KV , then there exists j with x P xjUj , so that y P xjUjU Ď xjVxj . Hence

dpfpxq, fpyqq ď dpfpxq, fpxjqq ` dpfpxjq, fpyqq ă
ε

2
`
ε

2
“ ε

So far we have found a unit-neighborhood U such that if x´1y P U , then dpfpxq, fpyqq ă ε, i.e., f
is left uniformly continuous. It goes verbatim that f is right uniformly continuous, and hence the
lemma follows.

1.2 Limits
For a Hausdorff topological group G, let FG be a collection of closed normal subgroups such that

(a) every unit-neighborhood of G contains some element in FG,

(b) FG is directed by inclusion, and

(c) either G is complete or some element in FG is compact.

Theorem 1.2.1. Retain the notation above. Then the canonical map

G lim
ÐÝ
HPFG

G{H

is a continuous bijection.

Proof. Put G1 “ lim
ÐÝ
HPFG

G{H. Injectivity follows from (a), and the continuity is clear. For surjectivity,

let pxHqH P G1. Then txHH | H P FGu is a family of closed subspace in G. If H 1 Ď H P FG, then
xH1H 1 Ď xHH as xH maps to xH1 under G{H Ñ G{H 1. Hence

txHH | H P FGu

satisfies the finite intersection property. Any element in
Ş

hPFG
xHH will map to pxHqH , so it

remains to show they have nontrivial intersection. If some element in FG is compact, then it is
nontrivial by Corollary A.4.1.2. If G is complete, by (a) we see S is a Cauchy filter, so it has a
nontrivial intersection.
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Chapter 2

Haar measure

2.1 LCH Groups
Definition. A topological space X is locally compact if every point of X admits a compact
neighborhood. An LCH group is a topological group whose underlying topology is locally compact
Hausdorff.

1. A subset of a space X is relatively compact if its closure is compact in X.

2. A subset of a space X is σ-compact if it is a countable union of compact subsets.

Proposition 2.1.1. Let G be an LCH group.

1. For a closed subgroup H ď G, the quotient space G{H is an LCH space.

2. G admits a σ-compact open subgroup.

3. The countable union of σ-compact open subgroups of G generates a σ-compact open subgroup.

Proof.

1. Let x P G, and pick a compact neighborhood U of x in G. Then UH Ď G{H is a compact
neighborhood of xH in G{H, as G Ñ G{H is continuous and open.

To show G{H is Hausdorff, let xH ‰ yH P G{H. Let U Ď G be a relatively compact open
neighborhood of x with U X yH “ H (U exists since yH Ď G is closed). U being compact
and H being closed, the set UH is also closed in G, so there exists a relatively compact open
neighborhood V of y such that V X UH “ H. Hence V H X UH “ H.

2. Let V be a symmetric relatively compact open unit-neighborhood. For n P N, one has

V
n

Ď V n Ď V.V n “ V n`1

so that H :“
Ť

n
V
n

“
Ť

n
V n`1, which is σ-compact, and is an open subgroup.

3. Let pLnq be a sequence of σ-compact open subgroups of G. Put L :“
Ť

n
Ln; then the subgroup

generated by the Ln is
Ť

m
Lm, which is clearly open, and being a countable union of countable

unions of σ-compact sets, it is also σ-compact.
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2.2 Haar Measure on LCH Groups

2.2.1 Haar measures
Definition. For a topological space X, put

CcpXq “ tf : X Ñ C | f is continuous with compact supportu

where the support of a function f is defined as supp f :“ tx P X | fpxq ‰ 0u.

Let X be an LCH space, and let µ be an outer Radon measure. That µ is weakly inner regular can
be paraphrased as follows. For each compact K Ď U , by Urysohn’s Lemma we can find f P C`

c pGq

with f |K ” 1, 0 ď f ď 1 and f |XzU ” 0. Then

µpUq ě

ż

U

fdµ “

ż

X

fdµ ě

ż

K

fdµ “ µpKq

Hence
µpUq “ sup

fPC`
c pGq

fď1U

ż

X

fdµ

Proposition 2.2.1. Let µ be an outer Radon measure on an LCH space X. Then CcpXq with
compact supports is dense in LppX,µq for every 1 ď p ă 8.

Proof. Fix 1 ď p ă 8 and let V be the closure of CcpXq in Lppµq. We must show V “ Lp :“ Lppµq.
It suffices to show 1A P V for all measurable sets A with finite measure. By outer regularity, we can
find open sets pUnqn containing A such that 1Un

Ñ 1A in Lp, so we can assume A is open. Again
by weakly inner regularity we reduce to the case A is compact.

For each ε ą 0, pick open U Ě A with µpUzAq ă ε. By Urysohn’s Lemma, there exists g P CcpXq

with g|A ” 1, g|XzU ” 0 and 0 ď g ď 1. Then

∥1A ´ g∥pp “

ż

UzA

|gpxq|pdµpxq ď µpUzAq ă ε

Definition. Let G be a LCH group.

1. A measure µ on G is called left-invariant if µpxAq “ µpAq for all x P G and measurable A.

2. A non-zero left-invariant outer Radon measure on G is called a left Haar measure on G.

A right Haar measure is similarly defined.

In what follows a Haar measure is usually referred to as a left Haar measure.

Theorem 2.2.2. Let G be a LCH group. Then there exists a Haar measure on G which is uniquely
determined up to positive scalars.

The proof will occupy the following subsections. We first derive some properties of Haar measures.

Corollary 2.2.2.1. Let µ be a Haar measure on the LCH group G.

1. Every nonempty open set U has strictly positive measure.
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2. Every compact set has finite measure.

3. Every continuous positive function f ě 0 with
ż

G

fpxqdµpxq “ 0 vanishes identically.

4. The support of a measurable function f on G that is µ-integrable is contained is in a σ-compact
open subgroup of G.

Proof.

1. Suppose there exists a nonempty open set U with zero measure. Then for every compact set K
in G, K can be covered by finitely many left-translations xU of U , so that K is also of measure
zero. Being weakly inner regular, µ vanishes on every open set. Hence µ is identically zero,
contradicting to the non-triviality assumption imposed in the definition of a Haar measure.

2. Recall that a Radon measure is locally finite. Hence every compact set can be covered by
finitely many open sets with finite measure.

3. It implies that µpf´1p0,8qq “ 0, so by 1. it is empty.

4. It suffices to show the set A “ tx P X | fpxq ‰ 0u is contained in a σ-compact open subgroup
L. We make the following reductions.

• A “
Ť

nAn, where An “ tx P X | |fpxq| ě 1{nu is of finite measure. Hence it suffices to
show a set with finite measure is contained in a σ-compact open subgroup.

• By outer regularity, we can find open U Ě A with µpUq ă 8, so it suffices to show an
open set with finite measure is contained in a σ-compact open subgroup.

Let H ď G be any σ-compact open subgroup. Then G is a disjoint union of the xH with
x P G. Since µpUq ă 8, U can only meet countably many cosets xH, for either xH X U “ H

or µpxU X Uq ą 0 by 1. Let L be the group generated by H and those cosets xH that meet
U . Then L Ě U Ě A and L is σ-compact and open.

The following lemma shows Haar measures turn out to determine the topology.

Lemma 2.2.3. Let G be an LCH group, µ a Haar measure and X a measurable set with 8 ą

µpXq ą 0. Then the set XX´1 “ txy´1 | x, y P Xu is a unit-neighborhood of G.

Proof. By weakly inner regularity we may assume X is compact. By outer regularity we can find
an open neighborhood U of X with µpXq ď µpUq ă 2µpXq. By continuity and the compactness of
X, we can find a unit-neighborhood W of G such that WX Ď U . Then for all w P W , we must have
wX XX ‰ H, for otherwise µpUq ě 2µpXq, a contradiction. But then W Ď XX´1 as wanted.

2.2.2 Existence
To prove Theorem, we invoke Riesz’s representation theorem. It suffices to show that up to positive
scalars there exists a nontrivial positive linear functional I : CcpGq Ñ C that is invariant in the
sense IpLxfq “ Ipfq for every x P G and f P CcpF q, where Lxfpyq :“ fpx´1yq is the left translation.
Likewise define Rxfpyq :“ fpxyq. The “inverse” in the definition of Lx is made so that Lxy “ LxLy.

Lemma 2.2.4. Let G be an LCH group and Λ : CcpGq Ñ C be a positive linear functional. Then
Λ is left-invariant if and only if its induced outer Radon measure on G is left-invariant.
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Proof. The if part is obvious. For the only if part, let µ be an induced outer Radon measure on
G. We need to show µpxAq “ µpAq for all measurable A and x P G. By outer regularity, we may
assume A “ U is open, and by weakly inner regularity we have

µpUq “ sup
fPC`

c pGq
fď1U

ż

X

fdµ “ sup
fPC`

c pGq
fď1U

Λpfq

Thus for all g P G,

µpgUq “ sup
fPC`

c pGq
fď1gU

Λpfq “ sup
fPC`

c pGq
Lg´1fď1U

Λpfq “ sup
fPC`

c pGq
fď1U

ΛpLgfq “ sup
fPC`

c pGq
fď1U

Λpfq “ µpUq

Definition. A function f : G Ñ C is positive if fpGq Ď Rě0; we write f ě 0 in this case.

• Put C`
c pGq for the set of all positive continuous functions with compact support.

• For any two f, g P C`
c pGq with g ‰ 0, there exist finitely many sj P G and positive numbers

cj such that for all x P G, fpxq ď
n
ř

j“1

cjgps´1
j xq, or simply f ď

n
ř

j“1

cjLsjg.

Indeed, let U be a compact neighborhood such that g does not vanishes on U and say
s1U, . . . , snU cover the support of f . Put cj “

maxtfpxq | x P sjUu

mintgpxq | x P Uu
. Then for x P sjU ,

we have fpxq ď cjgps´1
j xq. Summing over j “ 1, . . . , n gives the desired inequality.

For f, g P C`
c pGq with g ‰ 0, define the index

pf : gq “ inf

#

n
ÿ

j“1

cj | there exists sj P G such that f ď

n
ÿ

j“1

cjLsjg

+

Lemma 2.2.5. For f, f1, f2, g, h P C`
c pGq with g, h ‰ 0 and c ą 0, one has

1. pLyf : gq “ pf : gq for every y P G.

2. pf1 ` f2 : gq ď pf1 : gq ` pf2 : gq.

3. pcf : gq “ cpf : gq.

4. f1 ď f2 ñ pf1 : gq ď pf2 : gq.

5. pf : hq ď pf : gqpg : hq.

6. pf : gq ě
max f

max g
, where max f :“ maxtfpxq | x P Gu.

In the following we fix a nonzero function f0 P C`
c pGq. For f, ϕ P C`

c pGq with ϕ ‰ 0, define

Jpf, ϕq “ Jf0pf, ϕq :“
pf : ϕq

pf0 : ϕq

Lemma 2.2.6. For f, g, ϕ P C`
c pGq with f, ϕ ‰ 0 and c ą 0, one has

1. 1

pf0 : fq
ď Jpf, ϕq ď pf : f0q.

2. JpLsf, ϕq “ Jpf, ϕq for every s P G.
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3. Jpf ` g, ϕq ď Jpf, ϕq ` Jpg, ϕq.

4. Jpcf, ϕq “ cJpf, ϕq.

Lemma 2.2.7. Let f1, f2 P C`
c pGq and ε ą 0. There exists a unit-neighborhood V in G such that

Jpf1, ϕq ` Jpf2, ϕq ď Jpf1 ` f2, ϕq ` ε

holds for every ϕ P C`
c pGqzt0u with support in V .

Proof. Pick an f 1 P C`
c pGq such that f ” 1 on the support of f1 ` f2. Choose δ ą 0 such that

δpf1 ` f2 : f0q ` pδ ` δ2qpf 1 : f0q ă ε

and set
f “ f1 ` f2 ` δf 1, h1 “

f1
f
, h2 “

f2
f

where we set hjpxq “ 0 if fpxq “ 0. Then hj P C`
c pGq for j “ 1, 2. For if fpxq “ 0, then

fjpxq “ f 1pxq “ 0 so that x R supppf1 ` f2q. Hence there exists a unit-neighborhood U such that
if y P xU , then f1pyq ` f2pyq “ 0, implying f1pyq “ f2pyq “ 0. Hence hj ” 0 in xU , demonstrating
the continuity of hj at x.

Being compactly supported, the hj are uniformly continuous, so there exists a unit-neighborhood
V such that for x, y P G with x´1y P V and j “ 1, 2, one has |hjpxq´hjpyq| ă δ{2. Let ϕ P C`

c pGqzt0u

with support in V , and choose finitely many sk P G, ck ą 0 with f ď
ř

k ckLskϕ. Then ϕps´1
k xq ‰ 0

(so that s´1
k x P V ) implies |hjpxq ´ hjpskq| ă δ{2, and for all x, one has

fjpxq “ fpxqhjpxq ď
ÿ

k

ckϕps´1
k xqhjpxq

ď
ÿ

k

ckϕps´1
k xq

ˆ

hjpskq `
δ

2

˙

so that pfj : ϕq ď
ř

k ckphjpskq ` δ{2q, implying

pf1 : ϕq ` pf2 : ϕq ď
ÿ

k

ckp1 ` δq

which yields

Jpf1, ϕq ` Jpf2, ϕq ď Jpf, ϕqp1 ` δq

ď pJpf1 ` f2, ϕq ` δJpf 1, ϕqqp1 ` δq

“ Jpf1 ` f2, ϕq ` δJpf1 ` f2, ϕq ` pδ ` δ2qJpf 1, ϕq

2.2.6.1
ď Jpf1 ` f2, ϕq ` δpf1 ` f2 : f0q ` pδ ` δ2qpf 1 : f0q

ă Jpf1 ` f2, ϕq ` ε

Lemma 2.2.5.(5) together with pf : fq “ 1 gives 1

pf0 : fq
ď pf : f0q. For f P C`

c pGqzt0u, let Sf
be the compact interval

Sf :“

„

1

pf0 : fq
, pf : f0q

ȷ

The product S :“
ś

fPC`
c pGqzt0u

Sf is compact by Tychonov’s theorem. For every ϕ P C`
c pGqzt0u, we

get an element Jpf, ϕq P Sf from Lemma 2.2.6.(1), hence an element pJpf, ϕqqf P S.

10



For a unit-neighborhood V let

LV :“

"

pJpf, ϕqqf P S | ϕ P C`
c pGqzt0u with supppϕq Ď V

ˇ

ˇ

ˇ

ˇ

*

Ď
closed

S

Since S is compact, the intersection
č

tLV | V : unit neighborhood in Gu

is nonempty by Corollary A.4.1.2. Choose an element pIf0pfqqf in this intersection.

Lemma 2.2.8. I :“ If0 : C`
c pGq Ñ C is a left-invariant positive homogeneous additive map.

Proof. By definition and Lemma 2.2.6.2. and 4., I is positive, left-invariant and homogeneous. Let
f, g P C`

c pGqzt0u. We need to show Ipf ` gq “ Ipfq ` Ipgq. For each ε ą 0, by Lemma 2.2.7 we can
find unit-neighborhood V such that

Jpf, ϕq ` Jpg, ϕq ď Jpf ` g, ϕq ` ε

holds for every ϕ P C`
c pGqzt0u with support in V . In particular, this forces Ipfq`Ipgq ď Ipf`gq`ε.

Letting ε Ñ 0`, and since pIpfqqf P
Ş

V LV , we must have Ipfq ` Ipgq ď Ipf ` gq. The reversed
inequality follows from Lemma 2.2.6.3.

Extending I by linearity we obtain a well-defined positive invariant linear functional I : CcpGq Ñ

C. This proves the existence of a Haar measure on G.

2.2.3 Uniqueness
Lemma 2.2.9. Let ν be a Haar measure on G. Then for every f P CcpGq the map

s ÞÑ

ż

G

fpxsqdνpxq

is continuous on G.

Proof. We must show for each s P G there exists a neighborhood U of s such that for all t P U one
has

ˇ

ˇ

ˇ

ˇ

ż

G

pfpxsq ´ fpxtqqdνpxq

ˇ

ˇ

ˇ

ˇ

ă ε

Replacing f by Rsf , we reduce to the case s “ e. Let K “ supppfq, and V a compact symmetric
unit-neighborhood. For t P V , one has supppRtfq Ď KV . Since f is uniformly continuous, there
exists a symmetric unit-neighborhood W such that for t P W one has |fpxtq ´ fpxq| ă

ε

νpKV q
.

Finally, for t P W X V , we see
ˇ

ˇ

ˇ

ˇ

ż

G

pfpxtq ´ fpxqqdνpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

KV

|fpxtq ´ fpxq|dνpxq

ă
ε

νpKV q
νpKV q “ ε

Suppose note µ, ν are two Haar measures. We aim to show that ν “ cµ for some c ą 0. For
f P CcpGq with

ż

G

fptqdµptq “: Iµpfq ‰ 0, set

Df psq :“
1

Iµpfq

ż

G

fptsqdνptq
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The function Df is continuous by Lemma 2.2.9. Let g P CcpGq. By Fubini’s theorem and the
invariance of the measures µ, ν, we obtain

IµpfqIνpgq “

ż

G

ż

G

fpsqgptqdνptqdµpsq
inv
“

ż

G

ż

G

fpsqgps´1tqdνptqdµpsq

Fubini
“

ż

G

ż

G

fpsqgps´1tqdµpsqdνptq
inv
“

ż

G

ż

G

fptsqgps´1qdµpsqdνptq

Fubini
“

ż

G

ż

G

fptsqgps´1qdνptqdµpsq

“

ż

G

ˆ
ż

G

fptsqdνptq

˙

gps´1qdµpsq

“ Iµpfq

ż

G

Df psqgps´1qdµpsq

Since Iµpfq ‰ 0, we conclude
Iνpgq “

ż

G

Df psqgps´1qdµpsq

Pick another f 1 P CcpGq with Iµpf 1q ‰ 0. It follows that
ż

G

pDf psq ´Df 1 psqqgps´1qdµpsq “ 0

for every g P CcpGq. Replacing g with the function g̃ given by

g̃psq “ |gpsq|2pDf ps´1q ´Df 1 ps´1qq

one obtains
ż

G

|pDf psq ´Df 1 psqqgps´1q|2dµpsq “ 0

It follows that pDf psq ´ Df 1 psqqgps´1q “ 0. Since g is arbitrary, Df “ Df 1 ; call this function D.
Now for each f P CcpGq with Iµpfq ‰ 0, one has

ż

G

fptqdµptqDpeq “

ż

G

fptqdνptq

By linearity, it follows that this equality holds everywhere in CcpGq, and hence proving the unique-
ness.

2.3 Modular Characters
Let G be an LCH group. For a Haar measure µ, we sometimes write volpX,µq instead of µpXq

to stand for the volume of X measured by µ. In this section we fix a left Haar measure µ. For a
topological group automorphism σ : G Ñ G, the assignment X ÞÑ volpσpXq, µq defines another left
Haar measure on G, so by uniqueness there exists a unique positive scalar modGpσq P Rą0 such that
volpσpXq, µq “ modGpσq volpX,µq. The scalar modGpσq is called the modulus of the automorphism
σ. Again by uniqueness of Haar measures the modulus is independent of the choice of µ.

Similarly, for each g P G the assignment X ÞÑ volpXg, µq defines a left Haar measure, so by
uniqueness there exists ∆Gpgq ą 0 with volpXg, µq “ ∆Gpgq volpX,µq. Again this is independent of
the choice of µ. The map ∆G : G Ñ Rą0 is called the modular function/modular character
of G, a name we justify below. For now, notice that for each g P G if we denote Inng : G Ñ G the
conjugation by g, i.e., Inngpxq :“ gxg´1, then modGpInngq “ ∆Gpgq´1.

12



Definition. An LCH group is called unimodular if the modular character is trivial.

Theorem 2.3.1. For convenience, write dx for the fixed left Haar measure µ.

1. The modular function ∆G : G Ñ Rą0 is a continuous group homomorphism.

2. Let rG,Gs denote the closure of the commutator subgroup of G. Then ∆ ” 1 if G{ZpGqrG,Gs

is compact. In particular, G is unimodular if G is abelian or compact.

3. If σ : G Ñ G is a topological group automorphism, then
ż

G

fpσ´1pxqqdµpxq “ modGpσq

ż

G

fpxqdµpxq

is valid for all f P L1pGq. In a concise form, dpσpxqq “ modGpσqdx. In particular, for y P G

one has
ż

G

fpxyqdx “ ∆Gpy´1q

ż

G

fpxqdx

or dpxyq “ ∆Gpyqdx.

4. For f P L1pGq,
ż

G

fpx´1q∆px´1qdx “

ż

G

fpxqdx

In a concise form, dpx´1q “ ∆Gpx´1qdx.

In other words, 3. says that ∆Gpx´1qdx is a right Haar measure, and 4. implies that x ÞÑ x´1 takes
dx to ∆Gpx´1qdx.

Proof.

3. It is clear for the case f “ 1A with A measurable and volpAq ă 8. The general case follows
as usual.

1. • Group homomorphism. For measurable A and x, y P G, we have

∆pxyqµpAq “ µxypAq “ µpAxyq “ µypAxq “ ∆pyqµpAxq “ ∆pyqµxpAq “ ∆pyq∆pxqµpAq

Pick A such that µpAq ‰ 0; then it follows that ∆pxyq “ ∆pxq∆pyq.

• Continuity. Let f P CcpGq with c “

ż

G

fpxqdx ‰ 0. By 3. one has

∆pyq “
1

c

ż

G

fpxy´1qdx “
1

c

ż

G

Ry´1fpxqdx

2. Since Rą0 is abelian, we have ∆paba´1b´1q “ 1 for all a, b P G. Since ∆ is continuous, we have
∆prG,Gsq “ 1. If g P ZpGq, then volpXg, µq “ volpgX, µq “ volpX,µq, so ∆pgq “ 1. Hence ∆

factors thorough G{ZpGqrG,Gs. The only compact subgroup of Rą0 is t1u, so ∆ ” 1.

4. Let f P CcpGq and Ipfq “

ż

G

fpx´1q∆px´1qdx. By 3.

IpLzfq “

ż

G

fpz´1x´1q∆px´1qdx “

ż

G

fppxzq´1q∆px´1qdx

“ ∆pz´1q

ż

G

fpx´1q∆ppxz´1q´1qdx “

ż

G

fpx´1q∆px´1qdx

“ Ipfq
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Hence I is an invariant positive linear functional on CcpGq, so by Lemma 2.2.4 and the unique-
ness of Haar measures there exists c ą 0 such that Ipfq “ c

ż

G

fpxqdx.

It remains to show c “ 1. Let ε ą 0 and choose a symmetric unit-neighborhood V with
|1 ´ ∆psq| ă ε for every s P V , and take a nonzero symmetric function f P C`

c pV q. Then

|1 ´ c|

ż

G

fpxqdx “

ˇ

ˇ

ˇ

ˇ

ż

G

fpxqdx´ Ipfq

ˇ

ˇ

ˇ

ˇ

ď

ż

G

|fpxq ´ fpx´1q∆px´1q|dx

“

ż

V

fpxq|1 ´ ∆px´1q|dx ă ε

ż

G

fpxqdx

so that |1 ´ c| ă ε. Since ε is arbitrary, c “ 1.

Remark. Denote by inv : G Ñ G the inversion on G and consider the pushforward measure
ν :“ inv˚µ of the left-invariant Haar measure µ on G. It is a Radon measure on G, and satisfies the
integration formula, valid for all f P CcpGq

ż

G

fpxqdν :“

ż

G

fpx´1qdµ.

See (2.4.24) and (2.4.25) for these statements. Now
ż

G

fpxyqdν :“

ż

G

fpy´1x´1qdµ “

ż

G

fpx´1qdµ “

ż

G

fpxqdν

so ν is a right Haar measure. From 2. if we write µ as dx, then ∆px´1qdx is also a right Haar
measure, so the uniqueness says dx´1 “ c∆px´1qdx for some unique scalar c ą 0. This is exactly
the same as the first part of the proof of 4.

Proposition 2.3.2. Let G be a LCH group. TFAE:

1. There exists x P G such that volptxuq ą 0.

2. volpteuq ą 0.

3. The counting measure is a Haar measure on G.

4. G is a discrete group.

In particular, a discrete group is unimodular.

Proof. That 1. ô 2. follows from the left-invariant of vol. Assume 2.. Then for any finite set E Ď G,
volpEq “ volpteuq#E. The general case follows from monotonicity. For 3. ñ 4., note that this
implies every open set with finite measure is a finite set. By Hausdorff axiom one see every point
in U is open. Hence G is discrete. Finally, if G is discrete, every singleton is open so that each of
them has a positive measure.

Proposition 2.3.3. Let G be a LCH group. Then G has finite measure if and only if G is compact.

Proof. The if part is clear. Now assume volpGq ă 8. Let U be a compact unit-neighborhood. Then

maxtn P N | there exists pxiq1ďiďn Ď G such that xiU X xjU “ H if i ‰ ju ă 8

Let z1U, . . . , znU be such pairwise disjoint translation, and set K to be their disjoint union. Then
K is compact, and for every x P G, xK X K ‰ H, so that x P KK´1. Hence G “ KK´1 is
compact.
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2.3.1 Examples
Example 2.3.4 (General linear groups). Let k be a non-discrete locally compact Hausdorff topo-
logical field (c.f. §2.5; we will use some results therein) and V a finite dimensional vector space over
k. Any Hausdorff vector space topology on V is the same. In particular, by taking a k-basis V – kn,
we easily see that the general linear group

GLV pkq :“ tT P Endk V | T is invertibleu “ tT P Endk V | detT ‰ 0u Ď
open

Endk V

is an LCH group, and is isomorphic to GLnpkq as topological groups, where n “ dimk V .
Let T be a general element in Endk V , and denote by dT a Haar measure on Endk V (as an

additive group). Let v1, . . . , vn be a k-basis for V . Then there is an isomorphism

Endk V V n

T pTv1, . . . , T vnq.

By Fubini’s theorem, for each S P Endk V we then have modEndk V pℓSq “ modV pSqn (where ℓS :

T ÞÑ ST ), and by Corollary 2.5.3.1.(iii) the latter equals modkpdetSqn. In sum, we obtain the
following integral formula

ż

Endk V

fpST qdT “ modkpdetSqn
ż

Endk V

fpT qdT

valid for all f P CcpEndk V q and S P Endk V . It follows that the measure dT

modkpdetT qn
is a Haar

measure of the general linear group GLV pkq.
Moreover, the group GLV pkq is unimodular. It is a consequence that V is isomorphic to its linear

dual V _ (but in a non-canonical fashion). Precisely, if v1, . . . , vn is a k-basis for V , then we can form
the dual basis v_

1 , . . . , v
_
n . For T P Endk V , denote by T_ P Endk V

_ the corresponding element
such that T_f “ f ˝ T for all f P V _. Define Φ : Endk V Ñ pV _qn by

ΦpT q “ pv_
1 ˝ T, . . . , v_

n ˝ T q “ pT_v_
1 , . . . , T

_v_
n q,

and write Ψ : pV _qn Ñ Endk V for its inverse. Then up to a scalar, for all f P CcpEndk V q the
integral formula

ż

Endk V

fpT qdT “

ż

pV _qn
pf ˝ Ψqpλ1, . . . , λnq bn

i“1 dλi

is valid. Here all dλi are Haar measures on V _ and bn
i“1dλi is the product measure as constructed

in Theorem D.4.7 (along with an induction). Then for S P Endk V , if we put fS : T ÞÑ TS, then
ż

Endk V

fpTSqdT “

ż

Endk V

fSpT qdT “

ż

pV _qn
pfS ˝ Ψqpλ1, . . . , λnq bn

i“1 dλi

“

ż

pV _qn
fpΨpλ1, . . . , λnqSq bn

i“1 dλi

Notice that ΦpTSq “ pS_ ˆ ¨ ¨ ¨ ˆ S_qΦpT q, so

ΦpΨpλ1, . . . , λnqSq “ pS_λ1, . . . , S
_λnq.

Hence the last integral is equal to
ż

pV _qn
fpΨpS_λ1, . . . , S

_λnqq bn
i“1 dλi
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and by Corollary 2.5.3.1.(iii) it is

modkpdetS_qn
ż

pV _qn
fpΨpλ1, . . . , λnqq bn

i“1 dλi “ modkpdetS_qn
ż

Endk V

fpTSqdT.

The matrix representation of S_ with respect to the basis v_
1 . . . , v_

n is the transpose of that of S
with respect to v1, . . . , vn, so detS_ “ detS, whence proving

ż

Endk V

fpTSqdT “ modkpdetSqn
ż

Endk V

fpT qdT.

In particular, this shows dT

modkpdetT qn
is right-invariant. By linear algebra we see this measure is

also invariant under transpose.

Example 2.3.5 (Special linear group). We use the same notation as above. The special linear
group SLV pkq is defined by the short exact sequence

1 SLV pkq GLV pkq kˆ 1det

In particular, it is a closed normal subgroup of GLV pkq, so it is unimodular by Corollary 2.4.7.2.

Example 2.3.6 (Matrices). Let V,W be two finite dimensional Hausdorff k-vector spaces. The
space HomkpV,W q also has a unique Hausdorff vector space topology, as it is finite dimensional.
The general linear group GLW pkq acts on HomkpV,W q from the left, so we can consider the modulus
modHomkpV,W qpgq for any g P GLV pkq. To compute it, recall that HomkpV,W q – V _ bk W –

W‘ dimk V and the isomorphism is GLW pkq-equivariant. Hence

modHomkpV,W qpgq “ modW pgqdimk V “ modkpdet gqdimk V .

Similarly, GLV pkq acts on HomkpV,W q from the right, and we have modHomkpV,W qphq “ modkpdethqdimk W

for all h P GLV pkq.

Example 2.3.7 (Standard parabolic subgroups). Again let V,W be two finite dimensional Hausdorff
k-vector space. Consider

PV,W pkq “

#˜

g T

h

¸

P GLV‘W pkq | g P GLV pkq, h P GLKpkq, T P HomkpW,V q

+

.

This is a closed subgroup of Pn`mpkq, so it is also an LCH group. However, this is not unimodular
as we will see soon. To compute its left Haar measure, from the multiplication law

˜

g1 T 1

h1

¸˜

g T

h

¸

“

˜

g1g g1T ` T 1h

h1h

¸

we see if dg (resp. dh, dT ) denotes a Haar measure on GLV pkq (resp. GLW pkq, HomkpW,V q), the
product measure dgdh dT

modkpdet gqdimk W
is a left Haar measure on PV,W pkq. Likewise, dgdh dT

modkpdethqdimk V

is a right Haar measure on PV,W pkq. In particular, this shows PV,W pkq is not unimodular, and the
modular function is

∆GLV,W pkq

˜˜

g T

h

¸¸

“
modkpdethqdimk V

modkpdet gqdimk W
.

16



More generally, if V1, . . . , Vn are finite dimensional Hausdorff k-vector spaces, it is easy to proceed
by induction to find a left and right Haar measure of the group

PV1,...,Vn
pkq “

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

g1 T12 ¨ ¨ ¨ T1n

g2 ¨ ¨ ¨ T2n
. . .

...

gn

˛

‹

‹

‹

‹

‚

| gi P GLVipkq, Tij P HomkpVj , Viq

,

/

/

/

/

.

/

/

/

/

-

.

The modular function can be explicitly written down:

∆PV1,...,Vn pkq

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

g1 T12 ¨ ¨ ¨ T1n

g2 ¨ ¨ ¨ T2n
. . .

...

gn

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

“
ź

1ďiăjďn

modkpgjq
dimk Vi

modkpgiqdimk Vj

Example 2.3.8 (Unipotent radicals of standard parabolic subgroups). Retain the notation in the
previous example. Consider the subgroup

UV1,...,Vnpkq :“

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

idV1
T12 ¨ ¨ ¨ T1n

idV2
¨ ¨ ¨ T2n
. . .

...

idVn

˛

‹

‹

‹

‹

‚

| Tij P HomkpVj , Viq

,

/

/

/

/

.

/

/

/

/

-

ď
closed

PV1,...,Vnpkq.

Moreover, it is a normal subgroup, so each p P PV1,...,Vn
pkq defines an automorphism Innp of

UV1,...,Vnpkq by conjugation: Innppuq :“ pup´1. It is direct to see biăjdTij is a left and right
Haar measure on UV1,...,Vnpkq, where each dTij is a Haar measure on HomkpVj , Viq. In partic-
ular, UV1,...,Vn

pkq is unimodular and for any p P PV1,...,Vn
pkq we have modUV1,...,Vn pkqpInnpq “

∆PV1,...,Vn pkqpp´1q.

Example 2.3.9 (Matrix rings over division rings). Let k be a non-discrete locally compact Hausdorff
topological field, and let D be a non-discrete locally compact Hausdorff topological division ring
containing k. Let V be a finite dimensional Hausdorff left topological vector space over D. Let dT
denote a Haar measure on A :“ EndD V . We claim for f P CcpAq and U P AutDV , we have

ż

A

fpUT qdT “ modkpNA{kpUqq

ż

A

fpT qdT

where NA{k : EndD V Ñ k is the composition EndD V
T ÞÑUT
ÝÑ Endk A

det
Ñ k. This follows from

Corollary 2.5.3.1.(iii) once we regard A as a vector space over k. Now since

Aˆ “ AutDV “ tT P EndD V | NA{kpT q ‰ 0u Ď
open

A

Aˆ is an LCH group. The equality above shows that dT

modkpNA{kpT qq
is a left Haar measure on Aˆ.

In fact, the map EndD V
T ÞÑUT
ÝÑ Endk A

det
Ñ k coincides with EndD V

T ÞÑTU
ÝÑ Endk A

det
Ñ k, so Aˆ is

in fact unimodular.

2.4 Invariant Measures on Quotient Spaces
Let G be an LCH group and H ď G be a closed subgroup. A primary goal in this section is to find
an G-invariant measure on the quotient space G{H. We start with making a precise definition.
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Definition. Let X be a G-space. A measure ν on the Borel σ-algebra of X is called an invariant
measure if νpxAq “ νpAq for every x P G and every measurable A Ď X.

We need a generalized version of Lemma 2.2.4, though the proof is exactly the same.

Lemma 2.4.1. Let X be an LCH G-space, Λ : CcpXq Ñ C a positive linear functional and
χ P HomTopGppG,Rą0q. For each g P G,

• For f P CcpXq, define g.f P CcpXq by g.fpxq :“ fpg´1.xq.

• Define g.Λ : CcpXq Ñ C by g.Λpfq :“ Λpg´1.fq

Then g.Λ “ χ´1pgqΛ for all g P G if and only if the associated outer Radon measure µ satisfies
µpxAq “ χpxqµpAq for all measurable A Ď X.

Proof. The if part is clear. For the only if part, let µ be an outer Radon measure on X induced by
Λ. As in Lemma 2.2.4, it suffices to say µpxUq “ χpxqµpUq for open U and x P G, and we have

µpUq “ sup
fPC`

c pXq
fď1U

ż

X

fdµ “ sup
fPC`

c pXq
fď1U

Λpfq

Thus for all x P G,

µpxUq “ sup
fPC`

c pXq
fď1xU

Λpfq “ sup
fPC`

c pXq

x´1.fď1U

Λpfq “ sup
fPC`

c pXq
fď1U

Λpx.fq “ sup
fPC`

c pXq
fď1U

χpxqΛpfq “ χpxqµpUq

With this lemma, we turn our eyes to invariant distributions. We begin our discussion with a
rather general setting. Let χ P HomTopGppH,Rą0q and consider the space

CpG{H,χq :“ tf P CpGq | fpxhq “ χphqfpxq for all x P G, h P Hu

CcpG{H,χq :“ tg P CpG{H,χq | supp g is compact modulo Hu.

If we denote by π : G Ñ G{H the quotient map, then for g P CcpG{H,χq the imposed condition
means πpsupp gq Ď G{H is compact. For each f P CcpGq, define fH,χ : G Ñ C by

fH,χpxq :“

ż

H

fpxhqχ´1phqdh

where dh is a fixed left Haar measure on H. The integral converges since f has compact support.
When χ “ 1H is the trivial character, we write fH,1H “ fH for brevity.

Lemma 2.4.2.

(i) fH,χ P CcpG{H,χq for all f P CcpGq.

(ii) The resulting map
CcpGq CcpG{H,χq

f fH,χ

is surjective. In addition, the fibre of h P CcpG{H,χq X C`pGq meets C`
c pGq nontrivially.

Proof.
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(i) Let K be the support of f , let x P G and let U be a compact neighborhood of x. Then
suppLy´1f |H Ď U´1K X H for all y P U . Put d “ volpU´1K X H, dhq. Given ε ą 0, by
uniform continuity of f there is a neighborhood V Ď U of x such that |fpyhq ´ fpxhq| ă

ε

d ¨ sup
hPU´1KXH

χ´1phq
for all y P V . It follows that

|fH,χpyq ´ fH,χpxq| ď

ż

U´1KXH

|fpyhq ´ fpxhq|χ´1phqdh ă ε

for y P V , so that fH,χ is continuous at x.

Finally, x P supp fH,χ implies fpxhq ‰ 0 for some h P H, so x P psupp fqH. Hence supp fH,χ Ď

psupp fqH so that supp fH,χ is compact modulo H.

(ii) We need a lemma.

Lemma 2.4.3. Let G be a LCH group and H ď G a closed subgroup. For every compact C Ď G{H,
there exists compact K Ď G such that πpKq “ C.

Proof. Put π : G Ñ G{H to be the canonical projection. For each c P C, pick yc P π´1pCq and an
open relatively compact neighborhood Uc of yc. Since π is open, tπpUcquc PC forms an open cover of
C, and thus we can find c1, . . . , cn P C such that C Ď K 1 with K 1 “ Uc1 Y ¨ ¨ ¨ YUcn Ď

cpt
G. It suffices

to take K “ K 1 X π´1pCq.

Let g P CcpG{H,χq and use Lemma 2.4.3 to find K Ď G a compact set such that πpKq “

πpsupp gq, where π : G Ñ G{H is the quotient map. By Urysohn’s lemma we can find
φ P CcpGq with φ ě 0 and φ|K ” 1. Take f “ gφ{φH,χ (note that this makes sense as
x P supp g implies xh P K for some h P H and φH,χpxq ą 0); then

fH,χpxq “

ż

H

gφ

φH,χ
pxhqχ´1phqdh “

ż

H

χphqgpxq
φphqχ´1phq

χphqφH,χpxq
dh “ gpxq

proving the surjectivity. The last assertion is clear from the above construction.

Let Λ : CcpG{H,χq Ñ C be a nontrivial G-invariant positive linear functional. Define rΛ “

Λ ˝ rf ÞÑ fH,χs : CcpGq Ñ C. Since Φ is G-equivariant, we see rΛ is G-invariant, so by Lemma 2.2.4
it is given by a Haar measure dg on G. Then we have a integration formula

ż

G

fpgqdg “ Λ

ˆ
ż

H

fpghqχ´1phqdh

˙

valid for all f P CcpGq. Now for h0 P H, we have

∆Gph0q´1

ż

G

fpgqdg “

ż

G

fpgh0qdg “ Λ

ˆ
ż

H

fpghh0qχ´1phqdh

˙

“ Λ

ˆ

∆Hph´1
0 qχph0q

ż

H

fpghqχ´1phqdh

˙

.

Hence we obtain ∆Hphq “ ∆Gphqχphq for h P H. This proves the necessary part of the following

Theorem 2.4.4. Let G be an LCH group, H ď G a closed subgroup and χ P HomTopGppH,Rą0q.
Then a necessary and sufficient condition for the existence of a nontrivial G-invariant positive linear
functional on CcpG{H,χq is to have ∆H “ χ∆G|H . It is unique up to a positive scalar if it exists.
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Proof. Now assume ∆H “ χ∆G|H . Define Λ : CcpG{H,χq Ñ C by

Λpgq “

ż

G

fpxqdx

where f P CcpGq satisfies fH,χ “ g. We must show fH,χ “ 0 implies
ż

G

fpxqdx “ 0. To this end,
for each ϕ P CcpGq, compute

0 “

ż

G

ż

H

fpxhqχ´1phqϕpxqdhdx “

ż

H

ˆ

∆Gphq´1

ż

G

fpxqχ´1phqϕpxh´1qdx

˙

dh

“

ż

H

ˆ

∆Hphq´1χphq

ż

G

fpxqχ´1phqϕpxh´1qdx

˙

dhq

“

ż

G

ż

H

fpxqϕpxhqdhdx “

ż

G

ϕHpxqfpxqdx.

We can find ϕ with ϕH ” 1 on the support of f , and thus
ż

G

fpxqdx “ 0. Hence Λ : CcpG{H,χq Ñ C

is well-defined, and is clear that it is nonzero and positive. Λ is invariant for Lxg “ pLxfqH,χ for
each x P G.

For the uniqueness, let Λ : CcpG{H,χq Ñ C by any nontrivial G-invariant positive linear func-
tional. The proof for the necessary part shows that we can choose a left Haar measure dg on G that
makes the integration formula

ż

G

fpgqdg “ Λ

ˆ
ż

H

fpghqχ´1phqdh

˙

valid for all f P CcpGq. In other words, the following triangle

CcpGq CcpG{H,χq

C

ż

G

dx

Λ

is commutative. Since the upper-horizontal arrow is surjective by Lemma 2.4.2, it follows Λ is
uniquely determined by the measure dg. This shows the uniqueness.

Instead of the left coset space G{H, we sometimes encounter the right coset space HzG. No
significant difference occurs, as there is a canonical homeomorphism

G{H HzG

gH Hg´1

In particular, analogues of Lemma 2.4.3 and Lemma 2.4.2 hold for G Ñ HzG as well: we define

CpHzG,χq “ tf P CpGq | fphxq “ χphqfpxq for all x P G, h P Hu

CcpHzG,χq “ tg P CpHzG,χq | supp g is compact modulo Hu

where for f P CcpGq a function H,χf P CcpG{H,χq is similarly defined as

H,χfpxq “

ż

H

fphxqχ´1phqdh.
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and dh is a right Haar measure on H. If Λ : CcpHzG,χq is a G-invariant positive linear functional,
then Λ ˝ rf ÞÑ H,χf s : CcpGq Ñ C is a right G-invariant positive linear functional, so it is induced
by a right Haar measure dg on G satisfying an integration formula similar to the above one:

ż

G

fpgqdg “ Λ

ˆ
ż

H

fphgqχ´1phqdh

˙

.

Note that ∆Gpgqdg (resp. ∆Hphqdh) is a left Haar measure on G (resp. H), so for h0 P H we have
ż

G

fph0gqdg “

ż

G

fph0gq∆´1
G pgq∆Gpgqdg “

ż

G

fpgq∆´1
G ph´1

0 gq∆Gpgqdg “ ∆Gph0q

ż

G

fpgqdg

and

Λ

ˆ
ż

H

fph0hgqχ´1phqdh

˙

“ Λ

ˆ

∆Hph0q

ż

H

fphgqχ´1ph´1
0 hqdh

˙

“ ∆Hph0qχph0qΛ

ˆ
ż

H

fphgqχ´1phqdh

˙

.

Equating them yields ∆G|H “ χ∆H . Reversing the process just like we did in Theorem 2.4.4 proves
the

Theorem 2.4.5. Let G be an LCH group, H ď G a closed subgroup and χ P HomTopGppH,Rą0q.
Then a necessary and sufficient condition for the existence of a nontrivial G-invariant positive linear
functional on CcpHzG,χq is to have ∆G|H “ χ∆H . It is unique up to a positive scalar if it exists.

2.4.1 Quotient measure
Theorem 2.4.6. Let G be an LCH group and H ď G a closed subgroup such that ∆H “ ∆G|H .
Given left Haar measures on G and H, there is a unique G-invariant Radon measure ν on G{H such
that for every f P CcpGq one has the quotient integral formula

ż

G

fpxqdx “

ż

G{H

ż

H

fpxhqdhdνpxq.

We will always assume this normalization and call the ensuing measure on G{H the quotient
measure.

Proof. By assumption and Theorem 2.4.4 (and its proof), there exists a unique G-invariant positive
linear functional Λ : CcpG{Hq Ñ C such that

ż

G

fpgqdg “ Λ

ˆ
ż

H

fpghqdh

˙

holds for all f P CcpGq. By Lemma 2.4.1 the functional Λ corresponds to an G-invariant Radon
measure ν on G{H, so this finishes the proof.

Theorem 2.4.7. Retain the setting in Theorem 2.4.6. The quotient integral formula
ż

G

fpxqdx “

ż

G{H

ż

H

fpxhqdhdνpxq

remains valid for all f P L1pGq.

Proof. We may assume f ě 0. By monotone convergence theorem we can assume f is a step
function, and by linearity we can even reduce to the case f “ 1A where A is measurable of finite
Haar measure. We have to show
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• 1HA is measurable on G{H;

•
ż

G{H

1HA dνpxq “

ż

G

1Adx.

We start with the case A “ U being open. Notice that 1U “ sup
ϕPCcpGq
0ďϕď1U

ϕ. Let x P G. Since

µpx´1Uq ă 8, by Corollary 2.2.2.1.4. x´1U is contained in a σ-compact open subgroup of G; in
particular, x´1U XH is σ-compact and open in H, so by applying Lemma D.4.6 we see

1HU pxq “

ż

H

sup
ϕPCcpGq
0ďϕď1U

ϕpxhqdh “ sup
ϕPCcpGq
0ďϕď1U

ż

H

ϕpxhqdh

Since G{H Q x ÞÑ

ż

H

ϕpxhqdh is continuous, it is ν-measurable1. A repeated use of Urysohn’s
Lemma and Lemma D.4.6 shows

ż

G{H

ż

H

1U pxhqdhdνpxq “

ż

G{H

ż

H

sup
0ďϕď1U

ϕpxhqdhdνpxq

“ sup
0ďϕď1U

ż

G{H

ż

H

ϕpxhqdhdνpxq

“ sup
0ďϕď1U

ż

G

ϕpxqdx “

ż

G

sup
0ďϕď1U

ϕpxqdx “

ż

G

1U pxqdx

so that the case A “ U is proved. If A “ K is a compact set, let V be a precompact open
neighborhood of K. Then 1K “ 1V ´ 1V zK so that this case is done. For general A of finite
measure and given n P N, by regularity and Lemma D.2.1, there are compact Kn and open Un with
Kn Ď A Ď Un and µpUnzKnq ă 1

n . We can assume the Kn are increasing and the Un are decreasing.
Let g “ lim

nÑ8
1HKn

and h “ lim
nÑ8

1HUn
; then

• g, h are integrable on G{H;

• 0 ď g ď 1HA ď h;

• h´ g ě 0 has integral zero.

Hence
ż

G{H

1HA dx “

ż

G{H

gpxqdx “ lim
nÑ8

ż

G{H

1HKn
pxqdx “ lim

nÑ8

ż

G

1Knpxqdx “

ż

G

1Apxqdx

Corollary 2.4.7.1. Suppose H ď G is a closed subgroup such that there exists a nonzero invariant
Radon measure on G{H. Let f : G Ñ C be a measurable function such that A “ tx P G | fpxq ‰ 0u

is σ-finite. If the iterated integral
ż

G{H

ż

H

|fpxhq|dhdx ă 8

exists, then f P L1pGq.
1Recall for a continuous function with valued in R and C, we always equip the codomain with the Borel σ-algebra.
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Proof. It suffices to show |f | P L1pGq. Choose an increasing sequence of measurable sets pAnqnPN

with finite measure whose union is A, and define fn : G Ñ C by fn “ mint|f | ¨ 1An , nu. Then
pfnqnPN is an increasing sequence of integrable functions that converges pointwise to |f |. Then by
Theorem

ż

G

fnpxqdx “

ż

G{H

ż

H

fnpxhqdhdx ď

ż

G{H

ż

H

|fnpxhq|dhdx ă 8

The result follows from monotone convergence theorem.

Corollary 2.4.7.2.

1. If H �G is a normal closed subgroup, then ∆G|H “ ∆H .

2. Let H “ kerp∆G : G Ñ Rą0q be the kernel. Then H is unimodular.

Proposition 2.4.8. Let H �G be a closed normal subgroup, and σ : G Ñ G be an automorphism
such that σpHq Ď H and σ|H : H Ñ H is an automorphism. Put σ : G{H Ñ G{H to be the induced
automorphism. Then

modGpσq “ modHpσ|Hq ¨ modG{Hpσq

Proof. Pick any Haar measure dg (resp. dh) on G (resp. on H), and denote by ν the resulting
quotient measure on G{H. Then for f P CcpGq, we have

ż

G

fpgqdg “

ż

G{H

ż

H

fphyqdhdνpyq.

Replacing f with f ˝ σ´1, we obtain

modGpσq

ż

G

fpgqdg “

ż

G{H

ż

H

fpσ|´1
H phqσ´1pyqqdhdνpyq

“ modHpσ|Hq ¨ modG{Hpσq

ż

G{H

ż

H

fphyqdhdνpyq “ modHpσ|Hq ¨ modG{Hpσq

ż

G

fpgqdg.

This finishes the proof.

Proposition 2.4.9. Let G be an LCH group, K ď G a compact subgroup and H ď G a closed
subgroup such that G “ HK. Then one can arrange the Haar measure on G, , H, K in a way that
for every f P L1pGq one has

ż

G

fpxqdx “

ż

H

ż

K

fphkqdkdh

Proof. The group H ˆ K acts on G by ph, kq.g “ hgk´1. This operation is transitive so that we
have the identification G “

H ˆK

H XK
, where we embed H XK into H ˆK diagonally. Now

• the group H XK is compact, so its modular character is trivial.

• The modular character of H ˆK is trivial on H XK.

By Theorem, there is a unique H ˆ K-invariant Radon measure on G up to scaling. We claim the
Haar measure on G is also H ˆ K-invariant. Indeed, the Haar measure on G is H-invariant for H
acts as left-translation. Since K is compact, we have ∆G|K ” 1 so that

ż

G

fpxkqdx “ ∆Gpk´1q

ż

G

fpxqdx “

ż

G

fpxqdx
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for all k P K, f P CcpGq by Theorem 2.3.1.3.
Now by uniqueness of the Haar measure, the Haar measure on G can be normalized in the way

that the quotient integral formula
ż

H

ż

K

fphkqdkdh “

ż

HˆK

fphkqdhb dk “

ż

G

ż

HXK

fpxℓqdℓdx

holds for f P L1pGq. Finally, we see
ż

G

ż

HXK

fpxℓqdℓdx “

ż

HXK

ż

G

fpxℓqdxdℓ “

ż

HXK

ˆ

∆Gpℓ´1q

ż

G

fpxqdx

˙

dℓ “

ż

G

fpxqdx

2.4.2 Examples
Example 2.4.10. Consider the euclidean space Rn and equip it with the usual Lebesgue measure.
The set of integer points Zn is a discrete closed subgroup of Rn, so we can choose the counting
measure as its Haar measure and form the quotient measure µ on Rn{Zn. By definition, for f P

CcpRnq we have
ż

Rn

fpxqdx “

ż

Rn{Zn

ÿ

vPZn

fpx` vqdµpxq.

Take f to be the characteristic function of the closed unit cube C; then

1 “

ż

Rn

1Cpxqdx “

ż

Rn{Zn

#tv P Zn | v ` x P Cudµpxq

The number #tv P Zn | v ` x P Cu is 1 if x represents a point of the open unit cube int C, and is
ě 2 if it represents a point of the boundary BC. Let us denote the image of BC in the quotient by
S. Then

0 “

ż

Rn

1BCpxqdx “

ż

Rn{Zn

#tv P Zn | v ` x P BCudµpxq.

Note that v ` x P BC for some v P Zn if and only if x P S. Hence

0 “

ż

S

#tv P Zn | v ` x P BCudµpxq ě µpSq ě 0

so that µpSq “ 0. These altogether show that volpRn{Zn, µq “ 1.

Example 2.4.11 (Quotient by open subgroups). Let G be an LCH group and U ď G an open
subgroup. In particular, U is closed and ∆G|U “ ∆U , so we can consider the coset space G{U ,
which is a discrete set. If dg is a Haar measure on G, then its restriction to U also defines a Haar
measure on U . We show the quotient measure dx on G{U is exactly the counting measure.

Since G{U is discrete, CcpG{Uq “
À

xPG{U

C1xU . Let p P G and pick any ϕ P CcpGq` such that

ϕppq “ 1. Then f :“ 1pUϕ{ϕU satisfies fU “ 1pU . Hence

volppU, dxq “

ż

G{U

1pU pxqdx “

ż

G

fpgqdg

“

ż

G

1pU pgqϕpgq

ϕU pgq
dg “

ż

G

1U pgqϕppgq

ϕU ppgq
dg “

1

ϕU ppq

ż

U

ϕppgqdg “ 1.

Hence volppU, dxq “ 1 for all p P G, so dx is the counting measure on G{U .
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Example 2.4.12. Let G be an LCH group and H ď G an open subgroup. Let KG ď G be another
closed subgroup, and put KH :“ KG X H ď K. Let dg and dk be Haar measures on G and KG,
and suppose ∆G|KG

” ∆KG
so that the quotient measure ν exists on G{KG. The measures dg and

dk restrict to those on H and KH , respectively, and there exists the quotient measure µ on H{KH .
The inclusion H Ď G induces an open embedding

ι : H{KH G{KG,

Our goal is to show that for all measurables X Ď H{KH , we have

µpXq “ νpιpXqq :“ ι˚νpXq.

i.e., ν pulls back to µ. Equivalently, for f P CcpH{KHq, we must show
ż

K{KH

fdµ “

ż

G{KG

ι!fdν

where ι!f P CcpG{KGq is the extension of f to G{KG by zero, which is well-defined as ι is an open
map. For this, we must write down explicitly the extension by zero map

ι! : CcpH{KHq CcpG{KGq

This is easy: for f P CcpH{KHq and g P G, we have ι!fpgq “ fphq if h P gKG, and ι!fpgq “ 0 if
H X gKG “ H. Now, for f P CcpH{KHq, we must prove

ż

H{KH

fdµ “

ż

H{KH

fdpι˚νq :“

ż

G{KG

ι!fdν

By Lemma 2.4.2, it suffices to take f “ FKH with F P CcpHq. We can also view F P CcpGq, so we
can consider FKG . For g P G, if gk1 “ h for some k1 P KG, h P H, then ι!F

KH pgq “ FKH phq, and

FKGpgq “ FKGphpk1q´1q “ FKGphq “

ż

KG

F phkqdk.

But suppF Ď H, so we only need to consider hk P H, or k P H XKG “ KH . Hence

FKGpgq “

ż

KH

F phkqdk “ FKH phq.

In sum, this shows ι!FKH “ FKG1HKG
“ pF1HKG

qKG . Then
ż

G{KG

ι!F
KHdν “

ż

G{KG

pF1HKG
qKGdν “

ż

G

F pgq1HKG
pgqdg “

ż

H

F pgq1HKG
pgqdg “

ż

H

F pgqdg

The second last holds as suppF Ď H. This shows what we want. It is worth noting that in the
course of the discussion we’ve shown the diagram

CcpHq CcpGq

CcpH{KHq CcpG{KGq

extend by zero

ι!

is not commutative, but nevertheless ι!FKH “ pF1HKG
qKG .
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Example 2.4.13. Let G be an LCH group and H �G a closed normal subgroup. Suppose KG be
a closed subgroup of G with ∆G|KG

” ∆KG
such that the map

ι : H{KH G{KG

induced by the inclusion H Ď G is a homeomorphism, where KH :“ H XKG. Note that ∆H |KH
“

∆KH
as well, since KH � KG. Pick any Haar measure dg, dh, dkG, dkH on G, H, KG, KH , and

denote by µ, ν the resulting quotient measure on G{KG and H{KH .
We wish to compare ι˚ν with µ, or compare ι˚µ with ν. An easy computation is not enough to

show the G-invariance of ι˚µ. However, it is easy to check the pullback measure ι˚µ is H-invariant.
Indeed, for h P H and X Ď H{KH ,

ι˚µphXq “ µpιphXqq “ µphιpXqq “ µpιpXqq “ ι˚µpXq.

Hence, by Theorem 2.4.6.(ii) αν “ ι˚µ for some α ą 0. But then αι˚ν “ ι˚ι
˚µ “ µ, so ι˚ν is also

G-invariant.

Example 2.4.14. Let G be an LCH group and H� be a closed subgroup such that ∆G|H “ ∆H .
Pick any Haar measures dg, dh on G, H respectively. For any c ą 0, let µc be the quotient measure
on G{H of cdg by dh on H. Then µc “ cµ1 for any c ą 0.

Indeed, let f P CcpG{Hq and pick any F P CcpGq such that FH “ f . Then by quotient integral
formula we have

ż

G{H

fdµc “

ż

Fcdg “ c

ż

F

dg “ c

ż

G{H

fdµ1.

Since f P CcpG{Hq is arbitrary, this shows µc “ cµ1.

2.4.3 Eigenmeasure
Let G be an LCH group. Instead of considering left invariant Radon measures on G, for a continuous
group homomorphism χ : G Ñ Rą0, let us consider the “χ-eigenmeasure” µ, in the sense that
µpxAq “ χpxqµpAq for all x P G and measurable A Ď G.

Lemma 2.4.15. For each a continuous group homomorphism χ : G Ñ Rą0, there exists a unique
χ-eigen Radon measure, up to a positive scalar, on G.

Proof. For a function f on G, denote by fχ the function on G defined by fχpxq :“ fpxqχpxq. Then
we have a linear isomorphism

HomCpCcpGq,CqG HomCpCcpGq,Cqχ
´1

Λ Λχ : f ÞÑ Λpfχq

that sends positive to positive. The lemma now follows from Lemma 2.4.1 and the uniqueness of
Haar measures.

Theorem 2.4.16. Let H ď G be a closed subgroup and χ : G Ñ Rą0 a continuous group homo-
morphism. There exists a χ-eigen Radon measure on G{H if and only if χphq∆Gphq “ ∆Hphq for
all h P H.
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Proof. Suppose µ is a χ-eigen Radon measure on G{H. For f P CcpGq, define I : CcpGq Ñ C by

Ipfq “

ż

G{H

pfχ´1qHdµ.

This is a positive linear function on CcpGq, and for g P G,

g.Ipfq “

ż

G{H

ż

H

fpgxhqχ´1pxhqdhdµpxq “ χpgq

ż

G{H

g´1.pfχqHdµ “ χpgqχ´1pgqIpfq “ Ipfq.

Thus Ipfq is given by a Haar measure ν on G, i.e.,
ż

G{H

ż

H

fpxhqχ´1pxhqdhdµpxq “

ż

G

fpxqdνpxq

for all f P CcpGq. Now for h0 P H, one gets

∆Gph0q

ż

G

fpxqdνpxq
2.3.1.3

“

ż

G

fpxh´1
0 qdνpxq “

ż

G

Rh´1
0
fpxqdx “

ż

G{H

ż

H

Rh´1
0
fpxhqχ´1pxhqdhdµpxq

2.3.1.3
“ χ´1ph0q∆Hph0q

ż

G{H

ż

H

fpxhqdhdµpxq “ χ´1ph0q∆Hph0q

ż

G

fpxqdνpxq

This shows χph0q∆Gph0q “ ∆Hph0q. The converse is proved in the same way as the proof of Theorem
2.4.6.(i) with slight modification.

2.4.4 Double coset spaces
Let G be an LCH group and H,K ď G be closed subgroups. Form the double coset space HzG{K,
denote by π : G Ñ HzG{K the canonical projection. Equip HzG{K with the final topology induced
by π; then π is continuous and open.

Lemma 2.4.17.

(i) The final topology on HzG{K induced by HzG Ñ HzG{K (resp. G{K Ñ HzG{K) coincides
with that of induced by π.

(ii) The topological space HzG{K is LCH.

Proof. Let p : HzG Ñ HzG{K and q : G Ñ HzG be the canonical projections.

(i) For a set U Ď HzG{K, if p´1pUq is open, then π´1pUq “ q´1p´1pUq is open. Conversely, since
q is surjective, we easily see that qpπ´1pUqq “ p´1pUq. In particular, if π´1pUq is open, so is
p´1pUq, as q is an open map. This proves the first statement of (i), and the other is proved
similarly.

(ii) Put X “ HzG, which is LCH. Let x P X and U a compact neighborhood of x in X. Then
qpUq is a compact neighborhood of xK in X{K. To show X{K is Hausdorff, let x, y P X

with xK ‰ yK. Since K is closed, yK Ď X is a closed set not containing x. Hence we can
find opens U, V Ď X such that x P U Ď XzyK and y P V Ď XzxK with U X V “ H. Then
qpUq X qpV q “ H.

Lemma 2.4.18. Suppose K is compact. For ε ą 0 and f P CcpG{Kq, there exists a unit-
neighborhood U in G such that |fpgxq ´ fpxq| ă ε for all x P G{K and g P U .
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Proof. By Lemma 2.4.2, choose any F P CcpGq with FK “ f . By uniform continuity of F there
exists a compact unit-neighborhood U in G such that |F pxq ´F pyq| ă

ε

volpKq
as long as xy´1 P U .

Then for g P U , since pgxkqpxkq´1 “ g P U , we have

|FKpgxq ´ FKpxq| ď

ż

K

|F pgxkq ´ F pxkq|dk ă volpKq ¨
ε

volpKq
“ ε.

Let N “ NGpKq be the normalizer of K in G. Then N acts on HzG{K by

n.pHgKq :“ HgKn “ HgnK,

and this makes HzG{K a right N -space. We ask the existence of right N -invariant Radon measure on
HzG{K. We begin by establishing an analogue of Lemma 2.4.2. For f P CcpGq define HfK : G Ñ C
by

HfKpgq :“

ż

H

ż

K

fphgkqdkdh “

ż

H

fKphgqdh “ HpfKqpgq

In contrast to what we’ve done before, here respective measures dg, dh, dk on G, H, K are taken to
be right Haar measures. We further assume K is compact, so dk is also left-invariant. The integral
is well-defined as g ÞÑ fKpgq has compact support. Moreover,

Lemma 2.4.19. HfK defines a continuous function on HzG{K with compact support.

Proof. Put C “ supp f . For ph, kq P H ˆ K, the support of Lh´1Rkf : g ÞÑ fphgkq is h´1Ck´1.
Hence, if g R HCK, then fphgkq “ 0 for all ph, kq P H ˆ K. The assumption of K being compact
implies HCK is a closed set in G, so suppHfK Ď HCK, and HfK : HzG{K Ñ C has compact
support. To show it is continuous, by Fubini we have

HfKpgq “

ż

K

ż

H

fphgkqdhdk “

ż

K

Hfpgkqdk.

Since Hf is continuous, it follows that HfK is also continuous.

Lemma 2.4.20. Retain the above setting.

(i) For each compact set C Ď HzG{K, there exists a compact set C 1 Ď G such that πpC 1q “ C..

(ii) The map defined by
CcpGq CcpHzG{Kq

f HfG

is surjective, and the fibre of h P C`
c pHzG{Kq meets C`

c pGq nontrivially.

Proof.

(i) For each c P C, pick y P π´1pcq and a compact neighborhood Uc of y in G. Since π is open,
tπpUcq | c P Cu forms an open cover of C, so there exists a finite set F Ď C such that
C Ď

Ť

cPF

πpUcq. Then C 1 :“ π´1pCq X
Ť

cPF

Uc satisfies πpC 1q “ C.

(ii) Let F P CcpHzG{Kqzt0u and set C “ suppF . By (i) we can find compact C 1 Ď G such
that πpC 1q “ C. By Urysohn’s Lemma we can find ϕ P CcpGq` such that ϕ|C1 ” 1. Then

f :“
pF ˝ πqϕ
HϕK

satisfies HfK “ F . The last assertion is clear.
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For n P N , the conjugation Innn : k ÞÑ nkn´1 defines an automorphism on K, so we can
consider its modulus modKpInnnq. Since K is compact, it satisfies volpK, dkq “ volpInnnK, dkq “

modKpInnnq volpK, dkq. Hence modKpInnnq “ 1, and
ż

K

fpnkn´1qdk “

ż

G

fpkqdk

for all k P CpKq.
Now suppose HzG{K admits a nonzero right N -invariant Radon measure µ. Define I “ Iµ :

CcpGq Ñ C by

Ipfq “

ż

HzG{K

HfKdµ.

Since I is nontrivial and positive, so it is given by a positive Radon measure ν on G, i.e.,
ż

G

fpxqdµpxq “

ż

HzG{K

ż

H

ż

K

fphxkqdkdhdµpxq.

For n P N , since µ is right N -invariant, one has
ż

G

fpxnqdνpxq “

ż

HzG{K

ż

H

ż

K

fphxknqdkdhdµpxq “

ż

HzG{K

ż

H

ż

K

fphxnkqdkdhdµpxq

“

ż

HzG{K

ż

H

ż

K

fphxkqdkdhdµpxq “

ż

G

fpxqdνpxq.

For h1 P H,
ż

G

fphxqdνpxq “

ż

HzG{K

ż

H

ż

K

fph1hxkqdkdhdµpxq “ modHpInnph1q´1q

ż

HzG{K

ż

H

ż

K

fphh1xkqdkdhdµpxq

“ modHpInnph1q´1q

ż

HzG{K

ż

H

ż

K

fphxkqdkdhdµpxq “ modHpInnph1q´1q

ż

G

fpxqdνpxq.

This proves the only if part of the following

Theorem 2.4.21. Let G be an LCH group and H,K ď G be closed subgroups with K compact. Put
N “ NGpKq. The double coset space HzG{K admits a nonzero right N -invariant Radon measure
if and only if G admits a Radon measure ν satisfying

(a)
ż

G

fpxnqdνpxq “

ż

G

fpxqdνpxq for all n P N , and

(b)
ż

G

fphxqdνpxq “ modHpInnphq´1q

ż

G

fpxqdνpxq for all h1 P H.

Proof. Let ν be a Radon measure on G satisfying (a) and (b). Define I : CcpHzG{Kq Ñ C by

IpF q “

ż

G

fdν

where f P CcpGq satisfies HfK “ F . To show it is well-defined, let f P CcpGq be such that HfK “ 0.
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For any ϕ P CcpGq, compute

0 “

ż

G

HfKϕdν “

ż

G

ż

H

ż

K

fphxkqϕpxqdkdhdµpxq
Fubini

“

ż

H

ż

K

ż

G

fphxkqϕpxqdµpxqdkdh

(a),(b)
“

ż

H

ż

K

ˆ

modHpInnphq´1q

ż

G

fpxqϕph´1xk´1qdνpxq

˙

dkdh

Fubini
“

ż

G

fpxq

ˆ
ż

K

ż

H

modHpInnphq´1qϕph´1xk´1qdhdk

˙

dνpxq

(2.3.1)
“

ż

G

fpxq

ˆ
ż

K

ż

H

ϕphxkqdhdk

˙

dνpxq “

ż

G

fpHϕKqdν.

Choosing ϕ P CcpGq such that HϕK ” 1 shows
ż

G

fν “ 0. By (a), I is right N -invariant, so by
Riesz’s representation theorem and Lemma 2.4.1, it defines a right N -invariant Radon measure on
HzG{K.

Example 2.4.22. Suppose further that G is unimodular and H is discrete. Then any Haar measure
dg onG satisfies the conditions in Theorem 2.4.21. Hence there exists a unique rightNGpKq-invariant
Radon measure ν on HzG{K satisfying

ż

G

fpgqdg “

ż

HzG{K

ÿ

γPH

ż

K

fpγxkqdkdνpxq

where dk is the Haar measure on K normalized so that volpK, dkq “ 1. On the other hand, there
exists a unique measure µ on G{K such that

ż

G

fpgqdg “

ż

G{K

ż

K

fpykqdkdµpyq.

Comparing two expressions, since CcpGq Ñ CcpG{Kq is surjective (2.4.2), we see the integral formula
ż

G{K

fpyqdµpyq “
ÿ

γPH

ż

HzG{K

fpγxqdνpxq

holds for all f P CcpG{Kq. Similarly, if we denote by ρ the quotient measure on HzG, we have
ż

HzG

fpyqdρpyq “

ż

HzG{K

ż

K

fpxkqdkdνpxq

for all f P CcpHzGq.

Example 2.4.23. Let Gi pi “ 1, 2q be unimodular and Ki ď Gi be a compact subgroup. Suppose
further that K2 ď G2 is open so that G2{K2 is discrete. Consider the inclusion G1 ˆG1 ˆG2 given
by g ÞÑ pg, eq. Suppose Λ is an LCH group such that it can be viewed as subgroups of G1, G2;
in particular, there is an inclusion Λ Ñ G1 ˆ G2. Assume its image in G1 ˆ G2 is discrete. Now
consider the quotient

G1{K1 G1{K1 ˆG2{K2 ΛzG1 ˆG2{K1 ˆK2
φ

The first arrow φ is open, and is measure preserving as long as G1{K1 on both sides use the same
measure and G2{K2 uses counting measure.

If gK1 and g1K1 have the same image in ΛzG1 ˆG2{K1 ˆK2, then γpgk1, k2q “ pg1, 1q for some
appropriate elements, so γk2 “ 1 and γgk1 “ g1. The first relation says γ P Λ X K2, intersection
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taken place in G2, and the second then implies that g1 P pΛ X K2qgK1, where we view Λ X K2 as a
subgroup of Λ and put it into G1. Hence we obtain a well-defined map

rφ : Λ1zG1{K1 ΛzG1 ˆG2{K1 ˆK2.

with Λ1 “ Λ X K2 ď G1. To continue the discussion, we first show that Λ1 ď G1 is discrete. Since
Λ ď G1 ˆG2 is discrete, for γ P Λ XK2 and any compact neighborhood U1 of γ in G1, the set

Λ X pU1 ˆK2q “ Λ X ppΛ X U1q ˆ pΛ XK2qq

is finite. In particular, Λ1 X U1 Ď G1 is finite. Since G1 is Hausdorff, by shrinking U1, we then have
Λ1 X U1 “ tγu.

Our goal is to show rφ preserves measure. Note that this question makes sense since rφ is an
open embedding. Let dgi be any Haar measures on Gi, and dki be Haar measures on Ki such that
dg2|K2

“ dk2. On Λ and Λ1 we take counting measures. What we want to show is the commutativity
of the following diagram

CcpΛ
1zG1{K1q CcpΛzG1 ˆG2{K1 ˆK2q

C

rφ!

ş

dy
ş

dx

where we denote by dx (resp. dy) the double quotient measures. Consider the diagram

CcpG1{K1q CcpG1 ˆG2{K1 ˆK2q

CcpΛ
1zG1{K1q CcpΛzG1 ˆG2{K1 ˆK2q

φ!

rφ!

as in Example 2.4.12, where the vertical arrows are “integration along fibre” as usual. Here for
f P CcpΛ

1zG1{K1q, it is easy to see that rφ!fpg1, g2q “ fpg1q if Λpg1, g2qpK1 ˆ K2q X G1 ˆ teu ‰ H,
and rφ!fpg1, g2q “ 0 otherwise. For f P CcpG1{K1q and pg1, g2q P G1 ˆK2, one has Λpφ!fqpg1, g2q “

rφ!p
Λ1
fqpg1, g2q

Λpφ!fqpg1, g2q “
ÿ

γPΛ

fpγg1q1eK2
pγg2q “

ÿ

γPΛXK2

fpγg1q “ Λ1
fpg1q.

Hence rφ!p
Λ1
fq “ Λpφ!fq1ΛpG1ˆteuqpK1ˆK2q “ Λpφ!f1ΛpG1ˆteuqpK1ˆK2qq. Hence for f P CcpG1{K1q

ż

ΛzG1ˆG2{K1ˆK2

rφ!p
Λ1
fqdx “

ż

G1ˆG2{K1ˆK2

φ!f1ΛpG1ˆteuqpK1ˆK2q

“

ż

G1{K1

f1ΛpG1ˆteuqpK1ˆK2q|G1ˆteu “

ż

G1{K1

f “

ż

Λ1zG1{K1

Λ1
fdy

Here we repeatedly use formulas in (2.4.22). Since CcpG1{K1q Ñ CcpΛ
1zG1{K1q is surjective (2.4.2),

this shows the commutativity of the triangle depicted above.

2.4.5 Homomorphisms and measures
Let X,Y be two measurable spaces and µ a measure on X. For a measurable function f : X Ñ Y ,
we can consider the pushforward measure f˚µ, which is a measure on Y defined as follows. If
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A Ď X is any measurable set in X, then

f˚µpAq :“ µpf´1pAqq.

To see this is indeed a measure on Y , if pAiq
n
i“1 is a sequence of measurable sets in X, then

f˚µ

˜

8
ď

i“1

Ai

¸

“ µ

˜

f´1

˜

8
ď

i“1

Ai

¸¸

“ µ

˜

8
ď

i“1

f´1pAiq

¸

ď

8
ÿ

n“1

µpf´1pAiqq “

8
ÿ

n“1

f˚µpAiq.

If the Ai’s are disjoint, then the equality holds. Also, we have f˚µpHq “ µpHq “ 0. This proves
f˚µ is a measure on Y .

Lemma 2.4.24. Retain the above notation. For any measurable function g : Y Ñ C, the integral
formula holds:

ż

Y

gdpf˚µq “

ż

X

pg ˝ fqdµ.

Proof. By MCT, it suffices to check the case when g “ 1A with A a measurable set. This is clear,
as

ż

Y

1Adpf˚µq “ volpA, f˚µq “ volpf´1pAq, µq “

ż

X

1f´1pAqdµ “

ż

X

p1A ˝ fqdµ.

Lemma 2.4.25. Let X,Y be LCH spaces and f : X Ñ Y a proper continuous map. If µ is a Radon
measure on X, then the pushforward measure f˚µ is a Radon measure on Y .

Proof. Local finiteness is clear (the properness is used here). For U open in Y ,

f˚µpUq “ µpf´1pUqq “ sup
K Ď

cpt
f´1pUq

µpKq ď sup
K Ď

cpt
U
µpf´1pKqq ď µpf´1pUqq “ f˚µpUq.

so f˚µ is weakly inner regular (the properness is not used here). Finally, for B Borel in Y , by
Corollary A.7.2.1 we have

f˚µpBq “ µpf´1pBqq “ inf
f´1pBqĎU Ď

open
X
µpUq ě inf

BĎV Ď
open

U
µpf´1pV qq ě µpf´1pBqq “ f˚µpBq

so f˚µ is outer regular.

Lemma 2.4.26. Let G and H be LCH groups and φ : G Ñ H a proper continuous homomorphism.
If µ is a left Haar measure on G, then φ˚µ is a left Haar measure on H.

Proof. By the previous lemma, it remains to deduce the left invariance. Let A Ď H be a measurable
subset and h P H. Let g be in the fibre of h. Then

φ˚µphAq “ µpφ´1phAqq “ µpgφ´1pAqq “ µpφ´1pAqq “ φ˚µpAq

Thus φ˚µ is a Haar measure on H.

Lemma 2.4.27. Let G and H be LCH groups and φ : G Ñ H a surjective open continuous
homomorphism with kerφ compact. Then φ is proper.

Proof. Under our assumption we have G{ kerφ – H as topological groups, so it suffices to show
π : G Ñ G{ kerφ is proper. Let C Ď G{ kerφ be a compact subset. By Lemma 2.4.2 we can find
compact K Ď G with πpKq “ C. We claim π´1pCq “ K kerφ.
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• As πpK kerφq “ πpKq “ C, we have K kerφ Ď π´1pCq.

• Let x P π´1pCq. Then πpxq P C, so we can find k P K such that x kerφ “ k kerφ, or
k´1x P kerφ. Thus x P k kerφ Ď K kerφ, so that π´1pCq Ď K kerφ.

Since kerφ is compact, being a product of two compact sets, π´1pCq is compact. Thus φ is a proper
map.

Remark 2.4.28. If G is σ-compact, then a continuous surjective homomorphism is automatically
open. See Theorem 6.2.1.

Proposition 2.4.29. Let G and H be LCH groups and φ : G Ñ H a surjective open continuous
homomorphism with kerφ compact. Suppose A,B are two subset of H with finite measure, then

volpAq

volpBq
“

volpφ´1pAq

volpφ´1pBqq
.

Proof. This follows from the previous lemmas.

2.4.6 Quasi-invariant measures
Let G be an LCH group and H ď G a closed subgroup. Let µ be a Radon measure on the
homogeneous space G{H. For g P G define the translate µg of µ by the formula µgpAq :“ µpgAq.

Definition. Let the notations be as in above.

1. µ is called quasi-invariant if all the measures µx have the σ-ideal of zero sets; equivalently,
µ is quasi-invariant if the µx are mutually absolutely continuous.

2. µ is called strongly quasi-invariant if there exists a continuous map λ : GˆG{H Ñ Rą0 such
that dµxppq “ λpx, pqdµppq for all x P G and p P G{H; equivalently, µ is strongly quasi-invariant
if µis quasi-invariant and the Radon-Nikodym derivatives pdµx{dµqppq is jointly continuous in
px, pq.

Lemma 2.4.30. If µ is a nonzero quasi-invariant measure on G{H, then µpUq ą 0 for every
nonempty open set U .

Proof. Suppose otherwise. Say µpUq “ 0 for some open set U . Then µpgUq “ 0 for all g P G as µg
and µ are mutually absolutely convergent. By weakly inner regularity it suffices to show µ vanishes
on every compact set. But this is clear.

Lemma 2.4.31. Let V be a relatively compact symmetric open unit-neighborhood of G. Then
there exists a set A Ď G such that

(i) for every g P G there exists a P A with gH X V a ‰ H, and

(ii) if K Ď G is compact, #ta P A | KH X V a ‰ Hu ă 8.

Proof. By Zorn’s lemma there exists a maximal set A Ď G such that if a, b P A then a ‰ V bH (note
that this condition is symmetric in a and b). For any g P G, gH intersects some V a, for otherwise
g R V aH for all a P A, contradicting the maximality. Also, if K Ď G is compact and KH XV a ‰ H

for infinitely many a, then we can find panqn with each an P A distinct to each other and phnqn in
H such that anhn P V K for all n. Since V K is compact, by passing to subsequence we can assume
anhn converges to, say, z P V K. Pick a symmetric unit-neighborhood W in G such that W 2 Ď V .
Then there are integers n ‰ m such that anhn, amhm P Wz, and thus anhn P V amhm. But then
an P V amH, a contradiction to the definition of A.
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Lemma 2.4.32. There exists a continuous function f : G Ñ r0,8q satisfying

(i) ty P G | fpyq ą 0u X gH ‰ H for all g P G, and

(ii) supp f XKH is compact for every compact K Ď G.

Proof. Pick symmetric h P C`
c pGq with gp1q ą 0, let V “ h´1p0,8q, choose A Ď G as in Lemma

2.4.31 for this V and set

fpgq “
ÿ

aPA

hpga´1q.

By Lemma 2.4.31.(ii), this sum is finite when g is in a fixed compact subset of G, so f defines a
continuous map on G. Since

supp f “
ď

aPA

V a Ď
ď

aPA

V a

for any compact K Ď G, supp f XKH is contained in a finite union of the V a by Lemma 2.4.31.(ii)
again, so supp f X KH is compact. Finally, by Lemma 2.4.31.(i), ty P G | fpyq ą 0u “

Ť

aPA

V a

intersects every coset gH pg P Gq.

Definition. A rho-function for the pair pG,Hq is a continuous map ρ : G Ñ Rą0 such that

ρpghq “
∆Hphq

∆Gphq
ρpgq

for all g P G, h P H.

Proposition 2.4.33. For any LCH group G and any closed subgroup H ď G, pG,Hq admits a
rho-function.

Proof. Let f be as in Lemma 2.4.32 and set

ρpgq :“

ż

H

∆Gphq

∆Hphq
fpghqdh.

By Lemma 2.4.32.(ii), this integral converges for each g P G and defines a continuous function on
G, and by (i) it is positive. Moreover,

ρpgh0q “

ż

H

∆Gphq

∆Hphq
fpgh0hqdh “

ż

H

∆Gph´1
0 hq

∆Hph´1
0 hq

fpghqdh “
∆Hph0q

∆Gph0q
ρpgq.

Lemma 2.4.34. If f P CcpGq and fH “ 0, then the integral
ż

G

fpgqρpgqdg “ 0 for every rho-
function ρ.

Proof. By Lemma 2.4.2, we can find ϕ P C`
c pGq with ϕH “ 1 on πpsupp fq. Then

0 “

ż

G

ż

H

ρpgqϕpgqfpgh´1q∆Hph´1qdhdg
2.3.1.3

“

ż

H

ż

G

ρpghqϕpghqfpgq∆Hph´1q∆Gph´1qdgdh

“

ż

G

ż

H

ρpgqϕpghqfpgqdhdg “

ż

G

fpgqρpgqϕHpgqdg “

ż

G

fpgqρpgqdg.

Here ϕ is to make the integrals absolutely convergent.
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Theorem 2.4.35. Every strongly quasi-invariant measure on G{H arises from a rho-function con-
structed in Proposition 2.4.33, and all such measures are strongly equivalent.

Proof. Suppose µ is strongly equivalent, so that pdµx{dµqppq “ λpx, pq is a positive continuous
function on G ˆ G{H. For x, y P G, since µxy “ pµxqy, the “chain rule” for the Radon Nikodym
derivatives implies

λpxy, pq “ λpx, ypqλpy, pq

µ-a.e. in p. Since both sides are continuous functions, this identity must hold for every p by Lemma
2.4.30.

If f P CcpGq and y P G, we have
ż

G{H

ż

H

fpy´1xhqλpxh,Hq´1dhdµpxHq “

ż

G{H

ż

H

fpxhqλpyxh,Hq´1λpy, xHqdhdµpxHq

“

ż

G{H

ż

H

fpxhqλpxh,Hq´1dhdµpxHq

by the above identity. Hence

f ÞÑ

ż

G{H

ż

H

fpxhqλpxh,Hq´1dhdµpxHq

defines a left-invariant positive linear function on CcpGq, so there exists c ą 0 such that
ż

G{H

ż

H

fpxhqλpxh,Hq´1dhdµpxHq “ c

ż

G

fpxqdx

Define ρpxq “ cλpx,Hq. Replacing f by fλp¨,Hq, we obtain
ż

G{H

ż

H

fpxhqdhdµpxHq “

ż

G

fpxqρpxqdx.

We show ρ is a rho-function. Indeed, for h0 P H,
ż

G

fpxqρpxh0qdx “ ∆Gph´1
0 q

ż

G

Rh´1
0
fpxqρpxqdx

“ ∆Gph´1
0 q

ż

G{H

ż

H

fpxhh´1
0 qdhdµpxHq

“ ∆Gph´1
0 q∆Hph0q

ż

G{H

ż

H

fpxhqdhdµpxHq “ ∆Gph´1
0 q∆Hph0q

ż

G

fpxqρpxqdx

holds for every f P CcpGq, so

ρpxhq “
∆Hphq

∆Gphq
ρpxq

holds for every x P G, h P H. Since ρ is continuous and positive, this shows ρ is a rho-function.
It remains to show the last assertion. Suppose µ and µ1 are strongly equivalent measures with

associated rho-function ρ and ρ1. The functional equation for rho-function implies the ratio ρ1{ρ

defines a positive continuous function ϕ on G{H. For f P CcpGq, we have pfρ1{ρqH “ fHϕ, so
ż

G{H

fHdµ1 “

ż

G

fρ1 “

ż

G

fpρ1{ρqρ “

ż

G{H

fHϕdµ.

This proves dµ1 “ ϕdµ.
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2.5 Locally compact division rings
Definition.

(i) A topological ring R is a ring equipped with a topology such that the addition the multi-
plication are continuous.

(ii) A topological division ring is a topological ring D with identity such that every nonzero
element is invertible and the inversion Dˆ Q x ÞÑ x´1 P Dˆ is continuous with respect to the
subspace topology.

(iii) A topological field is a commutative topological division ring.

(iv) Let R be a topological ring. A left topological R-module M is a topological abelian group
M together with a continuous map R ˆM Q pr,mq ÞÑ rm Ñ M making M an R-module.

(v) Let D be a topological division ring. A left topological vector space over D is a left
topological D-module.

The goal of this subsection is to show all non-discrete2 locally compact division rings are equipped
with naturally defined valuations, in the sense of §8.

Let D be a non-discrete locally compact division ring and let µ be a Haar measure on D. For
a P Dˆ, the left multiplication ℓa by a is an automorphism of the underlying abelian group, so
we can consider the modulus modDpaq :“ modDpℓaq. This is a positive real number such that
µpaXq “ modDpaqµpXq for all measurable X Ď D. If we set modDp0q “ 0, then we obtain a
function

modD : D Rě0

such that modDpaq “ 0 if and only if a “ 0, and modDpxyq “ modDpxqmodDpyq for all x, y P D.
Similarly, if V is a locally compact Hausdorff topological left vector space over D, then each

a P Dˆ acts on V by left multiplication ℓa, defining an automorphism of V . So we can consider its
modulus modV paq :“ modV pℓaq P Rą0. Again, we set modV p0q “ 0.

Lemma 2.5.1. Let V be an LCH topological left vector space over D. Then modV : D Ñ Rě0 is
continuous.

Proof. Let K be a compact unit-neighborhood of V , a P D and ε ą 0. Let µ be a Haar measure on
V ; since µ is a Radon measure, there exists a neighborhood U of aK such that µpUq ď µpaKq ` ε.
By continuity, there exists a neighborhood Wa of a in D such that WaK Ď U ; if a ‰ 0, we assume
0 R Wa. Then for x P Wa,

modDpxqµpKq “ µpxKq ď µpUq ď modDpaqµpKq ` ε

so that modDpxq ď modDpaq`µpKq´1ε for all x P Wa. In particular, this shows modD is continuous
at 0. Also, for a ‰ 0, we have modDpxq ď modDpa´1q ` µpKq´1ε for x P Wa´1 , so that

modDpxq ě modDpaq ´ ε ¨
modDpaqµpKq´1

1 ` modDpaq2µpKq´1ε
ě modDpaq ´ ε ¨ modDpaq2µpKq´1.

This shows modD is continuous at a P Dˆ.
2This means the topology is not the discrete topology. We really need to exclude such a situation, since every

division ring with the discrete topology is a locally compact topological division ring.
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In particular, since D is non-discrete, for every ε ą 0 we can find an a P D such that 0 ă

modDpaq ď ε. By inversion, we see modD is an unbounded continuous function. As a consequence,
we see D cannot be compact. Nevertheless, we have

Lemma 2.5.2. For r ě 0, the set Br :“ ta P D | modDpaq ď ru is compact.

Proof. Let K be a compact unit-neighborhood and let U be an unit-neighborhood such that KU Ď

K. Since D is non-discrete, we can (and we do) choose a P K XU such that 0 ă modDpaq ă 1; then
an P K for all n ě 1. Since modDpaq ă 1, we see modDpanq Ñ 0 as n Ñ 8. In particular, the only
limit point of the sequence panqně1 is 0, and since K is compact, we deduce that an Ñ 0 as n Ñ 8.

Take any r ą 0 and x P Br. Since anx Ñ 0 as n Ñ 8, m :“ inftn ě 0 | anx P Ku exists. If
m ě 1, then am´1x R K so that amx P KzaK. Set d :“ inf

xPKzaK
midDpxq; note that d ą 0 since

KzaK is a compact set not containing 0. Let N ě 1 be such that modDpaqN ď
d

r
; then for x P Br

with x R K, we have

rmodDpaqN ď d ď modDpamxq ď rmodDpaqm

so that N ě m. This shows Br Ď K Y a´1K Y ¨ ¨ ¨ Y a´NK. Since Br is closed by Lemma 2.5.1,
being contained in a finite union of compact sets, Br is compact as well.

Corollary 2.5.2.1.

(i) The sets Br, r ą 0 form a unit-neighborhood basis of D.

(ii) For a P D, lim
nÑ8

an “ 0 if and only if modDpaq ă 1.

(iii) Any discrete division subring of D is finite.

Proof.

(i) Let K be any compact unit-neighborhood of D. Let m ą sup
xPK

modDpxq so that K Ĺ Bm, and

let r1 :“ inf
xPBmzK

modDpxq ą 0; note that BmzK is compact by Lemma 2.5.2 and does not

contain 0. Then 0 ă r1 ď m. If 0 ă r ă r1, then Br Ď Bm and Br X BmzK “ H, so that
Br Ď K.

(ii) This is proved during the proof of Lemma 2.5.2.

(iii) Let D1 be any discrete division subring. Then modDpaq ď 1 for all a P pD1qˆ, for otherwise
pa´nqn is a sequence in pD1qˆ tending to 0 by (ii), a contradiction to discreteness. Hence D1

is a discrete subspace of a compact set B1, so D1 is finite.

Theorem 2.5.3. Let V be a Hausdorff topological left vector space over D. Let V 1 be a finite
dimensional subspace and let te1, . . . , enu be a D-basis for V 1. Then the map

Dn V 1

pa1, . . . , anq

n
ÿ

i“1

aiei

is an isomorphism of topological left vector spaces over D. Also, V 1 is closed in V and V 1 is locally
compact.
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Proof. Denote by T : Dn Ñ V 1 the map defined in the theorem. The space Dn is equipped with
the product topology, and so by the definition T is continuous. It is also a D-isomorphism, so it
remains to show T is an open map. In view of Corollary 2.5.2.1.(i) and the linearity of T , we only
need to show T ppBrq

nq is a unit-neighborhood of 0 P V 1 for each r ą 0. Set

S “

"

pa1, . . . , anq P Dn | sup
1ďiďn

modDpaiq “ 1

*

.

We have 0 R S, S is closed and is contained in pB1qn; by Lemma 2.5.2, S is compact. Hence, 0 R T pSq

and T pSq is a compact set. Since V is assumed to be Hausdorff, T pSq is closed. By continuity we
can find ε ą 0 and a unit-neighborhood U of V such that BεU Ď V zT pSq.

Let r ą 0 and take x P D such that 0 ă modDpxq ď rε. Let 0 ‰ v “
n
ř

i“1

aiei P V 1 X xU ,

and let j P rns be such that sup
1ďiďn

modDpaiq “ modDpajq ą 0. Then a´1
j pa1, . . . , anq P S, so

a´1
j v P T pSq. Also, a´1

j v P a´1
j xU , so by the choice of U and ε, it forces that modDpa´1

j xq ą ε and
hence modDpajq ă ε´1modDpxq ď r. This proves

V 1 X xU Ď T ppBrq
nq,

which is what we want.
To show V 1 is closed in V , let W be the closure of V 1 in V . Let w P W and consider the subspace

Dw ` V 1. By the first assertion, we see V 1 is closed in Dw ` V 1, so w P V 1. This shows V 1 “ W is
closed in V . The last assertion is clear.

Let V be a finite dimensional Hausdorff topological left vector space over D. By the previous
theorem, V is locally compact, so the previous discussion applies. Generally, if T : V Ñ V is a
surjective D-linear map, then it is a D-isomorphism of V so modDpT q makes sense. If T : V Ñ V

is not surjective, we set modDpT q “ 0.

Corollary 2.5.3.1.

(i) Every finite dimensional left vector space over D has a unique Hausdorff topology making it a
topological vector space over D.

(ii) If V is a locally compact Hausdorff topological left vector space over D, then dimD V ă 8

and modV paq “ modDpaqdimD V for all a P D.

(iii) If V is a finite dimensional left vector space over D, D is commutative and T : V Ñ V is a
D-linear map, then modV pT q “ modDpdetT q.

Proof.

(i) This follows from Theorem 2.5.3.

(ii) The last assertion follows from Fubini’s Theorem. For the first assertion, let a P D with
0 ă modDpaq ă 1. By Corollary 2.5.2.1.(ii), we have lim

nÑ8
an “ 0, so by continuity of modV

we have either modV paq “ 1 or lim
nÑ8

modV paqn “ 0. Hence 0 ă modV paq ď 1.
Let W be a subspace of V of dimension 0 ă d ă 8. Since W is closed by Theorem 2.5.3, the
quotient V {W is an LCH group, and D also acts on V {W continuously so that V {W is again a
locally compact Hausdorff topological left vector space over D. By Proposition 2.4.8, we have

modV paq “ modW paqmodV {W paq ď modDpaqd

Here modV {W paq ď 1 by the first paragraph. Since modDpaq ă 1, this gives an upper bound
for d. Since d is arbitrary, we deduce that V is finite dimensional over D.
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(iii) This follows from the linear algebra that an automorphism can be written as a product of
elementary operations and Fubini’s Theorem.

Lemma 2.5.4. Let Γ “ modDpDˆq ď Rą0. Then Γ is a closed subgroup of Rą0, and modD :

Dˆ Ñ Γ is an open homomorphism.

Proof. Let Γ1 “ modDpDq “ Γ Y t0u Ď Rě0. We show Γ1 X p0, rs is closed for each r ě 0. We have
Γ1 X r0, rs “ modDpBrq. Since modD is continuous and Br is compact, Γ1 X r0, rs is compact. Since
Rě0 is Hausdorff, it implies Γ1 X r0, rs is closed.

Let U be a unit-neighborhood of Dˆ. Suppose otherwise modDpUq is not a neighborhood of 1
in Γ. Then there exists a sequence pγnqně1 Ď ΓzmodDpUq such that lim

nÑ8
γn “ 1. For each n ě 1

pick an P Dˆ with γn “ modDpanq. By Lemma 2.5.2, panqn has a limit point, say a P D, and by
continuity modDpaq “ 1 so that a P kermodD. Since pkermodDqU is a neighborhood of kermodD,
we see an P pkermodDqU for n " 0, implying γn P modDpUq, a contradiction.

Theorem 2.5.5. There is a constant A ą 0 such that

modDpx` yq ď AmaxtmodDpxq,modDpyqu

for all x, y P D. If we can choose A “ 1, then Γ :“ modDpDˆq is discrete in Rą0. Moreover,

sup
xPD,modDpxqď1

modDp1 ` xq

is the smallest A such that the inequality holds.

Proof. Let A :“ sup
xPD,modDpxqď1

modDp1 ` xq. Since B1 is compact, A ă 8. By choosing x “ 0, we

also have A ě 1. If x “ 0 or y “ 0, the equality is clear. Assume x, y ‰ 0; further we can assume
modDpyq ď modDpxq. If z :“ yx´1, then modDpzq ď 1 so that modDp1 ` zq ď A. Hence

modDpx` yq “ modDp1 ` zqmodDpxq ď AmaxtmodDpxq,modDpyqu.

That A is minimal is clear.
Now assume A “ 1. Then modDp1 `Brq Ď r0, 1s. By Lemma 2.5.4, it is a unit-neighborhood of

Γ. These together imply Γ is discrete.

Lemma 2.5.6. Let F : Zě0 Ñ Rě0 be a function such that F pmnq “ F pmqF pnq for all m,n P Zě0

and there exists A ą 0 such that

F pm` nq ď AmaxtF pmq, F pnqu

for all m,n P Zě0. Then F ď 1 or there exists a λ ą 0 such that F pmq “ mλ for all m P Zě0.

Proof. If F ” 0 or F ” 1, then the lemma holds trivially. Assume F is not constant 0 and 1, so
that by assumption we have F p0q “ 0, F p1q “ 1. Also, we have F pmkq “ F pmqk for all m P Zě0.
Define f : Zě0 Ñ R by fpmq “ maxt0, logF pmqu pm P Zě0q; note that F pmq “ 0 implies fpmq “ 0.
If we put a “ maxt0, logAu, we have

fpmkq “ kfpmq, fpmnq ď fpmq ` fpnq, fpm` nq ď a` maxtfpnq, fpmqu
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for all m,n P Zě0. Now let m,n ě 2 and write m “
ℓ
ř

i“0

ain
i with 0 ď ai ď n´1 and nℓ ď m ă nℓ`1.

Then

fpmq “ f

˜

ℓ
ÿ

i“0

ain
i

¸

ď ℓa` max
0ďiďℓ

fpain
iq ď ℓa` max

0ďaďn´1
fpaq ` ℓfpnq.

Since nℓ ď m, we have ℓ log n ď m so that

fpmq

logm
ď

max
0ďaďn´1

fpaq

logm
`
a` fpnq

log n
.

Replacing m by mk, which does not change the LHS, and letting k Ñ 8, we obtain

fpmq

logm
ď
a` fpnq

log n
.

Replacing n by nk and letting n Ñ 8 gives fpmq

logm
ď
fpnq

log n
. By symmetry this shows

fpmq

logm
“
fpnq

log n
“: C ě 0

for all n,m ě 2 so that fpmq “ C logm. If C “ 0, this shows logF pmq ď 0 for all m ě 0 so that
F ď 1. If C ‰ 0, then fpmq ‰ 0 for m ě 2 and hence F pmq “ mC , m ě 2. This finishes the
proof.

Return to our setting. Denote by 1D the multiplicative identity of D. Define F “ FD : Z Ñ Rě0

by F pmq “ modDpm ¨ 1Dq.

Lemma 2.5.7. If F is bounded, then F ď 1 and A “ 1.

Proof. The first follows from F pmnq “ F pmqF pnq. For the second, by induction on n we have

modD

˜

2n
ÿ

i“1

xi

¸

ď An max
1ďiď2n

modDpxiq

for x1, . . . , x2n P D and n ě 1. By inserting some 0, we see modD
´

řN
i“1 xi

¯

ď Anmax1ďiďN modDpxiq

for N ď 2n. Then for x, y P D and n ě,

modDpx` yq2
n

ď An`1 max
0ďiď2n

ˆˆ

2n

i

˙

modDpxqimodDpyq2
n´i

˙

ď An`1 maxtmodDpxq,modDpyqu2
n

Taking 2n-th root and letting n Ñ 8 prove the lemma.

Theorem 2.5.8. Let D be a non-discrete locally compact division ring and put F pmq :“ modDpm ¨

1Dq for m P Zě1.

(i) If CharD “ p ě 2, then F pmq “ 1 for p ∤ m, and F pmq “ 0 for p | m.

(ii) If CharD “ 0, then D is a division algebra over Qp3 of dimension d ă 8, and F pmq “ |m|dp.
Here p is a rational prime or 8.

3See the definition before Theorem 8.2.3
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Proof. By Lemma 2.5.6, either there exists some λ ą 0 such that F pmq “ mλ for m ě 1, or F ď 1.
Assume F ď 1. Then pm ¨ 1Dqmě1 Ď B1, and by compactness of B1 this sequence has a limit point
a P B1. By Corollary 2.5.2.1.(i) there are infinitely many m P N such that modDpm ¨ 1D ´ aq ď ε

(for small ε ą 0). In particular, we have modDpm ¨ 1D ´ m1 ¨ 1Dq ď ε for m ‰ m1 so that F pnq ă 1

for some n P Zě1.
Let p “ mintn P Zě1 | F pnq ă 1u ą 1. Since F pnmq “ F pnqF pmq, p must be a prime. For

n P Zě1, we have F pnpq ă 1, so that F p1`npq “ 1 by Theorem 2.5.5 and Lemma 2.5.7. If pm, pq “ 1,
then mp´1 ” 1 pmod pq, so F pmp´1q “ 1, or F pmq “ 1. If CharD “ p1 ě 2, then F pp1q “ 0 so
that p “ p1 by minimality. This proves (i). Assume CharD “ 0. Then F ppq ą 0, and if we put
F ppq “ p´c for some c ą 0, then for m “ pnm1 ě 1 with pm1, pq “ 1, we have

F pmq “ F ppqnF pm1q “ p´nc “ |p|cp “ |m|cp.

In sum, we see if CharD “ 0, then there exists p ď 8 and λ ą 0 such that F “ | ¨ |λp . Let us
identity Q as a subfield of D via the map r ÞÑ r ¨ 1D. It follows that F is the function | ¨ |λp on Q.
By Corollary 2.5.2.1.(i), the subspace topology on Q is given by the metric px, yq ÞÑ |x´ y|p, so the
closure of Q in D is isomorphic to Qp. Now regard D as a topological (left) vector space over Qp.
By Corollary 2.5.3.1, dimQp

D “ d ă 8 and modDpaq “ modQp
paqd. The proof is complete once we

notice that modQp
“ | ¨ |p.

Definition. Let D be a non-discrete locally compact division ring.

(i) We say D is of type p if p is a rational prime and modDpp ¨ 1Dq ă 1.

(ii) We say D is of real type if D is a finite dimensional real division algebra.

If D is of type p, by the theorem we see F ď 1, so the image modDpDˆq is discrete by Theorem
2.5.5. This shows D cannot be connected.

2.6 Convolution
We do not require an algebra to be unital or commutative.

Definition. Let G be an LCH group. For two measurable f, g : G Ñ C define the convolution
product as

f ˚ gpxq :“

ż

G

fpyqgpy´1xqdy

whenever the integral exists.

Theorem 2.6.1. Let f, g P L1pGq. Then

(i) The integral f ˚ g exists almost everywhere in x and defines a function in L1pGq.

(ii) The L1-norm satisfies ∥f ˚ g∥1 ď ∥f∥1 ∥g∥1.

The convolution product endows L1pGq with the structure of an algebra.

Proof. Note that f, g are measurable in the sense that the preimages of Borel sets under f, g are in
the completed Borel σ-algebra. Define the function

ψ : GˆG C

py, xq fpyqgpy´1xq
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We can write ψ as
ψ : GˆG GˆG C ˆ C C

py, xq py, y´1xq

α fˆg µ

where µ : C ˆ C Ñ C is multiplication. Since f ˆ g and µ are measurable, to show ψ is measurable
it suffices to show that α is. Since α is continuous, it is Borel-measurable, and we must show the
preimage under α of a null set is again null (completeness). But this follows from the formula, valid
for each ϕ P CcpGˆGq.

ż

GˆG

ϕpy, xqdxb dy
Fubini

“

ż

G

ż

G

ϕpy, xqdxdy
inv
“

ż

G

ż

G

ϕpy, y´1xqdxdy

Let Spfq and Spgq be the supports and f and g, respectively. By Corollary 2.2.2.1.4, Spfq and
Spgq are σ-compact. The support of ψ is contained in Spfq ˆ SpfqSpgq, so it’s also σ-compact.
Hence by Fubini’s Theorem,

∥f ˚ g∥1 ď

ż

G

ż

G

|fpyqgpy´1xq|dydx “

ż

G

ż

G

|fpyqgpy´1xq|dxdy

“

ż

G

ż

G

|fpyqgpxq|dxdy

“ ∥f∥1 ∥g∥1 ă 8

and Fubini’s theorem again shows that ψp¨, xq is integrable a.e. in x and that f ˚ g P L1pGq.
It remains to show the associativity and bilinearity. The bilinearity is clear. For associativity,

let f, g, h P L1pGq. Then

pf ˚ gq ˚ hpxq “

ż

G

pf ˚ gqpyqhpy´1xqdy “

ż

G

ż

G

fpzqgpz´1yqhpy´1xqdzdy

“

ż

G

ż

G

fpzqgpz´1yqhpy´1xqdydz “

ż

G

ż

G

fpzqgpyqhpy´1z´1xqdydz

“

ż

G

fpzqpg ˚ hqpz´1xqdz “ f ˚ pg ˚ hqpxq

Using Fubini’s Theorem to compute the integral is valid, which is justified in the preceding para-
graphs.

Proposition 2.6.2 (Young’s convolution inequality). Let G be unimodular. Let 1 ď p, q, r ď 8

with 1
p` 1

q “ 1
r`1. Then for f P LppGq and g P LqpGq, one has f˚g P LrpGq and ∥f ˚ g∥r ď ∥f∥p ∥g∥q

Proof.

|f ˚ gpxq| ď

ż

G

|fpyqgpy´1xq|dy

“

ż

G

|fpyq|1´
p
r |gpy´1xq|1´

q
r |fpyq

p
r gpy´1xq

q
r |dy

“

ż

G

p|fpyq|pq
r´p
rp p|gpy´1xq|qq

r´q
rq |fpyqpgpy´1xqq|

1
r dy

We invoke Hölder’s inequality. One checks that r ě p, q and

r ´ p

rp
`
r ´ q

rq
`

1

r
“

1

r

ˆ

r

p
´ 1 `

r

q
´ 1 ` 1

˙

“
1

r
p1 ` r ´ 1q “ 1
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Hence

|f ˚ gpxq| ď

ˆ
ż

G

|fpyq|pdy

˙

r´p
rp

ˆ
ż

G

|gpy´1xq|qdy

˙

r´q
rq

ˆ
ż

G

|fpyqpgpy´1xqq|dy

˙
1
r

Taking r-power both sides, we see

|f ˚ gpxq|r ď ∥f∥r´p
p ∥g∥r´q

q

ż

G

|fpyqpgpy´1xqq|dy

Note that fp, gq P L1pGq, so by Theorem 2.6.1 the right hand side is integrable, so f ˚ g P LrpGq

and
∥f ˚ g∥rr ď ∥f∥r´p

p ∥g∥r´q
q ∥f∥pp ∥g∥

q
p “ ∥f∥rp ∥g∥

r
q

and thus ∥f ˚ g∥r ď ∥f∥p ∥g∥q.

Lemma 2.6.3. For f, g P L1pGq and y P G, one has

Rypf ˚ gq “ f ˚ pRygq Lypf ˚ gq “ pLyfq ˚ g

Proof.

Rypf ˚ gqpxq “ pf ˚ gqpxyq “

ż

G

fpzqgpz´1xyqdz “

ż

G

fpzqRygpz´1xqdx “ f ˚ pRygqpxq

Likewise for L.

Theorem 2.6.4. The algebra L1pGq is commutative if and only if G is abelian.

Proof. Suppose G is abelian. Then

pf ˚ gqpxq “

ż

G

fpyqgpy´1xqdy
inv
“

ż

G

fpxyqgpy´1qdy
2.3.1.4

“

ż

G

∆Gpy´1qfpxy´1qgpyqdy “ pg ˚ fqpxq

for ∆G ” 1. Suppose L1pGq is commutative and let f, g P L1pGq. For x P G we have

0 “ f ˚ gpxq ´ g ˚ fpxq “

ż

G

`

fpyqgpy´1xq ´ gpyqfpy´1xq
˘

dy

inv
“

ż

G

`

fpxyqgpy´1q ´ gpyqfpy´1xq
˘

dy

2.3.1.4
“

ż

G

gpyq
`

∆Gpy´1qfpxy´1q ´ fpy´1xq
˘

dy

This holds for all g P L1pGq, so that ∆Gpy´1qfpxy´1q´fpy´1xq “ 0 for all f P CcpGq. Taking x “ 1

gives ∆G ” 1, and thus G is unimodular and fpxy´1q “ fpy´1xq for every f P CcpGq, x, y P G.
This shows G is abelian. (If xy´1 ‰ y´1x for some x, y, apply Urysohn’s Lemma to find an f that
make the equality fails.)

Using convolution we may obtain an enhanced version of Lemma 2.2.3.

Lemma 2.6.5 (Steinhaus). Let G be an LCH group and X,Y Ď G be two positive finite measurable
sets. Then XY “ txy | x P X, y P Y u contains an open set in G.

Proof. By weakly inner regularity we can assume X,Y are compact. By Fubini,
ż

G

1X ˚ 1Y pgqdg “

ż

G

ˆ
ż

G

1Xphq1Y ph´1gqdh

˙

dg “ volpX, dgq volpY, dgq ‰ 0.
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Also,

1X ˚ 1Y pgq “

ż

G

1Xphq1Y ph´1gqdh “ volpX X gY ´1q,

so 0 ă volpX X gY ´1q for some g P G. Since

pX X gY ´1qpX X gY ´1q´1 Ď XY g

and the former set is a unit-neighborhood by Lemma 2.2.3, it follows that XY contains a neighbor-
hood of g.

2.6.1 Dirac net
Definition. A Dirac function is a function ϕ P CcpGq such that

(i) ϕ ě 0,

(ii)
ż

G

ϕpxqdx “ 1 and

(iii) ϕpx´1q “ ϕpxq for all x P G.

A Dirac family is a family pϕU qU of Dirac functions indexed by the set U of all unit-neighborhoods
U such that suppϕU Ď U .

Lemma 2.6.6.

1. The convolution product of two Dirac functions is a Dirac function.

2. To every unit-neighborhood U there exists a Dirac function ϕU such that ϕU and ϕU ˚ϕU have
support inside U .

Proof.

1. Let ϕ, ψ be Dirac functions. That ϕ ˚ ψ ě 0 is clear.
ż

G

ϕ˚ψpxqdx “

ż

G

ż

G

ϕpyqψpy´1xqdydx
Fubini

“

ż

G

ż

G

ϕpyqψpy´1xqdxdy
inv
“

ˆ
ż

G

ϕpyqdy

˙ˆ
ż

G

ψpxqdx

˙

“ 1

ϕ ˚ ψpx´1q “

ż

G

ϕpyqψpy´1x´1qdy
inv
“

ż

G

ϕpxyqψpy´1qdy “

ż

G

ψpy´1x´1qψpyqdy “ ϕ ˚ ψpxq

2. Let U be a given unit-neighborhood and let W Ď U be any symmetric unit-neighborhood such
that W 2 Ď U . By Urysohn’s Lemma, there is an h P CcpGq with 0 ‰ h ě 0 and suppphq Ď W .
Set ϕU pxq “ hpxq ` hpx´1q and normalize this function so that ϕU has integral 1. Then
supppϕU ˚ ϕU q Ď supppϕU q2 Ď W 2 Ď U .

2.6.2 Regular representations
Lemma 2.6.7. For given 1 ď p ă 8 and g P LppGq, the maps y ÞÑ Lyg and y ÞÑ Ryg are continuous
maps from G to LppGq. Moreover, y ÞÑ Lyg is uniformly continuous, and if G is unimodular, so is
y ÞÑ Ryg.
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Proof. By the invariance of Haar integrals,

∥Lyg ´ Lxg∥p “
∥∥Lx´1yg ´ g

∥∥
p

so the uniform continuity will follow once the continuity at e is established. Likewise,

∥Ryg ´Rxg∥p “ ∆px´1q1{p
∥∥Rx´1yg ´ g

∥∥
p

so the last assertion will follows for the same reason.
Now we prove the continuity at the unit element e. First consider the case g P CcpGq. Choose

ε ą 0 and put K “ supppgq; then supppLygq “ yK. Let U0 be a compact symmetric unit-
neighborhood. Then for y P U0, one has supppLygq Ď U0K. By uniform continuity there exists a
unit-neighborhood U Ď U0 such that for y P U , ∥Lyg ´ g∥G ă

ε

volpU0Kq
1
p

. Then for y P U ,

∥Lyg ´ g∥p “

ˆ
ż

G

|gpy´1xq ´ gpxq|pdx

˙
1
p

ă ε

For general g, pick f P CcpGq with ∥f ´ g∥p ă ε{3. Choose a unit-neighborhood U with ∥f ´ Lyf∥p ă

ε{3 for every y P U . Then for y P U ,

∥g ´ Lyg∥p ď ∥g ´ f∥p ` ∥f ´ Lyf∥p ` ∥Lyf ´ Lyg∥p ă
ε

3
`
ε

3
`
ε

3
“ ε

Note we use the fact ∥Lyf ´ Lyg∥p “ ∥f ´ g∥p. For case for the right translation is similar, except
in the last step we use ∥Ryf ´Ryg∥p “ ∆py´1q1{p ∥f ´ g∥p instead.

Corollary 2.6.7.1. Let 1 ď p, q ď 8 satisfy 1

p
`

1

q
“ 1. Then for f P LppGq and g P LqpGq, then

convolution f ˚ g P L1pGq is right uniformly continuous.

Proof. Say 1 ď q ă 8, and let x, y P G. By Hölder’s inequality

|f ˚ gpyxq ´ f ˚ gpyq| “

ˇ

ˇ

ˇ

ˇ

ż

G

fptqpgppyxq´1tq ´ gpy´1tqqdt

ˇ

ˇ

ˇ

ˇ

ď ∥f∥p ∥Lyxg ´ Lyg∥q “ ∥f∥p ∥Lxg ´ g∥q ,

Then f ˚ g is right uniformly continuous by Lemma 2.6.7.

Lemma 2.6.8. Let H ď G be a closed subgroup of an LCH group G such that G{H admits a
nonzero G-invariant Radon measure; fix such a measure. For given 1 ď p ă 8 and g P LppG{Hq,
the map y ÞÑ Lyg is a uniformly continuous map from G to LppG{Hq.

Proof. This is a generalization of Lemma 2.6.7, and their proofs are the same.

Lemma 2.6.9. Let ε ą 0 and 1 ď p ă 8. For every f P LppGq there exists a unit-neighborhood U

such that for every Dirac function ϕU with support in U one has

∥f ˚ ϕU ´ f∥p ă ε, ∥ϕU ˚ f ´ f∥p ă ε

For every f P CpGq and every compact K Ď G there exists a unit-neighborhood U such that for
every Dirac function ϕU with support in U one has

∥f ˚ ϕU ´ f∥K ă ε, ∥ϕU ˚ f ´ f∥K ă ε

where ∥g∥K “ sup
xPK

|gpxq|.

In other words this means that the net pϕU ˚ fqU indexed by the set of all unit-neighborhoods,
converges to f in the Lp sense if f P LppGq, and compactly if f P CpGq.
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Proof. Since p ě 1, the function x ÞÑ xp is convex. Now by Jensen’s inequality (applied to the
measure ϕU pyqdy), one has

∥f ˚ ϕU ´ f∥pp “

ż

G

ˇ

ˇ

ˇ

ˇ

ż

G

fpyqϕU py´1xqdy ´ fpxq

ˇ

ˇ

ˇ

ˇ

p

dx “

ż

G

ˇ

ˇ

ˇ

ˇ

ż

G

pfpxyq ´ fpxqqϕU pyqdy

ˇ

ˇ

ˇ

ˇ

p

dx

ď

ż

G

ˆ
ż

G

|pfpxyq ´ fpxqq|ϕU pyqdy

˙p

dx

ď

ż

G

ż

G

|fpxyq ´ fpxq|pϕU pyqdydx “

ż

G

∥Ryf ´ f∥pp ϕU pyqdy

Then by Lemma 2.6.7, it suffices to pick U small. The other side is addressed similarly.
For the second, let f P CpGq and K Ď G compact. Since f |K is uniformly continuous, for

every ε ą 0 there exists a unit-neighborhood U such that for all x, y P K with y´1x P U one has
|fpyq ´ fpxq| ă ε. Now let ϕU be a Dirac function with support in U . Then

|f ˚ ϕU pxq ´ fpxq| ď

ż

G

|fpxyq ´ fpxq|ϕU pyqdy “

ż

G

|fpyq ´ fpxq|ϕU px´1yqdy ă ε
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Part I

Structure of locally compact
abelian groups
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Chapter 3

Banach algebras

3.1 Banach Algebras
Definition.

1. A Banach algebra is an algebra A over C together with a norm ∥¨∥ such that pA, ∥¨∥q is a
Banach space and that the norm is submultiplicative, i.e.

∥a ¨ b∥ ď ∥a∥ ∥b∥

holds for all a, b P A.

2. An algebra A is unital if the multiplication has an identity element, which we denote by 1A.

3. If A is a unital Banach algebra, denote by Aˆ the group of invertible elements in A.

• In particular, the inequality implies the multiplication on a Banach algebra A is continuous,
so that A is a topological ring.

• As usual, for a P A, r ą 0, we use Brpaq “ tb P A | ∥b´ a∥ ă ru to denote the open ball of
radius r centered at a.

Definition. Let A, B be Banach algebras.

1. A homomorphism of Banach algebras ϕ : A Ñ B is a continuous algebra homomorphism.

2. A topological isomorphism of Banach algebras is a homomorphism with continuous inverse.

3. An (isometric) isomorphism of Banach algebras is an topological isomorphism which is also
an isometry.

Example 3.1.1.

1. For a compact space X, the C-vector space CpXq :“ CpX,Rq of complex-valued continuous
functions is a commutative Banach algebra with the sup-norm ∥f∥X :“ sup

xPX
|fpxq|.

2. If G is an LCH group, then pL1pGq, ˚q with ∥¨∥1 is a Banach algebra, and L1pGq is commutative
iff G is abelian.
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3. Let V be a Banach space. For T P EndCpV q, define the operator norm by

∥T∥op :“ sup
v‰0

∥Tv∥
∥v∥

The operator T is bounded if ∥T∥op ă 8, which is equivalent to saying that T is continuous.
The set BpV q of all bounded operators on V is a Banach algebra with ∥¨∥op.

Lemma 3.1.2. Let A be a unital Banach algebra and write 1 “ 1A. Then ∥1∥ ě 1, and there exists
an equivalent norm ∥¨∥1 such that pA, ∥¨∥1

q is again a Banach algebra with ∥1∥1
“ 1.

Proof. Since ∥1∥ ‰ 0 and ∥1∥ ∥1∥ ě ∥1∥, ∥1∥ ě 1. For the second statement, define ∥¨∥1 by

∥a∥1
:“ sup

v‰0

∥av∥
∥v∥

Since ∥av∥ ď ∥a∥ ∥v∥, we have ∥a∥1
ď ∥a∥. Conversely,

∥a∥1
“ sup

v‰0

∥av∥
∥v∥

ě
∥a∥
∥1∥

This shows ∥¨∥ and ∥¨∥1 are equivalent. Trivially, ∥1∥1
“ 1.

With Lemma in mind, we always assume the identity of a unital Banach algebra has norm 1.

Proposition 3.1.3. Let G be an LCH group. The algebra L1pGq is unital if and only if G is
discrete.

Proof. If G is discrete, then every singleton has positive measure. The identity element of L1pGq

is 1teu, where e is the identity element of G. Conversely, assume L1pGq is unital; say ϕ P L1pGq

is the identity. Suppose G is not discrete. Then any unit-neighborhood U contains at least two
points. By Urysohn’s lemma there exists two Dirac functions ϕU and ψU with support in U such
that suppϕU X suppψU “ H.

• Indeed, let x ‰ y P U and neighborhood x P Ux, y P Uy such that Ux X Uy “ H and
U´1
x XUy “ H “ Ux XU´1

y . Use Urysohn’s lemma to find fx, fy P CcpGq with fx, fy ě 0 and
supp fx Ď Ux, supp fy Ď Uy. Define Fxpzq “ fxpzq ` fxpz´1q and Fypzq similarly. Then Fx

and Fy are positive symmetric. One can normalize them so that they have integral 1.

In particular, ∥ϕU ´ ψU∥1 “ 2 for every U . Now by Lemma 2.6.9 (or its proof) we can find U such
that ∥ϕU ˚ ϕ´ ϕ∥1 ă 1 and ∥ψU ˚ ϕ´ ϕ∥1 ă 1. Hence

2 “ ∥ϕU ´ ψU∥1 ď ∥ϕU ˚ ϕ´ ϕ∥1 ` ∥ψU ˚ ϕ´ ϕ∥1 ă 2

a contradiction. Hence G is discrete.

Lemma 3.1.4. Let A be a unital Banach algebra and let a P A with ∥a∥ ă 1. Then 1 ´ a P Aˆ

with inverse
p1 ´ aq´1 “

8
ÿ

n“0

an

The unit group Aˆ is open in A, and under the subspace topology, Aˆ is a topological group.
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Proof. Since ∥a∥ ă 1, the series
8
ř

n“0
an converges in A, and

p1 ´ aq

N
ÿ

n“0

an “ 1 ´ aN Ñ 1 as N Ñ 8

Hence
8
ř

n“0
an “ p1 ´ aq´1. For x P Aˆ and y P A with ∥y ´ x∥ ă

∥∥x´1
∥∥´1, we have

∥∥yx´1 ´ 1
∥∥ ď ∥y ´ x∥

∥∥x´1
∥∥ ă 1

so yx´1 P Aˆ, giving y P Aˆ. This shows Aˆ is open.
It remains to show that inversion is continuous in Aˆ. But for x, y P Aˆ,

x´1 ´ y´1 “ x´1py ´ xqy´1 “ x´1py ´ xqpy´1 ´ x´1q ` x´1py ´ xqx´1

Hence
p1 ´ x´1py ´ xqqpx´1 ´ y´1q “ x´1py ´ xqx´1

Fix x and let
∥∥x´1py ´ xq

∥∥ ă
1

2
so that 1 ´ x´1py ´ xq P Aˆ. Then x´1 ´ y´1 “

x´1py ´ xqx´1

1 ´ x´1py ´ xq
and thus ∥∥x´1 ´ y´1

∥∥ ∥∥x´1
∥∥2 ∥y ´ x∥

∥1 ´ x´1py ´ xq∥
ď 2

∥∥x´1
∥∥2 ∥y ´ x∥

Alternatively, for ∥a∥ ă 1, we compute

∥∥p1 ´ aq´1 ´ 1
∥∥ “

∥∥∥∥∥ 8
ÿ

n“1

an

∥∥∥∥∥ ď

8
ÿ

n“1

∥a∥n “
1

1 ´ ∥a∥
´ 1

so that a ÞÑ p1 ´ aq´1 at a “ 0. This implies the inversion a ÞÑ a´1 “ p1 ´ p1 ´ aqq´1 is continuous
on B1p1q, and hence on xB1p1q for all x P Aˆ.

3.1.1 Spectrum
Let A be a unital Banach algebra. For a P A we denote by

Respaq :“ tλ P C | λ1 ´ a P Aˆu

the resolvent set of a P A. This is an open set in C for λ ÞÑ λ1 ´ a is a continuous map and
Aˆ Ď A is open. Its complement

σApaq :“ C zRespaq

is called the spectrum of a, and it is a closed set.

Example 3.1.5.

(a) A “ MnpCq “ EndpCnq. Then the spectrum of M P A consists of the eigenvalues of M in C.

(b) Let X be a compact space and A “ CpXq. Then σpfq “ Im f “ fpXq for any f P A.

(c) For a unital Banach algebra A, we have σpabqzt0u “ σpbaqzt0u for every a, b P A. For if 1´ ab

is invertible with inverse c, then 1 ´ ba is invertible with inverse 1 ` bca:

p1 ´ baqp1 ` bcaq “ 1 ` bca´ ba´ babca “ 1 ` bpc´ 1 ´ abcqa “ 1 ` bpcp1 ´ abq ´ 1qa “ 1

and p1 ` bcaqp1 ´ baq “ 1 ´ ba` bca´ bcaba “ 1 ´ bp1 ´ cp1 ´ abqqa “ 1.
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Lemma 3.1.6. Let A be a unital Banach algebra. Then for every a P A we have σApaq Ď tz P C |

|z| ď ∥a∥u. In particular, σApaq is compact.

Proof. If |λ| ą ∥a∥, then
∥∥∥a
λ

∥∥∥ ă 1 so that λ1 ´ a is invertible.

Definition. Let D Ď
open

V and V be a Banach space. A map f : D Ñ V is holomorphic if for every
z P D the limit

f 1pzq :“ lim
hÑ0

fpz ` hq ´ fpzq

h

exists in V .

• If f is holomorphic and α : V Ñ C is continuous and C-linear, then α ˝ f : D Ñ C is
holomorphic in the usual sense.

• A holomorphic function is continuous.

Lemma 3.1.7. Let a P A. Then the map

f : Respaq Aˆ

λ pλ1 ´ aq´1

is holomorphic and vanishes at infinity.

Proof. For λ, ρ P respaq, we have

fpλq ´ fpρq “ pλ1 ´ aq´1ppρ1 ´ aq ´ pλ1 ´ aqqpρ1 ´ aq´1 “ pρ´ λqfpλqfpρq

Put λ “ ρ ` h with h P Cˆ; then 1

h
pfpρ` hq ´ fpρqq “ ´fpρ ` hqfpρq. Since f is continuous,

letting h Ñ 0 gives f 1pρq “ ´fpρq2. This shows f is holomorphic.
For the last assertion, if |λ| ą 2 ∥a∥, then

∥∥pλ1 ´ aq´1
∥∥ “ |λ´1|

∥∥p1 ´ λ´1aq´1
∥∥ ď |λ´1|

8
ÿ

n“0

∥∥λ´1a
∥∥n ď 2|λ|´1.

This implies
∥∥pλ1 ´ aq´1

∥∥ Ñ 0 as |λ| Ñ 8, so f vanishes at infinity.

Theorem 3.1.8. Let A be a unital Banach algebra, and let a P A. Then σApaq ‰ H.

Proof. Suppose otherwise; then a ‰ 0, Respaq “ C and the map f : λ ÞÑ pλ1 ´ aq´1 in the above
lemma is bounded and entire. Hence for all α P A_, the composition α ˝ f is bounded and entire,
so it follows by Liouville’s theorem that α ˝ f is constant. Since f vanishes at infinity, we deduce
that α ˝ f ” 0. By Hahn-Banach theorem, we see f ” 0, a contradiction.

Corollary 3.1.8.1 (Gelfand-Mazur). Let A be a unital Banach algebra that is also a division ring.
Then A “ C1.

Proof. For a P A, if a R C1, then σApaq is empty, which is absurd by Theorem. Hence a P C1.

Definition. For an element a of a unital Banach algebra A we define the spectral radius rpaq of a
by

rpaq :“ supt|λ| | λ P σApaqu ď ∥a∥

51



Theorem 3.1.9 (Spectral radius formula). Let A be a unital Banach algebra. Then

rpaq “ lim
nÑ8

∥an∥
1
n

Proof. If λ1 ´ a is not invertible, then neither is λn1 ´ an for each n P N. Hence λn P σpanq and
|λ| ď ∥an∥

1
n so that rpaq ď ∥an∥

1
n . For the converse, we show lim sup

nÑ8
∥an∥

1
n ď rpaq. Recall

pλ1 ´ aq´1 “ λ´1p1 ´ λ´1aq´1 “

8
ÿ

n“0

an

λn`1
(˛)

holds for all |λ| ą ∥a∥. From the Cauchy estimate in complex analysis (c.f. Corollary D.7.5.1)
we see expansion is in fact valid when |λ| ą rpaq (if |λ| ą rpaq, then pλ1 ´ aq´1 is defined). It
follows that lim sup

nÑ8
∥an∥

1
n ă |λ| (view p˛q as a power series in λ´1) for all |λ| ą rpaq, and hence

lim sup
nÑ8

∥an∥
1
n ď rpaq.

Lemma 3.1.10. Suppose B is a unital Banach algebra and A is a closed subalgebra with 1 P A.
Then

BσApaq Ď BσBpaq Ď σBpaq Ď σApaq

for all a P A.

Proof. The only nontrivial part is the first containment. We prove it by contradiction: suppose λ P

BσApaqzBσBpaq. Then λ P CzσBpaq, for int σBpaq Ď int σApaq is disjoint from BσApaq by definition.
In particular, λ1 ´ a is invertible in B. Now let pλnqn Ď CzσApaq be a sequence that converges to
λ. Then λn1 ´ a converges to λ1 ´ a, and by continuity of inverse we see pλn1 ´ aq´1 Ñ pλ1 ´ aq´1

in B; since A is closed, in fact pλ1 ´ aq´1 P A, or λ R σApaq a contradiction.

Example 3.1.11 (Disc-algebra). Let D Ď C be the open unit disc in C. The disc algebra A is by
definition the subalgebra of CpDq consisting of all functions that are holomorphic on D. A is closed
since a uniform limit of holomorphic functions is again holomorphic.

Let T “ BD be the circle group. By maximum principle, the restriction A Ñ CpTq is an
isometry so that A can be viewed as a Banach subalgebra of CpTq. We know σApfq “ fpDq and
σCpTqpfq “ fpTq for all f P A.

Proposition 3.1.12 (Spectral mapping theorem for polynomials). Let A is a unital algebra and
a P A with σApaq ‰ H. If p P Crzs, then σApppaqq “ ppσApaqq.

Proof. If p is a constant, this is clear. Suppose otherwise. For µ P C, we write

ppzq ´ µ “ λ0pλ1 ´ zq ¨ ¨ ¨ pλn ´ zq

for some n P N, λi P C with λ0 ‰ 0.
If µ R σApppaqq, then ppaq ´ µ1A is invertible, and hence so is each λi1A ´ a. The converse is

true obviously. Hence we have µ P σApppaqq if and only if λPσApaq for some 1 ď i ď n, and thus
σApppaqq Ď ppσApaq. For the reversed inclusion, if λ P σApaq, then ppaq ´ ppλq “ pλ1A ´ aqb for
some b P A, and hence ppλq P σApppaqq.
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3.1.2 Unitization
Definition. For any Banach algebra A, the unitization of A is the Banach algebra

Ae :“ A ˆ C

with obvious vector space structure, multiplication defined by pa, λqpb, µq “ pab ` µa ` λb, λµq and
norm ∥pa, λq∥ :“ ∥a∥ ` |λ|.

• We view A as A ˆ t0u Ď Ae, and this is an embedding of Banach algebras.

• If A has unit 1, then we have an isomorphism of algebras

Ae A ‘ C

pa, λq pa` λ1, λq

where the multiplication on A ‘ C is defined componentwise.

• The unitization defines a functor from the category of Banach algebras to the category of unital
Banach algebras: for a homomorphism ϕ : A Ñ B, define ϕe : Ae Ñ Be by ϕepa, λq “ pϕpaq, λq.

If A is a Banach space without unit, for each a P A we define the spectrum of a to be

σApaq :“ σAepaq

where we use the identification of A mentioned above.

Definition. Let X be an LCH space.

1. A function f : X Ñ C is said to vanish at infinity if for every ε ą 0 there exists a compact
set K Ď X such that |fpxq| ă ε for all x P XzK.

2. Denote by C0pXq the subalgebra of CpXq consisting of all continuous functions on X that
vanish at infinity.

Then C0pXq is a Banach algebra with the sup-norm ∥f∥X “ sup
xPX

|fpxq|. Note that C0pXq is unital

if and only if X is compact, and in this case C0pXq “ CpXq.

Proof. We must show C0pXq is complete with respect to ∥¨∥X . Let pfnqn be a Cauchy sequence in
C0pXq. About each x P X pick a compact neighborhood Kx. Then pfn|Kxqn is uniformly Cauchy, so
that we can define fpxq :“ lim

nÑ8
fnpxq; it is clear f is well-defined and is continuous. Now fix ε ą 0

and take N P N such that ∥fn ´ fN∥X ă ε{3 whenever n ě N . Let K Ď
cpt
X such that |fN pxq| ă ε{3

for all x P XzK. For x P X ´ K there exists m ě N such that |fpxq ´ fmpxq| ă ε{3, and thus
|fpxq| ď |fpxq ´ fmpxq| ` |fmpxq ´ fN pxq| ` |fN pxq| ă ε. This proves f vanishes at infinity.

Example 3.1.13. Let X be an LCH space and put X8 “ X Y t8u to be the one point compactifi-
cation of X. Every open neighborhood of 8 in X8 is of the form XzK with K Ď

cpt
X. With this in

mind, we can identify C0pXq as a subspace of CpX8q consisting of all continuous functions f such
that fp8q “ 0. This justifies the notion “vanishing at infinity”.

Lemma 3.1.14. There is a canonical topological isomorphism of Banach algebras CpX8q – C0pXqe.
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Proof. Define
Φ : CpX8q C0pXqe

f pf ´ fp8q, fp8qq

It is clear that Φ is bijective.

• Homomorphism:

ΦpfqΦpgq “ ppf ´ fp8qqpg ´ gp8qq ` gp8qpf ´ fp8qq ` fp8qpg ´ gp8qq, fp8qgp8qq

“ pfg ´ fp8qgp8q, fp8qgp8qq “ Φpfgq

• Continuity:

∥Φpfq ´ Φpgq∥ “ ∥f ´ fp8q ´ g ` gp8q∥X ` |fp8q ´ gp8q| ď 3 ∥f ´ g∥X8

• Continuous inverse: Let pf, λq, pg, ρq P C0pXqe.

∥pf ` λq ´ pg ` ρq∥X8 ď ∥f ´ g∥X8 ` |λ´ ρ| “ ∥f ´ g∥X ` |λ´ ρ| “ ∥pf, λq ´ pg ´ ρq∥

3.1.3 Gelfand transform
Definition. Let A be a commutative Banach algebra. The structure space ∆A is the set of all
nonzero continuous algebra homomorphisms A Ñ C.

• If A is unital, then for each m P ∆A, mp1q “ mp1q2 and the assumption m ‰ 0 imply mp1q “ 1.

• For each m P ∆A, there exists precisely one extension me : Ae Ñ C of m defined by

mepa, λq “ mpaq ` λ

Indeed, we must have mepa, 0q “ mpaq and mep1Aeq “ mep0, 1q “ 1.

• If m1 P ∆Ae is not extended from A, then it must vanish on A by the uniqueness of extension.
Hence we must have m1 “ m8 is the augmentation functional, where m8 P ∆Ae is defined
by

m8pa, λq “ λ

In other words, ∆Ae “ tme | m P ∆Au Y tm8u.

Lemma 3.1.15. Let A be a commutative Banach algebra and m P ∆A Ď A_. Then ∥m∥op ď 1. If
A is unital, ∥m∥op “ 1.

Proof. Suppose A is unital. Then

∥m∥ “ sup
∥a∥“1

|mpaq| ě |mp1q| “ 1

On the other hands, mpa´mpaq1q “ mpaq ´mpaq “ 0 so mpaq P σApaq; this gives |mpaq| ď ∥a∥, so
that ∥m∥ ď 1. If A is not unital, then we still have

1 “ ∥me∥ “ sup
∥pa,λq∥“1

|mpaq ` λ| ě sup
∥pa,λq∥“1,λ“0

|mpaq ` λ| “ ∥m∥

or just 1 “ ∥me∥ ě ∥me|A∥.
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Definition. For each normed space V , the weak-˚-topology on V _ is the initial topology induced
by the set of functions tδv | v P V u, where δv : V _ Ñ C is the evaluation at v P V , namely

δvpαq :“ αpvq P C

• The weak-˚-topology is the same as the topology of pointwise convergence, i.e. the subspace
topology given by the product space CV “

ś

vPV

C.

Proof. By definition a subbasis for the weak-˚-topology consists of subsets of the form

Lpv, Uq :“ tα P V _ | αpvq P Uu

where U Ď
open

C and v P V . Then by definition
n
Ş

i“1

Lpvi, Uiq is the basis for the product space

CV .

For any commutative Banach algebra A, we equip ∆A with the subspace topology induced from the
weak-˚ topology on the dual space A_.

Theorem 3.1.16 (Banach-Alaoglu). Let V be a complex normed space. Then the closed unit ball

B
1
:“ tf P V _ | ∥f∥ ď 1u Ď V _

is a compact Hausdorff space under the weak-˚ topology.

Proof. Since CV is Hausdorff, so is B1. For the compactness, consider the product K :“
ś

vPV

B1p0q Ď

CV equipped with subspace topology; this is compact by Tychonov’s theorem. Since B1
Ď K and

B
1

“ V _ XK, it suffices to show V _ is closed in CV .

• Take pxvqv P CV such that xv`w ‰ xv ` xw for some v, w P V . Then take respective
neighborhoods Uv, Uw, Uv`w of xv, xw, xv`w such that pUv ` Uwq X Uv`w “ H. Then
Uv ˆ Uw ˆ Uv`w ˆ

ś

C is disjoint from V _.

• If pxvqv P CV is such that λxv ‰ xλv for some λ P C and v P V , then take U, V such that
λU X V “ H with xv P V, xλv P U . Then U ˆ V ˆ

ś

C again disjoint from V _.

Lemma 3.1.17. Let A be a commutative Banach algebra. Then the inclusion

Φ : ∆A ∆Ae

m me

is a homeomorphism onto its image.

Proof. Φ is clearly injective for me|A “ m. To show it is a topological embedding, we have the
following equivalence

mj Ñ m in ∆A ô mjpaq Ñ mpaq in C for each a P A

ô mjpaq ` λ Ñ mpaq ` λ in C for each a P A

ô me
jpaq Ñ mepaq in C for each a P Ae

ô me
j Ñ me in ∆e

A
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Definition. For each a P A define

â : ∆A C

m âpmq :“ mpaq

• â is continuous. Indeed, for each open U in C,

â´1pUq “ tm P ∆A | mpaq P Uu “

´

U ˆ
ź

C
¯

X CA Ď
open

CA

The association A Q a ÞÑ â P Cp∆Aq is an algebra homomorphism, called the Gelfand transform.

Theorem 3.1.18. Let A be a commutative Banach algebra.

1. ∆A is an LCH space.

2. If A is unital, ∆A is compact.

3. For every a P A, â P C0p∆Aq. The Gelfand transform

A C0p∆Aq

a â

is an algebra homomorphism.

4. For every a P A one has ∥â∥∆A
ď ∥a∥ so that the Gelfand transform is continuous.

Proof. Note that by a previous lemma, we have the containment ∆A Ď B
1

Ď A_ where B1 is defined
in the statement of Banach-Alaoglu. This means the closure ∆A is thus compact in A_. We contend
that

• ∆A “ ∆A if A is unital. (This proves 2.)

• ∆A “ ∆A or ∆A Y t0u if A is not unital, where 0 is the zero map. (This proves 1.)

We first show that every element of ∆A is an algebra homomorphism. The set of continuous algebra
homomorphism is described by

S “ tpxaqa P A_ | xab “ xaxb for all a, b P Au

Suppose pxaqa P A_ is such that xab ‰ xaxb for some a, b P A. Then take respective neighborhoods
Ua, Ub, Uab of xa, xb, xab such that the product UaUb is disjoint from Uab. Then pUa ˆ Ub ˆ Uab ˆ
ś

Cq X A_ is a neighborhood of pxaqa that does not meet S. Hence S is closed, which implies that
∆A Ď S. Note that by definition S z∆A Ď t0u. It shows our contention except the case A is unital.
In the unital case, we have ∆A Ď pt1u ˆ

ś

Cq X S; the latter is a closed set in S so that 0 R ∆A.
Hence ∆A “ S “ ∆A.

Now we prove 3. If ∆A is compact, the result ensues automatically. Otherwise, what we have
proved above shows ∆A “ ∆A Y t0u coincides with the one point compactification of ∆A. Taking
a small neighborhood of 0 in ∆A not touching 1 proves the vanishing at infinity of â. Finally for 4.,
we have

∥â∥ “ sup
mP∆A

|âpmq| “ sup
mP∆A

|mpaq| ď ∥m∥ ∥a∥ “ ∥a∥
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Example 3.1.19. Consider the case A “ C0pXq for an LCH space X. For each x P X let mx :

A Ñ C be the evaluation map at x. Then x ÞÑ mx is a homeomorphism from X to the structure
space ∆A. If X is not compact, consider the diagram

X8 ∆CpX8q

X ∆C0pXq

where the vertical maps are canonical inclusions (Lemma 3.1.17 and 3.1.14) and the horizontal maps
are x ÞÑ mx. If the case when the space is compact is shown, then the upper horizontal map is a
homeomorphism, implying that the lower horizontal one is also a homeomorphism. Hence it suffices
to deal with compact X.

Since both X and ∆A are compact Hausdorff, it suffices to show x ÞÑ mx is a continuous bijection.
The continuity is clear. The injectivity follows from Urysohn’s lemma. For the surjectivity, let
m P ∆A. Consider the vanishing set

V “ tx P X | fpxq “ 0 for all f P kermu

If V is not empty, take x P V . Then kerm “ kermx. For each f P ∆A, mxpf ´ fpxq1q “ 0 so that
0 “ mpf ´ fpxq1q, namely, mpfq “ mpfpxq1q “ mxpfq, showing the surjectivity. If V is empty,
then for each x P X there exists fx P kerm such that fxpxq ‰ 0, and by continuity fxpyq ‰ 0

for y P Ux and some neighborhood Ux of x. By compactness we can choose x1, . . . , xn such that
Ux1

Y¨ ¨ ¨YUxn
“ X. Then f2x1

`¨ ¨ ¨`f2xn
vanishes nowhere on X, so it is unit in CpXq, contradicting

to f2x1
` ¨ ¨ ¨ ` f2xn

P kerm.

Lemma 3.1.20. Suppose that ϕ : A Ñ B is an algebra homomorphism between commutative
Banach algebras such that m ˝ ϕ ‰ 0 for every m P ∆B. Then the pullback map

ϕ˚ : ∆B ∆A

m m ˝ ϕ

is continuous. Moreover, it is a homeomorphism if it is bijective.

Proof. Let U1, . . . , Un be open sets in C. We must show that for any a1, . . . , an P A, the set

S :“ tm P ∆B | pm ˝ ϕqpaiq P Ui for i “ 1, . . . , nu

is open in ∆B. Indeed, if we put bi “ ϕpaiq, then tm P ∆B | mpbiq P Ui for i “ 1, . . . , nu is contained
in S, and the former set is open in ∆B by the very definition. Now consider the diagram

∆Be ∆Ae

∆B ∆A

ϕe˚

ϕ˚

where ϕe : Ae Ñ Be is the map defined by ϕepa, λq “ pϕpaq, λq. ϕe˚ is well-defined for ϕ˚ is. We
have

pϕ˚pmqqepa, λq “ ϕ˚pmqpaq ` λ “ mpϕpaqq ` λ “ mepϕpaq, λq “ mepϕepa, λqq “ ϕe˚pmeqpa, λq

so the diagram commutes. If ϕ˚ is bijective, so is ϕe˚. Since ∆e and ∆Ae are compact, ϕe˚ is a
homeomorphism. By restricting to ∆B we see ϕ˚ is also a homeomorphism if ϕ is bijective.
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3.1.4 Maximal Ideals
Definition. Let A be an algebra. An linear subspace I of A is called an ideal if I is stable under
the action of A on two sides.

1. I is proper if I Ĺ A.

2. I is maximal if I is proper and is maximal among all proper ideal with respect to the inclusion.

• If A is unital, then any proper ideal contains no unit in A.

• In the case A is a unital Banach algebra, since Aˆ is open, the closure of any proper ideal is
still a proper ideal. In particular, a maximal ideal is closed.

• By a Zorn’s lemma argument we see if A is a unital Banach algebra, then every proper ideal
is contained in a maximal ideal.

• Let A be as above. If A is commutative, then the set of non unit elements forms a proper
ideal.

Definition. Let A be a Banach algebra and I�A a closed ideal. The quotient algebra A{I equipped
with the quotient norm defined in Lemma E.1.9 is again a Banach algebra.

Proof. We still need to show ∥ab` I∥ ď ∥a` I∥ ∥b` I∥ for a, b P A.

∥a` I∥ ∥b` I∥ ě inf
x,yPI

∥pa` xqpb` yq∥ “ inf
x,yPI

∥ab` pay ` xb` xyq∥ ě inf
zPI

∥ab` z∥ “ ∥ab` I∥

Theorem 3.1.21. Let A be a commutative unital Banach algebra.

1. The map m ÞÑ kerm is a bijection between ∆A and the maximal spectrum of A.

2. a P Aˆ if and only if mpaq ‰ 0 for every m P ∆A.

3. For a P A one has σpaq “ Im â.

Proof. We first derive 2 and 3 from 1. The only if part of 2. is obvious. Conversely, if a is not
invertible, then it is contained in some maximal ideal of A, and by 1. this means mpaq “ 0 for some
m P ∆A. For 3. we have the following equivalences

λ P σpaq ô a´ λ1 R Aˆ

ô mpa´ λ1q “ 0 for some m P ∆A

ô mpaq “ λ for some m P ∆A

ô λ P Im â

It remains to show 1. Suppose kerm “ kern for somem,n P ∆A. Then for each a P A, mpa´mpaqq “

0 “ npa´mpaqq, i.e., mpaq “ npaq. Hence m “ n. Now given an maximal ideal m of A. Then A{m

is a unital Banach algebra that is also a field. By Gelfand-Mazur this implies A{m – C. This gives
a nontrivial algebra homomorphism m : A Ñ A{m – C with kernel m.

Corollary 3.1.21.1. Let A be a commutative non-unital Banach algebra. Then for all a P A,
σpaq “ Im âY t0u.
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Proof. By Theorem, σpaq “ Im zpa, 0q, where pa, 0q P Ae. Recall that ∆Ae “ tme |P Au Y tm8u.
Hence

Im zpa, 0q “ tmepa, 0q | m P Au Y tm8pa, 0qu “ Im âY t0u

3.2 The Gelfand-Naimark Theorem

3.2.1 C˚-algebra
Definition. Let A be an algebra over C.

1. An involution ˚ : A Ñ A is an abelian group homomorphism such that for each λ P C and
a, b P A

• pλaq˚ “ λa˚.
• pabq˚ “ b˚a˚.
• pa˚q˚ “ a.

2. A is called a Banach ˚-algebra if it is a Banach algebra equipped with an involution ˚ such
that ∥a˚∥ “ ∥a∥ for each a P A.

3. A Banach ˚-algebra A is called a C˚-algebra if ∥a˚a∥ “ ∥a∥2 for each a P A.

4. An element a of a Banach ˚-algebra is called self-adjoint if a “ a˚.

Example 3.2.1.

1. Let H be a Hilbert space and BpHq the Banach algebra of all bounded linear operators on H.
Then the map T ÞÑ T˚ is an involution, where T˚ is the adjoint of T . BpHq is a C˚-algebra

Proof. For each v, w P H one has xTv,wy “ xv, T˚wy. For each v P V by Cauchy-Schwarz

∥Tv∥2 “ xT˚Tv, vy ď ∥T˚Tv∥ ∥v∥

so that ∥Tv∥2

∥v∥
ď

∥T˚Tv∥
∥v∥

. Hence ∥T∥2 ď ∥T˚T∥ ď ∥T˚∥ ∥T∥, and thus ∥T∥ ď ∥T˚∥. By

symmetry one has the equality, which forces ∥T∥2 “ ∥T˚T∥.

2. Let X be an LCH space. Then C0pXq is a C˚-algebra where the involution is defined by the
complex conjugation.

3. The disc algebra A (in Example 3.1.11) with involution defined by f˚pzq :“ fpzq is a Banach
˚-algebra but not a C˚-algebra.

Proof. It is clear it is an Banach ˚-algebra. Let f P A.

∥f˚f∥ “ sup
zPD

|fpzqfpzq| “ sup
zPD

|fpzqfpzq|

Consider the function fpzq “ eiz. Then

sup
zPD

|fpzqfpzq| “ sup
zPD

|eipz`zq| “ 1

On the other hand ∥f∥2 “ sup |eiz|2 “ sup |e´ Impzq| “ e2.
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Proposition 3.2.2. Let G be an LCH group. The Banach algebra L1pGq with the involution

f˚pxq :“ ∆Gpx´1qfpx´1q

is a Banach ˚-algebra but not a C˚-algebra unless G is trivial, in which case L1pGq “ C.

Proof.
pf˚q˚pxq “ ∆Gpx´1qf˚px´1q “ ∆Gpx´1q∆Gpxqfpxq “ fpxq

so it is an involution (the other conditions are obvious). Also

∥f˚∥1 “

ż

G

|∆Gpx´1qfpx´1q|dx
2.3.1.4

“

ż

G

|fpxq|dx “ ∥f∥1

For the last assertion, we need a lemma.

Lemma 3.2.3.

(a) Let X be an LCH space and let x1, . . . , xn P X be distinct points. Let λ1, . . . , λn P C be any
given numbers. Then there exists f P CcpGq with fpxjq “ λj for each j.

(b) Let G be an LCH group and g P CcpGq be with the property
ˇ

ˇ

ˇ

ˇ

ż

G

gpyqdy

ˇ

ˇ

ˇ

ˇ

“

ż

G

|gpyq|dy. Then

there exists θ P T such that gpxq P θr0,8q for every x P G.

Proof.

(a) Let U1, . . . , Un be pairwise disjoint open neighborhoods of x1, . . . , xn respective. By Urysohn’s
lemma we can find fi P CcpGq with supp fi Ď Ui and fipxiq “ 1. Take fpxq “

n
ř

i“1

λifipxq.

(b) If
ż

G

gpyqdy “ 0, then
ż

G

|gpyq|dy “ 0 so that g ” 0. Let us suppose
ż

G

gpyqdy ‰ 0. Replacing

g by λg for some λ P T we may assume
ż

G

gpyqdy ą 0. Then

0 “

ż

G

|gpyq|dy ´

ż

G

gpyqdy “

ż

G

|gpyq|dy ´ Re

ˆ
ż

G

gpyqdy

˙

“

ż

G

|gpyq|dy ´

ż

G

Repgpyqqdy

“

ż

G

p|gpyq| ´ Repgpyqqqdy

so that |gpyq| “ Repgpyqq for each y P G. This means gpyq ě 0.

Return to the proof of Proposition. We assume L1pGq is a C˚-algebra. Then for all f P CcpGq,
one has ∥f ˚ f˚∥1 “ ∥f∥21, or
ż

G

ˇ

ˇ

ˇ

ˇ

ż

G

∆Gpx´1yqfpyqfpx´1yqdy

ˇ

ˇ

ˇ

ˇ

dx “

ż

G

ż

G

|fpxqfpyq|dydx
2.3.1.4

“

ż

G

ż

G

∆Gpx´1yq|fpyqfpx´1yq|dydx

It follows
ˇ

ˇ

ˇ

ˇ

ż

G

∆Gpx´1yqfpyqfpx´1yqdy

ˇ

ˇ

ˇ

ˇ

“

ż

G

∆Gpx´1yq|fpyqfpx´1yq|dy, so by Lemma (b) for each

x P G we can find θx such that ∆Gpx´1yqfpyqfpx´1yq P θxr0,8q for all y P G; since ∆G ě 0, in fact
fpyqfpx´1yq P θxr0,8q.
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Suppose G is non-nontrivial. Pick x0 ‰ 1 in G. By Lemma (a) we can find f P CGpxq with
fpx0q “ fpx´1

0 q “ i and fp1q “ 1. Now for x “ x0, we see

y “ 1 ñ fpyqfpx´1yq “ ´i

y “ x0 ñ fpyqfpx´1yq “ i

a contradiction. Hence G is trivial.

Lemma 3.2.4. Suppose A is a C˚-algebra and that a P A is self-adjoint, i.e., a “ a˚. Then
rpaq “ ∥a∥, where rpaq is the spectral radius of a. Moreover, this holds for a P A normal, i.e.,
aa˚ “ a˚a.

Proof. We already have rpaq ď ∥a∥. By C˚ property have
∥∥a2∥∥ “ ∥a˚a∥ “ ∥a∥2; it follows that∥∥a2n∥∥ “ ∥a∥2

n

for each n. By spectral radius formula, we obtain

rpaq “ lim
nÑ8

∥∥∥a2n∥∥∥ 1
2n

“ ∥a∥

(If A is not unital, the spectrum of a is computed in the unitization of A.)
Assume a normal. By C˚-property,∥∥a2k∥∥ “

∥∥pa2kq˚pa2kq
∥∥ 1

2 “
∥∥pa˚aq2k

∥∥ 1
2 “

∥∥pa˚aqk
∥∥ ,

so by spectral radius formula we deduce rpaq “ rpa˚aq
1
2 . Since a˚a is self-adjoint,

rpaq “ rpa˚aq
1
2 “ ∥a˚a∥

1
2 “ ∥a∥ .

Corollary 3.2.4.1. If A is a C˚-algebra, then A has a unique C˚-norm.

Proof. Suppose that ∥¨∥ is a norm on A such that A becomes a C˚-algebra. By Lemma for each
a P A we see ∥a∥2 “ ∥a˚a∥ “ rpa˚aq. The result now follows from the nature that the spectrum
does nothing with the norm.

Lemma 3.2.5. Let A be a C˚-algebra. Then Ae can be made into a C˚-algebra. Moreover, the
embedding A Ď Ae is isometric.

Proof. For pa, λq P Ae, define pa, λq˚ “ pa˚, λq; it is clearly an involution on Ae extending that of on
A. For the norm, we first consider the case A being unital. Then there is an algebra homomorphism
Ae – A ‘ C, where the latter is equipped with componentwise multiplication. It is also a ˚-
homomorphism if for each pa, λq P A ‘ C we put pa, λq˚ “ pa˚, λq. Now defining ∥pa, λq∥ :“

maxt∥a∥ , |λ|u clearly makes A ‘ C a C˚-algebra and the embedding a ÞÑ pa, 0q is clearly isometric.
Now let us assume A is non-unital. Consider the homomorphism

L : Ae BpAq

pa, λq Lpa,λq : b ÞÑ ab` λb

and define ∥pa, λq∥ :“
∥∥Lpa,λq

∥∥
op.

1° ∥¨∥ is a Banach algebra norm. It suffices to show L is injective. Suppose ab ` λb “ 0 for all
b P A.
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• λ “ 0. Then ab “ 0 for all b P A. Letting b “ a˚ and taking norm, by C˚ property we
have 0 “ ∥aa˚∥ “ ∥a∥2 so a “ 0.

• λ ‰ 0. Then b “ a
´λb; we may simply assume b “ ab. In particular, a˚ “ aa˚, implying

a is self-adjoint. Hence b˚ “ pabq˚ “ b˚a for all b P A. It follows that a is the unit in A,
a contradiction.

It follows pa, λq “ p0, 0q so that L is injective.

2° The inclusion a ÞÑ pa, 0q is isometric. On the one hand ∥ab∥ ď ∥a∥ ∥b∥ gives
∥∥Lpa,0q

∥∥ ď ∥a∥.
On the other hand ∥aa˚∥ “ ∥a∥ ∥a˚∥ tells

∥∥Lpa,0q

∥∥ ě ∥a∥.

3° Ae is complete. Since A is a complete subspace of Ae of finite codimension, it follows from
Lemma E.1.10 that Ae is also complete.

4° Ae is a C˚-algebra. Let ε ą 0. By definition there exists b P A with norm 1 such that
∥ab` λb∥ ě ∥pa, λq∥ p1 ´ εq. This implies

p1 ´ εq2 ∥pa, λq∥2 ď ∥ab` λb∥2 “ ∥pab` λbq˚ab` λb∥

“
∥∥pb˚, 0qpa˚, λqpa, λqpb, 0q

∥∥
ď ∥pb˚, 0q∥

∥∥pa˚, λqpa, λq
∥∥ ∥pb, 0q∥

“
∥∥pa˚, λqpa, λq

∥∥
Since ε ą 0 is arbitrary, it follows∥∥pa, λq2

∥∥ ď
∥∥pa˚, λqpa, λq

∥∥ ď
∥∥pa˚, λq

∥∥ ∥pa, λq∥

In particular we have ∥pa, λq∥ ď
∥∥pa˚, λq

∥∥; by symmetry we have equality and hence we have
equality everywhere.

Definition. If A is a Banach ˚-algebra and a P A, we define the real part and the imaginary
part of a as

Re a “
1

2
pa` a˚q and Im a “

1

2i
pa´ a˚q

Then Re a and Im a are self-adjoint with a “ Re a` i Im a.

3.2.2 Gelfand-Naimark
Lemma 3.2.6. If A is a commutative C˚-algebra, then mpa˚q “ mpaq for every a P A and every
m P ∆A.

Proof. By passing to Ae if necessary, we may assume A is unital. If the statement holds for self-
adjoint elements, then for general a P A,

mpa˚q “ mpRe a´i Im aq “ mpRe aq´impIm aq “ mpRe aq´impIm aq “ mpRe aq ` impIm aq “ mpaq

Hence we may assume a is self-adjoint; in this case we must show mpaq P R. Write mpaq “ x ` iy

with x, y P R and put at “ a` it for all t P R. Then

a˚
t at “ pa´ itqpa` itq “ a2 ` t2

and hence
x2 ` py ` tq2 “ |mpatq|2 ď ∥at∥2 “ ∥a˚

t at∥ “
∥∥a2 ` t2

∥∥ ď ∥a∥2 ` t2

so that x2 ` y2 ` 2yt ď ∥a∥2, which forces y “ 0. Thus mpaq P R as we wished.

62



Theorem 3.2.7 (Gelfand-Naimark). If A is a commutative C˚-algebra, then the Gelfand transform

A C0p∆Aq

a â

is an isometric ˚-isomorphism. Furthermore, ∆A is compact if and only if A is unital.

Proof. We show A Ñ C0p∆Aq is an isometric ˚-homomorphism with dense image Â “ tâ | a P Au.
In particular, this shows Â is complete (thanks to isometry), and hence closed. Being dense, it
follows that Â “ C0p∆Aq. We first show it is an isometry. Indeed, by 3.1.21.3 and 3.2.4, for any
a P A one has

∥â∥2 “
∥∥ââ∥∥2 “

∥∥∥ya˚a
∥∥∥2 “ rpa˚aq “ ∥a˚a∥ “ ∥a∥2

To show Â is dense in C0p∆Aq, we use the Stone-Weierstrass, which is valid for ∆A is LCH by
3.1.18.

• Â separates points. Indeed, if m,n P ∆A such that âpmq “ âpnq for each a P A, then m “ n

since they agree everywhere.

• Â vanishes nowhere. This follows from our definition that m P ∆A is nontrivial; hence we can
find a P A with 0 ‰ mpaq “ âpmq.

• Â is stable under complex conjugation. By 3.2.6, one has âpmq “ mpaq “ mpa˚q “ â˚pmq so
that â P Â.

Hence pA is dense in C0p∆Aq with respect to the sup-norm. Finally, if ∆A is compact, then A –

C0p∆Aq is unital. The converse is 3.1.18.

Let A and B be two commutative C˚-algebras. A morphism from A to B is a ˚-homomorphism
Φ : A Ñ B which defines a map Φ˚ : ∆B Ñ ∆A. This defines a category, and denote it by C˚-Alg.
Let LCH be a full subcategory of Top whose objects are locally compact Hausdorff spaces. In this
section we met several (contravariant) functors:

F : LCH C˚-Alg

X
f

Ñ Y C0pXq
f˚

Ð C0pY q

G : C˚-Alg LCH

A Φ
Ñ B ∆A

Φ˚
Ð ∆B

Gelfand-Naimark says that the Gelfand map defines a natural isomorphism from the identity functor
to F ˝G: for Φ : A Ñ B, one has a commutative diagram

A C0p∆Aq

B C0p∆Bq

Φ

„

pΦ˚q˚

„

On the other hand, the map in Example 3.1.19 defines a natural isomorphism from the identity
functor of G ˝ F : for f : X Ñ Y , one has a commutative diagram

X ∆C0pXq

Y ∆C0pY q

„

f pf˚q˚
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(It is not quite clear from definition that F defines a functor, but the above commutative diagram
shows that F is really a functor.) Hence, F and G define an equivalence of categories between LCH
and C˚-Alg.

There are typical subcategories of LCH and C˚-Alg, namely the full subcategory of LCH
whose objects are compact Hausdorff spaces, and the subcategory of C˚-Alg whose objects are
commutative unital C˚-algebras and morphisms are unital ˚-homomorphisms. Then F andG restrict
to an equivalence of categories between them.

3.3 The Continuous Functional Calculus
Definition. Let A be a commutative unital C˚-algebra and a P A. The assignment

CpσApaqq Cp∆Aq – A

f f ˝ â “: fpaq

is called the (continuous) functional calculus for a. (The last isomorphism is given by Gelfand-
Naimark.)

• The assignment is well-defined for σApaq “ Im â by 3.1.21.3.

Definition. Let A be a C˚-algebra.

1. An element a P A is normal if aa˚ “ a˚a.

2. For each a P A, denote by C˚paq the smallest C˚-subalgebra of A containing a.

3. If A is unital, C˚pa, 1q is called the unital C˚-algebra generated by a.

• One sees that C˚paq is the closure of the subalgebra generated by a and a˚. Indeed, denote
by X the latter space. X is a C˚-subalgebra of A for ˚ is continuous. Since C˚paq is a closed
˚-algebra containing a and a˚, X Ď C˚paq. By minimality X “ C˚paq.

• Similarly, C˚pa, 1q is the closure of the subalgebra generated by 1, a and a˚.

• a P A is normal if and only if C˚paq is commutative.

Lemma 3.3.1. Let Φ : A Ñ B be a ˚-homomorphism with A Banach ˚ and B C˚. Then ∥Φpaq∥ ď

∥a∥ for every a P A. In particular, Φ is continuous.

Proof. To show Φ is continuous, we only need to show Φe : Ae Ñ Be is continuous. If this is shown,
then Φ “ Φe|BA is also continuous. Thus we can assume A and B are unital and Φ is unital. We can
assume a is self-adjoint. Indeed, if the self-adjoint case is proved, then

∥Φpaq∥2 “ ∥ΦpaqΦpaq˚∥ “ ∥Φpaa˚q∥ ď ∥aa˚∥ ď ∥a∥ ∥a˚∥ “ ∥a∥2

We claim σBpΦpaqq Ď σApaq. To see this, suppose Φpaq ´ λ “ Φpa´ λq is not invertible in B. Then
a´ λ is not invertible, either. It follows that

∥Φpaq∥ 3.2.4
“ rpΦpaqq ď rpaq ď ∥a∥

64



Lemma 3.3.2. Let A Ď B be unital C˚-algebra. Then Bˆ X A “ Aˆ. In particular, for a P A, we
have σApaq “ σBpaq.

Proof. The inclusion Ě is clear, so we suppose a P Bˆ XA. First assume A and B are commutative.
The restriction res : ∆B Ñ ∆A defines a continuous homomorphism, whence a map res˚ : Cp∆Aq Ñ

Cp∆Bq. Then the diagram
Cp∆Aq A

Cp∆Bq B
res˚

„

„

where the horizontal maps are Gelfand transforms, is commutative. Since a is invertible in B, its
image pa P Cp∆Bq has no zero, whence pa P Cp∆Aq has no zero as well. This proves a P Aˆ.

Now assume A is commutative, while B possibly not. We can find b P B such that ab “ ba “ 1.
Then a˚b “ baa˚b “ ba˚ab “ ba˚, i.e., b commutes with a˚. Similarly, b “ a´1 commutes with
b˚. This means a is invertible in the commutative C˚-algebra C˚p1, a, bq generated by 1, a, b. Then
a P Aˆ by the first paragraph.

Finally, drop commutative condition on A. First consider the case a being normal. Then the
C˚-algebra C˚p1, aq is commutative, and the second paragraph shows a P C˚p1, aqˆ Ď Aˆ. Last,
suppose a P A is arbitrary. Note that a is invertible if and only if aa˚ and a˚a are invertible (purely
algebraic). Since aa˚ and a˚a are normal, the last paragraph implies aa˚ and a˚a are invertible in
A, so a is invertible in A as well.

Theorem 3.3.3. Let A be a unital C˚-algebra and let a P A be a normal element. Then there
exists a unique unital ˚-homomorphism

Φa : Cpσpaqq Ñ A

with the property that Φapidq “ a. Write fpaq :“ Φapfq. Then

(i) Φa is isometric with image C˚pa, 1q Ď A.

(ii) If A is commutative, the {Φapfq “ f ˝ â.

(iii) If A “ C˚pa, 1q, then â : ∆A Ñ σpaq is a homeomorphism.

(iv) If f : σpaq Ñ C has a power series expansion fpzq “
8
ř

n“0
anpz´z0qn which converges uniformly

on σpaq, then fpaq “
8
ř

n“0
anpa´ z01qn, and the series converges in norm.

Proof. The uniqueness follows from Stone-Weierstrass and Lemma 3.3.1. Let us prove the existence.
Consider a P C˚p1, aq Ď A and its Gelfand transform

â : ∆C˚p1,aq Im â “ σC˚p1,aqpaq “ σApaq

This is injective, for if âpm1q “ âpm2q, then m1paq “ m2paq; together with Lemma 3.2.6, we see m1

and m2 agree on the linear span of elements of the form aℓpa˚qk which is dense in C˚p1, aq, and thus
m1 “ m2. Since C˚p1, aq is unital, ∆C˚p1,aq is compact, and thus â is a homeomorphism. Thus we
get a unital isometric ˚-isomorphism

Ψ : Cpσpaqq Cp∆C˚p1,aqq

f f ˝ â
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Composing this with the inverse of the Gelfand transform C˚p1, aq Ñ Cp∆C˚p1,aqq gives us a unital
isometric ˚-isomorphism

Φa : Cpσpaqq C˚p1, aq

Now compute Φp1q “ 1 and Ψpidq “ id ˝ â “ â, so that Φapidq “ a. For the last assertion (iv), for

each N put fN pzq “
N
ř

n“0
anpz ´ z0qn. Then

ΨapfN q “

N
ÿ

n“0

anpa´ z01qn

and since Ψa is an isometry,

∥ΨapfN q ´ Ψapfq∥A “ ∥ΨapfN ´ fq∥A “ ∥fN ´ f∥8 Ñ 0 as N Ñ 8

Example 3.3.4. Let X be a compact Hausdorff space. Then for each f P CpXq, the functional
calculus sends each function g P Cpσpfqq “ CpfpXqq to the function g ˝ f P CpXq. This follows
quickly from the uniqueness part of Theorem and the fact that g ÞÑ g ˝ f satisfies id ˝f “ f .

Corollary 3.3.31.1.

(a) If a P A is normal, then a is self-adjoint if and only σApaq Ď R.

(b) Let Ψ : A Ñ B be a unital ˚-homomorphism between C˚-algebras and let a P A be a normal
element. Then Ψpaq is normal and σpΨpaqq Ď σpaq. Then diagram

Cpσpaqq A

CpσpΨpaqqq B

Φa

res Ψ

ΦΨpaq

commutes. In particular, one has fpΨpaqq “ Ψpfpaqq for every f P Cpσpaqq.

(c) Suppose a P A is a normal element in the unital C˚-algebra A and let f P CpσApaqq. Then

(i) fpaq P A is normal,

(ii) (Spectral mapping theorem) σApfpaqq “ fpσApaqq, and

(iii) gpfpaqq “ pg ˝ fqpaq for all g P CpσCpσApaqqpfqq “ CpfpσApaqqq
(ii)
“ CpσApfpaqqq.

Proof.

(a) Φapidq “ a, so a˚ “ Φapidq˚ “ Φapidq. Since Φa is isometric, it is injective, so a “ a˚ if and
only if id “ id, if and only if σApaq Ď R.

(b) The first two statements are clear. For the commutativity we have

ΨΦapidσpaqq “ Ψpaq “ ΦΨpaqpidσpΨpaqqq “ ΦΨpaqpres idσpaqq

Since all maps are ˚-homomorphism, it follows from Stone-Weierstrass that the diagram com-
mutes.
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(c) (i) is clear since fpaq P C˚p1, aq. For (iii), consider the commutative diagram

Cpσpfqq CpσApaqq

CpσpΦapfqqq A

Φf

res Φa

Φfpaq

Note that by (ii) the left vertical arrow res is the identity map, so

gpfpaqq “ Φfpaqpgq “ Φfpaqpres gq “ ΦaΦf pgq “ Φapg ˝ fq “ pg ˝ fqpaq “ pg ˝ fqpaq

It remains to show (ii). Trivially we have σApfpaqq Ď σCpσApaqqpfq “ fpσApaqq. Note that the
spectrum is preserved under C´algebra isomorphisms; then

σApfpaqq “ σC˚pa,1qpfpaqq “ σCpσApaqqpfq “ fpσApaqq

Corollary 3.3.31.2. Suppose Ψ : A Ñ B is an injective ˚-homomorphism between C˚-algebras.
Then Ψ is already isometric.

Proof. By Lemma 3.3.1 we have ∥Ψpaq∥ ď ∥a∥ for all a P A. As in the proof of Lemma 3.3.1, we
may assume everything is unital. Assume there exists a P A with ∥Ψpaq∥ ă ∥a∥; we may assume
∥a∥ “ 1. Then

α :“ ∥Ψpa˚aq∥ “ ∥Ψpaq∥2 ă ∥a∥2 “ ∥a˚a∥ “ 1

Put c “ a˚a; then c is self-adjoint with σpcq Ď r´1, 1s and σpΨpcqq Ď r´α, αs. By Lemma 3.2.4
σpcq contains either 1 or ´1 (note that σpcq is compact, so rpaq “ |λ| for some λ P σpcq), so
we can find a function 0 ‰ f P Cpσpcqq with f ” 0 on σpΨpcqq. Injectivity of Ψ shows that
0 ‰ Ψpfpcqq “ fpΨpcqq “ 0, a contradiction.

Corollary 3.3.31.3 (Fuglede’s). Let A be a C˚-algebra and a P A be normal. If b P A is such that
ab “ ba, then a˚b “ ba˚.

Proof. We may assume A is unital. Define f : C Ñ A by

fpλq “ eiλa
˚
be´iλa˚

.

Clearly f is a holomorphic function. Write λa˚ “ c1pλq ` ic2pλq with cipλq self-adjoint. Since a is
normal, c1pλq commutes with c2pλq and

eiλa
˚

“ eic1pλqe´c2pλq “ e2ic1pλqe´pc2pλq`ic1pλqq “ e2ic1pλqe´iλa.

Since ab “ ba, we have e´iλab “ be´iλa, so

fpλq “ e2ic1pλq
´

e´iλabeiλa
¯

e´2ic1pλq “ e2ic1pλqbe´2ic1pλq.

As c1pλq is self-adjoint, we have σpc1pλqq Ď R, so e2ic1pλq is bounded, which implies that fpλq is a
bounded entire function. By Liouville’s theorem, it follows that f is a constant. But

0 “ f 1p0q “ ipa˚b´ ba˚q

this shows a˚b “ ba˚.
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We now extend Theorem 3.3.3 to the non-unital case. Recall for a non-unital C˚-algebra A, the
spectrum of an element is computed in the unitization; this implies 0 P σpaq for all a P A. For each
element a P A, let us defined

C0pσpaqq :“ tf P Cpσpaqq | fp0q “ 0u

This notation may cause confusion. However, observe that σpaq is the one-point compactification
of σpaqzt0u, so tf P Cpσpaqq | fp0q “ 0u is exactly the space C0pσpaqzt0uq Ď Cpσpaqq. This kind of
justifies our confusing notation.

Corollary 3.3.31.4. Let A be a non-unital C˚-algebra and a P A be a normal element. There
exists a unique ˚-homomorphism

Φa : C0pσpaqq Ñ A

with the property that Φapidq “ a. Moreover, it is isometric with image C˚paq Ď A.

Proof. The uniqueness follows as in Theorem 3.3.3. For the existence, we apply Theorem 3.3.3 to
the unitization Ae of A. We then obtain a unique unital ˚-homomorphism Φa : Cpσpaqq Ñ Ae with
the following properties:

(i) Φapidq “ a, where id “ idσpaq and (by definition) σpaq “ σAeppa, 0qq.

(ii) Φa is isometric with image C˚pa, 1q Ď Ae.

Let us study the image of C0pσpaqq under Φa. Since Φa is isometric and C0pσpaqq is closed in
Cpσpaqq, ΦapC0pσpaqqq is also closed. Clearly C0pσpaqq contains all polynomials in z and z without
constant term, so ΦapC0pσpaqqq contains a dense subset of C˚paq; being closed, we have C˚paq Ď

ΦapC0pσpaqqq Ĺ C˚pa, 1q.

Lemma 3.3.32. dimC C
˚pa, 1q{C˚paq “ 1.

Proof. Let x P C˚pa, 1qzC˚paq. Since C˚paq is closed in C˚pa, 1q, we can find a sequence of polyno-
mials with nonzero constant term pnpX,Y q P CrX,Y s such that pnpa, a˚q Ñ x. Let cn “ pnp0, 0q;
then cn Ñ c for some c P C. Put qnpX,Y q :“ pnpX,Y q ´ cn; then qnpa, a˚q Ñ x ´ c1 (recall
that 1 “ 1Ae “ p0, 1q P A ˆ C). But C˚paq is closed and qnpa, a˚q P C˚paq, it follows that
x´ c1 P C˚paq.

By the lemma, since ΦapC0pσpaqqq is proper in C˚pa, 1q, it forces that ΦapC0pσpaqqq “ C˚paq, as
desired.
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Chapter 4

More on C˚-algebras

We collect some terminology in C˚-algebra.

Definition. Let A be a C˚-algebra and a P A.

1. a is normal if a˚a “ aa˚.

2. a is self-adjoint if a “ a˚. Let Asa denote the set of self-adjoint elements in A.

3. a is positive if a is self-adjoint and σApaq Ď r0,8q. Let A` denote the set of positive elements
in A. (Recall for the non-unital case, the spectrum is computed in the unitization.)

4. a is a projection if a is self-adjoint and a2 “ a.

5. a, b P A are called orthogonal if ab “ ba “ 0.

6. If A is unital, a is called unitary if a is normal and aa˚ “ 1.

We can define an partial order ď on Asa as follows. For a, b P Asa, say a ď b if b ´ a P A`. This
is really a partial order, for if 0 ď a ě 0, i.e., σpaq “ t0u, then by Lemma 3.2.4, ∥a∥ “ rpaq “ 0, so
that a “ 0.

Lemma 4.0.1. Let X be an LCH space. Consider the C˚-algebra C0pXq; the norm is sup-norm,
and the ˚ is complex conjugation.

(i) For a function f P C0pXq, f ě 0 is positive if and only if fpxq ě 0 for all x P X.

(ii) If f P C0pXq is positive, then for all n P N, there exists a unique positive function g P C0pXq

such that f “ gn.

(iii) For self-adjoint f P C0pXq, there exist unique positive functions f`, f´ P C0pXq such that
f “ f` ´ f´ with f`f´ “ f´f` “ 0.

Proof.

(i) Note that σpfq “ fpXq. Thus f ě 0 ô σpfq Ď r0,8q ô fpXq Ď r0,8q.

(ii) For the existence, just take g P C0pXq defined by gpxq :“ fpxq
1
n . The uniqueness is clear for

we are in Rě0.

(iii) Since f is self-adjoint, fpXq Ď R. Take f` :“ maxt0, fu and f´ “ maxt0,´fu
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Proposition 4.0.2. Let A be a C˚-algebra and a P A` be positive. For each n P N, there exists a
unique positive element b P A` with bn “ a.

Proof. If A is unital, we use Theorem 3.3.3; otherwise, we use Corollary 3.3.31.4 instead. Since
σpaq Ď r0,8q, we can find fpxq P C0pσpaqq with f ě 0 and fpxqn “ x for x P σpaq. Define
b :“ fpaq P A; b is positive by Spectral mapping theorem, and bn “ a. This shows the existence.
For the uniqueness, let b1 P A` be another such element. Then a P C˚pb1q, and then

b P C˚paq Ď C˚pb1q – C0pσpb1qq

The uniqueness now follows from Lemma 4.0.1.(ii).

Proposition 4.0.3. Let A be a C˚-algebra.

(i) Every element is a linear combination of two self-adjoint elements.

(ii) Every self-adjoint element can be written uniquely as x´ y with x, y positive and orthogonal.

(iii) Every element can be written as a linear combination of four positive elements.

(iv) If A is unital, every element is a linear combination of four unitary elements.

Proof. We already see that for a P A, we can write a “ Re a` i Im a with

Re a “
1

2
pa` a˚q and Im a “

1

2i
pa´ a˚q

The existence part of (ii) follows directly from Lemma 4.0.1(ii), and if a “ x ´ y with x, y positive
and xy “ 0, then pa2q

1
2 “ x` y, so x “

1

2
pa` pa2q

1
2 q is uniquely determined by a. (iii) follows from

(i) and (ii). For (iv), by (i) it suffices to show every self-adjoint element is a linear combination of
two unitary elements. Let a P Asa; scaling if necessarily, we may assume ∥a∥ ď 1. Then 1 ´ a2 ě 0;
indeed, it is self-adjoint, and if we put fptq “ 1 ´ t2, then by Spectral mapping theorem we see
σp1´ a2q “ fpσpaqq Ď r0, 1s. Let u1 “ a´ i

?
1 ´ a2 and u2 “ a` i

?
1 ´ a2; then the ui are unitary,

and a “
1

2
pu1 ` u2q, as wanted.

4.1 Positive elements
Proposition 4.1.1. Let A be a C˚-algebra. Then A` is a closed convex cone.

Proof. WLOG we assume A is unital. For a P A` and λ ě 0, it is easy to check λa P A`, so we
only need to show that the sum of two positive elements remains positive.

We first show that for X Ď R compact and f P CpXq, f is positive if there exists r P Rě0 such
that ∥f ´ r∥ ď r. If r “ 0, then f “ 0 so it is positive trivially. Suppose r ą 0 but f is not positive;
we then can find t P X with fptq ă 0. Then |fptq ´ r| ą r so that ∥f ´ r∥ “ sup

tPX
|fptq ´ r| ą r, a

contradiction. This proves our claim. Secondly, note that if f P A is positive, then ∥f ´ r∥ ď ∥f∥
if 0 ď r ď ∥f∥. This can be seen easily by Lemma 3.2.4.

Now let a, b P A`. Since a` b is self-adjoint, we may identify C˚pa` b, 1Aq – CpσApa` bqq and
a ` b with fptq “ t. Thus it suffices to find r ě 0 such that ∥a` b´ r∥ ď r. Take r :“ ∥a∥ ` ∥b∥;
then

∥a` b´ r∥ “ ∥a` b´ ∥a∥ ´ ∥b∥∥ ď ∥a´ ∥a∥∥ ` ∥b´ ∥b∥∥ ď ∥a∥ ` ∥b∥ “ r
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The last inequality follows from what mentioned in the end of the second paragraph. This shows
a` b is positive.

It remains to show A` is closed. From the second paragraph we have

B :“ ta P A` | ∥a∥ ď 1u “ ta P A | ∥a´ 1A∥ ď 1u X Asa

The last two sets are closed, so B is closed as well. Thus A` “ Rě0B is closed: if an is a sequence
in Rě0B with an Ñ a P A and a ‰ 0, then an

∥an∥
Ñ

a

∥a∥
, and since the an

∥an∥
P B, it forces a

∥a∥
P B,

so a P Rě0B.

Corollary 4.1.1.1. The poset pAsa,ěq is upward directed, i.e., any two element in Asa has a
common upper bound in Asa.

Proposition 4.1.2. For a P A, the element a˚a is positive. In particular, we have A` “ ta˚a | a P

Au.

Proof. Every a˚a is self-adjoint. Suppose ´a˚a is positive. Since σAp´a˚aqzt0u “ σAp´aa˚qzt0u,
´aa˚ is positive as well. Write a “ b` ic for b, c P Asa. Then

aa˚ “ b2 ` ibc´ icb` c2

a˚a “ b2 ´ ibc` icd` c2

so a˚a “ 2b2 ` 2c2 ` p´aa˚q is a sum of positive elements, implying a˚a is also positive. Hence
0 “ ∥a˚a∥ “ ∥a∥2, and therefore ∥a∥ “ 0.

Write a˚a “ b´ c with b, c P A` and bc “ cb “ 0. We claim c “ 0. We have

´pacq˚pacq “ ´ca˚ac “ ´cpb´ cqc “ c3 P A`

By the first paragraph, it follows ac “ 0, and hence

0 “ a˚ac “ pb´ cqc “ ´c2 “ ´c˚c

so that 0 “ ∥c˚c∥ “ ∥c∥2, i.e., c “ 0. Hence a˚a “ b is positive.
For the last equality, note that if a ě 0, then there exists a positive square root a 1

2 of a by
Proposition 4.0.2, so a “ pa

1
2 q˚a

1
2 .

Proposition 4.1.3. Let A be a C˚-algebra and a, b P Asa with a ď b. Then

(i) for any c P A, we have c˚ac ď c˚bc;

(ii) ∥a∥ ď ∥b∥;

(iii) if A is unital and a, b P Aˆ X A`, then b´1 ď a´1

Proof.

(i) Since b´ a ě 0, it has a positive square root pb´ aq
1
2 by Proposition 4.0.2. Thus

c˚bc´ c˚ac “ c˚pb´ aqc “ ppb´ aq
1
2 cq˚ppb´ aq

1
2 cq ě 0

by Proposition 4.1.2.
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(ii) WLOG we may assume A is unital. By continuous functional calculus, we have b ď ∥b∥;
to see this, we can prove it in C˚pb, 1Aq – CpσApbqq, and this becomes an obvious identity
t ď max

tPσApbq
|t|. Hence a ď b ď ∥b∥. Finally, the same reasoning in C˚pa, 1Aq – CpσApaqq gives

∥a∥ ď ∥b∥.

(iii) Note that for c P Aˆ, we have σApc´1q “ pσApcqq´1, so b´1, a´1 P A` as well. By (i) we have

b´ 1
2 ab´ 1

2 ď b´ 1
2 bb´ 1

2 “ 1A

so (ii) implies
∥∥∥b´ 1

2 a
1
2

∥∥∥2 ď 1. (Here we use the convention that the identity in a unital Banach
algebra has norm 1.) Thus

a
1
2 b´1a

1
2 ď

∥∥∥a 1
2 b´1a

1
2

∥∥∥ ď 1 “ 1A

By (i) we have
b´1 “ a´ 1

2

´

a
1
2 b´1a

1
2

¯

a´ 1
2 ď a´ 1

2 1Aa
´ 1

2 “ a´1

Proposition 4.1.4. Let A be a C˚-algebra.

(i) Every projection is positive. More generally, if p P A is idempotent, i.e. p2 “ p, then
σAppq Ď t0, 1u.

(ii) Let p, q P A be projections. Then p ď q if and only if pq “ qp “ p.

Proof. (i) follows from Spectral mapping theorem for polynomials: if we take fpzq “ z ´ z2, then

fpσAppqq “ σApfppqq “ σAp0q “ t0u.

so we must have σAppq Ď t0, 1u. For (ii), first assume p ď q. Then 0 ď q ´ p ď 1Ae ´ p, so by
Proposition 4.1.3.(i)

0 “ p0p ď ppq ´ pqp ď pp1Ae ´ pqp “ p´ p “ 0

and thus 0 “ ppq ´ pqp “ pqp´ p, whence

∥qp´ p∥2 “ ∥pqp´ pq˚pqp´ pq∥ “ ∥pqp´ pqp´ pqp` p∥ “ ∥p´ pqp∥ “ 0

i.e., qp “ p. Also, pq ´ p “ pqp´ pq˚ “ 0. Conversely, suppose pq “ qp “ p. Then

pq ´ pqpq ´ pq “ q2 ´ qp´ pq ` p2 “ q ´ p´ p` p “ q ´ p

and pq ´ pq˚ “ q ´ p, so q ´ p is a projection. By (i), q ´ p ě 0, or q ě p.

4.2 Approximate identity
Definition. Let B be a Banach algebra. A net peλqλPΛ is called a left approximate identity if
for all a P B we have

a “ lim
λPΛ

eλa, or lim
λPΛ

∥a´ eλa∥ “ 0

Similarly we define right approximate identity. A net in B is called an approximate identity
if it is simultaneously a left and right approximate identity.
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Lemma 4.2.1. Let A be a C˚-algebra and let A1
` :“ ta P A` | ∥a∥ ă 1u. Then the poset pA1

`,ďq

is upward directed.

Proof. Put Ae to be its unitization if A is not unital, and Ae “ A if it is unital. First consider
a, b P A`. Then 1Ae ` a, 1Ae ` b P pAeqˆ X Ae

`. Suppose a ď b. Then 1Ae ` a ď 1Ae ` b, so
p1Ae ` bq´1 ď p1Ae ` aq´1 by Proposition 4.1.3.(iii) and

ap1Ae ` aq´1 “ 1Ae ´ p1Ae ` aq´1 ď 1Ae ´ p1Ae ` bq´1 “ bp1Ae ` bq´1

Note that ap1Ae ` aq´1 and bp1Ae ` bq´1 are both in A1
`. To see this, expanding in power series we

can see ap1Ae ` aq´1 P A. Since σAep1Ae ` aq Ď r1, ∥a∥ ` 1s, we have∥∥ap1Ae ` aq´1
∥∥ ď

∥a∥
∥1Ae ` a∥

ď
∥a∥

1 ` ∥a∥
ă 1

Now suppose a, b P A1
`. Let x “ ap1Ae ´aq´1 and y “ bp1Ae ´bq´1 and c “ px`yqp1Ae `x`yq´1.

Since x ď x` y, by the first paragraph we have

a “ xpx` 1Aeq´1 ď px` yqp1Ae ` x` yq´1 “ c

Similarly, b ď c.

Theorem 4.2.2. Every C˚-algebra A has an increasing approximate identity consisting of positive
elements with norm less than 1. If A is separable, the constructed approximate identity can be
countable.

Proof. Let Λ “ pA1
`,ďq and uλ “ λ for all λ P Λ. We claim puλq is an approximate identity of A.

We must show that

a “ lim
λPΛ

uλa “ lim
λPΛ

auλ

for all a P A. By linearity it suffices to show this holds for a P A`. Let Γ : C˚paq Ñ C0pσApaqq “

C0pXq be the inverse of the continuous functional calculus, where X “ σApaqzt0u. Put f “ Γpaqp“

idq Let 0 ă ε ă 1 and K :“ tx P X | |fpxq| ě εu.
Let δ ą 0 such that δ ă 1 and p1 ´ δq ∥f∥ ă ε. Define gδ P C0pXq by setting gδpxq “ δ for

x P K and g ” 0 outside a open neighborhood of K; this is possible since K Ď X is compact. Then
gδ P C0pXq1` and ∥gδf ´ f∥ ă ε: for x P K, |δfpxq ´ fpxq| ď p1 ´ δq ∥f∥ ă ε, and for x R K,
|gδpxqfpxq ´ fpxq| ď εp1 ´ gδpxqq ă ε. Since Γ is isometric, it preserves norm, so that Γ´1pgδq “ µ

for some µ P Λ, and

∥uµa´ a∥ “ ∥auµ ´ a∥ “ ∥gδf ´ f∥ ă ε

Suppose λ P Λ such that µ ď λ. Then 1Ae ´ uλ ď 1Ae ´ uµ, so

a
1
2 p1Ae ´ uλqa

1
2 ď a

1
2 p1Ae ´ uµqa

1
2

and hence

∥a´ auλ∥ “

∥∥∥a 1
2 p1Ae ´ uλqa

1
2

∥∥∥ ď

∥∥∥a 1
2 p1Ae ´ uµqa

1
2

∥∥∥ “ ∥a´ auµ∥ ă ε

Therefore, a “ lim
λPΛ

uλa “ lim
λPΛ

auλ.
Now assume A is separable and let tanunPN be a countable dense subset of A. Let λ1 P

Λ be such that ∥a1uλ ´ a1∥ , ∥uλa1 ´ a1∥ ă
1

2
for λ ě λ1. Then choose λ2 ě λ1 such that
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∥ajuλ ´ aj∥ , ∥uλaj ´ aj∥ ă
1

4
for j “ 1, 2 and λ ě λ2. Continuing inductively, we obtain

tλnunPN Ď Λ such that for j P N

∥ajuλn ´ aj∥ , ∥uλnaj ´ aj∥ Ñ 0 as n Ñ 8

Now let ε ą 0 and for a P A, let j P N such that ∥a´ aj∥ ă
ε

3
. Take n " 0 such that ∥ajuλm

´ aj∥ ă

ε

3
for m ě n. Then

∥auλm ´ a∥ ď ∥pa´ ajquλm∥ ` ∥ajuλm ´ aj∥ ` ∥aj ´ a∥ ă ε

for ∥uλm
∥ ď 1. Similarly ∥uλm

a´ a∥ ă ε. This finishes the proof.

Remark 4.2.3. In the following when we talk about an approximate identity of a C˚-algebra, we
always assume it is an increasing net consisting of positive elements with norm less than 1.

Definition. A C˚-algebra is called σ-unital if it possesses a sequential approximate identity.

• The above theorem then shows that every separable C˚-algebra is σ-unital. Moreover, it
admits an increasing sequential approximate identity consisting of positive element with norm
less than 1.

4.3 Hereditary Subalgebras and Ideals
Definition. Let A be a C˚-algebra.

1. A C˚-subalgebra B of A is called hereditary if for a, b P A with a ď b, b P B implies a P B.

2. For a projection p P A, the C˚-subalgebra pAp is called a corner.

Lemma 4.3.1. Let I Ď A be a closed left ideal. Then I has a right approximate identity.

Proof. Observe that I X I˚ is a C˚-subalgebra of A, so it admits an approximate identity puλqλPΛ.
Let a P I; then a˚a P I X I˚, and

∥a´ auλ∥2 “ ∥pa´ auλq˚pa´ auλq∥

ď ∥a˚a´ uλa
˚a∥ ` ∥uλpa˚a´ uλa

˚aq∥ ď 2 ∥a˚a´ a˚auλ∥ Ñ 0

Theorem 4.3.2. Let A be a C˚-algebra and I �A a closed (two-sided) ideal.

(i) I “ I X I˚; in particular, I is a ˚-ideal of A.

(ii) A{I is a C˚-algebra with quotient norm (c.f. Lemma E.1.9) and the induced ˚-operation from
A.

Proof. Let puλq be the right approximate identity constructed in the lemma. Then for a P I,

a˚ “ plim
λ
auλq˚ “ lim

λ
uλa

˚ P I

since I is a closed ideal. Now for a P A, we have

∥a` I∥ :“ inf
bPI

∥a` b∥ “ lim
λ

∥a´ uλa∥ “ lim
λ

∥a´ auλ∥
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This is because ∥a` b∥ ď ∥a´ auλ∥ ` ∥auλ ` b∥ and auλ P I. Hence

∥a˚a` I∥ “ lim
λ

∥a˚ap1 ´ uλq∥ ě lim
λ

∥p1 ´ uλqa˚ap1 ´ uλq∥ “ lim
λ

∥ap1 ´ uλq∥2 “ ∥a` I∥2

The second equality results from ∥1 ´ uλ∥ ď 1. For the reverse inequality, note that

∥a˚ ` I∥ “ lim
λ

∥pa´ auλq˚∥ “ lim
λ

∥a´ auλ∥ “ ∥a` I∥

so that ∥aa˚ ` I∥ ď ∥a` I∥ ∥a˚ ` I∥ “ ∥a` I∥2.

Corollary 4.3.2.1. Let Φ : A Ñ B be a homomorphism of C˚-algebras. Then

(i) Φ is norm-decreasing;

(ii) ΦpAq is a C˚-subalgebra of B;

(iii) Φ is injective if and only if Φ is isometric.

Proof. (i) is Lemma 3.3.1, and (iii) is Corollary 3.3.31.2. For (ii), since A{ kerΦ Ñ B is injective, it
is isometric by (iii), implying the image ΦpAq is closed in B, as wanted.

Corollary 4.3.2.2. Let A be a C˚-algebra. If I �A is a closed ideal, and J � I is a closed ideal of
I, then J is also a closed ideal of A.

Proof. Let puλq be an approximate identity of I. Then for a P A and x P J , we have ax “

a limλ uλx “ limλpauλqx P J since auλ P I.

4.4 Positive Linear Functionals
Definition.

(i) A C-linear map ϕ : A Ñ B between C˚-algebras is called positive if ϕpA`q Ď B`.

(ii) A positive linear map ϕ : A Ñ C is called a positive linear functional.

(iii) A positive linear functional ϕ is called a state if ∥ϕ∥ “ 1.

(iv) A positive linear functional ϕ is called a trace if ϕpabq “ ϕpbaq for all a, b P A

(v) A tracial state is a state that is also a trace.

(vi) A state ϕ is faithful if ϕpa˚aq “ 0 implies a “ 0.

The set of all states (reps. tracial states) on A is denoted by SpAq (resp. T pAq).

Proposition 4.4.1. Let A be a C˚-algebra and ϕ : A Ñ C a linear functional. Then the pairing
p , qϕ : A ˆ A Ñ C defined by

pa, bqϕ :“ ϕpab˚q

is a nonnegative Hermitian form on A if and only if ϕ is positive.

Proof. Let ϕ be a linear functional. To say p , qϕ is nonnegative Hermitian, it is equivalent to the
following conditions.
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(i) pra` b, cqϕ “ rpa, cqϕ ` pb, cqϕ for all a, b, c P A and r P C.

(ii) pa, bqϕ “ pb, aqϕ for all a, b P A.

(iii) pa, aqϕ ě 0 for all a P A.

Since ϕ is linear, (i) always holds. By Proposition 4.1.2, (iii) holds if and only if ϕ is positive. When
ϕ is positive, (ii) holds automatically by Proposition 4.0.3.

Corollary 4.4.1.1. Let A be a C˚-algebra and ϕ : A Ñ C a positive linear functional. Then

|ϕpab˚q|2 ď ϕpaa˚qϕpbb˚q

for all a, b P A.

Proof. By the previous proposition, the statement is reduced to a linear algebra lemma.

Lemma 4.4.2. Let V be a complex vector space and f : V ˆV Ñ C a nonnegative Hermitian form.
Then for v, w P V , we have |fpv, wq|2 ď fpv, vqfpw,wq.

Proof. We may assume fpv, wq ‰ 0. Since f is nonnegative, for all λ P C

0 ď fpλv ` w, λv ` wq “ |λ|2fpv, vq ` 2Repλfpv, wqq ` fpw,wq

In particular, this holds for λ “ t
|fpv, wq|

fpv, wq
for any t P R, so that (note that |λ| “ |t|)

t2fpv, vq ` 2t|fpv, wq| ` fpw,wq ě 0

If fpv, vq “ 0, then 2t|fpv, wq| ` fpw,wq ě 0 for all t P R, which is impossible since we are assuming
fpv, wq ‰ 0. Therefore fpv, vq ‰ 0, whence

4|fpv, wq|2 ´ 4fpv, vqfpw,wq ď 0

as wanted.

It suffices to take f “ p , qϕ in the lemma.

Proposition 4.4.3. Any positive linear function on a C˚-algebra A is bounded.

Proof. Let ϕ : A Ñ C by a positive linear functional. First note that if M :“ sup
aPA`, ∥a∥“1

ϕpaq ă 8,

then ϕ is bounded. Indeed, for an element x P A, write x “ Rex ` i Imx; then Reϕpxq “ ϕpRexq

and Imϕpxq “ ϕpImxq since ϕpAsaq Ď R. So to show ϕ is bounded it suffices to show ϕ is bounded
on Asa. But for x P Asa, we can write x “ x` ´ x´ with x˘ positive and ∥x˘∥ ď ∥x∥; the
inequality holds since continuous functional calculus is isometric. Then ∥ϕpxq∥ “ ∥ϕpx`q ´ ϕpx´q∥ ď

M ∥x`∥ `M ∥X´∥ ď 2M ∥x∥.
Now suppose for contradiction that ϕ is unbounded. The previous paragraph implies sup

aPA`, ∥a∥“1

|ϕpaq| “

8. In particular, we can find a sequence panqnPN with an P A` and ∥an∥ “ 1 such that ϕpanq ě 2n.

But if we put a :“
8
ř

n“1
2´nan P A` (Proposition 4.1.1), then for each N P N we have a´

N´1
ř

n“1
2´nan ě

0, so

ϕpaq ě ϕ

˜

N´1
ÿ

n“1

2´nan

¸

“

N´1
ÿ

n“1

2´nϕpanq ě N ´ 1

a contradiction.
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Proposition 4.4.4. Let A be a C˚-algebra and let puλqλ be an approximate unit. Let ϕ be a linear
functional on A. Then ϕ is positive if and only if limλ ϕpuλq “ ∥ϕ∥. In particular, if A is unital, ϕ
is positive and only if ϕp1Aq “ ∥ϕ∥.

Proof.

4.5 The Gelfand-Naimark-Segal construction
Definition. Let A be a C˚-algebra. A ˚-representation of A is ˚-homomorphism π : A Ñ BpHq

of A into the C˚-algebra of bounded operators on a Hilbert space H.

• We say π is faithful if π : A Ñ BpHq is injective. In this case, by Corollary 3.3.31.2 we
see A is ˚-isomorphic to a closed self-adjoint subalgebra of BpHq, or, simply put, a concrete
C˚-algebra.

We now prove every C˚-algebra has many representations. Let A be a C˚-algebra. Given a
positive linear functional ϕ, put

Nϕ :“ ta P A | ϕpa˚aq “ 0u

which is a closed left ideal in A. Indeed, closedness is clear, and if x P Nϕ and a P A, then by
Cauchy-Schwarz, we have

ϕppaxq˚paxqq2 “ ϕpx˚pa˚axqq2 ď ϕpx˚xqϕpx˚a˚aa˚axq “ 0

Now consider the vector space quotient A{Nϕ. Define a pairing on the quotient:

x, yϕ : A{Nϕ ˆ A{Nϕ C

pa`Nϕ, b`Nϕq ϕpb˚aq

By Proposition 4.4.1, we see this pairing defines an inner product on A{Nϕ. Let Hϕ denote the
completion of A{Nϕ with respect to this inner product.

For a P A, define a linear map πϕpaq P EndC A{Nϕ by

πϕpaqpb`Nϕq “ ab`Nϕ

(this is well-defined for Nϕ is a left ideal). Let b P Nϕ P A{Nϕ be such that ϕpb˚bq ď 1. Then

∥πϕpaqb∥2 “ xab`Nϕ, ab`Nϕyϕ “ ϕpb˚a˚abq ď ϕpb˚ ∥a∥2 bq ď ∥a∥2

by Proposition 4.1.3.(i) (note that a˚a ď ∥a˚a∥ “ ∥a∥2). This shows πϕpaq is bounded, whence
extends to an operator on Hϕ. Finally, πϕ : A Ñ BpHϕq is a ˚-homomorphism. Indeed,

xb`Nϕ, πϕpa˚qpc`Nϕqyϕ “ ϕppa˚cq˚bq “ ϕpc˚abq “ xπϕpaqpb`Nϕq, c`Nϕyϕ.

In particular, πϕ is a ˚-representation of A. The ˚-representation pπϕ,Hϕq is called the Gelfand-
Naimark-Segal representation, or simply the GNS representation, associated to ϕ.

Now given a family pπλ,HλqλPΛ of ˚-representation of a C˚-algebra A, consider the homomor-
phism

‘λπλ : A B

ˆ

À

λPΛ

Hλ

˙

a ‘λπλpaq
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This again gives a ˚-representation of A on the Hilbert space direct sum
À

λPΛ

Hλ.

Recall that SpAq consists of all states of A, i.e., positive linear functional with norm 1. Note
that for a positive linear functional ϕ and α ą 0, the GNS constructions πϕ and παϕ are equivalent.
So we may confine ourselves to those associated to states. The representation

˜

‘
ϕPSpAq

πϕ,
à

ϕPSpAq

Hϕ

¸

is called the universal representation of A.

Theorem 4.5.1 (Gelfand-Naimark). The universal representation is faithful.

Proof. It suffices to show for each a P Azt0u, we can find some state ϕ such that πϕpaq is a nontrivial
operator on Hϕ, i.e., we can find b P A such that ϕppabq˚abq ‰ 0.
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Chapter 5

Duality for Abelian Groups

5.1 The Dual Group
Definition.

1. A locally compact Hausdorff abelian group will be called an LCA group for short.

2. A (unitary) character of an LCA group A is a continuous group homomorphism χ : A Ñ S1.

3. For an LCA group A, denote by pA the set of all characters on A, which is a group under
pointwise multiplication, called the Pontryagin dual, or the dual group of A.

Example 5.1.1.

1. Consider the additive group R. For each t P R, define a character

χt : R S1

x e2πixt

The association t ÞÑ χt is a group isomorphism R – pR.

Proof. Let f : R Ñ S1 be a continuous group homomorphism. This means f is a continuous
map with a functional equation fpx ` yq “ fpxqfpyq for each x, y P R, and fp0q “ 1. Pick a

δ P R such that α :“

ż δ

0

fptqdt ‰ 0. Then the functional equation implies

αfpxq “

ż δ

0

fpt` xqdt “

ż x`δ

x

fptqdt

Since f is continuous, the right hand side is differentiable and thus f is itself differentiable.
Differentiating the functional equation with respect to x, we obtain f 1px ` yq “ f 1pxqfpyq; if
we put A “ f 1p0q and let x “ 0, we derive a differential equation f 1pyq “ Afpyq of f . It has a
unique solution fpyq “ fp0qeAy “ eAy. Since f is bounded, ReA “ 0. Let us write s “ 2πit

for a unique t P R. Then
fpyq “ e2πity “ χtpyq

2. pZ – R{Z, and yR{Z – Z. The isomorphisms are the same as the case of R.
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Definition. Let X and Y be spaces. The compact-open topology on Y X is the topology gener-
ated by the subbasis consisting of the sets

LpK,Uq :“ tf : X Ñ Y | fpKq Ď Uu

where K Ď
cpt
X and U Ď

open
Y .

• The compact-open topology is finer than the product topology on Y X .

• If Y is Hausdorff, then Y X is Hausdorff. Indeed, for f ‰ g pick x such that fpxq ‰ gpxq.
Being Hausdorff, we can find disjoint open sets U and V with fpxq P U and gpxq P V . Then
Lptxu, Uq and Lptxu, V q are disjoint open neighborhood of f and g, respectively.

• For each x P X, the evaluation map δx : Y X Ñ Y is continuous. Indeed, for each U Ď
open

Y ,

δ´1
x pUq “ Lptxu, Uq is open in Y X .

Lemma 5.1.2. Let K be a collection of compact subsets of X containing a neighborhood basis at
each point of X (such a collection exists when, for example, X is LCH), and let B be a subbasis
for the open sets of Y . Then the sets LpK,Uq with K P K and U P B form a subbasis for the
compact-open topology.

Proof. Since LpK,Uq X LpK,V q “ LpK,U X V q, we may assume B is a basis for the topology of
Y . We must show for each K Ď

cpt
X, U Ď

open
Y and f P LpK,Uq, we can find K1, . . . ,Kn P K and

U1, . . . , Un P B such that f P
n
Ş

i“1

LpKi, Uiq Ď LpK,Uq.

For each x P K, take an open neighborhood fpxq P Ux P B in U and a Kx P K such that
x P fpKxq Ď Ux. Since K is compact, there exist x1, . . . , xn such that K Ď Kx1

Y ¨ ¨ ¨ Y Kxn
. Then

f P
n
Ş

i“1

LpKxi , Uxiq Ď LpK,Uq.

Lemma 5.1.3. Let Y be a metric space. Then for each f P CpX,Y q, the sets of the form

BK,εpfq “ tg P CpX,Y q | dKpf, gq :“ sup
xPK

dY pfpxq, gpxqq ă εu

with ε ą 0 and K Ď
cpt
X forms a neighborhood basis of f .

Proof. We show that for each LpK,Uq and f P LpK,Uq there exists a ball BK,εpfq Ď LpK,Uq. Since
fpKq is compact, there is a distance ε ą 0 from fpKq to the complement of U ; thus if g P Bε{2pfq,
then gpKq Ď U so that g P LpK,Uq.

It remains to show BK,εpfq is open in compact-open topology. Let g P BK,εpfq and put δ “

ε ´ dKpf, gq. Since gpKq is compact, it is covered by Bδ{3pgpxiqq for some x1, . . . , xn P K. Put
Ki “ K X g´1pBδ{3pgpxiqqq; then

gpKiq Ď gpg´1pBδ{3pgpxiqqqq Ď gpg´1pBδ{3pgpxiqqqq Ď Bδ{3pgpxiqq Ď Bδ{2pgpxiqq “: Ui

Then for h P
ng
Ş

i“1

LpKi, Uiq and x P Ki, one has

dY pfpxq, hpxqq ď dY pfpxq, gpxqq ` dY pgpxq, gpxiqq ` dY pgpxiq, hpxqq ď dKpf, gq `
δ

2
`
δ

2
ă ε

so that h P BK,εpfq. Therefore, g P
ng
Ş

i“1

LpKi, Uiq Ď BK,εpfq, i.e. BK,εpfq is open.
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Corollary 5.1.3.1. If X is compact and Y is a metric space, then the compact open topology on
the space of continuous functions CpX,Y q is the same as the topology induced by the sup-norm.

Lemma 5.1.4. Let X,Y, Z be topological spaces and φ : X Ñ Y a continuous map. Then the map

φ˚ : CpY, Zq CpX,Zq

g g ˝ φ

is continuous in compact-open topology.

Proof. Let K Ď
cpt
X and U Ď

open
Z. Then

pφ˚q´1LpK,Uq “ tg P CpY, Zq | pg ˝ φqpKq Ď Uu “ LpφpKq, Uq

is open, as φpKq Ď Y is compact.

Definition. Let A be an LCA group. We equip pA with the subspace topology of the compact-open
topology on CA.

• pA is a closed subspace of the space of continuous functions CpAq. Indeed, write

pA “
č

x,yPA

tχ : A Ñ S1 | χpxyq “ χpxqχpyqu

It suffices to show each set in the intersection is closed. Let x, y P A. Suppose f P CpAq is such
that fpxyq ‰ fpxqfpyq. Take open neighborhoods U, V,W of fpxq, fpyq, fpxyq, respectively,
such that W is disjoint from UV “ tuv | pu, vq P U ˆ V u. Since A is LCH, we can find
compact x P KU Ď f´1pUq, y P KV Ď f´1pV q, xy P KW Ď f´1pW q. Then all functions g in
LpKU , Uq X LpKV , V q X LpKW ,W q satisfy gpxyq ‰ gpxqgpyq.

Example 5.1.5.

1. The compact open topology on pR – R is the usual topology on R; see Theorem 7.1.3 for a
proof.

2. xS1 – Z.

Proposition 5.1.6. With the compact-open topology pA is a Hausdorff topological group.

Proof. We have to show the map

Φ : pAˆ pA pA

pχ, ψq χψ´1

is continuous. For pχ, ψq, pχ1, ψ1q and x P A one has

|χpxqψ´1pxq ´ χ1pxqψ1´1pxq| ď |χpxqψ´1pxq ´ χpxqψ1´1pxq| ` |χpxqψ1´1pxq ´ χ1pxqψ1´1pxq|

“ |ψ´1pxq ´ ψ1´1pxq| ` |χpxq ´ χ1pxq|

Let K Ď A be compact and let ε ą 0. Then

BK,εpχψ
´1q “ tγ P pA |

∥∥γ ´ χψ´1
∥∥
K

ă εu

is an open neighborhood of χψ´1, and sets of this form are a neighborhood basis (Lemma 5.1.3).
The estimate above shows that BK,ε{2pχq ˆBK,ε{2pψq Ď Φ´1pBK,εpχψ

´1qq, so Φ is continuous.
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Proposition 5.1.7. Let A be an LCA group.

1. If A is compact, then pA is discrete.

2. If A is discrete, then pA is compact.

Proof.

1. Suppose A is compact. Put U “ tz P S1 | Re z ą 0u. Since A is compact, the set LpA,Uq

is open by definition. But U contains no nontrivial subgroup of S1, so if χ P LpA,Uq, then
χpAq “ t1u; hence LpA,Uq contains only trivial character.

2. Suppose A is discrete. Then the compact subspaces of A are precisely the finite subsets of A.
Hence the compact open topology on pA coincides with the topology of pointwise convergence,
and pA Ď pS1qA is a closed subspace; by Tychonov’s theorem, the latter space is compact, and
hence so is pA.

Lemma 5.1.8. Let G, H be two LCA groups, and φ P HomTopGppG,Hq. Then

φ˚ : pH pG

χ χ ˝ φ

is a continuous homomorphism.

Proof. Lemma 5.1.4

Lemma 5.1.9. Let G,H be two LCA groups. The canonical map

{GˆH pGˆ pH

χ pχ|Gˆt1u, χ|t1uˆHq

is an isomorphism of topological groups.

Proof. We must show this is a homeomorphism. By Lemma 5.1.4, this is a continuous map. To
show the inverse is continuous, let K Ď G ˆ H be compact and U Ď S1 be open. Then the image
of LpK,Uq is

LpπGpKq, Uq ˆ LpπHpKq, Uq,

where πG : G ˆ H Ñ G and πH : G ˆ H Ñ H are canonical projections. Since this is open in the
product, this proves the continuity of the inverse map.

5.2 The Fourier Transform
Definition. Let A be an LCA group. For f P L1pAq we define the Fourier transform of f to be
the map pf : pA Ñ C defined by

pfpχq :“

ż

A

fpxqχpxqdx

This integral exists since χ is bounded.
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Lemma 5.2.1. For f, g P L1pAq and χ P pA, one has |f̂pχq| ď ∥f∥ and zf ˚ g “ f̂ ĝ.

Proof. The first assertion is clear. The second follows from a direct computation:

zf ˚ gpχq “

ż

G

pf ˚ gqpxqχpxqdx

“

ż

G

ˆ
ż

G

fpyqgpy´1xqdy

˙

χpxqdx

Fubini
“

ż

G

ż

G

fpyqχpyqgpy´1xqχpy´1xqdxdy

inv
“

ż

G

fpyqχpyqdy ¨

ż

G

gpxqχpxqdx “ pfpg

Lemma 5.2.2. For f P L1pAq we have xf˚ “ pf so that the Fourier transform p̈ : L1pAq Ñ Cp pAq is
˚-invariant.

Proof. Let χ P pA. Then

xf˚pχq “

ż

A

∆Apy´1qfpy´1qχpyqdy “

ż

A

fpy´1qχpy´1qdy
2.3.1.4

“

ż

A

fpyqχpyqdy “ pfpχq

Theorem 5.2.3. Let A be an LCA group. The map

d : pA ∆L1pAq

χ dχ

where dχpfq :“

ż

A

fpxqχpxqdx, is a homeomorphism. In particular,

1. pA is locally compact Hausdorff (Theorem 3.1.18) so that pA is an LCA group.

2. For every f P L1pAq, the Fourier transform pf P C0p pAq. (Theorem 3.1.18) Precisely, the triangle
commutes

L1pAq C0p pAq

C0p∆L1pAqq

Gelfand

Fourier

d˚

Proof. It follows from the above lemma that dχ P ∆L1pAq.

• Injectivity. If dχ “ dψ, then
ż

A

fpxqpχpxq ´ ψpxqqdx “ 0 for all f P L1pGq; in particular,

letting f “ χ´ ψ we see
ż

A

|χpxq ´ ψpxq|2dx “ 0 so that χ “ ψ.

• Surjectivity. Let m P ∆L1pAq. Since CcpAq is dense in L1pAq, we can find g P CcpAq such that
mpgq ‰ 0. For each x P A define

χpxq “
mpLxgq

mpgq

That m is continuous implies χ is continuous, and for x, y P A, one compute

mpLxgqmpLygq “ mpLxg ˚ Lygq “ mpLxyg ˚ gq “ mpLxygqmpgq
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so that χpxyq “ χpxqχpyq, i.e. χ : A Ñ Cˆ is a group homomorphism.

Let f P CcpAq. Then by Lemma D.7.4 we can view f ˚ g as
ż

A

fpxqLxgdx. Since m is a
bounded linear functional, by Proposition D.7.1 one obtains

ż

A

fpxqχpxqdx “
1

mpgq

ż

A

fpxqmpLxgqdx “
1

mpgq
m

ˆ
ż

A

fpxqLxgdx

˙

“
1

mpgq
mpf ˚ gq “

mpfqmpgq

mpgq
“ mpfq

Let pϕU q be a Dirac net in CcpAq. Then ϕU ˚ χ converges pointwise to χ, so for x P A and
ε ą 0 there exists a unit-neighborhood U such that

|χpxq| ď |ϕU ˚ χpxq| ` ε “

ˇ

ˇ

ˇ

ˇ

ż

A

LxϕU pyqχpyqdy

ˇ

ˇ

ˇ

ˇ

` ε

“ |mpLxϕU q| ` ε ď lim
U

∥LxϕU∥1 ` ε “ 1 ` ε

Since ε ą 0 is arbitrary, we get |χpxq| ď 1 for every x P A; but χpx´1q “ χpxq´1 so it is
equality. In conclusion χ P pA and m “ dχ.

• Continuity. Let f P L1pAq and U Ď C be open. We must show the inverse image under d the
set Mpf, Uq :“ tm P ∆L1pAq | mpfq P Uu is open in pA, i.e.

d´1Mpf, Uq “ tχ P pA | dχpfq P Uu “ tχ P pA | f̂pχq P Uu Ď
open

pA

Let χ P d´1Mpf, Uq and ε ą 0 such that Bεpf̂pχqq Ď U . Let g P CcpAq with ∥f ´ g∥1 ă ε{3.
Put K “ supppgq and V :“ BK,ε{3∥g∥1

pχq (Lemma 5.1.3). Then for all ψ P V we have

|f̂pχq ´ f̂pψq| ď |f̂pχq ´ ĝpχq| ` |ĝpχq ´ ĝpψq| ` |ĝpψq ´ f̂pψq|

ă ∥f ´ g∥1 ` ∥g∥1
ε

3 ∥g∥1
` ∥f ´ g∥1

ă ε

so that f̂pψq P U . Hence χ P V Ď d´1Mpf, Uq, proving that d´1Mpf, Uq is open.

• Continuous inverse. We prove the following lemma.

Lemma 5.2.4. Let χ0 P pA, K Ď A compact and ε ą 0. Then there exist ℓ P N, f0, . . . , fℓ P

L1pAq, and δ ą 0 such that for χ P pA the condition |f̂jpχq ´ f̂jpχ0q| ă δ for all j “ 0, . . . , ℓ

implies |χpxq ´ χ0pxq| ă ε for all x P K; in other words,

dχ0
P

ℓ
č

j“0

Mpfj , Bδpf̂jpχ0qqq Ď dBK,εpχ0q

Proof. We first make a reduction. For f P L1pAq, one has

f̂pχq ´ f̂pχ0q “ yfχ0pχχ0q ´ yfχ0p1q

so that we may assume χ0 “ 1. Let f P L1pAq with pfp1q “

ż

A

fpxqdx “ 1. Then there exists

a unit neighborhood U of A such that ∥Luf ´ f∥1 ă
ε

3
for all u P U . Since K is compact,

there are finitely many x1, . . . , xℓ P A such that K Ď x1U Y ¨ ¨ ¨ Y xℓU . Set fj :“ Lxjf and
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f0 “ f , and let δ “
ε

3
. Let χ P pA with |f̂jpχq ´ 1| ă

ε

3
for every j “ 0, . . . , ℓ. Now let x P K.

Then there exists 1 ď j ď ℓ and u P U such that x “ xju P xjU . One has

|χpxq ´ 1| “ |χpxq ´ 1|

ď |χpxq ´ χpxqf̂pχq| ` |χpxqf̂pχq ´ f̂jpχq| ` |f̂jpχq ´ 1|

“ |1 ´ f̂pχq| ` |yLxfpχq ´ zLxjfpχq| ` |f̂jpχq ´ 1|

ă
ε

3
`
ε

3
`
ε

3
“ ε

where the last inequality uses

|yLxfpχq ´ zLxj
fpχq| ď

∥∥Lxf ´ Lxj
f
∥∥
1

“ ∥Luf ´ f∥1 ă
ε

3

5.3 Group C˚-Algebra
Let f P L1pAq and ϕ, ψ P L2pAq. For every y P A, one has

|xLyϕ, ψy| ď ∥Lyϕ∥2 ∥ψ∥2 “ ∥ϕ∥2 ∥ψ∥2

This implies that the integral
ż

A

fpyqxLyϕ, ψydy exists, and one has the estimate

ˇ

ˇ

ˇ

ˇ

ż

A

fpyqxLyϕ, ψy

ˇ

ˇ

ˇ

ˇ

ď ∥f∥1 ∥ϕ∥2 ∥ψ∥2

In other word, the anti-linear map

L2pAq C

ψ

ż

A

fpyqxLyϕ, ψydy

is bounded. By Riesz’s representation theorem, there exists a unique vector, denoted by Lpfqϕ, in
L2pAq such that

xLpfqϕ, ψy “

ż

A

fpyqxLyϕ, ψydy

for all ψ P L2pAq. The above estimate gives |xLpfqϕ, ψy| ď ∥f∥1 ∥ϕ∥2 ∥ψ∥2; in particular, for
ψ “ Lpfqϕ one concludes

∥Lpfqϕ∥22 ď ∥f∥1 ∥ϕ∥2 ∥Lpfqϕ∥2

so that ∥Lpfqϕ∥2 ď ∥f∥1 ∥ϕ∥2, which implies the map

Lpfq : L2pAq L2pAq

ϕ Lpfqϕ

is bounded, and hence continuous.

Lemma 5.3.1. If f P L1pAq and ϕ P L1pAq X L2pAq, then Lpfqϕ “ f ˚ ϕ “ ϕ ˚ f .

85



Proof. By Proposition 2.6.2, f ˚ ϕ P L1pAq X L2pAq. Let ψ P CcpAq. Then

xf ˚ ϕ, ψy “

ż

A

ż

A

fpyqϕpy´1xqψpxqdydx

Fubini
“

ż

A

fpyq

ˆ
ż

A

Lyϕpxqψpxqdx

˙

dy

“

ż

A

fpyqxLyϕ, ψydy

“ xLpfqϕ, ψy

Since CcpGq is dense in L2pAq, this implies Lpfqϕ “ f ˚ ϕ.

Lemma 5.3.2. The map
L : L1pAq BpL2pAqq

f Lpfq

is an injective continuous homomorphism of Banach ˚-algebras.

Proof.

• Continuity. Since L is clearly linear and ∥Lpfq∥op ď ∥f∥1, so L is bounded and thus continuous.

• Homomorphism. Let f, g P L1pAq and ϕ P CcpAq. One computes

Lpf ˚ gqpϕq
5.3.1
“ pf ˚ gq ˚ ϕ “ f ˚ pg ˚ ϕq

5.3.1
“ f ˚ Lpgqϕ

5.3.1
“ LpfqLpgqϕ

Lemma 5.3.1 is valid for Lpgqϕ “ g ˚ ϕ P L1pAq X L2pGq by Proposition 2.6.2. Since CcpAq is
dense in L2pGq, this implies Lpf ˚ gq “ LpfqLpgq.

• Injectivity. Suppose f P L1pAq with Lpfqϕ “ 0 for all ϕ P L2pAq. In particular, f ˚ ψ “ 0 for
all ψ P CcpGq. Letting ψ run over a Dirac net of A, we see f “ 0.

• ˚-equivariant. Recall that since A is abelian

f˚pxq “ ∆Apx´1qfpx´1q “ fpx´1q

For ϕ, ψ P CcpAq, one has

xLpfqϕ, ψy “ xf ˚ ϕ, ψy “

ż

A

ż

A

fpyqϕpy´1xqψpxqdxdy

2.3.1
“

ż

A

ż

A

fpy´1qϕpyxqψpxqdxdy

inv
“

ż

A

ż

A

ϕpxqfpy´1qψpy´1xqdxdy

“

ż

A

ż

A

ϕpxqfpy´1qψpy´1xqdxdy

“ xϕ, f˚ ˚ ψy

so that Lpf˚q “ Lpfq˚.

Definition. For an LCA group A, the group C˚-algebra C˚pAq is defined to be the closure of
LpL1pAqq in the C˚-algebra BpL2pAqq.
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• Since L1pAq is a commutative Banach algebra, C˚pAq is a commutative C˚-algebra.

Theorem 5.3.3. The pullback map L˚ : ∆C˚pAq Ñ ∆L1pAq is a homeomorphism.

Proof. Since the image of L is dense in C˚pAq, it follows that m ˝ L ‰ 0 for all m P ∆C˚pAq and
that L˚ is injective. By Lemma 3.1.20, it suffices to show L˚ is surjective.

To show this, let m P ∆L1pAq and χ P pA such that m “ dχ, i.e., mpfq “ f̂pχq for all f P L1pAq.
We have to show m is continuous in C˚-norm, for then it has a continuous extension to C˚pAq. To
this end, let µ0 P ∆C˚pAq be fixed. Then there exists χ0 P Â such that µ0pLpfqq “ f̂pχ0q for all
f P L1pAq. Then for f P L1pAq,

mpfq “

ż

A

fpxqχpxqdx “

ż

A

fpxqχpxqχ0pxqχ0pxqdx “ zfχχ0pχ0q “ µ0pLpfχχ0qq

It follows that |mpfq| “ |µ0pLpfχχ0qq| ď ∥Lpfχχ0q∥C˚pAq. So it suffices to show that for f P L1pAq,
∥Lpfq∥C˚pAq “ ∥Lpfηq∥C˚pAq for all η P pA. As C˚-norm is the operator norm in BpL2pAqq, we
consider ϕ, ψ P L2pAq and compute

xLpηfqϕ, ψy “

ż

A

ηpxqfpxqxLxϕ, ψydx

“

ż

A

ηpxqfpxq

ż

A

ϕpx´1yqψpyqdydx

“

ż

A

ηpxqfpxq

ż

A

pηϕqpx´1yqpηψqpyqdydx

“ xLpηfqηϕ, ηψy

Putting ψ “ Lpηfqϕ, we get

∥Lpηfqϕ∥22 “ xLpfqpηϕq, ηLpηfqϕy ď ∥Lpfqpηϕq∥2 ∥ηLpηfqϕ∥2

Since ∥Lpηfqϕ∥2 “ ∥ηLpηfqϕ∥2, it follows that ∥Lpηfqϕ∥2 ď ∥Lpfqpηϕq∥2, and hence ∥Lpηfq∥C˚pAq ď

∥Lpfq∥C˚pAq; by symmetry we get equality.

Corollary 5.3.3.1. Let A be an LCA group. Then the Fourier transform L1pAq Ñ C0p pAq is
injective.

Proof. By functoriality, from L1pAq Ñ C˚pAq we obtain a commutative square

L1pAq C0p∆L1pAqq

C˚pAq C0p∆C˚pAqq

Gelfand1

L pL˚q˚

Gelfand2

The vertical right arrow is bijective by Theorem 5.3.3. In Theorem 5.2.3 we have a commutative
triangle

L1pAq C0p pAq

C0p∆L1pAqq

Gelfand1

Fourier

d˚

Hence we see the Fourier transform is the composition of injective maps

L1pAq C˚pAq C0p∆L1pAqq C0p pAq
L ppL˚q˚q´1˝ Gelfand2 d˚

(In fact, the injectivity simply results from the commutative triangle in Theorem 5.2.3.)
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5.4 The Plancherel Theorem
The Plancherel Theorem says that the Fourier transform extends to a unitary equivalence L2pAq –

L2p pAq. The proof of the theorem is postponed to the next section. In this section we do some
preparations.

Lemma 5.4.1. Let ϕ, ψ P L2pAq. Then the convolution product ϕ ˚ ψpxq :“

ż

A

ϕpyqψpy´1xqdy

exists for every x P A and defines a continuous function in x. The convolution ϕ ˚ ψ lies in C0pAq

and its sup-norm satisfies ∥ϕ ˚ ψ∥A ď ∥ϕ∥2 ∥ψ∥2. Finally one has ϕ ˚ ϕ˚p1q “ ∥ϕ∥22.

Proof. Since A is abelian (and hence unimodular), we have

ϕ ˚ ψpxq “

ż

A

ϕpyqψpy´1xqdy “

ż

A

ϕpyqLxψ˚pyqdy “ xϕ,Lxψ
˚y

Since ϕ and ψ are L2, xϕ,Lxψ
˚y exists for every x by Hölder’s inequality. The continuity follows

from Lemma 2.6.7. Next, by Cauchy-Schwarz, we obtain

∥ϕ ˚ ψ∥A “ sup
xPA

|xϕ,Lxψ
˚y| ď ∥ϕ∥2 ∥ψ∥2

By taking pϕnqn and pψnqn in CcpAq such that ∥ϕn ´ ϕ∥2 Ñ 0 and ∥ψn ´ ψ∥2 Ñ 0, we see from
the above inequality that ϕn ˚ ψn Ñ ϕ ˚ ψ uniformly. Since CcpAq Ď C0pAq and C0pAq is complete,
ϕ ˚ ψ P C0pAq. Finally, ϕ ˚ ϕ˚p1q “ xϕ, ϕy “ ∥ϕ∥22.

The space C0pAq ˆ C0p pAq is a Banach space with the norm

∥pf, ηq∥˚
0 :“ maxt∥f∥A , ∥η∥ pAu

We embed C0pAq X L1pAq into this product space by

C0pAq X L1pAq C0pAq ˆ C0p pAq

f pf, f̂q

and denote its closure in the product space by C˚
0 pAq; it is a Banach space with norm ∥¨∥˚

0 . We
have two natural projections

C0pAq C0pAq ˆ C0p pAq C0p pAq
π0 π˚

Lemma 5.4.2. Both restrictions to C˚
0 pAq of π0 and π˚ are injective. Hence we can view C˚

0 pAq

as a subspace of C0pAq as well as of C0p pAq.

Proof. Let f P C˚
0 pAq. We must show if one of π0pfq and π˚pfq is zero, then so is the other. Let

pfnqn Ď C0pAq X L1pAq such that fn Ñ f ; then π˚pfnq Ñ π˚pfq in C0p pAq and π0pfnq Ñ π0pfq in
C0pAq.

• Recall the isomorphism C˚pAq – C0p pAq. Then π˚pfnq Ñ π˚pfq in C0p pAq if and only if
Lpfnq Ñ π˚pfq (view π˚pfq as an element in C˚pAq), if and only if fn ˚ ψ Ñ π˚pfqpψq in
L2pAq for all ψ P CcpAq.

• Also, fn ˚ ψ Ñ π0pfq ˚ ψ in C0pAq.

Hence for ϕ P CcpAq, xfn ˚ψ, ϕy converges to xπ˚pfqpψq, ϕy, and also to xπ0pfq ˚ψ, ϕy, and therefore,

xπ˚pfqpψq, ϕy “ xπ0pfq ˚ ψ, ϕy

holds for all ψ, ϕ P CcpAq. Then π˚pfq “ 0 if and only if π0pfq “ 0.
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In the sequel, given an element f P C˚
0 pAq we will freely view it as an element of C0pAq or of

C˚pAq – C0p pAq. If we want to emphasize the distinction, we write f for the former and write
pf for the latter.

Lemma 5.4.3. f P C˚
0 pAq. If the Fourier transform pf is real-valued, then fp1q P R. If pf ě 0, then

fp1q ě 0. Here 1 P A is the identity element.

Proof. Suppose pf is real-valued. Then pf “ f̂ “ f̂˚, and since ˆ̈ is injective, f “ f˚ and therefore
fp1q “ f˚p1q “ fp1q. Now suppose f̂ ě 0. Then there exists g P C0p pAq – C˚pAq with g ě 0 sand
f̂ “ g2. Let ϕ “ ϕ˚ P CcpAq. Then Lpgqϕ P L2pAq, so

pLpgqϕq ˚ pLpgqϕq˚p1q “ ∥Lpgqϕ∥22 ě 0

Take pgnqn Ď L1pAq such that Lpgnq Ñ g in C˚pAq. Then

pLpgqϕq ˚ pLpgqϕq˚ “ lim
n

pLpgnqϕq ˚ pLpgnqϕq˚

“ lim
n

pgn ˚ ϕq ˚ pgn ˚ ϕq˚

“ lim
n
gn ˚ ϕ ˚ ϕ ˚ g˚

n

“ lim
n
gn ˚ g˚

n ˚ ϕ ˚ ϕ

“ lim
n
Lpgn ˚ g˚

nqpϕ ˚ ϕq “ Lpfqpϕ ˚ ϕq “ f ˚ ϕ ˚ ϕ

where the second last equality is due to g2 “ f̂ .

Lemma 5.4.4.

(a) The space L1pAq ˚ CcpAq is a subspace of C0pAq.

(b) Let f P C˚pAq, and let ϕ, ψ P CcpAq. Then Lpfqpϕ˚ψq P C˚
0 pAqXL2pAq, viewed as a subspace

of C0pAq. One has {Lpfqpϕ ˚ ψq “ pf pϕ pψ.

Proof.

(a) For f P L1pAq, let fn P CcpAq such that fn Ñ f in L1. Then for ϕ P CcpAq,

|pfn ´ fmq ˚ ϕpxq| “

ˇ

ˇ

ˇ

ˇ

ż

A

pfn ´ fmqpyqϕpy´1xqdy

ˇ

ˇ

ˇ

ˇ

ď ∥fn ´ fm∥1 ∥ϕ∥8

Thus fn ˚ ϕ is Cauchy in C0pAq, and since C0pAq is complete, their limit f ˚ ϕ lies in C0pAq.

(b) For f P C˚pAq, we can find fn P L1pAq such that Lpfnq Ñ f in C˚pAq. We have Lpfnqpϕ˚ψq “

fn ˚ ϕ ˚ ψ P C0pAq X L1pAq by Lemma 5.3.1 and (a). We show that fn ˚ ϕ ˚ ψ is Cauchy in
C˚

0 pAq, i.e. it is Cauchy in C0pAq and its Fourier transform is Cauchy is C0p pAq.

Since {fn ˚ ϕ ˚ ψ “ xfnpϕ pψ and xfn converges uniformly on pA (recall C˚pAq – C0p pAq), we see
xfnpϕ pψ Ñ pf pϕ pψ uniformly on pA. On the other hand, by Lemma 5.4.1,

∥pfm ´ fnq ˚ ϕ ˚ ψ∥A ď ∥pfm ´ fnq ˚ ϕ∥2 ∥ψ∥2 ď ∥fm ´ fn∥1 ∥ϕ∥2 ∥ψ∥2

so fn ˚ ϕ ˚ ψ is Cauchy in C0pAq as well.

89



Lemma 5.4.5. Let pϕU q be a Dirac net in CcpAq. Then

(a) pf ˚ ϕU q converges to f in C˚pAq for all f P C˚pAq.

(b) pf ˚ ϕU q converges uniformly to f for every f P C0pAq.

(c) pf ˚ ϕU q converges to f in C˚
0 pAq for every f P C˚

0 pAq.

(d) pxϕU q converges locally uniformly to 1 on pA.

Proof.

1. It holds when f P L1pAq by Lemma 2.6.9. Since L1pAq Ď C˚pAq is dense, the result follows.

2. Similar to (a), with L1pAq replaced by CcpAq, which is dense in C0pAq.

3. This follows from (a) and (b).

4. Let C Ď pA be compact and pick positive ψ P Ccp pAq such that ψ ” 1 on C. Let f P C˚pAq

such that f̂ “ ψ (see the last composition in Corollary 5.3.3.1). Then∥∥∥ϕ̂Uψ ´ ψ
∥∥∥

pA
“ ∥ϕU ˚ f ´ f∥op Ñ 0

by (a), and the result follows. (Recall that the Gelfand transform is isometric by Gelfand-
Naimark so that map C˚pAq – C0p pAq is isometric; see Corollary 5.3.3.1 as well.)

Lemma 5.4.6. Let η P Ccp pAq be real-valued and let ε ą 0. Then there are f1, f2 P C˚
0 pAq XL2pAq,

considered as subspaces of C0pAq, such that

(i) the Fourier transforms f̂1, f̂2 lie in Ccp pAq,

(ii) they satisfy f̂1 ď η ď f̂2, further
∥∥∥f̂1 ´ f̂2

∥∥∥
pA

ă ε, and supp f̂i Ď supp η for i “ 1, 2,

(iii) as well as 0 ď f2p1q ´ f1p1q ă ε

In particular, every η P Ccp pAq is the uniform limit of functions of the form f̂ with f P C˚
0 pAq of

support contained in supp η.

Proof. For any Dirac function ϕ P CcpAq one has ϕ̂ P C0p pAq by Theorem 5.2.3.2 and Lemma 5.4.5
says that the ensuing function ϕ̂ can be chosen to approximate the constant 1 arbitrarily close on
any compact set.

Note that the Fourier transform {h ˚ h˚ “ ĥĥ˚ “ ĥĥ ě 0. Let K :“ supp η Ď pA. Since CcpAq

contains Dirac functions of arbitrary small support, we conclude that for every δ ą 0 there exists a
function ϕδ P C`

c pAq such that the function ψδ :“ ϕδ ˚ ϕ˚
δ satisfies

1 ´ δ ď ψ̂δpχq ď 1 ` δ for every χ P K

Fix ϕ P C˚
c pAq such that ψ :“ ϕ ˚ ψ˚ satisfies ψ̂pχq ě 1 for all χ P K. Let f P C˚pAq with f̂ “ η

and set
f1 :“ f ˚ pψδ ´ δψq, f2 :“ f ˚ pψδ ` δψq

By Lemma 5.4.4, f1, f2 P C˚
0 pAq X L2pAq. For every χ P pA, we have

f̂1pχq “ f̂pχqpψ̂δpχq ´ δψ̂pχqq ď ηpχq ď f̂2pχq

Further, as f̂pχq “ ηpχq, one has supppf̂iq Ď supp η. The other properties follow by choosing δ small
enough and Lemma 5.4.3.
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Proposition 5.4.7. Let ψ P Ccp pAq be real-valued. Then

suptfp1q | f P C˚
0 pAq, f̂ ď ψu “ inftfp1q | f P C˚

0 pAq, f̂ ě ψu

Denote this common value by Ipψq. Extending linearly, we obtain a positive linear functional
I : Ccp pAq Ñ C. Then I is a Haar integral. We write this integral as

Ipψq “

ż

pA

ψpχqdχ

Proof. By Lemma 5.4.3, if we pick f P LHS and g P RHS, then zg ´ f ě 0 so that gp1q ě fp1q; this
implies

suptfp1q | f P C˚
0 p pAq, f̂ ď ψu ď inftfp1q | f P C˚

0 pAq, f̂ ě ψu

The equality holds, for their difference is arbitrarily small by Lemma 5.4.6 (particularly (ii) and
(iii)).

• I linear. Clear.

• I positive. If ψ ě 0, then fp1q ě 0 for all f P C˚
0 pAq with f̂ ě ψ by Lemma 5.4.3. Thus

Ipψq ě 0.

• Invariance. Let ψ P Ccp pAq and f P C˚
0 pAq with f̂ ď ψ. For χ P pA we have Lχf̂ ď Lχψ.

Further,

Lχf̂pρq “ f̂pχ´1ρq “

ż

A

fpyqχ´1ρpyqdy “

ż

A

fχpyqρpyqdy “ xfχpρq

and χfp1q “ fp1q. This shows the invariance.

The following will be proved in the next section as a consequence of the Pontryagin duality
theorem.

Theorem 5.4.8 (Plancherel). For a given Haar measure on A there exists a uniquely determined
Haar measure on pA, called the Plancherel measure, such that for f P L1pAq X L2pAq one has

∥f∥2 “

∥∥∥f̂∥∥∥
2

This implies that the Fourier transform extends to an isometry from L2pAq to L2p pAq. Indeed, it is
also surjective, so the Fourier transform extends to a canonical unitary equivalence L2pAq – L2p pAq.

Corollary 5.4.8.1. Let K be a compact LCA group. Then the elements of the dual group pK form
an orthonormal basis of L2pKq.

Proof. We normalized the Haar measure on K so that the volume of K is 1. K being compact, every
continuous function on K is L2; particularly, every character of K is L2. We show the characters of
K form an orthonormal system, i.e. that for χ, η P pK we have

xχ, ηy “ δχ,η “

#

1 , χ “ η

0 , χ ‰ η

This is standard, and can be proved as in the finite group case. It follows that the Fourier transform
of a character χ is the map δχ with δχpηq :“ δχ,η.

91



Since K is compact, pK is discrete so that the Plancherel measure is just a multiple of the counting
measure; say the constant is c ą 0. Let S be any finite subset of pK. For each f P L2p pKq, one has∥∥∥∥∥f ´

ÿ

χPS

fpχqδχ

∥∥∥∥∥
2

2

“ c

¨

˝

ÿ

χP pA

|fpχq|2 ´
ÿ

χPS

|fpχq|2

˛

‚

It follows from the definition of the integral (associated to the counting measure) that we can pick
S large enough that the difference is arbitrarily small; hence tδχu

χPxK
forms an orthonormal basis of

L2p pKq. By Plancherel theorem, the Fourier transform is a unitary equivalence, the characters form
an orthonormal basis of L2pKq.

5.4.1 Examples of Plancherel measures
Lemma 5.4.9. Let K be a compact LCA group and let dx be a Haar measure on K. Then the
Plancherel measure on pK is 1

volpK, dxq
times the counting measure on pK.

Proof. For all χ P pK,

x1Kpχq “

ż

K

1Kpxqχpxqdx “

#

volpK, dxq , if χ is trivial
0 , if χ is non-trivial.

Since pK is discrete, the Plancherel measure is a multiple of the counting measure; say the constant
is c ą 0. By Plancherel theorem and the computation above,

volpK, dxq “ ∥1K∥22 “

∥∥∥x1K∥∥∥2
2

“ c
ÿ

χPxK

{1Kpχq
2

“ c volpK, dxq2.

Hence c “
1

volpK, dxq
.

Lemma 5.4.10. Let D be a discrete subgroup, and pick c ą 0. Then the Plancherel measure on pD

corresponding to c# is the measure such that the total volume of pD is c.

Proof. Denote by e the identity in D, and let dχ be the measure on pD so that volp pD, dχq “ 1. Then

y1teupχq “
ÿ

xPD

1teupxqχpxq “ χpeq “ id
pDpχq.

Say adχ is the Plancherel measure on pD for some a ą 0. By Plancherel theorem, we have

c “
∥∥1teu

∥∥2
2

“

∥∥∥y1teu

∥∥∥2
2

“

ż

pD

id
pDpχqadχ “ a.

Lemma 5.4.11. Let G,H be two LCA groups, and let dg, dh be any Haar measures on G, H. The
Plancherel measure on {GˆH corresponding to dg b dh is the product of the Plancherel measures
on pGˆ pH, under the identification of {GˆH – pGˆ pH in Lemma 5.1.9.

Proof. This follows from Fubini and the fact that CcpGq b CcpHq Ď CcpG ˆ Hq is dense by Stone-
Weirestrass.
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5.5 Pontryagin Duality
For an LCA group A, we see in Theorem 5.2.3 that pA is again an LCA group, so we can consider
the dual group x

xA of pA, and it is again an LCA group. There is a canonical association, called the
Pontryagin map, δ which assigns each x P A to a group homomorphism δx : pA Ñ S1 given by
δxpχq “ χpxq.

Lemma 5.5.1. For each x P A, the homomorphism δx : pA Ñ S1 is continuous, and thus δx P
x

xA.

Proof. For each ε ą 0, δ´1
x pBεp1qq “ tχ P pA | |χpxq ´ 1| ă εu is open in pA by the definition of the

compact-open topology (note that every singleton is compact).

Proposition 5.5.2. The Pontryagin map δ : A Ñ
x

xA is an injective continuous group homomor-
phism. In particular, if 1 ‰ x P A, there exists some χ P pA such that χpxq ‰ 1.

Proof.

• Group homomorphism. Clear.

• Continuity. We show the Pontryagin map is continuous at the identity element. Let V Ď
x

xA

be a unit-neighborhood. By Lemma 5.1.3 we can find compact K 1 Ď pA and ε ą 0 such that

BK1,ε “ BK1,εp1q “ tα P
x

xA | |αpχq ´ 1| ă ε for all χ P K 1u Ď V

Let L Ď A be a compact unit-neighborhood. Since K 1 is compact, we can find χ1, . . . , χn P K 1

such that K 1 Ď BL,ε{2pχ1q Y ¨ ¨ ¨ YBL,ε{2pχnq, where

BL,ε{2pχq :“ tψ P pA | |ψpxq ´ χpxq| ă ε{2 for all x P Lu

For j “ 1, . . . , n, let Uj “ tx P A | |χjpxq ´ 1| ă ε{2u. Finally, let

U “ intLX U1 X ¨ ¨ ¨ X Un

Then for x P U and χ P K 1 (say χ P BL,ε{2pχiq), we have

|δxpχq ´ 1| “ |χpxq ´ 1| ď |χpxq ´ χipxq| ` |χipxq ´ 1| ă
ε

2
`
ε

2
“ ε

so that δpUq Ď BK1,ε Ď V .

• Injectivity. Assume 1 ‰ x P A with δx “ 1
pA. Then χpxq “ 1 for every χ P pA. Choose

g P CcpAq with gp1q “ 1 and gpx´1q “ 0. Then Lxpgq ‰ g, but

{Lxpgqpχq “ χpxqpgpχq “ pgpχq

for all χ P pA, a contradiction to injectivity of Fourier transform.

Lemma 5.5.3. Let f P C˚
0 pAq be such that it Fourier transform lies in Ccp pAq. Then for every x P A

one has fpxq “
p

pfpδx´1q.

Proof. One has for x P A,

fpxq “ Lx´1fp1q “

ż

pA

{Lx´1fpχqdχ “

ż

pA

pfpχqδxpχqdχ “
p

pfpδx´1q

The second equality holds for f̂ P Ccp pAq and by Proposition 5.4.7.
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Lemma 5.5.4. For an LCA group A, the following hold.

(i) CcpAq is dense in C˚
0 pAq.

(ii) Ccp pAq X tf̂ | f P C˚
0 pAq X L2pAqu is dense in C˚

0 p pAq.

(iii) Ccp pAq X tf̂ | f P C˚
0 pAq X L2pAqu is dense in L2p pAq.

Proof.

(i) By definition, C0pAq XL1pAq is dense C˚
0 pAq. It suffices to show that for a given f P C0pAq X

L1pAq, there exists a sequence in CcpAq converging in ∥¨∥A and ∥¨∥1. For each n ě 1, let
Kn :“ tx P A | |fpxq| ě 1

nu; this is compact since f P C0pAq. Choose χn P CcpAq with
χn|Kn

” 1 and set fn “ χnf . Then fn Ñ f in both norms.

(ii) and (iii) follow from (i) and Lemma 5.4.6.

Theorem 5.5.5 (Pontryagin Duality). The Pontryagin map δ : A Ñ
x

xA is an isomorphism of LCA
groups.

Proof. We have seen that δ is an injective group homomorphism. It remains to show δ is surjective
with a continuous inverse. We will show that δ is a closed map with dense image.

• δ has a dense image. Suppose otherwise. Then there exists open U Ď
x

xA disjoint from δpAq. By
Lemma 5.4.6 (with pA in place of A) together with Urysohn’s lemma, we can find ψ P C˚

0 p pAq

which is nonzero and pψ is supported in U , i.e., pψpδpAqq “ 0. By Lemma 5.5.4, we can find
pfnq Ď C˚

0 pAq such that ψn :“ xfn lies in Ccp pAq with ψn Ñ ψ in C˚
0 p pAq. By inversion formula,

we have
fnpxq “ xψnpδx´1q for all x P A.

This implies (for pψpδpAqq “ 0) that fn Ñ 0 uniformly on A. On the other hand, xfn “: ψn Ñ ψ

uniformly on pA. These two imply that pfnq is a Cauchy sequence in C˚
0 pAq, so it converges in

this space. Since the limit is unique, it follows from Lemma 5.4.2 that ψ “ 0, a contradiction.
Hence the image of δ must be dense in x

xA.

• δ is a proper map. It suffices to show δ̆pxq :“ δpx´1q. Let K Ď
x

xA be compact. By Lemma
5.4.6 (with Urysohn’s lemma) there exists ψ P C˚

0 p pAq such that ψ̂ has compact support, ě 0 on
x

xA, and ě 1 on K. As above, there is a sequence pfnq Ď C˚
0 pAq such that ψn :“ f̂n ě 0 lies in

Ccp pAq and converges to ψ in C˚
0 p pAq. Fix n with

∥∥∥ψ̂ ´ ψ̂n

∥∥∥
x

xA
ă

1

2
. We have fnpxq “ ψ̂npδx´1q

for all x P A, and since fn P C0pAq, we can find compact C Ď A such that |fn| ă
1

2
outside C.

As ψ̂n|K ě
1

2
, it follows that δ̆´1pKq Ď C.

• δ is a closed map. This is Proposition A.7.2.

Proposition 5.5.6. The Fourier transform induces an isometric isomorphism of Banach spaces

F : C˚
0 pAq Ñ C˚

0 p pAq
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with inverse map given by the dual Fourier transform

pF : C˚
0 p pAq C˚

0 pAq

ψ rx ÞÑ ψ̂pδx´1qs

Proof. Let B “ tf P C˚
0 pAq | pf P Ccp pAqu. For f P B we have pF ˝ Fpfq “ f by Lemma 5.5.3.

Further, one has

∥f∥˚
0 :“ maxt

∥∥∥f̂∥∥∥
pA
, ∥f∥Au “ maxt

∥∥∥f̂∥∥∥
pA
,
∥∥∥ pF ˝ Fpfq

∥∥∥
A

u

“ maxt

∥∥∥f̂∥∥∥
pA
,
∥∥∥ppf∥∥∥

p

pA
u

“ ∥Fpfq∥˚
0

By Lemma 5.5.4 FpBq is dense in C˚
0 p pAq, so the Fourier transform defines a surjective isometry from

the closure of B to C˚
0 p pAq, and thus pF is an isometry from C˚

0 p pAq to C˚
0 pAq. Since pF “ F

pA ˝ δ´1 (in
an appropriate sense), where F

pA denotes the Fourier transform on pA, and since F
pApC˚

0 p pAqq contains
a subset of CcpppAq that is dense in C˚

0 pppAq by Lemma 5.5.4, it follows from Pontryagin duality that
pF pC˚

0 p pAqq is dense in C˚pAq. Since pF is isometric, it is then an isomorphism of Banach spaces.

Theorem 5.5.7 (Inversion Formula). Let f P L1pAq be such that pf P L1p pAq. Then f is continuous,
and for x P A one has

fpxq “ p

pfpδx´1q

Proof. Let f P L1pAq with pf P L1p pAq. Then pf P C0p pAq X L1p pAq Ď C˚
0 p pAq by Theorem 5.2.3.2. and

definition of C˚
0 p pAq. By Proposition 5.5.6 we can find g P C˚

0 pAq with pg “ pf and gpxq “ p

pfpδx´1q for
every x P A. Since the Fourier transform C˚pAq Ñ C0p pAq is injective, we see f “ g in C˚pAq.

Proof. (of Plancherel theorem) Let f P L1pAq XL2pAq. By Lemma 5.4.1, we have f ˚ f˚ P L1pAq X

C0pAq. The continuous function h “ {f ˚ f˚ “ | pf |2 P C0p pAq is positive. Let ϕ P Ccp pAq satisfy
0 ď ϕ ď h. Then by Proposition 5.4.7 and Lemma 5.4.1, we have

ż

pA

ϕpχqdχ ď f ˚ f˚p1q “ ∥f∥22 ă 8

Thus h is integrable, so {f ˚ f˚ P L1pAq. By inversion formula we have

∥f∥22 “ f ˚ f˚p1q “
{

{f ˚ f˚p1q “
y

|pf |2p1q “

∥∥∥f̂∥∥∥2
2

As L1pAq X L2pAq is dense in L2pAq, the Fourier transform extends uniquely to an isometric linear
map L2pAq Ñ L2p pAq. By Lemma 5.4.6 the image in L2pAq is dense, whence the map is surjective.

Proposition 5.5.8. Let ϕ, ψ P L1pAq X L2pAq and let f “ ϕ ˚ ψ. Then f P L1pAq and pf P L1p pAq,
so the inversion formula applies to f.

Proof. We have pf “ zϕ ˚ ψ “ pϕ pψ P L1p pAq by Hölder’s inequality.
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5.6 Classical applications

5.6.1 Poisson summation formula
Let A be an LCA group. Recall we have a pairing

x , y : Aˆ pA C

pa, χq χpaq “ δapχq

From this we introduce some notation. For E Ď A, let

EK :“ tχ P pA | xE,χy “ 1u “ tχ P pA | δapχq “ 1 for all a P Eu

and for L Ď pA, let

LK “ ta P A | xa, Ly “ 1u “ ta P A | χpaq “ 1 for all χ P Lu

By definition (and perhaps Proposition 5.5.2), EK is closed in pA, and LK is closed in A.

Proposition 5.6.1. Let A be an LCA group and B ď A be closed. Then

(i) BK
zA{B

χ χ : xB ÞÑ χpxq

is an isomorphism.

(ii) pBKqK “ B.

(iii)
pA{BK

pB

χBK χ|B

is an isomorphism.

Proof.

(i) Since A Ñ A{B is surjective, we have an injection zA{B Ñ pA. Its image is clearly BK.

(ii) From definition follows B Ď pBKqK. Similarly, if L Ď pA, we have L Ď pLKqK. It follows that

BK Ě ppBKqKqK Ě BK

so BK “ ppBKqKqK.

(iii) p pA{BKq^ “ pBKqK “ B.

Corollary 5.6.1.1. Let A be an LCA group and B ď A be closed. Then we have an short exact
sequence

1 zA{B pA pB 1
p¨q|B

Theorem 5.6.2 (Poisson’s Summation Formula). Let A be an LCA group and B ď A be closed.
For f P L1pAq, define fB P L1pA{Bq by

fBpxBq :“

ż

B

fpxbqdb
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If we identify zA{B with BK, we get xfB “ pf |BK . If, in addition, pf |BK P L1pBKq, we get
ż

B

fpxbqdb “

ż

BK

pfpχqχpxqdχ

for almost all x P A. Here the Haar measure on BK – zA{B is the Plancherel measure with respect
to the chosen Haar measure on A{B such that the quotient integral formula holds.

Proof. By the quotient integral formula, for χ P BK

xfBpχq “

ż

A{B

fBpxBqχpxBqdxB “

ż

A{B

ż

B

fpxbqχpxbqdbdxB “

ż

A

fpxqχpxqdx “ pfpχq

Moreover, if pf |BK P L1pBKq “ L1pzA{Bq, then the inversion formula implies
ż

B

fpxbqdb “ fBpxBq “
x

xfB pδx´1Bq “
z

pf |BK pδx´1Bq “

ż

BK

pfpχqχpxqdχ

holds almost everywhere.

Example 5.6.3. Let A be the additive group R with euclidean topology. Then A is self-dual, where
the isomorphism A – pA is given by y ÞÑ rχy : x ÞÑ e2πixys. Let B be the discrete subgroup Z. Then
y ÞÑ χy maps B bijectively to BK.

For f P L1pRq such that pf |Z P L1pZq, the equality
ÿ

kPZ
fpx` kq “

ÿ

kPZ

pfpkqe2πikx (♠)

holds for almost all x, where pfpxq “

ż

R
fpyqe´2πixydy.

Define the Schwartz space SpRq as the space of all smooth functions f : R Ñ C such that for
all m,n P Z the function xnf pmqpxq is bounded. Then the Fourier transform is a bijection on SpRq.
For f P SpRq, both sums in p♠q converge uniformly and define continuous functions, so by taking
x “ 0 we obtain

ÿ

kPZ
fpkq “

ÿ

kPZ

pfpkq

This is the classical Poisson summation formula.

5.6.2 Mellin inversion
In this subsection we exclusively discuss Rą0; see §7.1.2 for local fields. We write dˆx “ dx

x for the
Haar measure on Rą0. For σ P R, define

L1pRą0, σq “
␣

f : Rą0 Ñ C | fpxqxσ P L1pRą0q
(

.

For s “ σ ` iτ P C and f P L1pRą0, σq define the Mellin transform

Mpf, sq :“

ż

Rą0

fpxqxsdˆx “

ż

Rą0

fpxqxσxiτdˆx.

Keeping in mind the fact that yRą0 – iR (whose inverse is given by it ÞÑ rx ÞÑ xits), the Mellin
transform Mpf, sq is simply the Fourier transform of x ÞÑ fpxqxσ evaluated at the character x ÞÑ xiτ .
Via this isomorphism, we also see the Plancherel measure on yRą0 is given by the Lebesgue measure
on R. Hence,

Theorem 5.6.4 (Mellin inversion). For f P L1pRą0, σq with Mpf, sq P L1pRq, we have

fpxqxσ “

ż

R
Mpf, σ ` itqx´itdt
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Chapter 6

The Structure of LCA-Groups

6.1 Connectedness
Recall that for a topological space X with base point x0, the set π0pX,x0q is defined to be the
collection of all connected components with a mark point being the one containing x0.

Definition. Let G be a topological group. The connected component of G containing e is called
the identity component, and is denoted by G˝.

Proposition 6.1.1. Let G be a topological group.

(i) The identity component G˝ is a closed normal subgroup of G.

(ii) For any x P G, the coset xG˝ is the connected component containing x. In particular, the
natural map G Ñ π0pG, eq induces a bijection G{G˝ – π0pG, eq.

(iii) The quotient group G{G˝ is totally disconnected.

Proof. To show G{G˝ is totally disconnected, we prove that every subset A Ď G{G˝ with #A ě 2

is not connected. Let π : G Ñ G{G˝ be the projection and put B “ π´1pAq. Then B contains at
least two distinct cosets of G˝, so B is not connected. Thus we can find open W1,W2 Ď G with
B X Wi ‰ H, i “ 1, 2, B X W1 X W2 “ H and B Ď W1 Y W2. Then xG˝ X W1 X W2 “ H and
xG˝ Ď W1 YW2 for all x P B; since xG˝ is connected, we have xG0 Ď Wi for some i “ 1, 2. Hence,
Vi :“ πpWiq, i “ 1, 2 are nonempty disjoint open sets in G{G˝ separating A.

Proposition 6.1.2. Let G be a topological group and let U be an open compact unit-neighborhood
of G. Then U contains an open compact subgroup of G.

Proof. By compactness of U we can find a symmetric unit-neighborhood V of G such that UV “

U “ V U . The subgroup K :“
ď

nPN
V n generated by V is then an open, hence closed, subgroup

contained in U . Since U is compact, K is also compact.

Proposition 6.1.3. Every totally disconnected LCH space X has a basis consisting open and
compact subsets of X.

Proof. It suffices to show that for each x P X and each compact neighborhood U of x, there exists
an open and closed subset V of X such that x P V Ď U . For this, let

M :“ ty P U | there exists a relatively open and closed subset Cy Ď U with y P Cy, x R Cyu
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By definition M is the union of all such Cy, showing that M is relatively open in U . Let A “ UzM ;
then x P A and A is closed. We claim

• the set A is connected.

Assuming this, since X is totally disconnected, we have A “ txu, so the compact boundary BU :“

Uzint U lies in M , hence lies in the union of finitely many sets Cy1 , . . . , Cyn . Then V :“ Uz
n
Ť

i“1

Cyi

contains x, is relatively open in U and is closed in X. Since V Ď int U , V is also open in X.
It remains to show A is connected. Let B1, B2 be closed, hence compact in U , subsets of A such

that B1 XB2 “ H and A “ B1 YB2. Assuming x P B1, we must show B2 is empty. Since B1 and B2

are compact, we can find W Ď U open in U such that B2 Ď W and W XB1 “ H. Since W zW Ď M

is compact in U , it is covered by finitely many of the open sets Cy; say C Ď M is their (finite)
union. Then W zW Ď C and C is open and closed in U . Set W̃ :“ W Y C; since W Y C “ W Y C,
W̃ is open and closed in U . Also, W̃ X A “ W X A “ B2, so x R W̃ , and W̃ Ď M , which implies
B2 “ H.

Theorem 6.1.4. A totally disconnected LCH group admits an open neighborhood basis of identity
consisting of open compact subgroups.

6.1.1 Profinite groups
Definition. A profinite group is a topological group isomorphic to a projective limit of finite
groups.

Theorem 6.1.5. For a topological group G, TFAE:

(i) G is profinite.

(ii) G is compact, Hausdorff and totally disconnected.

(iii) G is compact, Hausdorff and has an open neighborhood basis of the identity consisting of
normal subgroups.

Proof. (i) ñ(ii) is clear. Assume (ii). By Theorem 6.1.4 G has an open neighborhood basis of
identity consisting of open subgroups. Let U be an open subgroup of G; since G is compact, the
index rG : U s is finite. Consider the natural homomorphism G Ñ SG{U ; the fibre of g is of the form
g

ď

hPG{U

h´1Uh, an open neighborhood of g. Hence the homomorphism is continuous, so its kernel

N is an open normal subgroup of G contained in U . Hence (iii).
Now assume (iii). We have a natural map Φ : G Ñ H :“ lim

ÐÝ
N

G{N , where N runs over all open

normal subgroups of G. Since G is compact, each G{N is a finite group. We have to check it is an
isomorphism of topological groups.

• Injectivity. The kernel is the intersection of all open normal subgroups. Since they form a
neighborhood basis of the identity e of G and G is Hausdorff, it follows that kerΦ “ teu.

• Continuity. Let S be a finite collection of open normal subgroups of G. Then the inverse image

of HS :“

˜

ś

NPS

teNu ˆ
ś

NRS

G{N

¸

X lim
ÐÝ
N

G{N under Φ is
Ş

NPS

N , which is open in G.
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• Dense image. Let S and HS be as in previous item. Let g P G and write Φpgq “
ś

N

gN P H.

Then ΦpgqHS is a neighborhood of Φpgq, and if we take g1 P G that is mapped under G Ñ

G{
Ş

NPS

N to g Ş

NPS

N , then Φpg1q P ΦpgqHS .

• Closed mapping. For G is compact.

Example 6.1.6 (Infinite Galois theory). Let Ω{k be a (finite or infinite) Galois extension, i.e, a
normal separable algebraic extension. The Galois group G :“ GalpΩ{kq is given a topology, called the
Krull topology, defined as follows. For σ P G, take the cosets σGalpΩ{Kq as an open neighborhood
basis of σ P G, where K{k runs over all finite Galois subextensions of Ω{k.

• The multiplication G ˆ G Ñ G is continuous, since for pσ, τq P G ˆ G, the preimage of
στ GalpΩ{Kq contains a neighborhood σGalpΩ{τpKqq ˆ τ GalpΩ{Kq of pσ, τq.

• The inversion G Ñ G is continuous, for the preimage of σ´1 GalpΩ{Kq is

GalpΩ{Kqσ “ σσ´1 GalpΩ{Kqσ “ σGalpΩ{σ´1pKqq

In this way G “ GalpΩ{kq becomes a topological group. In fact, one can easily see that this topology
is just the subspace topology inherited from the pointwise convergence topology on ΩΩ, where Ω is
thought of as a discrete space. In particular, this implies G is Hausdorff. Now consider the map

Φ : G H :“
ś

K

GalpK{kq

σ pσ|KqK

where K{k runs over all finite Galois subextensions of Ω{k. By Tychonov’s theorem, H is compact,
and to show G is compact it suffices to show Φ is a closed embedding.

• Injective. Clear.

• Continuity. Let K0{k be a finite Galois subextension of Ω{k. The inverse image of the set
ś

K‰K0

GalpK{kq ˆ tσ0u with σ0 P GalpK0{kq is σGalpΩ{K0q, where σ P G is any extension of

σ0 to Ω.

• Open mapping. Let the notation be as in the previous item. Then the image of σGalpΩ{K0q

under Φ is ΦpGq X

˜

ś

K‰K0

GalpK{kq ˆ tσ0u

¸

, which is open in ΦpGq.

• ΦpGq is closed in H. Indeed, we have

ΦpGq “
č

LĎL1

tpσKqK P H | σL1 |L “ σLu

where L Ď L1 runs over all finite subextensions of Ω{k. For such a pair L Ď L1, if we write
GalpL{kq “ tσiu

n
i“1 and Si Ď GalpL1{kq such that Si|L “ tσiu, then

tpσKqK P H | σL1 |L “ σLu “

n
ď

i“1

˜

ź

K‰L,L1

GalpK{kq ˆ Si ˆ tσiu

¸

is a closed set in H, and hence ΦpGq is closed in H.
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This shows G is a compact Hausdorff topological space. Moreover, since G{GalpΩ{Kq – GalpK{kq is
a group, GalpΩ{Kq is normal, i.e. G admits an open neighborhood basis of the identity consisting of
normal subgroups. Therefore G is profinite by Theorem 6.1.5; in particular, we have an isomorphism
of topological groups

GalpΩ{kq – lim
ÐÝ
K

GalpK{kq

The infinite Galois theory states that the association K ÞÑ GalpΩ{Kq gives an 1-1 correspondence
between the subextensions K{k of Ω{k and the closed subgroups of GalpΩ{kq, under which the open
subgroups of GalpΩ{kq correspond to the finite subextensions of Ω{k.

• Each open subgroup is closed.

• If K{k is a finite subextension of Ω{k, take N{k be its Galois closure in Ω. Then for GalpΩ{Nq

is an open unit-neighborhood of GalpΩ{Kq, so GalpΩ{Kq is open in G.

• If K{k is any subextension of Ω{k, then GalpΩ{Kq “
č

K1

GalpΩ{K 1q, where K 1 runs over all

finite subextensions of K{k, so GalpΩ{Kq is closed.

• Injectivity. For a subextension K{k of Ω{k, the fixed field of GalpΩ{Kq in Ω is K. Clearly,
K Ď ΩGalpΩ{Kq. If x P ΩGalpΩ{Kq, let σ P GalpKpxq{Kq and extend it to an element σ1 P

GalpΩ{Kq Ď G. Then σpxq “ σ1pxq “ x, so GalpKpxq{Kq “ 1, i.e., x P K.

• Surjectivity. Let H ď G be a closed subgroup. Put K “ ΩH . We claim H “ GalpΩ{Kq.
Clearly, H Ď GalpΩ{Kq. Conversely, let σ P GalpΩ{Kq. If L{K be a finite Galois subextension
of Ω{K, then σGalpΩ{Lq is an open neighborhood of σ in GalpΩ{Kq. The restriction to H

of GalpΩ{Kq Ñ GalpL{Kq is surjective, since K is the fixed field of the image H|L of H, so
H|L “ GalpL{Kq by the finite Galois theory. Now choose τ P H such that τ |L “ σ|L. Then
τ P H X σGalpΩ{Lq, showing that σ lies in the closure of H. Since H is closed, σ P H.

• If H is an open subgroup of G, since it is closed, it is of the form H “ GalpΩ{Kq. Since
G{H “ GalpΩ{kq{GalpΩ{Kq – GalpK{kq is a finite group by compactness of G, K{k has
finite degree.

Example 6.1.7. If A is a discrete abelian torsion group, then the dual group pA “ HompA,S1q is
profinite. By Proposition 5.1.7, pA is compact. Consider the canonical map

Φ : pA lim
ÐÝ
α

HompAα, S
1q

where Aα runs over all finite subgroups of A. Since A is torsion, A “
Ť

Aα, so Φ is a continuous
bijection. Since pA is compact, this implies Φ is a homeomorphism.

Example 6.1.8. The rings Z{nZ, n P N together with the projection Z{nZ Ñ Z{mZ, m | n form a
projective system. The projective limit

pZ :“ lim
ÐÝ
nPN

Z{nZ

is the profinite completion of Z. For each n P N by Chinese Remainder theorem we have
Z{nZ –

ś

p
Z{pordp nZ. Passing to inverse limit, we have

pZ “ lim
ÐÝ
nPN

Z{nZ – lim
ÐÝ
nPN

ź

p

Z{pordp nZ “
ź

p

lim
ÐÝ
nPN

Z{pordp nZ –
ź

p

Zp
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The third equality is canonical, and the last equality is given by the projection.
A profinite group G is procyclic if there exists g P G such that G “ xgy. Such an element g

is called a topological generator of G. Let G be a procyclic group. For instance, Zp and pZ are
procyclic, and 1 is a topological generator of them.

• G is abelian. More generally, if G is a Hausdorff topological group and A an abelian subgroup,
then A is abelian. To show that, consider the map c : GˆG Ñ G defined by px, yq ÞÑ xyx´1y´1.
Since A is abelian, A ˆ A Ď ker c. Since G is Hausdorff, ker c “ c´1peq is closed. Then
AˆA Ď AˆA Ď ker c, so that A is abelian.

• The open subgroups of G have the forms nG, n P N. Since nG is a continuous image of G, nG
is closed. The quotient G{nG is then Hausdorff, and is finite since it contains a dense finite
subgroup tkg mod nG | 0 ď k ă nu. Hence nG is open.

Conversely, let H be an open subgroup of index n. Then nG Ď H Ď G, and n “ rG : Hs “

rG : nGs ď n, so that H “ nG.

• G is a quotient of pZ. For each n P N, we have a surjective map Z{nZ Ñ G{nG. Passing to
limits, we obtain pZ Ñ G.

Example 6.1.9. Let k be a non-archimedean local field, and let po, pq be its ring of integers. The
projections o Ñ o{pn pn ě 1q induces a continuous map

o lim
ÐÝ
ně1

o{pn.

Since tpnuně1 forms a unit-neighborhood basis of o and o is compact, the above map is a topological
group isomorphism.

Also, let F be a global field and p a nonzero prime ideal of its ring of integers OF . If we denote
by Fp the completion with respect to the valuation corresponding to p and po, p1q its ring of integers,
then OF Ñ o induces bijections OF {pn – o{p1n pn ě 1q and induces a topological group isomorphism
lim
ÐÝ
ně1

OF {pn – o. This can be served as an alternative definition of the completion with respect to p

(essentially the same).

6.1.2 Path-connected groups
Lemma 6.1.10.

1. A connected topological group G having a path-connected neighborhood of the identity is path
connected.

2. If G is a connected LCA group, then the dual pG is torsion-free.

3. If G is a compact LCA group with pG torsion-free, then G is connected.

Proof.

1. Let U be a path connected unit-neighborhood of G. Since G is connected, the subgroup
generated by U is the whole G, namely, G “

8
Ť

n“1
Un. Since each Un is path-connected and

they share a common point e, G is also path-connected.
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2. We prove the contrapositive. Let χ P pG be nontrivial with finite order, say n. Then χpGq Ď

µnpCq, so χ : G Ñ µnpCq and hence kerχ is a proper open and closed subgroup of G. Thus G
is not connected.

3. SupposeG is not connected and let U be a proper nontrivial closed and open unit-neighborhood.
Since G is compact, so is U , so we can find a symmetric open unit-neighborhood V of G such
that V U “ U “ UV . Let H be the (open) subgroup generated by V ; then HU “ U , and
H Ď U particularly. Then G{H is a nontrivial finite group, and any character of G{H gives a
torsion character of G, so pG is not torsion free.

Lemma 6.1.11. Let Λ ď G be a discrete subgroup of a topological group G and let π : G Ñ G{Λ

be the quotient map. Suppose σ : r0, 1s Ñ G{Λ is a path starting from 0. Then there exists a path
σ̃ : r0, 1s Ñ G starting from 0 such that σ “ π ˝ σ̃.

Proof. The discreteness of Λ makes the projection π : G Ñ G{Λ a covering map, and the statement
now follows from the path lifting property of the covering map.

Theorem 6.1.12. Let K be a second countable path-connected compact Hausdorff group. Then
K is isomorphic to a product of countably many circle groups S1.

Proof. Let D “ pK be its dual group. By Proposition 5.1.7 D is discrete, and by Lemma 6.1.10,
D is torsion-free. Also, by Corollary 5.4.8.1, the D forms an orthonormal basis for the Hilbert
space L2pKq. Since L2pKq has countable orthonormal basis by Lemma D.5.6, it follows that D is
countable by Proposition E.2.6.

For an abelian group A, the rank of A is defined as dimQAbZQ. We show that every finite rank
subgroup of D is finitely generated. Let F Ď D be a finite rank subgroup of rank r; since D is with
discrete topology, the inclusion F Ď D is continuous. Dualizing gives a surjection K Ñ pF “: L, so
L is compact and path-connected. Now since F is of finite rank, F – lim

ÝÑ
j

Fj , where Fj runs over all

finitely generated subgroups of F with full rank r. We claim the limit stops, i.e., Fj “ F for some j.
Dualizing gives (since each Fj is discrete) L – lim

ÐÝ
j

Tj , where Tj “ xFj and each projection in the

projective system is surjective. Since Fj – Zr, Tj – Rr{Zr. Fix an index ν and an isomorphism
Tν – Rr{Zr. Then by some isomorphism theorem for each j ě ν there is a subgroup Λj Ď Zr of full
rank and an isomorphism ψj : Tj Ñ Rr{Λj such that diagram

Tj Tν

Rr{Λj Rr{Zr

ψj

πj
ν

„

pj

where pj is the natural projection. Let Λ “
Ş

jěν

Λj Ď Rr. The group G :“ Rr{Λ then injects into

the lim
ÐÝ
j

Tj “ L, and we claim that it is an isomorphism. For this let x P L and let p be a path

connecting the identity element of L to x. Lemma 6.1.11, for each projection πj : L Ñ Tj – with
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j ě ν, the path πj ˝ p lifts to a path in G, as depicted below (the commutativity of the leftmost
trapezoid is what we need)

Rr

G

r0, 1s L Tj Rr{Λj
p πj

so the path p actually lies in G, whence x P G. Thus L – Rr{Λ, and since L is compact, Λ has full
rank. So the limit stops and hence every finite rank subgroup of D is finitely generated.

Dualizing the theorem, our assertion is equivalent to saying that D is isomorphic to a direct sum
of countably many cyclic groups Z. Hence the theorem is reduced to the following purely algebraic
property.

Lemma 6.1.13. LetD be a countable torsion free abelian group such that every finite rank subgroup
of D is finitely generated. Then D is a direct sum of cyclic groups.

Proof. The Q-module DQ “ D bZ Q is generated by D, hence it contains a basis of consisting of
elements of D. Let v1, v2, . . . be a basis for DQ with vj P D for each j. We shall construct inductively
a basis w1, w2, . . . of DQ such that for each n P N

Qw1 ‘ ¨ ¨ ¨ ‘ Qwn “ Qv1 ‘ ¨ ¨ ¨ ‘ Qvn

and

pQw1 ‘ ¨ ¨ ¨ ‘ Qwnq XD “ Zw1 ‘ ¨ ¨ ¨ ‘ Zwn

To start, let F “ Qv1 XD. Then F has rank 1, so it is finitely generated, say F “ Zw1 for some w1 P

D. Now assume w1, . . . , wn have been constructed. The group G “ pQw1 ‘ ¨ ¨ ¨ ‘Qwn ‘Qvn`1q XD

has rank n ` 1. The fundamental theorem for finitely generated abelian groups guarantees the
existence of u1, . . . , un`1 P D and a1, . . . , an P Z such that G “ Zu1 ‘ ¨ ¨ ¨ ‘ Zun`1 and

Zw1 ‘ ¨ ¨ ¨ ‘ Zwn “ Za1u1 ‘ ¨ ¨ ¨ ‘ Zanun Ď G

This equality implies that for 1 ď i ď n, we have

ui P pQw1 ‘ ¨ ¨ ¨ ‘ Qwnq XD “ Zw1 ‘ ¨ ¨ ¨ ‘ Zwn “ Za1u1 ‘ ¨ ¨ ¨ ‘ Zanun

and hence ai “ ˘1. Thus in effect we have Zw1 ‘ ¨ ¨ ¨ ‘ Zwn “ Zu1 ‘ ¨ ¨ ¨ ‘ Zun, so we may pick
wn`1 “ un`1. This finishes the construction, and thus

D “ Zw1 ‘ Zw2 ‘ ¨ ¨ ¨ “
à

nPN
Zwn

is a direct sum of cyclic groups Z.
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6.2 The structure theorems
Theorem 6.2.1 (Open mapping theorem). Suppose G and H are LCH groups and G is σ-compact.
Then a continuous surjective homomorphism ϕ : G Ñ H is automatically an open map.

Proof. Let 1G and 1H denote the identity elements in G and H, respectively. It suffices to show
ϕpUq is a neighborhood of 1H whenever U is a neighborhood of 1G. To see this, choose a compact
symmetric neighborhood of 1G such that V 2 Ď U . As G is σ-compact, write G “

Ť

ně1
Kn with each

Kn compact in G. For each n P N find a finite subset Fn Ď Kn such that Kn Ď
Ť

xPFn

xV . Put

F “
Ť

ně1
Fn; then F is a countable subset of G such that G “

Ť

xPF

xV . Since ϕ is surjective, it follows

that H “
Ť

xPF

ϕpxV q. Each ϕpxV q is compact, so it is closed. Since H is a Baire space by Theorem

A.6.1, it follows that there exists x P F such that ϕpxV q has nonempty interior. By translation
it then implies ϕpV q has nonempty interior. Finally, if choose a nonempty open set W in H with
W Ď ϕpV q, then W´1W is open in H and

1H P W´1W Ď ϕpV q´1ϕpV q Ď ϕpV ´1V q “ ϕpV 2q Ď ϕpUq

6.2.1 Statements and corollaries
Theorem 6.2.2 (First structure theorem). Let A be an LCA group. Then there exist n P Zě0 and
another LCA group H such that

(i) A – Rn ˆH in TopGp, and

(ii) H contains a compact open subgroup.

Definition. A topological group G is called compactly generated if there exists a compact unit-
neighborhood K of G which generates G as a group.

Theorem 6.2.3 (Second structure theorem). Let A be a compactly generated LCA group. Then
there exists n,m P Zě0 and a compact group K such that

A – Rn ˆ Zm ˆK.

in TopGp.

Definition. A topological space is locally euclidean of dimension n if each point admits an
open neighborhood that is homeomorphic to Rn.

Theorem 6.2.4 (Third structure theorem). Let A be a locally euclidean LCA group (of a fixed
dimension). Then there exist n,m P Zě0 and a discrete abelian group D such that

A – Rn ˆ pS1qm ˆD

in TopGp.

Using these structure theorems along with the Pontryagin duality, we obtain

Corollary 6.2.4.1. For an LCA group A, that A is compactly generated is equivalent of that pA is
locally euclidean.
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Corollary 6.2.4.2. A locally euclidean compactly generated LCA group is isomorphic to

Rn ˆ pS1qm ˆ Zℓ ˆ F

for some n,m, ℓ P Zě0 and some finite abelian group F .

Using Theorem 6.1.12, we obtain

Corollary 6.2.4.3. A second countable path-connected LCA group is isomorphic to Rn ˆ pS1qI for
some n P Zě0 and some countable index set I.

6.2.2 Proofs
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Part II

Harmonic analysis on GLp1q
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Chapter 7

Tate thesis : local theory

As an application to the results in the preceding chapters, we are going to dive into one of the most
beautiful theory invented by Tate. In this section we assume basic algebraic number theory.

Definition. Let G be a topological group. A continuous group homomorphism χ : G Ñ Cˆ is
called a quasi-character.

• We’ve defined the notion of characters: if a quasi-character takes value in S1, it is a character.
Sometimes to distinguish, we call a character by a unitary character.

7.1 Local theory
Let k be a local field. If Char k “ 0, then k is a finite extension of Qp pp ď 8q. If Char k “: p ą 0,
then k is isomorphic to FqppT qq, the field of Laurent series, where q “ pn for some n P Zě1. The
local field R and C are called the archimedean local fields. The remaining cases are called non-
archimedean / discrete, and they are equipped with natural discrete valuations. When k is a
finite extension of Qp pp ă 8q, we write po, pq for the local ring which is by definition the integral
closure of Zp in k. For an element a P k, the principal ideal paq has the form pm for some m P Z;
the number m is then denoted by m “ ordppaq. If k “ FqppT qq, the discrete valuation is the usual
order ordT for the Laurent series. The corresponding local ring po, pq is pFqrrT ss, pT qq.

7.1.1 Fourier analysis on local fields
Let k be a non-archimedean local field. For an ideal I � o, the quotient o{I is finite; we denote the
size by NI. This is called the norm of the ideal I. We extend the definition naturally to a fractional
ideal I. For an element a P k, we put |a| “ |a|k :“ Npaoq “ pNpq´ ordk a. Then | ¨ | : k Ñ Q defines
an absolute value on k, and it satisfies the strengthened triangle inequality:

|a´ b| ď mint|a|, |b|u, a, b P k.

Moreover, when |a| ‰ |b|, the equality holds. When k “ R, we let | ¨ | “ | ¨ |R denote the usual
absolute value on R. When k “ C, we set |z| “ |z|C “ zz, square of the usual absolute value.

In all cases, the norm function defines a locally compact Hausdorff topology on k. Moreover,
the topology makes k a topological field. The “unit disc” tx P k | ∥x∥ ď 1u is compact; in the
non-archimedean case, the unit disc is o, and the maximal ideal p “ tx P k | ∥x∥ ă 1u is also
compact. In the non-archimedean case, there exists a unique Haar measure dxstd normalized so that
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the unit disc has volume 1. For the archimedean case, let dxstd be the usual Lebesgue measure (for
which the volume of the unit cube has volume 1).

Lemma 7.1.1. Let σ be an automorphism of a non-archimedean local field k. Then modkσ “

Nσpoq´1. In particular, dpaxqstd “ |a|dxstd for a P K.

Proof. By definition, the modulus modGσ is the ratio volpσo, dxstdq

volpo, dxstdq
“ volpσo, dxstdq. Write σo “ pn

for some n P Z. If n ě 0,

1 “ volpo, dxstdq “
ÿ

aPo{pn

volpa` pn, dxstdq “ Npn volppn, dxstdq

so that volppn, dxstdq “ Np´n. The same holds for n ě 0. This finishes the proof.

One of our goal is to do Fourier analysis on k. To do so, we start by studying the Pontryagin
dual pk of the additive group k. Let us first note the following.

Lemma 7.1.2. If k is non-archimedean, then all quasi-characters are characters.

Proof. Let χ : k Ñ Cˆ be a quasi-character. Since p is a compact subgroup of k, its image χppq

is a compact subgroup of Cˆ. Hence χppq Ď S1. Similarly, each power pn pn P Zq is a compact
subgroup, so the image lies in S1. Since k “

Ť

nPZ
pn, this shows χpkq Ď S1.

The following theorem shows that the additive group of a local field k is self-dual.

Theorem 7.1.3. Let k be a local field and χ P pk a nontrivial character. Then the map

k pk

x rχx : y ÞÑ χpxyqs

is an isomorphism of topological groups.

Proof. We proceed as follows.

(1) We first show that if y P k is such that χpxyq “ 1 for all x P k, then y “ 0. Since χ is
nontrivial, we can find z P k such that χpzq ‰ 1. If y ‰ 0, then 1 “ χppzy´1qyq “ χpzq ‰ 1, a
contradiction; thus y “ 0. This shows x ÞÑ χx is injective.

(2) We claim the set H :“ tχx | x P ku is dense in pk, or equivalently, pk{H “ 0. By Proposition
5.5.2, it suffices to show

0 “

´

pk{H
¯^ p5.6.1q.piq

– H
K

“ HK

But this follows from (1).

(3) We show the map is a topological embedding.

• Continuity. Let N P Z and φ ą 0. We must show the set

A “ AN,ε :“ tx P k | |χxppN q ´ 1| ă εu

is a neighborhood of 0 in k`. Since χ is a continuous group homomorphism, we can find
M " 0 such that χppM q “ 1. Then it is clear that pM Ď A; this shows the continuity.
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• Continuous inverse. (In the following | ¨ | denotes the usual euclidean distance)
p discrete. Let n P Z. We must show B “ Bn :“ tχx | x P pnu is a neighborhood of
the trivial character 1. Let ξ P pMzpM`1 such that χpξq ‰ 1. Then we claim tχx |

|χxppM`1´nq ´1| ă |χpξq ´1|u Ď B. Indeed, if 0 ‰ x P k is such that |χxppM`1´nq ´1| ă

|χpξq ´ 1|, then in particular, ξ R xpM`1´n. Say x P pmzpm`1; then ξ R pM`1´n`m, i.e.,
n` 1 ă m. Hence x P pm Ď pn, or x P B.
p archimedean. For each r ą 0, we show that B “ Br :“ tχx | x P Brp0qu is a
neighborhood of the trivial character 1. Let ξ ‰ 0 such that χpξq ‰ 1. Then we claim
tχx | |χxpB|ξ|{rp0qq´1| ă |χpξq´1|u Ď B. For if 0 ‰ x P k is such that |χxpB|ξ|{rp0qq´1| ă

|χpξq ´ 1|, then in particular, ξ R xB|ξ|{rp0q “ B|x||ξ|{r, i.e. |x||ξ|

r
ă |ξ|, or |x| ă r.

(4) Thus, we see tχx | x P ku is a locally compact subgroup of pk. By Lemma 16.1.3, this means
tχx | x P ku is closed in pk. But tχx | x P ku is dense in pk by (2), so it is the entire pk.

To fix an identification k – pk, we explicitly construct a nontrivial character ψk of k. We begin
with the base cases. If k “ R, define

ψRpxq “ e2πix

which is the usual additive character we use. If k “ Qp, define

ψQp
pxq “ e´2πitxu.

We explain the notation txu. Any element x in Qp has a unique expression x “
8
ř

n"´8

anp
n with

0 ď an ă p. Then txu is defined to be the principal part: txu “
´1
ř

n"´8

anp
n P Q. If k “ FpppT qq,

define

ψFpppT qqpxq “ e
2πi resT x

p

where for x “
ř

n"´8

anT
n, the residue resT x is defined as usual: resT x “ a´1. One should note

that the definition depends on a choice of uniformizer, i.e., a generator of the principal ideal p.
Now for any local field K, from definition we see it is a finite separable extension of one of the

local field k mentioned above. Being separable means that the trace map TrK{k : K ˆ K Ñ k is
nondegenerate. Now define ψK : K Ñ Cˆ by ψK “ ψk ˝ TrK{k. In any case, it is easy to see ψK is
non-trivial. We call this the standard additive character on K. Therefore, by Theorem 7.1.3 we
have the isomorphism

ψ : K pK

x ψx : y ÞÑ ψKpxyq.

Consider the non-archimedean case. The character ψx is trivial on oK if and only if ψkpTrK{kpxyqq “

0 for all y P oK . In any case we see this is the same as saying TrK{kpxyq P ok for all y P oK . The set

o_ “ o_
K :“ tx P K | TrK{kpxoKq Ď oku

is the o-module dual to o with respect to the bilinear form px, yq ÞÑ TrK{kpxyq. Its inverse ideal
d “ dK :“ roK : o_

Ks is called the (absolute) different; the dual ideal o_ “ d´1
K is sometimes called

the inverse different. Note that d is an ideal of o.
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By Plancherel theorem there exists a unique Plancherel measure on pK with respect to dxstd

making the Fourier transform f ÞÑ pf an isometry. Since pK – K as topological groups, we can view
Plancherel measure as a measure on K. Let us denote by dxPlan. Under the isomorphism K – pK,
the Fourier transform of an integrable function f P L1pKq has the form

pfpxq “

ż

K

fpyqψxpyqdxstd “

ż

K

fpyqψKp´xyqdxstd.

Set invpKq :“ tf P L1pKq | pf P L1pKqu; this is the set of functions that the Fourier inversion is
valid, i.e.,

fpxq “

ż

K

pfpyqψKpxyqdyPlan

holds for all f P InvpKq. But dxPlan “ αdxstd for some unique α ą 0, if we set dxtam “
?
αdxstd

and redefine

pfpxq “

ż

K

fpyqψxpyqdxtam “

ż

K

fpyqψKp´xyqdxtam,

then the Fourier inversion now reads off

fpxq “

ż

K

pfpyqψKpxyqdytam,

and the Plancherel measure with respect to dxtam on K is dxtam itself. In this case we say dxtam is a
self-dual measure on K. Warning: such measure depends on the choice of the nontrivial character
defining the isomorphism K – pK.

Lemma 7.1.4. We have the following description of the self-dual measure on K.

(i) If K “ R, then dxtam “ dxstd “ dx is the usual Lebesgue measure on R.

(ii) If K “ C, then dxtam “ 2dxstd “ 2dxdy is twice the usual Lebesgue measure on C.

(iii) If K is non-archimedean, then dxtam “ pNdq´ 1
2 dxstd, i.e., the unique measure against which

o has volume pNdq´ 1
2 .

Proof. We compute the Fourier transform of a specific choice of f .

(i) K real. Take fpxq “ e´πx2 . Using Cauchy integral formula, we compute

f̂pxq “

ż

R
e´πy2e´2πixydy “

ż

R
e´πpy`ixq2´πx2

dy

“ e´πx2

˜

lim
MÑ8

ż x

0

e´πp´M`itq2dt` lim
NÑ8
MÑ8

ż N

´M

e´πy2dy ` lim
NÑ8

ż x

0

e´πpN`itq2dt

¸

“ e´πx2

ż

R
e´πy2dy “ e´πx2

“ fpxq

(ii) K complex. Take fpzq “ e´2πzz. Writing z “ σ ` iτ , we have

f̂pzq “ 2

ż

R

ż

R
e´2πpx2`y2qe´4πipσx´τyqdxdy “ e´πp

?
2σq2e´πp

?
2τq2 “ e´2πzz “ fpzq

(iii) K non-arch. Take fpxq “ 1opxq, the characteristic function of o “ oK . Then

f̂pxq “

ż

K

1opyqψKp´xyqdy “

ż

o

ψKp´xyqdy “ volpo, dxtamq1d´1pxq
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and
z1d´1pxq “

ż

K

1d´1pyqψKp´xyqdy “

ż

d´1

ψKp´xyqdy “ volpd´1, dxtamq1opxq

Being self-dual is then them same as

volpo, dxtamq volpd´1, dxtamq “ 1.

This follows from volpd´1, dxstdq “ Nd.

7.1.2 Fourier analysis on multiplicative groups of local fields
Characters

Next we consider the group kˆ of nonzero elements of a local field k. Let u “ uk :“ tx P k | |k| “ 1u.
Clearly,

u “

$

’

&

’

%

t˘1u , if k “ R
S1 , if k “ C

oˆ “ ozp , if k is non-arch.
(♠)

In particular, we see u is compact. In the non-archimedean case, it is also open. To do Fourier analysis
on kˆ again we first study the quasi-characters of kˆ. We start by addressing the archimedean case.

Lemma 7.1.5. Let k be an archimedean local field and let χ : kˆ Ñ Cˆ be a continuous group

homomorphism. Then χpxq “

ˆ

x

|x|

˙n

|x|c for some n P Z and c P C. Here | ¨ | is the usual euclidean

norm, and we can take n P t0, 1u if k “ R.

Proof. The polar coordinates provide an isomorphism Cˆ – Rą0 ˆ S1 of topological groups. Recall
that xS1 – Z. Then χpeiθq “ eiθn for some n P Z, and

χpxq “ χpx|x|´1qχp|x|q “

ˆ

x

|x|

˙n

χp|x|q.

Now we are reduced to showing that if χ : Rą0 Ñ Cˆ is a continuous group homomorphism, then
χpxq “ xc for some c P C. To this end, consider ρ :“ χ ˝ exp : R Ñ Cˆ. Pick any δ ą 0 so that

α :“

ż δ

0

ρptqdt ‰ 0. Then

αρpxq “

ż δ

0

ρptqρpxqdt “

ż δ

0

ρpt` xqdt “

ż x`δ

x

ρptqdt.

In particular, this shows ρ is differentiable. From ρpx`yq “ ρpxqρpyq we obtain ρ1px`yq “ ρpxqρ1pyq,
so ρ1pxq “ ρpxqρ1p0q “ ρpxq by plugging in y “ 0. Then ρpxq “ ρp0qeρ

1p0qx “ eρ
1p0qx. Now

χpxq “ ρplog xq “ xρ
1p0q.

In particular, we have an isomorphism of abstract groups

HomTopGppCˆ,Cˆq xS1 ˆ C

χ pχ|S1 , pχ ˝ expq1p0qq

and this restricts to a version for k “ R (with S1 replaced by t˘1u).
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Lemma 7.1.6. This restricts to an isomorphism

HomTopGppCˆ, S1q xS1 ˆ 2πiR„

of topological groups. Restricting to Rˆ gives the isomorphism

HomTopGppRˆ, S1q t˘1u ˆ 2πiR„

Proof. Since Cˆ – S1 ˆ Rą0 as topological groups, by Lemma 5.1.9 we have an isomorphism

HomTopGppCˆ, S1q xS1 ˆ yRą0
„

of topological groups. To conclude it remains to show that

R yRą0

r | ¨ |2πir

is a homeomorphism. Recall R exp
ÝÑ Rą0 as topological groups, so by Lemma 5.1.4,

yRą0
pR

χ χ ˝ exp

is a homeomorphism. Composing the above two maps, we get

R pR

r x ÞÑ e2πirx
.

But this is an isomorphism by Theorem 7.1.3, so we are done.

Next we proceed to discuss the non-archimedean case. Fix a uniformizer ϖ of k; then for x P kˆ,
xϖ´ ordk x lies in u, and

χpxq “ χpxϖ´ ordk xq ¨ χpϖqordk x.

We do some magic: if we write χpϖq “ re2πiθ, then

χpϖqordk x “ χpϖq´ logNp |x| “ r´ logNp |x|e´2πiθ logNp |x| “ |x|
´ logNp r´ 2πiθ

log Np .

Hence

χpxq “ χpxϖ´ ordk xq|x|s

for some s P C. The number s is only unique modulo 2πi
logNp , as θ is unique modulo 1. Hence we have

an isomorphism of abstract groups (the modulo reflects the fact the discreteness of the valuation
ordk.)

HomTopGppkˆ,Cˆq pu ˆ
C

2πi
logNpZ

χ

ˆ

χ|u,´ logNp |χpϖq| ´ i
arg χpϖq

logNp

˙
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Lemma 7.1.7. This restrict to an isomorphism

HomTopGppkˆ, S1q pu ˆ
iR

2πi
logNpZ

of topological groups.

Proof. Fixing an uniformizer ϖ amounts to choosing an isomorphism

u ˆ Z kˆ

pu, nq uϖn.

So by Lemma 5.1.9 we have an isomorphism

xkˆ
pu ˆ pZ

χ pχ|u, n ÞÑ χpϖqnq.

Put α “ χpϖq P S1. It remains to show

iR
2πi

logNpZ
pZ

´i
arg c

logNp
rn ÞÑ cns

is an isomorphism of topological groups. This is just a dilation of the isomorphism R{Z – pZ.

Definition. The weight wtpχq of a quasi-character is the unique real number such that |χ| “

| ¨ |wtpχq.

• The weight can be also read off from the above isomorphisms: if χ ÞÑ pχ|u, sq, then wtpχq “

Repsq. By definition, a quasi-character χ is a unitary character if and only if wtpχq “ 0.

Next, we define some measures on kˆ. Since k is a topological field, kˆ is again a topological
group and kˆ Ď k is open. Hence kˆ is a locally compact abelian group. Our choice of a left
invariant measure on kˆ is

dˆxtam :“
dxtam

|x|k
.

when k is archimedean, and

dˆxtam :“
1

1 ´ pNpq´1

dxtam

|x|k
.

when k is non-archimedean. These normalization will be proved to be useful. Of course, we can

simply use dˆxstd “
dxstd

|x|k
. Generally, any choice of Haar measure dx on k yields a Haar measure

dx

|x|k
on kˆ (c.f. Example 2.3.4).

Lemma 7.1.8. For non-archimedean k, we have volpu, dˆxtamq “ pNdq´ 1
2 .
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Proof. Since

volpu, dˆxstdq “

ż

u

dxstd

|x|k
“ volpozp, dxstdq “ 1 ´ pNpq´1.

we have

volpu, dˆxtamq “ volpo, dxtamq “ pNdq´ 1
2 .

Mellin transform

Although it won’t be used in the following, we compute the Plancherel measure on the dual group
xkˆ “ HomTopGppkˆ, S1q corresponding to the measure dˆxtam. To do this we keep track of each
isomorphism carefully. In the following all isomorphisms are in TopGp.

First assume k “ C. We have an isomorphism

S1 ˆ R Cˆ

pu, rq uer.

We choose the measure dk on S1 so that the map is measure-preserving. The image of S1 ˆ r0, 1s

in Cˆ is t1 ď |z| ď eu (| ¨ | again denotes the usual Euclidean norm), which has measure
ż

1ď|z|ďe

dˆztam “

ż

1ďx2`y2ďe2

2dxdy

x2 ` y2
“

ż 2π

0

ż e

1

2drdθ

r
“ 4π.

Hence volpS1, dkq “ 4π. Now by §5.4.1, the Plancherel measure on {S1 ˆ R – xS1 ˆ pR – Z ˆ R is
given by 1

4π
times the product measure of the counting measure on Z and the Lebesgue measure on

R, which then gives the Plancherel measure on Cˆ. Explicitly, for g P L1pxCˆq, if we identify g as a
function g : Z ˆ R Ñ C by

gpn, xq “ gpruer ÞÑ une2πirxsq

then the integral of g against the Plancherel measure is

1

4π

ÿ

nPZ

ż

R
gpn, xqdxtam

In particular, by Fourier inversion we obtain

Lemma 7.1.9 (Mellin inversion formula). Let f P L1pCˆq be such that pf P L1pxCˆq. Then

fpaq “
1

4π

ÿ

nPZ

ż

R
pfpn, xqpa{|a|q´n|a|´2πixdxtam

for all a P Cˆ.

Note here the Fourier transform is taken on Cˆ, not on C.

Example 7.1.10. Take fpzq “ |z|Ce
´|z|C . Then for χ P xCˆ

pfpχq “

ż

Cˆ
|z|Ce

´|z|Cχpzqdˆztam “

ż 2π

0

ż 8

0

e´r2χpreiθq2rdrdθ “ 2πδ1S1 pχ|S1q

ż 8

0

e´r2χprq2rdr

“ 2πδ1S1 pχ|S1q

ż 8

0

e´rχprq
1
2 dr.
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Write χprq “ r2πix for some x P R, and χ|S1puq “ un for some n P Z; then

pfpχq “ pfpn, xq “ 2πδ0n

ż 8

0

e´rrπixdr “ 2πδ0nΓp1 ` πixq.

Now Mellin inversion tells, for each a P Cˆ, that

|a|2e´|a|2 “
1

2

ż

R
Γp1 ` πixq|a|´2πixdx “

1

2π

ż

R
Γp1 ` ixq|a|´2ixdx

In particular, we get an interesting identity
2π

e
“

ż

R
Γp1 ` ixqdx

This identity can be seen by applying classical Mellin inversion to the function e´x.

Next assume k “ R. Similarly we have

t˘1u ˆ R Rˆ

pu, rq uer.

By choosing the counting measure to be the Haar measure on t˘1u, the map becomes measure-
preserving. By §5.4.1, the corresponding Plancherel measure on {t˘1u ˆ R – t0, 1u ˆ R is given by
1

2
times the product measure of the counting measure on t0, 1u and the Lebesgue measure on R,

which again gives the Plancherel measure on Rˆ. Explicitly, for g P L1pxRˆq, if we identify g as a
function g : t0, 1u ˆ R Ñ C by

gp0, xq “ gprr ÞÑ |r|2πixsq, gp1, xq “ gprr ÞÑ signprq|r|2πixsq

then the integral of g against the Plancherel measure is
1

2

ÿ

nPt0,1u

ż

R
gpn, xqdxtam

Again, by Fourier inversion we obtain

Lemma 7.1.11 (Mellin inversion formula). Let f P L1pRˆq be such that pf P L1pxRˆq. Then

fpaq “
1

2

ÿ

nPt0,1u

ż

R
pfpn, xqpa{|a|q´n|a|´2πixdxtam

for all a P Rˆ.

Finally consider non-archimedean k. By choosing a uniformizer ϖ of k, we have an isomorphism

u ˆ Z kˆ

pu, nq uϖn.

On u we still use the measure dˆxtam, and on Z we use the counting measure. Then this map is
measure-preserving, and by §5.4.1 and Lemma 7.1.8, the Plancherel measure on {u ˆ Z – pu ˆ pZ –

puˆS1 is the pNdq
1
2 times the product measure of the counting measure on pu and the Haar measure

on R{Z of total volume 1. Explicitly, for g P L1pxkˆq, if we identify g as a function g : pu ˆ R{Z Ñ C
by

gpχ, rq “ gprx ÞÑ χpxϖ´ ordk xq|x|
2πi

log Np rsq

them the integral against the Plancherel measure is

pNdq
1
2

ÿ

χPpu

ż

R{Z
gpχ, rqdr “

pNdq
1
2 logNp

2π

ÿ

χPpu

ż πi
log Np

´ πi
log Np

gpχ, rqdr
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Local zeta integrals

We now begin our main subject: local zeta functions. Our notation will be slightly different from
that in Tate’s thesis. For any quasi-character χ, any measurable function f : k Ñ C and any s P C,
define the zeta integral as

Zpf, χ, sq :“

ż

kˆ
fpxqχ| ¨ |spxqdˆxtam

if it exists. With χ fixed, this should be thought of as a family of distributions on certain space of
functions of k. With this idea in mind, we will mainly consider the space of functions f : k Ñ C
satisfying

(i) f P invpkq,

(ii) fpxq|x|s and pfpxq|x|s are in L1pkˆq for Re s ą 0.

We denote by Zpkq the space of functions on k satisfying (i) and (ii). By (ii), we see for pf, χ, sq

with f P Zpkq and wtpχq ` Re s ą 0, the zeta integral Zpf, χ, sq is defined. More is true.

Lemma 7.1.12. Fix a quasi-character χ and f P Zpkq. Then s ÞÑ Zpf, χ, sq defines a holomorphic
function in Re s` wtpχq ą 0.

Proof. Replacing χ be χ| ¨ |´wtpχq, we can assume χ is unitary. Notice that the integral
ż

kˆ
fpxqχ| ¨ |spxq log |x|dˆxtam

exists for Re s ą 0 as well. To finish the proof, consider

Zpf, χ, sq ´ Zpf, χ, tq

s´ t
“

ż

kˆ
fpxqχpxq

|x|s ´ |x|t

s´ t
dˆxtam

for Re s, Re t ą 0. The holomorphicity is a local property, so it suffices to consider s, t within a
compact convex set K Ď tRe s ą 0u. Then for t, s P K, if we let γ : r0, 1s Ñ K be the line segment
joining s to t, then ℓpγq “ |s´ t| and

ˇ

ˇ|x|s ´ |x|t
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż 1

0

d

du
|x|udγpuq

ˇ

ˇ

ˇ

ˇ

ď ℓpγq ¨ sup
uPK

||x|u log |x||,

or
ˇ

ˇ

ˇ

ˇ

|x|s ´ |x|t

s´ t

ˇ

ˇ

ˇ

ˇ

ď log |x| ¨ sup
uPK

||x|u| ď |x|M log |x|

for some M " 0 (e.g. we can take M “ sup
uPK

Repuq). Then for s, t P K, we have

ˇ

ˇ

ˇ

ˇ

Zpf, χ, sq ´ Zpf, χ, tq

s´ t

ˇ

ˇ

ˇ

ˇ

ď

ż

kˆ
|fpxq||x|M log |x|dˆxtam.

The integrand of the last integral is L1 by assumption (ii), so it follows from DCT that

lim
sÑt

Zpf, χ, sq ´ Zpf, χ, tq

s´ t
“

ż

kˆ
fpxqχpxq lim

sÑt

|x|s ´ |x|t

s´ t
dˆxtam “

ż

kˆ
fpxqχ| ¨ |s log |x|dˆxtam.

In particular, this shows Zpf, χ, sq is holomorphic for Re s ą 0.

Our main goal is to show s ÞÑ Zpf, χ, sq admits a meromorphic continuation to the whole complex
plane s P C. This will be done by establishing certain functional equation.

117



Lemma 7.1.13. Fix a quasi-character χ and f, g P Zpkq. Then for s with 0 ă Re s ` wtpχq ă 1,
we have

Zpf, χ, sqZppg, χ´1, 1 ´ sq “ Zp pf, χ´1, 1 ´ sqZpg, χ, sq

Proof. This is an easy application of Fubini:

Zpf, χ, sqZppg, χ´1, 1 ´ sq “

ż

kˆˆkˆ
fpxqpgpyqχpxy´1q|x|s|y|1´sdˆxtamdˆytam

py ÞÑ xyq “

ż

kˆˆkˆ
fpxqpgpxyqχpy´1q|x|s|xy|1´s|x|´1dˆxtamdˆytam

“

ż

kˆˆkˆ
fpxqpgpxyqχpy´1q|y|1´sdˆxtamdˆytam

“

ż

kˆˆkˆˆk

fpxqgpzqψkp´xyzqχpy´1q|y|1´sdˆxtamdˆytamdztam

The last expression is symmetric in f, g, so replacing the roles of f and g yields the result.

Our goal will be completed once we can find f P Zpkq such that the ratio

γps, χ, ψkq :“
Zp pf, χ´1, 1 ´ sq

Zpf, χ, sq

is well-defined and admits a meromorphic continuation to C; we view ψk as a parameter to emphasize
the dependence of the self-duality k – pk on the nontrivial quasi-character ψk. To do this we introduce
a subfamily of functions in Zpkq. For a local field k, let Spkq denote the space of Bruhat-Schwartz
functions, which we define now. In fact, we are going to define the space Spknq.

(i) For k “ R,C, a function f P Spknq if and only if it is a usual Schwartz function. Recall that
the space SpRnq of usual Schwartz functions consists of functions f : Rn Ñ C such that

8 ą ∥f∥α,β :“ sup
xPRn

ˇ

ˇ

ˇ

ˇ

ˇ

xα1
1 ¨ ¨ ¨xαn

n

Bβ1`¨¨¨βnf

Bxβ1

1 ¨ ¨ ¨ Bxβn
n

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

for all multi-indices α, β P Zně0. We regard Cn as R2n here.

(ii) For non-archimedean k, a function f P Spknq if and only if it is locally constant with compact
support. Note that Spknq is the linear span of all characteristic functions of the form 1a`pn

for some a P k and n P Z.

Lemma 7.1.14. Let k be a local field.

(i) The Fourier transform induces a bijection on Spkq.

(ii) Spkq Ď Zpkq.

Proof. First consider the non-archimedean case. For (i) it suffices to show {1a`pn P Spkq. Compute

{1a`pnpxq “

ż

k

1a`pnpyqψkp´xyqdytam “ ψkp´xaq

ż

pn

ψkp´xyqdytam

“ ψkp´xaq

ż

ok

ψkp´xϖnyq|ϖ|ndytam “ ψkp´xaq1ϖ´nd´1pxq|ϖ|nvolpo, dxtamq.

Here we recall that y ÞÑ ψkpxyq is trivial on o if and only if x P d´1. In particular, this shows
x ÞÑ ψkp´xaq is locally constant (but fails to have compact support), so {1a`pn P Spkq. This finishes
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the proof of (i) for non-archimedean k, as Spkq Ď Invpkq so the Fourier inversion is valid. As a
record, note that

{ψ´11p´nd´1 “ volpo, dxtamq´1|ϖ|´n11`pn “ pNdq
1
2 pNpqn11`pn .

For (ii), we compute Zp1a`pn ,1, sq. If a P pn, then

Zp1a`pn ,1, sq “ Zp1pn ,1, sq “

ż

kˆ
1pnpxq|x|sdˆxtam

“
ÿ

mPZ

ż

pmzpm`1

1pnpxq|x|sdˆxtam “

8
ÿ

m“n

pNpq´ms ¨ volpoˆ, dˆxtamq

“
pNpq´nspNdq´ 1

2

1 ´ pNpq´s
.

The computation is valid if |pNpq´s| ă 1, or Re s ą 0. If a R pn, then x P a ` pn implies |x| “ |a|

so that

Zp1a`pn ,1, sq “

ż

a`pn

|a|s ¨
1

1 ´ pNpq´1

dxtam

|a|
“

|a|s´1 volppn, dxtamq

1 ´ pNpq´1
“

pNpq´ps´1q ordk apNpq´npNdq´ 1
2

1 ´ pNpq´1

In particular, this shows 1a`pn | ¨ |s P L1pkˆq possibly unless 1 ´ pNpq´s “ 0, i.e., s “ 0. In view of
(i), this shows Spkq Ď Zpkq.

Now consider the archimedean case. Clearly, SpRnq is an Rrx1, . . . , xns-module invariant under
differentiation. An easy manipulation show that for f P SpRnq, the Fourier transform

pfpxq :“

ż

Rn

fpyqe´2πixx,yydy

satisfies

yxjf “ ´2πiBxj
pf, zBxj

f “ 2πixj pf.

The first is easy, and we prove the second one. Note that one cannot deduce the second from the
first before one knows that SpRnq Ď InvpRnq. The second follows from integration by parts:

zBxj
fpxq “

ż

Rn´1

ˆ
ż

R
Bxj

fpyqe´2πixx,yydxj

˙

dx1 ¨ ¨ ¨ ydxj ¨ ¨ ¨ dxn

“

ż

Rn´1

ˆ

fpyqe´2πixx,yy
ˇ

ˇ

ˇ

xj“8

xj“´8
´

ż

R
´2πixjfpyqe´2πixx,yydxj

˙

dx1 ¨ ¨ ¨ ydxj ¨ ¨ ¨ dxn

“ 2πixj pfpxq.

The former term in the inner parenthesis vanishes as f is Schwartz. This two properties show that
SpRnq is invariant under Fourier transform. These altogether show (i), (ii).

7.1.3 Computations

We are going to carry out explicitly computations of Zp pf, χ´1, 1 ´ sq

Zpf, χ, sq
with special f P Spkq for each

quasi-character χ. Before that, note that if χ and χ1 are two quasi-characters with χ´1χ1 “ | ¨ |s0 ,
then formally Zpf, χ1, sq “ Zpf, χ, s ` s0q; in this case we call χ and χ1 equivalent. Keeping this in
mind, only a few computations need to be carried out.
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Real

There are two equivalence classes of quasi-characters: one is | ¨ |s ps P Cq and the other is x ÞÑ

sign| ¨ |s ps P Cq. The trivial character 1 belongs to the first class, and sign belongs to the second
class.

We consider fpxq “ e´πx2 and gpxq “ xe´πx2 . We already saw in Lemma 7.1.4 that f “ pf ;
explicitly,

e´πx2

“

ż

R
e´πy2´2πixydy

By applying d

dx
to both sides, we obtain

´2πxeπx
2

“

ż

R
´2πiye´πy2´2πixydy

or g “ ipg. Now we compute the ζ-functions.

Zpf,1, sq “

ż

Rˆ
e´πx2

|x|s
dx

|x|
“ 2

ż 8

0

e´πx2

xs
dx

x
“ 2π´ s

2

ż 8

0

e´x2

xs
dx

x
“ π´ s

2

ż 8

0

e´xx
s
2
dx

x
“ π´ s

2Γ
´s

2

¯

Zpg, sign, sq “

ż

Rˆ
xe´πx2

signpxq|x|s
dx

|x|
“ 2

ż 8

0

xe´πx2

xs
dx

x
“ π´ s`1

2 Γ

ˆ

s` 1

2

˙

Zp pf,1, 1 ´ sq “ Zpf,1, 1 ´ sq “ π´ 1´s
2 Γ

ˆ

1 ´ s

2

˙

Zppg, sign, 1 ´ sq “ ´i ¨ Zpg, sign, 1 ´ sq “ i3π´
p1´sq`1

2 Γ

ˆ

p1 ´ sq ` 1

2

˙

Let us introduce the complete Γ-function:

ΓRpsq “ π´ s
2Γ

´s

2

¯

.

From definition ΓR is entire except the simple poles along 2Zď0. Then we have explicit expressions
for γ :

γps,1, ψkq “
ΓRp1 ´ sq

ΓRpsq
, γps, sign, ψkq “ i3 ¨

ΓRp1 ´ s` 1q

ΓRps` 1q

For a general quasi-character χ : Rˆ Ñ Cˆ, we have χ “ signϵ| ¨ |s0 for some ϵ P t0, 1u and s0 P C
(7.1.5). We set

Lps, χq :“ ΓRps` s0 ` ϵq.

Then

γps, χ, ψkq “ i3ϵ ¨
Lp1 ´ s, χ´1q

Lps, χq

Complex

The characters cnpreiθq “ einθ pn P Zq represent the different equivalence classes. Consider the
functions

fnpzq :“

#

z|n|e´2πzz , if n ě 0

z|n|e´2πzz , if n ď 0

We contend that

f̂npzq “ p´iq|n|f´npzq for all n P Z.
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Induction on n ě 0, n “ 0 being shown in Lemma 7.1.4. Suppose we have proved the contention for
some n ě 0, i.e., we have established the formula

ż

C
sne´2πsse´2πi¨TrC{Rpszqds “ p´iqnzne´2πzz

Applying the operator B

Bz
to both sides, we obtain

ż

C
sne´2πsse´2πi¨TrC{Rpszq p´2πisqq ds “ inznp´2πzqe´2πzz

or
ż

C
sn`1e´2πsse´2πi¨TrC{Rpszq “ p´iqn`1zn`1e´2πzz

which is the contention for n`1. The induction step is carried out. For the case n ă 0, the previous
proof shows yf´npzq “ p´iq´nfnpzq, so

p´iq´n
xfnpzq “

y

yf´npzq “ f´np´zq “ p´1q´nf´npzq

or xfnpzq “ p´iq´nf´npzq “ p´iq|n|f´npzq. This finishes the proof.
We proceed. Write z “ reiθ; then

fnpzq “ r|n|e´inθe´2πr2

and

dˆz “
2dxdy

x2 ` y2
“

2rdrdθ

r2
.

We make some normalization: let gn “ fn pn P Zq; then

Zpgn, cn, sq “

ż 8

0

ż 2π

0

r|n|e´inθe´2πr2einθr2s
2rdrdθ

r2

“ 2π

ż 8

0

pr2qs´1`
|n|
2 e´2πr2dpr2q “ p2πq1´ps`

|n|
2 qΓ

ˆ

s`
|n|

2

˙

Zpxgn, c
´1
n , 1 ´ sq “ p´iq|n|Zpg´n, c´n, 1 ´ sq “ p´iq|n|p2πq1´p1´s`

|n|
2 qΓ

ˆ

1 ´ s`
|n|

2

˙

so

γps, cn, ψkq “ p´iq|n|

p2πq1´p1´s`
|n|
2 qΓ

ˆ

1 ´ s`
|n|

2

˙

p2πq1´ps`
|n|
2 qΓ

ˆ

s`
|n|

2

˙ .

Define the complete Γ-function over C:

ΓCpsq “ p2πq1´sΓpsq.

By Legendre duplication formula, one has ΓCpsq “ ΓRpsqΓRps` 1q. With these notations,

γps, cn, ψkq “ p´iq|n|

ΓC

ˆ

1 ´ s`
|n|

2

˙

ΓC

ˆ

s`
|n|

2

˙
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Generally, a quasi-character χ : Cˆ Ñ Cˆ has the form χpzq “ |z|cC

˜

z

|z|
1
2

C

¸n

for some c P C and

n P Z (7.1.5). Set

Lps, χq “ ΓC

ˆ

s` c`
|n|

2

˙

.

Then

γps, χ, ψkq “ p´iq|n|Lp1 ´ s, χ´1q

Lps, χq

Non-archimedean

Let χ : kˆ Ñ Cˆ be any quasi-character. Since 1` pn pn ě 1q form a basis of unit-neighborhoods of
u, and since Cˆ has no small subgroup (c.f. (I.2.10)), it follows that if χ|u is not trivial, then there
exists some n ě 1 such that χ|1`pn ” 1. The smallest such n ě 1 is called the conductor of χ, and
is denoted by cpχq.

Definition. A quasi-character χ is called unramified if χ|u ” 1.

We proceed to compute Zpf, χ, sq case by case. Let χ0 be an unramified quasi-character and
χn pn ě 1q be a quasi-character with conductor cpχnq “ n. For n ě 0, set

fnpxq “ ψkp´xq1p´nd´1pxq.

In Lemma 7.1.14 we’ve seen that

xfnpxq “ pNdq
1
2 pNpqn11`pn .

Say d´1 “ pd. Compute

Zpf0, χ0, sq “

ż

kˆ
ψkp´xq1d´1pxqχ0| ¨ |spxqdˆxtam “

ż

d´1zt0u

χ0| ¨ |spxqdˆxtam

“
ÿ

ně0

ż

pn`dzpn`d`1

χ0| ¨ |spxqdˆxtam “
ÿ

ně0

χ0pϖqn`dpNpq´spn`dq volpoˆ, dˆxtamq

“ pNdq´ 1
2
χ0pϖqdpNpq´sd

1 ´ χ0pϖqpNpq´s
“

χ0pϖqdpNdqs´ 1
2

1 ´ χ0pϖqpNpq´s

Zp pf0, χ
´1
0 , 1 ´ sq “ pNdq

1
2

ż

kˆ
1opxqχ´1

0 | ¨ |1´spxqdˆxtam “ pNdq
1
2

ÿ

ně0

ż

pnzpn`1

χ´1
0 | ¨ |1´spxqdˆxtam

“ pNdq
1
2

ÿ

ně0

χ0pϖq´npNpqnps´1q volpoˆ, dˆxtamq

“
1

1 ´ χ0pϖq´1pNpqs´1

Therefore,

γps, χ0, ψkq “
1

χ0pϖqdpNdqs´ 1
2

¨
p1 ´ χ0pϖq´1pNpqs´1q´1

p1 ´ χ0pϖqpNpq´sq´1

We proceed to compute the ramified cases.

Zpxfn, χ
´1
n , 1 ´ sq “ pNdq

1
2 pNpqn

ż

1`pn

χ´1
n | ¨ |1´spxqdˆxtam “ pNdq

1
2 pNpqn

ż

1`pn

dˆxtam
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Zpfn, χn, sq “

ż

p´n`d

ψkp´xqχn| ¨ |spxqdˆxtam “
ÿ

mě0

ż

p´n`d`mzp´n`d`m`1

ψkp´xqχn| ¨ |spxqdˆxtam

“
ÿ

mě´n`d

χnpϖqmpNpq´ms

ż

oˆ
ψkp´ϖmxqχnpxqdˆxtam

“
ÿ

dąmě´n`d

χnpϖqmpNpq´ms

ż

oˆ
ψkp´ϖmxqχnpxqdˆxtam

“
ÿ

dąmě´n`d

χnpϖqmpNpq´ms
ÿ

aPoˆ{1`pn

χnpaq

ż

1`pn

ψkp´ϖmaxqdˆxtam

“
ÿ

dąmě´n`d

χnpϖqmpNpq´ms
ÿ

aPoˆ{1`pn

χnpaqψkpϖmaq

ż

pn

ψkp´ϖmaxq
dxtam

1 ´ pNpq´1

The last integral vanishes if m ą ´n ` d, as m ą ´n ` d implies m ` n ą d, so that pn Q x ÞÑ

ψkp´ϖmaxq is nontrivial. Hence

Zpfn, χn, sq “ pNpqpn´dqs
ÿ

aPoˆ{1`pn

χnpϖ´n`daqψkpϖ´n`daq ¨

ż

1`pn

dˆxtam

For a ramified quasi-character χ : kˆ Ñ Cˆ, introduce the Gauss sum

gpχq “ gpχ, ψkq :“
ÿ

aPoˆ{1`pn

χnpϖ´n`daqψkpϖ´n`daq.

If c P kˆ is such that ordk c “ ´n` d, then ϖ´n`d “ uc for some u P oˆ, and
ÿ

aPoˆ{1`pn

χnpϖ´n`daqψkpϖ´n`daq “
ÿ

aPoˆ{1`pn

χnpc ¨ uaqψkpc ¨ u´n`daq “
ÿ

aPoˆ{1`pn

χnpcaqψkpcaq

as u is a unit. In particular, this shows gpχq is independent of the choice of uniformizer. Hence

Zpfn, χn, sq “ pNpqpn´dqsgpχnq ¨

ż

1`pn

dˆxtam

and

γps, χn, ψkq “
pNdq

1
2 pNpqn

pNpqpn´dqsgpχnq
.

By Theorem 7.1.15 to be proved, we have γps, χ, ψkqγp1 ´ s, χ´1, ψkq “ χp´1q, so

pNdq
1
2 pNpqn

pNpqpn´dqsgpχnq
¨

pNdq
1
2 pNpqn

pNpqpn´dqp1´sqgpχ´1
n q

“ χnp´1q

or

gpχnqgpχ´1
n q “ χnp´1q

pNdqpNpq2n

pNpqn´d
“ χnp´1qpNpqn.

Then we can rewrite γps, χn, ψkq as

γps, χn, ψkq “ pNpq´pn´dqsχp´1qpNdq
1
2 gpχ´1

n q “ pNpq´nspNdq´s` 1
2χnp´1qgpχ´1

n q.

Hence, for a general quasi-character χ, we have

γps, χ, ψkq “

$

’

’

&

’

’

%

1

χpϖqdpNdqs´ 1
2

¨
p1 ´ χpϖq´1pNpqs´1q´1

p1 ´ χpϖqpNpq´sq´1
, if χ is unramified

pNpq´nspNdq´s` 1
2χp´1qgpχ´1q , if χ is ramified with conductor n “ cpχq.
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7.1.4 Functional equation
Theorem 7.1.15. For all f P Zpkq and quasi-characters χ, the function s ÞÑ Zpf, χ, sq admits a
meromorphic continuation to C and satisfies the functional equation

Zp pf, χ´1, 1 ´ sq “ γps, χ, ψkqZpf, χ, sq.

The function γps, χ, ψkq is called the γ-factor, and it satisfies the following properties

(i) γps, χ| ¨ |s0 , ψkq “ γps` s0, χ, ψkq.

(ii) γps, χ, ψkqγp1 ´ s, χ´1, ψkq “ χp´1q.

(iii) γps, χ, ψkq “ χp´1qγps, χ, ψkq.

(iv) |γps, χ, ψkq| “ 1 if s` wtpχq “
1

2
.

Proof. By Lemma 7.1.12 we see s ÞÑ Zpf, χ, sq is holomorphic when Re s ` wtpχq ą 0, and s ÞÑ

Zp pf, χ´1, 1´sq is holomorphic when Rep1´sq `wtpχq´1 ą 0, or 1 ą Repsq `wtpχq. But by Lemma
7.1.13, when 0 ă Repsq ` wtpχq ă 1, we have

Zp pf, χ´1, 1 ´ sq “ γps, χ, ψkqZpf, χ, sq,

where γps, χ, ψkq is computed in previous subsections. From the explicit formula of γps, χ, ψkq,
we see it is meromorphic on C. Hence the functional equation provides Zpf, χ, sq a meromorphic
continuation to the whole plane.

It remains to show the listed properties of γps, χ, ψkq.

(i) This follows from Zpf, χ| ¨ |s0 , sq “ Zpf, χ, s` s0q.

(ii) Keeping in mind that p

pfpxq “ fp´xq, we have

Zp pf, χ´1, 1 ´ sq “ γps, χ, ψkqZpf, χ, sq “ γps, χ, ψkqγp1 ´ s, χ´1, ψkqχp´1qZp pf, χ´1, 1 ´ sq.

So γps, χ, ψkqγp1 ´ s, χ´1, ψkqχp´1q “ 1.

(iii) We may assume s is real. Then Zpf, χ, sq “

ż

kˆ
fpxqχ| ¨ |sdˆxtam “ Zpf, χ, sq, so

γps, χ, ψkqZpf, χ, sq “ Zp
pf, χ´1, 1 ´ sq.

But

pfpxq “

ż

kˆ
fpxqψkp´xqdxtam “

ż

kˆ
fpxqψkpxqdˆxtam “ pfp´xq.

Then

Zp
pf, χ´1, 1 ´ sq “ χ´1p´1qZp pf, χ´1, 1 ´ sq “ χp´1qZp pf, χ´1, 1 ´ sq.

Hence

Zp pf, χ´1, 1 ´ sq “ χp´1qγps, χ, ψkqZpf, χ, sq.

This shows χp´1qγps, χ, ψkq “ γps, χ, ψkq.

(iv) We have 2s` wtpχq “ 1, so | ¨ |2sχχ “ | ¨ |, or χ “ χ´1| ¨ |1´2s. Then

γps, χ, ψkq “ γps, χ´1| ¨ |1´2s, ψkq
piq
“ γps` 1 ´ 2s, χ´1, ψkq “ γp1 ´ s, χ´1, ψkq.

Now (iv) follows from (ii) and (iii).

124



7.2 Distributions

7.2.1 Archimedean case
Let U Ď Rn be an open set. For any compact subset K Ď U , set

CKpUq :“ tf P CpUq | supp f Ď Ku

to be the spaces of continuous functions with support contained in K. Also, set CrKpUq “ CKpUq X

CrpUq pr “ 0, 1, 2, . . . ,8q. Clearly, we have

CcpUq “
ď

K Ď
cpt

U

CKpUq, Crc pUq “
ď

K Ď
cpt

U

CrKpUq.

We topologize CrKpUq as follows. For α “ pα1, . . . , αnq P pZě0qn with |α| :“ α1 ` ¨ ¨ ¨ ` αn ď r,
define for each f P CrKpUq

∥f∥α,K :“ sup
xPK

|Dαfpxq| ă 8

where Dαf :“
Brf

Bxα1
1 ¨ ¨ ¨ Bxαn

n
is the α-th derivative of f . Topologize CrKpUq with the initial topology

induced by all ∥¨∥α,K , |α| ď r. If K Ď K 1 Ď U , since ∥¨∥α,K1 extends ∥¨∥α,K , the natural inclusion
ιK,K1 : CrKpUq Ñ CrK1 pUq is a topological embedding. The set-theoretic colimit of the CrKpUq is
exactly Crc pUq. We equip Crc pUq with the strict locally convex colimit topology. (c.f. §E.4.2.)
Note this is strict as U admits a compact exhaustion, which is cofinal in all compact sets in U . In
particular

Lemma 7.2.1. If pfnqn Ď Crc pUq is a Cauchy sequence, then there exists a compact subset K Ď U

such that pfnqn Ď CrKpUq and pfnqn is Cauchy in CrKpUq.

Proof. This is Corollary E.4.5.1.(ii).

Lemma 7.2.2. The canonical map

C8
c pRqbn C8

c pRnq

f1 b ¨ ¨ ¨ b fn px1, . . . , xnq ÞÑ f1px1q ¨ ¨ ¨ fnpxnq

has dense image.

Proof. Let f P C8
c pRnq; we must approximate f by a sequence in C8

c pRqbn. For this we can assume
supp f Ď r´1, 1sn. Periodize f with period r´π, πsd. Then we can represent f as Fourier series

fpxq “
ÿ

kPZn

eik¨x
pfpkq.

Define gm : Rn Ñ C by

gmpxq “
ÿ

|k|ďn

eik¨x
pfpkq.

Then ∥gm ´ f∥8 Ñ 0 as m Ñ 8.
By §F.5 take ϕ P C8

c pRnq such that ϕpxq “ 1 for ∥x∥ ď 1, and take

fmpxq :“
ÿ

|k|ďm

eik¨x
n
ź

j“1

ϕpxjq pfpkq.

THen fm Ñ f in any
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Let 0 ď r ă 8. The initial topology on CrKpUq is in fact the same as the initial topology induced
by the map CrKpUq Q f ÞÑ ∥f∥r,K :“

ř

|α|ďr

∥f∥α,K . Indeed, the former topology has a subbasis

consisting of sets of the form Uα,a,b :“ tf P CrKpUq | ∥f∥α,K P pa, bq X r0,8qu, ´8 ă a ă b ď 8,
and the latter topology has a subbasis consisting of sets of the form Ua,b :“ tf P CrKpUq | ∥f∥r,K P

pa, bq X r0,8qu, ´8 ă a ă b ă 8. Clearly, the following containment
č

α

Uα,aα,bα Ď Ua,b

holds with a “
ř

α aα, b “
ř

α bα. On the other hand, for p P CrKpUq, set

Uα,bppq :“ tf P CrKpUq | ∥f ´ p∥α,K ă bu.

If p P Uα,a,b, then Uα,ϵppq Ď Uα,a,b with ϵ ă mint∥p∥α,K , ∥p∥α,K ´ a, b´ ∥p∥α,Ku. Set also that

Ur,bppq :“ tf P CrKpUq | ∥f ´ p∥r,K ă bu.

If p P Ur,a,b, then Ur,ϵppq Ď Ur,a,b with ϵ ă mint∥p∥r,K , ∥p∥r,K ´ a, b ´ ∥p∥r,Ku. Now clearly
Ur,bppq Ď Uα,bppq, so the two topologies on CrKpUq are the same. Since ∥f∥r,K is a norm, it follows
that CrKpUq is a normed vector space.

Lemma 7.2.3. For 0 ď r ď 8 and K Ď U compact, the space CrKpUq is a Banach space.

Let 0 ď r ă 8 and let u : Crc pUq Ñ C be a continuous linear functional. By Corollary E.4.3.1,
this is the same as saying that each u ˝ fK : CrKpUq Ñ C is continuous, so it is a bounded linear
operator, i.e.,

|upϕq| ď C ∥ϕ∥r,K “ C
ÿ

|α|ďr

∥ϕ∥α,K

holds for all ϕ P CrKpUq.

Proposition 7.2.4. Let u : C8
c pUq Ñ C be a linear functional. TFAE:

(i) u is continuous.

(ii) For each compact set K Ď U , there exists m “ mK P Zě0 and C “ CK ą 0 such that

|upϕq| ď C
ÿ

|α|ďm

∥ϕ∥α,K

holds for all ϕ P C8
K pUq.

In either case, we say u is a generalized function/distribution on U , and we sometimes refer to
elements in C8

c pUq as test functions on U .

Proof. For each 0 ď r ă 8, let ρr : C8
K pUq Ñ C8

K pUq denote the identity map with the codomain
C8
K pUq equipped with the subspace topology induced by C8

K pUq Ď CrKpUq. By construction, ρr is
continuous. The condition (ii) means that u ˝ fK is continuous when C8

K pUq is equipped with the
subspace topology from CmK pUq, so by precomposing with ρr we see u ˝ fK is continuous for each K.
This proves (i).

Now assume (i). Hence u˝fK : C8
K pUq Ñ C is continuous for any compact K Ď U . In particular,

it is continuous at 0 P C8
K pUq. Observe that Um,b X C8

K pUq pb ą 0q forms a neighborhood basis of
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0 in C8
K pUq. So by fixing some C ą 0 we can find some m P Zě0 and b ą 0 such that ∥ϕ∥m,K ă b

implies |upϕq| ď C. But for any ϕ P C8
K pUq, as

∥∥∥∥∥ bϕ

2 ∥ϕ∥m,K

∥∥∥∥∥
m,K

“
b

2
ă b,

ˇ

ˇ

ˇ

ˇ

ˇ

u

˜

bϕ

2 ∥ϕ∥m,K

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď C

or

|upϕq| ď
2C

b
∥ϕ∥m,K “

2C

b

ÿ

|α|ďm

∥ϕ∥α,K .

Example 7.2.5.

1. Consider the space

L1
locpUq :“ tf : U Ñ C | f |K P L1pKq for all K Ď

cpt
Uu.

Then each f P L1
locpUq defines a distribution uf by integration

uf pϕq “

ż

U

fϕdx

The integral exists if ϕ P CcpUq, and for each compact K Ď U and ϕ P CKpUq, one has

|uf pϕq| “

ˇ

ˇ

ˇ

ˇ

ż

U

fϕdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

K

fϕdx

ˇ

ˇ

ˇ

ˇ

ď ∥f |K∥L1 ∥ϕ∥sup .

More generally (in the sense of Radon-Nykodim), if µ is a σ-finite positive measure on U ,
integration against µ

ϕ ÞÑ

ż

U

ϕdµ

defines a distribution.

2. For any α P pZě0qn and x0 P U , the linear map

ϕ ÞÑ Dαϕpx0q, ϕ P C8
c pUq

defines a distribution. If |α| ě 1, this is not given by any complex measure on U , as it is not
a bounded linear functional of C8

0 pUq (e.g. consider the bump functions). When |α| “ 0, it is
the so-called Dirac measure concentrated at x0.

Definition. Let u : C8
c pUq Ñ C be a distribution.

(i) For any α P pZě0qn, define the Dαu to be the unique distribution satisfying

Dαupϕq “ p´1q|α|upDαϕq, ϕ P C8
c pUq.

This is called the α-th distributional derivative of u.

(ii) The support suppu is the complement of the largest open set Ω Ď U such that u|C8
c pΩq ” 0.

Here the inclusion C8
c pΩq Ñ C8

c pUq is the extension by zero.
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(iii) For each compact K Ď U , denote by C8
c pUq_

K the subspace of distributions with support
contained in K.

There is larger space containing C8
c pRnq, i.e., the Schwartz space SpRnq. Recall that it is

topologized by the initial topology given by the functions

f ÞÑ ∥f∥α,β :“ sup
xPRn

|xαDβfpxq|

where xα :“ xα1
1 ¨ ¨ ¨xαn

n .

Lemma 7.2.6. The inclusion C8
c pRnq Ď SpRnq is continuous and dense.

Proof. To show the inclusion C8
c pRnq Ď SpRnq is continuous, we must show ∥¨∥α,β : C8

c pRq Ñ Rě0

is continuous for each α, β P pZě0qn. By Lemma E.4.3 it suffices to show ∥¨∥α,β : C8
K pRnq Ñ Rě0 is

continuous for each compact subset K Ď Rn. For f, g P C8
K pRnq, trivially we have

∥f ´ g∥α,β ď sup
xPK

|xα| ¨ ∥f ´ g∥β,K .

This proves the continuity.
For density, by §F.5 take ϕ P C8

c pRnq such that ϕpxq “ 1 for ∥x∥ ď 1. Let f P SpRnq and for
each ε ą 0 put fεpxq “ fpxqϕpεxq. Then fε P C8

c pRnq and

fεpxq ´ fpxq “ fpxqpϕpεxq ´ 1q “ 0

if ∥x∥ ă
1

ε
. Then for α, β P pZě0qn

∥fε ´ f∥α,β ď

ˆ

sup
xPRn

|ϕpxq| ` 1

˙

sup
∥x∥ąε´1

|xαDβfpxq| ď

ˆ

sup
xPRn

|ϕpxq| ` 1

˙

∥f∥α1,β ε
2

where α1 “ α ` p2, . . . , 2q. This finishes the proof.

For k ě 0, define ∥¨∥k : SpRnq Ñ Rě0 by

∥f∥k :“ sup
xPRn

p1 ` ∥x∥2q
k
2

ÿ

|α|ďk

|Dαfpxq|

The ∥¨∥k define norms on SpRnq. Trivial estimate and Cauchy inequality yield

p1 ` ∥x∥2q
k
2 ď

ÿ

|α|ďk

|xα| “ p1 ` |x1| ` ¨ ¨ ¨ ` |xn|qk ď pn` 1qkp1 ` ∥x∥2q
k
2

In particular, this gives

pn` 1qk ∥f∥k ě
ÿ

|α|,|β|ďk

∥f∥α,β ě ∥f∥k .

Hence the topology defined by ∥f∥k is the same as the one defined by
ř

|α|,|β|ďk ∥f∥α,β , which turns
out to be the same as that induced by ∥f∥α,β , |α|, |β| ď k (this can be proved by a similar argument
to the case CrKpUq). Hence the topology on SpRnq is the same as the initial topology given by the
norms ∥f∥k , 0 ď k ă 8. Note also that ∥f∥k ď ∥f∥ℓ as long as k ď ℓ.

Let u : SpRnq Ñ C be a continuous linear functional. In particular, it is continuous at 0, so by
fixing C ą 0 there exists k1 ă ¨ ¨ ¨ ă kℓ “: k P Zě0 and b1, . . . , bℓ ą 0 such that if ϕ P SpRnq satisfies
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∥ϕ∥kℓ ă bℓ, i “ 1, . . . ,m, then |upϕq| ď C. In particular, if ∥ϕ∥kℓ ă b :“ min
1ďiďℓ

bi, then |upϕq| ď C.

For any ϕ, we have
∥∥∥∥ bϕ

2 ∥ϕ∥k

∥∥∥∥
k

ă
b

2
ă b, so

|upϕq| ď
2C

b
∥ϕ∥k .

The converse holds trivially.

Definition. Let k P Zě0. A tempered distribution u P SpRnq_ is of order ď k if there exists C ą 0

such that |upϕq| ď C ∥ϕ∥k for all ϕ P SpRnq.

Proposition 7.2.7. The Fourier transform p̈ : SpRnq Ñ SpRnq is an topological vector space
isomorphism.

Proof. By Lemma 7.1.14 and Fourier inversion, it remains to show p̈ : SpRnq Ñ SpRnq is continuous.
In Lemma 7.1.14 we see for α, β P pZě0qn and f P SpRnq that

xαDβ
pfpxq “ p´2πiq|α|p2πiq|β|

{Dαpxβfpxqq.

Then ∥∥∥ pf∥∥∥
α,β

ď p2πiq|α`β|

ż

Rn

p1 ` ∥x∥2q´np1 ` ∥x∥2qnDαpxβfpxqqdx

ď p2πiq|α`β|

ż

Rn

p1 ` ∥x∥2q´ndx ¨ sup
xPRn

|p1 ` ∥x∥2qnDαpxβfpxqq|

The last sup is bounded by a finite sum of various ∥f∥α1,β1 . This proves the continuity.

Definition. A continuous linear function u : SpRnq Ñ C is called a tempered distribution on
Rn.

Definition. Let u : SpRnq Ñ C be a tempered distribution.

(i) For any α P pZě0qn, define the α-th distributional derivative of u to be the unique distri-
bution satisfying

Dαupϕq “ p´1q|α|upDαϕq, ϕ P SpRnq.

(ii) The Fourier transform pu of u is the functional on SpRnq such that

pupϕq “ uppϕq, ϕ P SpRnq.

(iii) The support suppu is the complement of the largest open set Ω Ď U such that upϕq “ 0 for
all ϕ P SpRq with suppϕ Ď Ω.

(iv) For each compact K Ď U , denote by SpRnq_
K the subspace of tempered distributions with

support contained in K.

Lemma 7.2.8. For p P Rn, the tempered distributions with support contained in tpu is

SpRnq_
p “

$

&

%

ÿ

αPpZě0qn

cαD
α|p | cα “ 0 for almost all α P pZě0qn

,

.

-

“
à

αPpZě0qn

Dα|p.
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Proof. For convenience, assume p “ 0 is the origin. Let u P SpRnq_
p and suppose u is of order ď k

for some k P Zě0. Hence there exists C ą 0 such that |upfq| ď C ∥f∥k for all f P SpRnq.
We claim tf P SpRq | 0 R supp fu is dense in tf P SpRnq | Dαfp0q “ 0 for all |α| ď k ` 1u with

respect to the topology induced by ∥¨∥k. The former set lies the latter as f{xα is well-defined for
0 R supp f . Assuming this, by continuity we see upfq “ 0 for f P SpRnq with Dαfp0q “ 0, |α| ď k`1.
For each g P SpRnq, then

upgq “ u

¨

˝

ÿ

|α|ďk

Dαgp0q

α!
xα

˛

‚` u

¨

˝gpxq ´
ÿ

|α|ďk

Dαgp0q

α!
xα

˛

‚“ u

¨

˝

ÿ

|α|ďk

Dαgp0q

α!
xα

˛

‚“
ÿ

|α|ď

xα

α!
Dαgp0q.

This proves u “
ÿ

|α|ďk

xα

α!
Dα|0, as claimed.

It remains to show the density. Let ϕ P C8
c pRq be such that 0 ď ϕ ď 1, ϕpxq “ 1 for ∥x∥ ď 1

and ϕpxq “ 0 for ∥x∥ ě 2. For 0 ă ε ď 1 put ϕεpxq “ ϕpε´1xq. For g P SpRnq and |β| ď k, compute

Dβg ´Dβpgp1 ´ ϕεqq “ Dβpgϕεq “
ÿ

γďβ

ˆ

β

γ

˙

Dγg ¨Dβ´γϕε

and hence
ÿ

|β|ďk

ˇ

ˇDβg ´Dβpgp1 ´ ϕεqq
ˇ

ˇ ď
ÿ

|γ|ďk

|Dγgpxq|
ÿ

γďβ
|β|ďk

ˆ

β

γ

˙

|Dβ´γϕεpxq| ď ck
ÿ

|γ|ďk

|Dγgpxq|1B2εp0qpxqε|γ|´k

for some constant ck. We claim

lim
εÑ0

sup
∥x∥ă2ε

p1 ` ∥x∥2q
k
2 |Dγfpxq|ε|γ|´k “ 0

for |γ| ď k and f P SpRnq with Dαfp0q “ 0, |α| ď k ` 1. If |γ| “ k, this follows from uniform
continuity of Dγf and from Dγfp0q “ 0. If |γ| ă k, for such f , by Taylor’s expansion we have

|Dγfpxq| ď
1

pk ´ |γ|q!
sup

0ătă1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

d

dt

˙k´|γ|

pDγfqptxq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since k ´ |γ| ą 0, the RHS has at least a factor x, and hence the limit goes to 0.

Now we turn to our main topic. For s P C with Re s ą ´1, the function 1ě0pxqxs defines a
tempered distribution I`

s : SpRq Ñ C by integration:

I`
s pϕq :“

ż 8

0

xsϕpxqdx.

Fix a ϕ P SpRq and consider the function s ÞÑ Ispϕq. By Lemma 7.1.12 and Lemma 7.1.14, it is a
holomorphic function. Using integration by part, for Re s ą 0, we have

I`
s pϕq “ ´sIs´1pϕ1q.

Iterating gives

I`
s pϕq “

p´1qk

ps` 1q ¨ ¨ ¨ ps` kq
Is`kpϕpkqq (♠)

with Re s ą ´1 and k P Zě0. This provides a meromorphic continuation of s ÞÑ I`
s pϕq to s P CzZă0:

I`
s pϕq “

p´1qk

ps` 1q ¨ ¨ ¨ ps` kq
Is`kpϕpkqq
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where k is any integer with k ą maxt0,´1´Re su. The formula p♠q shows this is well-defined, and
it has simple pole at each negative integer ´m pm P Zą0q with residue

lim
sÑ´m

ps`mqI`
s pϕq “ lim

sÑ´m

p´1qkps`mq

ps` 1q ¨ ¨ ¨ ps` kq
Is`kpϕpkqq

pick k“m
“

´1

pm´ 1q!
I0pϕpmqq “

1

pm´ 1q!
ϕpm´1qp0q

In turn of distribution, this reads

lim
sÑ´m

ps`mqI`
s “

p´1qm´1

pm´ 1q!
δ

pmq
0

where δ0 is the Dirac measure concentrated at 0 and δpm´1q
0 is its m-th distributional derivative. To

eliminate the poles, define I`
s : SpRq Ñ C by

I`
s pϕq “

1

Γps` 1q
I`
s pϕq.

It is s` 1 because lim
sÑ´m

ps`mqΓpsq “
p´1qm

m!
for m P Zě0. Hence, for ϕ P SpRnq,

lim
sÑ´m

I`
s pϕq “ lim

sÑ´m

ps`mqI`
s pϕq

ps`mqΓps` 1q
“ ϕpm´1qp0q.

Since Γ has no zero, it follows that s ÞÑ I`
s pϕq is an entire function.

Similarly, for each Re s ą ´1 the function 1ă0pxq|x|s defines a tempered distribution I´
s by

integration:

I´
s pϕq “

ż 0

´8

|x|sϕpxqdx “

ż 8

0

xsϕp´xqdx “ I`
s prϕq

where rϕpxq :“ ϕp´xq. It follows that I´
s :“

1

Γps` 1q
I´
s satisfies I´

s pϕq “ I`
s prϕq, so s ÞÑ I´

s pϕq

defines an entire function for each fixed ϕ P SpRq.
Finally, consider the tempered distribution Is defined by the function |x|s, i.e.,

Ispϕq “

ż

R
|x|sϕpxqdx “ I´

s pϕq ` I`
s pϕq.

Unlike I`
s and I´

s , it has fewer poles; indeed, ress“´m I
`
s pϕq “

p´1qm´1

pm´ 1q!
ϕpm´1qp0q, while ress“´m I

´
s pϕq “

1

pm´ 1q!
ϕpm´1qp0q. Hence

ress“´m Ispϕq “

$

&

%

0 , if m “ ´2, ´4, . . .
2

pm´ 1q!
ϕpm´1qp0q , if m “ ´1, ´3, ´5, . . .

To eliminate the poles, this time we use s ÞÑ Γ

ˆ

s` 1

2

˙

, which has simple poles at s “ ´p2j`1q pj P

Zě0q with residue 2p´1qj

j!
. Hence the function s ÞÑ Is given by

Ispϕq :“
1

Γ

ˆ

s` 1

2

˙Ispϕq
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is an entire family of tempered distributions. In addition, we have I´p2j`1q “
p´1qjj!

p2jq!
δ

p2jq
0 .

We return to the local zeta integral. For each ϕ P SpRq, we have

Zpϕ,1, sq “

ż

Rˆ
ϕpxq|x|sdˆx “ Is´1pϕq.

The result in the last paragraph says that

s ÞÑ
Zp¨,1, sq

Γ
´s

2

¯

defines a entire family of tempered distributions with

Zp¨,1, sq

Γ
´s

2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s“´2j

“
p´1qjj!

p2jq!
δ

p2jq
0 , j P Zě0

as elements in SpRq_. Next consider sign : Rˆ Ñ t˘1u; we have

Zpϕ, sign, sq “

ż 8

0

ϕpxq|x|sdˆx´

ż 0

´8

ϕpxq|x|sdˆx “ I`
s´1pϕq ´ I´

s´1pϕq.

The function s ÞÑ I`
s pϕq´I´

s pϕq has simple poles at s “ ´2j pj P Zě1q with residue ´2

p2j ´ 1q!
ϕp2j´1qp0q.

On the other hand, the function s ÞÑ Γp
s

2
` 1q has simple poles at s “ ´2j pj P Zě1q with residue

2p´1qj´1

pj ´ 1q!
, so the distribution

s ÞÑ
I`
s ´ I´

s

Γ
´s

2
` 1

¯

is entire with value at s “ ´2j being p´1qj´1pj ´ 1q!

p2j ´ 1q!
δ

p2j´1q
0 . Applied to our case, we obtain that

s ÞÑ
Zp¨, sign, sq

Γ

ˆ

s` 1

2

˙

is a entire family of tempered distributions with

Zp¨, sign, sq

Γ

ˆ

s` 1

2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s“´p2j´1q

“
p´1qj´1pj ´ 1q!

p2j ´ 1q!
δ

p2j´1q
0 .

Generally, let χ : Rˆ Ñ Cˆ be a quasi-character; then χ “ signϵ| ¨ |s0 for some ϵ P t0, 1u and s0 P C.

Then Zp¨, χ, sq “ Zp¨, signϵ, s ` s0q, so Zp¨, χ, sq

Γ

ˆ

s` s0 ` ϵ

2

˙ is a entire family of tempered distributions

with value at s “ ´s0 ´ 2j ´ ϵ pj P Zě0q being p´1qjj!

p2j ` ϵq!
δ

p2j`ϵq
0 . In summary,

Theorem 7.2.9. For any quasi-character χ : Rˆ Ñ C, the map s ÞÑ
Zp¨, χ, sq

Lps, χq
defines a entire

family of tempered distribution with
Zp¨, χ, sq

Lps, χq

ˇ

ˇ

ˇ

ˇ

s“´s0´2j´ϵ

“
p´1qjπjj!

p2j ` ϵq!
δ

p2j`ϵq
0 pj P Zě0q.

where χ “ signϵ| ¨ |s0 with ϵ P t0, 1u, s0 P C.
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We’ve seen that there exists ϕ P SpRq such that Zpϕ, χ, sq “ Lps, χq. With this in mind, the
local factor Lps, χq can be viewed as the “GCD” of all zeta integrals Zpϕ, χ, sq. By the functional
equation, there exists a unique function ϵps, χ, ψkq satisfying

Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q
“ ϵps, χ, ψkq

Zpf, χ, sq

Lps, χq
.

This is called the ϵ-factor. By (7.1.3), we have ϵps, χ, ψkq “ i3signpχq, where signpχq P t0, 1u is the
parity of χ, i.e., χp´1q “ p´1qsignpχq.

We state without proof for the result when k “ C. For any quasi-character χ : Cˆ Ñ Cˆ,
the map SpCq Q ϕ ÞÑ

Zpϕ, χ, sq

Lps, χq
defines an entire family of tempered distribution. It satisfies the

functional equation

Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q
“ ϵps, χ, ψkq

Zpf, χ, sq

Lps, χq
,

with ϵps, χ, ψkq “ p´iq|n|, where n is the unique integer such that χ|S1 “ rx ÞÑ xns. The function
ϵps, χ, ψkq is again called the ϵ-factor.

7.2.2 Non-archimedean case I
The non-archimedean case is easier. Let k be a local field; recall that the space Spkq of Bruhat-
Schwartz functions on k consists of all complex-valued locally constant functions with compact
support. We topologize Spkq by weak topology, namely, equip it with the initial topology with
respect to Spkq_ “ HomCpSpkq,Cq. Although the topology is defined, we barely use them so one
can simply ignore it.

Definition. An element in Spkq_ is called a (tempered) distribution on Spkq.

Fix a quasi-character χ : kˆ Ñ Cˆ. For ϕ P Spkq_ and s P C, consider the zeta integral

Zpϕ, χ, sq “

ż

kˆ
ϕpxqχ| ¨ |spxqdˆxtam.

The computation in Lemma 7.1.14 shows that for each fixed ϕ P Spkq, the zeta integral Zpϕ, χ, sq

defines an element in Cpq´sq with q “ Np; in particular, it defines an meromorphic function in s.
Consider the C vector subspace

W “ spanCtZpϕ, χ, sq | ϕ P Spkqu Ď Cpq´sq.

Lemma 7.2.10. W is a Crqs, q´ss-submodule.

Proof. Let ϕ P Spkq. Let ϖ be a uniformizer of k and consider the function ϕ1 P Spkq given by
ϕ1pxq “ ϕpϖxq. Then

Zpϕ1, χ, sq “

ż

kˆ
ϕpϖxqχ| ¨ |spxqdˆxtam “

ż

kˆ
ϕpxqχ| ¨ |spxϖ´1qdˆxtam “ χpϖ´1qq´sZpϕ, χ, sq,

so that

q´sZpϕ, χ, sq “ Zpχpϖqϕ1, χ, sq P W.

Replacing ϖ by ϖn, n P Z shows q´nsZpϕ, χ, sq P W .

133



The computation in (7.1.3) shows that p1 ´ χpϖqq´sqZpϕ, χ, sq P Crq´ss for all ϕ P Spkq. This
implies

Corollary 7.2.10.1. W is a fractional ideal of Crqs, q´ss.

Since Crqs, q´ss is a PID, there exist P,Q P CrXs such that 0 ‰
P

Q
pq´sq is a generator of

the fractional ideal W . Since q´s is a unit in Crqs, q´ss, we may assume Qp0q “ 1 “ P p0q and
gcdpP,Qq “ 1; such a generator is unique. Again, it follows from (7.1.3) that P ” 1 and QpXq “
#

1 ´ χpϖqX , if χ is unramified
1 , if χ is ramified

. Define the local L-factor

Lps, χq :“ Qpq´sq´1 “

$

&

%

1

1 ´ χpϖqpNpq´s
, if χ is unramified

1 , if χ is ramified
.

Then the map

Spkq Q ϕ ÞÑ
Zpϕ, χ, sq

Lps, χq
P C

defines a entire family of tempered distribution. By the functional equation, there exists a unique
function ϵps, χ, ψkq, again called the ϵ-factor, satisfying

Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q
“ ϵps, χ, ψkq

Zpf, χ, sq

Lps, χq
.

By the computation in (7.1.3), we see

ϵps, χ, ψkq “

$

’

&

’

%

1

χpϖqdpNdqs´ 1
2

, if χ is unramified

pNpq´nspNdq´s` 1
2χp´1qgpχ´1q , if χ is ramified with conductor n “ cpχq.

where d P Z is such that d´1 “ pd.
We know Lps, χq “ Zpϕ, χ, sq for some ϕ P Spkq. In fact,

Lemma 7.2.11. Let χ be an unramified quasi-character. Then

Zp1o, χ, sq “ pNdq´ 1
2Lps, χq, Zpx1o, χ

´1, 1 ´ sq “ χpϖq´dpNpqdsLp1 ´ s, χ´1q

Proof. Recall in Lemma 7.1.8 that volpu, dˆxtamq “ pNdq´ 1
2 . Hence

Zp1o, χ, sq “

ż

kˆ
1opxqχ| ¨ |spxqdˆxtam “

8
ÿ

n“0

ż

ϖnu

χ| ¨ |spxqdˆxtam

“

8
ÿ

n“0

χpϖqnpNpq´ns volpu, dˆxtamq “
pNdq´ 1

2

1 ´ χpϖqpNpq´s
“ pNdq´ 1

2Lps, χq.

For the second one, recall x1o “ volpo, dxtamq1d´1 “ pNdq´ 1
21d´1 . Then

Zpx1o, χ
´1, 1 ´ sq “ pNdq´ 1

2

ż

kˆ
1d´1pxqχ´1| ¨ |1´spxqdˆxtam “ pNdq´ 1

2

8
ÿ

n“d

ż

ϖnu

χ´1| ¨ |1´spxqdˆxtam

“ pNdq

8
ÿ

n“d

χ´1pϖqnpNpq´np1´sq

“
pNdqχpϖq´dpNpq´dp1´sq

1 ´ χ´1pϖqpNpq1´s
“ χpϖq´dpNdq´sLp1 ´ s, χ´1q.
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7.2.3 Change of characters
Let k be a local field. Recall by Theorem 7.1.3 every nontrivial character ψ P pk defines an isomor-
phism k – pk. By a similar argument preceding Lemma 7.1.4, there exists a unique measure dx on
k such that if we define the Fourier transform pf of an integrable function f to be

pfpxq “

ż

k

fpyqψp´xyqdy,

then the Fourier inversion p

pfpxq “ fp´xq holds for suitable functions f .

Lemma 7.2.12. Retain the notation above. If ψpxq “ ψkpaxq for some a P kˆ, then dx “ |a|
1
2 dxtam.

Proof. The uniqueness of Haar measures implies that dx “ αdxtam for some α P kˆ. To distinguish
different Fourier transforms, we put rf to be the one defined by the standard character ψk. Then

pfpxq “

ż

k

fpyqψp´xyqdy “

ż

k

fpyqψkp´axyqαdytam “ α rfpaxq

and hence

fp´xq “
p

pfpxq “

ż

k

pfpyqψp´xyqdy “ α2

ż

k

rfpayqψp´axyqdytam “ α2|a|´1 r
rfpxq “ α2|a|´1fp´xq.

This implies α “ |a|
1
2 .

Define the Haar measure dˆx on kˆ as before. Then we can consider the zeta integral

Zψpf, χ, sq :“

ż

kˆ
fpxqχ| ¨ |spxqdxˆ.

By Lemma 7.2.12 and its proof, we see

Zψpf, χ, sq “ |a|
1
2Zψk

pf, χ, sq (♠)

and

Zψp pf, χ´1, 1 ´ sq “

ż

kˆ
|a|

1
2 rfpaxqχ´1| ¨ |1´spxq|a|

1
2 dˆxtam “ |a|sχpaqZψk

p rf, χ´1, 1 ´ sq.

With the measure dˆx, we also have functional equations

Zψp pf, χ´1, 1 ´ sq “ γps, χ, ψqZψpf, χ, sq.

Comparing to the one for Zψk
, we obtain

γps, χ, ψq “ |a|s´ 1
2χpaqγps, χ, ψkq.

This is the reason that we regard ψk as an argument of the γ-factor. Because of p♠q, the C-subspace
spanned by the Zψ is the same as the one spanned by the Zψk

. This implies the non-archimedean
local L-factor remains unchanged; they are all denoted by Lps, χq. Similarly, we have the ϵ-factor
ϵps, χ, ψq characterized by

Zψp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q
“ ϵps, χ, ψq

Zψpf, χ, sq

Lps, χq
.

This implies

γps, χ, ψq “ ϵps, χ, ψq ¨
Lp1 ´ s, χ´1q

Lps, χq

so

ϵps, χ, ψq “ |a|s´ 1
2χpaqϵps, χ, ψkq.
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Lemma 7.2.13. For a quasi-character χ on a local field k, we have the identity

γps, χ, ψq “ ϵps, χ, ψq ¨
Lp1 ´ s, χ´1q

Lps, χq

7.2.4 Non-archimedean case II: invariant distributions
Definition. Let X be a totally disconnected locally compact space. A function f is called smooth
if f is locally constant. We denote by C8pXq be the space of all smooth functions on f . Also, set
C8
c pXq “ C8pXq X CcpXq.

• When k is a non-archimedean local field, C8
c pkq “ Spkq.

• We impose no topology on C8
c pXq. In particular, we set

DpXq :“ C8
c pXq_ “ HomCpC8

c pXq,Cq,

and call it the space of tempered distributions.

• Let G be a totally disconnected locally compact group. We let G act on C8
c pGq by right

translation and denote by ρ : G Ñ GLpC8
c pGqq the resulting representation. Namely, for

x, g P G and f P C8
c pGq, we set

ρpgqfpxq :“ fpxgq.

This is called the right regular representation of G. We let G act on DpGq_ and denote
the resulting representation by ρ_. Namely, for g P G and T P DpGq_,

ρ_pgqT :“ T ˝ ρpg´1q.

This is called the contragredient representation of ρ. Similarly, we define the left regular
representation λ : G Ñ GLpDpGqq and its contragredient λ_ : G Ñ GLpDpGq_q.

Lemma 7.2.14. Let G be a totally disconnected locally compact group, and f P C8
c pGq. Then

there exists an open compact subgroup K such that fpxkq “ fpxq for x P G, k P K (resp. exists K 1

such that fpkxq “ fpxq for x P G, k P K 1).

Proof. Consider the stabilizer

Stabρf :“ tg P G | ρpgqf “ fu

of f under the regular representation ρ. This is a subgroup of G. Also, since f is constant near the
identity, it is constant on an open compact subgroup of G by Theorem 6.1.4. This implies Stabρf
is open. Finally, suppose x P supp f ; then fpxgq “ fpxq for g P Stabρf , so that xg P supp f , or
g P x´1psupp fq. Hence Stabρf is contained in x´1psupp fq, a compact subset. Since Stabρf is
closed (being open), this shows Stabρf is compact. The second statement is proved in the same
way, i.e., by showing Stabλf is open compact.

Let pπ, V q be a (continuous) representation of G. If χ P HomTopGppG,Cˆq, denote by V π“χ “

V rχs the χ-eigenspace of V :

V rχs :“ tv P V | πpgqv “ v for all g P Gu.
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Lemma 7.2.15. Let G be a totally disconnected locally compact group and χ P HomTopGppG,Cˆq.
Then dimCDpGqρ

_“χ “ 1, and a basis element is given by integration against the measure χpgqdg,
where dg is a right Haar measure on G.

Similarly, dimCDpGqλ
_“χ “ 1 and has a basis element χpgqdg with dg a left Haar measure on

G.

Proof. We first show that χpgqdg defines an element in DpGqrχs. This is easy:
ż

kˆ
ρpy´1qfpxqχpxqdˆx “

ż

kˆ
fpxqχpxyqdˆx “ χpyq

ż

kˆ
fpxqχpxqdˆx.

To show the first assertion, note that there is a C-isomorphism

DpGqrχs DpGqr1Gs

T f ÞÑ T pχ´1fq

Hence we may assume χ is trivial. To show it is at most one dimensional, we claim if T P DpGqrχs

satisfies T p1Kq “ 0 for some open compact subgroup K of G, then T “ 0. Let f P C8
c pGq and

let K0 be an open compact subgroup of Stabρf X Stabλf . Let x1, . . . , xn P supp f be such that
supp f Ď K0x1 Y ¨ ¨ ¨ YK0xn. Since f is left-invariant under K0, it is in fact an equality, and we can

write f “

n
ÿ

i“1

fpxiq1K0xi “

n
ÿ

i“1

fpxiqρpx´1
i q1K0 . Then

T pfq “

n
ÿ

i“1

fpxiqT pρpx´1
i q1K0

q “

n
ÿ

i“1

fpxiqT p1K0
q.

Let a1, . . . , am be a set of representatives of K0zK in K; then K “ K0a1 Y ¨ ¨ ¨ YK0am and

T p1Kq “

m
ÿ

i“1

T p1K0aiq “ mT p1K0
q.

This implies T p1K0q “ 0, and hence T pfq “ 0.

Let X be a totally disconnected locally compact space and Y Ď X a closed subset. Let i :

XzY Ñ X be the open embedding and j : Y Ñ X be the closed embedding. Consider the complex

0 C8
c pXzY q C8

c pXq C8
c pY q 0

i! j˚

Note that the extension by zero map i! is well-defined since XzY is open and we are considering
functions with compact support.

Lemma 7.2.16. The above complex is exact.

Proof. It is clear that i! is injective, and if f P C8
c pXq satisfies j˚f “ f |Y ” 0, then i!

`

f |XzY

˘

“ f .
Let f P C8

c pY q. Let x1, . . . , xn P supp f and let Ui be an open neighborhood of xi in X such that f

is constant on UiXY and f is zero on Y z

n
ď

i“1

Ui. Define g : U1Y¨ ¨ ¨YUn Ñ C by setting gpxq “ gpxiq

if x P Ui and extend it to a function X Ñ C by zero. This finishes the proof.

Taking dual yields an exact sequence of distributions

0 DpY q DpXq DpXzY q 0.
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Let k be a non-archimedean local field. Taking X “ k and Y “ t0u in the above sequence, we
obtain a short exact sequence

0 Dpkq0 Dpkq Dpkˆq 0

where Dpkq0 is the image of Dpt0uq in Dpkq which consists of all distributions supported at 0. The
unit group kˆ acts on Dpkq and Dpkˆq by right translation, and Dpkq0 is stable under kˆ-action.
Let χ : kˆ Ñ Cˆ be a quasi-character. Taking χ-eigenspaces gives an exact sequence

0 Dpkq0rχs Dpkqrχs Dpkˆqrχs

Let T P Dpkq0rχs. Suppose f P C8
c pkq and pick N " 0 such that fppN q “ fp0q. Then for n ě N ,

we have

T pfq “ T pf ´ 1pnfp0qq ` T p1pnfp0qq “ fp0qT p1pnq “ fp0qT pρpϖ´nq1ok
q “ fp0qχpϖq´nT p1ok

q.

Suppose T p1ok
q ‰ 0 and take f such that fp0q “ 0. The above identity holds for all n ě N , implying

χpϖq “ 1. Hence T pfq “ fp0qT p1ok
q. Moreover, if χ|oˆ

k
ı 1, say χpuq ‰ 1 for some u P oˆ

k , then
T p1ok

q “ T pρpuq1ok
q “ χpuqT p1ok

q. This contradicts to the assumption T p1ok
q ‰ 0. This shows

Dpkq0rχs “

#

0 , if χ ‰ 1

Cδ0 , if χ “ 1

where δ0 is the dirac distribution at 0, i.e., the evaluation at 0.

Proposition 7.2.17. dimCDpkqrχs “ 1 and a basis element is given by the distribution

C8
c pkq Q f ÞÑ

Zpf, χ, sq

Lps, χq

ˇ

ˇ

ˇ

ˇ

s“0

P C.

Proof. We already see in (7.2.2) that f ÞÑ
Zpf, χ, sq

Lps, χq
is an entire family of tempered distributions,

so it makes sense to let s “ 0. For g P kˆ, we have

Zpρpg´1qf, χ, sq “

ż

kˆ
fpxg´1qχ| ¨ |spxqdˆxtam “ χ| ¨ |spgqZpf, χ, sq

so ρ_pgq
Zpf, χ, sq

Lps, χq

ˇ

ˇ

ˇ

ˇ

s“0

“ χpgq
Zpf, χ, sq

Lps, χq

ˇ

ˇ

ˇ

ˇ

s“0

. We also know this is nonzero by, for example, the

computation in (7.1.3). Hence, it remains to show dimCDpkqrχs ď 1.
On applying dimC to the exact sequence

0 Dpkq0rχs Dpkqrχs Dpkˆqrχs

we see

dimCDpkqrχs ď dimCDpkˆqrχs ` dimCDpkq0rχs.

When χ ‰ 1, the RHS is 1, proving that dimCDpkqrχs ď 1. For χ “ 1, we claim that Dpkqrχs Ñ

Dpkˆqrχs is not surjective, which implies dimCDpkqrχs ă 2. This will finish the proof. We claim
the distribution T P Dpkˆqr1s defined by

T pfq “

ż

kˆ
fpxqdˆxtam
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does not come from an element in Dpkqr1s. Suppose otherwise that S P Dpkqr1s is such an extension
to C8

c pkq. Then for any N ě 1,

Sp1ok
q “

N
ÿ

n“0

Sp1pnzpn`1q ` Sp1pN`1q “

N
ÿ

n“0

volppnzpn`1, dˆxtamq ` Spρpϖ´N´1q1ok
q

“

N
ÿ

n“0

volppnzpn`1, dˆxtamq ` Sp1ok
q.

This is a contradiction, as the first series on the right is nonzero. Hence such S does not exist,
proving the non-surjectivity.

Corollary 7.2.17.1. Let χ P HomTopGppkˆ,Cˆq. For each s P C there exists a number ϵps, χ, ψkq P

Cˆ such that

Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q
“ ϵps, χ, ψkq

Zpf, χ, sq

Lps, χq
.

The numbers ϵps, χ, ψkq are the ϵ-factors defined in (7.2.2) and satisfies ϵps, χ|¨|t, ψkq “ ϵps`t, χ, ψkq

for s, t P Cˆ.

Proof. We prove that f ÞÑ
Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

is an nonzero element in Dpkqrχs. For g P kˆ,

{ρpg´1qfpxq “

ż

k

fpyg´1qψkp´xyqdytam “ |g|k

ż

k

fpyqψkp´xygqdytam “ |g|kρpgq pfpxq

so that

Zp {ρpg´1qf, χ´1, 1 ´ sq “ |g|kZpρpgq pfpxq, χ´1, 1 ´ sq “ |g|kχ
´1| ¨ |1´spg´1qZp pf, χ´1, 1 ´ sq

“ χpgq|g|sZp pf, χ´1, 1 ´ sq.

Hence ρ_pgq
Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

“ χpgq
Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

. The computation in (7.1.3) shows

that this is nonzero. Hence by Proposition 7.2.17, there exists a unique nonzero number ϵp0, χ, ψkq

such that

Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

“ ϵps, χ, ψkq
Zpf, χ, sq

Lps, χq

ˇ

ˇ

ˇ

ˇ

s“0

.

Replacing χ by χ| ¨ |t, t P C, we obtain a family of nonzero numbers ϵpt, χ, ψkq such that

Zp pf, χ´1, 1 ´ sq

Lp1 ´ s, χ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

s“t

“
Zp pf, χ´1| ¨ |´t, 1 ´ sq

Lp1 ´ s, χ´1| ¨ |´tq

ˇ

ˇ

ˇ

ˇ

ˇ

s“0

“ ϵpt, χ, ψkq
Zpf, χ| ¨ |t, sq

Lps, χ| ¨ |tq

ˇ

ˇ

ˇ

ˇ

s“0

“ ϵpt, χ, ψkq
Zpf, χ, sq

Lps, χq

ˇ

ˇ

ˇ

ˇ

s“t

.

Fix an f P Spkq; then both distributions we consider are polynomials in q˘s. The above identity of
distributions then implies the claimed equation in the corollary.
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Chapter 8

Valuations

Definition. Let k be a field. A valuation on k is a map | ¨ | : k Ñ Rě0 such that

(i) |x| “ 0 if and only if x “ 0.

(ii) |xy| “ |x||y| for x, y P k.

(iii) There is a constant C such that |1 ` x| ď C if |x| ď 1.

A valuation | ¨ | is called trivial if |x| “ 1 for x P kˆ. If | ¨ | is a valuation, so are the | ¨ |c for all
c ą 0. We say two valuations | ¨ |1, | ¨ |2 on k are equivalent if | ¨ |c2 “ | ¨ |1 for some c ą 0.

• Denote by Mk the set of equivalent classes of all nontrivial valuations on k.

There is another way to speak of a valuation. An absolute value on k is a map | ¨ | : k Ñ Rě0 such
that

(a) |x| “ 0 if and only if x “ 0.

(b) |xy| “ |x||y| for x, y P k.

(c) |x` y| ď |x| ` |y| for x, y P k.

An absolute value | ¨ | is trivial if |x| “ 1 for all x P kˆ.

Lemma 8.0.1. Let k be a field and | ¨ | be a valuation on k.

(i) | ¨ | is equivalent to a valuation with constant C “ 2 in (iii).

(ii) If C “ 2, then |x` y| ď |x| ` |y| for x, y P k, i.e., | ¨ | is an absolute value.

In other words, every element in Mk is represented by an absolute value.

Proof. (i) is achieved by taking appropriate r-th root for some r ą 0. For (ii), note that for x1, x2 P k

we have |x1 ` x2| ď 2maxt|x1|, |x2|u, so by induction
ˇ

ˇ

ˇ

ˇ

ˇ

2n
ÿ

i“1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2n max
1ďiď2n

|xi|. Hence, for m ě 1, if

2n´1 ď m ď 2n, then
ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2n max
1ďiďm

|xi| ď 2m max
1ďiďm

|xi|
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by inserting some zeros. In particular, |m| ď 2m for m ě 1. Now for n ě 1, we have

|x` y|n “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“0

ˆ

n

i

˙

xiyn´i

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2pn` 1q max
0ďiďn

ˇ

ˇ

ˇ

ˇ

ˆ

n

i

˙

xiyn´i

ˇ

ˇ

ˇ

ˇ

ď 4pn` 1qmax max
0ďiďn

ˆ

n

i

˙

ˇ

ˇxiyn´i
ˇ

ˇ ď 4pn` 1qp|x| ` |y|qn.

Taking n-th root on both sides and letting n Ñ 8 yield |x` y| ď |x| ` |y|.

8.1 Valuation and topology
Let | ¨ | be an absolute value on k. Then px, yq ÞÑ |x´y| defines a metric on k. Note that an absolute
value is trivial if and only if it defines a trivial metric topology. Let cpkq be the set of all Cauchy
sequences on k. This is naturally a k-algebra: panqn and pbnqn are two Cauchy sequences, then there
are bounded sequences and

|anbn ´ ambm| ď |bn||an ´ am| ` |am||bn ´ bm|,

so that panbnqn is again Cauchy. Let npkq be the set of all null Cauchy sequences, i.e., panqn P npkq

if and only if lim
nÑ8

|an| “ 0. Since Cauchy sequences are bounded, npkq is an ideal of cpkq, and hence

the quotient pk :“ cpkq{npkq is again a k-algebra. The natural map

k pk

r prqn

is injective; this map is called the completion of k with respect to the absolute value | ¨ |. Any
continuous map from k to a complete metric space uniquely extends to a map from pk. In particular,
| ¨ | extends to an absolute value | ¨ | : pk Ñ Rě0 on pk. Precisely, if x P pk and panqn is a Cauchy
sequence representing x, then |x| :“ lim

nÑ8
|an|.

Lemma 8.1.1. Let | ¨ |1, | ¨ |2 be two absolute values on k. Then they define the same (metric)
topology on k if and only if they are equivalent as valuations.

Proof. The if part is clear. For the only if part, suppose | ¨ |i pi “ 1, 2q define the same topology. Let
x P kˆ with |x|1 ă 1. Then pxnqn is a null sequence with respect to | ¨ |1. Since | ¨ |2 defines the same
metric space as | ¨ |1 does, we must have |x|2 ă 1. Similarly, we have |x|1 ą 1 if and only if |x|2 ą 1.
By law of trichotomy, |x|1 “ 1 if and only if |x|2 “ 1.

Fix an x0 P k such that |x0|1 ă 1. Then |x0|2 ă 1, so |x0|2 “ |x0|c1 for some c ą 0. For any
other y P kˆ with |y|i ă 1, write |y|2 “ |x0|r2. If r P Z, then |y|2 “ |xr0|2, so that |y{xr0|2 “ 1, or
|y{xr0|1 “ 1, i.e., |y|1 “ |x0|r1. If r “ m{n for m,n P Z with n ‰ 0, then |yn|2 “ |xm0 |2, so again
|yn|1 “ |xm0 |1, or |y|1 “ |x0|r2. If r ą 0, approximating r by rational sequences shows |y|1 “ |x0|r1.
Hence

|y|2 “ |x0|r2 “ |x0|rc1 “ |y|c1.

Taking inverse implies this holds for |y|2 ą 1 as well. Hence | ¨ |2 “ | ¨ |c1, as wanted.

A field k together with a valuation | ¨ | is called a valued field. A valuation is equivalent to an
absolute value, and equivalent absolute values define the same metric topology on k. Hence a valued
field has a natural metric topology, and is a uniform space.
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Definition. A complete valued field is a valued field that is complete with respect to the metric
topology (or complete as a uniform space). Note that a field with trivial valuation is automatically
complete.

Let pk, | ¨ |q be a complete valued field; here we assume | ¨ | is an absolute value. For a k-vector
space V , by a (k-)norm on V we mean a map ∥¨∥ : V Ñ Rě0 such that

(i) ∥x∥ “ 0 if and only if x “ 0.

(ii) ∥rx∥ “ |r| ∥x∥ for x P V, r P k.

(iii) ∥x` y∥ ď ∥x∥ ` ∥y∥ for x, y P V .

In particular, the map px, yq ÞÑ ∥x´ y∥ defines a metric on V . The induced topology is called a
normed topology on V , and pV, ∥¨∥q is called a pk´qnormed space.

Theorem 8.1.2. Let pk, | ¨ |q be a complete valued field. Let V be a finite dimensional k-vector
space. Then all norm topologies on V are equivalent. In particular, V is complete.

Proof. Let e1, . . . , en be a k-basis of V . Define a norm ∥¨∥8 : V Ñ Rě0 by∥∥∥∥∥ n
ÿ

i“1

aiei

∥∥∥∥∥
8

:“ max
1ďiďn

|ai|.

Then V is complete with respect to ∥¨∥8.
Let ∥¨∥ be a norm on V . We show that ∥¨∥ is equivalent to ∥¨∥8. The last assertion will also

follow. One side is very easy:∥∥∥∥∥ n
ÿ

i“1

aiei

∥∥∥∥∥ ď

n
ÿ

i“1

∥aiei∥ “

n
ÿ

i“1

|ai| ∥ei∥ ď

n
ÿ

i“1

∥ei∥ ¨ max
1ďiďn

|ai| “

n
ÿ

i“1

∥ei∥ ¨

∥∥∥∥∥ n
ÿ

i“1

aiei

∥∥∥∥∥
8

The other side is to find c “ cV ą 0 such that cV ∥¨∥8 ď ∥¨∥. We do this by induction on all
subspaces of V . If 0 ‰ v P V , then for r P k, we have ∥rv∥ “ |r| ∥v∥ “ ∥rv∥8 ∥v∥; so ckv “ ∥v∥
does the job. Suppose the equality holds for all codimension one subspaces of V . In particular, all
codimension one subspaces are closed. Let Vi :“ spankte1, . . . , pei, . . . , enu Ĺ V , and consider the
affine subspace Vi ` vi pi P rnsq. Since 0 R

n
Ť

i“1

Vi ` vi, there is a ρ ą 0 such that ∥x` vi∥ ě ρ for

all i P rns and x P Vi. Now for 0 ‰ x “
n
ř

i“1

aiei P V and let i P rns be such that ∥x∥8 “ |ai|. Then

a´1
i x P Vi ` ei, so that

∥∥a´1
i x

∥∥ ě ρ, or ∥x∥ ě ρ|ai| “ ρ ∥x∥8. This finishes the proof.

Corollary 8.1.2.1. Let pk, |¨|q be a non-discrete1 locally compact valued field and pV, ∥¨∥q a complete
k-normed space. Then V is locally compact if and only if dimk V ă 82.

Proof. The if part follows from Theorem 8.1.2. Now assume V is locally compact. Then tv | |v| ď εu

is compact for some small ε ą 0. Since k is non-discrete, we can find x P k such that |x| ą 1. By
multiplying by powers of x, we see tv | |v| ď ru is compact for all r ą 0.

Let x P kˆ such that r :“ |x| ă 1. Since B1p0q “ tx P k | |x| ă 1u is relatively compact,
we can find a finite subset S Ď B1p0q such that B1p0q Ď S ` Brp0q. Let W be the k-linear
span of S; then B1p0q Ď W ` Brp0q, and iterating yields B1p0q Ď W ` Brnp0q for n ě 1. Since

1That is, the topology on k is not discrete. In this setting, this means the valuation | ¨ | is not trivial.
2See Proposition E.1.12 for another proof when k “ R. See Corollary 2.5.3.1.(ii) for a more general setting.
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Brnp0q “ rnB1p0q, n ě 1 form a unit-neighborhood basis for 0 in V , this implies W is dense in V .
By Theorem 8.1.2, any finite dimensional k-vector space is closed, so in particular W is closed under
the subspace topology inherited from V . Hence V “ W , so that dimk V ă 8.

Lemma 8.1.3 (weak approximation). Let k be a field and | ¨ |1, . . . , | ¨ |n be nontrivial valuations on
k. For each i P rns, denote by ki the space k equipped with the metric topology given by | ¨ |i. Then
the diagonal embedding

∆ : k k1 ˆ ¨ ¨ ¨ ˆ kn

r pr, . . . , rq

has dense image if and only if | ¨ |1, . . . , | ¨ |n are inequivalent valuations.

Proof. If, say | ¨ |1 and | ¨ |2 are equivalent, then k Ñ k1 ˆ k2 cannot be dense. For in the proof of
Lemma 8.1.1 we see |x|1 ă 1 if and only if |x|2 ă 1. If we pick a, b P k with |a|1 ă 1 and |b|2 ą 1,
then pa, bq cannot be approximated by elements in k. In particular, ∆ does not have dense image.

Now suppose |¨|1, . . . , |¨|n are inequivalent valuations. The case n “ 1 follows from the definition.
For n ě 2, we begin by finding x P k such that |x|1 ą 1 while |x|m ă 1 for 2 ď m ď n. We proceed
by induction on n ě 2. For n “ 2, we first find x P k such that |x|1 ą 1 while |x|2 ď 1. Suppose
otherwise for x P k, |x|1 ă 1 if and only if |x|2 ă 1. From the proof of Lemma 8.1.1, we see this
would imply | ¨ |1 and | ¨ |2 are equivalent, contradicting to our assumption. Hence there exists x P k

with |x|1 ă 1 and |x|2 ě 1. By symmetry we can find y P k such that |y|1 ě 1 and |y|2 ă 1. Then
x´1y P k satisfies |x´1y|1 ą 1 and |x´1y|2 ă 1.

For n ě 3, by induction hypothesis we can find y P k such that |y|1 ą 1 while |y|m ă 1 for
2 ď m ď n´ 1, and x P k such that |x|1 ą 1 but |x|n ă 1. Set z P k as

z “

$

’

’

&

’

’

%

y , if |y|n ă 1

yrx , if |y|n “ 1
yr

1 ` yr
x , if |y|n ą 1

.

where r " 0. Then |z|1 ą 1 and |z|m ă 1 for 2 ď m ď n. Indeed, the case when |y|n ă 1 is clear. If
|y|n “ 1, take r " 0 such that |yrx|m ă 1 for 2 ď m ď n´ 1 (possible as |y|m ă 1). If |y|n ą 1, then
lim
rÑ8

yr

1 ` yr
“ 1 in k1 and kn, and “ 0 in km with 2 ď m ď n´ 1. Taking r " 0 does the job.

Now for i P rns, by the preceding construction we can find zi P k such that |zi|i ą 1 while
|zi|m ă 1 for m P rnsztiu. For px1, . . . , xnq P k1 ˆ ¨ ¨ ¨ ˆ kn, we have

n
ř

i“1

zri
1 ` zri

xi Ñ xi in ki as
r Ñ 8.

8.2 (Non-)archimedean valuations
Definition. Let k be a field and | ¨ | a nontrivial3 valuation on k.

(i) | ¨ | is called discrete if there exists a δ ą 0 such that 1 ´ δ ă |x| ă 1 ` δ implies |x| “ 1.

(ii) | ¨ | is called non-archimedean if C “ 1, i.e., |x` y| ď maxt|x|, |y|u for x, y P k.

(iii) | ¨ | is called archimedean if it is not non-archimedean.
3That is, we do not say a trivial valuation is non-archimedean, archimedean or discrete. In other words, when a

valuation is said to be non-archimedean, archimedean or discrete, it is assumed to be nontrivial.
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If | ¨ | is non-archimedean, the set o :“ tx P k | |x| ď 1u forms a ring, called the ring of integers of
| ¨ |. It is a local ring with the unique maximal ideal p :“ tx P k | |x| ă 1u.

Lemma 8.2.1. Let k be a field and | ¨ | a valuation on k. Let R be the subring of k generated by 1.

(i) If | ¨ | is discrete, then tlog |x| | x P kˆu is a discrete subgroup of R. In particular, there exists
some 1 ą c ą 0 such that t|x| | x P kˆu “ tcn | n P Zu.

(ii) If | ¨ |1 and | ¨ |2 are equivalent valuations on k, then | ¨ |1 is non-archimedean (resp. discrete,
archimedean) if and only if | ¨ |2 is non-archimedean (resp. discrete, archimedean).

(iii) | ¨ | is non-archimedean if and only if | ¨ | is nontrivial and |n| ď 1 for all n P R.

(iv) Let | ¨ | be non-archimedean. Then | ¨ | is discrete if and only if p “ tx P k | |x| ă 1u is a
principal ideal of the ring of integers o of | ¨ |.

(v) If | ¨ |1 and | ¨ |2 is non-archimedean, they are equivalent if and only if they have the same ring
of integers.

(vi) If C cannot be chosen to be 1, then |n| ‰ 1 for some n P Rzt0u.

By (ii) we can denote by Mk,a (resp. Mk,na) the set of equivalence classes of archimedean (resp.
non-archimedean) valuations. We have Mk “ Mk,a \Mk,na.

Proof.

(i) The definition implies that 0 is an isolated point.

(ii) Clear.

(iii) If | ¨ | is non-archimedean, since |1| “ 1, we see |2| “ |1 ` 1| ď 1. By induction we see |n| ď 1

for all n P R. For the if part, we can replace | ¨ | by its power so that we can assume that we
can take C “ 2. By Lemma 8.0.1.(ii) the triangle inequality holds, so for |x| ď 1,

|1 ` x|n “ |p1 ` xqn| ď

n
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ˆ

n

i

˙

xi
ˇ

ˇ

ˇ

ˇ

“

n
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ˆ

n

i

˙ˇ

ˇ

ˇ

ˇ

|x|
i

ď n` 1.

Taking n-th root and letting n Ñ 8 yield |1 ` x| ď 1, so C can be chosen to 1.

(iv) Suppose | ¨ | is discrete. By (i), we can find 0 ă c ă 1 and x P kˆ such that |x| “ c and for
each y P kˆ there is some n P Z such that |y| “ cn. For y P p, say |y| “ cn with n ě 1; then
|y{x| “ cn´1 ď 1 so that y{x P o. This shows p “ ox. Conversely, if p is principal, say generated
by x P p, then for y P p we have |y| ď |x|. Take δ ą 0 such that |x| ă 1 ´ δ ă 1 ` δ ă |x|´1.
Let y P kˆ with 1 ´ δ ă |y| ă 1 ` δ; replacing y with y´1 if necessary, we can assume |y| ď 1.
If |y| ‰ 1, then |y| ď |x|, which is a contradiction. Hence |y| “ 1, proving the discreteness.

(v) Clear.

(vi) We prove the contrapositive. Suppose |n| “ 1 for all n P Rzt0u. The proof for the if part of
(iii) implies that |1 ` x| ď 1 for all x P kˆ with |x| ď 1. This means C can be chosen to be 1.

Lemma 8.2.2. Let k be a field and | ¨ | be a non-archimedean valuation on k. Let po, pq be the ring
of integers of | ¨ |.
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(i) The extension of | ¨ | to the completion pk with respect to | ¨ | is non-archimedean.

(ii) Let ppo,ppq be the ring of integers of ppk, | ¨ |q. The natural map o{p Ñ po{pp is an isomorphism.

(iii) Let I�o be an ideal such that the closure pI of I in po is open. Then the natural map o{I Ñ po{pI

is an isomorphism.

Proof. (i) follows from Lemma 8.2.1.(iii). Note that po is open in pk: this follows from |x ` y| “

maxt|x|, |y|u if |x| ‰ |y|. Since k is dense in pk, we see o “ k X po is dense in po. Since p “ pp X k, the
inclusion o Ñ po induces an injection o{p Ñ po{pp. This is surjective, as for x P po, by density there
exists r P o such that x ´ r P pp, or x ` pp “ r ` pp. This proves (ii). For (iii) similarly the inclusion
o Ñ po induces an injection o{I Ñ po{pI. The surjectivity is proved in the same way as above since pI

is open in pk.

Definition. For a rational prime p, define the p-adic absolute value | ¨ |p on Q as follows. If
n P Qˆ, write n “ pa ¨

b

c
with a, b, c P Z, c ‰ 0 and pp, b, cq “ 1. Define ordp n :“ a and set

|n|p :“ p´ ordp n.

Also, let | ¨ |8 be the usual absolute value on Q. Namely, if x P Q, |x|8 :“

#

x , if x ě 0

´x , if x ă 0

Theorem 8.2.3 (Ostrowski). A valuation on Q is equivalent either to trivial, to | ¨ |p for some
rational prime p or to | ¨ |8.

Proof. Let | ¨ | be an absolute value on Q. If |n| ď 1 for all n P Z, by Lemma 8.2.1.(iii) | ¨ | is non-
archimedean. Consider the subring tx P Z | |x| ă 1u. If it is trivial, then | ¨ | is a trivial valuation.
Otherwise, this is a nontrivial prime ideal in Z, so it is generated by a prime p ě 2. But then | ¨ | is
equivalent to | ¨ |p by Lemma 8.2.1.(v).

Now assume |n| ą 1 for some n P Zě2. Let a, b P Zě1 and write b “ bma
m ` ¨ ¨ ¨ ` b1a

m ` b0 with
0 ď bi ă a for each i. Then m ď loga b and

|b| ď

m
ÿ

i“0

|bi||a|m ď max
0ďiăa

|i| ¨ maxt1, |a|loga bu ¨ p1 ` loga bq

Plugging in b “ nm and letting m Ñ 8, we see |n| ď maxt1, |a|loga nu. Since |n| ą 1, this shows
|a| ą 1 and |n| ď |a|loga n for a ě 2. By symmetry |a| ď |n|logn a, so |a| “ |n|logn a “ alogn |n| for
all a ě 2. If a ď ´1, then ´a “ |a|8 ě 1 and |a| “ | ´ a| “ p´aqlogn |n| “ |a|

logn |n|
8 . Hence | ¨ | is

equivalent to | ¨ |8.

Corollary 8.2.3.1. If pk, | ¨ |q is an archimedean valued field, then k contains Q and the restriction
of | ¨ | to Q is equivalent to | ¨ |8.

Proof. If k has positive characteristic, then by Lemma 8.2.1.(iii) |¨| is either trivial or non-archimedean.
Since k is archimedean, these cannot happen. So k is of characteristic 0, and hence contains Q. The
remaining then follows from Lemma 8.2.1.(vi) and Theorem 8.2.3.

Theorem 8.2.4 (Ostrowski). An archimedean complete valued field is isomorphic either to R or C
as valued fields. In particular, an archimedean valued field is isomorphic to a subfield of C as valued
field.
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Proof. If pk, | ¨ |q is an archimedean valued field, then pk, | ¨ |q Ñ ppk, | ¨ |q is an inclusion of valued
field. So the last assertion follows from the first assertion.

Now let pK, | ¨ |q be an archimedean complete valued field. By Corollary 8.2.3.1, K contains Q
and the valuation | ¨ | restricts to a valuation on Q equivalent to | ¨ |8, so K contains R. Replacing
K by Krxs{px2 ` 1q and extending | ¨ | by |a ` bx| :“ |a2 ` b2|

1
2 if necessary, we assume C Ď K.

We must show it is an equality, and we do so by showing each element in K solves a real quadratic
polynomial. For x P K, consider the function pξ : C Ñ Rě0 defined by

pξpzq “ |ξ2 ´ pz ` zqξ ` zz|, z P C.

Since lim
|z|Ñ8

pξpzq “ 8, pξpzq has a minimum, say m P Rě0. The set S “ tz P C | pξpzq “ mu is a

nonempty compact set; pick z0 P S such that |z0| ě |z| for all z P S.
It suffices to show m “ 0. Suppose for contradiction that m ą 0. Let m ą ε ą 0 and consider

the real polynomial

gpxq “ x2 ´ pz0 ` z0qx` z0z0 “ ε “ px´ α1qpx´ α1q.

Then z0z0 ` ε “ α1α1, so |α1| ą |z0|. By maximality, we see pξpα1q ą m. For each n P N, consider
the real polynomial

Gpxq “ pgpxq ´ εqn ´ p´εqn “

2n
ź

i“1

px´ αiq

with αi P C, i P r2ns. Then Gpxq2 “

2n
ź

i“1

px2 ´ pαi ` αiqx` αiαiq. Plugging x “ ξ yields

|Gpξq|2 “

2n
ź

i“1

pξpαiq ě pξpα1qm2n´1.

Also,

|Gpξq| ď |ξ2 ´ pz0 ` z0qξ ` z0z0|n ` | ´ ε|n “ pξpz0qn ` εn “ mn ` εn.

These together imply pξpα1qm2n´1 ď pmn ` εnq2, or

pξpα1q

m
ď

´

1 `

´ ε

m

¯n¯2

.

Letting n Ñ 8, we see pξpαq ď m, a contradiction.

Let k be a field and σ : k Ñ C be a field homomorphism. Then |x|σ :“ |σpxq|C defines an
archimedean valuation on k (recall that |z|C “ zz). Suppose σ, τ : k Ñ C are two distinct non-
conjugate field homomorphisms. We claim they are not equivalent. Note that k must be character-
istic 0, so k contains Q. Since | ¨ |σ and | ¨ |τ are nontrivial and coincide on Q, it suffices to find x P k

such that |σpxq|C ‰ |τpxq|C. Note that if z, w P C with |z|C “ |w|C, then

|z ` 1|C “ zz ` pz ` zq ` 1 “ |w ` 1|C ` pz ` zq ´ pw ` wq.

If z ‰ w, then Repzq ‰ Repwq since they have the same length. Hence |z` 1|C ‰ |w` 1|C. Now pick
any x P kˆ with σpxq ‰ τpxq, τpxq. If |σpxq|C ‰ |τpxq|C, we are done. Otherwise, |σpxq|C “ |τpxq|C

and this implies |σpx` 1q|C ‰ |τpx` 1q|C.
On the set HomFieldpk,Cq we define an equivalent relation „ by declaring σ „ τ if and only if

σ “ τ .
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Corollary 8.2.4.1. The map σ ÞÑ | ¨ |σ defines a bijection

HomFieldpk,Cq{ „ Mk,a.

Proof. This follows from the above discussion and Theorem 8.2.4.

Definition. Let k be a field and consider the rational function field kptq, where t is transcendental
over k. Let 0 ă c ă 1 be fixed If p P krts is an irreducible polynomial, define an absolute value | ¨ |p as
follows. For f P kptq, write f “ pa

h

g
with a P Z, h, g P krts, g ‰ 0, pp, g, hq “ 1. Define ordp f :“ a

and set |f |p :“ c´ ordp f .
In addition, for f, g P krts with g ‰ 0, set |f{g|8 :“ cdeg g´deg f . If we put s “ t´1 and identify

kptq “ kpsq, then | ¨ |8 “ | ¨ |s.

Theorem 8.2.5. A nontrivial valuation on kptq that is trivial on k is equivalent to either | ¨ |p for
some irreducible p P krts or to | ¨ |8.

Proof. Let | ¨ | be a non-trivial valuation on kptq that is trivial on k. By Lemma 8.2.1.(iii), | ¨ | is non-
archimedean. Consider the subring tf P krts | |f | ă 1u. If it is nonzero, then is a prime ideal in krts,
so it is generated by some irreducible p P krts. But then | ¨ | is equivalent to | ¨ |p by Lemma 8.2.1.(v).
If it is zero, i.e., |f | ě 1 for all f P krtszt0u. Write f “

n
ř

i“0

fnt
n; then |f | ď maxt1, |t|, . . . , |t|nu “ |t|n.

Since | ¨ | is nontrivial, we see |t| ą 1. But then |t|n´1 ă |t|n, so

|tn| “

ˇ

ˇ

ˇ

ˇ

ˇ

f ´

n´1
ÿ

i“0

fnt
n

ˇ

ˇ

ˇ

ˇ

ˇ

ď maxt|f |,

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

i“0

fnt
n

ˇ

ˇ

ˇ

ˇ

ˇ

u ď maxt|f |, |t|n´1u ď |f |

so that |f | “ |t|n “ |t|deg f . This implies | ¨ | is equivalent to | ¨ |8.

Corollary 8.2.5.1. If k has positive characteristic, then all nontrivial valuations on kptq are either
equivalent to | ¨ |p for some irreducible p P krts or to | ¨ |8.

8.3 Classification of locally compact valued field
Theorem 8.3.1. Let pk, | ¨ |q be a non-archimedean valued field. Then k is locally compact if and
only if k is complete, the quotient o{p is finite and | ¨ | is discrete.

Proof. Suppose k is locally compact, and let K be a compact unit-neighborhood of K. Then
there is some r ą 0 such that tx P k | |x| ă ru Ď K. Pick 0 ‰ π P p so that |πn| Ñ 0 as
n Ñ 8. Then πmo Ď t|x| ă ru for m " 0, so that πmo Ď K. This implies πmo, and hence o, is
compact. In particular, every closed ball t|x| ď ru pr ą 0q is compact. Since a Cauchy sequence is
bounded, it is contained in some ball and hence is convergent. This shows the completeness. Since
p ď o is open, the quotient o{p is finite by compactness. Finally, consider the increasing filtration
tx P k | |x| ă 1´n´1u pn P Zě1q; these union to p. Since p is compact, p “ t|x| ă 1´n´1u for some
n ě 1. This proves the discreteness.

Now we prove the if part. We only need to show o is compact. Let S be a representative of o{p

in o. By Lemma 8.2.1.(iv) let π P p be a generator of p. Let tUαuα be an open cover of o. We prove
it by contradiction that o admits no finite subcover.4 Since o “

Ů

xPS

x` p, there is some x0 P S such

that x0 ` πo is not covered by finitely many tUαu. Suppose for i ď n we’ve found x0, . . . , xi P S

4The proof strikes a resemblance to the proof of Heine-Borel theorem in Rn.
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such that x0 ` x1π ` ¨ ¨ ¨ ` xnπ
no is not covered by finitely many tUαuα. Take xn`1 P S such that

x0 ` x1π ` ¨ ¨ ¨ ` xnπ
n ` xn`1π

n`1o is not covered by finitely many tUαuα. Consider the infinite
series x “

ř

ně0
xnπ

n. Its partial sums form a Cauchy sequence in k, so by completeness x P k; since

|x| ď |x0|, x P o. Hence x P Uβ for some β. But then x ` πNo Ď Uβ for some N " 0. This is
a contradiction by the construction of x. Hence tUαu has a finite subcover of o. This proves the
compactness.

Theorem 8.3.2. Let pk, | ¨ |q be a local field, i.e., a non-discrete locally compact valued field.

(i) If | ¨ | is archimedean, then k – R or C.

(ii) If | ¨ | is non-archimedean and Char k “ 0, then k is a finite extension of Qp for some rational
prime p.

(iii) If | ¨ | is non-archimedean and Char k “ p for some rational prime p, then k is a finite extension
of Fppptqq, where t is transcendental over Fp.

Proof. Being non-discrete locally compact, for each r ą 0 the ball tx P k | |x| ď ru is compact. Since
every Cauchy sequence is bounded, it follows that pk, | ¨ |q is complete. In view of Corollary 8.1.2.1,
we only need to show pk, | ¨ |q contains R, Qp or Fppptqq as valued subfields in each case.

(i) This is Theorem 8.2.4. But since we only need to show k contains R, this follows immediately
from Corollary 8.2.3.1.

(ii) We have Q Ď k. By Theorem 8.3.1, o{p is finite. Since Z Ď o is infinite, we see n P p for some
n P Z. This implies | ¨ ||Q is nontrivial.5 By Theorem 8.2.3, | ¨ | restricts to | ¨ |p for some rational
prime p by Theorem 8.2.3. Since k is complete, k contains the closure of Q which is Qp.

(iii) We have Fp Ď k. Since we are assuming k is non-discrete, the possibility that k being algebraic
over Fp is excluded: indeed, any element 0 ‰ x of k algebraic over Fp lies in some finite field,
so xn “ 1 for some n ě 1. This implies 1 “ |xn| “ |x|n, so that |x| “ 1. If k{Fp were algebraic,
| ¨ | would be a trivial valuation, making k being discretely topologized, a contradiction. Hence
k{Fp is transcendental. Let u be a transcendental element such that |u| ‰ 1 and consider the
subfield Fppuq. By our choice, the restriction of | ¨ | to Fppuq is nontrivial. By Theorem 8.2.5
the restriction to either equivalent to | ¨ |s for some irreducible s P Fprus or to | ¨ |8. In the
former case, the completion is Fpppsqq, and in the latter is Fpppu´1qq. In any case, k contains
Fppptqq for some transcendental t P k over Fp.

8.4 Extension of valuations
Definition. Let K{k be a field extension and | ¨ | a valuation on k. An extension of | ¨ | to K is
a valuation | ¨ |K on K such that | ¨ |K |k is a valuation on k equivalent to | ¨ |.

Theorem 8.4.1. Let pk, | ¨ |q be a complete valued field, and let K{k be a finite field extension.
Then there exists a unique6 extension | ¨ |K of | ¨ | to K. Precisely, | ¨ |K can be chosen to be

|x|K “ |NK{kpxq|
1

rK:ks px P Kq

5We can also argue as follows. If | ¨ ||Q is trivial, then Z is a discrete subset. Since Z Ď o and o is compact, this
implies Z is finite, which is absurd. Still alternatively, this follows from Corollary 2.5.2.1.(iii)

6up to an equivalence.
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where NK{k : K Ñ k is the norm map.

Proof. We start with the uniqueness. Let | ¨ |K be an extension; in view of Lemma 8.0.1, replacing
| ¨ |K by its power, we assume | ¨ |K is an absolute value. We also replace | ¨ | by | ¨ |K |k so that
| ¨ |K |k “ | ¨ |. In particular, | ¨ |K defines a (k-)norm topology on K. Now the uniqueness follows
from Theorem 8.1.2 and Lemma 8.1.1.

For the existence, we deal with the archimedean case and the non-archimedean case separately.
If | ¨ | is archimedean, by Theorem 8.2.4, k is either R or C, and so is K. In either case, the map
z ÞÑ |zz| defines a valuation on K, where ¨ denotes the complex conjugation.

Since we will only exclusively deal with the case when k is locally compact, we give a proof
adapted to this case. For each x P K consider the k-linear map ℓx : K Ñ K given by multiplication:
ℓxpyq :“ xy. The map x ÞÑ ℓx gives an injective k-algebra homomorphism K Ñ EndkK. Define
the norm NK{k as the composition K Ñ EndkK

det
ÝÑ k (this is independent of the choice of k-bases

of K), and put | ¨ |K : K Ñ Rě0 as |x|K :“ |NK{kpxq|. To show it is a valuation, we must show
if |x|K ď 1, then |1 ` x|K ď C for some C ą 0. Let ∥¨∥ be a norm on K (as a k-vector space).
Then x ÞÑ |x|K is a continuous map K Ñ Rě0 with respect to ∥¨∥. Since k is locally compact, K
is locally compact as well; in particular, t∥x∥ “ 1u is compact, so we can find A,B ą 0 such that
B ă |x|K ď A for all x with ∥x∥ “ 1. Then for |x| ď 1

|1 ` x|K “
|1 ` x|K

∥1 ` x∥
∥1 ` x∥ ď Ap∥1∥ ` ∥x∥q “ A

ˆ

∥1∥ `
∥x∥
|x|K

|x|K

˙

ď Ap∥1∥ `B´1q “: C

For the remaining case, we need to introduce more tools.

Let | ¨ | be a non-archimedean valuation on a field k, and put po, pq to be its ring of integers.
For a polynomial f P orXs, we write f P po{pqrXs for its image in po{pqrXs. We say a polynomial
f P orXs is primitive if f ‰ 0, i.e., not all coefficients of f lie in p.

Theorem 8.4.2 (Hensel’s lemma). Let pk, | ¨ |q be a complete non-archimedean valued field and let
f P orXs be primitive. If f “ g0h0 for some g0, h0 P orXs with g0 P po{pqrXs monic and g0, h0

relatively prime, then there exist g, h P orXs such that f “ gh with g “ g0, h “ h0, g monic and
deg g “ deg g0.

Proof. Without altering g0 and h0, we assume all nonzero coefficients of g0 and h0 do not lie in p.
In particular, the leading coefficients of g0, h0 are units in o, deg g0 “ deg g0 and deg h0 “ deg h0;
hence deg h0 ď deg f ´ deg g0. Also, we can assume g0 is monic.

Since g0, h0 are relatively prime, g0s`h0t ” 1 pmod pq for some s, t P orXs. Put r0 “ f´g0h0 “
ř

iě0

aiX
i and g0s ` h0t ´ 1 “

ř

iě0

biX
i; then tai, biuiě0 Ď p and we can choose 0 ‰ c P p such that

|c| “ maxt|ai|, |bj |ui,jě0 ă 1. Then ai{c, bj{c P o, so that

f ” g0h0 pmod cq, g0s` h0t ” 1 pmod cq.

Here mod c means all coefficients of their difference lie in co.
We construct gn, hn P orXs satisfying f ” gnhn pmod cn`1q as follows. Since g0 is monic,

division by g0 is possible. Hence, there exists rn, q, k P orXs such that

f ´ gn “ cn`1rn, rnt “ g0q ` k

with deg k ă deg g0 or k “ 0. Consider the polynomial h0q ` rns and denote by ℓ P orXs the one
obtained by replacing all coefficients in h0q`rns divisible by c with 0, so that h0q`rns ” ℓ pmod cq.
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Set

gn`1 “ gn ` cn`1k, hn`1 “ hn ` cn`1ℓ.

We prove by induction on n that

• gn “ g0, hn “ h0,

• deg hn ď deg f ´ deg g0,

• gn is monic and f ” gnhn pmod cn`1q.

These hold for n “ 0 as said in the first paragraph. For n ě 0, we have gn`1 “ gn “ g0 and
hn`1 “ gn “ g0. Also, gn`1 is monic as gn is and deg k ă deg g0 or k “ 0. Since

rn ” rnpg0s` h0tq ” g0pℓ´ h0qq ` h0pg0q ` kq “ g0ℓ` h0k pmod cq

we have

f ´ gn`1hn`1 “ f ´ pgn ` cn`1kqphn ` cn`1ℓq “ pf ´ gnhnq ´ cn`1pgnℓ` hnkq ´ c2n`2kℓ

” cn`1prn ´ pgnℓ` hnkqq pmod cn`2q

” cn`1prn ´ pg0ℓ` h0kqq ” 0 pmod cn`2q

For the second item, if deg hn`1 ą deg f ´ deg g0, then we would have deg ℓ ą deg f ´ deg g0.
Together with deg h0k ă deg h0 ` deg g0 ď deg f , we have

deg g0ℓ` h0k “ deg g0ℓ ą deg f.

But rn ” g0ℓ ` h0k pmod cq and deg rn ď deg f , the leading coefficients of g0ℓ is a multiple of c.
This is a contradiction to the construction of ℓ. Hence deg hn`1 ď deg f ´ deg g0.

By construction, pgnqn is a sequence in orXs satisfying gn`1 ” gn pmod cn`1q. Since c P p, this
implies pgnqn is a Cauchy sequence in orXs. By completeness, g :“ lim

nÑ8
gn exists in orXs; similarly,

h :“ lim
nÑ8

hn exists in orXs. Since f ” gnhn ” gh pmod cn`1q, we have f “ gh. Also, g “ g0,
deg g “ deg g0 and g is monic. Also, h “ h0 and deg h ď deg f ´ deg g0. This finishes the proof.

Corollary 8.4.2.1. Let pk, | ¨ |q be a completed non-archimedean valued field. Let f “
n
ř

i“0

aiX
i P

krXs be an irreducible polynomial such that ana0 ‰ 0, then max
0ďiďn

|ai| “ maxt|an|, |a0|u. In partic-
ular, an “ 1 and a0 P o imply f P orXs.

Proof. Multiplying some suitable elements in k if necessary, we can assume f P orXs and max
0ďiďn

|ai| “

1; let 0 ď r ď n be the smallest index such that |ar| “ 1. Then

fpXq ” Xrpar ` ar`1X ` ¨ ¨ ¨ ` anX
n´rq pmod mq.

If maxt|an|, |a0|u ă 1, then 0 ă r ă n and the congruence would contradict Theorem 8.4.2.

Proof. (of Theorem 8.4.1) Let O denote the integral closure of the ring of integers o in K. We claim

O “ tx P K | NK{kpxq P ou.

Let x P O and consider the tower k Ď kpxq Ď K. Let β be a kpxq-basis for K and γ be a k-basis for
kpxq; then tvw | v P β, w P γu is a k-basis for K, and computing determinant with respect to this
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basis, we see NK{k “ Nkpxq{k ˝ NK{kpxq. Since x P kpxq, we obtain NK{kpxq “ Nkpxq{kpxrK:kpxqsq “

Nkpxq{kpxqrK:kpxqs. Since x is integral over k, the minimal polynomial of x over k is monic and
lies in orXs; in particular, by computing Nkpxq{k with respect to the basis 1, x, . . . , xrkpxq:ks´1, we
see Nkpxq{kpxq P o. This proves the containment Ď. For Ě, let x P K with NK{kpxq P o. Let

f “
n
ř

i“0

aiX
i P krXs be the (monic) minimal polynomial of x over k. Then

o Q NK{kpxq “ Nkpxq{kpxqrK:kpxqs “ ˘a
rK:kpxqs
0

so that |a0| ď 1, i.e., a0 P o. It follows from Corollary 8.4.2.1 that f P orXs, so that x P O.
We finish the proof by showing | ¨ |K : K Ñ Rě0 is a non-archimedean valuation. We only need

to show that |1 ` x|K ď 1 if |x|K ď 1. This amounts to showing that x P O implies 1 ` x P O. This
is clear as O is a subring of K.

Corollary 8.4.17.1. Let pk, | ¨ |q be a complete valued field. Then there is a unique extension | ¨ |alg

of | ¨ | to the algebraic closure k of k. Precisely, for x P k, if x P K for some finite extension K{k,
then

|x|alg :“ |NK{kpxq|
1

rK:ks .

Proof. Recall for a tower of finite extensions k Ď K Ď K 1, we have NK1{k “ NK{k ˝ NK1{K . Hence
if x P K, we have

NK1{kpxq “ NK{kpxrK1:Ksq “ NK{kpxqrK1:Ks

so that |NK1{kpxq|
1

rK1:ks “ |NK{kpxq
rK1:Ks
rK1:ks | “ |NK{kpxq|

1
rK:ks . This shows | ¨ |alg : k Ñ Rě0 is well-

defined and is an extension of | ¨ |. The uniqueness follows from the construction and Theorem
8.4.1.

Let pk, | ¨ |q be a complete valued field. Denote by Gk the absolute Galois group of k, i.e.,
Gk “ Galpk{kq. If σ P Gk, then x ÞÑ |σpxq|alg also defines an extension of | ¨ | to k. By uniqueness,
we obtain that |σpxq|alg “ |x|alg for all x P k, implying that Gk acts on k by isometries. As a
consequence, we can deduce the following. Let Gk have its usual topology (c.f. Example 6.1.6) so
that Gk is a profinite group. We claim the action map Gk ˆ k Ñ k is continuous. Let σ P Gk, x P k

and let δ ą 0. Say x P L for some finite extension L{k. Then if |y ´ x|alg ă δ, then

|στpyq ´ σpxq|alg “ |στpyq ´ στpxq|alg “ |y ´ x|alg ă δ

so that σGalpk{Lq ˆ Bδpxq goes to Bδpσpxqq. This shows the action map is not only continuous,
but also open.

Let pk, | ¨ |q be a complete valued field. From Corollary 8.4.17.1 we know | ¨ | extends uniquely
to the algebraic closure k of k, making pk, | ¨ |q a valued field. For any α P k, let cpαq be the set
consisting of conjugates of α over k, and if #cpαq ě 2, set rpαq :“ min

γPcpαqzα
|γ ´ α| ą 0.

Lemma 8.4.20 (Krasner’s lemma). Let α P k with #cpαq ě 2.

(i) For all β P k with |β ´ α| ă rpαq, the minimal polynomial of α over kpβq has no root other
than α.

(ii) If α is separable, then kpαq Ď kpβq for all |β ´ α| ă rpαq.
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Proof. Let γ P k be a conjugate of α over kpαq. Since γ´β and α´β are conjugate, from the result
above we see |γ ´ β| “ |α ´ β|, and hence

|α ´ γ| “ |pα ´ βq ´ pγ ´ βq| ď |α ´ β| ă rpαq.

But γ is also conjugate to α over k, so α “ γ by the definition of rpαq. This shows (i). For (ii),
since α is separable, by (i) we see the minimal polynomial of α over kpβq is separable and has only
one root. In other words, α P kpβq.

Lemma 8.4.21. If rk : ks “ 8, then k is not complete.

Proof. If | ¨ | is archimedean, then k – R or C and rk : ks “ 1, 2. Hence | ¨ | is non-archimedean.
Since ksep Ď k is dense, we must have rksep : ks “ 8 (otherwise ksep is complete and ksep “ k, so
rk : ks ă 8). Now choose x0 “ 1, x1, x2, . . . P ksep that are linearly independent over k. Choose

pcnqně1 Ď kˆ such that |cn`1xn`1| ď |cnxn|, |cnxn| Ñ 0 as n Ñ 8 and |cn`1xn`1| ă r

ˆ

n
ř

i“1

cixi

˙

(note that the sum is not in k by linear independence, so it has a conjugate other than it self). We
claim

8
ř

i“1

cixi has no limit in k. Suppose for contradiction that it converges to x P k. Since

ˇ

ˇ

ˇ

ˇ

ˇ

x´

n
ÿ

i“1

cixi

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“n`1

cixi

ˇ

ˇ

ˇ

ˇ

ˇ

ď |cn`1xn`1| ă r

˜

n
ÿ

i“1

cixi

¸

by Krasner’s lemma
n
ř

i“1

cixi P kpxq for all n ě 1. Since all cn are nonzero, this implies that xn P kpxq

for all n ě 1, a contradiction to rkpxq : ks ă 8.

Denote by Ck the completion of pk, | ¨ |q.

Theorem 8.4.22. Ck is algebraically closed.

Proof. In view of Theorem 8.2.4, we only need to cope with the case when |¨| is non-archimedean. Let

f “ Xn `
n´1
ř

i“0

aiX
i P CkrXs be a polynomial with n ě 1. For each j ě 1, since k is dense in CkrXs

we can find fjpXq “
n
ř

i“0

aijX
i P krXs such that |aij ´ ai| ă mint|ai|, 1{ju for each 0 ď i ď n ´ 1;

if ai “ 0, we assume aij “ 0. Since k is algebraically closed, we choose for each j a root rj P k

of the polynomial fij . We are going to show that prjqj admits a Cauchy subsequence; since Ck is
complete, it has a limit in it and by continuity it is a root of f . Since fijprjq “ 0, we have

|rnj | “

ˇ

ˇ

ˇ

ˇ

ˇ

´

n´1
ÿ

i“0

aijr
i
j

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
0ďiďn´1

|aij |rj |
i “ max

0ďiďn´1
|ai||rj |

i

Then there exists 0 ď ipjq ď n´ 1 such that |rj |
n ď |ai||rj |

ipjq, so that |rj | ď |aipjq|
1

n´ipjq . Hence

|rj | ď C :“ max
0ďiďn´1

|ai|
1

n´i

for all j ě 1, and

|fprjq| “ |fprjq ´ fjprjq| “ max
0ďiďn´1

|ai ´ aij ||r
i
j | ď

maxt1, Cn´1u

j
.

This shows fprjq Ñ 0 as j Ñ 8.
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Now let L be a finite extension of Ck such that f splits. Write fpXq “
n
ś

i“1

pX ´ αiq. Then
ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

i“1

prj ´ αiq

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0 as j Ñ 8, so by pigeonhole principle there exists an i P rns such that prj ´αiqjě1

has a subsequence converging to 0. Hence prjqjě1 has a subsequence converging to αi in L, so it has
a Cauchy subsequence.

Definition. Let K{k be a field extension, | ¨ | a non-archimedean valuation on k and | ¨ |K an
extension of | ¨ | on K. For notational issue, we sometimes set v “ | ¨ | and w “ | ¨ |K . We also assume
w|k “ v.

(i) The ramification index epw|vq is the (group-theoretic) index rwpKˆq : vpkˆqs.

(ii) The quotient o{p of the ring of integers of | ¨ | by its maximal ideal is called the residue field
of | ¨ |, and is denoted by κpvq.

(iii) The inertia degree fpw|vq is the (field-theoretic) index rκpwq : κpvqs.

Theorem 8.4.23. Let K{k be a simple algebraic extension.

(i) The map
MK,na Mk,na

| ¨ | | ¨ ||k

is well-defined, surjective and has finite fibre.

Let v P Mk,na and let w P MK,na be an extension of v with w|k “ v.

(ii) rK : ks ě epw|vqfpw|vq with equality if v is discrete and pk, vq is complete.

(iii) Let w1, . . . , wr be all the extensions of v. Then rK : ks ě
r
ř

i“1

epwi|vqfpwi|vq with equality if v

is discrete and either K{k is separable or pk, vq is complete.

Proof.

(i) Say K “ krXs{f for some irreducible f P krXs. Let v “ | ¨ | be a non-archimedean valuation
on k and denote by pk the completion of k with respect to | ¨ |. By Chinese remainder theorem,
we have an isomorphism

Φ : K bk
pk “ pkrXs{pfq pkrXs{pfe11 q ˆ ¨ ¨ ¨ ˆ pkrXs{pfenn q,„

where f1, . . . , fn P pkrXs are the irreducible factors of f in pkrXs. Let us put Ki “ pkrXs{pfiq pi P

rnsq; then K1 ˆ ¨ ¨ ¨ ˆKn is the reduction7 of K bk
pk. Form the commutative diagram

K K bk
pk pkrXs{pfe11 q ˆ ¨ ¨ ¨ ˆ pkrXs{pfenn q

K1 ˆ ¨ ¨ ¨ ˆKn

Ψ

Φ

Put ιi “ pri ˝ Ψ : K Ñ Ki pi P rnsq; since pri ˝ Φ|K is nontrivial, so is ιi. Since K is a field, it
follows that ιi : K Ñ Ki is injective. We will identify K with its image ιipKiq in Ki. Each Ki

7That is, it is the quotient of pkrXs{pfe1
1 q ˆ ¨ ¨ ¨ ˆ pkrXs{pfen

n q by its nilradical.
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is a finite field extension of pk, so by Theorem 8.4.1 Ki admits a valuation | ¨ |i extending the
one on pk. This makes pKi, | ¨ |iq a complete valued field, and is non-archimedean by Lemma
8.2.1.(iii). Consider the diagram

K Ki Rě0

k pk .

|¨|i

|¨|

The square on the left is commutative, and the triangle on the right is commutative up to an
equivalence. Hence, if we let, by abuse of notation, | ¨ |i : K Ñ Rě0 stand for the restriction of
| ¨ |i : Ki Ñ Rě0 to K, then | ¨ |i extends | ¨ |. This shows the surjectivity assertion in (i).

To show the restriction in the theorem is well-defined, we must show | ¨ | P MK,na restricts to a

nontrivial valuation |¨||k P Mk,na on k. Let β P Kzk be any element, and write gpXq “
N
ř

i“0

aiX
i

with a0, aN ‰ 0 for its minimal polynomial over k. If |β| ă 1, then

0 “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“0

aiβ
i

ˇ

ˇ

ˇ

ˇ

ˇ

“ |a0| “ 1

a contradiction. If |β| ą 1, then

0 “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“0

aiβ
i

ˇ

ˇ

ˇ

ˇ

ˇ

“ |aNβ
N ||β|N ą 1

a contradiction. This forces |β| “ 1; since β P Kzk is arbitrary, it follows that | ¨ | is trivial,
again a contradiction to our assumption.

Now we make use of the topology to facilitate our argument. Any k-basis for K is also a
pk-basis for K bk

pk; we simply fix one such basis and topologize K bk
pk by the induced sup

norm ∥¨∥8. With this basis, it is easy to see K is dense. Next, we topologize pkrXs{pfeii q by
any norm topology, and topologize their product by the product topology; note the product
topology is also normable. Since Φ is a pk-isomorphism, it follows from Theorem 8.1.2 that Φ

is a homeomorphism. Similarly we topologize K1 ˆ ¨ ¨ ¨ ˆ Kn by the product topology. If we
identify K1 ˆ ¨ ¨ ¨ ˆ Kn as a quotient, we can equip it with the quotient norm (c.f. Lemma
E.1.9) and the projection becomes continuous. Again by Theorem 8.1.2 the quotient norm is
equivalent to the product norm. In sum, Ψ : K Ñ K1 ˆ ¨ ¨ ¨ ˆ Kn and, hence, ιi : K Ñ Ki

have dense image. This allows us to think of Ki as the completion of K with respect to | ¨ |i.
As a by-product, under our identification, weak approximation implies that | ¨ |1, . . . , | ¨ |n are
inequivalent valuations on K.

Suppose | ¨ |K is any extension of | ¨ |. Let pK be the completion of K with respect to | ¨ |K .
Consider the composition Kpk Ď pK. Since rKpk : pks ă 8, Kpk is closed under subspace topology
inherited from pK by Theorem 8.1.2. Since K is both dense in Kpk and pK, we see pK “ Kpk.
In particular, we have a surjection K bk

pk Ñ pK, and taking reduction we obtain a surjection
K1 ˆ ¨ ¨ ¨ ˆ Kn Ñ pK. It follows that Ki – pK for some i P rns, and by Theorem 8.1.2 again it
is a homeomorphism. By Lemma 8.1.1, | ¨ |K is equivalent to | ¨ |i. This proves (i). Also, the
number r in (iii) is equal to n.
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(ii) Let txiuiPI Ď O be such that txi “ xi mod PuiPI is a κpvq-basis of κpwq, and let tπjujPJ be
such that twpπjq “ |πj |KujPJ is a coset representative of wpKˆq{vpkˆq; up to a multiplication
by an element in kˆ, we can assume tπjujPJ Ď O. We claim txiπju iPI

jPJ
Ď O is k-linearly

independent. Say
ř

i,j

aijxiπj “ 0 for some aij P k; clearing the denominators, we assume aij P o.

Suppose for contradiction that ai0j0 ‰ 0 for some pi0, j0q P IˆJ . Put yj “
ř

iPI

aijxi pj P Jq. Let

i1 be such that |ai1j0 | “ max
iPJ

|aij0 | ą 0; then yj0{ai1j0 “ xi1 `
ř

i‰i; aij0a
´1
i1j0
xi with aij0a´1

i1j0
P o.

Since txiu is a κpvq-basis for κpwq, we see yj0{ai1j0 mod P ‰ 0, i.e., yj0{ai1j0 P OzP. Hence
|yj0 |K “ |ai1j0 |K “ |ai1j0 | P vpkˆq. In fact, from the argument we see for j P J either |yj |K P

vpkˆq or yj “ 0. Let j1 P J be such that |yj1πj1 |K “ max
jPJ

|yjπj | ą 0. If |yj1πj1 |K ą |yjπj |K

for any other j, then since | ¨ |K is non-archimedean, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ř

i,j

aijxiπj

ˇ

ˇ

ˇ

ˇ

ˇ

K

“

ˇ

ˇ

ˇ

ˇ

ˇ

ř

j

yjπj

ˇ

ˇ

ˇ

ˇ

ˇ

K

“

|yj1πj1 |K ‰ 0, a contradiction. Hence |yj1πj1 |K ą |yj2πj2 |K for some other j2 ‰ j1. But then
|πj1 |Kvpkˆq “ |πj2 |Kvpkˆq, a contradiction. Hence aij “ 0 for all i, j, and this proves the
inequality part in (ii).

Now suppose v is discrete. The above inequality shows epw|vq ă 8, so wpKˆq is also a
discrete subgroup of Rą0. In particular, w is discrete. Let π P P be such that P “ πO. Then
twpπjqu0ďjďepw|vq´1 is a coset representative of wpKˆq{vpkˆq. Consider the o-module

O1 :“ spanotxiπ
j | 0 ď j ď epw|vq, 1 ď i ď fpw|vqu Ď O.

Also, put O2 “ spanotxi | 1 ď i ď fpw|vqu Ď O. By definition, we have O “ O2 ` P “

O2 ` πO. Iterating, we see

O “ O2 ` πO2 ` ¨ ¨ ¨ ` πepw|vq´1O2 ` πepw|vqO “ O1 ` πepw|vqO.

Since wpπepw|vqq generates vpkˆq, we have πepw|vqO “ pO, so that O “ O1 ` pO. Iterating
again, we obtain O “ O1 `pnO for all n ě 1. Since tpnOuně1 forms a unit-neighborhood basis
for O, this implies O1 is dense in O.

Now we assume pk, vq is complete. Since o Ď k is closed, if follows from Theorem 8.1.2 that
O1 Ď O is closed, and hence O1 “ O. This shows the equality holds when pk, vq is complete and
discrete. Also, the assertion in (iii) with equality pk, vq is complete and discrete also follows
(note that r “ 1 in this case by Theorem 8.4.1).

(iii) By the isomorphism Φ and (ii), we have

rK : ks “ dim
pkK bk

pk “

r
ÿ

i“1

dim
pk
pkrXs{pfeii q ě

r
ÿ

i“1

rKi : pks ě

r
ÿ

i“1

epwi|vqfpwi|vq.

If K{k is separable, the first inequality is an equality. If v is discrete, by (ii) the second
inequality is an equality. This finishes the proof.

8.5 Ramification
Definition. Let K{k be a finite extension, and let v be a non-archimedean valuation on k.
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(i) v is unramified in K if fpw|vq “ rK : ks8 and κpwq{κpvq is a separable extension for each
extension w of v to K.

(ii) v is ramified (ramifies) in K if v is not unramified in K.

(iii) v is tamely ramified if Char k “ 0 or Char k “ p ě 2 and p ∤ epw, vq, and κpwq{κpvq is a
separable extension for each extension w of v to K.

(iv) v is totally ramified in K if v extends to a unique valuation w on K with epw|vq “ rK : ks.

(v) v is said to split completely in K if v has exactly rK : ks inequivalent extensions to K.

If pk, vq is complete, by Theorem 8.4.1 K admits a unique extension of v. In this case, the extension
K{k is said to be unramified/ramified/tamely ramified/totally ramified if v is.

Lemma 8.5.1. Let pk, vq be a complete non-archimedean valued field, and pK,wq a finite extension
of pk, vq. Then K{k is unramified if and only if K “ kpαq for some α P ow such that α P κpwq is
separable over κpvq and κpwq “ κpvqpαq.

Proof. The if part is clear. For the only if part, suppose K{k is unramified. Then κpwq{κpvq is finite
separable, so by primitive element theorem there exists α P κpwq such that κpwq “ κpvqpαq. Let
α P ow be any lift, and f P okrXs be the minimal polynomial of α (here it has integral coefficients
by the last part of the proof of Theorem 8.4.1). Then

rκpwq : κpvqs ď deg f “ rkpαq : ks ď rK : ks “ rκpwq : κpvqs,

so K “ kpαq.

8.6 Galois theory of valuations
Lemma 8.6.1. Let K{k be an algebraic field extension. Then the restrictions

MK,na Mk,na

| ¨ | | ¨ ||k

,
MK,a Mk,a

| ¨ | | ¨ ||k

are well-defined.

Proof. Let | ¨ | be a nontrivial valuation on K. If | ¨ | is archimedean, then its restriction to Q is
already nontrivial by Lemma 8.2.1.(vi) and | ¨ ||k is still archimedean. If | ¨ | is non-archimedean, this
is a part of Theorem 8.4.23.(i).

For a field k, v P Mk and σ P Aut k, we define σv P Mk to be the valuation defined by

σvpxq :“ vpσpxqq px P kq

This defines a right Aut k-action on Mk. Clearly v is non-archimedean if and only if σv is non-
archimedean, so Mk,na and Mk,a are stabilized by Aut k-actions.

Let K{k be a field extension, v P Mk and w P MK such that w|k “ v. For σ P AutkK, we see
σw again restricts to v “ σv. Hence AutkK acts on the fibre of the restriction MK Ñ Mk. It is
natural to ask if AutkK acts transitively on the fibre.

8It is more common to require epw|vq “ 1, but the current definition works better for general valuations. Note
fpw|vq “ rK : ks implies epw|vq “ 1 by Theorem 8.4.23.(ii), and they are equivalent when pk, vq is complete and
discrete by the same theorem.
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Lemma 8.6.2. Let K{k be a Galois extension. Then GalpK{kq acts transitively on the fibre of
Mk Ñ Mk.

Proof. Suppose K{k is finite, and suppose for contradiction that GalpK{kqw and GalpK{kqw1 are
two disjoint GalpK{kq-orbits in the fibre of v P Mk. By weak approximation there exists α P K such
that |σpαq|w ă 1 for each σ P GalpK{kq while |σpαq|w1 ą 1 for each σ P GalpK{kq. But then

1 ą
ź

σPGalpK{kq

|σpαq|w “ |NK{kpαq|w “ |NK{kpαq|v “ |NK{kpαq|w1 “
ź

σPGalpK{kq

|σpαq|w1 ą 1

is an obvious contradiction.
Suppose that K{k is infinite, and w,w1 P MK be in the same fibre. For each finite Galois

subextension M{k of K, consider the set XM :“ tσ P GalpK{kq | σw|M “ w1|Mu. We’ve seen that
XM is nonempty (as M{k is finite), and it is closed: if σ P GalpK{kqzXM , then σGalpK{Mq Ď

GalpK{kqzXM . By compactness of GalpK{kq, we have
Ş

M

XM ‰ H, where M runs over all finite

Galois subextensions M{k of K. Then any element in the intersection sends w to w1.

Definition. Let K{k be a Galois extension, and w P MK . The decomposition group of w is the
closed subgroup

Dpw,K{kq :“ tσ P GalpK{kq | σw “ wu ď GalpK{kq.

Lemma 8.6.3. Let K{k be a finite Galois extension, w P MK and v “ w|k P Mk.

(i) The extension Kw{kv is finite Galois.

(ii) The image of the restriction GalpKw{kvq Ñ GalpK{kq is the decomposition group Dpw,K{kq.

Hence GalpKw{kvq – Dpw,K{kq canonically.

8.7 Norm map
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Chapter 9

Adele ring of a global field

9.1 Restricted Topological Products

9.1.1 Generality
Let tXα | α P Iu be a family of topological spaces. Let J Ď I be a cofinite subset and to each α P J

we assign an open subspace Yα Ď Xα. Consider the restricted (topological) product of the Xα

with respect to the Yα:

ź1

αPI

Xα “
źtYαuαPJ

αPI

Xα “

#

pxαqα P
ź

αPI

Xα |
there exists a cofinite subset J0 Ď J

such that xα P Yα for all α P J0

+

.

The condition imposed on the restricted product is usually rephrased as “xα P Yα for all but finitely
many α P I”, or “@1α P Irxα P Yαs”. Hence

ź1

αPI

Xα “

#

pxαqα P
ź

αPI

Xα | @1α P I rxα P Yαs

+

.

We topologize
ź1

αPI

Xα by declaring the collection
#

ź

αPI

Uα | Uα Ď
open

Xα, @1α P I rUα “ Yαs

+

to be

the (sub)basis for the topology; we will refer to the set of this form as a basic open set. It is clear
that if we alter J by a finite subset of I and change finitely many Yα, the restricted product as well
as the topology remains unchanged.

Lemma 9.1.1. A relatively compact set in
ź1

αPI

Xα is contained in some XS for some finite IzJ Ď

S Ď I, where

XS :“
ź

αPS

Xα ˆ
ź

αPIzS

Yα Ď
open

ź1

αPI

Xα

In particular, a relatively compact set is contained in some
ź

αPI

Kα, where Kα Ď
cpt
Xα and Kα “

Yα @1α P I.

Proof. Let K be a compact set in X “
ź1

αPI

Xα. Since the collection tXS | IzJ Ď S Ď I: finiteu

form an open cover of X, and is closed under finite union, we see K Ď XS for some S. The last
assertion follows from the projection of K to an Xα is compact.
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Lemma 9.1.2. Suppose each Xα is LCH and each Yα is compact. Then the space
ź1

αPI

Xα is LCH.

Proof. Being Hausdorff is clear. By Tychonov’s theorem, the sets
ś

αPI Uα described above are
locally compact and these form an open cover of

ź1

αPI

Xα. Hence it is locally compact.

Lemma 9.1.3. Suppose Xα “ Gα are topological groups and Yα “ Hα are open subgroups. Then
the restricted product G “

źtHαuαPJ

αPI

Gα is a topological groups.

Proof. Let xα P Gα and suppose yα, zα P Gα satisfy yαzα “ xα. Let Uα Ď Gα be a neighborhood of
xα; then we can find neighborhoods Vα,Wα Ď Gα of yα and zα respectively such that VαWα Ď Uα.

Suppose pxαqα, pyαqα, pzαqα P G and U :“
ź

αPI

Uα is a basic open set. Then for all but finitely

many α P I, we have xα, yα, zα P Hα and Uα “ Hα; in this case, we can choose Vα “ Wα “ Hα so
that V :“

ź

αPI

Vα, W :“
ź

αPI

Wα are open neighborhoods of pyαqα and pzαqα in G respectively. Our

choice satisfies VW Ď U , so the multiplication is continuous.
The inversion is clearly continuous: the image of

ź

αPI

Uα is simply
ź

αPI

U´1
α , which is again a basic

open set of G.

In the following, assume each Xα is LCH and each Yα is compact open.

Put X “
ź1

αPI

Xα. We are going to construct a measure on X from measures on Xα. We recall

a definition. Let S be the collection of finite subsets of I containing IzJ ; this is a set directed by
inclusion. We say a function f : S Ñ C, or pfSqSPS Ď C, converges if it converges as a net (c.f.
Example A.2.4).

Example 9.1.4 (Infinite product). This will be the only practical example we encounter in this
section. Let pxαqαPI Ď Cˆ, and for S P S, put

xS :“
ź

αPS

xα.

When the net S ÞÑ xS converges, we write the limit as
ź

αPI

xα. In this case we simply say
ź

αPI

xα

converges.
For any cofinite T Ď I if we similarly define

ź

αPT

xα. If the whole infinite product
ź

αPI

xα converges,

then
ź

αPT

xα converges as well and

ź

αPI

xα “
ź

αRT

xα ˆ
ź

αPT

xα.

Definition. A function f P CcpXq is called factorizable if there exist fα P CcpXαq with fα “

1Yα
@1α P I such that

fpxq “
ź

αPI

fαpxαq

for all x “ pxαqα P X. Note that the product is in fact a finite product. In this case we write
f “ b1

αPIfα.
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Lemma 9.1.5. Let A be the subspace of C0pXq spanned by all factorizable functions. Then A is a
dense unital subalgebra of C0pXq.

Proof. Of course we are going to apply Stone-Weierstrass to A. We must show A is a subalgebra
that separates points, vanishes nowhere and is closed under conjugation.

• A is a subalgebra. This is clear as the product of two factorizable functions is factorizable.

• A is closed under conjugation. Clear as 1Xα is a real-valued function.

• A vanishes nowhere. This is clear as 1X P A; note that 1X is factorizable with fα “ 1Xα . In
particular, A is unital.

• A separates points. Let x “ pxαqα, y “ pyαqα P X and x ‰ y. Then xα ‰ yα for some α P I.
Take fα P CpXαq with fαpxαq ‰ fαpyαq, and set fβ “ 1Xβ

for β ‰ α. Then the function
f : X Ñ C defined by f “ b1

αPIfα is continuous and satisfies fpxq ‰ fpyq.

Hence by Stone-Weierstrass, A is dense in C0pXq. Note that A Ď CcpXq.

Corollary 9.1.5.1. Let tpXα, µαq | α P Iu be a collection of compact Hausdorff spaces together
with outer Radon measures. Suppose µαpXαq “ 1 for almost all α P I. Then there exists a unique
Radon measure µ on the product X such that

ż

X

fdµ “
ź

αPI

ż

Xα

fαdµα

for all factorizable f “ b1
αPIfα. The identity holds for f “ b1

αPIfα
1 with fα P L1pXαq and

fα “ 1Xα @1α P I as well.

Proof. Let A be as in the lemma. Define a functional T : A Ñ C as follows. If f P A is factorizable,
say f “ b1

αPIfα, then set

T pfq “
ź

αPI

ż

Xα

fαdµα

This is well-defined, as fα “ 1Xα
@1α P I, and by assumption this is a finite prodcut. By linearity

this finishes the definition of the functional T : A Ñ C. Note that if f P A, there exists a finite

subset S Ď I and g P C

˜

ź

αPS

Xα

¸

such that fpxq “ gppxαqαPSq
ź

αPIzS

1Xα
pxαq. In this case we have

T pfq “

ż

ś

αPS Xα

gdpbαPSµαq

where bαPSµα is the unique Radon measure on
ź

αPS

Xα constructed in Theorem D.4.7 (and by

induction). Note also that ∥g∥ś
αPS Xα

“ ∥f∥X .
We extend T to a functional on CpXq by continuity. Precisely, for f P CpXq pick a sequence

pfnqně1 in A such that fn Ñ f in sup norm. Define

T pfq :“ lim
nÑ8

T pfnq.

1Such a function is µ-integrable by Theorem D.4.7.(b). We will also call such an integrable function factorizable.
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We must check this is well-defined. First, we show pT pfnqqn is a Cauchy sequence. Let m,n ě 1

and take finite S and gn, gm P C

˜

ź

αPS

Xα

¸

chosen as in the end of the first paragraph. Then

|T pfnq ´ T pfmq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ś

αPS Xα

gn ´ gmdpbαPSµαq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ∥gn ´ gm∥ś
αPS Xα

“ ∥fn ´ fm∥X

Hence pT pfnqqn is a Cauchy sequence, and hence the limit exists. Second, we must show the limit
is independent of the choice of pfnqn. It suffices to show if fn Ñ 0 uniformly, then T pfnq Ñ 0. This
is clear by the above inequality. Hence this defines a functional T : CpXq Ñ C. It is clear from the
construction that T is positive, so by Riesz’s representation theorem there exists a unique Radon
measure µ on X such that

ż

X

fdµ “ T pfq

for all f P CpXq. The claimed integral formula follows from the construction, and this characterizes
the measure µ again by Riesz’s representation theorem. The last assertion follows from Theorem
D.4.7.(b).

Theorem 9.1.6. For each α P I let µα be an outer Radon measure on Xα. For α P J , suppose
µαpYαq “ 1. There exists a unique Radon measure µ “

â1

αPI

µα on X such that if f “ b1
αPIfα is

factorizable (either integrable or continuous with compact support), then
ż

X

fdµ “
ź

αPI

ż

Xα

fαdµα.

The measure µ is called the restricted product measure of tµα | α P Iu on X.

Proof. For each finite subset S Ď I containing IzJ , set

Y S “
ź

αPIzS

Yα, XS “
ź

αPS

Xα ˆ Y S .

By Tychonov’s theorem, Y S is compact, and hence XS is locally compact. By Corollary 9.1.5.1
there is a unique Radon measure µS on Y S satisfying the integral formula there. By Theorem D.4.7
and induction, there exists a unique Radon measure µS on XS satisfying

ż

XS

fdµS “
ź

αPS

ż

Xα

fαdµα ˆ

ż

Y S

fSdµS (♠)

where f “ bαPSfα b fS satisfies fα P CcpXαq and fS P CpY Sq. Since X “
ď

IzJĎSĎI: finite
XS , to

show pµSqS defines a Radon measure on X, we begin by showing µT |XS
“ µS for S Ď T . This is

clear since µS is characterized by the formula p♠q.
Let A be as in Lemma 9.1.5. For f P CcpXq, pick a sequence pfnqn in A such that fn Ñ f in

sup norm. For each n, there is a finite IzJ Ď Sn Ď I such that supp f Ď XSn . The same argument
as in Corollary 9.1.5.1 shows that

˜

ż

XSn

fndµSn

¸

n

Ď C

forms a Cauchy sequence, so the limit T pfq “ lim
nÑ8

ż

XSn

fndµS exists.
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• If we change Sn to a larger finite set, the integral is unchanged.

• The limit is independent of the choice of pfnqn; this follows from an argument similar to the
one in Corollary 9.1.5.1.

This well-defines a positive linear functional T : CcpXq Ñ C. It follows from Riesz’s representation
theorem that there is a unique Radon measure µ on X such that

ż

X

fdµ “ T pfq

for all f P CcpXq. The uniqueness is clear.

Corollary 9.1.6.1. Let Gα pα P Iq be an LCH group and Hα ď Gα pα P Jq be an open compact
subgroup. Let µα be a left (resp. right) Haar measure on Gα, and for α P J we normalize the Haar
measure µα so that µαpHαq “ 1. Then there exists a unique left (resp. right) Haar measure µ on
G “

źtHαuαPJ

αPI

Gα such that if f “ b1
αPIfα is factorizable, then

ż

G

fdµ “
ź

αPI

ż

Gα

fαdµα.

Proof. Let µ “
Â1

αPI µα be the measure as in Theorem 9.1.6. To show µ is a left Haar measure,
by Lemma 2.2.4 it suffices to show the corresponding function T : CcpGq Ñ C is left invariant. Let
f “ b1

αPIfα be factorizable and g “ pgαqα P G. Let S Ď I be a cofinite subset such that gα P Hα

and fα “ 1Hα for α P S. Then λpg´1qf is again factorizable and

T pλpg´1qfq “
ź

αPIzS

ż

Gα

fαpgαxαqdµαpxαq ˆ
ź

αPS

ż

Gα

1Hα
pgαxαqdµαpxαq

“
ź

αPIzS

ż

Gα

fαpxαqdµαpxαq ˆ
ź

αPS

ż

Gα

1Hαpxαqdµαpxαq “ T pfq

since each dµα is a Haar measure and gα P Hα for α P S. Hence T : A Ñ C is a left-invariant
functional. Finally, if f P CcpXq and pfnqn P A with fn Ñ f in CcpXq, then λpgqfn Ñ λpgqf so that

T pλpgqfq “ lim
nÑ8

T pλpgqfnq “ lim
nÑ8

T pfnq “ T pfq

so that T is also left-invariant. This finishes the proof. The statement for the right Haar measure is
proved in the same way.

Retain the notation in Theorem 9.1.6 and its proof. Let f : X Ñ r0,8s be a measurable function
with tx P X | fpxq ‰ 0u being σ-finite. Then by definition and Urysohn’s Lemma

ż

X

fdµ “ sup
ϕPCcpXq
0ďϕďf

ż

X

ϕdµ “ sup
K Ď

cpt
X

ż

K

fdµ

By Lemma 9.1.1, this tells
ż

X

fdµ “ sup
IzJĎSĎI
#Să8

ż

XS

fdµ (♣)

where XS “
ź

αPS

Xα ˆ
ź

αPIzS

Yα Ď
open

X. In particular, p♣q holds for all f P L1pXq with sup replaced

by lim, in the sense of nets.
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Theorem 9.1.7. For each v P I let fα P L1pXαqXCpXαq and suppose fαpYαq “ t1u @1α P I. Define
formally the product f : X Ñ C

fpxq :“
ź

αPI

fαpxαq.

(i) f is well-defined and f P CpXq.

(ii) For any finite subset IzJ Ď S Ď I such that fαpYαq “ 1 for all α R S, the formula holds
ż

XS

fdµ “
ź

αPS

ż

Xα

fαdµα.

(iii) If the net
˜

ź

αPS

ż

Xα

|fα|dµα

¸

SĎI
#Să8

converges and tx P X | fpxq ‰ 0u is σ-finite, then f P

L1pXq and
ż

X

fdµ “
ź

αPI

ż

Xα

fαdµα

Proof.

(i) That well-defined is clear since x “ pxαqα P X satisfies xα P Yα for almost all α P I. This is
continuous since X “

Ť

XS and f |XS
is a finite product of continuous functions.

(ii) This follows from the formula p♠q in Theorem 9.1.6.

(iii) By the identity p♣q applied to the function |f | and (ii), we see
ż

X

|f |dµ “ sup
IzJĎSĎI
#Să8

ź

αPS

ż

Xα

|fα|dµα.

This is finite by assumption, so f P L1pXq. The same reason applied to f then proves the
claim identity.

9.1.2 Abelian case
In this subsection, suppose that Gα is abelian. Then the dual group xGα :“ HomTopGppGα, S

1q is
LCA. We begin with discussion of quasi-characters.

Lemma 9.1.8.

(i) Let χ P HomTopGppG,Cˆq. Then there is a cofinite subset J 1 Ď J Ď I such that χα|Hα ” 1

for all α P J 1.

(ii) Conversely, for each α P I let χα P HomTopGppGα,Cˆq such that χα|Hα
” 1@1α P I. Then

χ “ b1
αPIχα : G Ñ Cˆ is a quasi-character.

Proof.

(i) Since Cˆ has no small subgroup by Proposition I.2.10.
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(ii) χ is clearly multiplicative. To see continuity let S Ď I be a finite subset consisting of all α with
χαpHαq ‰ 1 and let s “ #S. Given a unit-neighborhood U of Cˆ choose a unit-neighborhood
V such that V s Ď U . Let Nα be a unit-neighborhood of Gα such that χαpNαq Ď V for all
α P S, and let Nα “ Hα for α R S. Then

χ

˜

ź

α

Nα

¸

Ď V s Ď U

Theorem 9.1.9. The restricted product of the groups xGα with respect to the subgroups HK
α is

naturally isomorphic to the character group pG of G as topological groups.

Proof. The isomorphism is given by

ź1

α

xGα pG

pχαq χ :“ b1
αPIχα

The preceding lemmas show that this is an abstract group isomorphism. It remains to show it is a
homeomorphism. Let K be a compact set in G and ε ą 0. We may assume K “

ź

α

Kα as described

in Lemma 9.1.1. Let S :“ tα P J | Kα ‰ Hαu and put n “ #S. Then

χ P tχ P pG | |χpKq ´ 1| ă εu ô

ˇ

ˇ

ˇ

ˇ

ˇ

ź

α

χαpBαq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε

For α P S let Vα :“ tχ P xGα | |χpBαq ´ 1| ă ρ :“ pε ` 1q
1
n ´ 1u, and for α R S let Vα “ HK

α . Now
for pχαq P

ź

α

Vα, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ź

α

χαpBαq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ă p1 ` ρqn ´ 1 “ ε

so that pχαqα ÞÑ χ is continuous.
Conversely, let IzJ Ď S Ď I be a finite set with #S “ n and 1 ą ε ą 0. For α P S let Kα

be a compact set in Gα and put Vα “ tχ P xGα | |χpKαq ´ 1| ă εu, and for α R S put Vα “ HK
α .

Put S “ tα1, . . . , αnu and let K “

˜

t1u ˆ ¨ ¨ ¨ ˆ t1u Y

n
ď

i“1

˜

Kαi
ˆ
ź

j‰i

t1u

¸¸

ˆ
ź

αRS

Hα which is a

compact set in G. Then for χ P pG with |χpKq ´ 1| ă ε, we have the following:

• |χαpHαq ´ 1| ă ε for α R S. This implies χαpHαq “ 1 because χαpHαq is a subgroup of S1.

• |χαi
pKαi

q ´ 1| ă ε for 1 ď i ď n.

Hence pχαqα P
ź

α

Vα, showing χ ÞÑ pχαqα is continuous.

9.1.3 Restricted tensor products
Let tVα | α P Iu be a a family of vector spaces. Let J Ď I be a cofinite subset and to each α P J

choose an element eα P Vα. Say an element x “ pxαqα P
ź

αPI

Vα is factorizable with respect to
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teαuαPJ if xα “ eα @1α P J . The quotient of the vector space free on all factorizable elements
with respect to teαuαPJ by linearity condition on each component is called the restricted tensor
product of tVα | α P Iu with respect to teαuαPJ , and is denoted by

â1

αPI

Vα “
âteαuαPJ

αPI

Vα

The image of a factorizable element pxαqαPI in the tensor is denoted by b1
αPIxα; sometimes such an

element is called a pure tensor. Suppose J 1 Ď I is another cofinite set and te1
αuαPJ 1 is another set

of elements such that e1
α “ eα @1α P J X J 1. Then there is a canonical isomorphism

âteαuαPJ

αPI

Vα –

âte1
αuαPJ1

αPI

Vα.

Let tAα | α P Iu be a family of algebras, and for each α P J choose an idempotent fα P Aα.
Then the set of factorizable elements with respect to tfαuαPJ is closed under multiplication, so the
restricted tensor product

âtfαuαPJ

αPI

Aα has a natural algebra structure. Again, altering tfαuαPJ by

a finite subset yields isomorphic algebras.

Example 9.1.10. With the introduced notation, the spaceA appeared in Lemma 9.1.5 is
ât1YαuαPJ

αPI

CcpXαq.

Suppose moreover each Vα is an Aα-module. Then
âteαuαPJ

αPI

Vα has a naturally a
âtfαuαPJ

αPI

Aα-

module.

9.2 Adeles
Let F be a field. The arithmetic of F is believed to be encoded in its completions with respect to
its various valuations. It would be best if we can do harmonic analysis on the completion. For a
valuation v of F , we denote by Fv the completion of F with respect to v. If v P MF,a, then Fv – R
or C by Theorem 8.2.4, which is locally compact. If v P MF,na, we see by Theorem 8.3.1 that Fv is
locally compact if and only if v is discrete and #κpvq ă 8, in which case the ring of integers ov of
pFv, vq is compact.

In the following let us assume F is a field such that Fv is locally compact for all valuations v on
F . To deal with various completion in a shot, we consider their restricted product with respect to
the rings of integers:

AF :“
źtovuvPMF,na

vPMF

Fv.

This makes sense if MF,na is assumed to be cofinite, i.e., #MF,a ă 8. Under this assumption, AF
an LCA group, which is a suitable stage to play harmonic analysis. This is called the adele ring
of the field F .

We’ve made the following assumptions:

(i) #MF,a ă 8.

(ii) Fv is locally compact for each v P MF .

Suppose F has a infinite subfield k such that F is algebraic over kpxq for some x P F transcendental
over k. Let | ¨ |x denote the valuation on kpxq defined by x. Then the residue field of | ¨ |x is k itself,
so that kpxq does not satisfy (ii). To deduce F does not satisfy (ii), we only need to show every
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valuation on kpxq extends to F . Indeed, if v is a valuation on kpxq, then we have a homomorphism
kpxq Ñ kpxqv, where kpxqv denotes the algebraic closure of the completion kpxqv. By Corollary
8.4.17.1 v extends to kpxqv uniquely, and we denote the extension again by v. It is standard that
kpxq Ñ kpxqv can be extended to a homomorphism from any algebraic extension of kpxq, so we have
a homomorphism F Ñ kpxqv particularly. Postcomposing with v gives a valuation on F extending
v.

If CharF “ 0, such k exists if tr.degQF ě 1. If CharF “ p ě 2, such k exists if tr.degFp
F ě 2.

Hence, the condition (ii) implies that F is either

(a) an algebraic extension of Q, or

(b) an algebraic extension of Fpptq with t a variable.

In the case (a), the condition (i) further implies that rF : Qs ă 8. In fact, the condition (i) alone
together a restriction on the cardinality of F also implies rF : Qs ă 8. To be precise,

Lemma 9.2.1. Let k be a field of characteristic 0 with #k ď #C. If k{Q is transcendental, then
#HomFieldpk,Cq “ 8.

Proof. We have Q Ď k. Let k1 be the algebraic closure of Q in k, so that k{k1 is purely transcendental.
It is standard that there exists a field homomorphism k1 Ñ C, so we can regard k1 as a subfield of
C; note that k1 is countable. Say γ Ď k is a transcendence basis of k{k1. Since #k ď #C, #γ is
not bigger than tr.degk1C, so there exists a transcendence basis β of C{k1 and an injection γ Ñ β.
Composing with any permutation of β, we obtain infinitely many injections γ Ñ β. Each of them
gives a field homomorphism k “ k1ptx | x P γuq Ñ k1pty | y P βuq Ď C.

In particular, when CharF “ 0, if #F ď #C, then (i) implies F {Q is algebraic. If rF : Qs “ 8,
then choose a subextension K of degree #HomFieldpF,Cq ` 1. It is standard that rK : Qs “

#HomFieldpK,Qq and each embedding of K extends to that of F . This is a contradiction, and
consequently rF : Qs ă 8.

We turn to the case (b), i.e., when CharF “ p for some rational prime p and F is an algebraic
extension of Fpptq. In this case (i) holds automatically.

Lemma 9.2.2. 2 Let k be a perfect field of characteristic p ě 2 and consider its rational function
field kptq.

(i) If F {kptq is an algebraic extension, then the field

F
1
p :“ tx P F | xp P F u

is F if F is perfect, and is the unique purely inseparable extension of F of degree p if F is
non-perfect.

(ii) Let K{kptq be any algebraic extension. Then K is separable over the perfect closure

F :“ tx P K | xp
n

P kptq for some n ě 1u

of kptq in K.

Proof.
2See the mathoverflow post. The lemma does not hold for fields of higher dimension.
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(i) Generally, if F is a perfect field of characteristic p, then F “ F
1
p . Indeed, for a P F , the

polynomial Xp ´ a P F rXs is not separable, so it is reducible by perfectness. But Xp ´ a “

pX ´ yqp, so it follows that if y P F
1
p , then y P F .

Now suppose F {kptq is a non-perfect algebraic extension. From the above remark, we have
kpt

1
p q “ kptq

1
p . Since the polynomial Xp ´ t P kptqrXs is irreducible, rkpt

1
p q : kptqs “ p. If

F {kptq is finite, then

rF
1
p : F s “

rF
1
p : kpt

1
p qsrkpt

1
p q : kptqs

rF : kptqs
.

Since x ÞÑ xp defines an isomorphism F
1
p – F and kpt

1
p q – kptq, we have rL

1
p : kpt

1
p qs “ rL :

kptqs, so rL
1
p : Ls “ rkpt

1
p q : kptqs “ p. For the uniqueness, if L Ď F is purely inseparable of

degree p, then for each x P LzL, xpn P F for some n ě 1 and the minimal polynomial of x has
degree p and divides Xpn ´ xp

n

“ pX ´ xqp
n . Then the minimal polynomial is pX ´ xqp, and

hence xp P F . This shows F
1
p Ď L, and proves the uniqueness.

Assume F {kptq is infinite, and suppose the lemma is wrong. Then there exist x, y P F such
that F Ĺ F px

1
p q Ĺ F px

1
p , y

1
p q. Consider the tower kpx, yq Ĺ kpx

1
p , yq Ĺ kpx

1
p , y

1
p q. By the

finite case we see kpx, yq has a unique purely inseparable extension of degree p. But then
kpx

1
p , yq “ kpx, y

1
p q “ kpx

1
p , y

1
p q leads to a contradiction.

(ii) Let F sep be the separable closure of F in K; then we have a tower F Ď F sep Ď K with K{F sep

purely inseparable and F sep{F separable. If K ‰ F sep, then by (i) we have F sep Ĺ pF sepq
1
p Ď

K.3 Since F is not perfect, it follows from (i) and the above that F Ĺ F
1
p Ď pF sepq

1
p Ď K.

But the inequality F Ĺ F
1
p Ď K is a contradiction to the definition of F .

Corollary 9.2.2.1. Let k be a perfect field of characteristic p ě 2. Then every finite purely
inseparable extension of kptq has the form kpt

1
q q with q “ pn for some n ě 1.

Proof. By induction on n, it suffices to show any purely inseparable extension of degree p is kpt
1
p q.

But this is Lemma 9.2.2.(i).

Consider the purely inseparable extension Fppt
1
q q of Fpptq with q “ pn for some n ě 1. The

isomorphism Fppt
1
q q

„
Ñ Fpptq given by x ÞÑ xq establishes a bijection of the valuations on them.

For example, the valuation defined by t
1
q is the unique extension of the one | ¨ |t defined by t, and

the ramification index is q. Then | ¨ |t extends uniquely to a valuation v on the perfect closure
Fppt p

´8
q “

Ť

ně1
Fppt p

´n

q of Fpptq. Although the residue field of v is finite, it is not a discrete

valuation. In particular Fppt´p
8

qv is not locally compact.
Let K denote the perfect closure of Fpptq in F . By Lemma 9.2.2.(ii), F {K is separable and

K{Fpptq is purely inseparable. The preceding discussion shows that K{Fpptq cannot be infinite, so
it is finite, having the form K “ Fppt

1
q q with q “ pn for some n ě 1. Replacing t by t

1
q , we can

assume F {Fpptq is a separable algebraic extension. Can I show F is in fact finite over Fpptq?

3The argument here is to make sure that F
1
p Ď K.
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9.2.1 Classical geometry of numbers
Definition.

(i) An (algebraic) number field is a finite extension of Q.

(ii) A global function field is a finite extension of Fpptq, where p is a rational prime and t is a
transcendental element over Fp.

(iii) A global field is either a number field or a global function field.

A valuation on a global field is usually called a place. We have the following terminology.

Definition. Let F be a global field.

(i) If F is a number field, an archimedean (resp non-archimedean) valuation on F is called an
infinite (resp. finite) place of F .

(ii) If F is a global function field, an extension of the valuation | ¨ |8 on Fpptq is called an infinite
place of F . All the other valuations are called finite places of F .

Denote by MF,8 (resp. MF,fin) the set of equivalence classes of infinite places (resp finite places) of
F . Then

MF “ MF,8 \MF,fin “ MF,a \MF,na.

We will see in many proofs that infinite places of a global function field have the same position as
infinite places of a number field.

There is a convention that we must make clear. In a previous subsection we usually use v to
stand for an absolute value that lies in the equivalence class in v. Since Fv is locally compact,
in either §2.5 or §7.1 we have seen a natural normalization of the valuation v. That is,

|x|v “ #κpvq´ ord x

where if ϖv is a uniformizer of Fv, then ordx “ ordFv
x P Z is such that xϖ´ ord x

v P oˆ
v .

Under this normalization, | ¨ |v is not an absolute value, nor is compatible with the restriction
to subfields. But this has the advantage that it is the topological modulus. In what follows we
will use | ¨ |v to denote this valuation unless otherwise chosen.

If F is a number field, then there is an embedding

F F bQ R “
ź

σPMF,8

Fσ.

If σ is real, i.e., σpF q Ď R, then Fσ “ R; if it is non-real, i.e., σpF q Ę R, then Fσ “ C. Here
we identify MF,8 with HomFieldpF,Cq up to conjugation (c.f. Corollary 8.2.4.1). It is a standard
notation that we write r1 (resp. r2) to be the number of real embeddings (resp. half the number of
non-real embeddings); then rF : Qs “ r1 ` 2r2. In classical algebraic number theory one studies the
arithmetic of F via this embedding.

Definition. For a global field F , we call

OF :“ tx P F | |x| ď 1 for all | ¨ | P MF,finu “
č

vPMF,fin

F X ov

the ring of integers of F .
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For example, we have OF “

#

Z , if F “ Q
Fprts , if F “ Fpptq

in the two basic cases.

Lemma 9.2.3. Let K{F be a finite extension of global fields. Then OK is the integral closure of
OF in K.

Proof. The key point lies in the proof of Theorem 8.4.1: if w is an extension of v P MF to K,
then ow Ď Kw is the integral closure of ov Ď Fv in Kw. If α P KzF is integral over OF , write
Xn`an1

Xn´1 `¨ ¨ ¨`a1X`a0 P OF rXs for its integral dependence. Let | ¨ | P MK,fin; since ai P OF ,
|ai| ď 1 for each 0 ď i ď n´ 1 so that

|α|n “

ˇ

ˇ

ˇ

ˇ

ˇ

´

n´1
ÿ

i“0

aiα
i

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
0ďiďn´1

|ai||α|i ď maxt1, |α|n´iu.

This implies |α| ď 1. Since | ¨ | is arbitrary, this shows α P OK .
Conversely, let α P OK and let mα,F P F rXs be the monic minimal polynomial of α over F . By

Chinese remainder theorem, for each v P MF,fin we have

F pαq bF Fv – FvrXs{pge11 q ˆ ¨ ¨ ¨ ˆ Fvpgenn q

where mα,F “ ge11 ¨ ¨ ¨ genn is the irreducible decomposition in FvrXs. If we denote by wi the extension
of v to FvrXs{pgiq, by assumption we have wipαq ď 1, so by what we remark in the very beginning,
α is integral over ov. In particular, gi P ovrXs, and hence mα,F P pF X ovqrXs. Letting v run over
all v P MF,fin yields mα,F P OF rXs.

The discussion is incomplete if we do not say anything about the algebraic aspects of the ring of
integers. The ring of integers of a global field is a Dedekind domain, namely, a normal Noetherian
domain of (Krull) dimension ď 1. The normality follows from the previous lemma. The dimension
also follows from it, since for A Ñ B is an injective integral homomorphism of rings, we have
dimA “ dimB, and since dimZ “ 1 “ dimFpptq (they are all PIDs). To show it is Noetherian,
we make use of the trace form. If K is a number field, it is finite separable over F :“ Q. If K
is a global function field, then it is finite separable over F “ Fppt

1
q q with q “ pn for some n ě 1.

The separability implies the trace form K ˆ K Q px, yq ÞÑ TrK{F pxyq P F is non-degenerate.4 Let
v1, . . . , vn P OK be an F -basis for K5, and let w1, . . . , wn P K be the dual basis with respect to
the trace form. Pick x P OK and write x “

n
ř

i“1

TrK{F pxviqwi. Since xvi P OK , it follows that

TrK{F pxviq P OF . This proves OK Ď
n
ř

i“1

OFwi, so we only need to show OF is Noetherian. This is

clear: in the number field case OF “ Z and in the global function field case OF “ Fprt
1
q s – Fprts.

Since OF is a PID, this also shows that OK is a finite free OF -module of rank rK : F s. We record
these as a lemma.

Lemma 9.2.4. Let F be a global field and S Ď MF,fin a finite set.

(i) The ring of integers OF is a Dedekind domain.

(ii) If K{F is a finite extension, then OK is finite over OF .

(iii) If, moreover, in (ii) OF is a PID, then OK is finite free over OF of rank rK : F s.
4Since taking trace is transitive, by induction we can assume K{F is a simple extension. One can show some power

of the simple generator has nonzero trace.
5Such a basis exists as K{OK is a torsion OF -module.
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We conclude our discussion on algebraic aspects by relating the valuations and maximal ideals. A
domain D is called a discrete valuation ring, or DVR for short, if there is a discrete valuation on
FracD such that D is its ring of integers. It is well-known that D is a DVR if and only if D is normal
Noetherian local domain of dimension one. It follows that a domain is Dedekind of dimension 1 if
and only if all of its localization at maximal ideals are DVRs. This allows us to establish a bijection:

MF,fin mSpec OF

v pv :“ tx P OF | |x|v ă 1u.

Since we assume v is nontrivial, pv is a nonzero prime ideal, and hence a maximal ideal. Conversely,
if p is a maximal ideal in OF , the localization Op :“ pOF qm is a DVR. By Lemma 9.2.3 we can
deduce that F “ FracOF , so we obtain a discrete valuation on F . To see these assignment are
inverse to each other, it suffices to notice that Opv

is exactly the ring of integers of pF, vq.
Let us consider the number field F case.

Lemma 9.2.5. The inclusion OF Ñ FR :“ F bQ R is discrete and cocompact.6

Proof. Since F is dense in FR, the linear span of OF over R is the whole FR. Let β be a Z-basis for
OF . We need to show the image of β in FR is linearly independent. The square of the determinant
of these vectors is

detpσvq2σPMF,8
vPβ

“ detpTrF {Qpvwqqv,wPβ

which is positive by the non-degeneracy of the trace form. This finishes the proof.

For each σ P MF,8, the Haar measure dxσ on Fσ is chosen as in Lemma 7.1.4. Namely, it is
the usual Lebesgue measure of Fσ – R if σ is real, and is twice the Lebesgue measure of Fσ – C
if σ is non-real. On the space FR –

ś

σPMF,8

Fσ we use the product measure bσPMF,8dxσ. Since OF

is discrete, whence closed, in FR, it makes sense to consider the quotient measure µ of FR by the
counting measure on OF . This quotient measure can be described in a more concrete way as follows.
Let β be a Z-basis for OF and let P be the fundamental parallelotope

P “ Pβ “

#

ÿ

vPβ

avv | 0 ď av ă 1

+

.

Let π : FR Ñ FR{OF denote the quotient map. Then

T : CcpFR{OF q C

f

ż

P

f ˝ π bσ dxσ

defines a nontrivial positive linear functional on FR{OF , and is clearly OF -invariant. By Theorem
2.4.6.(ii), T “ cµ for some c ą 0. Our goal is to find c. Let x1, . . . , xr1 , xr1`1, yr1`1, . . . , xr1`r2 , yr1`r2

be the standard basis for FR – R‘r1 ‘ C‘r2 . Let Λ be the lattice spanned by this standard basis
and equip FR{Λ with the quotient measure. By Example 2.4.10 volpFR{Λq “ 1. Let ϕ : Λ Ñ OF be
an abelian group isomorphism and extend it by linearity to an automorphism of FR. By Proposition
16.1.8, volpFR{OF , µq “ modFRpϕq volpFR{Λq “ modFRpϕq. By Corollary 2.5.3.1.(iii), modFRpϕq “

6See Lemma 9.3.14 for an adelic proof.
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|detϕ|. Now by elementary calculus, we know |detϕ| “ volpP,bσdxσq (recall that on C we use twice
the Lebesgue measure). In sum,

volpFR{OF , µq “ volpP,bσdxσq.

By evaluating T at the constant function 1, we see volpP,bσdxσq “ c volpFR{OF , µq. What we just
obtained shows c “ 1. In conclusion,

Lemma 9.2.6. The quotient measure on FR{OF is given by integration over a fundamental paral-
lelotope P for some Z-basis of OF .

By definition, the discriminant of the number field F is disc F :“ detpσvq2σPMF,8
vPβ

, where β is a

Z-basis for OF . It is direct to see it is independent of the choice of β, and squaring makes the order
irrelevant. Hence it is well-defined, and also

disc F “ detpσvq2σPMF,8
vPβ

“ detpTrF {Qpvwqqv,wPβ P Qą0.

This is positive since the trace form is non-degenerate. A moment consideration tells us that
volpP,bσdxσq “

?
disc F , so

Corollary 9.2.6.1. For a number field F , we have
?

disc F “ volpFR{OF q.7

9.2.2 Topological property of adele ring
Let us begin our discussion on adeles. In the following F will always stand for a global field.

Lemma 9.2.7. For each r P F , #t| ¨ | P MF | |r| ą 1u ă 8.

Proof. Since #MF,8 ă 8, we only need to consider non-archimedean valuations. Let k be either Q

or Fpptq, and let Xn `
n´1
ř

i“0

aiX
i P krXs be the minimal polynomial of r over k. For any | ¨ | P MF,fin,

|rn| “

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

i“0

air
i

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
0ďiďn´1

|ai||r
i| ď max

0ďiďn´1
|ai| ¨ maxt1, |r|n´1u

so that |r| ď maxt1, |a0|, . . . , |an´1|u. In view of this inequality, it suffices to prove the lemma for
F “ k. This follows easily from the fact that Z and Fprts are UFD.

By the lemma, there is a natural injection

F AF

r prqvPMF
.

An element in F Ď AF is sometimes called a principal adele. The map enjoys many properties
similar to the map OF Ñ FR we discussed above. Before we talk about this map, a digression is
needed. Suppose K Ď F is another global field. Let v P MK,fin, and let w1, . . . , wn P MF,fin be the
extensions of v to F . From the proof of Theorem 8.4.23, we know there is an isomorphism

F bK Kv Fw1
‘ ¨ ¨ ¨ ‘ Fwn

„

7In classical language, there should be a factor 2r2 on the right. The difference results from the choice of Haar
measures for C.
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It is not hard to see from this isomorphism that if x P F , then TrF {K x “
n
ř

i“1

TrFwi
{Kv

x. Moreover,

we can extend TrF {K by Kv-linearity to TrF {K : F bK Kv Ñ Kv, and the above identity holds for
all x P F bK Kv in an obvious sense.

Lemma 9.2.8. Let β be a K-basis for F . For almost all v,
À

ePβ

eov maps onto ow1
‘ ¨ ¨ ¨ ‘ own

.

Proof. By Lemma 9.2.7, if we exclude those v with some extension w to F satisfying wpeq ą 1 for
some e P β, then β is contained in each owi

, i “ 1, . . . , n.
The other way around uses the discriminant. For x1, . . . , xm P F bK Kv, put

Dpx1, . . . , xmq “ detpTrF {Kpxixjqq1ďi,jďm.

Since TrF {Kpxixjq “
n
ř

i“1

TrFwi
{Kv

pxixjq, if x1, . . . , xm lie in ow1
‘¨ ¨ ¨‘own

, then TrFwi
{Kv

pxixjq P ov

so that TrF {Kpxixjq P ov and hence Dpx1, . . . , xmq P ov. Now let x “
ř

ePβ

aee P ow1
‘ ¨ ¨ ¨ ‘ own

with

ae P kv. Write β “ te1, . . . , emu (so m “ rF : Ks). For 1 ď i ď m, we have

ov Q Dpe1, . . . , ei´1, x, ei`1, . . . , emq “ a2iDpe1, . . . , emq.

Since F {K is separable, the trace form is non-degenerate, i.e., Dpe1, . . . , emq ‰ 0. Applying Lemma
9.2.7 to Dpe1, . . . , emq and its inverse, we see vpDpe1, . . . , emqq “ 1 for almost all v. This implies
ai P ov pi “ 1, . . . ,mq for almost all v.

By the universal property of tensor products, there is a canonical map AKbKF Ñ AF . We claim
this is an isomorphism of topological rings. Let β be a K-basis for F . It is easy to see that β defines
an obvious isomorphism AK bK F Ñ A‘β

K both algebraically and topologically. A‘β
K can be viewed

as the restricted product of the K‘β
v with respect to o‘β

v . On the other hand, Kv bK F –
À

w|v Fw,
where w | v means w is an extension of v, and the previous lemma says their rings of integers match
for almost all v. This proves the claim. We record this as a

Corollary 9.2.8.1. The canonical map AF – AK bK F is a topological isomorphism. In particular,
AF – ArF :Ks

K as additive topological groups, and F maps onto KrF :Ks.

Corollary 9.2.8.2. Let K{F be a extension of global field. Then the canonical map AF Ñ AK is
a closed embedding.

Proposition 9.2.9. Let F be a global field. The inclusion F Ñ AF is discrete and cocompact.

Proof. In view of Corollary 9.2.8.1, we may assume F is either Q or Fpptq. We must find a unit-
neighborhood U of AF with F X U “ t0u. If F “ Q, take

U “ tpxpqp P AQ | |xp|p ď 1 for p ă 8, |x8|8 ă 1u.

If F “ Fpptq, take

U “ tpxgqg P AFprts | |xg|g ď 1 for all irreducibles g P Fprts, |x8|8 ą 1u.

Using unique factorization property, it is easy to check U X F “ t0u.
To show AF {F is compact, we are going to construct a compact subset W Ď AF that surjects

onto AF {F under the quotient map AF Ñ AF {F . When F “ Q, take

W “

"

pxpqp P AQ | |xp|p ď 1 for p ă 8, |x8|8 ď
1

2

*

.

172



When F “ Fpptq, take

W “ tpxgqg P AFprts | |xg|g ď 1 for all irreducibles g P Fprts, |x8|8 ď pu.

These choices satisfy AF “ F `W , so W surjects (one way to see this is first clearing the “principal
part” and next adjusting the “infinite part”). That W is compact follows from Tychonov’s theorem.

From the proof of the previous proposition, we obtain

Corollary 9.2.9.1. There is a subset U of AF defined by the inequalities of the type |ξv|v ď δv

where δv “ 1 for almost all v, such that

Ak “ k ` U

Proof. Let ω1, . . . , ωN be a basis for F {k. Then

AF “ Ak bk F “ Akω1 ‘ ¨ ¨ ¨ ‘ AkωN

where k “ Q or Fqptq, and F is mapped into kω1 ‘ ¨ ¨ ¨ ‘ kωN . Take U 1 “ Wω1 ‘ ¨ ¨ ¨ ‘ WωN ,
where W is the subset constructed in the proof of the proposition. Note that for almost all v on
F , |ωi|v ď 1. Then it is clear from the definition of W that U 1 is contained in some U of the type
described above.

9.2.3 Adelic geometry of numbers
Define the standard measure dxstd on AF to be the restricted product Corollary 9.1.6.1 of the local
ones (as defined in the beginning of §7.1). Since F Ñ AF is discrete, the counting measure on F

can be served as a Haar measure on F . These induce a finite quotient measure on the compact
quotient AF {F , which we again denote by dxstd. We will find the exact value of volpAF {F, dxstdq in
the sequel. For now it suffices to know it is finite.

Lemma 9.2.10. There is a constant C ą 0 depending only on the global field F with the following
property: let α P AF be such that

ś

v
|αv|v ą C. Then there exists a principal adele β P F Ď

AF , β ‰ 0 such that |β|v ď |αv|v for all v.

Proof. Let c0 be the total volume of AF {F , and let c1 be that of the set
"

γ P AF | |γv|v ď
1

10
for archimedean v, |γv|v ď 1 for non-archimedean v

*

Then 0 ă c0 ă 8 and 0 ă c1 ă 8 for the number of archimedean places is finite. We show that
C “

c0
c1

will do.
The set

T “

"

τ P AF | |τv|ν ď
1

10
|γv|v for archimedean v, |τv|v ď |γv|v for non-archimedean v

*

has measure c1
ś

v
|αv|v ą c1C “ c0. By Pigeonhole principle there must be a pair of distinct points

of T which have the same image in AF {F , say τ 1, τ2 P T and τ 1 ´ τ2 “: β P F . Then

|β|v “ |τ 1
v ´ τ2

v | ď |αv|v

for all v, as required.
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Corollary 9.2.10.1. Let v0 be a valuation on F and let δv ą 0 be given for all v ‰ v0 with δv “ 1

for almost all v. Then there exists a β P Fˆ with |β|v ď δv for all v ‰ v0

Proof. Choose αv P Fv with 0 ă |αv|v ď δv and |αv|v “ 1 if δv “ 1. We then can choose αv0 P Fv0
so that

ś

v
|αv|v ą C, where C is as in Lemma 9.2.10. The resulting β P F given by the same lemma

does the job.

Theorem 9.2.11 (Strong approximation). Let v0 be any valuation of the global field F . Let V
to be the restricted product of the Fv with respect to the ov, where v runs through all normalized
v ‰ v0. Then F is dense in V .

Proof. It is equivalent to proving the following statements: given ε ą 0 and a finite set S of valuations
v ‰ v0, together with elements αv P Fv for v P S, there exists β P F such that |β ´ αv|v ă ε for all
v P S and |β|v ď 1 for all v R S, v ‰ v0.

Let δv and U Ď AF be as in Corollary 9.2.9.1. By Corollary 9.2.10.1 there is a λ ‰ 0 P F such
that

|λ|v ď δ´1
v ε pv P Sq

|λ|v ď δ´1
v pv R S, v ‰ v0q

Then we have AF “ λU ` F . Let α P Av have component αv at v P S and 0 elsewhere, and write
α “ x` β for x P λU and β P F . Then

• for v P S, |αv ´ β|v “ |α ´ β|v “ |x|v ď ε, and

• for v R S, v ‰ v0, |β|v “ | ´ x|v ď 1.

Similarly we have a density result for ring of integers. Denote by AF,fin the ring of finite adeles,
which is by definition the restricted product with respect to the ring of integers over all finite places:

AF,fin :“
źtovuvPMF,fin

vPMF,fin

Fv.

Observe that under the map F Ñ AF Ñ AF,fin, the ring of integers OF maps into the infinite
product

ź

vPMF,fin

ov. Recall that OF is dense in ov. In fact, more is true:

Corollary 9.2.11.1. OF is dense in
ź

vPMF,fin

ov Ď AF,fin.

Proof. By Strong approximation, F is dense in AF,fin. That
ź

vPMF,fin

ov is open in AF,fin and F X

ź

vPMF,fin

ov “ OF prove the lemma.

As a result, we will use the notation pOF to stand for the compact subring
ź

vPMF,fin

ov Ď AF,fin.

Since the projection map is open, we obtain the

Corollary 9.2.11.2. For any global field F and v P MF,fin, the ring of integers OF is dense in ov.
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9.2.4 Self-dualness
There is another measure on AF that is frequently used, that is the self-dual measure dxtam, which
is also by definition the restricted product of the local ones (defined before Lemma 7.1.4). To show
dxtam is well-defined, we must show dw “ ow for all but finitely many places w P MF,fin. For this,
define the global analog of (absolute) inverse different:

O_
F :“ tx P F | TrF {kpxOF q Ď Oku

where k is either Q or Fpptq, and define the global (absolute) different DF to be the inverse ideal
of O_

F .

Lemma 9.2.12. For w P MF,fin, the closure of the image of O_
F under F Ñ Fw is o_

w .

Proof. Let v “ w|k. Recall the global trace is a sum of local traces: TrF {k “
ř

w1|v

TrFw1 {kv as

operators on F . The proof will make use of strong approximation and the continuity of local traces
to show o_

w contains O_
F as a dense subspace.

Let x P O_
F and y P ov. By Corollary 9.2.11.1, take y1 P OF close to y in ov and take ε P OF

such that ε Ñ 1 in Fw while ε Ñ 0 in other places of F extending v. Then OF Q TrF {kpxy1εq “

TrFw{kv pxy1εq `
ř

w‰w1|w

TrFw1 {kv pxy1εq and each summand lies in ov, so TrFw{kv pxy1εq P ov. Letting

y1 Ñ y and ε Ñ 1 show TrFw{kv pxyq P ov.
Let x P o_

w and choose x1 P Fˆ such that x1 Ñ x in Fw while x1 Ñ 0 in other places of F extending
v and |x1|w1 ď 1 for all the other places w1 P MF,fin. Then for y P OF , TrF {kpx1yq “ TrFw{kv px1yq `
ř

w‰w1|w

TrFw1 {kv px1yq P k X ov, and for v ‰ v1 P Mk,fin, TrF {kpx1yq “
ř

w1|v1
TrFw1 {kv1 px

1yq P k X ov1 .

Hence TrF {kpx1yq P OF , so that x1 P O_
F . This proves the density of O_

F in o_
w .

Lemma 9.2.13. Let I be an ideal of OF . Then for all but finitely w P MF,fin, the closure of I in
ov is ov.

Proof. Recall from Lemma 9.2.4.(i) that OF is Noetherian, so I is finitely generated, say I “

xa1, . . . , any with each ai ‰ 0. By Lemma 9.2.7, there is a finite set S Ď MF,fin such that |ai|v “ 1

for v R S. Then each ai is a unit of ov for v R S. Finally, it suffices to observe that the closure of I
is the same as the ideal of ov generated by a1, . . . , an.

Combining the two lemmas, we obtain

Corollary 9.2.13.1. Let F be a global field. Then dw “ ow for all but finitely many places
w P MF,fin.

This shows that dxtam is well-defined. To explain why it is called the “self-dual” measure, we
show in the following that there is a canonical isomorphism AF

„
Ñ xAF . This is just a matter of

picking up things. By Theorem 9.1.9, the map

źtoK
v uvPMF,fin

vPMF

pkv xAF

pψvqv b1
vψv
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is a topological group isomorphism. Recall that local fields are self-dual Theorem 7.1.3: if ψv P

pkvzt0u, then the map
kv pkv

x y ÞÑ ψvpxyq

is a topological group isomorphism. We pick ψv as in the discussion after Theorem 7.1.3. From
there recall y ÞÑ ψvpxyq is trivial on ov if and only if x P d´1

v . In other words, under the duality
isomorphism above, oK

v corresponds to d´1
v . By Corollary 9.2.13.1, the latter is ov for almost all

v P MF,fin. In sum, the above isomorphisms give rises to the duality map

AF xAF

pxvqv pyvqv ÞÑ
ź

vPMF

ψvpxvyvq

and this is a topological group isomorphism. Let ψF “ b1
vψv and call its the standard additive

character of AF . By construction, we see if F {K is an extension of global fields, then ψK “

ψF ˝ TrF {K . For f P L1pAF q, define the Fourier transform

pfpxq “

ż

AF

fpyqψF p´xyqdxtam.

It follows from the local duality that dxtam is the unique measure on AF such that the Fourier
inversion holds:

fpxq “

ż

AF

pfpyqψF pxyqdxtam.

In general, if dxtam is replaced by any Haar measure on AF and ψF is replaced by any nontrivial
additive character of AF , then the Fourier inversion holds up to a constant.

We turn to the compact quotient AF {F . Under the isomorphism AF – xAF , the character group
{AF {F is isomorphic to the subspace

FK “ tx P AF | ψF pxF q “ 1u.

Unwinding the definition, it is not hard to see F Ď FK. Since AF {F is compact, FK is discrete
(5.1.7).1. The quotient FK{F is then a discrete subgroup of the compact group AF {F , so #FK{F ă

8. Since F is infinite, it follows that F “ FK.
We compute the ratio of dxtam and dxstd to conclude this subsection. By Lemma 7.1.4, we have

dxtam “ 2r2
ź

vPMF,na

pNdvq´ 1
2 ¨ dxstd.

Note that every ideal in ov is open. Keeping this in mind, by Lemma 8.2.2.(iii) and Lemma 9.2.12,
we see ov{dv – pOF qpv{pDF qpv , where the subscript means localization at pv. Note also that pOF qpv

is the ring of integers of the valuation | ¨ |v on F . It follows from the fact that OF is Dedekind and
Chinese remainder theorem that OF {DF –

ź

vPMF,fin

ov{dv. Therefore,

2r2
ź

vPMF,fin

pNdvq´ 1
2 “ 2r2 p#OF {DF q

´ 1
2

ź

vPMF,8XMF,na

pNdvq
´

1
2 .

The last product only appears when F is a global function field.
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Lemma 9.2.14. For a global field F , we have

dxtam “ 2r2 p#OF {DF q
´ 1

2

ź

vPMF,8XMF,na

pNdvq
´

1
2 ¨ dxstd,

where r2 is half the number of non-real embedding, and DF �OF is the global absolute different of
F .

9.2.5 Curves over finite fields
In this subsection we discuss global function fields, and put them into a geometric setting. Through-
out this subsection F always stands for a global function field of characteristic p.

Lemma 9.2.15. The algebraic closure of the prime field Fp in F is a finite field, and is equals to

F X
ź

vPMF

ov “ t0u Y

˜

Fˆ X
ź

vPMF

oˆ
v

¸

This is called the constant (function) field of F .

Proof. The displayed equality follows from product formula which is proved in the next section. If
0 ‰ x P F is algebraic over Fp, then x lies in a finite field extension of Fp. But any valuation on
a finite field is trivial, so in particular |x|v “ 1 for all v P MF . Finally, since F is discrete in AF
and

ś

vPMF

ov is compact, the set Fˆ X
ź

vPMF

oˆ
v is finite. Since it is a group under multiplication, it

follows

µpF q :“ tx P F | xn “ 1 for some n P Zě1u “ Fˆ X
ź

vPMF

oˆ
v .

It is clear from the definition that each element in µpF q is algebraic over Fp. This finishes the
proof.

In the sequel we prove F determines a smooth projective curve. We can work in a slightly general
setting. Henceforth assume k is an arbitrary field, and F is a finitely generated field extension of k
of transcendence degree 1. Set

MF,k “ t| ¨ | P MF | | ¨ ||k is trivialu.

If we take any t P F transcendental over k, then F is a finite extension of kptq. By Theorem 8.2.5
and Theorem 8.4.1, MF,k consists of all discrete valuations on F that are trivial on k. We topologize
MF,k by the cofinite topology. Namely, U Ď MF,k is open if and only if U “ H or MF,kzU is finite.
For each open U Ď MF,k, set

OF pUq :“ F X
č

vPMF,k

ov.

This defines a sheaf of rings on MF,k, and pMK,k,OF q is a local-ringed space.

Theorem 9.2.16. pMK,k,OF q is isomorphic to a smooth projective integral algebraic k-scheme
over of dimension 1. If k is algebraically closed in F , then it is geometrically irreducible.

Corollary 9.2.16.1. A global function field with constant field Fq is the function field of some
smooth projective curve X over Fq.
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In fact, more is true:

Theorem 9.2.17. Any smooth projective curve ... isomorphic.

So let X be a smooth projective (geometrically irreducible) curve X over Fq. For any n ě 1, we
have the bijection

XpFqnq –
ğ

vPMF

HomAlgFq
pκpvq,Fqnq “

ğ

vPMF

#κpvqďqn

Galpκpvq{Fqq

so

#XpFqnq “
ÿ

vPMF

#κpvqďqn

rκpvq : Fqs “
ÿ

k|n

k ˆ #tv P MF | #κpvq “ qku

Lemma 9.2.18. Let F be a global function field with constant field Fq. Let k{Fq be a finite
extension. Then F bFq k is a global function field with constant field k.

Proof. Say F is a finite separable extension of Fqptq. Fix an algebraic closure F of Fqptq and we
think of k as there. Write F “ FqptqrXs{pfq for some irreducible f P FqrtsrXs. It suffices to show f

remains irreducible in krtsrXs. In fact, we will prove this is even true when k Ď F is the algebraic
closure of Fq.

Suppose otherwise f “ f1f2 with fi P krt,Xs. In particular, fi P Fqpαqrt,Xs with α P k algebraic
over Fq. Say g P FqrY s is the minimal polynomial of α. Then g is also irreducible in FqptqrY s, as its
roots lie in k, making such decomposition have coefficient in k X Fqptq “ Fq. Consider the diagram

F pαq

Fqpt, αq F

Fqptq
deg fdeg g

Since f factors in Fqpαqrt,Xs, it follows that rF pαq : Fqpt, αqs ă deg f , so that rF pαq : F s ă deg g.
This means g factors in F rY s. As said, any decomposition would have coefficient in k X F ptq “ Fq,
so it follows that g factors in FqrY s, a contradiction.

For any m P Zě1, consider the base change Xm :“ X ˆSpec Fq
SpecFqm . Its function field is

F bFq
Fqm with constant field Fqm . By definition, we have

XmpFqnmq “ HomSchFqm
pSpecFqnm , X ˆSpec Fq

SpecFqmq

But RHS is the same as

HomSchFq
pSpecFqnm , X ˆSpec Fq SpecFqmq “ XpFqnmq.

Indeed, the map Xm Ñ SpecFq is the composition Xm Ñ SpecFqm Ñ SpecFq, and any Fq-
morphism SpecFqnm Ñ SpecFq factors through SpecFqm Ñ SpecFq (dually, Fqm is a subextension
of Fq Ď Fqnm). In sum

XmpFqnmq “ XpFqnmq
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9.3 Ideles
For a topological ring R, in general the group of units Rˆ is not an open subspace of R, and the
inversion x ÞÑ x´1 is not a topological automorphism on Rˆ. In other words, Rˆ may not be a
topological group. To remedy the situation, instead of using only subspace topology on Rˆ, we use
the initial topology induced by the inclusion Rˆ Ď R and the inversion Rˆ Ñ Rˆ. Equivalently,
Rˆ is equipped with the subspace induced by the twist diagonal

Rˆ R ˆR

x px, x´1q.

where R ˆR is with product topology.
For a number field F , by definition the group of ideles is the unit group of the ring of adeles

Aˆ
F “ tpxvqv P AF | xv P oˆ

v for almost all v P MF,finu

equipped with the topology described above. It is not hard to see Aˆ
F is isomorphic to the restrict

product

Aˆ
F “

źtoˆ
v uvPMF,fin

vPMF

Fˆ
v .

as topological groups. For x “ pxvqv P AF , we define the adelic (quasi)-norm | ¨ |AF
: AF Ñ Rě0

by

|x|AF
:“

ź

vPMF

|xv|v.

This is well-defined as |xv|v ď 1 for all but finitely many v. If x P Aˆ
F , then it is a finite product.

Put

pAˆ
F q1 “ kerp| ¨ |AF

: Aˆ
F Ñ Rą0q “

␣

x P Aˆ
F | |x|AF

“ 1
(

to be the group of norm one ideles.

Lemma 9.3.1. If x P AF satisfies |x|AF
“ 1, then x P Aˆ

F and hence x P pAˆ
F q1.

By Lemma 9.2.7, the diagonal map F Ñ AF restricts to an embedding Fˆ Ñ Aˆ
F . More is true:

Theorem 9.3.2 (Artin Product formula). Fˆ Ď pAˆ
F q1.

Proof. This can be proved by a direct computation by reducing to the case for Q and Fpptq. Here
we use integration and unfolding. The key ingredient is that modAF

pxq “ |x|AF
for x P Aˆ

F . To see
this, recall this number is the unique number c ą 0 such that volpxM, dxstdq “ c volpM,dxstdq for
all measurables M Ď AF . In proving c “ |x|AF

, it suffices to take M to be the product of unit balls
in various places.

Put K “ AF {F . Let ξ P k. Since ξk Ď k, we have ξK “ K. By Lemma 2.4.2.(ii) we can find
f P CcpAF q such that fk “ 1K , the characteristic function of K. Then

ż

K

1ξKpβqdβ “

ż

K

1Kpξ´1βqdβ “

ż

K

ż

k

fpξ´1pβ ` rqqdrdβ

“

ż

Ak

fpξ´1xqdx “ |ξ|AF

ż

Ak

fpxqdx “ |ξ|AF

ż

K

1Kpβqdβ

Since ξK “ K and K is compact (so the integral is finite), it follows that |ξ|AF
“ 1.
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Theorem 9.3.3. pAˆ
F q1 is a closed subset of AF , and the two subspace topologies on pAˆ

F q1 from
AF and Aˆ

F are the same.

Proof. Let α P AF zpAˆ
F q1; by Lemma 9.3.1 we have |α|AF

‰ 1. We must find an open neighborhood
W of α in AF that is disjoint from pAˆ

F q1.

• |α|AF
ă 1. Then there is a finite set S of places such that

- S contains all the places v with |αv|v ą 1 and

-
ź

vPS

|αv|v ă 1.

Now take 0 ă ε ă min
vPS

|α|v and define

W :“ tx “ pxvq P Ak | |xv ´ αv|v ă ε for v P S, |xv|v ď 1 for v R Su

Clearly, every element x in W has |x| ă 1.

• |α|AF
ą 1. Put C “

ź

v : |αv |vą1

|αv|v ą 1. Then there is a finite set S of places such that S

contains

- all the places v with |αv|v ą 1,

- all archimedean places, and

- all non-archimedean places v with #κpvq ď 2C.

For ε ą 0 define

W :“ tx “ pxvq P AF | |xv ´ αv|v ă ε for v P S, |xv|v ď 1 for v R Su

Take ε ą 0 small enough so that x P W implies 1 ă
ź

vPS

|xv| ă 2C. Then for x P W , if |xv|v “ 1

for all v R S, then
|x|AF

“
ź

vPS

|xv|v ą 1

If |xv|v ă 1 for some v R S, then |xv|v ď #κpvq´1 ă p2Cq´1 so that

|x|AF
ă

˜

ź

νPS

|xv|ν

¸

p2Cq´1 ă 1

It remains to show the second statement. Let α P pAˆ
F q1. A neighborhood basis of α in AF consists

of sets of the form

W “ Wε,S :“ tx P AF | |xv ´ αv|v ă ε for v P S, |xv|v ď 1 for v R Su

where ε ą 0 and S is a finite set of places. By replacing ď with “, we see every such a set contains
a neighborhood of α in Aˆ

F . Conversely, a neighborhood basis of α in AF consists of sets of the form

H “ Hε,S :“ tx P Aˆ
F | |xv ´ αv|v ă ε for ν P S, |xv|v “ 1 for v R Su

where ε ą 0 and S is a finite set of places containing all archimedean places and all v with |αv|ν ‰ 1.
We claim for ε small enough

Hε,S X pAˆ
F q1 “ Wε,S X pAˆ

F q1
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Ď is clear. Let x P Wε,S X pAˆ
F q1. Let ε small enough so that |xv|v “ |αv|v for all non-archimedean

places v in S. Since x is an idele, we then have |xv|v “ 1 for almost all v R S. Now it follows from
the discreteness of v R S that it we take ε far smaller, then we must have |xv|v “ 1 for all v R S.
NEED IMPROVEMENT

Theorem 9.3.4 (Fujisaki). The inclusion Fˆ Ñ pAˆ
F q1 has discrete image and the quotient

pAˆ
F q1{Fˆ is compact.

Proof. The first assertion follows from the continuity of the inclusion Aˆ
F Ď AF and Proposition

9.2.9. For the latter assertion, by Theorem 9.3.3 it suffices to find a compact subset W of AF such
that the projection W X pAˆ

F q1 Ñ pAˆ
F q1{Fˆ is surjective.

Let C be as in Lemma 9.2.10, and take α P Aˆ
F such that |α| ą C. Take

W “ tx P AF | |xv|v ď |αv|v for all vu

Let y P pAˆ
F q1. By the same lemma there exists r P Fˆ such that |r|v ď |y´1

v αv| for all v. Then
ry P W , as required.

Lemma 9.3.5. Let F {K be an extension of global field.

(i) The canonical map Aˆ
K Ñ Aˆ

F is a closed embedding.

(ii) The induced map Aˆ
K{Kˆ Ñ Aˆ

F {Fˆ is a closed embedding.

Lemma 9.3.6. Let K be a global field.

(i) For any place v P MK , the inclusion Kˆ
v Ñ Aˆ

K{Kˆ is a closed embedding.

(ii) For any finite set S Ď MK with #S ě 2, the inclusion
ź

vPS

Kˆ
v Ñ Aˆ

K{Kˆ is not a closed

embedding.

9.3.1 Ideal class group
For an Dedekind domain R with fraction field F , a fractional ideal of R is an R-submodule I of
F such that αI Ď R for some α P F . It turns out the ideal multiplication defines a group structure
on the collection IpRq of all fractional ideals. Moreover, it is free on the set of maximal ideals. For
an element α P F , the R-module αR Ď F is called the principal fractional ideals. All principal
fractional ideals PpRq form a subgroup of the fractional ideals. We denote their quotient by ClpRq

and call its the (ideal) class group of the Dedekind domain R. When the domain R itself is clear
from the context, we write ClpF q instead of ClpRq.

There is a canonical surjection

Aˆ
F IpOF q ClpF q :“ ClpOF q

pxvqv

ź

pv

pordv xv
v

Let k be either Q or Fpptq, and let 8 denote the unique infinite place on k. For a global field F ,
set F8 :“ F bk k8; when F is a number field, this is the same as FR. Since maximal ideals are in
bijection with MF,fin, it follows that Fˆ

8 “ t1u ˆFˆ
8 Ď Aˆ

F lies in the kernel of the above surjection.
Also Fˆ and pOˆ

F “
ź

vPMF,fin

oˆ
v lie in the kernel for a trivial reason. It is not hard to see in fact that
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Lemma 9.3.7. The above surjection induces a bijection

FˆzAˆ
F { pOˆ

FF
ˆ
8 ClpF q.„

We equip ClpOF q with the discrete topology. Then the above bijection is continuous. We claim
in fact that FˆzAˆ

F { pOˆ
FF8 is compact, which will imply

Corollary 9.3.7.1 (Finiteness of class group). #ClpOF q ă 8.

To show FˆzAˆ
F { pOˆ

FF8 is compact, we need to relate this space with the compact quotient
pAˆ

F q1{Fˆ. For this we need to know the image of the adelic norm | ¨ |AF
: Aˆ

F Ñ Rą0.

Lemma 9.3.8.

Im
`

| ¨ |AF
: Aˆ

F Ñ Rą0

˘

“

#

Rą0 , if F is a number field
pmZ , if F is a global function field

for some m P Z.8

Proof. The absolute values on Rˆ and Cˆ surjects onto Rą0, and the absolute values on a non-
archimedean valued field pk, vq has image contained in pZ, where p “ Charκpvq. If F is a number
field, then Aˆ

F contains a copy of Rˆ or Cˆ. If F is a global function field, then CharF “ p ą 0 is
the characteristic of every of its residue field. In this case Im | ¨ |AF

is a subgroup of pZ, so it has the
form pmZ for some m P Zě1.

More generally, we introduce the ring of S-integers: for a finite nonempty9 set of places S Ď MF

containing all archimedean places, set

OS
F :“

č

vRS

F X ov “ tx P F | |x|v ď 1 for all v R Su.

Then OS
F Ď F , and OS

F is a Dedekind domain, making sense to talk about the class group

ClSpF q :“ ClpOS
F q.

Adelically, on the other hand, let FS “
ź

vPS

Fv and pOS
F “

ź

vRS

ov. There is a canonical surjection

Aˆ
F IpOS

F q ClpOS
F q

pxvqv

ź

pv :vRS

pordv xv
v

whose kernel contains Fˆ and p pOS
F qˆFS . A similar observation gives

Lemma 9.3.9. The induced map is a bijection

FˆzAˆ
F {p pOS

F qˆFˆ
S ClSpF q.„

If we equip ClSpF q with the discrete topology, this is a continuous bijection.
8In fact, pm is the cardinality of the constant field of F . Say X is a smooth projective geometrically connected

k-curve of function field kpXq “ F . Then it is the same as showing X has a degree 1 divisor.
This has an interesting consequence: if X moreover has genus 1, then X has a k-rational point. In particular, X is

an elliptic curve.
9This assumption is mainly for the global function field.
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Consider the image of Fˆ
S “ t1u ˆFˆ

S in Rą0 under | ¨ |AF
. It is the entire Rą0 if F is a number

field, and is pnZ for some m | n P Zě1 if F is a global function field. Then

Aˆ
F {Fˆ

S – pAˆ
F q1{pAˆ

F q1 X Fˆ
S

if F is a number field, and there is a surjection
ğ

0ďℓă n
m

pAˆ
F qp

mℓ

Aˆ
F {Fˆ

S

if F is a global function field, where pAˆ
F qδ “ tx P Aˆ

F | |x|AF
“ δu. The same proof as Theorem

9.3.4 shows that the quotient space FˆzpAˆ
F qδ is compact, so in either case FˆzAˆ

F {Fˆ
S is compact.

Hence the further quotient FˆzAˆ
F {p pOS

F qˆFˆ
S is compact. From this we conclude

Corollary 9.3.9.1. #ClSpF q ă 8. Moreover, we can pick S large enough such that #ClSpF q “ 1.

Proof. It remains to show the last assertion. Pick x1, . . . , xn P Aˆ
F such that their images in ClpF q

generate the group. Choose a finite MF,8 Ď S Ď MF such that |xi|v ‰ 1 for some i P rns implies
v P S; then x1, . . . , xn P p pOS

F qˆFˆ
S . Since FˆzAˆ

F { pOˆ
FF

ˆ
8 Ñ FˆzAˆ

F {p pOS
F qˆFˆ

S is surjective and
x1, . . . , xn generates the former quotient, it follows that the latter quotient is trivial.

As an aside, we justify the notation pOS
F .

Lemma 9.3.10. The image of the inclusion OS
F Ñ AF {FS is dense in pOS

F .

Proof. OF is already dense in pOS
F by Corollary 9.2.11.1.

A notational caveat: pOS
F is “smaller than” pOF , while OF Ď OS

F Ď F .

9.3.2 Ray class group
Definition. Let F be a global field and S a nonempty finite set of places. An S-modulus m is a
integral formal sum

m “
ÿ

vRS

avv

with the properties that av “ 0 for almost all v, av “ 0 if v is archimedean non-real and av P t0, 1u

if v is archimedean real.

(i) We write v | m or v P m when av ‰ 0.

(ii) Set

USm “ Fˆ
S ˆ

ź

vPmXMF,a
av“0

Fˆ
v ˆ

ź

vPmXMF,a
av“1

pFˆ
v qą0 ˆ

ź

vPmXMF,na

1 ` pavv ˆ
ź

vPMF,na
vRm
vRS

oˆ
v .

where pFˆ
v qą0 “ Rą0 when av “ 1.

(iii) The quotient

ClmpF q :“ FˆzAˆ
F {Um

is called the S-ray class group of conductor m.

Lemma 9.3.11. ClmpF q ă 8, and there is a surjective homomorphism ClmpF q Ñ ClSpF q.

Proof. This follows as USm ď p pOS
F qˆFˆ

S is a closed subgroup of finite index.
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9.3.3 Unit theorem
The Dirichlet unit theorem tells about the group structure of the unit group Oˆ

F of the ring of
integers. To state the theorem, we introduce some notation. Denote

µpF q “ tr P F | rn “ 1 for some n P Zě1u.

This is the group of roots of unity in F . In fact

µpF q “ Fˆ X pOˆ
F “

č

vPMF,fin

Fˆ X oˆ
v .

Clearly Ď holds. For Ě note that the right hand side is finite since it is an intersection of a discrete
closed set and a compact set. In particular, every element in it has finite order, i.e. is a root of
unity. Now we can state the S-version of the Dirichlet unit theorem.

Theorem 9.3.12. Let MF,8 Ď S Ď MF be a finite set of places. We have a group isomorphism

pOS
F qˆ – µpF q ˆ Z#S´1.

Proof. By the same argument as above we have TorpOS
F qˆ “ µpF q. To show rankpOS

F qˆ “ #S ´ 1,
we use logarithm. Put

pAˆ
F qS “ p pOS

F qˆFS

“ tpxvqv P Aˆ
F | |xv|v “ 1 for all v R Su ď

open
Aˆ
F

pAˆ
F q1S “ pAˆ

F qS X pAˆ
F q1

Consider the log map
log : pAˆ

F qS RS

pxvqv plog |xv|vqvPS .

which is a continuous homomorphism. Immediately we have

logpAˆ
F qS “

ź

νPSXMF,fin

Z log#κpvq ˆ
ź

νPSXMF,8

R

logpAˆ
F q1S “

#

pyνqνPS P logpAˆ
F qS |

ÿ

νPS

yν “ 0

+

so that dimR R bZ logpAˆ
F q1S “ #S ´ 1. Since pOS

F qˆ “ pAˆ
F qS X Fˆ, we have a closed embedding

pOS
F qˆzpAˆ

F qS X pAˆ
F q1 Ď FˆzpAˆ

F q1

The latter group is compact by Theorem 9.3.4. Since log is continuous, it follows that

log pOS
F qˆzpAˆ

F q1S “ logpOS
F qˆz logpAˆ

F q1S

is compact as well. From this we see dimR R bZ logpOS
F qˆ “ dimR R bZ logpAˆ

F q1S “ #S ´ 1.
To conclude, note that every bounded subset in logpOS

F qˆ is finite. Indeed, every subset is the
intersection of F , discrete, and a compact set in AF . In particular, Lemma 9.3.13 applies, proving

rankpOS
F qˆ “ dimR R bZ pOS

F qˆ “ #S ´ 1.
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Lemma 9.3.13. Let G ď Rn such that every bounded subset of G is finite. Then rankG “

dimR R bZ G.

Proof. For any subgroup H ď Rn, set HR “ spanRH Ď Rn. Let Λ be a subgroup of G such that 8 ą

rankΛ “ dimR ΛR; assume rankΛ is maximal. For any v P G, by maximality rankΛ ` Zv “ rankΛ,
so v P ΛR. This shows G Ď ΛR. We replace Rn by ΛR, and let P be a fundamental parallelotope of
Λ. Each coset v ` Λ pv P Gq has a representative in P , so by assumption #G{Λ ă 8. In particular,
rankG “ rankΛ “ dimR ΛR ď dimRGR ď rankG, which finishes the proof.

This lemma also gives a quick adelic proof of Lemma 9.2.5:

Lemma 9.3.14. The inclusion OF Ñ FR :“ F bQ R is discrete and cocompact.

Proof. Let ι : OF Ñ FR be the inclusion, and pick K be any compact set in FR. Then ι´1pKq “

F X

´

K ˆ yOF

¯

is an intersection of discrete and compact, so #ι´1pKq ă 8. By Lemma 9.3.13, this
shows ι : OF Ñ FR is discrete and cocompact.

More generally, we have

Lemma 9.3.15. For F a global field and for any finite set S Ď MF , the inclusion OS
F Ñ FS is

discrete and cocompact.

Proof. This is a consequence of Theorem 9.2.9. Consider the commutative diagram

FS FS ˆ
ź

vRS

ov AF

OS
F OS

F F.

Notice the square on the right is a fibre square. The set FS ˆ
ź

vRS

ov is open in AF , so it follows

that OS
F is discrete in FS ˆ

ź

vRS

ov. Since the projection FS ˆ
ź

vRS

ov Ñ FS is open, we conclude that

OS
F is discrete in FS . For cocompactness, since the square on the right is a fibre square, we have a

closed (and open) embedding
˜

FS ˆ
ź

vRS

ov

¸

{OS
F Ñ AF {F . Hence

˜

FS ˆ
ź

vRS

ov

¸

{OS
F is compact.

Since
˜

FS ˆ
ź

vRS

ov

¸

{OS
F surjects onto FS{OS

F , we deduce that FS{OS
F is compact.

9.3.4 Regulator and fundamental domain
In this subsection we introduce a fundamental domain of the idele class group. Assume F is a number
field and S “ MF,8 “ 8. The restriction to Oˆ

F “ Fˆ X pAˆ
F q18 of the log map log : pAˆ

F q8 ÝÑ R8

is usually denoted by
reg : Oˆ

F R8

and is called the regulator map of F. It has the properties that

ker reg “ µpF q
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and that Im reg “ logpOˆ
F q is a full rank lattice of the hyperplane

H :“

#

pyvqv P R8 |
ÿ

vP8

yv “ 0

+

.

Let tεiu1ďiďr be a Z-basis for Oˆ
F modulo its torsion. Then tregpεiqu1ďiďr is a basis for H and we

can form their fundamental parallelotope P in H:

P :“

#

r
ÿ

i“1

ti regpεiq P H | 0 ď ti ă 1, 1 ď i ď r

+

Let h “ #ClpF q be the class number of F , and take a set c1, . . . , ch P pAˆ
k q1 of complete represen-

tatives of ClpF q. Let w “ #µpF q be the number of roots of unity in F . Finally, fix some v0 P MF,8

and set

Ev0 :“

"

pxvqv P pAˆ
F q18 X log´1

pP q | 0 ď Argxv0 ă
2π

w

*

We define the multiplicative fundamental domain E for pAˆ
F q1 mod Fˆ to be

E “ Ev0c1 Y ¨ ¨ ¨ Y Ev0ch

The name is justified by the

Lemma 9.3.16.

pAˆ
F q1 “

ğ

rPFˆ

rE

Moreover, E “ Ev0c1 Y ¨ ¨ ¨ Y Ev0ch is a disjoint union.

Proof. Let x P pAˆ
F q1. There exists a unique ci and r P Fˆ such that

rxc´1
i P pAˆ

F q1 X pFˆ
8 ˆ pOˆ

F q

There is a unique u P xεi | 1 ď i ď ryZ so that rxc´1
i u P pAˆ

F q1 X log´1
pP q. Finally take some

w P µpF q so that wrxc´1
i u P Ev0 . This proves the first assertion.

For the moreover part, recall pAˆ
F q1 Ď Fˆ

8 ˆ pOˆ
F . Then Ev0ci XEv0cj ‰ H would imply that the

ideals in OF that ci and cj represent are the same. This is a contradiction.

9.3.5 Norm map
Theorem 9.3.17. Let F {K be an extension of global fields. The norm map NL{K : Aˆ

L{Lˆ Ñ

Aˆ
K{Kˆ is continuous, proper and open.

9.3.6 Identity component of idele class group
Let K be a number field. The identity component of Kˆ

8 is

pKˆ
8q˝ – pRą0qr1 ˆ pCˆqr2 .

Denote by DK the closure of the image of pKˆ
8q˝ in Aˆ

K{Kˆ.
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Lemma 9.3.18. One has the equalities

DK “ tdivisible elements in Aˆ
K{Kˆu “ pAˆ

K{Kˆq˝.

Moreover, the quotient pAˆ
K{Kˆq{DK is profinite.

Proof. Consider the map

pKˆ
8q˝ ˆ yO8

K

ˆ
pAˆ

Kq8 Aˆ
K{Kˆ.

where 8 denotes MK,8.
A profinite group has only trivial divisible element.

Artin-Tate
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Chapter 10

Tate thesis : global theory

10.1 Hecke characters
Definition. For a global field F , a Hecke character is a quasi-character χ : FˆzAˆ

F Ñ Cˆ. 1

By Lemma 9.1.8, a quasi-character χ : Aˆ
F Ñ Cˆ has the form χ “ b1

vPMF
χv with χv P

HomTopGppkˆ
v ,Cˆq and there exists a finite subset S Ď MF containing MF,a such that χv is un-

ramified, i.e., χv|oˆ
v

” 1 for all v R S.
Since a Hecke character χ is trivial on Fˆ by definition, from Theorem 9.3.4 we see χppAˆ

F q1q is
a compact subgroup of Cˆ, so χppAˆ

F q1q Ď S1. Then |χ| : Aˆ
F Ñ Rą0 is trivial on pAˆ

F q1. If F is a
number field, we have the diagonal embedding

Rą0 F8 “ t1u ˆ F8 Ď Aˆ
F

r pr, . . . , rq

Let us denote temporarily the image by ∆. Assume F is a global function field, and pick z P Aˆ
F

such that |z|AF
ě 1 generates the image Im | ¨ |AF

. Let ∆ “ ∆z denote the subgroup in Aˆ
F generated

by z. In either case, ∆ ď Aˆ
F and the multiplication provides a splitting

Aˆ
F pAˆ

F q1 ˆ ∆„

If F is a number field, then this map is given by

x “ pxf , x8q ÞÑ ppxf , x8|x|´1
AF

q, |x|AF
q.

where xf (resp. x8) denotes the component of x in AF,fin (resp. F8). If F is a global function field,
then this is

x ÞÑ pxz
´ log|z|AF

|x|AF , z
log|z|AF

|x|AF q

Since |χ| is trivial on pAˆ
F q1, it can be regarded as a continuous homomorphism ∆ Ñ Rą0. If F is a

number field, then ∆ “ Rą0 and any such map has the form x ÞÑ xσ for some σ P R. Hence

|χpxq| “ |χp|x|AF
q| “ ||x|AF

|σ “ |x|σAF
.

1There is no different in writing FˆzAˆ
F and Aˆ

F {Fˆ, as Aˆ
F is an abelian group.
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If F is a global function field, then ∆ “ zZ and any such function is determined by the value of z; if
z is mapped to λ, then zn is mapped to λn “ |z|

n log|z|AF
λ

AF
“: |zn|σAF

. So such function has the form
x ÞÑ |x|σAF

. Hence

|χpxq| “ |χpz
log|z|AF

|x|AF q| “ |z|
σ log|z|AF

|x|AF

AF
“ |x|σAF

.

The number σ P R does not depend on the choice of z P Aˆ
F . In any case, we write σ “ wt σ and

call it the weight of the Hecke character χ. We then have a bijection

HomTopGppFˆzAˆ
F ,Cˆq {FˆzAˆ

F ˆ R

χ pχ| ¨ |
´wt χ
AF

,wt χq.

Assume χ is a Hecke character that is trivial on pAˆ
F q1. By the splitting above, χ is then

determined alone by its restriction to ∆. If F is a number field, by Lemma 7.1.5 we see any
continuous homomorphism Rą0 Ñ Cˆ has the form x ÞÑ xs for some s P C. Hence χpxq “ |x|sAF

. If
F is a global function field, by the same trick the same holds as well. Note that Re s “ wt χ.

10.2 Poisson summation formula
The key tool in the global theory is the Poisson summation formula applied to the pair pA,Bq “

pAF , F q. For this, recall the ψF : AF Ñ Cˆ is the standard additive character, and it induces a
topological isomorphism AF – xAF such that dxtam corresponds to the Plancherel measure. Also,

{AF {F – FK “ tx P AF | ψF pxF q “ 1u “ F.

For f P L1pAF q such that pf |F P L1pF q, the Poisson summation formula tells
ÿ

rPF

fpx` rq “
1

volpAF {F, dxtamq

ÿ

rPF

pfprqψF prxq (♠)

holds for almost all x P AF . Here the factor appears thanks to Lemma 5.4.9.

Theorem 10.2.1 (Poisson summation formula). Suppose f P CpAF q X L1pAF q,

(i)
ÿ

rPF

|fpr ` xq| converges compactly in x P AF , and

(ii)
ÿ

rPF

| pfprq| ă 8.

Then both sides of p♠q define continuous functions and equality holds everywhere. In particular
ÿ

rPF

fprq “
1

volpAF {F, dxtamq

ÿ

rPF

pfprq.

Corollary 10.2.1.1. For a global field F , volpAF {F, dxtamq “ 1.

Proof. If f P CpAF q X L1pAF q is such that
ÿ

rPF

|fpr ` xq| and
ÿ

rPF

| pfpr ` xq| converge compactly in

x P AF , then since dxtam is self-dual, by applying Poisson summation formula twice we get
ÿ

rPF

fprq “
1

volpAF {F, dxtamq

ÿ

rPF

pfprq “
1

volpAF {F, dxtamq2

ÿ

rPF

fprq.
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If
ÿ

rPF

fprq ‰ 0, then volpAF {F, dxtamq2 “ 1, which finishes the proof. It remains to find such f , and

this is done in the next subsubsection.

Corollary 10.2.1.2. For a global field F , volpAF {F, dxstdq “ 2´r2p#OF {DF q
1
2

ź

vPMF,8XMF,na

pNdvq
´

1
2 .

Proof. This follows from Example 2.4.14 and Lemma 9.2.14.

Corollary 10.2.1.3 (Riemann-Roch). Let f P CpAF q X L1pAF q and a P Aˆ
F . Suppose that

(i)
ÿ

rPF

|fpapx` rqq| converges compactly in x P AF , and

(ii)
ÿ

rPF

| pf
´ r

a

¯

| ă 8.

Then we have
ÿ

rPF

fparq “
1

|a|AF

ÿ

rPF

pf
´ r

a

¯

.

Proof. Define g P CpAF q X L1pAF q by gpxq :“ fpaxq. Then

pgpxq “

ż

AF

fpayqψp´xyqdy “
1

|a|AF

ż

AF

fpyqψ
´

´y ¨
x

a

¯

dy “
1

|a|AF

pf
´ r

a

¯

.

The proof is complete upon applying Poisson summation formula to the function g.

10.2.1 Adelic Schwartz functions
Recall for each local field k we define a special family of functions Spkq called Schwartz functions
that is well-behaved under Fourier transform (c.f. Lemma 7.1.14). For archimedean local fields it
is the classical Schwartz functions. For non-archimedean local fields it collects all locally constant
functions with compact supports. In particular it contains 1o where o stands for the ring of integers
of k.

For a global field F , we define the space SpAF q of adelic Schwartz functions as the restricted
tensor products of the local Schwartz functions:

SpAF q :“
ât1ov uvPMF,na

vPMF

SpFvq.

Generally we define for each n ě 1 that the space SpAnF q of Schwartz functions on the adelic affine
n-space as

SpAnF q “
ât1on

v
uvPMF,na

vPMF

SpFnv q.

Note SpAnF q – SpAF q‘n canonically. Also, for a finite set S Ď MF , we put SpFSq :“
â

vPS

SpFvq. We

define SpAnF,finq in the same way; then

SpAnF q “ SpFn8q b SpAnF,finq
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By definition, functions of the form bvPMF,afv b bvPS1Uv
b bvPMF,nazS1ov

with fv P SpFvq, S Ď

MF,na finite and Uv Ď kv compact open spans SpAF q; functions of this form are called factorizable
or pure tensors. For such function, by our construction of dxtam we have

{bv|8fv b bvPS1Uv b bvPMF,finzS1ov “ bv|8
pfv b bvPS

y1Uv b bvPMF,finzS
y1ov

Since y1ov
“ volpov, dx

tam
v q1d´1

v
“ 1ov for almost all v by Lemma 9.2.13.1, it follows by Lemma

7.1.14 that the Fourier transform leaves SpAF q invariant and defines a bijection on it. Notice that
SpAF q Ď L1pAF q by Theorem 9.1.6.

Lemma 10.2.2. Each function in SpAF q satisfies the conditions in Poisson summation formula.

Proof. Since SpAF q is invariant under Fourier transform, it suffices to show (i) is satisfied. Let
f P SpAF q. By linearity we assume f “ f 1 b f2 with f 1 P SpF8q and f2 P SpAF,finq. For each
v P MF,na, let nv P Z be the maximal integer such that the projection of supp f to Fv is contained
in pnv

v ; by construction nv “ 0 for almost all v P MF,na. If F is a global function field, then

MF “ MF,na and supp f Ď
ś

vPMF

pnv
v . Then the sum in (i) is over F X

˜

ś

vPMF

pnv
v ´ x

¸

which

is finite, being an intersection of discrete and compact. Hence it is a finite sum which obviously

converges compactly. If F is a number field, then the sum in (i) is over FX

˜

ś

vPMF,na

pnv
v ´ x

¸

“: Λx.

If K is a compact set containing x, then we can find Z Q mv ď nv with mv “ nv @1v such that
Λx Ď tr P F | ordFv

x ě mv for all v P MF,finu “: Λ. Now Λ is a fractional ideal of OF , so its image
in F8 is a lattice. Hence

ÿ

rPF

|fpr ` xq| ď sup
yPAF,fin

|f2pyq| ¨
ÿ

rPΛ

|f 1pr ` x8q|

where x8 is the component of x on F8. We are then reduced to the classical case:

Lemma 10.2.3. Let Λ P Rn be a lattice and f P SpRnq. The sum
ÿ

rPΛ

fpr`xq converges compactly

in x P Rn.

Proof. Let r “ rpx1, . . . , xnq “ x21 ` ¨ ¨ ¨ ` x2n, and let C :“ sup
xPRn

|rpxqn`2fpxq| ă 8; then |fpxq| ď

C

rpxqn`2
for all x P Rn. It is known that

ż

rpxqě1

1

rpxqn`2
dx ă 8. Hence for a fixed compact set

K, for each ε ą 0 we can find a compact set Kε such that
ÿ

αPΛzKε

1

rpα ` xqn`2
ă

ε

C
for all x P K.

Hence for x P K
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

αPΛzKε

fpα ` xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

αPΛzKε

C

rpα ` xqn`2
ă ε.

10.2.2 Riemann-Roch for curves over finite fields
We explain the name of the Riemann-Roch. Let F be a global function field with constant field Fq.
Denote by DivpF q the abelian group free on MF ; an element in DivpF q is called a divisor. For a
divisor D “

ř

nPMF

nvv, the degree (over Fq) is the sum

degD “
ÿ

vPMF

nv deg v :“
ÿ

vPMF

nvrκpvq : Fqs.
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Clearly degree defines a group homomorphism deg : DivpF q Ñ Z. We denote the kernel by Div0pF q,
the group of divisors of degree 0. Each f P Fˆ there is an associated divisor

divpfq :“
ÿ

vPMF

ordFv
pfqv

which is well-defined by Lemma 9.2.7, and divpfq P Div0pF q by Product formula. This also defines
a group homomorphism div : Fˆ Ñ DivpF q. Define the Picard group of F to be

PicpF q :“ DivpF q{divpFˆq.

Similarly define Picard group of degree 0 as the quotient Pic0pF q :“ Div0pF q{divpFˆq. This
is the kernel of the induced degree map deg : PicpF q Ñ Z on the Picard group. There exists a
canonical map Aˆ

F Ñ DivpF q which restricts to pAˆ
F q1 Ñ Div0pF q. We omit the definition of the

map and the obvious properties.
We define a partial order on DivpF q: say D “

ř

nvv ě D1 “
ř

n1
vv if nv ě n1

v for all v P MF .
Then for each divisor D there is an associated Fq-vector space

LpDq :“ t0u Y tf P Fˆ | divpfq ě ´Du.

This is called the linear system of D. We write ℓpDq “ dimFq LpDq ď 8.

Lemma 10.2.4.

(i) For f P Fˆ, we have LpD ` divpfqq “ LpDq.

(ii) Lp0q “ #µpF q “ q.

This space can be understood adelically. For a divisor D “
ř

nvv, let

AF pDq “ tx “ pxvqv P AF | ordFv
xv ě ´nvu “

ź

vPMF

p´nv
v ,

which is a compact subgroup of AF . Then LpDq “ F XAF pDq; in particular, being the intersection
of discrete and compact sets, #LpDq ă 8 and so ℓpDq ă 8. We have

volpAF pDq, dxstdq “
ź

vPMF

volpp´nv
v , dxstd

v q “
ź

vPMF

pNpvqnv “ qdegD.

For any nontrivial additive character ψ : F zAF Ñ S1, define

Kψ “ ´
ÿ

vPMF

mvv

where mv is the integer such that d´1
v “ pmv

v . We have mv “ 0 for almost v P MF , so Kψ is a divisor
on F. If ψ1 is any other character, then ψ1pxq “ ψpaxq for a unique a P Fˆ, and hence

Kψ1 “ Kψ ` divpaq.

We call Kψ a canonical divisor, and its class in PicpF q the canonical class.
Recall ψ defines a perfect pairing

Fv ˆ Fv S1

px, yq ψvpxyq

192



for each v P MF . Under this pairing, one has

AF pDqK “ AF pKψ ´Dq

and hence

pF ` AF pDqqK “ FK X AF pKψ ´Dq “ F X AF pKψ ´Dq.

By Proposition 5.6.1, we see

F X AF pK ´Dq “ pF ` AF pDqqK – {AF {F ` AF pDq

so that

{FK X AF pK ´Dq – AF {F ` AF pDq

LHS is a finite abelian group, so it has the same size as LpK ´ Dq. Since AF pDq Ď AF is open, by
Example 2.4.11 we conclude that

volpAF {F, dxq “ #LpK ´Dq volpF ` AF pDq{F, dxq “ qℓpK´Dq volpF ` AF pDq{F, dxq.

On the other hand, the projection AF Ñ AF {F restricts to a surjection AF pDq Ñ F ` AF pDq{F

with finite kernel F X AF pDq “ LpDq. By Lemma 16.1.7, we see

volpAF pDq, dxq “ #LpDq volpF ` AF pDq{F, dxq “ qℓpDq volpF ` AF pDq{F, dxq.

LHS is simply q´ degD if we take dx “ dxstd, so we get

volpAF {F, dxstdq “ qℓpK´Dq´ℓpDq´degD.

In particular, volpAF {F, dxstdq P qZ. Define the genus of F to be the integer such that

volpAF {F, dxstdq “: qg´1

By taking D “ 0, we see

g ´ 1 “ ℓpKq ´ ℓp0q ´ deg 0 “ ℓpKq ´ 1

so that g “ ℓpKq P Zě0. By taking D “ K this time, we see degK “ 2g ´ 2. We’ve proved

Theorem 10.2.5 (Riemann-Roch). Let F be a global function field with constant field Fq. There
exist g P Zě0 and a divisor K of degree 2g ´ 2 such that

ℓpDq ´ ℓpK ´Dq “ degD ´ g ` 1

for any divisor D.

Alternatively, we can argue using Poisson summation formula, which will explain the name for
Corollary 10.2.1.3. Start with

qℓpDq “ #LpDq “
ÿ

xPF

1 ś

vPMF

ov
pxDq

where we view D “
ř

nvv as any idele element whose order at v is nv. By Corolloary 10.2.1.3 and
Lemma 7.1.4

ÿ

xPF

1 ś

vPMF

ov
pxDq “

ś

vPMF

pNdvq´ 1
2

|D|AF

ÿ

xPF

1 ś

vPMF

d´1
v

´ x

D

¯
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Since d´1
v “ pmv

v , we see
ÿ

xPF

1 ś

vPMF

d´1
v

´ x

D

¯

“ 1 ` #tx P Fˆ | ordv x´ nv ě mv for all v P MF u “ #LpK ´Dq

Also |D|AF
“

ź

vPMF

pNpvq´nv “ q´ degD and

ź

vPMF

pNdvq´ 1
2 “

ź

vPMF

pNpvq
mv
2 “

ź

vPMF

q
mv deg v

2 “ q´
degK

2

In sum, we obtain

ℓpDq ´ ℓpK ´Dq “ degD ´
degK

2
“ degD ´ g ` 1.

Lemma 10.2.6. For m ě 1, the genus of F bFq
Fqm is the same as that of F .

Proof. Let V be an n-dimensional vector space over F , viewed as an F -scheme. It suffices to show
volpV pAF q{V pF q, dxstdq “ qnpg´1q.

10.3 Measures on ideles
We set up the measures on the group of ideles. In the proof of Product formula we see modAF

pxq “

|x|AF
for x P Aˆ

F . Hence, any Haar measure dx on AF induces a Haar measure

dˆx :“
dx

|x|AF

on Aˆ
F . In particular, we have defined two Haar measures dˆxstd and dˆxtam. Since Fˆ Ñ Aˆ

F is
discrete, so we can form the quotient measure of dˆx, which we will still denote by dˆx, on Aˆ

F {Fˆ

by the the counting measure on Fˆ.
We turn to the measure on pAˆ

F q1. Let dˆx be any Haar measure on Aˆ
F . If F is a number

field, equip ∆ with the measure corresponding to the standard measure dˆt on Rą0. If F is a global
function field, we fix some z P Aˆ

F as above and equip ∆ “ ∆z with the counting measure which for
convenience we also write as dˆt. Finally, let d1x denote the Haar measure on pAˆ

F q1 satisfying the
integral formula

ż

Aˆ
F

fpxqdˆx “

ż

∆

ż

pAˆ
F q1

fptxqd1xdˆt.

valid for all f P L1pAˆ
F q; the existence is by Theorem 2.4.6. Also, since Fˆ Ď pAˆ

F q1 is discrete, we
treat the counting measure on Fˆ as a Haar measure and form the quotient measure of FˆzpAˆ

F q1,
which we denote by d1x again.

10.3.1 Volume of fundamental domain
Lemma 10.3.1. For a number field F , we have

volpFˆzpAˆ
F q1, d1xtamq “

2r1p2πqr2#ClpF qRF

#µpF qp#OF {DF q
1
2

Here RF is the regulator of F , defined by

RF “
volpP, dλq

volpQXH, dλq

where P, H as in §9.3.4, Q the unit cube in R8 and dλ is any Haar measure on H.
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Proof. We write d1x for d1xtam for brevity. Let us use the notations in §9.3.4. We compute first
volpE, d1xq. Since E “

Ů

iPrhs

Ev0ci,

volpE, d1xq “ h volpEv0 , d
1xq

and it remains to compute volpEv0 , d
1xq. Since

volppAˆ
F q18 X log´1

pP q, d1xq “
1

#µpF q
ˆ volpEv0 , d

1xq

it suffices to compute volppAˆ
F q18 X log´1

pP q, d1xq. Pick any Haar measure dλ on H, and let Q be
the unit cube in R8. By Proposition 2.4.29, we have

volppAˆ
F q18 X log´1

pP q, d1xq

volpAˆ
F q18 X log´1

pQq, d1xq
“

volpP, dλq

volpQXH, dλq
.

Since log´1
pQq “ tpxvqv P pAˆ

F q8 | 1 ď |xv|v ď eu, we can compute

volplog´1
pQq, dˆxq “

ż

∆

ż

pAˆ
F q1

1log´1pQqptxqd1xdˆt “

ż

pAˆ
F q18Xlog´1pQq

ż e

1

dt

t
d1x

“ volpAˆ
F q18 X log´1

pQq, d1xq.

To compute volplog´1
pQq, dˆxq, since

log´1
pQq “

ź

vP8

t1 ď |x|v ď eu ˆ pOˆ
F

by Lemma 7.1.8 we have

volplog´1
pQq, dˆxtamq “ 2r1p2πqr2

ź

vPMF,fin

pNdq´ 1
2 “ 2r1p2πqr2p#OF {DF q´ 1

2 .

To conclude the proof, we only need to show

volpFˆzpAˆ
F q1, d1xtamq “ volpE, d1xq.

Indeed,

volpE, d1xq “

ż

FˆzpAˆ
F q1

ÿ

rPFˆ

1Eprxqd1x

For each x P FˆzpAˆ
F q1 there exists a unique r P Fˆ with rx P E. Hence the integral equals

ż

FˆzpAˆ
F q1

d1x “ volpFˆzpAˆ
F q1, d1xtamq.

Lemma 10.3.2. For F a global function field with constant field Fq, we have

volpFˆzpAˆ
F q1, d1xtamq “

#Pic0pF q

q ´ 1
q1´g

Proof. Consider the surjection

div : pAˆ
F q1 Div0pF q

pxvqv
ř

vPMF
ordv xvv.
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It has degree 0 as

´
ÿ

vPMF

ordv xvr#κpvq : Fqs “ logq
ź

vPMF

pNpvq´ ordv xv “ logq |x|AF
“ 0.

This coincides with the usual divisor map div on Fˆ, which induces a surjection FˆzpAˆ
F q1 Ñ

Pic0pF q with kernel Fˆ X
ź

vPMF

oˆ
v z

ź

vPMF

oˆ
v . The denominator is Fˆ

q by Lemma 9.2.15. In sum, we

have the following short exact sequence

1 Fˆ
q z

ź

vPMF

oˆ
v FˆzpAˆ

F q1 Pic0pF q 1.

By Example 2.4.11, 2.4.12 and Lemma 16.1.7, we conclude

volpFˆzpAˆ
F q1, d1xtamq “ #Pic0pF q ˆ vol

˜

ź

vPMF

oˆ
v , d

1xtam

¸

“
#Pic0pF q

q ´ 1

ź

vPMF

pNdvq
´

1
2

It remains to see from §10.2.2 that
ź

vPMF

pNdvq
´

1
2 “ q1´g.

10.4 Functional equations
With Riemann-Roch in mind, we introduce the global counterpart of the local space Zpkq: define
ZpAF q to be the space of functions f : AF Ñ C satisfying

(i) f P invpAF q :“ tg P L1pAF q | pg P L1pAF qu,

(ii) the series
ÿ

rPF

|fpapx ` rqq| and
ÿ

rPF

| pfpapx ` rqq| converge compactly in x P AF for all ideles

a P Aˆ
F , and

(iii) fpxq|x|sAF
and pfpxq|x|sAF

are in L1pAF q for Re s ą 1.

In view of Theorem 5.5.7, we see (i) and (ii) guarantee that Riemann-Roch is applicable for functions
in ZpAF q. The purpose of (iii) is to introduce the

Definition. For f P ZpAF q, a Hecke character χ : FˆzAˆ
F Ñ Cˆ and s P C, define the (global)

zeta integral

Zpf, χ, sq :“

ż

Aˆ
F

fpxqχ| ¨ |sAF
pxqdˆxtam.

By (iii) this is absolutely convergent for wt χ` Re s ą 1.

Theorem 10.4.1. For all f P ZpAF q and Hecke-characters χ, the function s ÞÑ Zpf, χ, sq admits a
meromorphic continuation to C and satisfies the functional equation

Zpf, χ, sq “ Zp pf, χ´1, 1 ´ sq.
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The continuation is entire unless χ “ | ¨ |tAF
for some t P C, in which case it has possible simple poles

at s “ 1 ´ t and ´t. We have

ress“1´t Zpf, χ, sq “

$

’

&

’

%

volpFˆzpAˆ
F q1, d1xtamq pfp0q , if F is a number field

volpFˆzpAˆ
F q1, d1xtamq

pfp0q

log |z|AF

, if F is a global function field.

and

ress“´t Zpf, χ, sq “

$

’

&

’

%

´ volpFˆzpAˆ
F q1, d1xtamqfp0q , if F is a number field

´ volpFˆzpAˆ
F q1, d1xtamq

fp0q

log |z|AF

, if F is a global function field.

where z P Aˆ
F is such that |z|AF

ě 1 generates the value group |Aˆ
F |AF

.

Proof. To ease the notation, we put dx “ dxtam. Let f P ZpAF q, a Hecke character χ and s P C. In
this proof, we will first proceed formally, and next justify each step. Write

Zpf, χ, sq “

ż

Aˆ
F

fpxqχpxq|x|sAF
dˆx “

ż

∆

˜

ż

pAˆ
F q1

fptxqχptxq|tx|sAF
d1x

¸

dˆt “:

ż

∆

Ztpf, χ, sqd
ˆt.

Since this integral is finite for wt χ ` Re s ą 1, within such s, the map s ÞÑ Ztpf, χ, sq is finite for
almost all t P ∆. In fact it exists for all χ and s; indeed

ż

pAˆ
F q1

ˇ

ˇfptxqχptxq|tx|sAF

ˇ

ˇ d1x “ χptq|t|sAF

ż

pAˆ
F q1

|fptxq|d1x

and this is bounded for all χ and s since it is already bounded for some χ and s. Now write

Zpf, χ, sq “

ż

∆Xt|t|AF ą1u

Ztpf, χ, sqd
ˆt`

ż

∆Xt|t|AF ă1u

Ztpf, χ, sqd
ˆt`

ż

∆Xt|t|AF “1u

Ztpf, χ, sqd
ˆt.

The last integral vanishes unless F is a global function field, and it is equal to Z1pf, χ, sq. The
first integral converges for all s, since we already know it exists for wt χ` Re s ą 1, since if Re s is
smaller, then |x|Re s

AF
is smaller in the domain of integration. To tackle the second integral, we exploit

the integrand s ÞÑ Ztpf, χ, sq. Write

Ztpf, χ, sq “
ÿ

αPFˆ

ż

FˆzpAˆ
F q1

fpαtxqχpαtxq|αtx|sAF
d1x

“

ż

FˆzpAˆ
F q1

χptxq|tx|sAF

ÿ

αPFˆ

fpαtxqd1x

“

ż

FˆzpAˆ
F q1

χptxq|tx|sAF

˜

ÿ

αPF

fpαtxq

¸

d1x´ fp0q

ż

FˆzpAˆ
F q1

χptxq|tx|sAF
d1x

By Riemann-Roch, this equals
ż

FˆzpAˆ
F q1

χptxq|tx|sAF

˜

ÿ

αPF

1

|tx|AF

pf
´ α

tx

¯

¸

d1x´ fp0qχptq|t|AF

ż

FˆzpAˆ
F q1

χpxq|x|sAF
d1x

“

ż

FˆzpAˆ
F q1

ÿ

αPFˆ

χptxq|tx|s´1
AF

pf
´ α

tx

¯

d1x`

´

pfp0qχptq|t|s´1
AF

´ fp0qχptq|t|sAF

¯

ż

FˆzpAˆ
F q1

χpxqd1x

We unfold the first integral:
ż

FˆzpAˆ
F q1

ÿ

αPFˆ

χptxq|tx|s´1
AF

pf
´ α

tx

¯

d1x “

ż

pAˆ
F q1

χptxq|tx|s´1
pf

ˆ

1

tx

˙

d1x

x ÞÑx´1

“

ż

pAˆ
F q1

χ´1pt´1xq|t´1x|1´s
pf
´x

t

¯

d1x “ Z 1
t
p pf, χ´1, 1 ´ sq
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For the error term, since FˆzpAˆ
F q1 is a compact group and χ is a quasi-character,

ż

FˆzpAˆ
F q1

χpxqd1x “

#

volpFˆzpAˆ
F q1, d1xq , if χ|pAˆ

F q1 ” 1

0 , otherwise.

We denote this value by δχ. Hence

Z1pf, χ, sq “
1

2
pZ1pf, χ, sq ` Z1p pf, χ´1, 1 ´ sqq `

δχ
2

p pfp0q ´ fp0qq.

and
ż

∆Xt|t|AF ă1u

Ztpf, χ, sqd
ˆt

“

ż

∆Xt|t|AF ă1u

Z 1
t
p pf, χ´1, 1 ´ sqdˆt` δχ

ż

∆Xt|t|AF ă1u

´

pfp0qχptq|t|s´1
AF

´ fp0qχptq|t|sAF

¯

dˆt

t ÞÑt´1

“

ż

∆Xt|t|AF ą1u

Ztp pf, χ
´1, 1 ´ sqdˆt` δχ

ż

∆Xt|t|AF ă1u

´

pfp0qχptq|t|s´1
AF

´ fp0qχptq|t|sAF

¯

dˆt

Suppose δχ ‰ 0. Then χ “ | ¨ |
sχ
AF

for some sχ P C. If F is a number field, the last integral is then

ż 1

0

´

pfp0qts´1`sχ ´ fp0qts`sχ
¯

dˆt “
pfp0q

s` sχ ´ 1
´

fp0q

s` sχ
;

note everything makes sense if Reps` sχq “ wt χ` Re s ą 1. If F is a global function field, this is

pfp0q
ÿ

nă0

|zn|
s´1`sχ
AF

´ fp0q
ÿ

nă0

|zn|
s`sχ
AF

“
pfp0q

|z|
s´1`sχ
AF

´ 1
´

fp0q

|z|
s`sχ
AF

´ 1
.

Putting thing together, we get

Zpf, χ, sq “

ż

|x|AF ą1

fpxqχ| ¨ |sAF
pxqdˆx`

ż

|x|AF ą1

pfpxqχ´1| ¨ |1´s
AF

pxqdˆx

`

$

’

’

’

’

&

’

’

’

’

%

δχ

˜

pfp0q

s` sχ ´ 1
´

fp0q

s` sχ

¸

Z1pf, χ, sq ` Z1p pf, χ´1, 1 ´ sq

2
` δχ

˜

pfp0q ´ fp0q

2
`

pfp0q

|z|
s´1`sχ
AF

´ 1
´

fp0q

|z|
s`sχ
AF

´ 1

¸

(♠)

The whole expression is invariant under the change of variable pf, χ, sq ÞÑ p pf, χ´1, 1 ´ sq, so

Zpf, χ, sq “ Zp pf, χ´1, 1 ´ sq

for wt χ` Re s ą 1. Note the integral
ż

|x|AF ą1

pfpxqχ´1| ¨ |1´s
AF

pxqdˆx

is absolutely convergent for wt χ´1 ` Rep1 ´ sq ą 1, or wt χ` Re s ă 0. Since |x|
Rep1´sq

AF
is smaller

if Re s is larger, it follows that this is absolutely convergent for all χ and s. Hence p♠q provides a
meromorphic continuation of s ÞÑ Zpf, χ, sq to the whole complex plane. From p♠q we can also read
off the possible poles and residues. This finishes the proof.
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10.4.1 Hecke L-functions
Definition. Let F be a global field, and χ : FˆzAˆ

F Ñ Cˆ a Hecke character. The Hecke L-
function associated to χ is the infinite product

Lps, χq :“
ź

vPMF

Lps, χvq,

where χv : Fˆ
v Ñ Cˆ is the restriction of χ to Fˆ

v Ď Aˆ
F . Also, for a set of places S, write

LSps, χq “
ź

vPS

Lps, χvq, LSps, χq “
ź

vRS

Lps, χvq.

Fix a Hecke character χ of F . Let S be a finite set of places containing MF,a such that χv is
unramified at v R S; in this case we also say that χ is unramified outside S. Then by definition
(c.f. §7.2.2)

Lps, χq “ LSps, χq ¨ LSps, χq “ LSps, χq ¨
ź

vRS

1

1 ´ χvpϖvqpNpvq´s

where Npv “ #κpvq and ϖv is a uniformizer of the non-archimedean local field pFv, | ¨ |vq. Recall
that |χ| “ | ¨ |

wt χ
AF

, so that |χvpϖvqpNpvq´s| “ pNpvq´ Re s´wt χ.

Lemma 10.4.2. For any global field F , the infinite product
ź

vPMF,fin

1

1 ´ pNpvq´s

converges compactly and absolutely for σ “ Repsq ą 1. Moreover, it has limit 1 when σ Ñ 8,
uniformly in Impsq.

Proof. Let k be either Q or Fpptq and suppose F is a finite separable extension of k. Then
ź

vPMF,fin

1

1 ´ pNpvq´s
“

ź

vPMk,fin

ÿ

w|v

1

1 ´ pNpvq´sfpw|vq

By Theorem 8.4.23 (and primitive element theorem), for σ ą 0, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

w|v

1

1 ´ pNpvq´sfpw|vq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1

1 ´ pNpvq´σ

˙rF :ks

so it suffices to show prove the lemma for F “ k.
Assume first k “ Fpptq. By Corollary 8.2.5.1 and the unique factorization, we have

ź

vPMk,fin

1

1 ´ pNpvq´s
“

ź

vPMk,fin

ÿ

ně0

pNpvq´ns “
ÿ

f

1

ps deg f

where the sum is over all monic nonconstant polynomials f in krts. Keeping in mind that there are
pd monic polynomial of degree d. Then the sum equals

8
ÿ

d“0

1

psd
“

8
ÿ

d“0

1

pdps´1q

Being a geometric series, this converges when σ ą 1, and

lim
σÑ8

8
ÿ

d“0

1

pdps´1q
“ lim
σÑ8

1

1 ´ p1´s
“ 1.
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Next assume k “ Q. Again using the unique factorization, the product is simply

ÿ

p

1

1 ´ p´s
“

8
ÿ

n“1

1

ns
.

If s “ σ ą 1 is real, we have

1 ď

8
ÿ

n“1

1

nσ
ď 1 `

ż 8

1

1

xσ
dx “ 1 `

1

σ ´ 1
.

This proves the abosolute and compact convergence, and the limit goes to 1 as σ Ñ 8 uniformly in
Impsq.

It follows that the infinite product LSps, χq, and hence Lps, χq, converges absolutely for Re s `

wt χ ą 1.

Lemma 10.4.3. SpAF q Ď ZpAF q.

Proof. By Lemma 10.2.2 each function in SpAF q satisfies (ii). Since Fourier transform defines a
bijection on SpAF q, (i) is fulfilled, and it remains to show fpxq|x|sAF

P L1pAF q for all Re s ą 1.
For this we can assume f “ bvfv is factorizable; then fpxq|x|sAF

“
ź

vPMF

fvpxq|x|sv. The collection

px ÞÑ fvpxq|x|svqvPMF
satisfies the assumption in Theorem 9.1.7, and the preceding discussion shows

that the assumption in Theorem 9.1.7.(iii) holds; hence fpxq|x|sAF
P L1pAF q.

Enlarge S such that dv “ ov for all v R S; in this case we say ψF is unramified outside S. By
Lemma 7.2.11,

Zp1ov
, χv, sq “ Lps, χvq, Zpx1o, χ

´1
v , 1 ´ sq “ Lp1 ´ s, χ´1

v q

for v R S. Let f “ bvPSfv b bvRS1ov P SpAF q with fv P SpFvq pv P Sq. Then for Re s` wt χ ą 1

Zpf, χ, sq “
ź

vPMF

Zpfv, χv, sq “
ź

vPS

Zpfv, χv, sq

Lps, χvq
ˆ Lps, χq

holds by Theorem 9.1.7.(iii). Now choose pfvqvPS such that Zpfv, χv, sq ‰ 0; this exists by the
computation in local theory. By Theorem 10.4.1 and Theorem 7.1.15 we see the above identity
defines a meromorphic continuation of Lps, χq. Similarly we have

Zp pf, χ´1, 1 ´ sq “
ź

vPS

Zp pfv, χ
´1
v , 1 ´ sq

Lp1 ´ s, χ´1
v q

ˆ Lp1 ´ s, χ´1q.

Note that Zp pfv, χ
´1
v , 1 ´ sq ‰ 0 by Theorem 7.1.15. It now follows from §7.2.2 and Theorem 10.4.1

that

Lp1 ´ s, χ´1q “
ź

vPS

ϵps, χv, ψFv
q ˆ Lps, χq.

Since dv “ ov for all v R S, the explicit formula for ϵ-factor in §7.2.2 gives ϵps, χ, ψFv
q “ 1 if v R S.

Hence if we define the global ϵ-factor as

ϵps, χ, ψF q :“
ź

vPMF

ϵps, χ, ψFv q,

we obtain the first part of the
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Theorem 10.4.4. For every Hecke character χ on a global field F , the Hecke L-function Lps, χq

admits a meromorphic continuation to C and satisfies the functional equation

Lp1 ´ s, χ´1q “ ϵps, χ, ψF qLps, χq.

The function Lps, χq is entire unless χ “ | ¨ |tAF
for some t P C, in which case it has simple poles at

s “ 1 ´ t and ´t with residues

ress“1´t Lps, χq “

$

&

%

volpFˆzpAˆ
F q1, d1xtamq , if F is a number field

volpFˆzpAˆ
F q1, d1xtamq

1

log |z|AF

, if F is a global function field.

and

ress“´t Lps, χq “

$

’

’

&

’

’

%

´ volpFˆzpAˆ
F q1, d1xtamqp#OF {DF q´ 1

2 , if F is a number field

´ volpFˆzpAˆ
F q1, d1xtamq

ś

vPMF,na

pNdvq
1
2

log |z|AF

, if F is a global function field.

where z P Aˆ
F is such that |z|AF

ě 1 generates the value group |Aˆ
F |AF

.

Proof. For the last assertion, take

f “
â

vPMF,a

fχv
b
â

v

{fcpχvq P SpAF q.

where cpχvq is the conductor of χv and fcpχvq is defined in §7.1.3, and fχv
is chosen so that

Zpfχv
, χv, sq “ Lps, χvq. Collecting the results from §7.1.3 and Lemma 7.2.11, we see

Zpf, χ, sq “
ź

vPMF,a

Lps, χvq ˆ
ź

v: χv ramified

pNpvqcpχvq

#
´

oˆ
v {1 ` p

cpχvq
v

¯ ˆ
ź

v: χv unramified
Lps, χvq

“ Lps, χq ˆ
ź

v: χv ramified

1

1 ´ pNpvq´1

and

fp0q “ p#OF {DF q´ 1
2

ź

vPMF,8XMF,na

pNdq
1
2 ˆ

ź

v: χv ramified
pNpvqcpχvq

pfp0q “ 1.

In view of these identities, the last assertion follows at once from Theorem 10.4.1.

The L-functions are independent of the choice of the additive character ψF , while the local ϵ-
factors do depend (§7.2.3). However, from the functional equation above, we see in fact the global
ϵ-factor is irrelevant to the character; we thus can drop the argument ψF and simply write

ϵps, χq :“ ϵps, χ, ψF q.

Comparing the global functional equation and the local functional equation, we get

Theorem 10.4.5. For every Hecke character χ on a global field F , we have the identity

1 “
ź

vPMF

γps, χv, ψvq.
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We say some words on the partial L-function LSps, χq, where S always stands for a finite set of
places in F including all archimedean places. By definition, we have

LSps, χq “ Lps, χq
ź

vPS

Lps, χvq´1

Each Lps, χvq´1 is entire, so the singularities of LSps, χq are at worst as Lps, χq. As a result, LSps, χq

has poles only when χ “ | ¨ |tAF
for some t P C. In fact, LSps, χq still has a simple pole at s “ 1 ´ t.

To see this, if χv is unramified, then

Lps, χvq´1 “ 1 ´ χpϖvqpNpvq´s “ 1 ´ pNpvq´t´s

which is nonzero when s “ 1 ´ t. When v is archimedean real,

Lps, χvq “ π´ s`t
2 Γ

ˆ

s` t

2

˙

which has poles along ´t` 2Zď0. When v is archimedean non-real,

Lps, χvq “ p2πq1´ps`tqΓps` tq

which has poles along ´t` Zď0. None of these touches 1 ´ t, so this proves our claim. Moreover,

Ress“1´tL
Sps, χq “ Ress“1´tLps, χq ˆ

ź

vPS
χv unramified

p1 ´ pNpvq´1q ˆ π
r1
2 Γ

`

1
2

˘´r1
Γ p1q

´r2

“ Ress“1´tLps, χq ˆ
ź

vPS
χv unramified

p1 ´ pNpvq´1q

This proves

Theorem 10.4.6. Let F be a global field and S a finite set of places of F including all infinite
places. For any Hecke character χ on F , the partial L-function LSps, χq admits a meromorphic
continuation to C and satisfies the functional equation

LSp1 ´ s, χ´1q “ γSps, χ, ψF qLSps, χq.

where

γSps, χ, ψF q “
ź

vPS

γps, χv, ψFv
q.

The function LSps, χq is entire unless χ “ | ¨ |tAF
for some t P C, in which it has a simple pole at

s “ 1 ´ t with residue

ress“1´t L
Sps, χq “ volpFˆzpAˆ

F q1, d1xtamq ˆ
ź

vPS
χv unramified

p1 ´ pNpvq´1q

When F is a global function field, it also has a simple pole at s “ ´t.

Proof. The assertion apart from the poles and residues follows from Theorem 10.4.5 and Theorem
10.4.4. When F is a number field, that s “ ´t is not a pole of LSps, χq can be seen from the above
computation: the archimedean L-factors cancel out the pole. When F is a global function field, the
pole s “ ´t remains.
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10.4.2 Dedekind zeta function
For a global field F and a finite set S of places containing all archimedean places, the S-Dedekind
zeta function ζSF psq is defined as

ζSF psq “
ź

vRS

1

1 ´ pNpvq´s

for Repsq ą 1. When S “ MF,a we simply write ζF psq “ ζ
MF,a
F psq and call its the Dedekind zeta

function. Directly from the definition, we see

LSps,1q “ ζSF psq.

The full L-function Lps,1q is then called the completed Dedekind zeta function. We have

Lps,1q “ LMF,a ps,1q ¨ ζF psq “ ΓRpsqr1ΓCpsqr2ζF psq.

Notice when F is a global function field, Lps,1q “ ζF psq.

Theorem 10.4.7 (Class number formula). For a number field F , one has

Ress“1ζF psq “
2r1p2πqr2#ClpF qRF

#µpF qp#OF {DF q
1
2

where RF is the regulator of F defined in Lemma 10.3.1.

Proof. This follows from Lemma 10.3.1 and Theorem 10.4.6 applied to S “ MF,a.

To an algebraic scheme over a finite field Fq we can attach a formal power series

ζpX; tq :“ exp

˜

8
ÿ

n“1

#XpFqnq

n
tn

¸

P Qrrtss

Lemma 10.4.8. Let F be a global function field with constant field Fq and X the corresponding
smooth projective curve over Fq. Then

ζpX; q´sq “ ζF psq

when Repsq ą 1.

Proof. Formally, taking log of both sides it suffices to prove
8
ÿ

n“1

#XpFqnq

n
q´ns “

ÿ

vPMF

logp1 ´ pNpvq´sq´1 “
ÿ

vPMF

ÿ

mě1

1

m
pNpvq´ms.

We rearrange RHS according to r#κpvq : Fqs so that it equals

ÿ

mě1

8
ÿ

k“1

#tv P MF | Npv “ qku

n
q´kns “

ÿ

ně1

q´ns

n

ÿ

k|n

k ˆ #tv P MF | Npv “ qku.

We’ve seen the last sum equals #XpFpnq.
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Theorem 10.4.9. Let F be a global function field with constant field Fq and let g be its genus.
Then

ζF psq “
P pq´sq

p1 ´ q´sqp1 ´ q1´sq

where P P Zrts has degree 2g satisfying

P ptq “ qgt2gP p1{qtq.

Moreover, P p0q “ 1 and P p1q “ #Pic0pF q.

Proof. By Theorem 10.4.4, ζF psq has simple poles at s “ 1 and 0. Put ℓ “ log |z|AF
. An easy

computation show that

1

1 ´ ℓ´s

has a simple pole at s “ 0 with residue 1

log ℓ
. Hence we can write

ζF psq “
P pℓ´sq

p1 ´ ℓ´sqp1 ´ ℓ1´sq

with P pℓ´sq entire such that

P pℓ´1q “ p1 ´ ℓq volpFˆzpAˆ
F q1, d1xtamq

P pℓ0q “ P p1q “ ´p1 ´ ℓq volpFˆzpAˆ
F q1, d1xtamq

ź

vPMF,na

pNdq
1
2

From §10.2.2 we see
ź

vPMF,na

pNdq
1
2 “ qg´1, and by Lemma 10.3.2 we then see

P pℓ´1q “
#Pic0pF q

q ´ 1
p1 ´ ℓqq1´g, P p1q “

#Pic0pF q

q ´ 1
pℓ´ 1q.

Also from Lemma 10.4.2 we see lim
sÑ`8

P pℓ´sq “ 1 ă 8, so this shows z ÞÑ P pzq is entire and
meromorphic at 8. From the functional equation and collecting the epsilon factors from §7.2.2, we
have

ζF p1 ´ sq “ ϵps,1qζF psq “ qp1´gqp2s´1qζF psq

or

P pℓs´1q “ qp1´gqp2s´1q p1 ´ ℓ´sqp1 ´ ℓ1´sq

p1 ´ ℓsqp1 ´ ℓs´1q
P pℓ´sq “ ℓ1´2sqp1´gqp2s´1qP pℓ´sq.

To proceed, we must show

Lemma 10.4.10. One has ℓ “ q. Unwinding the definition, this means

|Aˆ
F |AF

“ qZ

where q “ #µpF q.
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Proof. Say qm is the gcd of the #κpvq, v P MF . We must show m “ 1. Fix an algebraic closure of
Fq. Each κpvq is a finite extension of Fq. Since qm is the gcd of #κpvq, it follows the unique degree
m extension Fqm of Fq is contained in every κpvq. Consider the global function field K “ F bFq Fqm .
For each v P MF , we then have

Fv bF K “ Fv bFq
Fqm “ Fv bκpvq pκpvq bFq

Fqmq – Fv bκpvq

ź

iPrms

κpvq‘m –
ź

iPrms

Fv.

This means v splits completely in K (c.f. the proof of Theorem 8.4.23). By Corollary 10.4.19.2, this
shows K “ F , i.e. m “ 1.

By the lemma, we see

P pqs´1q “ q1´2sqp1´gqp2s´1qP pq´sq “ qgp2s´1qP pq´sq

or

P pzq “ qgz2gP p1{qzq.

This in particular implies P is a polynomial of degree 2g. It remains to see P P Zrzs. This is clear
from the expression

P pzq “ p1 ´ zqp1 ´ qzq
ź

vPMF

p1 ´ zdeg vq´1 P Zrrzss.

Finally, we’ve seen P p0q “ 1 above and

P p1q “
#Pic0pF q

q ´ 1
pℓ´ 1q “ #Pic0pF q.

This complete the proof.

10.4.3 A nonvanishing result
Theorem 10.4.11. Let χ be a nontrivial unitary Hecke character on a global field F , and S a finite
set of places on F containing all archimedean places such that χ is unramified outside S. Then

LSp1, χq ‰ 0.

We give two proofs, each of which only provides partial proof to the theorem. Nevertheless, they
altogether prove the theorem.

Proof using class field theory, assuming χ has finite order. It suffices to consider the S having the
property that χv is ramified if and only if v P S for all nonarchimedean v. By the global class
field theory, there exists a class field K to the finite index open subgroup kerχ. In particular,
FˆzAˆ

F { kerχ – GalpK{F q. We have

ζSKpsq “ ζSF psq
ź

χ1‰1

LSps, χ1q.

where χ1 runs over all Hecke characters trivial on kerχ (or equivalently, all characters of GalpK{F q).
Since ords“1 ζ

S
K “ ords“1 ζ

S
F “ ´1, we conclude LSp1, χq ‰ 0.

To see the displayed identity, it suffices to see the local factors match. That is, for a place v R S,
we must show

ź

w|v

1

1 ´ pNqwq´s
“
ź

χ1

Lps, χ1
vq.
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Elementary proof when F is a number field. Since χ is nontrivial unitary, the expression LSp1, χq

makes sense by Theorem 10.4.6. First assume χ2 is not trivial. Consider the product

LSps,1q3LSps, χq4LSps, χ2q “
ź

vRS

1

p1 ´ pNpvq´sq3p1 ´ χpϖvqpNpvq´sq4p1 ´ χ2pϖvqpNpvq´sq

Lemma 10.4.12. For t, λ P C, put

φpλ, tq “ p1 ´ tq3p1 ´ λtq4p1 ´ λ2tq.

Then |φpλ, tq| ă 1 for 0 ă t ă 1 and λ P S1.

Proof. Indeed,

log |φpλ, tq|2 “ log
`

φpλ, tqφpλ, tq
˘

“ ´

8
ÿ

n“1

tn

n
p6 ` 4λn ` 4λ

n
` λ2n ` λ

2n
q

“ ´

8
ÿ

n“1

tn

n
p2 ` λn ` λ

n
q2 ă 0

By the lemma, we see
ˇ

ˇLSps,1q3LSps, χq4LSps, χ2q
ˇ

ˇ ą 1.

Since we assume χ2 is not trivial, LSp1, χ2q ă 8 by Theorem 10.4.6. Hence

0 ě ords“1

`

LSps,1q3LSps, χq4LSps, χ2q
˘

ě ´3 ` 4 ords“1 L
Sps, χq,

so that ords“1 L
Sps, χq ď 0. This proves LSp1, χq ‰ 0 when χ2 is not trivial. So far this part of the

proof works for any global field.
Assume χ2 “ 1. Consider the product

ζSF psqLSps, χq.

For Repsq ą 1, we have

F psq :“ log ζSF psqLSps, χq “
ÿ

vRS

ÿ

ně1

1 ` χpϖvqn

pNpqns
.

Since χpϖvq P t0,˘1u, this is a Dirichlet series with non-negative coefficient. An important property
is

Lemma 10.4.13. Let fpzq “
ř

ane
´λnz be a Dirichlet series whose coefficients an are non-negative.

Suppose that f converges for Re z ą ρ with ρ P R, and that the function admits a holomorphic
continuation to a neighborhood of z “ ρ. Then there exists a ϵ ą 0 such that f converges for
Re z ą ρ´ ϵ.

(In other terms, the domain of convergence of f is bounded by a singularity of f located on the
real axis.)

Proof. Replacing z by z ´ ρ, we can assume ρ “ 0. Since f holomorphic for Re z ą 0 and in a
neighborhood of 0, f is holomorphic in a disc |z ´ 1| ď 1 ` ϵ with ϵ ą 0. In particular, its Taylor
series converges in this disc, so the p-the derivatives of f is given by the formula

f ppqpzq “

8
ÿ

n“0

anp´λnqpe´λnz
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hence
f ppqp1q “ p´1qp

ÿ

λpnane
´λn

so that its Taylor series can be written as

fpzq “

8
ÿ

p“0

˜

8
ÿ

n“0

λpnane
´λn

¸

p´1qp

p!
pz ´ 1qp, |z ´ 1| ď 1 ` ϵ

Particularly for z “ ´ϵ, we have

fp´ϵq “

8
ÿ

p“0

˜

8
ÿ

n“0

λpnane
´λn

¸

1

p!
p1 ` ϵqp

Since this is a double series with positive term, Tonelli theorem applies. Hence

fp´ϵq “

8
ÿ

n“0

ane
´λn

8
ÿ

p“0

1

p!
p1 ` ϵqpλpn “

ÿ

n

ane
´λneλnp1`ϵq “

ÿ

n

ane
λnϵ

This shows the Dirichlet series converges for z “ ´ϵ, thus also for Re z ą ´ϵ.

Suppose for contradiction that LSp1, χq “ 0. Then limsÑ1` F psq is finite. Indeed, since
ords“1 ζ

S
F psq “ ´1, we already know ords“1 ζ

S
F psqLSps, χq ě 0. But F psq is nonnegative on the

real line right to s “ 1, so limsÑ1` F psq ‰ ´8.
Now extend F psq to the left. Say there exists a singularity σ0 P R of F on the real line. Since its

coefficients are non-negative, the previous lemma shows that the series F converges compactly and
absolutely for Repsq ą σ0. In particular, limsÑσ`

0
F psq “ 8. This is absurd, as this would imply F

has a pole at s “ σ0, while ζSF and LS have no pole other than s “ 1. This is the place we need F

to be a number field.
Hence the series F psq converges everywhere. But notice ζSF psq has a zero at s “ ´2, as Lps,1q

does not have a pole there while the archimedean local factors have a pole there. This means
limsÑ´2 F psq “ ´8, a contradiction.

10.4.4 Density
Definition. Let S Ď MF,na be a set of non-archimedean places in a global field F . The (Dirichlet)
upper density and lower density of S are

δ`pSq :“ lim sup
sÑ 1`

ÿ

vPS

pNpvq´s

ÿ

vPMF,na

pNpvq´s
, δ´pSq :“ lim inf

sÑ 1`

ÿ

vPS

pNpvq´s

ÿ

vPMF,na

pNpvq´s
.

When these two are finite and agree, the common value is called the (Dirichlet) density of S, and
is denoted by δpSq.

Lemma 10.4.14. For any global field F , the sum
ÿ

vPMF,fin

1

pNpvqs

converges compactly and absolutely for σ “ Repsq ą 1.
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Proof. Let k be either Q or Fpptq and suppose F is a finite separable extension of k. Arrange the
sum so that

ÿ

vPMF,fin

1

pNpvqs
“

ÿ

vPMk,fin

ÿ

w|v

1

pNpvqsfpw|vq

Applying the same argument in Lemma 10.4.2, it suffices to show the series
ÿ

vPMk,fin

1

pNpvqs

converges compactly and absolutely for σ ą 1.

Assume first k “ Fpptq. By Corollary 8.2.5.1,

Mk,fin “ t| ¨ |p | p P krts is monic irreducibleu

so that
ÿ

vPMk,fin

1

pNpvqs
“

8
ÿ

d“1

#tp P krts | p is monic irreducible of degree du

pds
.

The numerator is bounded by pd, so the whole series is bounded above by
8
ÿ

d“1

1

pdpσ´1q
.

This is a geometric series, so it converges when σ ą 1. The compact convergence is proved in the
same way.

Next assume k “ Q. Then the sum is simply
ÿ

vPMF,fin

1

pNpvqs
“
ÿ

p

1

ps
.

The same argument in Lemma 10.4.2 shows the asserted convergences.

By taking log of ζF psq within Repsq ą 1, we obtain

log ζF psq “
ÿ

vPMF,na

8
ÿ

n“1

1

npNpvqns
“

ÿ

vPMF,na

1

pNpvqs
`

ÿ

vPMF,na

ÿ

ně2

1

npNpvqns

The latter sum converges compactly and absolutely for σ :“ Repsq ą
1

2
; indeed,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

vPMF,na

ÿ

ně2

1

npNpvqns

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2

ÿ

vPMF,na

ÿ

ně2

1

pNpvqnσ
“

1

2

ÿ

vPMF,na

1

pNpvq2σp1 ´ pNpvq´σq

Since Npv ě 2, we have 1 ´ pNpvq´σ ě 1 ´ 1?
2

so
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

vPMF,na

ÿ

ně2

1

npNpvqns

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2 ´
?
2

ÿ

vPMF,na

1

pNpq2σ
ă 8

by Lemma 10.4.14. This show absolute convergence, and the compact convergence is proven in the
same way.
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Definition. For two meromorphic functions f, g defined in a neighborhood of 1, we write

f „ g

if f ´ g is holomorphic at s “ 1.

With this notation, we see
ÿ

vPMF,na

1

pNpvqs
„ log ζF psq.

Since ζF has a simple pole at s “ 1, we have log ζF psq „ logps´ 1q´1.

Lemma 10.4.15. For S Ď MF,na, we have

δ`pSq :“ lim sup
sÑ 1`

ÿ

vPS

pNpvq´s

log
1

s´ 1

, δ´pSq :“ lim inf
sÑ 1`

ÿ

vPS

pNpvq´s

log
1

s´ 1

.

Lemma 10.4.16. Let P Ď MF,na be a set with δpP q “ 1. Then

δpSq “ δpP X Sq

for any subset S Ď MF,na when δpSq is defined.

Proof. Since δpSq “ δpPXSq`δpSzP q, it suffices to prove δpSzP q. But this is clear: SzP Ď MF,nazP

and the latter set has density 0.

Lemma 10.4.17. Let F {k be an extension of number field. Then the set

tw P MF,fin | fpw|vq “ 1 where v P Mk,fin lies below wu

has density 1.

Proof. We have
ÿ

wPMF,fin

1

pNpvqs
“

ÿ

vPMk,fin

ÿ

w|v

1

pNpvqfpw|vqs

“
ÿ

vPMk,fin

ÿ

w|v
fpw|vq“1

1

pNpvqfpw|vqs
`

ÿ

vPMk,fin

ÿ

w|v
fpw|vqě2

1

pNpvqfpw|vqs

It suffices to prove the latter series defines a holomorphic function near s “ 1. The proof goes along
the same line as our previous discussion.

Theorem 10.4.18. Let F be a global field, S be a finite set of places on F and let m be an
S-modulus. For any c P ClmpF q, the set

Sc :“
␣

v P MF,na | v R S Y m, ϖv P FˆcUm

(

has density 1

#ClmpF q
.

Here ϖv “ p. . . , 1, . . . , ϖv, . . . , 1, . . .q is the idele with all components 1 except at v, and ϖv at v,
and ϖv is a uniformizer of Fv. Notice the condition does not depend on a specific choice of ϖv, as
for v R S Y m, the v-th component of Um is oˆ

v . We say in this case the place v is contained in
the ray idele class represented by c.
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Proof. Let χ be a Hecke character trivial on Um; then it is naturally identified as a character of
ClmpF q. Let T “ S Y m. Since χ is unramified outside T , we have

logLT ps, χq “
ÿ

vRT

8
ÿ

n“1

χpϖvq

npNpvqns
„

ÿ

vRT

χpϖvq

pNpvqs
“

ÿ

cPClmpF q

χpcq
ÿ

vPSc

1

pNpvqs
.

Fix some c0 P ClmpF q. By orthogonality, we have
ÿ

χP {ClmpF q

χpc´1
0 q

ÿ

cPClmpF q

χpcq
ÿ

vPSc

1

pNpvqs
“ #ClmpF q

ÿ

vPSc0

1

pNpvqs
.

Finally, by virtue of Theorem 10.4.11 and 10.4.6, we conclude

log
1

s´ 1
„ log ζT psq „

ÿ

χP {ClmpF q

χpc´1
0 q logLT ps, χq „ #ClmpF q

ÿ

vPSc0

1

pNpvqs
.

For convenience, we set some notations. Let K{F be a finite Galois extension of global fields.

• Denote by SplpK{F q the set of places in F that split completely in K.

• Denote by SrampK{F q the set of places in F that ramify in K.

Theorem 10.4.19 (Chebotarev). Let F be a global field and let K{F be a finite Galois extension.
For σ P GalpK{F q, let C “ Cσ denote the conjugacy class of σ in GalpK{F q. Then the set

tv P MF,na | v unramified in L with Frobv P Cu

has density #C

rK : F s
.

Proof. As a very special case, we consider the case when σ “ 1. In this case C “ t1u, and the set
equals SplpK{F q. The value of density follows from the computation:

ÿ

vPSplpK{F q

1

pNpvqs
„

1

rK : F s

ÿ

wPMK,fin
fpw|vq“1

1

pNpwqs
„

1

rK : F s

ÿ

vPMF,fin

1

pNpvqs

The first „ is due to Theorem 8.4.23 and the fact that K{F is unramified almost everywhere. The
second „ follows from Lemma 10.4.17.

The proofs of general cases for number fields and global function fields are different in nature2,
so we only prove when F is a number field. Assume first that L{K is finite abelian.

Corollary 10.4.19.1. For an extension K{F of global fields, the set SplpK{F q has density 1

rK : F s
.

Corollary 10.4.19.2. For two extensions of global fields L{F and K{F , we have K Ď L if and only
if SplpL{F q Ď SplpK{F q.

Proof. The only if part is clear. For the if part, consider the compositum KL. We have

SplpKL{F q “ SplpK{F q X SplpL{F q “ SplpL{F q.

By the previous corollary, this implies rKL : F s “ rL : F s, or K Ď L.
2The proof in the global function field case use algebraic geometry. To be slightly precise, the proof uses Riemann

hypothesis for curves over finite fields. See https://lii4.github.io/Etale_Cohomology.pdf. The reason that the
argument for number fields would fail for global function fields is that there is no archimedean place, and we need a
fixed place to make the idelic quotient compact. Of course we could have given under a strange condition.
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10.5 Weil conjecture for curves over finite fields
The Weil conjecture for curves over finite fields is following

Theorem 10.5.1. Let F be a global function field with constant field Fq and let P “ PF be the
polynomial in Theorem 10.4.9. Write

PF ptq “

2g
ź

i“1

p1 ´ αitq.

Then the αi’s are algebraic integers with |αi| “ q
1
2 . (Here | ¨ | is the usual euclidean norm.)

This statement is also called the Riemann hypothesis for curves, as explained by the

Corollary 10.5.1.1. Let F be a global function field. Then the Dedekind zeta function ζF psq has
2g zeros, all lying on the line Repsq “

1

2
.

Proof. This is a direct consequence of the previous theorem, using the identity

ζF psq “
P pq´sq

p1 ´ q´sqp1 ´ q1´sq
.

We have an equality of formal power series:

exp

˜

ÿ

kě1

#XpFqkq

k
tk

¸

“

2g
ź

i“1

p1 ´ αitq

p1 ´ tqp1 ´ qtq
.

Taking log and comparing the coefficients, we get

#XpFqkq “ 1 ` qk ´
ÿ

iPr2gs

αki .

Lemma 10.5.2. With the notation in Theorem, TFAE:

(i) |αi| “ q
1
2 for all i P r2gs.

(ii) |αi| ď q
1
2 for all i P r2gs.

(iii) The inequality

|#XpFqnq ´ pqn ` 1q| ď 2gq
n
2

holds for any n P Zě1.

(iv) There exist some m ě 1, a constant γm and N “ Nm P Zě1 such that
ˇ

ˇ#XpFq2mnq ´ pq2mn ` 1q
ˇ

ˇ ď γmq
nm

holds for all n ě N .
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Proof. In view of the last equality, clearly (i)ñ(ii)ñ(iii)ñ(iv). That (ii)ñ(i) follows from the
functional equation

ζF p1 ´ sq “ qp1´gqp2s´1qζF psq.

Indeed, if |αi| ď q
1
2 , then all roots of ζF psq are left to the line Repsq “ 1

2 , which in turns means the
roots of ζF p1 ´ sq are right to the same line. Since qp1´gqp2s´1q is nowhere vanishing, it follows that
all roots must lie on Repsq “ 1

2 . This proves (i). Finally, for (iv)ñ(ii), recall the identity

ÿ

iPr2gs

α2m
i t

1 ´ α2m
i t

“

8
ÿ

k“1

¨

˝

ÿ

iPr2gs

α2mk
i

˛

‚tk

By assumption we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPr2gs

α2mn
i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď γmq
nm

for n ě N . This implies the power series on the RHS converges for |t| ă q´m. Hence LHS cannot
has pole within this range. In particular, this implies

|α2m
i q´m| ď 1

for all i P r2gs, or |αi| ď q
1
2 .

Lemma 10.5.3. Let F be a global function field with constant field Fq such that q is a square and
q ą pg ` 1q4. Then

#XpFqq ă 1 ` q ` 2gq
1
2 .

Proof.

10.6 Mellin inversion
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Chapter 11

More on L-functions

11.1 L functions
We follow [ANT, Iwaniec]

Definition. A Dirichlet series

Lpf, sq :“
ÿ

ně1

λf pnqn´s

with λf p1q “ 1 that converges absolutely for Repsq ą 1 is called an L-function if it satisfies the
following properties:

(i) Lpf, sq admits an Euler product of degree d ě 1:

Lpf, sq “
ź

p

ź

iPrds

p1 ´ αippqp´sq´1

where RHS converges absolutely for Repsq ą 1 with |αippq| ă p for all p and i P rds. We call
the αippq the local roots/local parameters of f at p.

(ii) There exists a gamma factor

γpf, sq “ π
´ds
2

d
ź

j“1

Γ

ˆ

s` κj
2

˙

.

The κj ’s are either real or come in conjugate pairs, and Repκjq ą ´1. They are the local
roots/local parameters of f at 8

(iii) There exists an integer qpfq ě 1, called the conductor of f , such that

p ∤ qpfq ùñ αippq ‰ 0 for all i P rds.

(iv) The completed L-function

Λpf, sq :“ qpfq
s
2 γpf, sqLpf, sq

admits an analytic continuation to a meromorphic function on C of order 1 with at most poles
at s “ 0, 1 and satisfies the functional equation

Λpf, sq “ εpfqΛpf, 1 ´ sq.

Here εpfq P S1 is called the root number of f , and f is the “dual” of f for which λf pnq “ λf pnq,
γpf, sq “ γpf, sq, qpfq “ qpfq.
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We want to bound various analytic quantities related to Lpf, sq in a uniform way. The analytic
conductor of f , which we define below, is usually a nice quantity that provides such a bound. Put

q8psq :“
ź

jPrds

p|s` κj | ` 3q.

The analytic conductor is by definition

qpf, sq :“ qpfqqf psq.

Also denote qpfq “ qpf, 0q

11.2 Summary of global class field theory
Let F be a global field. The global class field theory provides a continuous homomorphism with
dense image

recF : FˆzAˆ
F Galab

F

satisfying the following properties:

(i) (Existence) Any open subgroup of finite index in FˆzAˆ
F arises as the kernel of the composition

recK{F : FˆzAˆ
F Galab

F GalpK{F q

for some finite abelian extension K{F of F .

(ii) (Local-global compatibility) If K{F is a finite abelian extension and v P MF,na, then the
composition

Fˆ
v FˆzAˆ

F Galab
F GalpK{F q

annihilates oˆ
Fv

if and only if v is unramified in K, in which case any uniformizer of v maps to
the Frobenius Frobv P GalpL{Kq.

Lemma 11.2.1. The property (ii) alone determines the map FˆzAˆ
F Ñ Galab

F .

Lemma 11.2.2. The association

tfinite abelian extensions of F u
␣

finite index open subgroups of FˆzAˆ
F

(

K ker recK{F

is an inclusion reversing bijection.

Definition. For an open subgroup H of finite index in FˆzAˆ
F , the finite abelian extension K{F

with H “ ker recK{F is called the class field to H.

11.3 Artin L-functions
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Part III

Representation theory
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Chapter 12

Operators on Hilbert Spaces

The space BpHq of all bounded linear operators on a Hilbert space H is a Banach space with the
operator norm, and is even a C˚-algebra as seen in Example 3.2.1.1. We will write

σpT q :“ σBpHqpT q

for the spectrum of T with respect to the C˚-algebra BpHq, and simply call it the spectrum of
the operator T .

12.1 Functional Calculus
Let H be a Hilbert space and T a bounded normal operator on H, i.e., T commutes with its
adjoint T˚, or, equivalently, T is normal as an element of the C˚-algebra BpHq. We then can apply
the results of Section 3.3, which for any continuous function f : σpT q Ñ C gives a unique element
fpT q P BpHq that commutes with T and satisfies

zfpT q “ f ˝ pT

where the has means the Gelfand transform with respect to the unital C˚-algebra generated by T .
Recall by Lemma 3.3.2 the spectrum of a normal operator T does not depend on the C˚-algebra.
The map

CpσpT qq BpHq

f fpT q

is the continuous functional calculus. We summarize some important properties in the next
proposition.

Proposition 12.1.1. Let T be a bounded normal operator on the Hilbert space H and let A “

C˚pT, 1q be the unital C˚-algebra generated by T .

(a) The map f ÞÑ fpT q is a unital isometric C˚-isomorphism from CpσpT qq to A which sends the
identity map idσpT q to T .

(b) Let V Ď H be a closed subspace stable under T and T˚. Then V is stable under A, and
fpT q|V “ fpT |V q.

(c) Let V “ ker fpT q. Then V is stable under T and T˚, and the spectrum of T |V is contained in
the zero locus of f .
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(d) If fpzq “
8
ř

n“0
anz

n is a power series that converges for z “ ∥T∥, then fpT q “
8
ř

n“0
anT

n.

Proof.

(a) This follows from Theorem 3.3.3.(i).

(b) V is then stable under A for the linear combinations of operators of the form pT qkpT˚qℓ are
dense in A. We then obtain a well-defined ˚-homomorphism

Ψ : A BpV q

S S|V

The result now follows from Corollary 3.3.31.1.(b).

(c) The first assertion is clear, and the second is obtained by Corollary 3.3.31.1

fpσpT |V qq “ σpfpT |V qq “ σpfpT q|V q “ 0

(d) This follows from Theorem 3.3.3.(iv).

There are two important classes of normal operators.

(i) Self-adjoint operators, i.e., T “ T˚. By Corollary 3.3.31.1.(a), σpT q Ď R.

(ii) Unitary operators, i.e., UU˚ “ U˚U “ 1. Note that a normal operator U P BpHq is
unitary if and only if σpUq Ď T. This follows from Theorem 3.3.3, for U˚U “ 1 if and only if
idσpUq idσpUq “ 1, i.e., σpUq Ď T.

Recall the Schwartz space SpRq consists of all smooth functions f : R Ñ C such that for any
two integers m,n ě 0 the function xnf pmqpxq is bounded, i.e., those smooth functions f with all its
derivatives rapidly decreasing. An element in SpRq is called an Schwartz function.

For f P SpRq, the Fourier inversion formula says that

fpxq “

ż

R
f̂pyqe2πixydy

where f̂pyq “

ż

R
fpxqe´2πixydx is the Fourier transform.

Proposition 12.1.2. Let H be a Hilbert space and T P BpHq self-adjoint. Then for every f P SpRq,

fpT q “

ż

R
f̂pyqe2πiyT dy

where e2πiyT is a unitary operator defined by the continuous functional calculus, and the integral
should be viewed as a Bochner integral with value in BpHq.

Proof. Put gpxq “ e2πiyx and let

Φ : CpσpT qq BpHq

f fpT q
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be the continuous functional calculus of T . Then e2πiyT “ gpT q “ Φpgq. To see e2πiyT is unitary,
we compute

pe2πiyT q˚ “ Φpgq˚ “ Φpgq “ Φpg´1q “ Φpgq´1 “ pe2πiyT q´1

The second equality holds for Φ is ˚-invariant, by Theorem 3.3.3, and the third equality holds for
gpxq P T. The function

R BpHq

y f̂pyqe2πiyT

then satisfies the condition Proposition D.7.3.1.2., so the integral
ż

R
f̂pyqe2πiyT dy exists. To see the

equality, note that the Fourier inversion formula implies that

f |σpT q “

ż

R
f̂pyqe2πiy idσpT qdy

so by the continuity of Φ (and the very definition of Lebesgue integral) we have

fpT q “ Φpf |σpT qq “ Φ

ˆ
ż

R
f̂pyqe2πiy idσpT qdy

˙

“

ż

R
f̂pyqΦpe2πiy idσpT q qdy “

ż

R
f̂pyqe2πiyT dy

12.1.1 Positive Operators
Definition. A self-adjoint operator T P BpHq is called positive (or positive semi-definite), if

xTv, vy ě 0

for all v P H.1

Theorem 12.1.3. Let T P BpHq be self-adjoint. TFAE:

(a) T is positive;

(b) The spectrum σpT q Ď r0,8q, i.e., T is positive in the sense of C˚-algebras;

(c) There exists an operator R P BpHq such that T “ R˚R;

(d) There exists a unique positive operator S with T “ S2. In this case we write S “
?
T .

Proof. That (d) ñ (c) ñ (a) is trivial, and (b) ñ (d) follows from Proposition 4.0.2, so it remains to
show (a) ñ (b).

For (a) ñ (b), WLOG we assume ∥T∥ “ 1. Since T is self-adjoint, σpT q Ď R X B1p0q “ r´1, 1s.
We contend that Tµ :“ T ` µ1 is invertible for every µ ą 0, which implies that T has no negative
spectral value. By assumption, we have

∥Tµv∥ ∥v∥ ě xTµv, vy “ xTv, vy ` µxv, vy ě µ ∥v∥2

which implies that ∥Tµn∥ ě µ ∥v∥ for every v P H. It follows that Tµ is injective. (Note that the
proof ends here if H is finite dimensional.) Since Tµ is self-adjoint, we also get

pTµpHqqK “ kerTµ “ 0

1We don’t need to assume T is self-adjoint in advance: the condition xTv, vy P R for all v P H merely guarantees
that T is self-adjoint.
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for w P pTµpHqqK ô 0 “ xTµv, wy “ xv, Tµwy for every v P H ô Tµw “ 0. By Lemma E.2.2 we
then see TµpHq “ H. Thus for each w P H we can find pvnqn Ď H with Tvn Ñ w. Since

∥vn ´ vm∥ ď
1

µ
∥Tµvn ´ Tµvm∥

for m,n P N, it follows that pvnqn is a Cauchy sequence in H and hence converges to, say, v P H.
Thus Tµv “ w, showing that Tµ is surjective. By Open Mapping Theorem, T´1

µ is continuous, so
Tµ is invertible in BpHq.

Definition. For T P BpHq, define the operator |T | :“
?
T˚T . This is well-defined by the Theorem

above.

Theorem 12.1.4 (Polar decomposition). Let T P BpHq.

(i) ∥|T |v∥ “ ∥Tv∥ for every v P H. In particular ∥|T |∥op “ ∥T∥op.

(ii) There is an isometry U : Im |T | Ñ ImT such that T “ U |T |.

(iii) The decomposition in (ii) is unique, in the sense that if T “ U 1P with P positive and U 1 :

ImP Ñ H isometric, then U 1 “ U and P “ |T |.

Proof. For v P H,

∥|T |v∥2 “ x|T |v, |T |vy “ x|T |2v, vy “ xT˚Tv, vy “ xTv, Tvy “ ∥Tv∥2

so (i) holds. For v P H, define
U : Im |T | ImT

|T |v Tv

This is well-defined, for if |T |v “ |T |w, then 0 “ ∥|T |pv ´ wq∥ “ ∥T pv ´ wq∥ so that Tv “ Tw. By
(i) this is an isometry. Also, U extends to a bounded operator U : Im |T | Ñ ImT .

• Suppose pvnqn Ď H is such that |T |vn is Cauchy. Then Up|T |vnq “ Tvn is also Cauchy by (i),
so Tvn Ñ v for some v P ImT . For w “ lim

nÑ8
|T |vn P Im |T |, define Uw :“ v. This is again

well-define by (i), and ∥w∥ “ ∥v∥ by continuity of norm.

This proves (ii). For (iii), extend U to a bounded operator on H by setting U ” 0 on Im |T |
K and

do likewise for U 1. Then U˚U is the orthogonal projection to Im |T | and U 1˚U 1 is the orthogonal
projection to ImP . Note

|T | “
?
T˚T “

a

pU 1P q˚U 1P “
?
P˚U 1˚U 1P “

?
P˚P “

?
P 2 “ P

where the last equality is the uniqueness part of Theorem 12.1.3.(d). This also proves U “ U 1.

Lemma 12.1.5. Let T P BpHq and T “ U |T | be its polar decomposition. We (always) extend U

by setting U |
Im |T |

K ” 0.

(i) U˚T “ |T |.

(ii) U˚|ImT is an isometry and U˚|
ImT

K ” 0.

(iii) U˚U is an orthogonal projection onto Im |T |, and UU˚ is an orthogonal projection on ImT .
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(iv) U |T |U˚ “ |T˚|

Proof.

(i) For y P pIm |A|q
K

xU˚Ax, yy “ xAx,Uyy “ 0 “ x|A|x, yy

and for y P H

xU˚Ax, |A|yy “ xAx,Ayy “ xA˚Ax, yy “ x|A|x, |A|yy.

These show U˚Ax “ |A|x for all x P H.

(ii) For x P H, by (i) U˚Tx “ |T |, so

xU˚Tx, U˚Tyy “ x|T |x, |T |yy “ x|T |2x, yy “ xT˚Tx, Tyy “ xTx, Tyy.

This shows U˚ is an isometry on ImT , and hence on ImT .

If x P pImAqK, then for y P H if we write y “ v ` w with v P Im |A| and w P pIm |A|qK

xU˚x, yy “ xx,Uyy “ xx,Uwy “ lim
nÑ8

xx,U |A|wny “ lim
nÑ8

xx,Awny “ 0

where pwnqn Ď H is such that |A|wn Ñ w. This shows U˚x “ 0 for x P pImAqK, and hence
kerU˚ Ě pImAqK. Now for x P kerU˚, write x “ v`w with v P pImAqK and w P ImA. Then

0 “ U˚x “ U˚v ` U˚w “ U˚w

so by injectivity of U˚ on ImT we see w “ 0. Hence x “ v P pImAqK.

(iii) This is shown in Theorem 12.1.4, and UU˚ is proved similarly (using (ii)).

(iv) Both sides of the desired identity being positive, by Proposition 4.0.2 it suffices to show their
squares are the same, i.e.,

U |T |U˚U |T |U˚ “ |T˚|2 “ TT˚.

In Theorem 12.1.4 we see U˚U is the orthogonal projection onto Im |T |, so U˚U |T | “ |T | and
hence

U |T |U˚U |T |U˚ “ U |T ||T |U˚ “ TT˚.

Lemma 12.1.6. Let T P BpHq and write T “ U |T | for its polar decomposition. Then T is normal
if and only if U is normal and commutes with |T |.

Proof. The if part is clear, given that |T | is self-adjoint. Now assume T is normal. Extend U to H
by setting U |pIm |T |qK ” 0. We prove the following.

(a) T and |T | commutes.

(b) U and |T | commutes, and U˚ and T commutes.
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12.1.2 Schur’s Lemma
Lemma 12.1.7. Let H be a Hilbert space and T P BpHq be normal. If σpT q “ tλu is a singleton,
then T “ λ idH .

Proof. By Lemma 3.2.4, for then we have ∥T ´ λ idH∥ “ rpT ´λ idHq “ 0. Alternatively, this can be
proved by continuous functional calculus as follows. σpT q “ tλu ô idσpT q “ λ1σpT q, and therefore
T “ idσpT qpT q “ λ1σpT qpT q “ λ idH .

Theorem 12.1.8 (Schur). Suppose A Ď BpHq is a self-adjoint set of bounded operators (namely,
S P A implies S˚ P A). TFAE:

(a) A is topological irreducible, i.e., if 0 ‰ L Ď H is any A-invariant closed subspace, then
L “ H.

(b) If T P BpHq commutes with all S P A, then T “ µ id for some µ P C.

Proof. Assume (b) holds and that 0 ‰ L Ď H is any A-invariant closed subspace. Then the
orthogonal complement LK is also A-invariant, for with v P L, u P LK and S P A, we have

xv, Suy “ x S˚v
loomoon

PL

, uy “ 0

So the orthogonal projection PL : H Ñ L commutes with A, and thus PL is multiple of the identity.
But PL|L “ idL, this implies PL “ idH and L “ H.

Assume (a) holds, and let T P BpHq commute with A. Then also T˚ commutes with A since A
is self-adjoint. By writing T “

1

2
pT ` T˚q `

1

2i
pT ´ T˚q, we may assume T ‰ 0 is self-adjoint. We

will show that σpT q is a singleton. Note that every operator commuting with T also commutes with
fpT q for every f P CpσpT qq. Now suppose there exist x ‰ y P σpT q. Then there are two functions
f, g P CpσpT qq with fpxq ‰ 0 ‰ gpyq and fg “ 0. Then fpT q ‰ 0 ‰ gpT q and fpT qgpT q “ fgpT q “ 0.
Since gpT q commutes with A, the space L :“ gpT qH is a nonzero A-invariant subspace of H. By (a)
we get L “ H, but then 0 ‰ fpT qH “ fpT qgpT qH Ď fpT qgpT qH “ 0, a contradiction.

12.2 Compact Operators
Definition. Let T P BpHq.

1. T is a finite rank operator if dimC ImT ă 8.

2. T is a compact operator if T sends bounded subsets to relatively compact subsets.

• It follows from definition that if T is compact and S is bounded, then both TS and ST is
compact.

• T is compact if and only if for a given bounded sequence vj P H, the sequence Tvj has a
convergent subsequence.

Proposition 12.2.1. For T P BpHq, TFAE:

(a) T is compact.

(b) For every orthonormal sequence ej , the sequence Tej has a convergent subsequence.
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(c) For every orthonormal sequence ej , the sequence Tej Ñ 0.

(d) There exists a sequence Fn of finite rank operators such that ∥T ´ Fn∥op Ñ 0 as n Ñ 8.

Proof. (a) ñ (b) is trivial. (d) ñ (a) follows from a diagonal argument. For (b) ñ (c), we only need
to show every subsequence of Tej admits a subsequence converging to 0. Passing to subsequence,
we assume Tej Ñ v P H. As said, we must show v “ 0.

Lemma 12.2.2. Every orthonormal sequence in an inner product space converges weakly to 0.

Proof. Let vn be an orthonormal sequence. For y P H, by Bessel’s inequality one has
8
ÿ

n“1

xvn, yy2 ď

∥y∥2 ă 8. In particular, xvn, yy Ñ 0 “ x0, yy as n Ñ 8, as claimed.

By this lemma, we then have xT˚v, ejy Ñ 0 as j Ñ 8. Now for ε ą 0, we can find N " 0 such
that ∥T˚Tej ´ T˚v∥ ă ε and |xT˚v, ejy| ă ε whenever j ě N . Then ∥Tej∥2 “ xT˚Tej , ejy ď 2ε.

For (c) ñ (d), we will construct an adequate orthonormal sequence en, as follows. Choose e1 P

H such that ∥Te1∥ ě
1

2
∥T∥. Assume that e1, . . . , en pn ě 2q are constructed, and let Un :“

spanCte1, . . . , enu. Let Pn : H Ñ Un be the orthogonal projection. If ∥T ´ TPn∥op “ 0, then
T “ TPn is of finite rank. Otherwise, choose

en`1 P UK
n X tx P H | ∥x∥ “ 1u

with ∥Ten`1∥ ě
1

2
∥T pid´Pnq∥op. This is possible. For ∥T ´ TPn∥op ą

1

2
∥T ´ TPn∥, so we can

find ∥v∥ “ 1 such that ∥pT ´ TPnqv∥ ě
1

2
∥T ´ TPn∥op ą 0. If we put w1 “ pid´Pnqv P UK

n , then

∥pT ´ TPnqv∥ “ ∥T pid´Pnqv∥ “
∥∥Tw1

∥∥ ď
∥∥T pw1{

∥∥w1
∥∥q
∥∥ ∥∥w1

∥∥ ď
∥∥T pw1{

∥∥w1
∥∥q
∥∥

Thus en`1 :“
w1

∥w1∥
works. Now, by (c), we have

∥T ´ TPn∥ “ ∥T pid´Pnq∥ ď 2 ∥Ten`1∥ Ñ 0 as n Ñ 8

so that ∥T ´ TPn∥op Ñ 0 as n Ñ 8.

Corollary 12.2.2.1. For a bounded operator T , TFAE:

(a) T is compact.

(b) T˚T is compact.

(c) TT˚ is compact.

(d) T˚ is compact.

Proof. Suppose (a) and let vn is a bounded sequence. Then we can find a convergent subsequence
of Tvn, and by continuity of T˚, T˚Tvn also has a convergent subsequence. Also, by continuity of
T˚ we know T˚vn is again bounded, so by compactness of T we can find a convergent subsequence
of TT˚vn; this shows (b) and (c). Assume (b) and let en be an orthonormal sequence in H. Then
T˚Ten Ñ 0 by Proposition 12.2.1.(c), and by Cauchy-Schwarz, we have

∥Ten∥2 “ xT˚Ten, eny ď ∥T˚Ten∥ ∥en∥ “ ∥T˚Ten∥ Ñ 0

so Ten Ñ 0. By Proposition 12.2.1.(c) again we deduce T is compact.
By symmetry we see (d) ñ (b),(c) and (c) ñ(d), and hence the proof is finished.
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Proposition 12.2.3. A bounded operator T on a Hilbert space H is compact if and only if the
image of the closed unit ball is compact.

Proof. Suppose T pB1p0qq is compact. Then for each r ą 0, T pBrp0qq “ T prB1p0qq “ rT pB1p0qq is
still compact, so T is compact by its very definition. Now suppose T is compact. By definition we
have T pB1p0qq is relatively compact, so it is enough to show it is closed. Let pvnqn be a sequence in
B1p0q with Tvn Ñ w for some w P H. By Banach Alaoglu, we can find α P H_ with ∥α∥ ď 1 such
that, by passing to subsequence, xvn, xy Ñ αpxq as n Ñ 8 for all x P H. By Riesz’s Representation
theorem, we can find v P H such that α “ xv, ¨y with ∥v∥ “ ∥α∥ ď 1. Finally, take ε ą 0 and pick
n " 0 so that ∥Tvn ´ w∥ ă ε and |xv ´ vn, T

˚pTv ´ wqy| ă ε. Then

∥Tv ´ w∥2 “ xv, T˚pTv ´ wqy ´ xvn, T
˚pTv ´ wqy ` xTvn, T v ´ wy ´ xw, Tv ´ wy

xv ´ vn, T
˚pTv ´ wqy ` xTvn ´ w, Tv ´ wy

ă ε` ∥Tvn ´ w∥ ∥Tv ´ w∥ ă εp1 ` ∥Tv ´ w∥q

Since ε is arbitrary, we see ∥Tv ´ w∥ “ 0, i.e., Tv “ w.

12.2.1 Spectral Theorem for Compact Normal Operators
Theorem 12.2.4. Let T be a compact normal operator on a Hilbert space. Then there exists a
sequence λn of non-zero complex numbers, which is either finite or tends to zero, such that one has
an orthogonal decomposition

H “ kerT ‘
à

n

EigpT, λnq

Each eigenspace EigpT, λnq :“ tv P H | Tv “ λnvu is finite dimensional, and the eigenspaces are
pairwise orthogonal.

Proof. The proof will go as follows.

1° Show a compact normal operator T ‰ 0 has a nonzero eigenvalue by reducing to the case
T being self-adjoint.

2° Show H is a direct sum of eigenspaces of T .

3° Show every eigenspace corresponding to a nonzero eigenvalue is finite dimensional, and
the eigenvalues do not accumulate away from zero.

We first show that we can reduce to the case T being self-adjoint. Write

T “
1

2
pT ` T˚q ´

i

2
piT ´ iT˚q :“ T1 ` iT2

as a linear combination of commuting compact self-adjoint operators. If T2 “ 0, we are done.
Otherwise, T2 has a nonzero real eigenvalue ν. The corresponding eigenspace is T1-invariant (for the
Ti commute), so the restriction of T1 on it also compact self-adjoint, and hence has an eigenvalue
µ P R. Then λ :“ µ` iν is a nonzero eigenvalue of T .

Now we have to show that a compact self-adjoint operator T ‰ 0 has a nonzero eigenvalue.

Lemma 12.2.5. For a bounded self-adjoint operator T on a Hilbert space H, we have

∥T∥ “ supt|xTv, vy| | ∥v∥ “ 1u
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Proof. Let C be the RHS. By Cauchy-Schwarz, we have C ď ∥T∥. On the other hand, for v, w P H

with ∥v∥ , ∥w∥ ď 1, one has

C ě
1

2
Cp∥v∥2 ` ∥w∥2q “

1

4
Cp∥v ` w∥2 ` ∥v ´ w∥2q

ě
1

4
|xT pv ` wq, v ` wy ´ xT pv ´ wq, v ´ wy|

“
1

2
|xTv,wy ` xTw, vy| “

1

2
|xTv,wy ` xw, Tvy|

“ |Re xTv,wy|

Replacing v with θv for some θ P S1 we get C ě |xTv,wy| for all ∥v∥ , ∥w∥ ď 1, and so ∥T∥ ď C.

We proceed to show a compact self-adjoint operator T ‰ 0 has a nonzero eigenvalue. In fact,
we will show either ∥T∥ or ´ ∥T∥ is an eigenvalue. By the lemma, there is a sequence vn P H

with ∥vn∥ “ 1 such that xTvn, vny Ñ ˘ ∥T∥. Passing to a subsequence and replacing T with ´T if
necessary, we assume xTvn, vny Ñ ∥T∥. Since T is compact, passing to subsequence again we can
assume Tvn Ñ u P H. Then ∥u∥ ď ∥T∥, and we get

0 ď ∥Tvn, ∥T∥ vn∥2 “ ∥Tvn∥2 ´ 2 ∥T∥ xTvn, vny ` ∥T∥2 ∥vn∥2 Ñ ∥u∥2 ´ ∥T∥2 ď 0

which implies ∥Tvn ´ ∥T∥ vn∥ Ñ 0. Thus v :“ lim
nÑ8

vn “
1

∥T∥
u exists and Tv “ limn Tvn “ u “

∥T∥ v. This finishes 1°.
Let 0 ‰ U Ď V be the closure of the (direct) sum of all eigenspaces of T corresponding to

nonzero eigenvalues. Since every eigenvector for T is also an eigenvector for its adjoint T˚, U is
stable under T and T˚, and hence the orthogonal complement UK is stable under T and T˚ as well.
The operator T restricts to a compact normal operator on UK. Since T |UK cannot have nonzero
eigenvalue, T |UK ” 0 and UK “ kerT . This shows 2°, and it is clear that the eigenspaces are pairwise
orthogonal.
Need more explanation!! It remains to show 3°. For λ P Cˆ, put Eλ :“ EigpT, λq “ kerpT ´ λ idq.
We show dimCEλ ă 8. Suppose otherwise; then there exists an orthonormal sequence fn in Eλ.
Then ∥fn ´ fm∥ “

?
2 for n ‰ m, and ∥Tfn ´ Tfm∥ “

?
2|λ| ‰ 0; in particular, this shows no

subsequence of Tfn is Cauchy, a contradiction to the compactness of T . Let µ ą 0 and consider the
space Vµ :“

ř

tEλ | |λ| ě µ, Eλ ‰ 0u. We claim dimC Vµ ă 8, and this will imply no spectral values
of T can accumulate away from zero. Suppose otherwise. Then there exists an infinite sequence
λn of distinct eigenvalues of T ; let vn be a corresponding eigenvector with norm 1. Then vn is an
orthonormal sequence, and

∥Tvn ´ Tvm∥2 “ ∥λnvn ´ λmvm∥2 “ |λn|2 ` |λm|2 ě 2µ2 ą 0

again a contradiction to the compactness of T .

12.2.2 Singular Values
Lemma 12.2.6. For a compact operator T ,

?
T˚T is also compact.

Proof. By Corollary 12.2.2.1.(b) we know T˚T is compact. To see
?
T˚T is compact, let en be an

orthonormal sequence. Then∥∥∥?
T˚Ten

∥∥∥2 “ xT˚Ten, eny ď ∥T˚Ten∥ ∥en∥ “ ∥T˚Ten∥ Ñ 0
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by Proposition 12.2.1.(c).

Definition. Let T be a compact operator. Then by the lemma we see |T | is a positive compact
operator. Let sjpT q be the family of nonzero eigenvalues of |T | repeated with multiplicities and such
that sj`1pT q ď sjpT q for all j. The sjpT q are called the singular values of T .

Proposition 12.2.7. Let T be a compact operator.

1. We have s1pT q “ ∥T∥ and

sj`1pT q “ inf
v1,...,vjPH

supt∥Tw∥ | w K v1, . . . , vj , ∥w∥ “ 1u

where the vectors v1, . . . , vj are unit eigenvectors for the eigenvalues s1pT q, . . . , sjpT q, respec-
tively.

2. For any bounded operator S on H one has sjpST q ď ∥S∥ sjpT q.

Proof. To be filled

12.3 Hilbert-Schmidt and Trace Class

12.3.1 Hilbert-Schmidt Operators
Let H,H 1 be two Hilbert spaces and T : H Ñ H 1 a bounded operator. For an orthonormal basis
peαqα of H, consider the sum

ÿ

α

xTeα, T eαyH1 “
ÿ

α

∥Teα∥2H1 P r0,`8s.

If pfβqβ is an orthonormal basis of H 1, by Parseval’s identity we have

ÿ

α

∥Teα∥2H1 “
ÿ

α

˜

ÿ

β

xTeα, fβyH1 xfβ , T eαyH1

¸

“
ÿ

α

˜

ÿ

β

xeα, T
˚fβyHxT˚fβ , eαyH

¸

“
ÿ

β

˜

ÿ

α

xeα, T
˚fβyHxT˚fβ , eαyH

¸

“
ÿ

α

∥T˚fβ∥
2

H .

The same computation works if we replace peαqα by another orthonormal basis of H. This shows
the sum is independent of the choice of orthonormal bases of H. We define the Hilbert-Schmidt
norm ∥T∥HS P r0,`8s of the operator T by

∥T∥2HS :“
ÿ

α

xTeα, T eαyH1 “
ÿ

α

∥Teα∥2H1 .

Definition. A bounded operator T : H Ñ H 1 between Hilbert spaces is Hilbert-Schmidt if it has
finite Hilbert-Schmidt norm. Put

HSpH,H 1q :“ tT P BpH,H 1q | ∥T∥HS ă 8u.

When H “ H 1, we put HSpHq “ HSpH,Hq for brevity.
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It is clear that pHSpH,H 1q, ∥¨∥HSq is a normed linear space over C, and the above compu-
tation shows that the adjoint defines an isometry HSpH,H 1q

T ÞÑT˚
ÝÑ HSpH 1,Hq. In fact, for

T, S P HSpH,H 1q and an orthonormal basis peαqα for H, consider the sum

pT, Sq :“
ÿ

α

xTeα, SeαyH1 .

By Cauchy-Schwartz, we have

ÿ

α

|xTeα, SeαyH1 | ď
ÿ

α

∥Teα∥H1 ∥Seα∥H1 ď

˜

ÿ

α

∥Teα∥2H1

¸
1
2
˜

ÿ

α

∥Seα∥2H1

¸
1
2

“ ∥T∥HS ∥S∥HS ă 8

so pT, Sq is absolutely convergent. Polarization of hermitian inner products gives

pB,Cq “
1

4

4
ÿ

k“1

ik
∥∥B ` ikC

∥∥2
HS

where i “
?

´1. This shows pB,Cq is independent of the choice of orthonormal bases for H. With
this pairing, HSpH,H 1q becomes an inner product space. More is true.

Theorem 12.3.1. Let H,H 1 be Hilbert spaces.

(i) HSpH,H 1q is complete, hence is a Hilbert space.

(ii) The map
H_

pbH 1 HSpH,H 1q

tb v rTt,v : w ÞÑ tpwqvs

is well-defined and is a Hilbert space isomorphism.

Proof.

(i) Let peαqαPA (resp. pfβqβPB) be an orthonormal basis for H (resp for H 1). Consider the map

HSpH,H 1q ℓ2pAˆBq

T MT : pα, βq ÞÑ xTeα, fβyH1 .

To see this is well-defined, by Parseval’s identity we have
ÿ

α

ÿ

β

|xTeα, fβyH1 |2 “
ÿ

α

∥Teα∥2H1 “ ∥T∥2HS ă 8.

Moreover, the identity tells that T ÞÑ MT is norm-preserving. It is not hard to construct an
inverse of T ÞÑ MT : for g P ℓ2pA ˆ Bq, define Tg : H Ñ H 1 by Tgpeαq “

ř

β

gpα, βqfβ . This

is well-defined as g is square-summable. It is clear that g ÞÑ Tg is inverse to T ÞÑ MT , so
HSpH,H 1q is isomorphic to ℓ2pA ˆ Bq as normed spaces. It is standard that the latter space
is complete, whence HSpH,H 1q is also complete.

(ii) For any tb v P H_
pbH 1,

∥Tt,v∥2HS “
ÿ

α

xTt,veα, Tt,veαyH1 “
ÿ

α

|tpeαq|2xv, vyH1 “ ∥v∥2H1 ∥t∥2H_ “ ∥tb v∥2
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By polarization this shows the described map is a Hilbert space homomorphism. In partic-
ular, it is injective. For the surjectivity, let T P HSpH,H 1q. For each w P H, write w “
ř

α
xw, eαyHeα “

ř

α
xeαpwqeα. Then Tw “

ř

α
xeαpwqTeα so that T is mapped to by

ř

α
xeα bTeα P

H_
pbH 1. Alternatively, if fβ is an orthonormal basis for H 1, then Tw “

ř

β

xTw, fβyH1fβ “

ř

β

xw, T˚fβyHfβ “
ř

β

zT˚fβpwqfβ , so that T is also mapped to by
ř

β

zT˚fβ b fβ

Lemma 12.3.2. Let S P BpH 1,H2q, T P BpH,H 1q. Then

(a) ∥T∥HS “ ∥T˚∥HS.

(b) ∥ST∥HS , ∥TS∥HS ď ∥S∥op ∥T∥HS.

(c) ∥T∥op ď ∥T∥HS.

(d) For any isometry U on H and isometry U 1 on H 1, one has ∥U 1T∥HS “ ∥TU∥HS “ ∥T∥HS.

Proof. Let peαqα be an orthonormal basis for H.

(a) This is shown in the beginning of this subsection.

(b) ∥ST∥2HS “
ř

α
∥STen∥2 ď

ř

α
∥S∥2op ∥Teα∥

2
“ ∥S∥2op ∥T∥

2
HS. The second follows from (a) and

the fact that ∥S˚∥op “ ∥S∥op.

(c) Let v P H with ∥v∥ “ 1. Then we can find an orthonormal basis pϕβqβ with ϕβ0
“ v. Then

∥Tv∥2 “ ∥Tϕβ0
∥2 ď

ÿ

β

∥Tϕβ∥2 “ ∥T∥2HS

(d) This is clear for pUeαqα is also an orthonormal basis when U is unitary.

Proposition 12.3.3. An operator T is Hilbert-Schmidt if and only if it is compact and its singular
values satisfy

ÿ

n

snpT q2 ă 8. In this case, one has ∥T∥2HS “
ÿ

n

snpT q2.

Proof. For a bounded operator T , we have

∥T∥2HS “
ÿ

j

xTej , T ejy “
ÿ

j

xT˚Tej , ejy “
ÿ

j

x|T |2ej , ejy “
ÿ

j

x|T |ej , |T |ejy “ ∥|T |∥2HS

so that T is Hilbert-Schmidt if and only if |T | is.
Let T be Hilbert-Schmidt. To see T is compact, we use Proposition 12.2.1.(c). Let teju

8
j“1 be

an orthonormal sequence and let A be an orthonormal basis for T containing the ej . Then

8 ą ∥T∥2HS “
ÿ

hPH

∥Th∥2 ě

8
ÿ

j“1

∥Tej∥2

implies that lim
jÑ8

Tej “ 0.
Now assume T is compact; in particular, |T | is compact. By using an orthonormal basis consisting

eigenvectors of |T |, which exists by Spectral Theory, to compute ∥|T |∥HS, we can see |T | is Hilbert-
Schmidt if and only if

ř

j

sjpT q2 ă 8, and the sum equals ∥|T |∥2HS. The last assertion follows from

the computation in the first paragraph.
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12.3.2 Integral kernel
In this subsection, let pX,µq, pY, νq be either two σ-finite measure spaces, or two LCH spaces with
µ, ν Radon. We study the space HSpH,H 1q with H “ L2pX,µq and H 1 “ L2pY, νq.

Combining Lemma E.2.9 and Theorem 12.3.1, we get

HSpL2pX,µq, L2pY, νqq L2pX,µq_
pbL2pY, νq L2pX,µq pbL2pY, νq L2pX ˆ Y, µb νq„ „ „ .

Let T P HSpL2pX,µq, L2pY, νqq. Then its image in L2pX,µq pbL2pY, νq is
ÿ

α

eα b Teα “
ÿ

β

T˚fβ b fβ

where peαqα and pfβqβ are orthonormal bases for L2pX,µq and L2pY, νq respectively. Here we twist
it by complex conjugation so as to make it C-linear. The last isomorphism is given by multiplication.
All these together with a swapping2 in the end give the isomorphism

k : HSpL2pX,µq, L2pY, νqq L2pY ˆX,µb νq

T kT : py, xq ÞÑ
ř

α
eαpxqTeαpyq “

ř

β

T˚fβpxqfβpyq.

The function kT P L2pX ˆY, µb νq is called the (integral) kernel of the operator T , as it satisfies

Tfpyq “

ż

X

kpy, xqfpxqdµpxq

for all f P L2pX,µq. In general, we refer to a function k P L2pY ˆ X,µ b νq as an L2-kernel. We
record the above result as the following

Proposition 12.3.4. Let pX,µq, pY, νq be either two σ-finite measure spaces, or two LCH spaces
with µ, ν Radon. Then there is a Hilbert space isomorphism

k : HSpL2pX,µq, L2pY, νqq L2pY ˆX,µb νq

such that the identity

Tfpyq “

ż

X

kT py, xqfpxqdµpxq

holds for all T P HSpL2pX,µq, L2pY, νqq and f P L2pX,µq. In particular,

∥T∥2HS “

ż

Y

ż

X

|kT py, xq|2dνpyqdµpxq.

For notational simplicity, we suppress the measures µ, ν and simply write dx and dy for dµpxq

and dνpyq. Suppose T : L2pXq Ñ L2pY q is Hilbert-Schmidt. Then the adjoint T˚ : L2pY q Ñ L2pXq

is also Hilbert-Schmidt, so it has a kernel function

kT˚ px, yq “
ÿ

β

fβpyqT˚fβpxq “
ÿ

α

Teαpyqeαpxq “ kT py, xq.

In other words, the adjoint of T has an integral representation

T˚gpxq “

ż

Y

kT py, xqgpyqdy

2This convention makes the formula for convolution of kernels which appears below nicer (at least for me).
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valid for all g P L2pY q.
Next we consider the composition. Suppose Z is another space of the same type as X and

Y , and suppose T : L2pXq Ñ L2pY q and S : L2pY q Ñ L2pZq are Hilbert-Schmidt. By Lemma
12.3.2 the composition ST : L2pXq Ñ L2pZq is again Hilbert-Schmidt, so it has a kernel function
kST P L2pZ ˆXq. For f P L2pXq, by Fubini we have

STfpzq “

ż

Y

kSpz, yqTfpyqdy “

ż

Y

kSpz, yq

ˆ
ż

X

kT py, xqfpxqdx

˙

dy “

ż

X

ˆ
ż

Y

kSpz, yqkT py, xqdy

˙

fpxqdx

which implies

kST pz, xq “

ż

Y

kSpz, yqkT py, xqdy

We call this the convolution of the kernels kS and kT . Under these operations, the map

k : HSpL2pX,µqq L2pX ˆX,µb νq

becomes a C˚-algebra isomorphism. more detail

12.3.3 Trace Class Operators
Lemma 12.3.5. Let T P BpHq and peαqα be an orthonormal basis. The sum

∥T∥tr :“
ÿ

α

x|T |eα, eαy P r0,`8s

is independent of the choice of orthonormal bases peαqα.

(a) ∥T∥tr “ ∥|T |∥tr “

∥∥∥|T |
1
2

∥∥∥2
HS

.

(b) ∥T∥op “ ∥|T |∥op ď ∥T∥HS ď ∥T∥tr.

(c) If ∥T∥tr ă 8, then T is Hilbert-Schmidt.

Proof. Since |T | “ |T |
1
2 |T |

1
2 and |T |

1
2 is self-adjoint, we see

ÿ

α

x|T |eα, eαy “
ÿ

α

x|T |
1
2 eα, |T |

1
2 eαy “

∥∥∥|T |
1
2

∥∥∥2
HS
.

It follows from the corresponding result for ∥¨∥HS that the sum is independent of the choice of peαqα,
and this also proves (a).

(b) The first follows from Theorem 12.1.4. The second follows from Lemma 12.3.2 and Proposition
12.3.3.

Next we show ∥|T |∥op ď ∥T∥tr. Let v P H with ∥v∥ “ 1 and pick any orthonormal basis teαuα

with eα0
“ v. Then

x|T |v, vy ď
ÿ

α

x|T |eα, eαy “ ∥T∥tr .

It then follows from Lemma 12.2.5 that ∥|T |∥op ď ∥T∥tr. Finally,

∥|T |∥HS ď

∥∥∥|T |
1
2

∥∥∥
op

∥∥∥|T |
1
2

∥∥∥
HS

“ ∥|T |∥
1
2
op ∥T∥

1
2
tr ď ∥T∥tr
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(c) From (a) we see |T |
1
2 is Hilbert-Schmidt, so |T | is also Hilbert-Schmidt. By Proposition 12.3.3,

T is Hilbert-Schmidt.

Definition. The value ∥T∥tr in Lemma 12.3.5 is called the trace norm of T . Denote by

B1pHq “ tT P BpHq | ∥T∥tr ă 8u

the space of trace-class operators on H.

By Lemma 12.3.5 we see trace-class operators are Hilbert-Schmidt. By Proposition 12.3.3 we see

∥T∥tr :“
ÿ

j

sjpT q

where the sjpT q are singular values of T .

Lemma 12.3.6. pB1pHq, ∥¨∥trq is a normed linear space, and

B1pHq “ HSpHq2 “ spanCtTS | T, S P HSpHqu Ď BpHq.

In addition, B1pHq contains all finite rank operators.

Proof. We must show ∥¨∥tr satisfies the triangle inequality. Let T, S P B1pHq, and write T “

U |T |, S “ V |S|, T ` S “ W |T ` S| for the respective polar decompositions. By Lemma 12.1.5 we
have

W˚pT ` Sq “ |T ` S|.

Let teαuα be any orthonormal basis. Then by Lemma 12.3.2

∥T ` S∥tr “
ÿ

α

x|T ` S|eα, eαy “
ÿ

α

xpT ` Sqeα,Weαy ď
ÿ

α

|xTeα,Weαy| `
ÿ

α

|xSeα,Weαy|

“
ÿ

α

|x|T |
1
2 eα, |T |

1
2U˚Weαy| `

ÿ

α

|x|S|
1
2 eα, |S|

1
2V ˚Weαy|

ď

∥∥∥|T |
1
2

∥∥∥
HS

∥∥∥|T |
1
2U˚W

∥∥∥
HS

`

∥∥∥|S|
1
2

∥∥∥
HS

∥∥∥|S|
1
2V ˚W

∥∥∥
HS

ď

∥∥∥|T |
1
2

∥∥∥2
HS

`

∥∥∥|S|
1
2

∥∥∥2
HS

“ ∥T∥tr ` ∥S∥tr .

This proves the first statement. To see B1pHq Ď HSpHq2, for T P B1pHq write T “ U |T | for its
polar decomposition. Then T “ U |T |

1
2 ˝ |T |

1
2 and both U |T |

1
2 and |T |

1
2 are Hilbert-Schmidt by

Lemma 12.3.5. For HSpHq2 Ď B1pHq, for T, S P HSpHq write T “ T1 ` iT2, S “ S1 ` iS2 with
Ti, Sj self-adjoint. Since Ti, Sj are linear combinations of T, S, they are Hilbert-Schmidt. Note that

TiSj “
1

2

`

pTi ` Sjq
˚pTi ` Sjq ´ T˚

i Ti ´ S˚
j Sj

˘

.

If A P HSpHq is self-adjoint, then ∥A˚A∥tr “ ∥A∥2HS ă 8 so that A˚A is trace-class. It follows that
TiSj is trace class, implying TS is trace class.

The last assertion remains. By linearity it suffices to show any rank 1 operator is trace class. A
rank 1 operator has the form fbx with 0 ‰ f P H˚ and 0 ‰ x P H. A direct computation shows that
pfbxq˚ “ x¨, xybvf , where 0 ‰ vf P H is such that f “ x¨, vf y. Then pfbxq˚pfbxq “ ∥x∥2 fbvf ,
so the only singular value for f b x is ∥x∥ ∥f∥op, showing ∥f b x∥tr “ ∥x∥ ∥f∥op ă 8.
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Lemma 12.3.7. Let T, S P BpHq

(i) ∥T∥tr “ ∥T˚∥tr.

(ii) ∥TS∥tr , ∥ST∥tr ď ∥S∥op ∥T∥tr.

Proof.

(i) Write T “ U |T | for its polar decomposition. By Lemma 12.1.5 we have |T˚| “ U |T |U˚, so by
Lemma 12.3.5

∥T˚∥tr “

∥∥∥|T˚|
1
2

∥∥∥2
HS

“

∥∥∥pU |T |U˚q
1
2

∥∥∥2
HS
.

Since U |T |U˚ “ pU |T |
1
2 qpU |T |

1
2 q˚ “ ||T |

1
2U˚|2, we see pU |T |U˚q

1
2 “ ||T |

1
2U˚|, and hence

∥T˚∥tr “

∥∥∥||T |
1
2U˚|

∥∥∥2
HS

“

∥∥∥|T |
1
2U˚

∥∥∥2
HS

ď

∥∥∥|T |
1
2

∥∥∥2
HS

“ ∥T∥tr

by Lemma 12.3.5, Proposition 12.3.3 and Lemma 12.3.2.

(ii) By (ii) it suffices to prove for TS. Write TS “ V |TS| for its polar decomposition and let teαuα

be any orthonormal basis. Then by Lemma 12.1.5, Lemma 12.3.2 and Lemma 12.3.5

∥TS∥tr “
ÿ

α

x|TS|eα, eαy “
ÿ

α

x|T |
1
2Seα, |T |

1
2V eαy ď

∥∥∥|T |
1
2S

∥∥∥
HS

∥∥∥|T |
1
2

∥∥∥
HS

ď ∥S∥op ∥T∥tr

Lemma 12.3.8. If T is a compact operator, then

∥T∥tr “ sup
peiq, phiq

ÿ

i

|xTei, hiy|

where peiq and phiq run over all orthonormal bases.

Proof. For simplicity, write sj “ sjpT q. Let fj be an orthonormal sequence consisting of eigenvectors
of |T |. Then for each v P H, we have

|T |v “
ÿ

j

sjxv, fjyfj

Use polar decomposition to obtain a partial isometry U : Im |T | Ñ ImT such that T “ U |T |. If we
put gj :“ Ufj , then for v P H,

Tv “ U

˜

ÿ

j

sjxv, fj , yfj

¸

“
ÿ

j

sjxv, fjygj

Now for any two orthonormal bases ei, hj , by Cauchy-Schwarz and Parseval’s identity, we have

ÿ

i

|xTei, hiy| “
ÿ

i

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

sjxei, fjyxgj , hiy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

j

sj
ÿ

i

|xei, fjyxgj , hiy|

ď
ÿ

j

sj

˜

ÿ

i

|xei, fjy|2

¸
1
2
˜

ÿ

i

|xgj , hiy|2

¸
1
2

“
ÿ

j

sj ∥fj∥ ∥gj∥ “
ÿ

j

sj
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For the reversed inequality, take ej to be any orthonormal basis that prolongs the orthonormal
sequence fj and hj to be any orthonormal basis prolonging gj . Then

ÿ

i

|xTei, hiy| “
ÿ

i

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

sjxei, fjyxgj , hiy

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

i

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

sjδij

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

i

ÿ

j

sjδij “
ÿ

j

sj

Theorem 12.3.9. There exists a unique linear functional with operator norm 1 called the trace

tr : B1pHq C

such that if T has finite rank, then trT is the usual trace operator. Explicitly,

trT “
ÿ

α

xTeα, eαy,

where the sum is absolutely convergent and is independent of the choice of an orthonormal basis
peαq. If T is trace class and normal, we have

trT “
ÿ

n

λn dimEig pT, λnq

where the sum runs over the sequence of non-zero eigenvalues pλnq of T , and the sum converges
absolutely.3

Proof. By Lemma 12.3.6, write T “ S1S2 with Si P HSpHq. Then
ÿ

α

xTeα, eαy “
ÿ

α

xS2eα, S
˚
1 eαy “ pS2, S

˚
1 q

where p , q is the pairing on the space of Hilbert-Schmidt operators; this shows the sum converges
(absolutely) and is independent of choice of orthonormal basis teαuα. When T is normal, use a basis
consisting of eigenvectors to compute trace.

Next we claim B1pHq Q T ÞÑ
ÿ

α

xTeα, eαy is bounded. Write T “ U |T | for its polar decomposi-

tion. This is clear by Lemma 12.3.5:
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

α

xTeα, eαy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

α

|x|T |
1
2 eα, |T |

1
2U˚eαy| ď

∥∥∥|T |
1
2

∥∥∥
HS

∥∥∥|T |
1
2U˚

∥∥∥
HS

ď

∥∥∥|T |
1
2

∥∥∥2
HS

“ ∥T∥tr .

This is an equality if T is positive, so this shows the operator norm is 1. Finally, the uniqueness
follows from the following density result.

Lemma 12.3.10. The space of finite rank operators is dense in pB1pHq, ∥¨∥trq.

Proof. Let T P B1pHq and teαuα be an orthonormal basis. Since
ÿ

α

∥∥∥|T |
1
2 eα

∥∥∥2 “ ∥T∥tr ă 8, the

sum is supported on a countable subset of teαuα. Let pfnqn “ teα | |T |
1
2 eα ‰ 0u and let Pn : H Ñ H

be the orthogonal projection onto spanCtf1, . . . , fnu. We claim ∥T ´ TPn∥tr Ñ 0.
Note that |T ´ TPn|2 “ p1 ´ PnqT˚T p1 ´ Pnq “ ||T | ´ |T |Pn|2, so |T ´ TPn| “ ||T | ´ |T |Pn| by

Proposition 4.0.2 and

∥T ´ TPn∥tr “ ∥|T | ´ |T |Pn∥tr ď

∥∥∥|T |
1
2

∥∥∥
HS

∥∥∥|T |
1
2 p1 ´ Pnq

∥∥∥
HS
.

3This holds without normality. See Lidskii’s Theorem.
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It remains to show
∥∥∥|T |

1
2 p1 ´ Pnq

∥∥∥
HS

Ñ 0 as n Ñ 8. Indeed,

∥∥∥|T |
1
2 p1 ´ Pnq

∥∥∥2
HS

“
ÿ

α

∥∥∥|T |
1
2 p1 ´ Pnqeα

∥∥∥2 “

8
ÿ

m“n`1

∥∥∥|T |
1
2 p1 ´ Pnqfm

∥∥∥2 Ñ 0

Proposition 12.3.11.

(a) For a trace class operator T , we have trT˚ “ trT .

(b) For Hilbert-Schmidt S, T , we have trpST q “ trpTSq.

Proof.

(a) trT˚ “
ř

j

xT˚ej , ejy “
ř

j

xTej , ejy “ trT .

(b) If T is unitary, then

trpST q “ trpT˚pTSqT q “ pTST, T q “ pTS, idq “ trTS

for the pairing is independent of the choice of orthonormal basis. The general case follows
at once, since the desired identity is linear in T , and every bounded operator is a linear
combination of unitary operators by Proposition 4.0.3.(iv).

12.4 Spectral Theorem for Normal Operators

12.4.1 Resolution of the Identity
Definition. Let pX,Aq be a measurable space and H a Hilbert space. A resolution of the
identity on A is a map E : A Ñ BpHq with the following properties:

(a) EpHq “ 0, EpΩq “ idH .

(b) Each Epωq is an orthogonal projection.

(c) Epω1 X ω2q “ Epω1qEpω2q.

(d) If ω1 X ω2 “ H, then Epω1 Y ω2q “ Epω1q ` Epω2q.

(e) For every v, w P H, the set function Ev,w : A Ñ C defined by

Ev,wpωq “ xEpωqv, wy

is a complex measure on pX,Aq.

When pX,Aq is the Borel σ-algebra on a locally compact Hausdorff space, we further require each
Ev,w to be regular.

We derive some formal properties of a resolution of the identity.
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(i) Since each Epωq is an orthogonal projection, for each v P H, we have

Ev,vpωq “ xEpωqv, vy “ ∥Epωqv∥2 .

Thus each Ev,v is a positive measure on pX,Aq with total variation ∥Ev,v∥ “ Ev,vpXq “ ∥v∥2.

(ii) The complex measure Ev,w has total variation less than ∥v∥ ∥w∥. Indeed, let pωnqNn“1 be a
finite measurable partition of X. Write |Ev,wpωnq| “ αnEv,wpωnq for some |αn| “ 1. Then

N
ÿ

n“1

|Ev,wpωnq| “

N
ÿ

n“1

αnEv,wpωnq “

C

N
ÿ

n“1

αnEpωnqv, w

G

ď

∥∥∥∥∥ N
ÿ

n“1

αnEpωnqv

∥∥∥∥∥ ∥w∥
The Epωnqv are pairwise orthogonal, so∥∥∥∥∥ N

ÿ

n“1

Epωnqαnv

∥∥∥∥∥
2

“

N
ÿ

n“1

∥Epωnqv∥2 “

∥∥∥∥∥ N
ÿ

n“1

Epωnqv

∥∥∥∥∥
2

“ ∥EpXqv∥2 “ ∥v∥2

This proves the claim.

(iii) If pωnqn is a sequence such that Epωnq “ 0 for all n ě 1, then E

ˆ

Ť

ně1
ωn

˙

“ 0. Indeed, if we

put ω to be the union, then for each x P H, we have

Ex,xpωq “

8
ÿ

n“1

Ex,xpωnq “

8
ÿ

n“1

xEpωnqx, xy “ 0.

Since ∥Epωqx∥2 “ Ex,xpωq, we deduce Epωq “ 0.

(iv) By (c), any two of the projections Epωq commute with each other.

(v) By (a), (c), if ω1 X ω2, then the ranges of Epω1q and Epω2q are orthogonal.

(vi) By (b), we have Ev,wpωq “ Ew,vpωq.

(vii) By (d), the set function E is finitely additive.

It is natural to ask whether E is countably additive in the norm topology. Let pωnqn be a sequence

of disjoint sets in A. Since ∥Epωnq∥ is either 0 or 1, partial sums of the series
8
ÿ

n“1

Epωnq cannot

form a Cauchy sequence unless Epωnq “ 0 for all but finitely many n.
However, E is in fact countably additive in strong operator topology. Let pωnqn be as above and

v P H. By (e), we have
8
ÿ

n“1

xEpωnqv, wy “ xEpωqv, wy

for all w P H, where ω denotes the union of the ωn. Note that the vectors Epωnqv are pairwise
orthogonal by (vi), so Proposition E.2.7 implies

8
ÿ

n“1

Epωnqv “ Epωqv

In other words,
8
ÿ

n“1

Epωnq “ Epωq in strong operator topology. In a fancier term, for each v P H,

the map ω ÞÑ Epωqv is a countably additive H-valued measure on pX,Aq.
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Recall that B “ BpX,A,Cq be the set of all bounded A-measurable functions on X; this is
a unital commutative C˚-algebra with respect to the sup norm ∥¨∥sup. Let E : A Ñ BpHq be a
resolution of the identity. Let tDnun be a countable collection of open discs which forms a basis for
the topology of C. For f P B, let V “ Vf be the union of those Dn with Epf´1pDnqq “ 0; then
Epf´1pV qq “ 0 (by (iv)) and V is the largest open subspace of C with this property (use (c)).

For f P B, the essential image ess.im pfq of f is the complement of V ; this is the smallest
closed subset of C that contains fppq for almost every p P X (with respect to the H-valued measure
E). Explicitly,

ess.im pfq “ tz P C | Eptx P X | |fpxq ´ z| ă εuq ‰ 0 for all ε ą 0u

We say f is essentially bounded if its essential image is bounded in C (hence compact). In this
case, we define the essential supremum

∥f∥8 :“ sup
λPess.im pfq

|λ| “ inf
EpNq“0

sup
xRN

|fpxq|

Let N :“ tf P B | ∥f∥8 “ 0u; then N is a ˚-ideal, and a similar argument to the proof of Theorem
D.5.5 and (iv) shows N is closed. Then B{N is a Banach algebra, and we denote it by L8pEq.

Lemma 12.4.1.

1. Every f P B is a uniform limit of simple functions.

2. The quotient norm for a coset f `N is ∥f∥8.

3. The spectrum σL8pEqpf `Nq is the essential image of f .

Proof.

1. This is due to boundedness.

2. Let f0 P N and N “ f´1
0 pVf0q. Then ∥f ` f0∥sup ě sup

xRN
|fpxq ` f0pxq|. Since f0pxq lies in the

essential image of f0 for x R N , ∥f0∥8 “ 0 implies f0pxq “ 0 for all x R N , whence,

∥f ` f0∥sup ě sup
xRN

|fpxq| ě ∥f∥8

The reverse estimate is given by

∥f∥8 “ inf
EpNq“0

sup
xRN

|fpxq| “ inf
EpNq“0

∥∥∥f ` ∥f∥XzN 1N

∥∥∥
sup

ě inf
f0PN

∥f ` f0∥sup “ ∥f `N∥sup .

3.

The use of this lemma will be implicit. Say a subalgebra A of BpHq normal if it is commutative
and self-adjoint.

Theorem 12.4.2. If E is a resolution of the identity as above, then there exists an isometric
˚-homomorphism

Ψ : L8pEq BpHq
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onto a closed unital normal commutative subalgebra A of BpHq given by the formula

xΨpfqv, wy “

ż

X

fdEv,w

for all v, w P H and f P B. Symbolically we will write

Ψpfq “

ż

X

fdE.

Moreover,

1. ∥Ψpfqv∥2 “

ż

X

|f |2dEv,v.

2. CBpHqptEpωq | ω P Auq “ CBpHqptΨpfq | f P L8pEquq.

In particular, we have

∥f∥28 “ sup
∥v∥ď1

ż

X

|f |2dEv,v

Proof. For v, w and f P B, define Bf pv, wq :“

ż

X

fdEv,w (integration against a complex measure).
Then by (iii) |Bf pv, wq| ď ∥f∥8 ∥Ev,w∥ ď ∥f∥8 ∥v∥ ∥w∥, so by Riesz’s Representation theorem we
find a unique operator Ψpfq P BpHq such that

xΨpfqv, wy “

ż

X

fdEv,w

for all v, w P H. The estimate and uniqueness at once show that Ψ : B Ñ BpHq is a continuous
linear map.

If s is a simple function, say s “
n
ř

i“1

αi1ωi
, where tω1, . . . , ωnu is a measurable partition of X,

then

Bspv, wq “

n
ÿ

i“1

αiEv,wpωiq “

C

n
ÿ

i“1

αiEpωiqv, w

G

The uniqueness shows Ψpsq “
n
ř

i“1

αiEpωiq. Now

Ψpsq˚ “

n
ÿ

i“1

αiEpωiq “ Ψpsq.

Since every function in B is a uniform limit of simple functions, this shows Ψpfq˚ “ Ψpfq. If
t “

m
ř

j“1

βj1ω1
j

is another simple function, where tω1
ju is a measure partition of X, then

st “
ÿ

i,j

αiβj1ωiXω1
j

On the other hand, by (c)

ΨpsqΨptq “
ÿ

i,j

αiβjEpωiqEpω1
jq “

ÿ

i,j

αiβjEpωi X ω1
jq.

This show Ψpstq “ ΨpsqΨptq, thus Ψpfgq “ ΨpfqΨpgq for all f, g P B. This proves Ψ is a continuous
˚-homomorphism. Also,

∥Ψpsqv∥2 “ xΨpsq˚Ψpsqv, vy “ xΨp|s|2qv, vy “

ż

X

|s|2dEv,v,
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so 1. holds and ∥Ψpsqv∥ ď ∥s∥8 ∥v∥ by (ii). On the other hand, if v lies in the image of Epωiq for
some i, then by (vi)

Ψpsqv “ αiEpωiqv “ αiv.

If we choose i so that |αi| “ ∥s∥8, then together with a previous estimate we obtain ∥s∥8 “ ∥Ψpsq∥.
This shows Ψ is isometric. Finally, Q commutes with every Epωq if and only Q commutes with every
Ψpsq with s simple. A limit process shows 2. holds.

12.4.2 Spectral theorem
In the following let H be a Hilbert space. Recall from Lemma 3.3.2 that if A is a closed unital
˚-subalgebra of BpHq, then σApT q “ σBpHqpT q for all T P A.

Theorem 12.4.3. Let A be closed unital normal commutative subalgebra of BpHq.

(I) There exists a unique resolution of the identity E on the Borel subsets of the structure space
∆ “ ∆A which satisfies

T “

ż

∆

pTdE

for every T P A, where pT is the Gelfand transform.

(II) The inverse of the Gelfand transform extends to an isometric ˚-homomorphism Φ : L8pEq Ñ

BpHq onto the closed subalgebra B of BpHq containing A, given by

Φf “

ż

∆

fdE.

(III) B is the norm closure of the set of all finite linear combinations of the projections Epωq.

(IV) If ω Ď ∆ is nonempty and open, then Epωq ‰ 0.

(V) CBpHqA “ CBpHqptEpωq | ω Ď ∆ : Boreluq

Proof. Recall by Gelfand-Naimark Theorem, ∆ is compact and the Gelfand transform

A Cp∆q

T pT

is an isometric ˚-isomorphism. We first prove the uniqueness part in 1. Suppose E is a resolution
of identity on ∆ satisfying

xTv,wy “

ż

∆

pTdEv,w

for all v, w P H, T P A. Since pT runs over Cp∆q and Ev,w is complex regular, so the uniqueness
part of Riesz’s representation theorem shows that each Ev,w is uniquely determined by the above
identity. Since Ev,wpωq “ xEpωqv, wy, each projection Epωq is also uniquely determined.

We now consider the existence. For any v, w P H, by Gelfand-Naimark Theorem, the functional

Cp∆q C

pT xTv,wy
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is a bounded linear function on Cp∆q of norm ď ∥v∥ ∥w∥. So by Riesz’s representation theorem we
can find a unique regular complex Borel measure µv,w on ∆ such that

xTv,wy “

ż

∆

pTdµv,w

holds for all v, w P H and T P A. The right hand side still defines a bounded sesquilinear functional
on H if pT is replaced by bounded Borel functions f . To each such f it corresponds to a unique
operator Φf P BpHq (by Riesz’s representation theorem) such that

xΦfv, wy “

ż

∆

fdµv,w.

Comparing, we see Φ pT “ T , so it extends the inverse of Gelfand transform. The uniqueness part
shows that Φ is linear. Note that T is self-adjoint if and only if pT is real-valued, and for such T , we
have

ż

∆

pTdµv,w “ xTv,wy “ xv, Twy “ xTw, vy “

ż

∆

pTdµw,v

implying µv,w “ µw,v, thus

xΦfv, wy “

ż

∆

fdµv,w “

ż

∆

fdµw,v “ xΦfw, vy “ xv,Φfwy

for all v, w P H. This shows Φf “ pΦfq˚. Next we prove Φpfgq “ pΦfqpΦgq for all bounded Borel
f, g on ∆. For S, T P A, we have xST “ pS pT , so

ż

∆

pS pTdµv,w “ xSTv,wy “

ż

∆

pSdµTv,w.

This holds for all pS P Cp∆q, so it remains true if pS is replaced by any bounded Borel f . Thus
ż

∆

f pTdµv,w “

ż

∆

fdµTv,w “ xΦfpTvq, wy “ xTv, uy “

ż

∆

pTdv,u

where we put u “ pΦfq˚w. Again, this remains true if pT is replaced by any g, giving

xΦpfgqv, wy “

ż

∆

fgdµv,w “

ż

∆

gdµv,u “ xΦgv, uy “ xΦgv, pΦfq˚wy “ xΦpfqΦpgqv, wy.

Now we define E: for ω Ď ∆ Borel, define Epωq :“ Φp1ωq.

(c) Since Φ is multiplicative, this shows Epω1 X ω2q “ Epω1qEpω2q.

(b) Since Φf is self-adjoint when f is real, this shows Epωq is self-adjoint, and by (c) (with
ω1 “ ω2 “ ω) we see Epωq is a projection.

(a) EpHq “ Φp0q “ 0, and Ep∆q “ Φpid∆q “ idH .

(d) The integral representation xΦfv, wy “

ż

∆

fdµx,y show that E is finitely additive.

(e) For v, w P H, we have

Ev,wpωq “ αEpωqv, wy “

ż

∆

1ωdµv,w “ µv,wpωq

so Ev,w is a complex measure, and thus Φf “

ż

∆

fdE.
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To finish (II) we must show Φ is an isometry, but this follows from Theorem 12.4.2. (III) is clear
for every function in L8pEq is a uniform limit of simple functions. For (IV), let ω be open with
Epωq “ 0. Let T P A with supp pT Ď ω. Then by (I)

T “

ż

∆

pTdE “

ż

ω

pTdE “ 0

whence pT “ 0. From Urysohn’s Lemma we see ω “ H. This proves (IV). To prove (V), choose
S P BpHq, v, w P H, and put u “ S˚w. For any T P A and Borel ω Ď ∆, we have

xSTv,wy “ xTv, uy “

ż

∆

pTdEv,u

xTsv, wy “

ż

∆

pTdESv,w

xSEpωqv, wy “ xEpωqv, uy “ Ev,upωq

xEpωqSv,wy “ ESv,wpωq.

Thus S P CBpHqpAq if and only if ESv,w “ Ev,u, if and only if SEpωq “ EpωqS for all Borel ω.

Now we specialize to a single normal operator T .

Theorem 12.4.4. If T P BpHq is normal, then there exists a unique resolution of the identity E on
the Borel subsets of σpT q “ σBpHqpT q which satisfies

T “

ż

σpT q

λdEpλq.

Furthermore, every projection Epωq commutes with every S P BpHq that commutes with T .

We refer to this E as the spectral decomposition of T . Sometimes it is convenient to extend E

to all Borel sets in C, by setting Epωq “ 0 if ω X σpT q “ H.

Proof. Let A “ C˚pidH , T, T
˚q Ď BpHq be the smallest unital commutative C˚-algebra generated

by T in BpHq. Now Theorem 12.4.3 applies. In the proof of continuous functional calculus we see
∆A can be identified with σpT q via the Gelfand transform pT ; explicitly, we have pT pλq “ λ for all
λ P σpT q. The proves the existence of E.

On the other hand, if E exists so that T “

ż

σpT q

λdEpλq holds, then Theorem 12.4.2 implies

ppT, T˚q “

ż

σpT q

ppλ, λqdEpλq

holds for all p P CrX,Y s. The uniqueness then follows from Stone-Weierstrass (and argue as in the
first paragraph of the proof of Theorem 12.4.2).

For the last statement, if ST “ TS, then ST˚ “ T˚S by Corollary 3.3.31.3; hence S commutes
with A. By Theorem 12.4.3.(V), this shows SEpωq “ EpωqS for all Borel ω Ď σpT q.

This theorem is clearly an extension of the continuous functional calculus of normal operators.
Let T be a normal operator and A is closed normal subalgebra generated by T . Let E be the spectral
decomposition of T . Then Theorem 12.4.3 gives an isometric ˚-homomorphism

Ψ : L8pEq BpHq

f Ψf
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with

Ψf “

ż

σpT q

fdE.

Let us write fpT q :“ Ψf for any bounded Borel function f . Then f ÞÑ fpT q satisfies

1. fpT q “ fpT q˚,

2. ∥fpT q∥ “ ∥f∥8 ď sup
λPσpT q

|fpλq| with equality when f is continuous.

Thus f ÞÑ fpT q gives an isometric ˚-homomorphism from CpσpT qq to BpHq (with image A) satisfying

∥fpT qv∥2 “

ż

σpT q

|f |2dEx,x.

The image of Borel functional calculus is the closure of finite linear combinations of projections Epωq

with ω Ď σpT q Borel.

Corollary 12.4.4.1. Let T P BpHq be normal. Then there exists a subset X Ď H, a Radon measure
on σpT q ˆX (topologize X discretely) and an isometric isomorphism U : H Ñ L2pσpT q ˆX,µq such
that

mf “ UfpT qU´1

for all f P CpσpT qq, where mf P BpL2pσpT q ˆ X,µqq is given by g ÞÑ rpt, xq ÞÑ gpt, xqfptqs. If H is
separable, then X is countable and µ can be made finite.

Proof. Put A “ tfpT q | f P CpσpT qqu Ď BpHq, the image of the continuous functional calculus of
T . Let E be the unique resolution of the identity on σpT q given in Theorem 12.4.4. For x P H, put
Ex “ Ex,x. Then

xfpT qx, xyH “

ż

σpT q

fdEx.

Since f ÞÑ fpT q is a ˚-homomorphism, it follows that

∥fpT qx∥2 “ x|f |2pT qx, xyH “

ż

σpT q

|f |2dEx “ ∥f∥2L2pσpT q,Exq .

Put Hx :“ Ax
norm

Ď H. Then f ÞÑ fpT qx extends to an isometric isomorphism Ux : L2pσpT q, Exq –

Hx. For f, g P CpσpT qq, we have

U´1
x fpT qUxg “ U´1

x fpT qgpT qx “ U´1
x pfgqpT qx “ fg.

Notice for each x P H, the closed subspace Hx is A-invariant. Since A is normal, it follows that
its orthogonal complement HK

x is also A-invariant. By a Zorn’s lemma argument, we can find a
subset X Ď H such that

H “
x

à

xPX

Hx.

Then the isometries Ux, x P X give rise to an isometry U : H Ñ x

À

xPX

L2pσpT q, Exq.
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Equip X with discrete topology and equip σpT q ˆX with product topology. Let µ be the Radon
measure on σpT q ˆX induced, via Riesz’s representation theorem, by the functional

CcpσpT q ˆXq Q f ÞÑ
ÿ

xPX

ż

σpT q

f |σpT qˆtxudEx

Then, as Hilbert spaces,

x

à

xPX

L2pσpT q, Exq – L2pσpT q ˆX,µq

The second last assertion follow at once from what we’ve established. For the last assertion, note
that X is necessarily countable when H is separable, as L2pσpT qˆX,µq is cannot be separable unless
X is countable. To see µ can be made finite, enumerate X “ txiuiě1 and replace xi by 2´i xi

∥xi∥ in
the above construction. Then

ÿ

xPX

ż

σpT q

dEx “
ÿ

iě1

ż

σpEq

dEX “
ÿ

iě1

∥xi∥ “
ÿ

iě1

2´i ă 8

as claimed.

Corollary 12.4.4.2. Let T be a densely defined closed normal operator on H. Then there exists
a subset X Ď H, a compact subset ∆ Ď B1p0q Ď C, a Radon measure µ on ∆ ˆ X (topologize X
discretely) and an isometric isomorphism U : H Ñ L2p∆ ˆX,µq such that

mf “ UTU´1

where f : z ÞÑ
z

p1 ´ |z|2q
1
2

, and mf is an operator on L2p∆ˆX,µq given by g ÞÑ rpt, xq ÞÑ gpt, xqfptqs.

If T is self-adjoint, then ∆ Ď R. If H is separable, then X is countable and µ can be made finite.

Proof. Applying Corollary 12.4.4.1 to the bounded operator ZT defined near Lemma E.5.9, there
exists a subset X Ď H, a Radon measure µ on σpZT q ˆ X and an isometric isomorphism U : H Ñ

L2pσpZT q ˆX,µq such that

mh “ UhpZT qU´1.

for all h P CpσpZT qq. Take ∆ “ σpZT q. Since ∥ZT ∥op ď 1, we have ∆ Ď B1p0q. The last assertion
follows from the last assertion in Corollary 12.4.4.1. The second last follows from Lemma E.5.9.(iv).

Next we claim µpS1 ˆ Xq “ 0. It suffices to show µpS1 ˆ txuq “ 0 for each x P X. To this end,
by taking hpzq “ 1 ´ |z|2, we see

m1´|z|2 “ UITU
´1

where IT is defined near Lemma E.5.9. Since IT is injective, so is m1´|z|2 as an operator on
L2pσpZT q ˆ txu, µq. This implies t1 ´ |z|2 “ 0u ˆ txu “ S1 ˆ txu is null, as we claimed (hit m1´|z|2

by 1t1´|z|2“0uˆtxu).
Since f P Cp∆zS1q and µpS1 ˆ Xq “ 0, the operator mf given by g ÞÑ rpt, xq ÞÑ gpt, xqfptqs

is a densely defined closed operator on L2p∆ ˆ X,µq. We claim mf “ UTU´1. For this put
S “ U´1mfU ; then S is a densely defined closed normal operator on H and

ZS “ U´1Zmf
U “ U´1mzU “ ZT

so that S “ T by Lemma E.5.9.
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Chapter 13

Representation

Let V be an F -space over C. Put

GLctspV q :“ tT P AutCpV q | T is continuousu

It follows from the Open Mapping theorem that GLctspV q is a group.

Definition. Let G be a topological group.

1. An (F -space) representation of G is a group homomorphism π : G Ñ GLctspV q with V an
F -space such that the action map

Gˆ V V

pg, vq πpgqv

is continuous. If V is Fréchet (resp. Banach, Hilbert), we say π is a Fréchet (resp. Banach,
Hilbert) space representation.

2. For two representations pπ, Vπq, pη, Vηq of G, a continuous linear operator T : Vπ Ñ Vη is
a G-homomorphism, or is called G-equivariant/intertwining, if Tπpgq “ ηpgqT for all
g P G. The set of all G-intertwining operators from Vπ to Vη is denoted by HomGpVπ, Vηq, or
HomGpπ, ηq.

Lemma 13.0.1. Let G be a topological group, V be a Banach space and π : G Ñ GLctspV q be a
group homomorphism. Then π is a representation if and only if

(a) the map g ÞÑ πpgqv is continuous at g “ 1 for every v P V , and

(b) the map g ÞÑ ∥πpgq∥op is bounded in a neighborhood of the unit of G.

Proof. Suppose π is a representation. Then (a) is obvious. For (b), let R ą 0 be any real number.
Then by continuity, we can find r ą 0 and a unit neighborhood U of G such that πpUqBrp0q Ď BRp0q.
Then for g P U ,

∥πpgq∥op “ sup
∥v∥“1

∥πpgqv∥ “
2

r
sup

∥v∥“1

∥∥∥πpgq
rv

2

∥∥∥ ď
2R

r

Conversely, we write

∥πpgqv ´ πphqw∥ “
∥∥πphqpπph´1gqv ´ wq

∥∥ ď ∥πphq∥

ď ∥πphq∥
∥∥πph´1gqv ´ πph´1gqw ` πph´1gqw ´ w

∥∥
ď ∥πphq∥

`∥∥πph´1gq
∥∥ ∥v ´ w∥ `

∥∥πph´1gqw ´ w
∥∥˘
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By assumption, as pg, vq Ñ ph,wq, the last term tends to 0, hence the continuity.

Definition. A representation pπ, Vπq is called a subrepresentation of a representation pη, Vηq if

• Vπ is a closed subspace of Vπ, and

• η|Vπ
“ π.

In other words, a subrepresentation of pη, Vηq is a closed subspace invariant under η.

Definition. Let H be a Hilbert space. A representation π of G on H is called a unitary repre-
sentation if

xπpgqv, πpgqwy “ xv, wy

for all g P G and v, w P H; in other words, all πpgq, g P G are unitary operators on H.

• For a Hilbert space H, denote by UpHq Ď GLctspHq the subgroup of unitary operators.

• By Lemma 13.0.1, a homomorphism π : G Ñ UpHq is a representation of G if and only if
g ÞÑ πpgqv is continuous at g “ 1 for all v P V .

Lemma 13.0.2. A representation π of the group G on a Hilbert space V is unitary if and only if
πpg´1q “ πpgq˚ holds for every g P G.

Proof. For g P G, πpgq is unitary if and only if πpgq is invertible and πpgq˚ “ πpg´1q.

Example 13.0.3.

1. For a continuous group homomorphism χ : G Ñ Cˆ, we can define a representation πχ of G on
V “ C by πχpgqv “ χpgqv, and πχ is unitary if and only if χ maps into the unit circle T “ S1.

2. Let G be an LCH group. Then one can consider the left regular representation

πreg : G GLctspL2pGqq

x Lx

This is really a representation by Lemma 13.0.1, Lemma 2.6.7 and

xLxϕ,Lxψy “

ż

G

LxϕpyqLxψpyqdy

“

ż

G

ϕpx´1yqψpx´1yqdy

“

ż

G

ϕpyqψpyqdy “ xϕ, ψy

so ∥Lx∥ “ 1 px P Gq and πreg is unitary (essentially by the left-invariant of Haar measure).

Theorem 13.0.4. Let H be a Hilbert space, G a locally compact group and π : G Ñ GLctspHq a
homomorphism. Then π is a representation if and only if

(i) for each compact set K in G there exists a constant CK ą 0 such that ∥πpgq∥ ď CK for each
g P K, and

(ii) there is a dense subspace V Ď H such that the function g ÞÑ cv,wpgq :“ xπpgqv, wy is continuous
for each v, w P V .
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Proof. Assume π is a representation. Since the action map G ˆ H Ñ H is continuous, (ii) is clear.
Let K be any compact subset of G. Then for each v P V , the function K Q g ÞÑ ∥πpgqv∥ attains its
maximum. By Uniform boundedness principle, there exists CK ą 0 such that ∥πpgq∥ ď CK for each
g P K. This shows (i).

Conversely, suppose π satisfies (i) and (ii). For a relatively compact open set U in G, we put

L1pUq “ tf P L1pGq | supp f Ď Uu

If f P CcpGq X L1pUq, then for v, w P

13.1 Construction
In this section let G be a topological group.

Definition. Let pπi,Hiq be unitary representations of G on Hilbert spaces Hi pi P Iq. We define
the direct sum representation

À

iPI

πi : G Ñ GLctspx
À

iPI

Hiq by

˜

à

iPI

πi

¸

pgq
ÿ

iPI

vi :“
ÿ

iPI

πipgqvi

Example 13.1.1. Let G “ R{Z and V “ L2pR{Zq. Let π be the left regular representation of R{Z.
By the Plancherel theorem, pG “ tekpxq :“ e2πikx | k P Zu forms a orthonormal basis of L2pR{Zq, so
π admits a direct sum decomposition

V “
x

à

kPZ
Cek

and G acts on Cek through the character ek.

Definition. Let G1, G2 be two topological group, and pπi,Hiq be a representation of Gi on the
Hilbert space Hi. Define the tensor product representation π1 bπ2 : G1 ˆG2 Ñ GLctspH1pbH2q

by

pπ1 b π2qpg1, g2qpv1 b v2q “ π1pv1q b π2pv2q

Definition. Let pπi, Viq be two representations of G on Banach spaces. Then HomGpV1, V2q is a
closed subspace of the Banach space HomctspV1, V2q. Define a representation π : G Ñ GLctspHomGpV1, V2qq

of G by

pπLpgqT qpvq “ π2pgqT pvq “ T pπ1pgqvq

13.2 Schur’s Lemma
Definition. A representation pπ, Vπq is called a subrepresentation of a representation pη, Vηq if

• Vπ is a closed subspace of Vπ, and

• η|Vπ “ π.

In other words, a subrepresentation of pη, Vηq is a closed subspace invariant under η.
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Definition. Let pπ, V q be a representation on a group G.

1. pπ, V q is called irreducible if it does not contain any proper nontrivial subrepresentation.

2. A vector v P V is called a cyclic vector if the linear span of the G-orbit Gv :“ tπpgqv | g P Gu

of v is dense in V .

• A representation is irreducible if and only if every nonzero vector is cyclic.

Example 13.2.1.

1. Every one-dimensional representation is irreducible.

2. Consider the unitary group Upnq and its natural action on Cn. Then this representation is
irreducible. The case n “ 1 is trivial. When n ě 2, we show for any two vectors v, u P Cn

with ∥v∥ “ ∥u∥ “ 1, we can find A P Upnq such that Av “ u. Consider the plane spanned by
v, u; up to a (unitary) rotation, we can assume v “ p1, 0, 0, . . . , 0q and u “ pa, b, 0, . . . , 0q with

|a|2 ` |b|2 “ 1. Then A :“

˜

a ´b

b a

¸

‘ In´2 does the job. Hence a nontrivial Upnq-invariant

subspace of Cn contains all directions, and hence it is the whole space.

Lemma 13.2.2 (Schur). Let pπ,Hq be a unitary representation of the topological group G. TFAE

(a) pπ,Hq is irreducible.

(b) HomGpH,Hq “ C idH .

Proof. Since πpg´1q “ πpgq˚, the set tπpgq|g P Gu Ď BpHq is self-adjoint. Then the result follows
from Theorem 12.1.8.1

Definition. For two unitary representations pπ, Vπq, pη, Vηq, they are called unitarily equivalent
if there exists a unitary G-intertwining operator T : Vπ Ñ Vη.

Example 13.2.3. Let G “ R and let Vπ “ Vη “ L2pRq. The representation π is given by πpxqϕpyq “

ϕpx ` yq, and η is given by ηpxqϕpyq “ e2πixyϕpyq. The Fourier transformation is then unitary
equivalence Vπ Ñ Vη. This follows from the Plancherel theorem and a direct computation.

Corollary 13.2.6.1. Let pπ, Vπq and pη, Vηq be two irreducible unitary representations. Then a
G-homomorphism T from Vπ to Vη is either zero or invertible with continuous inverse. In the latter
case there exists c ą 0 such that cT is unitary. Hence the space HomGpπ, ηq is zero unless π and η

is unitary equivalent, in which case the space is of dimension 1.
1For the implication (a)ñ(b), there is an alternative derivation using spectral theorem. Note that if T P

HomGpH,Hq, so is T˚ P HomGpH,Hq. Since T “
T ` T˚

2
` i

T ´ T˚

2i
, it suffices to show if T P HomGpH,Hq

is self-adjoint, then T is scalar. By spectral theorem, there exists a unique resolution of the identity E on the
Borel algebra of σpT q. Since T commutes with each πpgq, each Epωq also commutes with πpgq; in other words,
Epωq P HomGpH,Hq for every Borel ω Ď σpT q. By irreducibility, we have Epωq “ 0 or idH for each Borel ω. Since
σpT q Ď R is compact, we then can find a closed interval I “ r´a, as Ě σpT q such that EpJq “ idH . Bisect J into
two halves J “ J1 \ J 1

1; then EpJ1qEpJ 1
1q “ EpJ 1

1qEpJ1q “ 0 and EpJ1q ` EpJ 1
1q “ idH . WLOG, assume EpJ1q ‰ 0,

so that EpJ1q “ idH by irreducibility, and hence EpJ 1
1q “ 0. Continuing this bisecting process, we find a decreasing

sequence of closed intervals J0 Ě J1 Ě ¨ ¨ ¨ converging to a singleton p, such that EpJiq “ idH . It follows that the
measure E is supported at the singleton p, so using the definition of the integration, we see

T “

ż a

´a
xdEpxq “ p idH .
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Proof. Let T : Vπ Ñ Vη be a G-homomorphism. Then its adjoint T˚ : Vη Ñ Vπ is also a G-
homomorphism:

xv, T˚ηpgqwy “ xTv, ηpgqwy “ xηpg´1qTv,wy

“ xTπpg´1qv, wy “ xv, πpgqT˚wy

Thus T˚T P EndGpVπq, so by Schur’s lemma T˚T “ λ idVπ for some λ P C. If T ‰ 0, then T˚T

is nonzero and positive, so λ ą 0. If we let c “
?
λ´1 ą 0, then pcT q˚pcT q “ idVπ ; this shows cT

is unitary. A similar argument shows TT˚ is bijective, which implies cT is bijective, whence T is a
homeomorphism by Open Mapping theorem.

Definition. For an LCH group G, we denote by pG the set of all equivalence classes the irreducible
unitary representations of G. We call pG the unitary dual of G.

• We need to explain why pG forms a set. First, we show that there exists a cardinality α

depending on G such that every irreducible representation pπ, Vπq of G satisfies dimVπ ď α.
Indeed, every irreducible representation has a cyclic vector, so we can take α “ #G. Secondly,
a representation of G is just a vector space V together with an appropriate function V ˆV Ñ C
and a map G Ñ GLpV q, and for each cardinality β ď α there exists a unique vector space
Vβ of dimension β. Hence every equivalence class of irreducible representations of G has a
representation in the set

Ť

βďα

CVβˆVβ ˆ GLpVβqG.

Example 13.2.7. If G is LCA, then every irreducible representation is one-dimensional, so the
unitary dual of G coincides with the Pontryagin dual of G. To see this, let pπ, Vπq be any nonzero
irreducible unitary representation of G. Then πpxqπpyq “ πpxyq “ πpyxq “ πpyqπpxq for all x, y P G,
so that πpxq P HomGpVπ, Vπq. By Schur’s lemma, for all x P G we have πpxq “ λpxq idVπ

for some
λpxq P C. But this means every closed subspace of Vπ is G-invariant, so dimC Vπ “ 1 particularly.
By Lemma 13.0.2 we have λpxq P S1 for all x P G, so λ is a unitary character of G. The converse is
clear.

There is a version of Schur’s lemma for the densely defined operators.

Corollary 13.2.6.1. Let pπ, Vπq be an irreducible unitary representation. Let D ď H be a G-
invariant dense subspace, and suppose T P HomGpD,Hq (here D has no topology). Assume there
exists another dense subspace D1 ď H and S P HomCpD1,Hq (again, no topology on D1) such that

xTv,wy “ xv, Swy

for v P D, w P D1. Then T “ λ idD for some λ P C.

Proof. Denote by A the subalgebra of BpHq generated by tπpgq | g P Gu; note that A is unital,
and since π is unitary, A is self-adjoint. By Schur’s lemma, CBpHqpAq “ HomGpH,Hq “ C idH , so
CBpHqpCBpHqpAqq “ BpHq.

Let v P D and assume v and Tv are linear independent. By Bicommutant theorem (applied
to the operator idH P A and the vectors v, Tv), we can find Uj P A such that limj Ujv “ v and
limj UjTv “ Tv. Now, for w P D1,

xv, wy “ limxUjTv,wy “ limxTUjv, wy “ limxUjv, Swy “ xv, Swy “ xTv,wy.

Since D1 is dense, this implies v “ Tv, a contradiction. Hence v and Tv are linear dependent for all
v P D, proving that T is a scalar on D.
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13.3 Representation of L1pGq

Proposition 13.3.1. Let pπ, Vπq be a unitary representation of an LCH group G. For each f P

L1pGq there exists a unique bounded operator πpfq on Vπ such that

xπpfqv, wy “

ż

G

fpxqxπpxqv, wydx

holds for all v, w P Vπ. The induced map π : L1pGq Ñ BpVπq is a continuous homomorphism of
Banach ˚-algebras. Also, we have πpLxfq “ πpxqπpfq for each x P G and f P L1pGq.

Proof. We invoke Riesz’s Representation theorem. Taking complex conjugation, it suffices to show

xw, πpfqvy “

ż

G

fpxqxw, πpwqvydx

Now the map w ÞÑ

ż

G

fpxqxw, πpwqvydx is C-linear and bounded, since

ˇ

ˇ

ˇ

ˇ

ż

G

fpxqxw, πpwqvydx

ˇ

ˇ

ˇ

ˇ

ď

ż

G

|fpxqxw, πpwqvy| dx

ď

ż

G

|fpxq| ∥w∥ ∥πpxqv∥ dx

“ ∥f∥1 ∥w∥ ∥v∥

Here we use π is unitary. Therefore there exists a unique vector, denoted by πpfqv P Vπ, such that
the equality holds. The same theorem shows v ÞÑ πpfqv is linear. To show it is bounded, note that
the above computation gives

∥πpfqv∥2 “ xπpfqv, πpfqvy ď ∥f∥1 ∥πpfqv∥ ∥v∥

so that ∥πpfqv∥ ď ∥f∥1 ∥v∥. It remains to show πpf ˚ gq “ πpfqπpgq and πpfq˚ “ πpf˚q. For the
former,

xπpf ˚ gqv, wy “

ż

G

ˆ
ż

G

fpyqgpy´1xqdy

˙

xπpxqv, wydx

Fubini
“

ż

G

ż

G

fpyqgpy´1xqxπpxqv, wydxdy

px ÞÑ yxq “

ż

G

ż

G

fpyqgpxqxπpyxqv, wydxdy

“

ż

G

ż

G

fpyqgpxqxπpxqv, πpy´1qwydxdy

“

ż

G

fpyqxπpgqv, πpy´1qwydy

“

ż

G

fpyqxπpyqπpgqv, wydy “ xπpfqπpgqv, wy
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and for the latter,

xπpf˚qv, wy “

ż

G

f˚pxqxπpxqv, wydx

“

ż

G

∆Gpx´1qfpx´1qxv, πpx´1qwydx

“

ż

G

∆Gpx´1qfpx´1qxπpx´1qw, vydx

“

ż

G

fpxqxπpxqw, vydx

“ xπpfqw, vy “ xv, πpfqwy

For the last assertion,

xπpLxfqv, wy “

ż

G

fpx´1gqxπpgqv, wydg “

ż

G

fpgqxπpxgqv, wydg “ xπpxqπpfqv, wy

Remark 13.3.2. Alternatively, one can define πpfq as a Bochner integral

πpfq :“

ż

G

fpxqπpxqdx

in the Banach space BpVπq. To see why this integral exists, we use Proposition D.7.3.2. By linearity,
we may assume f P L1pGq is nonnegative. Consider the finite positive measure dµpxq “ fpxqdx on
G. Then πpfq “

ż

G

πpxqdµpxq. By Corollary 2.2.2.1.4 the measure dµ is supported on a σ-compact

open subset K of G, so the integral
ż

G

πpxqdµpxq really takes place on a σ-compact set. Since π is

continuous, by Lemma D.7.2 π is separable when restricting to K, and thus
ż

G

πpxqdµpxq exists by
Proposition D.7.3.2.

Lemma 13.3.3. Let pπ, Vπq be a representation of G. Then for every v P Vπ and every ε ą 0

there exists a unit-neighborhood U such that for every Dirac function ϕU with support in U one
has ∥πpϕU qv ´ v∥ ă ε. In particular, for every Dirac net pϕU qU , the net pπpϕU qvqU converges to v
in norm topology.

Proof. For any open set U and ϕU a Dirac function supported in U , we have

∥πpϕU qv ´ v∥ “

∥∥∥∥ż
G

ϕU pxqpπpxqv ´ vqdx

∥∥∥∥ ď

ż

G

ϕU pxq ∥πpxqv ´ v∥ dx

The first equality is clear, and the second is Proposition D.7.1.(b). For given ε ą 0 there exists a
unit-neighborhood U0 such that ∥πpxqv ´ v∥ ă ε whenever x P U0. Then U “ U0 does the job.

Definition. A ˚-representation π : L1pGq Ñ BpV q of L1pGq on a Hilbert space V is non-degenerate
if the subspace

πpL1pGqqV :“ spantπpfqv | f P L1pGq, v P V u

is dense in V .

• It follows from Lemma 13.3.3 that every representation of L1pGq constructed from a unitary
representation pπ, Vπq as in Proposition 13.3.1 is non-degenerate.
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Proposition 13.3.4. Let π : L1pGq Ñ BpV q be a non-degenerate ˚-representation of L1pGq on a
Hilbert space V . Then there exists a unique unitary representation pπ̃, V q of G such that

xπpfqv, wy “

ż

G

fpxqxπ̃pxqv, wydx

holds for all f P L1pGq and all v, w P V .

Proof. Note that π is continuous by Lemma 3.3.1. Let x P G. We first define an operator π̃pxq on the
dense subspace πpL1pGqqV . Each element in πpL1pGqqV has the form

n
ř

i“1

πpfiqvi, fi P L1pGq, vi P V .

Define

π̃pxq

n
ÿ

i“1

πpfiqvi :“
n
ÿ

i“1

πpLxfiqvi

We must show this is well-defined, which amounts to show that
n
ř

i“1

πpfiqvi “ 0 implies
n
ř

i“1

πpLxfiqvi “

0. For f, g P L1pGq, we have g˚ ˚ Lxf “ pLx´1gq˚ ˚ f . Indeed,

g˚ ˚ Lxfpyq “

ż

G

∆Gpz´1qgpz´1qfpx´1z´1yqdz

2.3.1.4.
“

ż

G

gpzqfpx´1zyqdz

pz ÞÑ xzq “

ż

G

gpxzqfpzyqdz

2.3.1.4.
“

ż

G

∆Gpz´1qgpxz´1qfpz´1yqdz “ pLx´1gq˚ ˚ fpyq

Then for g, f1, . . . , fn P L1pGq, v1, . . . , vn, w P V, x P G
C

n
ÿ

i“1

πpLxfiqvi, πpgqw

G

“

n
ÿ

i“1

xπpg˚ ˚ Lxfiqvi, wy

“

n
ÿ

i“1

xπppLx´1gq˚ ˚ fiqvi, wy “

C

n
ÿ

i“1

πpfiqvi, πpLx´1gqw

G

Now assume
n
ř

i“1

πpfiqvi “ 0. Then the above shows that
n
ř

i“1

πpLxfiqvi is orthogonal to πpL1pGqqV ,

which is dense in V , so
n
ř

i“1

πpLxfiqvi “ 0. Thus π̃pxq is a well-defined operator on πpL1pGqqV ,

and the above computation also shows π̃pxq is unitary on πpL1pGqqV . Therefore π̃pxq extends to a
unique unitary operator on V with inverse π̃px´1q, and clearly π̃pxyq “ π̃pxqπ̃pyq for all x, y P G.
By Lemma 2.6.7 for each f P L1pGq the map x ÞÑ Lxf is continuous, so x ÞÑ π̃pxqv is continuous
for every v P V . Thus pπ̃, V q is a unitary representation of G by Lemma 13.0.1.

It remains to show πpfq “ π̃pfq for all f P L1pGq. By continuity we may assume f P CcpGq and
it suffices to show xπ̃pfqπpgqv, wy “ xπpfqπpgqv, wy for all g P CcpGq, v, w P V .

xπ̃pfqπpgqv, wy “

ż

G

fpxqxπ̃pxqπpgqv, wydx

“

ż

G

fpxqxπpLxgqv, wydx

“

ż

G

xπpfpxqLxgqv, wydx

D.7.1.pcq
“

B

π

ˆ
ż

G

fpxqLxgdx

˙

v, w

F

D.7.4
“ xπpf ˚ gqv, wy “ xπpfqπpgqv, wy

249



Example 13.3.5. Let G be an LCH group, and consider the left regular representation L : G Ñ

UpL2pGqq. By Proposition 13.3.1 we then have a continuous ˚-homomorphism L : L1pGq Ñ

BpL2pGqq defined by

Lpfqg “ f ˚ g P L2pGq.

By Lemma 2.6.9, L : L1pGq Ñ BpL2pGqq is injective.
In particular, the case G being LCA recovers Lemma 5.3.2. Also, using the Plancherel isomor-

phism L2pGq – L2p pGq we obtain a map L1pGq Ñ BpL2p pGqq given by f ÞÑ rg ÞÑ pf ¨ gs. Hence

∥Lpfq∥ “

∥∥∥g ÞÑ pfg
∥∥∥ “

∥∥∥ pf∥∥∥
sup

“ sup
χP pG

| pfpχq|.

13.4 Square Integrable Representations
Definition. Let G be a topological group and pπ,Hq be a representation on the Hilbert space H.

(i) For v, w, P H, the function cv,w : G Ñ CpGq defined as

cv,wpgq :“ xπpgqv, wy

is called a matrix coefficient of π.

(ii) The representation π is called square integrable if pπ,Hq is irreducible, unitary, and it has
a nonzero square integrable matrix coefficient.

Lemma 13.4.1. Let pπ,Hq be a unitary representation of an LCH group G. For v P H, define

Dv :“ tw P H | cw,v P CpGq X L2pGqu.

Then the linear map T : Dv Ñ L2pGq defined by Tw “ cw,v is a closed operator, i.e., the graph

ΓT :“ tpw, Twq | w P Dvu Ď Dv ˆ L2pGq

is a closed subset.

Proof. Let pwnqn be a sequence in Dv such that wn Ñ w P H and Twn Ñ ϕ P L2pGq. Passing to a
subsequence (D.5.5), we may assume Twn Ñ ϕ pointwise almost everywhere. But then for g P G,

|ϕpgq ´ Twnpgq| “ |Twpgq ´ Twnpgq| “ |xπpgqpw ´ wnq, vy| ď ∥w ´ wn∥ ∥v∥ Ñ 0

as n Ñ 8. This implies ϕ “ Tw almost everywhere.

Theorem 13.4.2. Let G be a unimodular LCH group, and let pπ,Hq be a square integrable repre-
sentation.

(i) All matrix coefficients of π is square integrable.

(ii) There exists an isometry T P HomGpH,L2pGqq with closed range and T pHq ď CpGq XL2pGq.
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Proof. Take v1, w1 P H such that cv1,w1 : G Ñ CpGq is nonzero and square integrable; we may assume
v1, w1 have norm 1. Define

D “ tv P H | cv,w1 P L2pGqu.

which is a G-invariant subspace of H. Since D1 contains spanCtπpgqv1 | g P Gu, D1 is dense by
assumption. Define

T : D L2pGq

v cv,w1 .

For g, h P G, we have cπpgqv,w1 phq “ xπphgqv, w1y “ cv,w1 phgq, so that T intertwines π and the right
regular representation on L2pGq.

Our goal is to show D “ H. To this end, define an inner product p , q : D ˆ D Ñ C on D by
means of

pv, wq “ xv, wyH ` xTv, TwyL2pGq

We claim p , q makes D into a Hilbert space, and it suffices to show D is complete with respect to
p , q. Let pvnqn be a Cauchy sequence in D. Then vn Ñ v P H and Tvn Ñ f for some v P H and
f P L2pGq; passing to a subsequence, we may assume Tvn Ñ f pointwise almost everywhere (D.5.5).
But then for g P G,

|Tvpgq ´ Tvnpgq| “ |xπpgqpv ´ vnq, w1y| ď ∥v ´ vn∥
∥∥w1

∥∥ Ñ 0

as n Ñ 8, so Tvn Ñ Tv uniformly. In particular, this show cv,w1 “ Tv “ f P L2pGq, so that v P D.
In addition this shows T is a closed operator, in the sense that the graph of T is closed in DˆL2pGq.

Let ι : D Ñ H be the inclusion of D; with the Hilbert space structure above, we see ι is a
bounded operator. Consider the adjoint map ι˚ : H Ñ D and the composition ι˝ ι˚ : H Ñ H. Since
H is unimodular, the right regular representation on L2pGq is unitary, so the inner product on D is
unitary as well. In particular, ι˚ is G-equivariant, showing that ι ˝ ι˚ P HomGpH,Hq. Now Schur’s
lemma implies that ι ˝ ι˚ “ λ idH for some λ P C; since ι ˝ ι˚ is positive and nonzero, λ ą 0. But
then D Q ι˚v “ λv, so v P D for all v P H, proving that H “ D.

The equality ι˚ “ λ idH also implies that

xιv, wyH “ pv, ι˚wq “ λpv, wq “ λpxv, wyH ` xTv, TwyL2pGqq

so that

p1 ´ λqxv, wyH “ λxTv, TwyL2pGq

for all v, w P H. Hence 0 ă λ ă 1, and the operator
c

λ

1 ´ λ
T P HomGpH,L2pGqq is unitary; this

proves the first statement in (ii). The last containment in (ii) is clear, as each matrix coefficient
is continuous. For (i), let v, w P H and we must show cv,w P L2pGq. Since D “ H, we see
cv,w1 P L2pGq. Since cv,w1 pg´1q “ cw1,vpgq for all g P G, we see cw1,v P L2pGq. If we form the
subspace tx P H | cx,v P L2pGqu as in the beginning, the proof implies this coincides with H, whence
cw,v P L2pGq.

Corollary 13.4.2.1 (Schur’s orthogonality). Let pπ, Vπq and pτ, Vτ q be two square-integrable rep-
resentations of a unimodular LCH group G.
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(i) If π and τ are not unitarily equivalent, then
ż

G

xπpgqv, wyxτpgqv1, w1ydg “ 0

for all v, w P Vπ, v
1, w1 P Vτ .

(ii) There exists a constant dpπq ą 0 such that
ż

G

xπpgqv, wyxπpgqv1, w1ydg “
xv, v1yxw1, wy

dpπq

for all v, w, v1, w1 P Vπ.

The constant dpπq is called the formal degree of the representation π.

Proof. Fix w P Vπ and w1 P Vτ . Define T : Vπ Ñ L2pGq and S : Vτ Ñ L2pGq by

T pvqpgq “ xπpgqv, wy, Spv1qpgq “ xτpgqv1, w1y.

By Theorem 13.4.2 these are well-defined, and we can find t, s ą 0 such that t´1T, s´1S are unitary.
Then

|xTv, Sv1yL2pGq| ď ∥Tv∥L2pGq

∥∥Sv1
∥∥
L2pGq

“ ts ∥v∥
∥∥v1

∥∥
for all v P Vπ, v

1 P Vτ , so the operator T˚S : Vτ Ñ Vπ is bounded. Clearly T˚S is G-equivariant,
so T˚S P HomGpπ, τq; by Schur’s lemma it is zero if π and τ are not unitarily equivalent, and this
proves (i). Consider the case π “ τ . By Schur’s lemma T˚S “ apw,w1q idVπ

for some apw,w1q P C.
Hence

ż

G

xπpgqv, wyxπpgqv1, w1ydg “ xTv, Sv1yL2pGq “ xv, T˚Sv1y “ apw,w1qxv, v1y.

Changing the variable g ÞÑ g´1, we obtain a similar identity
ż

G

xπpgqv, wyxπpgqv1, w1ydg “ apv1, vqxw1, wy

Pick any x P Vπ such that Tx ‰ 0, which always exists by assumption; then apx, xq ą 0 as T “ S in
this case, and hence T˚S “ T˚T is positive and nonzero. Then

apw,w1q “
xx, xy

apx, xq
xw1, wy,

so that
ż

G

xπpgqv, wyxπpgqv1, w1ydg “
xx, xy

apx, xq
xw1, wyxv, v1y

13.5 Smooth Vectors
Let G be a Lie group and pπ, V q a Fréchet space representation of G. For X P LiepGq and v P V ,
we define

πpXqv :“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

πpexpptXqqv “ lim
tÑ0

πpexpptXqqv ´ v

t

if the limit exists. Note that if πpXqv and πpXqw exist, so does πpXqpav ` bwq for a, b P C.
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Definition. Let π : G Ñ GLctspV q be a representation of a Lie group G in a Banach space V .

1. A vector v P V is called C1 if the limit πpXqv exists for all X P LiepGq.

2. Inductively, a vector v P V is called Ck pk ą 1q if v is C1 and πpXqv is Ck´1 for all X P LiepGq.

3. A vector v P V is called smooth if v P Ck for each k ě 1.

Denote by V 8 the subspace of all smooth vectors in the representation space V . Hence we obtain
a linear map π : LiepGq Ñ EndC V

8.

Lemma 13.5.1. The subspace V 8 is G-invariant. More precisely, the subspace of Ck-vectors in V
is G-invariant.

Proof. Let v be C1. For g P G and X P LiepGq, we have

πpexpptXqqπpgqv “ πpgqπpg´1 expptXqgqv “ πpgqπpexpptAdpg´1qXqqv.

Since πpgq is bounded and Adpg´1qX P LiepGq, it follows that πpXqπpgqv exists for each X P LiepGq.
Hence πpgqv is C1 for each g P G.

Assume k ą 1 and let v be Ck. Hence πpXqv is Ck´1 for each X P LiepGq, and by induction on
k we see πpgqπpXqv is Ck´1 for each g P G. But the above identity says that

πpXqπpgqv “ πpgqπpAdpg´1qXqv

so πpXqπpgqv is Ck´1. Hence πpgqv is Ck as long as v is Ck. Taking intersection proves that V 8 is
G-invariant.

For a topological vector space V , we write x , y : V ˆ V _ Ñ C for the canonical pairing:

xv, φy :“ φpvq.

Lemma 13.5.2. The linear map π : LiepGq Ñ EndC V
8 is a Lie algebra homomorphism.

Proof. It comes down to showing that for X,Y P LiepGq and v P V 8,

πpXqπpY qv ´ πpY qπpXqv “ πprX,Y sqv.

For this, for φ P V _ we introduce the map

I “ Iφ : V 8 CpGq

v cv,φ : g ÞÑ xπpgqv, φy

Recall LiepGq acts on C8pGq by differentiation:

pXfqpgq :“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpg expGptXqq.

We claim the followings:

(i) For v P V 8, the function cv,φ is smooth. Hence I goes into C8pGq.

(ii) I intertwines LiepGq-action.
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For (i), let X P LiepGq and compute

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

cv,φpg exp tXq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

φpπpgqπpexp tXqvq

“ pφ ˝ πpgqq

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

πpexpptXqqv

˙

“ pφ ˝ πpgqqpπpXqvq “ cπpXqv,φpgq.

By Lemma I.2.19, a function f P CpGq is smooth if and only if it is C1 and Xf exists and is smooth
for all X P LiepGq. Hence the above computation shows that Ipvq P C8pGq. The above identity
simultaneously proves (ii).

Now to show πpXqπpY qv ´ πpY qπpXqv “ πprX,Y sqv, by Hahn-Banach’s theorem it suffices to
show

φpπpXqπpY qv ´ πpY qπpXqvq “ φpπprX,Y sqvq,

or IφpπpXqπpY qvq ´ IφpπpY qπpXqvq “ IφpπprX,Y sqvq for all φ P V _. By (ii) it suffices to show

pXY ´ Y XqIφpvq “ rX,Y sIφpvq.

This follows directly from Lemma I.2.20.

Lemma 13.5.3. For f P C8
c pGq and v P V , we have πpfqv P V 8. Moreover, the subspace V 8 is

dense in V .

Proof. For X P LiepGq, we have

πpexpptXqqπpfqv “ πpexpptXqq

ż

G

fpgqπpgqvdg “

ż

G

fpgqπpexpptXqgqvdg “

ż

G

fpexpp´tXqgqπpgqvdg.

Put fXpgq :“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpexpp´tXqgq, which exists and is smooth with compact support as f is. Since

f has compact support, differentiation and integral commute, whence

πpXqπpfqv “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

πpexpptXqqπpfqv “

ż

G

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpexpp´tXqgqπpgqvdg “ πpfXqv.

This shows πpfqv is C1, and induction shows πpfqv P V 8. The density result follows from Lemma
13.3.3 and the fact that we can pick ϕU there to be smooth, using smooth Urysohn’s lemma.

Now let V be Banach. Define a semi-norm pX1,...,Xn
: V 8 Ñ Rě0 by

pX1,...,Xn
pvq :“ ∥πpX1q ˝ ¨ ¨ ¨ ˝ πpXnqpvq∥

When n “ 0, the semi-norm pH is the original norm on V . We equip V 8 with the topology defined
by these semi-norms. Since dimLieG ă 8, we only need countably many semi-norms to generate
the topology. Since pH is a norm, the topology is Hausdorff.

Lemma 13.5.4. V 8 is a Fréchet space.

Proof. It remains to show V 8 is complete.
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13.6 Functions of positive type
Definition. Let G be an LCH group and µ a left Haar measure. A function of positive type on G

is a function ϕ P L8pGq such that the integration

L1pGq Q f ÞÑ

ż

G

pf˚ ˚ fqϕdµ

defines a positive linear functional on L1pGq.

• If ϕ is of positive type, then so is ϕ. Indeed,
ż

G

pf˚ ˚ fqϕdµ “

ż

G

ppf
˚

q ˚ fqϕdµ

and the latter is positive as ϕ is of positive type.

In the following, to ease notational cumbersome we use dx (dy, dz and so on) to denote a choice
of a left Haar measure on G.

Lemma 13.6.1. A function ϕ P L8pGq is of positive type if and only if
ż

GˆG

fpxqfpyqϕpy´1xqdxb dy ě 0.

Proof. This is an application of Fubini: write
ż

G

pf˚ ˚ fqϕdx “

ż

G

`

f˚pyqfpy´1xqdy
˘

ϕpxqdx “

ż

GˆG

∆Gpy´1qfpy´1qfpy´1xqϕpxqdxb dy.

Performing y ÞÑ y´1 and then x ÞÑ y´1x finishes the proof.

Lemma 13.6.2. If pπ, Vπq is a unitary representation and v P Vπ, then the matrix coefficient
cv,v : x ÞÑ xπpxqv, vy is of positive type.

Proof. Since π is unitary, we have

cv,vpy´1xq “ xπpy´1xqv, vy “ xπpxqv, πpyqvy.

Inserting this into the integral in Lemma 13.6.1, we see
ż

GˆG

fpxqfpyqcv,vpy´1xqdxb dy “ xπpfqv, πpfqvy “ ∥πpfq∥2 ě 0.

Let ϕ P L8pGq be a function of positive type. By definition, the pairing

L1pGq2 Q pf, gq ÞÑ pf, gqϕ :“

ż

G

pg˚ ˚ fqϕdµ

defines a hermitian pairing and satisfies the inequality

|pf, gqϕ| ď ∥ϕ∥8 ∥f∥1 ∥g∥1 .

Denote by N “ Nϕ “ tf P L1pGq | pf, fqϕ “ 0u. By Lemma 4.4.2, we have

|pf, gqϕ|2 ď pf, fqϕpg, gqϕ

so f P N if and only if pf, gqϕ “ 0 for every g P L1pGq. Hence, p¨, ¨qϕ descends to a non-degenerate
hermitian pairing on the quotient space L1pGq{N . Denote

Hϕ “ the Hilbert space completion of L1pGq{N with respect to p¨, ¨qϕ

and put ∥f∥ϕ :“ pf, fq
1
2

ϕ .
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Lemma 13.6.3. One has LgpNq Ď N for each g P G. Hence the left translation L descends an
unitary representation

πϕ : G ÝÑ GLctspHϕq.

The corresponding algebra representation πϕ : L1pGq Ñ BpHϕq is given by

πϕpfqpgq “ f ˚ g mod N

for f, g P L1pGq{N .

Proof. For g P G, we have

pLgf, Lgfqϕ “

ż

GˆG

fpg´1xqfpg´1yqϕpy´1xqdxb dy.

By a change of variables px, yq ÞÑ pgx, gyq, this becomes pf, fqϕ. This proves LgpNq Ď N . The last
assertion more or less follows from Lemma D.7.4 add an example.

Theorem 13.6.4. Let ϕ be a function of positive type on G, and let πϕ : G Ñ BpHϕq be the unitary
representation constructed above. Then there exists a vector v P Hϕ such that

πϕpfqv “ f mod Nϕ

for each f P L1pGq, and ϕ “ cv,v locally a.e.

13.7 Group C˚-algebras
Let G be an LCH group. For each irreducible unitary representation pπ, Vπq, we have a representation
π : L1pGq Ñ BpVπq of Banach ˚-algebra. Define

∥¨∥π : L1pGq Rě0

f ∥πpfq∥op .

This is a seminorm on L1pGq, and if π and τ are unitarily equivalent, then ∥f∥π “ ∥f∥τ clearly. In
this way we get a collection of seminorms

t∥¨∥πu
πP pG

indexed by the unitary dual pG of G.
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Chapter 14

Compact Groups

14.1 Finite Dimensional Representations
In this section, let K be a compact (Hausdorff topological) group and pτ, Vτ q a finite dimensional
(complex) representation of K.

Lemma 14.1.1. On Vτ there exists an inner product making τ a unitary representation. If τ is
irreducible, this inner product is determined up to a positive scalar.

Proof. Let p , q be any inner product on Vτ , and define a map x , y : Vτ ˆ Vτ Ñ C by the formula

xv, wy :“

ż

K

pτpkqv, τpkqwqdk

where dk is the normalized Haar measure on K so that volpK, dkq “ 1. This clearly defines an inner
product on Vτ , and τ becomes a unitary representation because dk is unimodular.

Now assume τ is irreducible and let x , y1 , x , y2 be two inner products making τ unitary. For
i “ 1, 2, denote by pτi, Viq the representation pτ, Vτ q when equipped with the inner product x , yi.
Since Vτ is finite dimensional, id : V1 Ñ V2 is bounded nonzero intertwining operator from τ1 to τ2.
Since Vτ is irreducible, by Corollary 13.2.6.1 (in which Schur’s lemma can be replaced by the usual
Schur’s lemma) there exists c ą 0 such that c ¨ id is unitary. But this implies that c2xv, wy2 “ xv, wy1

for all v, w P Vτ .

Remark 14.1.2. In fact, the first paragraph of the proof does not use the finite dimensionality of
Vτ : it holds for any Hilbert space representation of K. The second part of this lemma does not holds
in general, but when Vτ is a Hilbert space, we can show that the constructed unitary representation
defines an equivalent norm to the original one.

To prove this, let Vτ be a Hilbert space with inner product p , q. For any g P K, define Tg : Vτ Ñ

Vτ by Tgpvq “ πpgqv. For any v P V , the map K Ñ R, g ÞÑ ∥πpgqv∥ is continuous, so it attains a
maximum by compactness of K. It follows by uniform boundedness principle that there exists C ą 0

such that ∥Tgpvq∥ ď C ∥v∥ for any g P K, v P Vτ . In particular, we have pv, vq ď C2pπpgqv, πpgqvq

for any g P K, v P Vτ . The inner product x, y : Vτ ˆ Vτ Ñ C defined by

xv, wy :“

ż

K

pπpgqv, πpgqwqdg

then satisfies C´2pv, vq ď xv, vy ď C2xv, vy (as VolpKq “ 1). This shows the equivalence (as Banach
spaces).
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Proposition 14.1.3. A finite dimensional representation of a compact group is a direct sum of
irreducible representations.

Proof. We prove this by induction on the dimension of representations; the cases dim “ 0, 1 are
evident. Let pτ, V q be a representation with dimC V ě 2. If τ is irreducible, we are done. Otherwise,
V admits a nonzero proper invariant subspace U . By the previous lemma, we equip V with an inner
product so that τ is unitary. Let W be the orthogonal complement of U . If we can show W is also
invariant, the result will follow from the induction. Now let w P W and k P K. Then for all u P U

xτpkqw, uy
τ unitary

“ xw, τpk´1qu
looomooon

PU

y “ 0

so that τpkqw P W . This proves W is invariant under K.

Definition. Let pτ, V q be a finite dimensional complex representation of a compact group K. The
dual space V ˚ “ HomCpV,Cq carries a natural representation of K, called the contragredient
representation τ˚, defined by

τ˚pkqαpvq “ αpτpk´1qvq

for all k P K, α P V ˚, v P V .
Suppose V is equipped with an inner product so that τ is unitary. By Riesz’s Representation

theorem for every α P V ˚ there exists a unique vector vα such that

αpwq “ xw, vαy

for all w P V . One installs an inner product on V ˚ by

xα, βy :“ xvβ , vαy

Lemma 14.1.4. If pτ, Vτ q is irreducible (resp. unitary), then so is the contragredient τ˚. Install Vτ
with the inner product making τ unitary. Then for x P K and α P V ˚

τ , one has

vτ˚pxqα “ τpxqvα

so the map α ÞÑ vα is an antilinear K-intertwining operator from V ˚
τ to Vτ .

Proof. Let U Ď V ˚
τ be a K-invariant subspace; then UK :“ tv P Vτ | αpvq “ 0 for all α P Uu is a

K-invariant subspace of V . Thus if Vτ is irreducible, then UK is either 0 or Vτ , whence U “ 0 or
V ˚
τ .

Next we show the intertwining relation. For w P Vτ ,

xw, vτ˚pxqαy “ τ˚pxqαpwq “ αpτpx´1qwq “ xτpx´1qw, vαy “ xw, τpxqvαy

here we use τ is unitary. Hence vτ˚pxqα “ τpxqvα holds for all v P Vτ . Finally,

xτ˚pxqα, τ˚pxqβy “ xvτ˚pxqβ , vτ˚pxqαy “ xτpxqvβ , τpxqvαy “ xvβ , vαy “ xα, βy

so that τ˚ is unitary as well.
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14.2 The Peter-Weyl Theorem
Let K be a compact group and let pK denote its unitary dual. Let pKfin be the subset of pK consisting
of all finite dimensional irreducible representations. We are going to show pK “ pKfin.

Definition. For a unitary representation pτ, Vτ q of K, a matrix coefficient is a function on K of
the form k ÞÑ xτpkqv, wy for some v, w P Vτ .

• A matrix coefficient is continuous, so it lies in the Hilbert space L2pKq.

• The set of matrix coefficients of all finite dimensional representations is closed under complex
conjugation. To see this, let v, v1 P Vτ and α, β P V ˚

τ be their Riesz’s dual, i.e., v “ vα, v
1 “ vβ .

Then by Lemma 14.1.4,

xτpxqv, v1y “ xvβ , τpxqvαy “ xvβ , vτ˚pxqαy “ xτ˚pxqα, βy

For every class in pKfin choose a representation pτ, Vτ q. Choose an orthonormal basis e1, . . . , en
of Vτ and write τijpkq “ xτpjqei, ejy for the corresponding matrix coefficients. Clearly, for every
v, w P Vτ , the function k ÞÑ xτpkqv, wy is a linear combination of the τij , 1 ď i, j,ď dimC Vτ . In
what follows we shall write dimpτq for dimC Vτ .

Theorem 14.2.1 (Peter-Weyl).

(a) For τ ‰ γ in pKfin, one has

xτij , γrsy “

ż

K

τijpkqγrspkqdk “ 0

so the matrix coefficients of non-equivalent representations are orthogonal in L2pKq.

(b) For τ P pKfin, one has

xτij , τrsy “
1

dimpτq
δirδjs

In other words, the family p
a

dimpτqτijqτ,i,j is an orthogonal set in L2pKq.1

(c) p
a

dimpτqτijqτ,i,j is an orthogonal basis of L2pKq.

(d) The regular representations pL,L2pKqq and pR,L2pKqq decompose into direct sums of finite-
dimensional irreducible representations. More precisely, the space of matrix coefficients (of all
finite dimensional representations of K) is dense in L2pKq.

Proof. (a) Let τ ‰ γ in pKfin. Let T : Vτ Ñ Vγ be a (bounded) linear operator and set

S “ ST :“

ż

K

γpk´1qTτpkqdk P BpVτ q

Note that this integral takes place in a finite dimensional vector space, and it exists since the
integrand is continuous and K is compact. Then one has Sτpkq “ γpkqS, hence S “ 0 by
Schur’s lemma.

1In fact, (a) follows immediately from Corollary 13.4.2.1.(i), and the same corollary implies xτij , τrsy “ dpτq´1δirδjs

for some constant dpτq ą 0. The essential part of (b) is that dpτq “ dimpτq.

We can compute dpτq “ dim τ as follows. Since τ is unitary, we have
n
ÿ

i,j“1

|τi,jpgq|2 “ n “: dim τ . Thanks to

Corollary 13.4.2.1.(i), integrating both sides yields n “ n2dpτq´1, so that dpτq “ n.
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Let pejq and pfsq be orthonormal bases (chosen above) for Vτ and Vγ , respectively, and choose
Tjs : Vτ Ñ Vγ given by Tjspvq “ xv, ejyfs. Let Sjs “ STjs as above. Then

0 “ xSjsei, fry “

ż

K

xγpk´1qTjsτpkqei, frydk

“

ż

K

xγpk´1qxτpkqei, ejyfs, frydk

“

ż

K

xτpkqei, ejy xγpk´1qfs, frydk

“

ż

K

xτpkqei, ejy xγpkqfs, frydk “ xτij , γrsy

(b) Let the notation be as in (a). The same computation gives

xSjsei, ery “ xτij , τrsy

By Schur’s lemma, Sjs “ λ id for some λ P C, so

xτij , τrsy “ λδir

We compute λ:

λ dimVτ “ trpSq “ tr

ˆ
ż

K

τpk´1qTjsτpkqdk

˙

“

ż

K

trpτpk´1qTjsτpkqqdk “

ż

K

trpTjsqdk “ trpTjsq “ δjs

Therefore,

xτij , τrsy “
1

dimpτq
δjsδir

(c) Let τ P pKfin, and let Mτ be the subspace of L2pKq spanned by all matrix coefficients of the
representation τ . If we put h : K Ñ C given by hpkq “ xτpkqv, wy for some v, w P Vτ , then

h˚pkq :“ hpk´1q “ xτpkqw, vy P Mτ

Lk0hpkq “ hpk´1
0 kq “ xτpkqv, τpk0qwy P Mτ

Rk0hpkq “ hpkk0q “ xτpkqτpk0qv, wy P Mτ

This means Mτ is closed under adjoints, and left and right translations. Let M be the closure
in L2pKq of the span of all Mτ , τ P pKfin. We want to show M “ L2pKq, or equivalently
MK “ 0.

Assume for contradiction that MK ‰ 0. Let H ‰ 0 P MK, and let pϕU qU be a Dirac net. Then
ϕ ˚ H Ñ H in L2pKq. Since MK is closed under translation, it follows that ϕU ˚ H P MK for
all U . For the detail, we have

xϕU ˚H, fy
D.7.4

“

B
ż

K

ϕU pkqLkHdk, f

F

“

ż

K

ϕU pkqxLkH, fydk “ 0

for all f P M . Therefore, there must exist U such that ϕU ˚H ‰ 0. This shows MK contains a
nonzero continuous function. Next, let F1 ‰ 0 P MK be continuous; we may assume F1peq ą 0.
Set

F2pxq :“

ż

K

f1py´1xyqdy
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Since MK is closed under left and right translation, F2 P MK, and F2peq ą 0 and it is invariant
under conjugation. Finally put F pxq :“ F2pxq ` F2px´1q. Then the function F : K Ñ C is
(i) continuous, (ii) lies in MK, (iii) F peq ą 0 and (iv) F “ F˚.

Consider the operator T : L2pKq Ñ L2pKq defined by

T pfq :“ f ˚ F “ RpF qf
(ii)
P MK

This is nonzero by (iii). Since R : L1pKq Ñ BpL2pKqq is a ˚-representation by Proposition
13.3.1, T˚ “ RpF q˚ “ RpF˚q

(iv)
“ RpF q “ T , i.e., T is self-adjoint. Further,

Tfpxq “ f ˚ F pxq “

ż

K

fpyqF py´1xqdy

T is an integral operator with kernel kpx, yq :“ F py´1xq. By Proposition 12.3.4 T “ T˚ ‰ 0

is a Hilbert-Schmidt operator, hence compact; it follows that T has a real eigenvalue λ ‰ 0

with finite dimensional eigenspace Vλ. We claim Vλ is stable under left-translation. For this,
let f P Vλ, so f ˚ F “ T pfq “ λf . Then for k P K, one has

Lkf ˚ F
2.6.3
“ Lkpf ˚ F q “ λLkf

as desired. This implies pL, Vλq is a finite dimensional unitary representation of K, hence
it contains an irreducible subrepresentation 0 ‰ W Ď Vλ Ď MK. Let f, g P W , and let
hpkq “ xLkf, gy be the corresponding matrix coefficient. One has

hpkq “

ż

K

fpk´1xqgpxqdx “

ż

K

gpxqf˚px´1kqdx “ g ˚ f˚pkq

so h P MK. On the other hand, h P M , so xh, hy “ 0, a contradiction to (b). Hence MK “ 0,
i.e., M “ L2pKq.

(d) Since L2pKq “ M , where M is as in (c), we have

L2pKq “
à

τPxKfin

Mτ

EachMτ has finite dimension, and is invariant under left and right translations. By Proposition
14.1.3, this proves (d).

Theorem 14.2.2. Let K be a compact group.

(a) pK “ pKfin, i.e., every irreducible unitary representation a compact group is finite dimensional.

(b) Every unitary representation of K is an orthogonal direct sum of irreducible representations.

Proof. Let pπ, Vπq be a unitary representation of K. We show that Vπ can be written as a direct
sum

Vπ “
à

iPI

Vi

with each Vi a finite dimensional irreducible subrepresentation of Vπ. This proves (b), and if we
apply this to a given irreducible unitary representation, it also implies (a).
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So let pπ, Vπq be a unitary representation of K. Consider the collection S of all families pViqiPI ,
where each Vi is a finite dimensional irreducible subrepresentation of Vπ and Vi K Vj whenever
i ‰ j P I. Introduce a partial order ď on S by

pViqiPI ď pWαqαPA ô I Ď A and Vi “ Wi for all i P I

By Zorn’s lemma, S admits a maximal element, denoted by pViqiPI . We contend that the or-
thogonal (algebraic) direct sum

À

iPI

Vi is dense in V , which is equivalent to the orthogonal space

W :“

ˆ

À

iPI

Vi

˙K

being the zero space.

Assume for contradiction that W ‰ 0. By maximality, it suffices to show the following.

Lemma 14.2.3. Every nonzero unitary representation pη,Wηq contains a finite dimensional irre-
ducible subrepresentation.

Proof. Let v, w P Wη and let ψv,wpxq :“ xηpxqv, wy be the corresponding matrix coefficient; then
ψv,w P CpKq Ď L2pKq and

ψηpyqv,wpxq “ xηpxyqv, wy “ ψv,wpxyq “ Ryψv,wpxq

In other words, for each fixed w, the map v ÞÑ ψv,w P HomKpη, pR,L2pKqqq. Let us assume
xv, wy ‰ 0 so that this map is nonzero. By (d) of Peter-Weyl theorem, we know pR,L2pKqq is a
direct sum of finite dimensional irreducible representations, so there exists an orthogonal projection
P : L2pKq Ñ F to a finite dimensional irreducible subrepresentation such that P pψv,wq ‰ 0.
Consequently there exists a nonzero K-intertwining operator T : Wη Ñ F which is surjective by
irreducibility of F , and hence it induces an isomorphism from pkerT qK Ď Wη to F . Therefore,
pkerT qK is the desired finite dimensional irreducible subspace.

Remark 14.2.4. There is alternative proof of lemma in Theorem that is independent of the Peter-
Weyl theorem. Let pπ, Vπq be a unitary representation of a compact group K. Let T0 P HomCpVπ, Vπq

be the orthogonal projection onto a nonzero finite dimensional subspace W of V . Define T P

HomCpVπ, Vπq by

Tv “

ż

K

πpgq´1T0πpgqvdg.

The integrand lands in a finite dimensional subspace W , so T is of finite rank. Moreover, T is
positive as

xTv,wy “

ż

K

xT0πpgqv, πpgqwydg “

ż

K

xπpgqv, T0πpgqwydg “ xv, Twy

and xTv, vy ě 0. Now by Spectral theorem for compact normal operators, there exists λ P Cˆ such
that 0 ă dimkerpT ´ λ idq ă 8. In other words, we find a nonzero finite dimensional subrepresen-
tation of Vπ.
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14.2.1 Characters
Definition. Let π be a finite dimensional representation of a compact group K. The function
χπ : K Ñ C defined by

χπpkq :“ trπpkq

is called the character of the representation π.

• We can write χπ as a sum of matrix coefficients. Let peiq be the chosen orthonormal basis for
Vπ. Then

trπpkq “

dimpπq
ÿ

i“1

xπpkqei, eiy “

dimpπq
ÿ

i“1

πiipkq

• If π and τ are unitarily equivalent, then χπ “ χτ . To see this, say α : π Ñ τ is a unitary
K-isomorphism. If ei is an orthonormal basis for π, then for all k P K

tr τpkq “
ÿ

xτpkqαei, αeiy “
ÿ

xαπpkqei, αeiy “
ÿ

xπpkqei, eiy “ trπpkq

Theorem 14.2.5. Let π, η be two finite dimensional irreducible unitary representations of the
compact group K. For their characters, we have

xχπ, χηy “ δπη “

#

1 , if π “ τ in pK

0 , else

Here the inner product is the one of L2pKq.

Proof. By (a) and (b) of Peter-Weyl theorem,

xχπ, χηy “

dimpπq
ÿ

i“1

dimpτq
ÿ

j“1

xπii, τkky “

dimpπq
ÿ

i“1

dimpτq
ÿ

j“1

δπτδij
1

dimpπq
“ δπτ

Let π be any finite dimensional representation of K. By Proposition 14.1.3 we can write π as a
direct sum of K-subrepresentations. This shows χπ is a finite sum of characters of representations
appearing in π. In particular,

Corollary 14.2.5.1. Let π be a finite dimensional representation of K. Then π is irreducible if and
only if xχπ, χπy “ 1.

14.2.2 Fourier Transform
We now give a reformulation of the Peter-Weyl theorem. We have a unitary representation η of the
group K ˆK on the Hilbert space L2pKq given by

ηpk1, k2qfpxq :“ fpk´1
1 xk2q

On the other hand, for pτ, Vτ q P pK, the group K ˆ K acts on the finite dimensional vector space
EndVτ “ HomKpVτ , Vτ q by

ητ pk1, k2qT “ τpk1qTτpk´1
2 q
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On EndVτ , we have a natural inner product

xS, T y “ dimCpVτ q trpST˚q

making the representation of K ˆK unitary.

Theorem 14.2.6 (Peter-Weyl). There is a natural unitary isomorphism

L2pKq –
x

à

τPxK

EndVτ

which intertwines the conjugation representation η of K ˆK on L2pKq with
À

τPxK

ητ .

This isomorphism maps a given f P L2pKq Ď L1pKq to
ř

τPxK

τpfq, where

τpfq :“

ż

K

fpxqτpxqdx

In particular, if for a given f P L2pKq, we define the (operator-valued) Fourier transform

pf : pK x

À

τPxK
EndVτ

τ τpfq

then

(i) zf ˚ gpτq “ τpfq ˝ τpfq for f, g P L2pGq and τ P pK,

(ii) τpfq˚ “ τpf˚q for τ P pK, f P L2pGq (where f˚pxq :“ fpx´1q, c.f. Proposition 3.2.2),

(iii) ∥f∥ “

∥∥∥ pf∥∥∥ for every f P L2pKq.

In this way the Peter-Weyl theorem presents itself as a generalization of the Plancherel formula to
the compact groups.

For
ÿ

τPxK

gpτq P
x

à

τPxK

EndVτ , define the inverse transform qg P L2pKq by

qgpxq “
ÿ

τPxK

dimpτq trpgpτqτpx´1qq

This is the inverse of the isomorphism f ÞÑ pf .

Proof. Since τ ÞÑ τ˚ is a bijection on pK, (c) of Peter-Weyl theorem yields the orthonormal basis
a

dimpτqτ˚
kℓ for L2pKq. For f P L2pKq and indices i, j, one has

xτpfqei, ejy “

ż

K

fpxqτijpxqdx “ xf, τijy

where the ei are the orthonormal basis for Vτ . Applying this formula to f “ σ˚
kℓ “ σkℓ for some

σ P pK, we see xσ˚
kℓpτq “ τpσkℓq “ 0 for σ ‰ τ , and

xxτ˚
kℓpτqei, ejy “

1

dimpτq
δkiδℓj
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It follows that τ˚
kℓ is mapped to the operator 1

dimpτq
Eτkℓ P EndVτ , where Eτkℓ is given by ei ÞÑ δikeℓ.

Hence the basis element
a

dimpτqτ˚
kℓ is mapped to dimpτq´ 1

2Eτkℓ. We verify the maps
a

dimpτqEτkℓ
form an orthonormal basis for EndVτ , which will conclude the proof.

xdimpτq´ 1
2Eτij ,dimpτq´ 1

2Eτkℓy “ trpEτijpE
τ
kℓq

˚q “

dimpτq
ÿ

s“1

xpEτkℓq
˚es, pE

τ
ijq

˚esy “

dimpτq
ÿ

s“1

δsℓδsjδik “ δℓjδki

For the inverse map, we compute

trpEτkℓτpx´1qq “

dimpτq
ÿ

i“1

xEτkℓpx
´1qei, eiy “

dimpτq
ÿ

i“1

xτpx´1qei, δℓieky “ τ˚
kℓpxq

so dimpτq´ 1
2Eτkℓ is mapped, under the inverse transform, back to

a

dimpτqτ˚
kℓ.

For a compact group K, a function f : K Ñ C is called a class function if fpk´1xkq “ fpxq

for all x, k P K. In other words, f descends to a function on the conjugacy class of K. Denote by
L2pK{conjq the space of all square-integrable class functions of K.

Corollary 14.2.6.1. L2pK{conjq is a closed subspace of L2pKq, and pχπq
πP|K

forms an orthonormal
basis for L2pK{conjq.

Proof. L2pK{conjq “
Ş

kPK

kerpRkLk ´ idq, so it is a closed subspace of L2pKq. For the second

assertion, since each trace χπ is a class function, it suffices to show if f P L2pK{conjq such that
xf, χπy “ 0 for all π P pK, then f “ 0. By Peter-Weyl theorem we must show the Fourier transform
pf vanishes, i.e., πpfq “ 0 for all π P pK.

We first show πpfq P EndVπ is K-intertwining. For all k P K, we compute

πpkqπpfq “

ż

K

fpxqπpkxqdx “

ż

K

fpk´1xqπpxqdx “

ż

K

fpxk´1qπpxqdx “

ż

K

fpxqπpxkqdx “ πpfqπpkq

By Schur’s lemma, there exists λ P C such that πpfq “ λ idVπ
. Now taking trace, one sees

λ dimpπq “ trπpfq “

ż

K

fpxq trπpxqdx “ xfpxq, χπ˚ y “ 0

so that λ “ 0, i.e., πpfq “ 0.

Corollary 14.2.6.2. For f P spanpL2pKq ˚ L2pKqq Ď CpKq (c.f. Lemma 5.4.1), we have

fpkq “
ÿ

πPxK

dimpπq yRkfpπq.

Proof. It suffices to consider f “ f1 ˚ f2 with fi P L2pKq. For k P K, by Lemma 2.6.3 we have
Rkf “ f1 ˚Rkf2. Put f3pgq “ pRkf2qpg´1q “ pRkf2q˚pgq Then

fpkq “ Rkfpeq “

ż

K

f1pgqpRkf2qpg´1qdg “

ż

K

f1pgqf3pgqdg “ xf1, f3yL2pKq “ x pf1, pf3y

“
ÿ

τPxK

dimpτq trpτpf1q ˝ τpf3q˚q “
ÿ

τPxK

dimpτq trpτpf1 ˚ f˚
3 qq “

ÿ

τPxK

dimpτq trpτpf1 ˚Rkf2qq

“
ÿ

τPxK

dimpτq trpτpRkpf1 ˚ f2qqq “
ÿ

τPxK

dimpτq yRkfpτq
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Definition. Let pτ, Vτ q and pγ, Vγq be finite dimensional representations of the compact group K.
There is a natural representation of the group K ˆK on the tensor product space Vτ b Vγ given by

pτ b γqpk1, k2q “ τpk1q b γpk2q P GLpVτ b Vγq

Lemma 14.2.7. For a given τ P pK, there is a natural unitary isomorphism

ψ : Vτ b Vτ˚ Ñ EndVτ P IsomKˆKpτ b τ˚, ητ q

Proof. The map ψ given by
ψpv b αq “ rw ÞÑ αpwqvs P EndVτ

is linear and sends the simple tensors onto to the subspace of operators of rank one, so ψ is surjective
since EndVτ is generated by the operator of ranks one. Since dimVτ b Vτ˚ “ dimEndVτ , ψ is
bijective. For k, ℓ P K, one has

ψpτ b τ˚pk, ℓqpv b αqqpwq “ ψpτpkqv b τ˚pℓqαqpwq

“ τ˚pℓqαpwqτpkqv “ αpτpℓ´1qwqτpkqv

“ τpkqpαpτpℓ´1qwqvq

“ τpkqψpv b αqpτpℓ´1qwq

“ ητ pk, ℓqψpv b αqpwq

Let e1, . . . , en be an orthonormal basis for Vτ . We compute the adjoint ψpv b αq˚; we have

ψpv b αqei “ αpeiqv “

n
ÿ

j“1

αpeiqxv, ejyej

so the adjoint is ψpv b αq˚ei “
n
ř

j“1

αpejqxv, eiyej . Then

xψpv b αq, ψpv b αqy “ dimpτq trpψpv b αqψpv b αq˚q

“ dimpτq

n
ÿ

i,j“1

αpeiqxv, ejyαpeiqxv, ejy

“ dimpτq ∥α∥2 ∥v∥2 “ xv b α, v b αy

Then Ψ :“ dimpτq´ 1
2ψ is a unitary intertwining isomorphism.

Corollary 14.2.7.1. There is a natural unitary isomorphism

L2pKq –
x

à

τPxK

Vτ b Vτ˚

that intertwines the conjugation representation η with
À

τPxK

τ b τ˚. In particular, we have

L –
x

à

τPxK

1Vτ
b τ˚ and R –

x

à

τPxK

τ b 1Vτ˚

for the left and right regular representations of K. Here 1 means the trivial representation.

Proof. The first isomorphism results from Peter-Weyl and the previous lemma. The second assertion
follows from restricting to one fact of the group K ˆK.
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14.2.3 K-finite vectors and matrix coefficients
Definition. Let G be a group and V a representation of G. A vector v P V is called G-finite if its
orbit Gv is contained in some finite dimensional subspace of V . Denote by V fin the subspace of all
G-finite vectors.

• It is clear that V fin is invariant under G action.

Let K be a compact group. Consider the subspace CpKqfin of finite vectors in CpKq. We let
K acts on CpKqfin from the left. If π P pK, then the matrix coefficient k ÞÑ xπpkqv, wy is clearly
K-finite, as it is contained in Mπ (c.f. the notation in the proof of (c) of Peter-Weyl), which is a
finite dimensional K-subrepresentation of CpKq. In fact,

Lemma 14.2.8. CpKqfin “
À

πPxK

Mπ consists exactly of matrix coefficients of K.

Proof. Let f P CpKqfin and V a finite dimensional K-subrepresentation of CpKq containing f . By
Riesz’s Representation theorem, let α P V be the unique element such that xh, αy “ hpeq for all
h P V . Then

fpkq “ pℓg´1fqpeq “ xℓk´1f, αy “ xf, ℓgαy

so that fpkq “ xℓgα, fαy is a matrix coefficient of V .

The same argument shows that
À

πPxK

Mπ consists of all K-finite vectors when the action of K acts

from the right. In particular, this shows

Corollary 14.2.8.1. View CpKq as an K ˆ K-representation. Then the matrix coefficients are
exactly those K ˆK-finite vectors in CpKq. Using various interpretations, we have

CpKqfin “
à

πPxK

Mπ –
à

τPxK

Vτ b V ˚
τ –

à

τPxK

EndVτ

In the rest of this subsection, we change our notation: let G be a compact group, and put

RpG,Cq “ CpGqfin “
à

πP pG

Mπ

to be the C-subalgebra of CpGq consisting of all matrix coefficients. Similarly, put

RpG,Rq “ RpG,Cq X CpG,Rq

to be the R-subalgebra of RpG,Cq consisting of real-valued functions. Since the complex conjugation
leaves RpG,Cq invariant, we have

RpG,Cq “ RpG,Rq bR C

under the natural identification CpGq “ CpG,Rq bR C.

14.3 Isotypes
Let pπ, Vπq be a unitary representation of the compact group K. For pτ, Vτ q P pK, define the isotype
of τ , or the isotypical component of τ in π as the subspace

Vπrτ s :“
ÿ

UĎVπ
U–Vτ

U
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This is the sum of all invariant subspaces U which are K-isomorphic to Vτ . Alternatively one can
describe Vπrτ s as follows. There is a canonical map

Tτ : HomKpVτ , Vπq pbVτ Vπ

α b v αpvq

By definition we have Tτ P HomKp1 b τ, πq. We claim the image of Tτ in Vπ is the whole Vπrτ s.

• Let 0 ‰ α P HomKpVτ , Vπq; since Vτ is irreducible, α is injective. Therefore Tτ |αbVτ
“ α is a

K-homomorphism mapping onto a subspace of Vπ that is K-isomorphic to Vτ .

• Conversely, let U Ď Vπ be a subspace with π|U – τ via the map α : Vτ Ñ U . Then U “

Tτ pα b Vτ q.

Note also that if pτ, Vτ q and pσ, Vσq are non-equivalent irreducible representations of K, then Vπrτ s K

Vπrσs. This follows from the fact that if U,U 1 Ď Vπ are subspaces with U – Vτ , U
1 – Vσ, then the

orthogonal projection P : Vπ Ñ U 1 restricts to a K-homomorphism P |U : U Ñ U 1, which must be
zero.

Lemma 14.3.1. On the vector space HomKpVτ , Vπq there exists an inner product making it a
Hilbert space such that Tτ is an isometry.

Proof. Let v0 P Vτ be a norm-one vector. For α, β P HomKpVτ , Vπq, define

xα, βy :“ xαpv0q, βpv0qy

Since an element in HomKpVτ , Vπq is either zero or injective, it follows at once that x , y defines
an inner product on HomKpVτ , Vπq. We claim with this inner product, the space HomKpVτ , Vπq is
complete. For this let pαnqn be a Cauchy sequence in HomKpVτ , Vπq. By definition pαnpv0qqn is a
Cauchy sequence in Vπ; say αnpv0q Ñ w0 P Vπ. Then for all k P K, the sequence αnpτpkqv0q “

πpkqαnpv0q Ñ πpkqw0. Likewise, for each f P L1pKq, we have

αnpτpfqv0q “

ż

K

fpkqαnpτpkqv0qdk “

ż

K

fpkqπpkqαnpv0qdk “ πpfqαnpv0q Ñ πpfqw0 (♠)

Consider the annihilator ann v0 “ annL1pKqpv0q Ď L1pKq of v0, i.e,

annL1pKqpv0q :“ tf P L1pKq | τpfqv0 “ 0u

Since Vτ is irreducible and dimC Vτ ă 8, the map
L1pKq Vτ

f τpfqv0

induces a K-isomorphism

Vτ – L1pKq{ ann v0. By p♠q we have ann v0 Ď annw0, and therefore the map

α : Vτ – L1pKq{ ann v0 Vπ

τpfqv0 πpfqw0

is well-defined and is K-intertwining. It follows that αn Ñ α in HomKpVτ , Vπq.
We now show Tτ is an isometry. For a fixed α P HomKpVτ , Vπq, the inner product on Vτ defined

by pv, wq :“ xαpvq, αpwqy is K-invariant, so by Schur’s lemma there exists cpαq ą 0 such that
pv, wq “ cpαqxv, wy for all v, w P Vτ . Thus

xTτ pα b vq, Tτ pα b vqy “ pv, vq “ cpαqxv, vy

Setting v “ v0 we conclude that cpαq “ xα, αy, which proves Tτ is an isometry.
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It follows from the above lemma that Vπrτ s is isometrically isomorphic to Hilbert space tensor
product HomKpVτ , Vπq pbVτ , and that π|Vπpτq is unitarily equivalent to the representation 1 b τ on
the tensor product. If we choose an orthonormal basis pαiqiPI of HomKpVτ , Vπq, then we get an
isomorphism

HomKpVτ , Vπq pbVτ
x

à

iPI

Vτ

α b v
ÿ

iPI

xα, αiy v

„

Thus we see that Vπpτq is unitarily equivalent to a direct sum of Vτ ’s with multiplicity #I “

dimC HomKpVτ , Vπq.

Theorem 14.3.2. Let K be a compact group.

(a) Vπrτ s is a closed invariant subspace of Vπ.

(b) Vπrτ s is K-isomorphic to a Hilbert space direct sum of copies of Vτ .

(c) Vπ is the Hilbert space direct sum of the isotypes Vπrτ s, where τ runs over pK.

Proof. Since Vπrτ s is an isometric image of a complete space, it is itself complete, whence closed in
Vπ. Since Vπrτ s is a sum of invariant subspaces, it is invariant as well. Now let Vπ “

x

à

i
Vi be any

decomposition into irreducibles. Set

Ṽπpτq :“ x

à

i:Vi–Vτ

Vi Ď Vπ

It follows that Ṽπpτq Ď Vπrτ s since the latter contains the direct sum and is closed. Now clearly Vπ
is the Hilbert space direct sum of all spaces Ṽπpτq, and hence it is also that of all spaces Vπrτ s, as
the latter are pairwise orthogonal. This implies (c), and a fortiori Ṽπpτq “ Vπrτ s, and thus (b).

By the lemma, for a unitary representation pπ, Vπq of a compact groups K, there are K-
equivariant isomorphisms

Vπ –
x

à

pτ,Vτ qPxK

Vπrτ s –
x

à

pτ,Vτ qPxK

HomKpVτ , Vπq pbVτ

The next proposition gives an explicit formula for the first isomorphism.

Proposition 14.3.3. Let pπ, Vπq be a unitary representation of the compact group K. For τ P pK,
the orthogonal projection P : Vπ Ñ Vπrτ s is given by the formula

P pvq “ dimpτq

ż

K

χτ pxqπpxqvdx

Proof. We need to show for each v, w P Vπ we have

xPv,wy “ dimpτq

ż

K

χτ pxqxπpxqv, wy dx

Denote the right hand side by pv, wq. Write v “ v0 ` v1 where v0 P Vπrτ s, v1 P Vπrτ sK. Decompose
w “ w0 ` w1 likewise. Then xPv,wy “ xv0, w0y. We claim

pv0, w0q “ xv0, w0y

pvi, wjq “ 0 for pi, jq ‰ p0, 0q
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Then since p , q is bilinear, it follows pv, wq “ pv0, w0q “ xv0, w0y “ xPv,wy, as wanted.
To show the claim, decompose Vπrτ s into irreducibles, each equivalent to Vτ . Since the sum is

orthogonal, we may assume v0, w0 lie in the same component. If we let peiq be an orthonormal basis
for Vτ , then by (b) of Peter-Weyl theorem,

pv0, w0q “ dimpτq

ż

K

χτ pxqxπpxqv0, w0ydx

“ dimpτq
ÿ

i,j

xv0, eiyxw0, ejy

ż

K

ÿ

k

τkkpxqpπ|Vτ
qijpxqdx

“
ÿ

i

xv0, eiyxw0, eiy “ xv0, w0y

For the remaining equalities, since Vπrτ s and Vπrτ sK are invariant under K, we have pv1, w0q “ 0 “

pv0, w1q, and since Vπrτ sK is an orthogonal direct sum of isotypes other than τ , (a) of Peter-Weyl
theorem (and a similar computation to the above) shows pv1, w1q “ 0.

Example 14.3.4. Let us consider the regular representation of a compact group K. From the proof
of Peter-Weyl theorem, we see there is a direct sum decomposition

L2pKq “
à

τPxK

Mτ

where for each τ P pK, the finite dimensional subspace Mτ is the linear span of all matrix coefficients
of τ and is invariant under left and right translations. It is then easy to see that L2pKqRrτ s “ Mτ

and L2pKqLrτ s “ Mτ˚ . Alternatively, one can verify this by the last proposition. For instance, for
f P L2pKq, we compute

ż

K

χτ pxqLxfpkqdx “

ż

K

χτ pkx´1qfpxqdx “

dimpτq
ÿ

i,j“1

τjipkq

ˆ
ż

K

τijpx
´1qfpxqdx

˙

“

dimpτq
ÿ

i,j“1

xf, τijy τijpkq

so L2pKqLrτ s is spanned by the τij .

Example 14.3.5 (Irreducible representations of product groups). Let G1, G2 be compact groups.
Let W be a unitary representation of G1 ˆG2. If we think it of a representation of t1u ˆG2 – G2,
there is a decomposition

W “
x

à

pτ,Vτ qPyG2

HomG2
pVτ ,W q pbVτ

For T P HomG2
pVτ ,W q and g P G1, define g.T P HomG2

pVτ ,W q by pg.T qpxq “ pg, 1qT pxq; this is
indeed G2-equivariant, as for g1 P G2 and v P Vτ ,

pg.T qpg1vq “ pg, 1qT pg1.vq “ pg, 1qp1, g1qT pvq “ p1, g1qpg.1qT pvq “ p1, g1qpg.T qpvq.

If we equip each hom set with such G1-actions, this decomposition is in fact G1 ˆ G2-equivariant.
Indeed, for α b v P HomG2pVτ ,W q pbVτ ,

pg1.αqpg2.vq “ pg1, 1qαpg2.vq “ pg1, 1qp1, g2qαpvq “ pg1, g2qαpvq.

In sum, we obtain a G1 ˆG2-equivariant isomorphism

W “
x

à

pτ,Vτ qPyG2

HomG2
pVτ ,W q pbVτ .
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Recall on HomG2
pVτ ,W q we defined a Hilbert space structure in the proof of Lemma 14.3.1: if

v0 P Vτ is a norm-one vector, for α, β P HomG2pVτ ,W q, we put

xα, βy :“ xαpv0q, βpv0qy.

For g P G1, since W is unitary

xg.α, g.βy :“ xpg, 1qαpv0q, pg, 1qβpv0qy “ xαpv0q, βpv0qy “ xα, βy.

This means the just defined G1-action on HomG2
pVτ ,W q is unitary. Hence we have a G1-equivariant

decomposition

HomG2
pVτ ,W q “

x

à

pσ,VσqPyG1

HomG1
pVσ,HomG2

pVτ ,W qq pbVσ

The usual adjunction gives a G1-equivariant isomorphism

HomG1pVσ,HomG2pVτ ,W qq – HomG1ˆG2pVσ b Vτ ,W q.

Putting things together yields

W “
x

à

pσ,τqPyG1ˆyG2

HomG1ˆG2
pVσ b Vτ ,W q pb pVσ b Vτ q

It is easy to see that Vσ b Vτ is irreducible as a G1 ˆG2 representation: indeed, χVσbVτ “ χσ bχτ ,
so

ż

G1ˆG2

|χVσbVτ
pg1, g2q|2dg1 b dg2 “

ż

G1

|χσpg1q|2dg1 ¨

ż

G2

|χτ pg2q|2dg2 “ 1 ¨ 1 “ 1.

The irreducibility then follows from Corollary 14.2.5.1. Putting ourselves in the case W “ L2pG1 ˆ

G2q, part (d) of Peter-Weyl shows that Vσ b Vτ exhausts {G1 ˆG2, demonstrating the bijection

xG1 ˆ xG2 – {G1 ˆG2

By this, the natural inclusion CpG1,Rq bR CpG2,Rq Ñ CpG1 ˆ G2,Rq restricts to an algebra
isomorphism

RpG1,Rq bR RpG2,Rq – RpG1 ˆG2,Rq.

Clearly the above remains valid with all R replaced by C.

14.4 Induced Representations
Let K be a compact group and M ď K a closed subgroup. Let pσ, Vσq be a unitary representation
of M . We are going to define the induced representation πσ “ IndKM σ. First, define the space

L2pK,Vσq :“

"

f : K Ñ Vσ | f is measurable with
ż

K

∥fpxq∥2σ dk ă 8

*

{ „

where f „ g if and only if f ´ g is a null function, where ∥¨∥σ is the norm on Vσ. On L2pK,Vσq

there is an inner product

xf, gy :“

ż

K

xfpkq, gpkqyσdk
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where x , yσ is the inner product on Vσ. By taking an orthonormal basis peiq of Vσ, we see there is
an isometric isomorphism L2pK,Vσq – L2pKq pbVσ; in particular, this shows L2pK,Vσq is a Hilbert
space.

The representation space of πσ is the subspace

IndKM Vσ :“
␣

f P L2pK,Vσq | for all m P M, fpmkq “ σpmqfpkq a.e. in k P K
(

This is a closed subspace of L2pK,Vσq, as if for each m P M we define Tm P BpL2pK,Vσqq by
Tmpfq “ Lm´1f ´ σpmqf , then

IndKM Vσ “
č

mPM

kerTm

The representation πσ is defined as the right translation:

πσpyqfpxq “ fpxyq

Since K is unimodular, πσ is clearly unitary. The following theorem allows us to compute the
irreducible components in the induced representation IndKM Vσ. We begin with an easy lemma.

Lemma 14.4.1. The subspace CpK,Vσq of all continuous functions K Ñ Vσ is dense in L2pK,Vσq.

Proof. Obviously we have CpK,Vσq – CpKqbVσ, so the assertion follows. Explicitly, since the action
πσ on L2pK,Vσq is isomorphic to the tensor Rb 1 on L2pKq bVσ, for ϕ P CpKq, f P L2pKq, v P Vσ,
we have

πσpϕqpf b vq “

ż

K

ϕpkqπσpkqpf b vqdk “

ˆ
ż

K

ϕpkqRkfdk

˙

b v “ pf ˚ ϕq b v P CpK,Vσq

Since f ˚ ϕ Ñ f in L2pKq as ϕ runs over all Dirac functions, we have πσpϕqpf b vq Ñ f b v in
L2pK,Vσq.

Theorem 14.4.2 (Frobenius reciprocity). If σ P xM is irreducible, for every irreducible representa-
tion pτ, Uq P pK, there is a canonical isomorphism

HomKpU, IndKM Vσq HomM pU |M , Vσq
„

where U |M is the representation π|M of M .

Proof. Before writing down the isomorphism, we make some preparation. Put V c :“ CpK,Vσq X

IndKM Vσ. The space V c is K-invariant, and is dense in IndKM Vσ by the previous lemma. Let α P

HomKpU, IndKM Vσq. We show that the image of α lies in V c. For this recall L2pKq decomposes into
a direct sum of isotypes L2pKqrγs for γ P pK (here we consider the right regular representation) with
each L2pKqrγs finite dimensional consisting of continuous functions (matrix coefficients). Consider
the composition

α : U IndKM Vσ L2pK,Vσq L2pKq b Vσ
α „

The map α (by abuse of notation) intertwines τ and Rb1, so αpUq Ď pL2pKqbVσqrτ s Ď L2pKqrτ sb

Vσ consists of continuous functions, and this implies αpUq Ď V c.
Define

HomKpU, IndKM Vσq HomM pU |M , Vσq

α ru ÞÑ αpuqp1qs
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and
HomM pU |M , Vσq HomKpU, IndKM Vσq

β rpu, kq ÞÑ βpτpkquqs

It is direct to check these two maps are mutually inverse and intertwine.

Example 14.4.3. Let K be a compact group and M ď K a closed subgroup. Then K{M carries
a unique Radon measure µ that is invariant under left translation of K and normalized so that
µpK{Mq “ 1. The group K acts on the Hilbert space L2pK{M,µq by left translation, and this is a
unitary representation. This representation is K-isomorphic to the representation IndKM C induced
from the trivial representation via the map

L2pK{M,µq IndKM C

ψ rk ÞÑ ψpk´1Mqs

By Frobenius reciprocity for any τ P pK, the multiplicity in L2pK{M,µq is

HomKpVτ , L
2pK{M,µqq – HomM pVτ |M ,Cq – VMτ .

Hence, we obtain

L2pK{Mq –
x

à

τPxK

VMτ b Vτ .

An immediate consequence of this example is

Corollary 14.4.3.1. Let K be a compact group with #K ě 2 and M a proper closed subgroup.
Then there exists a nontrivial irreducible representation of K whose restriction to M possesses a
trivial representation of M .

Proof. Since M is proper, the quotient K{M has at least two points. Consider the decomposition
in Example 14.4.3:

L2pK{Mq –
x

à

τPxK

VMτ b Vτ .

Since #K{M ě 2, LHS has dimension ě 2. The trivial irreducible representation of K only con-
tributes one dimension to RHS, so there must be some nontrivial pτ, Vτ q P pK with VMτ ‰ 0. But
then Vτ |M contains a copy of the trivial representation.

Corollary 14.4.3.2. Retain the notation. There exists a nontrivial pπ, Vπq P pK and v P Vπ such
that the stabilizer subgroup Kv “ tg P K | πpgqv “ vu is a proper subgroup of K containing M .

Proof. Let pπ, Vπq be the nontrivial irreducible representation found in the previous corollary. Pick
any nonzero v P VMπ ; then M Ď Kv. Since π is nontrivial, Kv cannot be the whole K, so that
Kv Ĺ K, as wanted.
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14.5 Compact Lie groups

14.5.1 Characterization among compact groups
Theorem 14.5.1. For any unit-neighborhood U of K, there exists a finite dimensional representa-
tion τ of K such that ker τ Ď U .

Proof. Let k P K with k ‰ e. Since CpKq separates points and the space of matrix coefficients is
dense in L2pKq by (d) of Peter-Weyl theorem, it follows that mpkq ‰ mpeq for some matrix coefficient
m of a finite dimensional (unitary) representation τ of K. In particular, this implies τpkq ‰ τpeq.
Hence the open sets Gz ker τ , where τ runs over all finite dimensional representations of K, form an
open cover of Gzteu, and hence an open cover of the compact set GzU . We then can find some finite
dimensional representations τ1, . . . , τn of K with GzU Ď

n
Ť

i“1

Gz ker τi. If we write τ for the direct

sum of the τi, we see that ker τ “
n
Ş

i“1

ker τi and thus ker τ Ď U .

Corollary 14.5.1.1. Every compact group is isomorphic, as topological groups, to a projective
limit of compact Lie groups.

Proof. Denote by F the set of finite dimensional (unitary) representations of a compact group K. If
pτ, V q P F , then τpKq Ď GLpV q. Since τpKq is compact and GLpV q is a Lie group, it follows from
Theorem I.3.2 that τpKq is itself a compact Lie group. Since K{ ker τ – τpKq, we see K{ ker τ is
isomorphic to a compact Lie group, as topological groups.

The canonical projections K Ñ K{ ker τ pτ P F q give rises to a continuous homomorphism
ϕ : K Ñ lim

ÐÝ
τPF

G{ ker τ with dense image. Since K is compact, ϕ is surjective. To show ϕ is a

homeomorphism, it remains to show ϕ is injective. Note that kerϕ “
Ş

τPF

ker τ , so we have to show

the intersection is trivial. From Theorem 14.5.1 that tker τ | τ P F u forms a neighborhood basis of
identity of K. Now our claim follows as K is Hausdorff.

Corollary 14.5.1.2. For a compact group K, TFAE:

(i) There exists a unit-neighborhood of K containing no nontrivial closed normal subgroup.

(ii) K is isomorphic to a closed subgroup of GLpV q for some finite dimensional complex vector
space V .

(iii) K is a Lie group.

Proof. (i)ñ(ii) follows from Theorem 14.5.1, which implies that there exists a finite dimensional
representation pτ, V q of K with ker τ “ teu, i.e., τ : K Ñ GLpV q is injective. (ii)ñ(iii) follows from
Theorem I.3.2. (iii)ñ(i) is Proposition I.2.10.

Corollary 14.5.1.3. For every proper closed subgroup of a compact Lie group K, there exists a
finite dimensional representation pπ, Vπq of K and a vector v P Vπ such that M “ Kv “ tg P K |

πpgqv “ vu.

Proof. Let M be a closed subgroup of K.
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14.5.2 Matrix coefficients
Now let K be a compact group with a faithful representation π : K Ñ GLpV q in a finite dimensional
complex vector space V . Choose any basis e1, . . . , en for V and define the matrix coefficients πij :
K Ñ C by

πijpgq “ xπpgqei, ejy.

These πij p1 ď i, j ď nq vanish nowhere as πpKq Ď GLpV q. Since π is injective, these πij p1 ď

i, j ď nq separate points. Hence, by Stone-Weierstrass the subalgebra of CpKq generated by the
πij , πij p1 ď i, j ď nq is dense in CpGq.

In fact, by Lemma 14.1.1 we can choose a K-invariant inner product on V so that pπ, V q is
unitary. As mentioned before the statement of Theorem 14.2.1, the functions πij are the ma-
trix coefficients of the contragredient representation pπ˚, V ˚q of π. Moreover, the “monimials”
πi1j1 ¨ ¨ ¨πinjnπk1l1 ¨ ¨ ¨πkmlm are the matrix coefficients of the representation V bn b pV ˚qbm.

Lemma 14.5.2.

(i) Every irreducible unitary representation of K appears in some V bn b pV ˚qbm.

(ii) πij , πij p1 ď i, j ď nq generate CpKqfin. In particular, the algebra CpKqfin is of finite type
over C.

Proof. For a finite dimensional representation τ of K, denote by Mτ the space of matrix coefficients
for τ . If we denote by A the unital subalgebra of CpKq generated by the πij , πij p1 ď i, j ď nq, the
discussion above shows that

A “
ÿ

n,mě0

MV bnbpV ˚qbm .

Let S be the subset of pK consisting of those representations appearing in V bnb pV ˚qbm pn,m ě 0q;
decomposing those tensor product representations into irreducibles shows

A “
à

τPS

Mτ Ď
à

τPxK

Mτ “ CpKqfin.

The last subspace is dense in L2pKq by Peter-Weyl, and the subalgebra A is dense as said before.
Since the direct sum is orthogonal, A cannot be dense unless S “ pK. This shows (i) and (ii)
simultaneously.

14.5.3 Compact Lie groups as real algebraic groups
In this subsection let G be compact Lie group. Lemma 14.5.2 shows that RpG,Cq is of finite type
over C. In fact, if we view V as a real vector space in the above discussion, the same argument
shows that RpG,Rq is of finite type over R. The affine scheme

X “ SpecRpG,Rq

is then a (possibly reducible) algebraic variety over R. We are going to show this is an algebraic
group whose R-point XpRq is isomorphic to the original compact Lie group G. Let k be either R or
C. To give it a group scheme structure it is the same as giving RpG, kq a commutative Hopf algebra
structure. Define

∆ : RpG, kq RpGˆG, kq “ RpG, kq bRpG, kq

f rpg, g1q ÞÑ fpgg1qs
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where the last isomorphism is from Example 14.3.5. This is well-defined as matrix coefficients are
GˆG-finite by Corollary 14.2.8.1. Define

ι : RpG, kq RpG, kq

f rg ÞÑ fpg´1qs

and
ε : RpG, kq k

f fpeq

Finally let m : RpG, kq b RpG, kq Ñ RpG, kq and e : k Ñ RpG, kq be the multiplication and the
inclusion of constant maps; they are the structure maps for the k-algebra RpG, kq. These just defined
morphisms satisfy three commutative diagrams

RpG, kq bRpG, kq RpG, kq bRpG, kq bRpG, kq

RpG, kq

RpG, kq bRpG, kq RpG, kq bRpG, kq bRpG, kq

id b∆

∆

∆
∆bid

RpG, kq bRpG, kq k bRpG, kq

RpG, kq RpG, kq

RpG, kq bRpG, kq RpG, kq b k

εbid

m˝pebidq
∆

∆
id bε

m˝pid beq

RpG, kq bRpG, kq RpG, kq bRpG, kq

RpG, kq k RpG, kq

RpG, kq bRpG, kq RpG, kq bRpG, kq

id bι

m∆

∆

ε e

ιbid

m

Taking spec shows that X “ SpecRpG,Rq is really an affine group scheme over R. Each point g P G

determines an evaluation map evg : RpG,Rq Ñ R, giving rise to a map

Φ : G XpRq “ HomAlgRpRpG,Rq,Rq

g evg

This is injective as RpG,Rq separates points. Equip Xpkq with the initial topology with respect
to the maps Xpkq “ HomAlgk

pRpG, kq, kq Q p ÞÑ ppfq P k pf P RpG, kqq, where k is with its usual
euclidean topology. If f1, . . . , fn is a generating set for RpG, kq, the topology just defined is the same
as the subspace topology inherited from the injection

Xpkq kn

p pppf1q, . . . , ppfnqq

In particular, this shows Xpkq is Hausdorff under this topology.
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Lemma 14.5.3.

(i) Xpkq is a topological group.

(ii) Φ : G Ñ XpRq is a continuous injective group homomorphism.

In particular, since G is compact and XpRq is Hausdorff, via Φ we can view G as a closed subgroup
of XpRq

Proof. The topology on Xpkq enjoys the universal property: if Y is another topological space with a
set-theoretic map φ : Y Ñ Xpkq, then φ is continuous if and only if Y φ

Ñ Xpkq
p ÞÑppfq

Ñ k is continuous
for every f P RpG, kq. It is then direct to see Xpkq is a topological group and Φ is continuous.

It remains to show Φ is a group homomorphism. For f P RpG, kq, write

∆pfq “
ÿ

fi b f 1
i

for some fi, f 1
i P RpG, kq. Then for g, h P G,

pevg b evhq ˝ ∆pfq “
ÿ

fipgqf 1
iphq “ fpghq “ evghpfq

where the third identity results from the definition that ∆pfqpg, hq “ fpghq. Varying f P RpG, kq

shows pevg b evhq ˝ ∆ “ evgh, which is exactly what we want.

Let π : G Ñ GLnpkq be a representation of G. Then the matrix coefficients πij lie in RpG, kq.
Consider the k-algebra homomorphism

krxijs RpG, kq

xij πij

Since pπijqij P GLnpkq, the determinant detpxijq is invertible in RpG, kq. This induces a homomor-
phism krxij ,detpxijq

´1s Ñ RpG, kq on the localization. Taking spec gives a k-morphism

X Ñ GLn,k

of varieties. It is straightforward to verify that krxij ,detpxijq
´1s Ñ RpG, kq is in fact a Hopf algebra

homomorphism, so X Ñ GLn,k is an algebraic group homomorphism. Taking k-points yields a
group homomorphism

πk : Xpkq GLnpkq

p pppπijqqij .

This is continuous if and only if each p ÞÑ p ˝ πij is, which is the case by definition. If we
choose π to be faithful (possible by Corollary 14.5.1.2), by Lemma 14.5.2.(ii) the homomorphism
krxij ,detpxijq

´1s Ñ RpG, kq is surjective, meaning that πk is a closed embedding. It is worth-noting
that, since Φpgq “ evg, we have a commuting triangle

XpRq Opnq

G

πR

πΦ

A similar argument implies that if k “ R and πpGq Ď Opnq, then πRpXpRqq Ď Opnq.
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Theorem 14.5.4. XpRq is a compact Lie group and Φ : G Ñ XpRq is a Lie group isomorphism.

Proof. Pick any faithful representation π : G Ñ GLnpRq of π. By Lemma 14.1.1, the representation
space Rn admits a G-invariant inner product, so up to a conjugation by an element in GLnpRq we
may assume πpGq Ď Opnq. Now consider the homomorphism πR : XpRq Ñ GLnpRq. It has image
in Opnq as mentioned above, and is a closed embedding. By Theorem I.3.2, XpRq is a compact Lie
group.

It remains to show Φ is surjective. The inclusion Φ : G Ñ XpRq induces an algebra ho-
momorphism Φ˚ : RpXpRq,Rq Ñ RpG,Rq on the algebras of matrix coefficients. On the other
hands, if ρ : G Ñ GLnpRq is a representation and f is its matrix coefficient, then the evaluation
λf : XpRq Q p ÞÑ ppfq P R is a matrix coefficient for ρR : XpRq Ñ GLnpRq. This follows from the
construction of ρR in the above. Hence we obtain an algebra homomorphism

λ : RpG,Rq RpXpRq,Rq

f λf .

Since π is faithful, so is πR, and by Lemma 14.5.2.(ii), the algebra RpXpRq,Rq is generated by the
pπRqij . By construction λpπijq “ pπRqij and Φ˚ppπRqijq “ πij , so λ and Φ˚ are mutually inverses,
whence isomorphisms. Consider the commutative square

RpXpRq,Rq RpG,Rq

CpXpRq,Rq CpG,Rq

Φ˚

Φ˚

Since the upper horizontal arrow is an isomorphism and all vertical maps have dense images with
sup-norm topology, the lower horizontal arrow is also an isomorphism. (Note that Φ˚ is continuous
as Φ is injective.) This forces Φ : G Ñ XpRq to be surjective by an Urysohn lemma argument.

We turn to the affine group scheme XC “ SpecRpG,Cq over C. The argument that precedes
Theorem 14.5.4 shows that XCpCq “ XpCq is a closed subgroup of GLnpCq. A general fact in
algebraic geometry says that XpCq contains at least a smooth point, so by translation we see XpCq

is a smooth algebraic group over C, and hence a complex Lie group.

14.6 Examples

14.6.1 SUp2q

Consider the n-dimensional sphere Sn Ď Rn`1. We equip Sn with the subspace topology from Rn`1

with euclidean topology.

Lemma 14.6.1. For a subset A Ď Sn, A is Borel-measurable in Sn if and only if IA :“ tta | 0 ď

t ď 1, a P Au is Borel-measurable in Rn`1.

Proof. The Borel sets in Sn is the intersection of Sn and those of Rn`1, so if IA is Borel, so is
A “ IAXSn. For the converse, if A is closed, since the map r0, 1sˆSn Ñ Rn`1 defined by pt, aq ÞÑ ta

is closed (the domain being compact), IA is closed. If A ‰ H is open, then IA “ pB1p0qzIAcq Y t0u

is Borel. It remains to show the family S :“ tA Ď Sn | IA is Borelu is a σ-algebra.
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• Sn P S and H P S.

• If H ‰ A P S, then IAc “ pB1p0qzIAq Y t0u is Borel.

• If Ai P S with
Ť

iAi ‰ H , then I
Ť

iAi “
Ť

i IAi is Borel.

• If Ai P S with
Ş

iAi ‰ H, then I
Ş

iAi “ pB1p0qzI
Ť

iA
c
i q Y t0u is Borel.

Let λ be the Lebesgue measure on Rn`1. For a measurable set A Ď Sn, define the normalized
Lebesgue measure as

µpAq :“
λpIAq

λpISnq
“

λpIAq

λpB1p0qq

The Lebesgue measure λ is invariant under the action of the orthogonal group Opn ` 1q, and it
follows that µ is also invariant under Opn` 1q.

Lemma 14.6.2. Let n P N and e1 “ p1, 0, . . . , 0qt P Rn`1. The matrix multiplication g ÞÑ ge1 gives
an identification

Sn – Opn` 1q{Opnq – SOpn` 1q{SOpnq

This map is invariant under left translation, and the normalized Lebesgue measure on Sn is the
unique normalized invariant measure on this quotient space.

Proof. Here we embed Opnq into Opn`1q by the map g ÞÑ

˜

1 0

0 g

¸

. Then Opnq is the stabilizer of e1

under the action of Opn`1q; this gives an injective continuous map Opn`1q{Opnq Ñ Sn. It is then
easy to see this is a homeomorphism, and similarly Sn – SOpn`1q{SOpnq. The normalized Lebesgue
is transferred to the quotient Opn` 1q{Opnq, and as said above it is invariant under Opn` 1q. Now
the uniqueness follows the uniqueness part in Theorem 2.4.6.

Recall that SUp2q consists of 2 ˆ 2 unitary matrices with determinant 1. In other words,

SUp2q “

#˜

a ´b

b a

¸

|

˜

a

b

¸

P S3 Ď C2

+

From this description and the fact that the normalized Lebesgue measure on S3 is invariant under
Op4q as well as the uniqueness of the invariant measures, we obtain the following lemma.

Lemma 14.6.3. The map SUp2q Ñ S3, mapping the matrix g P SUp2q to its first column, is a
homeomorphism. Via this homeomorphism, the normalized Lebesgue measure on S3 coincides with
the normalized Haar measure on SUp2q.

Lemma 14.6.4. For measurable A Ď Sn, define σpAq “ pn ` 1qλpIAq. Then for any Borel-
measurable function f : Rn`1 Ñ r0,8s, we have

ż

Rn`1

fpxqdλpxq “

ż 8

0

rn
ˆ
ż

Sn

fpruqdσpuq

˙

dr
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Lemma 14.6.5. Let f : Sn Ñ C be integrable and for n P N0 let Fm : Rn`1 Ñ C be defined by

Fmprxq “ rmfpxq

for all x P Sn and r ě 0. Then
ż

Sn

fpxqdµpxq “ cn,m

ż

Rn`1

Fmpxqe´∥x∥2

dλpxq

where cn,m will be specified in the proof.

Proof. By the previous lemma, we have
ż

Rn`1

Fmpxqe´∥x∥2

dλpxq “ c

ż 8

0

rn
ż

Sn

Fmprxqe´r2dµpxqdr

“ c

ż 8

0

rn`me´r2dr

ż

Sn

fpxqdµpxq

pr ÞÑ r2q “
c

2
Γ

ˆ

n`m

2
` 1

˙
ż

S3

fpxqdµpxq

for some constant c. Let f ” 1 and m “ 0 in the above identity; then

c

2
Γ
´n

2
` 1

¯

“

ż

Rn`1

e´∥x∥2

dλpxq “

ˆ
ż

R
e´x2

dx

˙n`1

“ π
n`1
2

so that

cn,m :“

ˆ

c

2
Γ

ˆ

n`m

2
` 1

˙˙´1

“ π´ n`1
2

Γ
`

n
2 ` 1

˘

Γ
`

n`m
2 ` 1

˘

For n P N0, denote by Pn the set of homogeneous polynomials on C2 of degree n. Then

Pn “

n
à

k“0

Czk1zn´k
2

For p, q P Pn, we define

xp, qyn :“ xp|S3 , q|S3yL2pS3q “

ż

S3

ppxqqpxqdµpxq

It follows from the previous lemma that

xp, qyn “ c3,2n

ż

C2

ppzqqpzqe´∥z∥2

dλpzq

We define a representation πn of SUp2q on Pn by

πnpgqppzq :“ ppg´1zq

As a preparation, we compute the inner product xzk1z
n´k
2 , zr1z

n´r
2 yn for 0 ď k, r ď n.

ż

C2

pzk1z
n´k
2 qzr1z

n´r
2 e´∥z∥2

dλpzq “

ˆ
ż

C
zkzre´|z|2dz

˙ˆ
ż

C
zn´kzn´re´|z|2dz

˙

Compute
ż

C
zkzrdz “

ż 2π

0

y

ż 8

0

pρeiθqkpρe´iθqre´ρ2ρdρdθ “ δkrπΓpk ` 1q “ δkrπk!.
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Hence

xzk1z
n´k
2 , zr1z

n´r
2 yn “ c3,2nδkrπ

2k!pn´ kq! “ δkr
k!pn´ kq!

n!
“ δkr

ˆ

n

k

˙´1

.

In view of the computation, we find that
#

ˆ

n

k

˙
1
2

zk1z
n´k
2

+n

k“0

forms an orthonormal basis for Pn.

Lemma 14.6.6. The representation πn : SUp2q Ñ GLpPnq is unitary and irreducible

Proof. By Lemma 14.6.3, we choose the measure µ on S3 respecting the homeomorphism SUp2q – S3;
the homeomorphism is explicitly defined by g ÞÑ g.e1, where e1 “ p1, 0, 0, 0q P C2. Then

xπnphqp, πnphqqyn “

ż

S3

pph´1xqqph´1xqdµpxq

“

ż

SUp2q

pph´1g.e1qqph´1g.e1qdg
inv
“

ż

SUp2q

ppg.e1qqpg.e1qdg “ xp, qyn

for any h P SUp2q and p, q P Pm.
To show irreducibility,

Theorem 14.6.7. {SUp2q “ trPn, πns | n P N0u, where rPn, πns denotes the equivalence class of
pPn, πnq.

Proof. Regard S1 as a subgroup of SUp2q by eiθ ÞÑ

˜

eiθ

e´iθ

¸

. Let χn “ trπn be the character

of the representation πn. We have

χnpeiθq “

n
ÿ

k“0

xπpeiθqpk, pkyn “

n
ÿ

k“0

eiθpn´2kq

where the pk “

ˆ

n

k

˙
1
2

zk1z
n´k
2 are the orthonormal bases for Pn. The key observation is that

spanCtχnpeiθq | n P N0u “ spanCtcosnθ | n P N0u

which is more-or-less obvious (as eiθ ` e´iθ “ 2 cos θ). Since each element in SUp2q is conjugate to
S1, by classical Fourier analysis on S1 we see the restriction

L2pSUp2q{conjq X CpSUp2qq CevenpS1q

f f |S1

is a linear isomorphism, where

CevenpS1q “ tf P CpS1q | fpxq “ fpx´1q for all x P S1u

and it contains spanCtcosnθ | n P N0u as a dense subset. Moreover, it is (almost) norm-preserving:

xzkzn´k, zrzn´ryL2pS1q “ δkr.

Hence spanCtχnpeiθq | n P N0u is a dense subset of L2pSUp2q{conjq X CpSUp2qq, and hence of
L2pSUp2q{conjq. It follows from Corollary 14.2.6.1 that the χn are the only characters of SUp2q. In
view of Theorem 14.2.5, the proof is completed.

Corollary 14.6.7.1. The SUp2q representation on L2pS3q is isomorphic to the Hilbert space direct
sum x

à

ně0

pn` 1qPn.

Proof. Since S3 – SUp2q and dimPn “ n` 1, this follows at once from Example 14.4.3.
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14.6.2 SOpnq

Let n,m ě 0, and put

Vn,m “ Crx1, . . . , xnsm “
à

1ďk1,...,kn
k1`¨¨¨`kn“m

Cxk11 ¨ ¨ ¨xknn

to be the space of n-variable homogeneous polynomials of degree m over C. The space Pn that
appeared in the previous subsection is now the space V2,n. The general linear group GLnpRq acts
on Vn,m naturally on the left:

g.ppxq :“ ppg´1xq

In particular, the orthogonal group Opnq acts on Vn,m; we denote the representation it affords by
πn,m : Opnq Ñ GLpVn,mq. Let ∆ P Der C8pRnq be the Laplacian on Rn:

∆ “

n
ÿ

i“1

B2
i “

B2

Bx21
` ¨ ¨ ¨ `

B2

Bx2n

Lemma 14.6.8. For p P Crx1, . . . , xns and g P Opnq, one has g.∆ppq “ ∆pg.pq.

Proof. For g P GLnpCq, by chain rules one computes

∆pg.pq “

n
ÿ

i,j“1

ppggtq´1qij ¨ g.

ˆ

B2

BxiBxj
p

˙

.

Hence, for g P Opnq, we have

∆pg.pq “

n
ÿ

i,j“1

δij ¨ g.

ˆ

B2

BxiBxj
p

˙

“ g.∆ppq

Write Hn,m :“ ker∆ X Vn,m for the space of all harmonic polynomial of degree m in n-
variables. The previous lemma then show that g.Hn,m Ď Hn,m for g P Opnq, so Hn,m is actually
an Opnq-representation.

As before, define an inner product on Vn,m by

xp, qy :“ xp|Sn´1 , q|Sn´1yL2pSn´1q “

ż

Sn´1

ppxqqpxqdµpxq
p14.6.5q

“ cn´1,2m

ż

Rn

ppxqqpxqe´∥x∥2

dλpxq

where the measure µ is chosen as in (and before) Lemma 14.6.2. Here we view complex polynomials
as functions on R. In particular, this inner product is Opnq-invariant.

To proceed further, we introduce the Laplacian on Sn´1. First, we associate with f : Sn´1 Ñ C
a function F : Rn Ñ C given by F pxq “ fpx{ ∥x∥q. Then for f P C8pSn´1q, define

∆Sn´1f :“ p∆F q|Sn´1

Let f P Vn,m. Recall the Euler identity

n
ÿ

i“1

xi
B

Bxi
f “ mf.
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To see this, differentiate the identity fptxq “ tmfpxq with respect to t; we have
n
ÿ

i“1

ˆ

B

Bxi
f

˙

ptxq ¨ xi “ mtm´1fpxq.

Taking t “ 1 yields the identity.
Let f P Vn,m. Its extension F : Rn Ñ C to Rn is F pxq “ fpx{ ∥x∥q “ ∥x∥´m

fpxq. A tedious
computation along with the Euler identity yields that

∆Sn´1f “ ´mpm` n´ 2qf ` p∆fq|Sn´1

Lemma 14.6.9. For f P Vn,m, f is harmonic if and only if f is an eigenfunction of ∆Sn´1 , in which
case f has eigenvalue ´mpm` n´ 2q.

Proof. It is clear from the above identity when f is harmonic. Conversely if ∆Sn´1f “ λf for some
λ P C, then

λf “ ´mpm` n´ 2qf ` p∆fq|Sn´1 ,

or

pλ`mpm` n´ 2qq f “ p∆fq|Sn´1 .

LHS is homogeneous of degree m, while RHS is homogeneous of degree m´2. Hence p∆fq|Sn´1 “ 0,
and thus ∆f “ 0.

14.6.3 Spinpnq

Recall that Spinpnq is a double cover SOpnq and it fits into a short exact sequence

1 t˘1u Spinpnq SOpnq 1.

In particular, every representation of SOpnq results in a representation of Spinpnq. Precisely, for
every topological group G, there is a bijection

tπ P HomTopGppSpinpnq, Gq | πp´1q “ e P Gu HomTopGppSOpnq, Gq

Definition. A representation π : Spinpnq Ñ GLpV q is called spinorial if πp´1q ‰ idV P GLpV q.

In this subsection we are going to construct two spinorial representations, called the spin (resp.
half-spin) representation.

Let p , q be the symmetric bilinear form on Cn given by the (real) inner product. Let m “

Yn

2

]

;
then n “ 2m if 2 | n, and n “ 2m` 1 if 2 ∤ n. Take

W “ tpz1, . . . , zm, iz1, . . . , izmp, 0qq | zk P Cu

W 1 “ tpz1, . . . , zm,´iz1, . . . ,´izmp, 0qq | zk P Cu

to be maximal isotropic (complex) subspaces and e0 “ p0, . . . , 0, 1q. Then

Cn “

#

W ‘W 1 , n even
W ‘W 1 ‘ Ce0 , n odd.

Recall the Clifford algebra Cn associated to the real quadratic space pRn, ∥¨∥2q. Put CnpCq :“

Cn bR C; then by definition CnpCq “ T pCnq{xz b z ` pz, zq | z P Cny. In fact,
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Lemma 14.6.10. There are C-algebra isomorphisms

CnpCq –

#

EndC
Ź

W , if n even
EndC

Ź

W ‘ EndC
Ź

W , if n odd.

Proof. We begin with the case n being even. For z “ w ` w1 P Cn with w P W, w1 P W 1, define
Φ : Cn Ñ EndC

Ź

W by

Φpzq “ ϵpwq ´ 2ιpw1q.

Here, ϵpwq P EndC
Ź

W is given by x ÞÑ w ^ x, and ιpw1q P EndR
Ź

W by

ιpw1qpx1 ^ ¨ ¨ ¨ ^ xℓq “

ℓ
ÿ

i“1

p´1qi`1pw1, xiqx1 ^ ¨ ¨ ¨ ^ xxI ^ ¨ ¨ ¨ ^ xℓ.

A basic property for ϵ and ι is that ϵpwq2 “ 0 “ ιpw1q2. We claim that Φpzq2 “ ´2pw,w1q id “

´pz, zq id, i.e.,

ϵpwqιpw1q ` ιpw1qϵpwq “ pw,w1q.

This follows from an easy calculation. In particular, this show that Φ, extending multiplicatively,
defines a map

Φ : CnpCq Ñ EndC
ľ

W.

Since dimR Cn “ 2n and dimCW “ m “
n

2
, both sides have complex dimension 2n, so to show Φ is

an isomorphism it suffices to show it is surjective. To this end, let w1, . . . , wm be a basis for W and
let w1

1, . . . , w
1
n be its dual basis with respect to p , q. Then for 1 ď i1 ă ¨ ¨ ¨ ă ik ď m, a moment’s

thought shows that the operator

Φpwi1 ¨ ¨ ¨wikw
1
i1 ¨ ¨ ¨w1

ik
q :

ľ

W Ñ
ľ

W

kills
Źp

W for p ă k, maps
Źk

W onto Cwi1 ^ ¨ ¨ ¨ ^ wik , and stabilizes
Źp

W for p ą k; in fact,
it kills every pure k-form except wi1 ^ ¨ ¨ ¨ ^ wik . Easy manipulation shows that the image of Φ

contains all maps on
Ź

W that maps wi1 ^ ¨ ¨ ¨ ^wik to wi1 ^ ¨ ¨ ¨ ^wik and all the other pure forms
to 0. For 1 ď j1 ă ¨ ¨ ¨ ă jl ď m, the operator Φpwi1 ¨ ¨ ¨wikw

1
j1

¨ ¨ ¨w1
jl

q maps wj1 ^ ¨ ¨ ¨ ^ wjl to
˘wi1 ^ ¨ ¨ ¨ ^ wik , and any other pure form to the others. Composing shows that the image of Φ

contains all maps sending wj1 ^ ¨ ¨ ¨ ^ wjl to wi1 ^ ¨ ¨ ¨ ^ wik and sending other basis elements to 0.
This shows the surjectivity.

Now we consider the odd n case. This times, for z “ w ` w1 ` ce0 P Cn with w P W, w1 P W 1,
define Φ˘ : Cn Ñ EndC

Ź

W by

Φ˘pzq “ ϵpwq ´ 2ιpw1q ˘ p´1qdegic id .

The factor p´1qdeg is added so that Φ˘pzq2 “ ´2pw,w1q ´ c2 “ ´pz, zq. Again this implies that Φ˘

defines an algebra homomorphism Φ˘ : CnpCq Ñ EndC
Ź

W , and hence

Φ : CnpCq Ñ EndC
ľ

W ‘ EndC
ľ

W

by z ÞÑ pΦ`z,Φ´zq. Both sides having the same dimension 2n, we can prove Φ is an isomorphism
by showing Φ is surjective. This is similar to the proof in the even case; to “separate” the action,
one makes use of use Φpie0q “ pp´1qdeg,´p´1qdegq.

284



Corollary 14.6.10.1. There are C-algebra isomorphisms

C0
npCq :“ C0

n bR C –

#

EndC
Źeven

W ‘ EndC
Źodd

W , if n even
EndC

Ź

W , if n odd.

Here EndC
Źeven

W,EndC
Źodd

W stand for their obvious meanings.

Proof. For n even, it is clear that ΦpC0
npCqq stabilizes

Źeven
W and

Źodd
W , so restricting to them

yields an injective algebra homomorphism

C0
npCq EndC

Źeven
W ‘ EndC

Źodd
W

Since both sides have dimension 2n´1, this is an isomorphism.
For n odd, restricting Φ` to C0

npCq yields

Φ` : C0
npCq EndC

Ź

W.

In the proof of surjectivity of Φ in the even case, note that the crucial operator Φpwi1 ¨ ¨ ¨wikw
1
i1

¨ ¨ ¨w1
ik

q

lies in the image of C0
npCq, and the operator Φpwi1 ¨ ¨ ¨wikw

1
j1

¨ ¨ ¨w1
jl

q in following argument can be
modified, by adding some Φpe0q, so that it also lies in the image of C0

npCq. To sum up, this means Φ`

remains surjective. To show it is an isomorphism it suffices to notice that both sides have dimension
2n´1. We remark that we could also use Φ` to establish an isomorphism.

Now we can construct the spin and half-spin representation. The isomorphism Φ (resp. Φ` or
Φ´) from the last lemma allows as to define a representation of Spinpnq Ď C0

npCq on
Ź

W :

Φ presp. Φ˘q : Spinpnq Ñ GLp
ľ

W q

This is the desired spin representation. When n is even, we can further restrict Φ to
Źeven

W or
Źodd

W , yielding
Φ : Spinpnq Ñ GLp

ľeven
W q presp. GLp

ľodd
W qq.

They are called the half-spin representation. These constructed representations are clearly spino-
rial, as Φp´1q “ ´ id.

Lemma 14.6.11. For n even, the half-spin representations are irreducible. For n odd, the spin
representation is irreducible.

Proof. Let teiu
n
i“1 be the standard basis for Cn. In CnpCq, compute

pej ˘ iej`mqpek ˘ iek`mq “ ejek ˘ ipejek`m ` ej`mekq ´ ej`mek`n.

Note that each summand on the right lies in Spinpnq. This implies the operators ϵpejqϵpekq and
ιpejqιpekq lie in the span of ΦpSpinpnqq in EndC

Ź

W . Hence a Spinpnq-invariant subspace is also
invariant under ϵpejqϵpekq and ιpejqιpekq. It is then clear that when n is even, two half spin repre-
sentations are irreducible.

For n odd, compute (note that en “ e0 in the previous notation)

pej ˘ iej`mqen “ ejen ˘ iej`men

so that ϵpejqp´1qdeg and ιpejqp´1qdeg lie in the span of ΦpSpinpnqq in EndC
Ź

W . It is then clear
that the spin representation is irreducible.

285



Chapter 15

Direct Integrals

15.1 Von Neumann Algebras
Let H be a Hilbert space. For a subset M Ď BpHq, we define the commutant, or the centralizer,
of M as

M 1 “ CBpHqpMq :“ tT P BpHq | Tm “ mT for all m P Mu

Clearly, for N Ď M Ď BpHq, we have M 1 Ď N 1. The commutant of M 1 is called the bi-commutant
or double commutant of M . Also, for a subset M Ď BpHq, define the adjoint set M˚ “ tm˚ |

m P Mu. A subset M is called self-adjoint if M “ M˚.

Definition. A von Neumann algebra is a ˚-subalgebra A of BpHq with A2 “ A.

• A von Neumann algebra is necessarily norm closed, so it is itself a C˚-algebra. The converse
need not hold.

• For a subset M Ď BpHq, we have M Ď M2, so M3 Ď M 1. On the other hand M 1 Ď pM 1q2 “

M3, so M 1 “ M3. Thus, if M˚ “ M , then M 1 is a von Neumann algebra.

• For self-adjoint M Ď BpHq, its double commutant M2 is the smallest von Neumann algebra
in BpHq containing M , and it is called the von Neumann algebra generated by M .

For a von Neumann algebra A Ď BpHq, ZpAq “ AXA1 is called the center of A. A von Neumann
algebra A is called a factor if its center is trivial, i.e., ZpAq “ C idH .

Example 15.1.1.

1. BpHq is a factor; this is called a type-I factor.

15.2 Weak and Strong Topologies
Let H be a Hilbert space. On BpHq we can define three topologies.

1. The topology induced by the operator norm. This is called the norm topology.

2. The topology induced by the family of seminorms T ÞÑ ∥Tv∥, where v runs over H. This is
called the strong operator topology (SOT).
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3. The topology induced by the family of seminorms T ÞÑ |xTv,wy|, where v, w run over H. This
is called the weak operator topology (WOT).

It is clear that for a subset A Ď BpHq, we have the inclusions

A Ď ANORM
Ď ASOT

Ď AWOT
Ď A2

Theorem 15.2.1 (von Neumann’s Bi-commutant Theorem). Let H be a Hilbert space, and let A
be a unital ˚-subalgebra of BpHq. Then ASOT

“ AWOT
“ A2.

Proof. It suffices to show A2 Ď ASOT. Let T P A2. A fundamental system of neighborhoods of 0 P

BpHq in the strong operator topology consists of tS P BpHq | ∥Svj∥ ă ε, j “ 1, . . . , nu, v1, . . . , vn P

H, ε ą 0, n P N. To show T P ASOT it suffices to show for v1, . . . , vn P H, ε ą 0 there exists a P A
such that

∥Tvj ´ avj∥ ă ε for all j P rns.

To this end, let BpHq act on Hn diagonally. If we put v “ pv1 ¨ ¨ ¨ vnqt P Hn, for each ε ą 0 we
only need to find a P A such that ∥Tv ´ av∥ ă ε, or Tv P Av. It then suffices to show T leaves Av
invariant.

First, we have CBpHnqpAq “ MnpA1q Ď BpHnq. Since A1 is unital, it follows that CBpHnqpMnpA1qq “

A2In. Since A is ˚-closed in BpHq, the orthogonal complement pAvqK is A-stable. Hence the or-
thogonal projection P onto Av commutes with A, i.e., P P CBpHnqpAq. It follows that T P A2In

commutes with P and thus leaves Av stable. This finishes the proof.

15.3 Representations
Definition. Let G be an LCH group. An unitary representation π of G is called a factor repre-
sentation if the von Neumann algebra VNpπq generated by πpGq Ď BpVπq is a factor.

• Since πpGq is self-adjoint, we have VNpπq “ πpGq2, and the center of VNpπq is πpGq2XπpGq3 “

πpGq2 X πpGq1. Hence π is a factor representation if and only if πpGq1 X πpGq2 “ C idVπ .

Lemma 15.3.1. Every irreducible unitary representation is a factor representation.

Proof. Let π P pG. Then πpGq1 “ HomGpVπ, Vπq “ C idVπ
by Schur’s lemma, so VNpπq “ BpVπq,

which is a factor.

Definition. Two unitary representations π1, π2 of G are called quasi-equivalent if there is a
˚-algebra isomorphism

ϕ : VNpπ1q VNpπ2q

such that ϕ ˝ π1 “ π2.

Lemma 15.3.2. Tow irreducible unitary representations of a locally compact gorpu G are quasi-
equivalent if and only if they are unitarily equivalent.
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15.4 Hilbert Integrals
A family of vectors pξiqiPI in a Hilbert space H is called quasi-orthonormal basis if the nonzero
members of this family form an orthonormal basis of H.

Let pX,Dq be a measurable space. A Hilbert bundle over X is a family of Hilbert space
pHxqxPX together with a family of maps ξi : X Ñ

Ů

xPX

Hx pi P Iq with ξipxq P Hx such that

• for each x P X, the family pξxpxqqiPI is a quasi-orthonormal basis of Hx, and

• for each i P I, tx P X | ξipxq “ 0u P D.

A section is a map s : X Ñ
Ů

xPX

Hx with spxq P Hx for each x P X. A section s is called a

measurable section if

• for every i P I, the function x ÞÑ xspxq, ξipxqy is D-measurable on X, and

• there exists a countable subset Is Ď I such that the function x ÞÑ xspxq, ξipxqy vanishes
identically for every i R Is.

Let µ be a measure on D. A measurable section s is called a null-section if it vanishes outside
a null set. The direct Hilbert integral is the vector space of all measurable sections s satisfying

∥s∥2 :“

ż

X

∥spxq∥2 dµpxq ă 8

modulo the space of null-sections. We denote the space by H “

ż ‘

X

Hxdµpxq.

Lemma 15.4.1. For s, t P H, define

xs, ty :“

ż

X

xspxq, tpxqy dµpxq

This defines an inner product on H, and H becomes a Hilbert space.

Proof. We must show the completeness. For i P I, let Xi :“ tx P X | ξipxq ‰ 0u and Pi : H Ñ

L2pXiq be given by Pipsqpxq :“ xspxq, ξipxqy. We claim this is surjective. For f P L2pXiq, define
sf : X Ñ

Ů

xPX

Hx by sf pxq “ fpxqξipxq.

• For each j P I and x P X, xsf pxq, ξjpxqy “ fpxqδij is measurable.

• The function x ÞÑ xsf pxq, ξjpxqy “ fpxqδij vanishes if j ‰ i.

The sf defines a measurable section. Moreover,

∥sf∥2 “

ż

X

∥sf pxq∥2 dµpxq “

ż

Xi

|fpxq|2dµpxq “ ∥f∥22 ă 8

so sf P H. Thus the Pi defines a map with dense image

H “

ż ‘

X

Hx dµpxq
x

à

iPI

L2pXiq
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Now it suffices to show this map is isometric. For s P H, by Parseval’s identity

∥s∥2 “

ż

X

∥spxq∥2 dµpxq “

ż

X

˜

ÿ

iPIs

|xspxq, ξipxqy|2

¸

dµpxq

“
ÿ

iPIs

ż

X

|xspxq, ξipxqy|2dµpxq

“
ÿ

iPIs

ż

Xi

|Pipsqpxq|2dµpxq “
ÿ

iPI

∥Pipsq∥22

Example 15.4.2. Direct sums are special cases of direct integrals. Let H “
À

jPI

Hj be a direct sum

of separable Hilbert spaces. This space equals the direct integral
ż ‘

X

Hx dµpxq with X “ I and µ

the counting measure on X.

Let pHx, ξjq be a Hilbert bundle and µ a measure on X. Let G be an LCH group, and for every
x P X, let ηx be a unitary representation of G on Hx, such that for every g P G and all i, j P I, the
map x ÞÑ xηxpgqξipxq, ξjpxqy is measurable. Then

ηpgqspxq :“ ηxpgqspxq

defines a unitary representation of G on the direct integral H “

ż ‘

X

Hx dµpxq.

Example 15.4.3. Let A be an LCA group with the dual group pA equipped with the Plancherel
measure. Each character χ P pA determines a one-dimensional representation of A on Hχ “ C. Put
ηχpyq :“ χpyq. Then the direct integral (with constant section ξ1pχq :“ 1 P C “ Hχ) satisfies

ż ‘

pA

Hχdχ – L2p pAq

with ηpyqξpχq “ χpyqξpχq. It follows from the Plancherel theorem that pη, L2p pAqq is unitarily
equivalent to the left regular representation pL,L2pAqq of A via the Fourier transform.

15.5 The Plancherel Theorem
Definition. A locally compact group G is called a type-I group if every factor representation of
G is of type I.

Theorem 15.5.1. Let G be a second countable, unimodular, locally compact group of type I. There
is a unique measure µ on pG such that for f P L1pGq X L2pGq one has

∥f∥22 “

ż

pG

∥πpfq∥2HS dµpπq

The map f ÞÑ pπpfqqπ extends to a unitary GˆG equivariant map

L2pGq –

ż ‘

pG

HpVπqdµpπq

where the representation of ηπ of G ˆ G on the space of Hilbert-Schmidt operators HpVπq is given
by ηπpx, yqT “ πpxqTπpy´1q for each π P pG and x, y P G.
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Chapter 16

Trace Formula

16.1 Cocompact Groups and Lattices
Definition. Let G be a topological group.

1. A subgroup H ď G is called cocompact if the quotient G{H is a compact space.

2. A subgroup Λ ď G is called discrete if the subspace topology on Λ is the discrete topology.

Proposition 16.1.1. Let G be an LCH group. If G admits a unimodular closed cocompact sub-
group, then G is unimodular itself.

Proof. Let H ď G be a unimodular closed cocompact subgroup. Since G{H – H zG via gH ÞÑ

Hg´1, HzG is compact as well and the map CcpGq Ñ CpHzGq given by g ÞÑH g is surjective by
Lemma 2.4.2, where Hgpxq :“

ż

H

gphxqdh. We install a Radon measure µ on the right coset space

HzG by Riesz’s representation theorem as follows. For f P CpHzGq, choose g P CcpGq with Hg “ f ,
and define

ż

HzG

fpxqdµpxq :“

ż

G

gpxqdx

To show this is well-define, suppose Hg “ 0. Note that since H is unimodular,
ż

H

gph´1xqdh “
ż

H

gphxqdh “ 0. Let ϕ P CcpGq with Hϕ “ 1. One gets

ż

G

gpxqdx “

ż

G

ż

H

ϕphxqgpxqdhdx “

ż

H

ż

G

ϕphxqgpxqdxdh “

ż

H

ż

G

ϕpxqgph´1xqdxdh “ 0

Now, for f P CcpHzGq, if we take g P CcpGq with Hg “ f , then
ż

HzG

fpxyqdµpxq “

ż

G

gpxyqdx “ ∆py´1q

ż

G

gpxqdx “ ∆py´1q

ż

HzG

fpxqdµpxq

In particular, for f ” 1 P CpHzGq, we have

0 ă

ż

HzG

fpxqdµpxq “

ż

HzG

fpxyqdµpxq “ ∆py´1q

ż

HzG

fpxqdµpxq

so that ∆py´1q “ 1 for all y P G.

290



Lemma 16.1.2. Let G be a topological group.

1. A subgroup Γ ď G is discrete if and only if there exists a unit-neighborhood U Ď G with
Γ X U “ t1u.

2. A discrete subgroup is closed in G if G is Hausdorff.

Proof.

1. Clear.

2. We prove the following generalization.

Lemma 16.1.3. Let G be a Hausdorff topological group and H ď G be a locally compact
subgroup. Then H is closed in G.

Proof. Replacing G with the closure of H in G, we may assume H is dense in G. Let x P H

and choose a neighborhood U of x in H with compact closure C. Write U “ V XH for some
open V Ď G. Since C is compact and G is Hausdorff, C is closed in G, and thus V zC is open
in G. But for V X H “ U Ď C, it forces pV zCq X H “ H, and since H is dense in G, it must
be the case V Ď C; in particular, V Ď H. This shows H is open in G, and since they are
topological groups, H is closed in G.

A discrete space is automatically locally compact and Hausdorff, so the lemma applies.

Definition. Let G an LCH group. A discrete subgroup Γ ď G such that G{Γ carries an invariant
Radon measure µ with µpG{Γq ă 8 is called a lattice in G. A cocompact lattice is called a uniform
lattice.

• The quotient G{Γ admits a invariant Radon measure, so by Theorem 2.4.6, ∆G|Γ “ ∆Γ ” 1.

• When we speak of the Haar measure on a lattice, we always measure the counting measure,
and on the quotient G{Γ we always equip it with the measure so that the quotient measure
formula holds.

Proposition 16.1.4. Let G be an LCH group. A discrete cocompact subgroup Γ is a uniform
lattice.

Proof. By Proposition 2.3.2, Γ is unimodular, so Proposition 16.1.1 together with Lemma 16.1.2.2.
implies G is unimodular. By Theorem 2.4.6 G{Γ admits an invariant Radon measure, and since G{Γ

is compact, it has finite volume, so it is a lattice.

Proposition 16.1.5. Let G be an LCH group. If G admits a lattice, then G is unimodular.

Proof. Let ∆ be the modular function of G and let H “ ker∆; then H is unimodular by Corollary
2.4.7.2.2. Let Γ ď G be a lattice. As observed above, we have ∆G|Γ “ 1, so Γ ď H. Since
H{Γ ď G{Γ, by Theorem 2.4.6 we have

8 ą volpG{Γq “

ż

G{Γ

1dx “

ż

G{H

ż

H{Γ

1dxdy “ volpG{Hq volpH{Γq

In particular, volpG{Hq ă 8, so G{H is compact by Proposition 2.3.3. Now it follows from Propo-
sition 16.1.1 that G is unimodular.
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We conclude this section with some interesting facts about lattices.

Proposition 16.1.6 (Pigeonhole principle). Let G be an LCH group and Γ a cocompact lattice. If
X Ď G is a measurable subset such that volpXq ą volpG{Γq, then there are two distinct elements
x, x1 P X satisfying x´1x1 P Γ.

Proof. Let π : G Ñ G{Γ be the canonical projection. We prove that for each measurable X Ď G,
we have volpXq ě volpπpXqq with equality if π is injective on X. The proposition follows by taking
contrapositive.

Let X Ď G be measurable. Then

volpXq “

ż

G

1Xpxqdx “

ż

G{Γ

ÿ

γPΓ

1Xpxγqdx

“

ż

G{Γ

#tγ P Γ | xγ P Xudx “

ż

G{Γ

#ty P X | x´1y P Γudx

On the other hand, we have xΓ P πpXq if and only if #ty P X | x´1y P Γu ě 1, which implies

volpπpXqq “

ż

G{Γ

1πpXqpxqdx ď

ż

G{Γ

#ty P X | x´1y P Γudx “ volpXq

When π|X is injective, xΓ P πpXq if and only #ty P X | x´1y P Γu “ 1, so the equality holds.

Proposition 16.1.7. Let G be an LCH group and Γ a cocompact lattice. If Γ1 is another lattice of
G containing Γ, then volpG{Γq “ rΓ1 : Γs volpG{Γ1q.

Proof. Since G{Γ is compact, by Lemma 2.4.2 we can find f0 P C`
c pGq such that

f1pxq :“ fΓ0 pxq “
ÿ

γPΓ

f0pxγq “ 1

for all x P G. If we form f2pxq “ fΓ
1

0 pxq, then f2pxq “ rΓ1 : Γs for all x P G. Now by quotient
integral formula we have

ż

G

f0pxqdx “

ż

G{Γ

ÿ

γPΓ

f0pxγqdx “

ż

G{Γ

1dx “ volpG{Γq

and
ż

G

f0pxqdx “

ż

G{Γ1

ÿ

γPΓ1

f0pxγqdx “

ż

G{Γ1
rΓ1 : Γsdx “ rΓ1 : Γs volpG{Γ1q

Proposition 16.1.8. Let G be an LCH group, Γ is cocompact lattice and σ : G Ñ G an topological
group automorphism. Then volpG{σpΓqq “ modGpσq volpG{Γq.

Proof. Let f0 and f1 be as in the proof of the previous proposition. Then
ż

G

f0pσ´1pxqqdx “ modGpσq

ż

G

f0pxqdx “ modGpσq

ż

G{Γ

ÿ

γPΓ

f0pxγqdx “ modGpσq volpG{Γq

On the other hand,
ż

G

f0pσ´1xqdx “

ż

G{σpΓq

ÿ

γPσpΓq

f0pσ´1pxγqqdx “

ż

G{σpΓq

ÿ

γPΓ

f0pσ´1pxqγqdx “ volpG{σpΓqq
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16.2 Discreteness of the Spectrum
Let G be an LCH group and Γ ď G a cocompact lattice. Then the right coset space ΓzG admits a
right-invariant Radon measure µ with µpΓzGq ă 8. Therefore the action of G on L2pΓzGq by right
translation R gives rise to a unitary representation of G.

Theorem 16.2.1. Let G be an LCH group and Γ ď G a uniform lattice. The representation R on
L2pΓzGq decomposes as a direct sum of irreducible representations with finite multiplicities, i.e.,

L2pΓzGq –
x

à

πP pG

NΓpπqπ

where pG is the unitary dual of G, and NΓpπq P N0.

The proof of this theorem will occupy the rest of this section. First, we need a lemma to tell us
that for f P CcpGq the operator Rpfq is given a continuous integral kernel. For later use we will
extend this to a greater class of functions f. Let U be a compact unit-neighborhood in G. For a
continuous function f on G, let fU : G Ñ r0,8q be defined by

fU pyq :“ sup
x,zPU

|fpxyzq|

Lemma 16.2.2. The function fU is continuous.

Proof. It suffices to show that for all a ě 0, the sets f´1ppa,8qq and f´1
U pr0, aqq are open. For the

former, assume fU pxq ą a. Then we can find u1, u2 P U with |fpu1xu2q| ą a. As the function
y ÞÑ fpu1yu2q is continuous, we can find a neighborhood V of x such that |fpu1vu2q| ą a for all
v P V . This implies fU pvq ą a for every v P V .

For the latter, let assume a ą fU pyq ě 0 and let ε ą 0 be given so that a ´ ε ą fU pyq. The
function pu, x, vq ÞÑ |fpuxvq| is continuous, so for all pu, vq P U ˆU , we can find open neighborhood
Uuv of u, v in U and open neighborhood Vuv of y in G such that |fpu1xu2q| ă a´ε for all u1, u2 P Uuv

and x P Vuv. The family tUuv ˆ Uuvuu,vPU of open sets covers U ˆ U , so there exist ui, vj P U p1 ď

i, j ď n ă 8q such that U ˆ U “
n
Ť

i“1

Uuivi ˆ Uuivi . Let V “
n
Ş

i“1

Vuivi Ď
open

G. Then for x P V

and u, v P U , we have pu, vq P Uuivi ˆ Uuivi for some 1 ď i ď n, so |fpuxvq| ă a ´ ε. Thus
fU pxq ď a´ ε ă a for all x P V .

Definition. A continuous function f : G Ñ C is called uniformly integrable if there exists a
compact unit-neighborhood U such that fU P L1pGq. Denote by CunifpGq the set of all uniformly
integrable continuous function on G.

• If f P CunifpGq, then |f | ď fU , so f P L1pGq.

Lemma 16.2.3. Let G be unimodular. Then CunifpGq Ď C0pGq and it is an algebra under convo-
lution.

Proof. Let f P CunifpGq and let U be a compact symmetric unit-neighborhood of G such that
fU P L1pGq. If f does not vanish at infinity, then we can find ε ą 0 such that for all compact set
K of G there exists x P GzK with |fpxq| ě ε. Let x1 P G such that |fpx1q| ě ε, and let x2 R x1U

2

such that |fpx2q| ě ε. Since U is symmetric, x1U X x2U “ H. Next, pick x3 R x1U Y x2U with
|fpx3q| ě ε. Continuing in this way, we construct a sequence pxnqn in G such that xnU XxmU “ H
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whenever n ‰ m, and |fpxnq| ě ε for every n. But then fU ě ε on xnU , which contradicts the
integrability of fU . Note that in this paragraph the unimodularity of G is not used.

Since L1pGq XC0pGq Ď L2pGq, we have CunifpGq Ď L2pGq. Let f, g P CunifpGq. We can write f ˚

gpxq “ xf, Lxg
˚y. Since x ÞÑ Lxg

˚ is continuous by Lemma 2.6.7 and the inner product is continuous,
the convolution f ˚ gpxq is also continuous in x. Finally, take a compact unit-neighborhood U such
that fU , gU P L1pGq. Then

pf ˚ gqU pyq “ sup
x,zPU

ˇ

ˇ

ˇ

ˇ

ż

G

fpξqgpξ´1xyzqdξ

ˇ

ˇ

ˇ

ˇ

“ sup
x,zPU

ˇ

ˇ

ˇ

ˇ

ż

G

fpxξqgpξ´1yzqdξ

ˇ

ˇ

ˇ

ˇ

ď sup
x,zPU

ż

G

|fpxξqgpξ´1yzq|dξ

ď

ż

G

fU pξqgU pξ´1yqdξ “ fU ˚ gU pyq

This implies that pf ˚ gqU P L1pGq, so f ˚ g P CunifpGq.

Note that we have a sequence of inclusions

CcpGq Ď CunifpGq Ď L1pGq X C0pGq Ď L2pGq.

Lemma 16.2.4. For f P CunifpGq and ϕ P L2pΓzGq one has

Rpfqϕpxq “

ż

ΓzG

kpx, yqϕpyqdy

where kpx, yq :“
ř

γPΓ

fpx´1γyq. The kernel is continuous on ΓzGˆ ΓzG.

Proof. Let f P L1pGq. For ϕ P L2pΓzGq, by quotient integral formula one computes

Rpfqϕpxq “

ż

G

fpyqRpyqϕpxqdy “

ż

G

fpyqϕpxyqdy

“

ż

G

fpx´1yqϕpyqdy

“

ż

ΓzG

ÿ

γPΓ

fpx´1γyqϕpγyqdy “

ż

ΓzG

kpx, yqϕpyqdy

The obtained formula is valid almost everywhere in x P G. In particular, for f P CunifpGq this
argument works with f replaced by fU for a suitable compact symmetric unit-neighborhood U to
get a kernel kU . Now choose g P CcpGq with g ě 0 and Γgpxq :“

ř

γPΓ

gpγxq “ 1 for all x P G (c.f.

Lemma 2.4.2) and use quotient integral formula to get
ż

ΓzGˆΓzG

kU px, yqdxdy “

ż

ΓzG

ż

ΓzG

ÿ

γPΓ

gpγxq
ÿ

τPΓ

fU px´1γ´1τyqdxdy

“

ż

ΓzG

ż

G

gpxq
ÿ

τPΓ

fU px´1τyqdxdy

“

ż

G

ż

G

gpxqfU px´1yqdxdy “ ∥g ˚ fU∥1 ă 8

Thus
ř

γPΓ

fpx´1γyq converges almost everywhere in px, yq, so it converges on a dense set of px, yq.

Let px0, y0q be such a point of convergence. We are going to show kpx, yq is continuous on the subset
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x0U ˆ y0U . Let ε ą 0 be given and choose a finite subset S Ď Γ so that
ř

γRS

fU px´1
0 γy0q ă

ε

2
. This

means for px, yq P x0U ˆ y0U , one has
ř

γRS

|fpx´1γyq| ă
ε

2
, which implies that for px, yq, px1, y1q P

x0U ˆ y0U

|kpx, yq ´ kpx1, y1q| ď
ÿ

γPS

|fpx´1γyq ´ fpx1´1γy1q| ` ε

Letting px1, y1q Ñ px, yq, the continuity of k follows from that of f .

As k P CpΓzG ˆ ΓzGq Ď L2pΓzG ˆ ΓzGq, the operator Rpfq is Hilbert-Schmidt by Proposition
12.3.4, whence compact by Proposition 12.3.3. The theorem follows from the next lemma.

Lemma 16.2.5. Let A be a ˚-closed subspace of CcpGq. Let pη, Vηq be a unitary representation
of G such that for every f P A, the operator ηpfq is compact and such that for every nonzero
v P Vη, the space ηpAqv is nonzero. Then η is a direct sum of irreducible representations with finite
multiplicities.1

Notice here CcpGq is viewed as a ˚-subalgebra of L1pGq.

Proof. By a Zorn’s lemma argument we can find a subspace E ď V maximal with the property that
it decomposes as a sum of irreducibles. The assumption of the lemma also holds for the orthogonal
complement EK of E in V “ Vη. By maximality of E this orthogonal complement cannot contain
any irreducible subspace. We must show EK “ 0. Equivalently, we show that a representation η as
in the assumption always contains an irreducible subspace.

The space A is generated by the self-adjoint elements. Let f P A be self-adjoint; then the operator
ηpfq is self-adjoint as well. By assumption, ηpfq is nonzero and compact. Therefore by the Spectral
Theorem ηpfq has a nonzero eigenvalue, say µ. Let Vµ be the corresponding eigenspace. Consider
the collection

tE X Vµ | E ď V is closed and invariant, E X Vµ ‰ 0u

This is nonempty. Indeed, if we choose 0 ‰ v P Vµ, then ηpL1pGqqv is closed and invariant with
0 ‰ µv P ηpL1pGqqv X Vµ. Among this collection we pick W with minimal dimension. Let

E1 :“
č

tE ď V | E is closed and invariant, E X Vµ “ W u Ě W

Then E1 ď V is closed and invariant. To conclude it suffices to show E1 is irreducible. Let F ď E be
a closed and invariant subspace. Note the invariance implies ηpfqE Ď E and ηpfqF Ď F . Replacing
F by its orthogonal complement in E, we may assume F XVµ ‰ 0. But 0 ‰ F XVµ Ď E XVµ “ W ,
the minimality forces F X Vµ “ W , and thus E1 Ď F , or F “ E1. This shows the irreducibility.

It remains to show the multiplicities are finite. For this note first that if τ and σ are unitarily
equivalent representations, then λ is an eigenvalue of τpfq if and only if it is one for σpfq. Thus
any collection of orthogonal subspaces of V that are mutually unitarily equivalent must all have
nontrivial intersection with the same eigenspaces of some f P A. But each eigenspace is finite
dimensional, the finiteness of multiplicity follows.

We include a lemma similar to the above one.
1If G is compact, we can take Γ “ t1u. Then Lemma 16.2.4 implies that Rpfq P BpL2pGqq is compact for each

f P CpGq. Then this lemma implies L2pGq is a direct sum of irreducible representations with finite multiplicities.
Hence this lemma can be viewed as a generalization of Peter-Weyl theorem.
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Lemma 16.2.6. Let G be an LCH group and pπ, V q a unitary representation of G. Suppose that
for each unit-neighborhood U of G there exists an integrable function f on G such that

(i) f is nonnegative and symmetric with support in U ,

(ii)
ż

G

fpgqdg “ 1, and

(iii) πpfq P BpV q is compact.

Then π is a direct sum of irreducibles with finite multiplicities.

Proof. Similar to the proof of Lemma 16.2.5, it suffices to show such a representation always ad-
mits an irreducible subspace. Let v P V be of norm one. By continuity, we may choose a unit-
neighborhood U so small that ∥v ´ πpgqv∥ ă

1

2
for all g P U . Pick f as in the statement of the

lemma; then

∥πpfqv ´ v∥ ď

ż

U

fpgq ∥πpgqv ´ v∥ dg ă
1

2

ż

U

fpgqdg “
1

2

Note that f˚pxq :“ ∆Gpx´1qfpx´1q also satisfies those conditions in the theorem, with the same
estimate ∥πpf˚qv ´ v∥ ď

1

2
, so

∥πpf ` f˚qv ´ 2v∥ ď ∥πpfqv ´ v∥ ` ∥πpf˚qv ´ v∥ ď 1

In particular, if we put h “ f ` f˚, then πphqv ‰ 0. In sum, πphq is a nonzero self-adjoint compact
operator. The rest of the proof is the same as that of the previous lemma.

16.3 The Trace Formula
Definition. Let X be an LCH space and µ a Radon measure on X. A continuous L2-kernel k on
X is called admissible if there exists a function g P CpXq X L2pXq such that |kpx, yq| ď gpxqgpyq

for all x, y P X.

• If X is compact, then every continuous kernel is admissible.

An operator S : L2pXq Ñ L2pXq is called an admissible operator if there exists an admissible
kernel k such that

Sϕpxq “

ż

X

kpx, yqϕpyqdµpyq

for all ϕ P L2pXq, x P X.

• Note that an integral operator on L2pXq with L2-kernel is necessarily a bounded operator.

Proposition 16.3.1. Let X be an LCH space equipped with a Radon measure dx. Assume X is
either first countable or compact. Let T be an integral operator with continuous L2-kernel k on X.
Assume that there exists admissible operators S1, S2 with T “ S1S2. Then T is of trace class and2

trpT q “

ż

X

kpx, xqdx.

2The formula holds as long as T is of trace class when the diagonal kpx, xq is defined in a correct way. See [Bri91]
and also mathoverflow post
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Proof. Let us replace S1 by S˚
1 , Since S1, S2 are Hilbert-Schmidt, T “ S˚

1 S2 is trace class by Lemma
12.3.6 and

trpT q “
ÿ

α

xTeα, eαy “
ÿ

α

xS2eα, S1eαy “ pS2, S1q

where peαqα is an orthonormal basis for L2pXq, and p , q is the inner product on HSpL2pXqq. Let ki
be the admissible kernel of Si pi P r2sq. By the result in §12.3.2, the operator T has kernel

kT px, yq “ kS˚
1 S2

px, yq “

ż

X

k1py, zqk2px, zqdz

so by Proposition 12.3.4
ż

X

kT px, xqdx “

ż

X

ż

X

k1px, zqk2px, zqdxdz “ pS2, S1q “ trpT q.

The proof won’t be complete until we proof kT px, xq is measurable. For this we claim kT px, yq is
continuous.

• If X is first countable, the continuity can be checked with sequences. Since z ÞÑ k1pz, yqk2px, zq

is integrable over X for each px, yq with a common integrable upper bound by virtue of ad-
missibility, the continuity then follows from DCT.

• If X is compact, then ki is uniformly continuous, in the sense that for all x0 P X and ε ą 0 there
exists a neighborhood U of x0 such that for all px, zq P U ˆX we have |kipx, zq ´kipx0, zq| ă ε.
Together with volpX, dxq ă 8, this implies the continuity.

Recall that for a uniform lattice Γ of G and π P pG, the number NΓpπq ě 0 is the multiplicity of π
as a subrepresentation of pR,L2pΓzGqq. Denote by pGΓ the set of all π P pG with positive multiplicity.

Write CunifpGq2 “ CunifpGq ˚ CunifpGq for the linear span of functions of the form g ˚ h with
g, h P CunifpGq.

If Γ is a lattice in G and γ P Γ, denote by rγs the conjugacy class of γ in Γ, Gγ “ CGpγq the
centralizer of γ in G, and Γγ “ Gγ XΓ the centralizer of γ in Γ. Note that the map Γ Q ν ÞÑ ν´1γν P

rγs induces a bijection ΓγzΓ – rγs.

Lemma 16.3.2 (Pretrace formula). For f P CunifpGq, we have
ÿ

γPΓ

fpx´1γyq “
ÿ

π

ÿ

ϕPBπ

Rpfqϕpxqϕpyq

where π P pGΓ and Bπ is an orthonormal basis of the π-isotypic part L2pΓzGq of π in L2pΓzGq.

Proof. By Lemma 16.2.4, LHS is the kernel of the operator Rpfq on the space L2pΓzGq. On the
other hand, if we rewrite the decomposition in Theorem 16.2.1 as

L2pΓzGq “
x

à

π

L2pΓzGqrπs

then the kernel of Rpfq equals, in L2 sense, the sum of the kernel what does this kernel mean? of
Rpfq|L2pΓzGqrπs with π varying over π P pGΓ. We contend that each of this kernel is

ÿ

ϕPBπ

Rpfqϕpxqϕpyq
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Theorem 16.3.3 (Trace Formula). Let G be an LCH group and Γ ď G a uniform lattice. Then
for every π P pGΓ and f P CunifpGq2, the operator πpfq is of trace class and

ÿ

πP pGΓ

NΓpπq trπpfq “
ÿ

rγs

volpΓγzGγqOγpfq

where the summation on the right runs over all conjugacy classes rγs in the group Γ, and Oγpfq

denotes the orbital integral

Oγpfq :“

ż

GγzG

fpx´1γxqdx

We shall see in the sequel that the centralizer Gγ is unimodular and that ΓγzGγ is of finite measure
for all γ P Γ. The expression volpΓγzGγqOγpfq is therefore well-defined, in the sense that it is
independent of the choice of Haar measure on Gγ .
The left hand side is called the spectral side, while the right hand side is called the geometric
side.

Proof. The algebra CunifpGq2 consists of all finite linear combinations of functions of the form g ˚h˚

with g, h P CunifpGq, so it suffices to prove the trace formula for f “ g ˚ h˚. By Lemma 16.2.4,
the operators Rpgq and Rphq are integral operators with continuous kernels. Since ΓzG is compact,
Rpgq and Rphq are admissible operators. By Proposition 16.3.1, the operator Rpfq “ RpgqRphq˚ is
of trace class with trace trRpfq “

ż

ΓzG

kf px, xqdx. By Theorem 16.2.1 and the definition of trace,

all restriction of Rpfq to subrepresentations are of trace class and
ÿ

πP pGΓ

NΓpπq trπpfq “ trRpfq “

ż

ΓzG

kf px, xqdx “

ż

ΓzG

ÿ

γPΓ

fpx´1γxqdx

We order the sum in accordance with the conjugacy classes rγs in Γ, interchange integration and
summation (valid as ΓzG is compact), and quotient integral formula to obtain

trRpfq “

ż

ΓzG

ÿ

rγs

ÿ

σPΓγzΓ

fpx´1σ´1γσxqdx

“
ÿ

rγs

ż

ΓzG

ÿ

σPΓγzΓ

fpx´1σ´1γσxqdx “
ÿ

rγs

ż

ΓγzG

fpx´1γxqdx

Lemma 16.3.4. For every γ P Γ, the centralizer Gγ is unimodular and ΓγzGγ has finite invariant
measure.

Proof. The above computation shows that for f P CunifpGq2 with f ě 0, one has
ż

ΓγzG

fpx´1γxqdx ă

8 for all γ P Γ. Since G is unimodular by Lemma 16.1.5, the space ΓγzG carries an invariant Radon
measure ν. Consider the projection p : ΓγzG Ñ GγzG and let µ “ p˚ν be the pushforward measure
of ν via p; in other word, for f P CcpGγzGq, we have

ż

GγzG

fdµ “

ż

ΓγzG

f ˝ p dν

We show µ is a Radon measure, i.e., the integral above is finite. For this let 0 ď f P CcpGγzGq and
let Φ : GγzG Ñ G be given by ΦpGγxq “ x´1γx. Then the subset Φpsupp fq Ď G is compact, so
by Tietze’s extension theorem we have find 0 ď f̃ P CcpGq such that f̃py´1γyq “ fpGγyq for every
y P G with fpGγyq ą 0. Choose 0 ď F P CcpGq2 such that f̃ ď F .
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• To show the existence of F , let g P C`
c pGq be such that g ą 0 in a neighborhood of supp f̃ .

There exists a unit-neighborhood U such that pϕU ˚gq|supp f̃ ą 0, where ϕU is a Dirac function
supported in U . Set F :“ cϕU ˚ g for c " 0 so that F ě f̃ .

Since F P CcpGq2, as mentioned in the beginning of the proof of this lemma, we have
ż

GγzG

fdµ “

ż

ΓγzG

f ˝ p dν “

ż

ΓγzG

f̃py´1γyqdνpyq ď

ż

ΓγzG

F py´1γyqdνpyq ă 8

This show µ is a Radon measure. µ is G-invariant since so is ν, and by Theorem 2.4.6 it follows that
Gγ is unimodular. Finally, for f P CcpGγzGq, we have

8 ą

ż

ΓγzG

fpppyqqdνpyq “

ż

GγzG

ż

ΓγzGγ

fpppxσqqdσdµpxq

“

ż

GγzG

ż

ΓγzGγ

fpxqdσdµpxq “ volpΓγzGγq

ż

ΓγzG

fpxqdµpxq

so that volpΓγzGγq ă 8.

To conclude the proof, we continue our computation with the help of the lemma.

trRpfq “
ÿ

rγs

ż

ΓγzG

fpx´1γxqdx

“
ÿ

rγs

ż

GγzG

ż

ΓγzGγ

fppσxq´1γpσxqqdσdx “
ÿ

rγs

volpΓγzGγqOγpfq

Example 16.3.5. Consider the case G “ R and Γ “ Z. By Plancherel theorem we have the
decomposition

L2pZzRq –
x

à

kPZ
Crt ÞÑ e2πitks

so if we identify pG with R via x ÞÑ rt ÞÑ e2πixs, we see pGΓ is mapped onto Z, and the multiplicities
are all equal to one. Thus the spectral side equals

ř

kPZ
pfpkq, and the geometric side is

ř

kPZ
fpkq. Thus

in this case, the trace formula is the Poisson summation formula in disguise.

Lemma 16.3.6. Let G be an LCH group and A a ˚-subalgebra of CcpGq stable under left translation
Ly py P Gq which contains a Dirac net pϕU qU . Let pπ, V q and pσ,W q be two unitary representations
of G such that for each f P A the operators πpfq and σpfq are of trace class. If

trπpfq˚πpfq ě trσpfq˚σpfq

for all f P A, then σ is a subrepresentation of π. If the equality holds for all f P A, then σ is
isomorphic to π.

Proof. By Lemma 13.3.3 the orbit πpAqv is nonzero for each nonzero v P V . Thus by Lemma
16.2.5 both π and σ decomposes into irreducibles with finite multiplicity. By a Zorn’s lemma
argument there exists a maximal subrepresentation of σ with the property of being isomorphic to a
subrepresentation of π. Restricting to their orthogonal complements, respectively, we assume π and
σ have no isomorphic subrepresentations. To show the first assertion, we must show σ “ 0. If this
is shown, the second assertion follows once we reverse the roles of π and σ.
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Let V “
À

αPI

Vα be a decomposition into pairwise orthogonal subrepresentations and let pvα,µqµ P

Vα be such that
ÿ

α

ÿ

µ

∥πpfqvα,µ∥2 ă 8

for every f P A. This is possible for each πpfq is of trace class, and thus Hilbert Schmidt. We can
simply take pvα,µqα,µ to be an orthonormal basis. Choose any nonzero vector w P W . We claim
that for every ε ą 0 we can find f P A such that

ÿ

α

ÿ

µ

∥πpfqvα,µ∥2 ă ε ∥σpfqw∥2

Suppose otherwise. For each µ let Vα,µ be a copy of Vα, and define the space

L :“

#

ÿ

α

ÿ

µ

πpfqvα,µ | f P A

+

Ď V 1 :“
à

α

à

µ

Vα,µ

Then for every f P A the map
ÿ

α

ÿ

µ

πpfqvα,µ ÞÑ σpfqw

would define a bounded unitary G-equivariant operator T from L to W . It is nontrivial as said
in the very beginning of the proof. Extend T to the whole V 1 by setting T |LK “ 0. Consider the
restriction of T to

À

µ Vα,µ Ď V 1. Since Vα,µ does not occur in W , this restriction must be trivial.
Hence T “ 0, a contradiction.

Now assume σ ‰ 0. As said in the very beginning of the proof, there exists h P A with σphq ‰ 0.
If we put f “ h ˚ h˚, then σpfq is of trace class and positive. Therefore σpfq possesses a largest
eigenvalue and we can scale h in such a way that this eigenvalue is 1. Let w P W be such that
∥w∥ “ 1 and σpfqw “ w. Let λ ą 0 be the largest eigenvalue of πpfq. For every α let pvα,µqµ be an
orthonormal basis of Vα consisting of eigenvectors of πpfq, and write πpfqvα,µ “ λα,µvα,µ. Then for
every g P A,

ÿ

α

ÿ

µ

∥πpgqvα,µ∥2 “ ∥πpgq∥2HS ă 8

and by the second paragraph we can find g P A with
ÿ

α

ÿ

µ

∥πpgqvα,µ∥2 ă
1

λ2
∥σpgqw∥2

Then

trπpg ˚ fq˚πpg ˚ fq “
ÿ

α,µ

∥πpg ˚ fqvα,µ∥2 “
ÿ

α,µ

λ2α,µ ∥πpgqvα,µ∥2 ď λ2
ÿ

α,µ

∥πpgqvα,µ∥2 ă ∥σpgqw∥2

“ ∥σpg ˚ fqw∥2 “ trσpg ˚ fq˚σpg ˚ fq ď trπpg ˚ fq˚πpg ˚ fq

a contradiction. This implies σ “ 0.

16.4 Locally Constant Functions
Definition. Let X be a topological space.

300



1. A function f : X Ñ C is called locally constant if each point x P X admits an neighborhood
U to which the restriction of f is constant.

Suppose, in addition, X “ G is a topological group.

2. A function f : G Ñ C is called uniformly locally constant if there exists a unit-neighborhood
U such that f is constant on every set of the form UxU, x P G.

• If f is locally constant with compact support, then f is uniformly locally constant.

Proposition 16.4.1. Let G be a totally disconnected LCH group and f a uniformly locally constant
and integrable function on G. Then f P CunifpGq2. In particular, the trace formula is valid for f .

Proof. Let U denote the open compact symmetric unit neighborhood of G so that f is constant on
UxU for every x P G. Then fU “ |f |, and therefore f P CunifpGq. The same holds for the function
eU :“

1

volpUq
1U . We have

eU ˚ fpgq “
1

volpUq

ż

G

1U phqfph´1gqdh “
1

volpUq

ż

U

fpgqdh “ fpgq

for every g P G. Thus f “ f ˚ eU P CunifpGq2.

16.5 Lie Groups
Theorem 16.5.1. Let G be a Lie group of dimension n and let Γ ď G be a cocompact lattice. Let
f P CpGq X L1pGq such that the kernel

kpx, yq :“
ÿ

γPΓ

fpx´1γyq

converges uniformly and is 2r-times continuously differentiable in the first argument, where r “

Qn

2

U

.
Then the trace formula is valid for f .
In particular, the trace formula holds for every f P C2r

c pGq.

To show this theorem we need a partition of unity with a smooth square root. The following
lemma is proved in Appendix F.5.

Lemma 16.5.2. Let M be a smooth manifold and let pUiqiPI be an open covering of M . There
there are smooth functions ui :M Ñ r0, 1s, such that suppui Ď Ui and that

ÿ

iPI

ui ” 1

where the sum is locally finite. Moreover, one can choose the ui in a way that for each i P I the
function ?

ui is smooth as well.

A Borel measure ν on Rn is called a smooth measure if the Radon-Nikodym derivative of ν
with respect to the Lebesgue measure dx is smooth and non-negative, i.e., there exists a smooth
function h : Rn Ñ r0,8q such that

νpAq “

ż

A

hpxqdx

for all Borel A. A measure µ on a smooth manifold M is called a smooth measure if for every
chart ϕ : U Ñ Rn, the pushforward measure ϕ˚µ on Rn is smooth.
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Proposition 16.5.3. Let M be a compact smooth manifold of dimension n with a smooth measure
µ. Let k :M ˆM Ñ C be continuous and 2r-times continuously differentiable in the first argument,
where r “

Qn

2

U

. Then the induced integral operator Tk : L2pMq Ñ L2pMq

Tkpϕqpxq :“

ż

M

kpx, xqϕpyqdµpyq

is of trace class and

trTk “

ż

M

kpx, xqdx.

Proof. We first prove the assertion in the case M “ Rn{Zn and µ being the Lebesgue measure (the
Haar measure with total volume 1). In this case we define

lpx, yq “
ÿ

kPZn

˜

1

1 ` 4π2 ∥k∥2

¸r

ekpxqekpyq

where ekpxq “ e2πixx,ky. By integral test we see this sum converges absolutely and uniformly, and
the kernel lpx, yq is therefore continuous. Let ∆ be the Laplacian

∆ “ ´
B2

Bx21
´ ¨ ¨ ¨ ´

B2

Bx2n
.

Lemma 16.5.4. For ϕ P C2rpRn{Znq one has

Tlp1 ` ∆qrϕ “ ϕ.

Proof. Both sides being continuous functions, it suffices to show they are equal in L2-sense. Since
tek | k P Znu forms an orthonormal basis for L2pRn{Znq, it is enough to show Tlp1`∆qrek “ ek for
each k P Zn. This follows from the computations

p1 ` ∆qrek “ p1 ` 4π2 ∥k∥2qrek

and

Tlekpxq “
ÿ

ℓPZn

˜

1

1 ` 4π2 ∥ℓ∥2

¸r

eℓpxq

ż

M

eℓpyqekpyqdy “

˜

1

1 ` 4π2 ∥k∥2

¸r

ekpxq

Now let k be as in the theorem. Then for ϕ P L2pMq, the function Tkϕ is C2rpMq (for M is
compact we can differentiate under the integral sign), so by the lemma

Tlp1 ` ∆qrTkϕ “ Tkϕ.

By the same reason one has p1 ` ∆qrTk “ Tk1 , where

k1px, yq :“ p1 ` ∆xqrkpx, yq

so Tk “ TlTk1 is a product of two Hilbert Schmidt operator, hence of trace class. As both Tl and
Tk1 are admissible (as M is compact), the theorem follows from Proposition 16.3.1.

Next let M be an arbitrary smooth compact manifold of dimension n. Let ppUi, ψiqqsi“1 be an
open cover of M consisting of charts ψi : Ui Ñ Rn{Zn; so for each i, the map ψi is a homeomorphism
of Ui into some open set Vi Ď Rn{Zn. We choose V1, . . . , Vs in a way that they are pairwise disjoint.
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Let puiqi be a smooth partition of unity with smooth square root subordinate to the cover pUiqi.
For 1 ď i, j ď s let

ki,jpx, yq “
a

uipxqkpx, yq

b

ujpyq P CpM ˆMq

and define a continuous kernel on Rn{Zn ˆ Rn{Zn

rki,jpx, yq :“

#

a

dipxqki,jpψ
´1
i pxq, ψ´1

j pyq
a

djpyq , if px, yq P Vi ˆ Vj

0 , otherwise

Here dj denotes the Radon-Nikodym derivative of pψjq˚µ with respect to the Lebesgue measure.
We define rk :“

ř

i,j
rki,j and for ϕ P L2pMq, we set

ϕjpxq :“ ϕpxq

b

ujpxq.

Define rϕj P L2pRn{Znq by

rϕjpxq :“

#

ϕjpψ
´1
j pxqq

a

djpxq , if x P Vj

0 , otherwise

Finally set rϕ “
ř

j
rϕ.

Lemma 16.5.5. The map

Ψ : L2pMq L2pRn{Znq

ϕ rϕ

is a linear isometry, and

ΨpTkϕq “ T
rkΨpϕq

for every ϕ P L2pMq. The operator T
rk equals PT

rkP , where P is the orthogonal projection L2pRn{Znq Ñ

ImΨ. Finally, we have
ż

M

kpx, xqdµpxq “

ż

Rn{Zn

rkpx, xqdx

Proof. The map Ψ is linear. For ϕ P L2pMq, we compute

∥Ψpϕq∥2 “

ż

Rn{Zn

|rϕpxq|2dx “
ÿ

j

ż

Vj

|Ăϕjpxq|2dx “
ÿ

j

ż

Vj

|ϕjpψ
´1
j pxqq|2djpxqdx

“
ÿ

j

ż

Uj

|ϕjpxq|2dµpxq “
ÿ

j

ż

M

|ϕpxq|2ujpxqdµpxq “

ż

M

|ϕpxq|2dµpxq “ ∥ϕ∥2

so Ψ is an isometry. For the second, compute

T
rkΨpϕqpxq “ T

rk
rϕpxq “

ÿ

j

T
rk
rϕjpxq “

ÿ

j

ż

Vj

rkpx, yqĂϕjpyqdy “
ÿ

i,j

ż

Vj

rki,jpx, yqrϕjpyqdy

“
ÿ

i

a

dipxq

b

uipψ
´1
i pxqq

ż

M

kpψ´1
i pxq, yqϕpyqdµpyq “ ΨT

rkpϕqpxq

To show T
rk “ PT

rkP one has to show for all g P pImΨqK,

T
rkpgq “ 0 and xT

rkh, gy “ 0
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for all h P L2pRn{Znq. These follow from the facts that Impy ÞÑ rkpx, yqq Ď ImΨ and Impx ÞÑ

rkpx, yqq Ď ImΨ if the other argument is fixed. Finally,
ż

Rn{Zn

rkpx, xqdx “
ÿ

i

ż

Vi

ki,ipψ
´1
i pxq, ψ´1

i pxqqdipxqdx “
ÿ

i

ż

Ui

ki,ipx, xqdµpxq

“
ÿ

i

ż

M

kpx, xquipxqdµpxq “

ż

M

kpx, xqdµpxq

We use this lemma to show Tk is compact, and next of trace class with trace trTk “ trT
rk. If

these are shown, then the last assertion of the lemma implies

trTk “ trT
rk “

ż

Rn{Zn

rkpx, xqdx “

ż

M

kpx, xqdµpxq

and the proposition follows.
For the compactness, we use Proposition 12.2.1.(c). Let pejq be an orthonormal sequence in

L2pMq. Then

∥Tkej∥ “ ∥ΨTkej∥ “
∥∥T

rkΨej
∥∥ Ñ 0

as T
rk is compact and pΨejqj is orthonormal. To show its trace norm is finite, we use Lemma 12.3.8.

Let peiq and phjq be two orthonormal bases of L2pMq. Then
ÿ

i

|xTkei, hiy| “
ÿ

i

|xΨTkei,Ψhiy| “
ÿ

i

|xT
rkΨei,Ψhiy| ď

∥∥T
rk

∥∥
tr

so that ∥Tk∥tr is finite. Finally, let ei be any orthonormal basis of L2pMq. Then

trTk “
ÿ

i

xTkei, eiy “
ÿ

i

xT
rkΨei,Ψeiy

On the other hand, pΨeiqi forms an orthonormal basis of ImΨ. Let pe1
jqj be any orthonormal basis

prolonging pΨeiqi; then

trT
rk “

ÿ

j

xT
rke

1
j , e

1
jy “

ÿ

j

xT
rkPe

1
j , P e

1
jy “

ÿ

i

xT
rkΨei,Ψeiy “ trTk

This concludes the proof of the proposition.

Now we deduce Theorem 16.5.1 from Proposition 16.5.3. The proof is the same as that of trace
formula. Let ρ be the right translation by G on L2pΓzGq. Let f be as in the theorem. Then ρpfq is
of trace class, and

tr ρpfq “
ÿ

πP pG

NΓpπq trπpfq

where NΓpπq is the multiplicity of π occurring in L2pΓzGq. On the other hand, we have

tr ρpfq “

ż

ΓzG

kpx, xqdx “

ż

ΓzG

ÿ

γPΓ

fpx´1γxqdx “

ż

ΓzM

ÿ

rγs

ÿ

σPΓγzΓ

fpx´1σ´1γσxqdx

“
ÿ

rγs

ż

ΓγzG

fpx´1γxqdx “
ÿ

rγs

ż

GγzG

ż

ΓγzGγ

fppσxq´1γpσxqqdσdx “
ÿ

rγs

volpΓγzGγqOγpfq

where rγs runs over all conjugacy classes of Γ.
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Chapter 17

Weil representation

We follow closely [Wei64]. In particular, we follow its convention on the composition of functions in
HomGppG,Hq. To be specific, for pσ, τq P HomGppG,Hq ˆ HomGppH, Iq, write

στ :“ τ ˝ σ.

If ρ P HomGppI, Jq, we have

pστqρ “ ρ ˝ pτ ˝ σq “ pρ ˝ τq ˝ σ “ σpτρq.

For g P G and σ P HomGppG,Hq, we write

gσ :“ σpgq.

With this convention, we have

pgσqτ “ gpστq “ τ ˝ σpgq

Specializing to the automorphism group AutG, we see, with this notation, that AutG is the opposite
group of the usual automorphism group. These conventions are adapted throughout this chapter.

For an abelian group G, write x¨, ¨y : Gˆ pG Ñ S1 for the evaluation pairing:

xx, χy “ χpxq

for x P G and χ P pG.

Definition. Let G,H be LCA groups; the group operations will be written additively.

(i) A bicharacter of G ˆ H is a continuous function f : G ˆ H Ñ S1 such that fp¨, hq P pG and
fpg, ¨q P pH for every g, P G, h P H.

(ii) A continuous function f : G Ñ S1 is called a character of second degree if

GˆG Q px, yq ÞÑ fpx` yqfpxq´1fpyq´1

is a bicharacter of GˆG.

It is clear that the set of all characters of second degrees form an abelian group under pointwise
multiplication; denote this group by X2pGq. Immediately from the definition that there is a map

ρ : X2pGq HomTopGppG, pGq

f ρf
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given by the formula

ρf pyqpxq “ fpx` yqfpxq´1fpyq´1.

Note that ρf pyqpxq “ ρf pxqpyq; in this case we say ρf is symmetric. If we denote by

SympGq “

!

σ P HomTopGppG, pGq | σpxqpyq “ σpyqpxq for all x, y P G
)

,

then ρ goes into SympGq, inducing

ρ : X2pGq SympGq.

Lemma 17.0.1. ρ : X2pGq Ñ SympGq is a group homomorphism with kernel pG. Moreover, if
r2s : G Ñ G given by x ÞÑ 2x is an isomorphism, then ρ affords a section.

Proof. The first assertion is clear. Suppose now r2s : G Ñ G is an isomorphism. Define f :

SympGq Ñ X2pGq by

fρpxq “
`

r2s´1ρpxq
˘

pxq.

To see this indeed lies in X2pGq, compute

fρpx` yq “ ρpx` yqpr2s´1px` yqq “ ρpxqpr2s´1xq ¨ ρpxqpyq ¨ ρpyqpr2s´1qpyq.

Then

fρpx` yqfρpxq´1fρpyq´1 “ ρpxqpyq

which is a bicharacter as ρ is symmetric. It is straightforward to see ρ ˝ f “ idSympGq .

Example 17.0.2 (Quadratic space). Let k be a local field and ψ : k Ñ S1 a nontrivial character.
Suppose pX,Qq is a finite dimensional quadratic space over k. Then the map

X S1

x ψpQpxqq

is a character of X of second degree. Indeed, if we put

xx, yyQ :“ Qpx` yq ´Qpxq ´Qpyq, x, y P X

then

ψpQpx` yqqψpQpxqq´1ψpQpyqq´1 “ ψpxx, yyQq.

The pairing x¨, ¨yQ is symmetric, and for each x P X, the map

y ÞÑ ψpxx, yyQq

defines a character X Ñ S1. This proves the claim.
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17.1 Sympletic group
Let F be the bicharacter of

´

Gˆ pG
¯

ˆ

´

Gˆ pG
¯

given by

Fppx, χq, py, ψqq “ xx, ψy “ ψpxq

Definition. An automorphism σ P AutpGˆ pGq is sympletic if it preserves the bicharacter pz, z1q ÞÑ

Fpz, z1qFpz1, zq´1, i.e.,

Fpσpzq, σpz1qqFpσpz1q, σpzqq´1 “ Fpz, z1qFpz1, zq´1

for any z, z1 P Gˆ pG. We denote by SppGq the subgroup of all sympletic automorphisms of Gˆ pG.

Example 17.1.1. Again let k be a local field and ψ : k Ñ S1 a nontrivial character. For a finite
dimensional vector space X over k, we have an isomorphism of topological groups

X_ “ HomTVSk
pX, kq pX “ HomTopGppX,S1q

T ψ ˝ T

When X “ k is one dimensional, this is Theorem 7.1.3. The general case follows at once.
Under the identification X_ – pX, the bicharacter pz, z1q ÞÑ Fpz, z1qFpz1, zq´1 is the tautological

sympletic form on X ˆX_, defined by

ppx, T q, py, Sqq ÞÑ Sx´ Ty.

We can rephrase the condition for an automorphism being sympletic into a more familiar form.
For a LCA group G and σ P AutpGˆ pGq, we can write

σpx, χq “ px, χq

˜

α β

γ δ

¸

“ pαpxq ` γpχq, βpxq ` δpχqq,

with

α P HomTopGppG,Gq, δ P HomTopGpp pG, pGq

β P HomTopGppG, pGq, γ P HomTopGpp pG,Gq

We call
˜

α β

γ δ

¸

the matrix form of σ. If τ P AutpGˆ pGq has

Definition. For any LCA groups G,H any α P HomTopGppG,Hq, denote by

α˚ P HomTopGpp pH, pGq

the map defined by

α˚pχqpgq “ χpαpgqq, pg, χq P Gˆ pH.

We call α˚ the dual homomorphism of α.
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Identify G with its double dual by Pontryagin duality. Then for σ “

˜

α β

γ δ

¸

P AutpG ˆ pGq,

we have

σ˚ “

˜

α˚ γ˚

β˚ δ˚

¸

P Autp pGˆGq.

Let η : Gˆ pG Ñ pGˆG be the twist:

ηpx, χq “ p´χ, xq.

Here ´χ means the character χ´1. In fact, we will also write the group law on the dual group pG

additively. In matrix form, this is

η “

˜

0 1

´1 0

¸

.

Finally, let σ ÞÑ σI be the self-map of AutpGˆ pGq given by

σI “ ησ˚η´1 “

˜

δ˚ ´β˚

´γ˚ α˚

¸

.

Lemma 17.1.2. σ ÞÑ σI is an involutive anti-isomorphism on AutpGˆ pGq such that

SppGq “ tσ P AutpGˆ pGq | σσI “ 1u.

17.1.1 Hisenberg group
Define a map

U : Gˆ pG AutC HomSetpG,Cq

by the formula

Upx, χqΦpyq “ Φpy ` xqχpyq.

This is not a homomorphism, but it satisfies the relation

UpzqUpz1q “ Fpz, z1qUpz ` z1q.

Now denote by ApGq the set Gˆ pGˆ S1 equipped with the group law

pz, tqpz1, t1q :“ pz ` z1,Fpz, z1qtt1q.

This is clearly an LCH group. Using this group, we get a genuine representation

ApGq AutC HomSetpG,Cq

pz, tq rΦ ÞÑ tUpzqΦs

Instead of all functions, let us restrict ourselves to the L2 space, that is, consider the representation
ApGq Ñ AutC L

2pGq. It is clear that ApGq acts continuously on L2pGq, so it induces a representation

ApGq GLctspL2pGqq.

Moreover, this is a unitary representation (as we only consider unitary characters). Denote by ApGq

its image in GLctspL2pGqq.
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Lemma 17.1.3.

(i) ApGq Ñ GLctspL2pGqq is faithful.

(ii) Equip ApGq with the subspace topology from BpL2pGqq (i.e. the strong topology). Then
ApGq – ApGq as topological groups.

Proof.

(i) Suppose pz, tq “ px, χ, tq P ApGq is such that

tUpzqΦpyq “ Φpy ` xqχpyqt “ Φpyq

for all Φ P L2pGq and y P G. If x ‰ 0 is not the identity element, take a bump function Φ

around 1 whose support avoids x. Then take y “ 0 implies 0 “ Φp0q ‰ 0, a contradiction.
Hence x “ 0, and the displayed identity implies χpyqt “ 1 for all y P G. This means χ is a
constant, so χ ” 1 and thus t “ 1.

(ii) It is clear that with strong topology ApGq is a topological group. To be filled.

We will use ApGq to study the group ApGq in the sequel. For now notice that

ZpApGqq “ tp0, tq P Gˆ pGˆ T u – T

and the projection AG Ñ Gˆ pG is a group homomorphism. This allows us to identify ApGq{T and
Gˆ pG.

Let BpGq “ AutApGq denote the group of automorphisms of ApGq in TopGp. Since any element
in BG preserves ZpApGqq “ T , we obtain two homomorphisms

BpGq

AutT AutpGˆ pGq

For an element s P BpGq, we denote its image in AutpGˆ pGq by σ “ σs. Put

B0pGq “ kerpBpGq Ñ AutpT qq “ ts P BpGq | spT q “ t1uu .

Then for s P B0pGq, we can write

spz, tq “ pσspzq, fpzqtq

for each pz, tq P ApGq, where f “ fs : G ˆ pG Ñ S1 is some continuous function. Since s is an
automorphism, this implies

fpz1 ` z2qfpz1q´1fpz2q´1 “ Fpσpz1q, σpz2qqFpz1, z2q´1. (♠)

In particular, f P X2pGˆ pGq is a character of second degree. Moreover, LHS is symmetric in z1 and
z2, so σ P SppGq is sympletic. In sum, we have an inclusion

B0pGq SppGq ˆX2pGˆ pGq

s pσ, fq “ pσs, fsq.
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If on SppGq ˆX2pGˆ pGq we use the group law

pσ, fqpσ1, f 1q :“ pσ1 ˝ σ, f ¨ pf 1 ˝ σqq “ pσσ1, f ¨ pf 1 ˝ σqq

namely a semi-direct product, then the above map becomes a group homomorphism.

Lemma 17.1.4. One has

ker pB0pGq Ñ SppGqq “ InnAG – Gˆ pG

Proof. Say s P B0pGq maps to p1, fq. From above we see f is in fact a character of G ˆ pG. Then
there exist py, ψq P Gˆ pG such that

fpx, χq “ ψpxqχpyq.

This implies

spx, χ, tq “ px, χ, ψpxqχpyqtq “ py,´ψ, 1qpx, χ, tqpy,´ψ, 1q´1 “ Innpy,´ψ,1qpx, χ, tq.

This proves Ď. Reversing the argument proves Ě .

Now we put σs in matrix form: say σs “

˜

α β

γ δ.

¸

. Define

f 1px, χq “ fpx, χqxγpχq,´βpuqy

Then p♠q becomes

f 1px` y, χψq “ f 1px, χqf 1py, ψqxx, β˚ ˝ αpyqyxδ˚ ˝ γpχq, ψy

If we define

gpxq :“ f 1px, 0q, hpχq “ f 1p0, χq,

by taking y “ 0 and χ “ 1 respectively, we see

f 1px, χq “ gpxqhpχq

and

gpx` yq “ gpxqgpyqxx, β˚ ˝ αpyqy, hpχψq “ hpχqhpψqxδ˚ ˝ γpχq, ψy.

In other words, g “ fβ˚˝α P X2pGq and h “ fδ˚˝γ P X2p pGq.

17.1.2 Some special matrices
In this subsection we look at various automorphisms s “ pσ, fq obtained by specifying the matrix
form of σ and then solving p♠q for f .

Diagonal. That is the case when β “ γ “ 0. Since σσI “ 1, it follows that δ “ pα˚q´1, and

Fpσpx, χq, σpy, ψqq “ xαpxq, δpψqy “ xx, ψy “ Fppx, χq, py, ψqq.

Hence RHS of p♠q is 1, so we can take f “ 1. This defines a map

d0 : AutG B0pGq

α

˜˜

α 0

0 pα˚q´1

¸

, 1

¸
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Antidiagonal. That is the case when α “ δ “ 0. Then β P IsomTopGppG, pGq and γ P IsomTopGpp pG,Gq,
and that β “ ´pγ˚q´1. Compute

Fpσpx, χq, σpy, ψqq “ xγpχq, βpyqy “ x´y, χy.

This suggests that we should take f : Gˆ pG Ñ S1 such that

fpx, χq “ x´x, χy.

We’ve constructed a map

d1
0 : IsomTopGpp pG,Gq B0pGq

γ

˜˜

0 ´pγ˚q´1

γ 0

¸

, rpx, χq ÞÑ χp´xqs

¸

Unipotent. That is the case when α “ δ “ 1 and γ “ 0. Then β “ β˚ P HomTopGppG, pGq. The
end of the last subsection shows that f must be of the form

fpx, χq “ gpxqhpχq

with h P
p

pG and g P X2pGq associated to β, namely ρg “ β. In particular, this defines a map

t0 : X2pGq B0pGq

f

˜˜

1 ρf

0 1

¸

, f

¸

Considering the lower unipotent case will also yield a map

t10 : X2p pGq B0pGq

f 1

˜˜

1 0

ρf 1 1

¸

, f 1

¸

Lemma 17.1.5. For f P X2pGq and α P AutG, put fα :“ f ˝ α´1 P X2pGq. Then the following
identities hold.

(i) d0pαq´1t0pfqd0pαq “ t0pfαq for all f P X2pGq.

(ii) d0pαqt10pf 1qd0pαq´1 “ t10pf 1α˚
q for all f 1 P X2p pGq

(iii) d1
0pα ˝ γq “ d1

0pγqd0pαq and d1
0pγ ˝ pα˚q´1q “ d0pαqd1

0pγq for all γ P Isomp pG,Gq.

Proof. We must compute ρfα . By definition,

ρfαpyqpxq “ fαpx` yqfαpxq´1fαpyq´1 “ ρf pα´1pyqqpα´1pxqq.

Hence ρfα “ pα´1q˚ ˝ ρf ˝ α´1. In term of our convention, this is

ρfα “ α´1ρf pα´1q˚ “ α´1ρf pα˚q´1 P HomTopGppG, pGq

Corollary 17.1.5.1.
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Matrices with γ invertible. Put

Ω0pGq “

#

s P B0pGq | σs “

˜

α β

γ δ

¸

with γ invertible
+

.

Lemma 17.1.6. One has

Ω0pGq “

!

t0pf1qd1
0pγqt0pf2q | f1, f2 P X2pGq, γ P IsomTopGpp pG,Gq

)

.

Moreover, for each s P Ω0pGq, the expression s “ t0pf1qd1
0pγqt0pf2q is unique.

Proof. The containment Ě is clear. For the other way around, if we write σs “

˜

α β

γ δ

¸

, then a

direct computation shows that we must take

f1pxq :“ fspx,´γ
´1pαpxqqq, f2pxq :“ fsp0, δ ˝ γ´1pxqq

in order for the identity s “ t0pf1qd1
0pγqt0pf2q to hold. This proves Ď and the uniqueness. A sanity

check:

ρf1 “ γ´1 ˝ α, ρf2 “ δ ˝ γ´1.

Also remember that σs P SppGq.

Explicitly, for σ “

˜

α β

γ δ

¸

with γ invertible, we have

˜

α β

γ δ

¸

“

˜

1 γ´1 ˝ α

0 1

¸˜

0 ´pγ˚q´1

γ 0

¸˜

1 δ ˝ γ´1

0 1

¸

17.1.3 Integral kernels
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Chapter 18

SL2pRq

18.1 The special linear group

Theorem 18.1.1 (Iwasawa Decomposition). LetA “

#˜

a 0

0 a´1

¸

| a ą 0

+

, N “

#˜

1 x

0 1

¸

| x P R

+

and K “ SOp2q. Then the map

ψ : AˆN ˆK G

pa, n, kq ank

is a homeomorphism.

Proof. Let g P G, and let gi “ x` yi. If we put

a “

˜

y
1
2

y´ 1
2

¸

, n “

˜

1 xy´1

1

¸

,

then gi “ ani, so that g´1an P K. This implies that g “ ank for some k P K. Now define the
inverse map

ϕ : G AˆN ˆK

g papgq, npgq, kpgqq

where

a

˜

a b

c d

¸

“

¨

˝

1
?
c2 ` d2 ?

c2 ` d2

˛

‚

n

˜

a b

c d

¸

“

˜

1 ac` bd

1

¸

k

˜

a b

c d

¸

“
1

?
c2 ` d2

˜

d ´c

c d

¸

.

It is clear that ϕ ˝ ψ “ id and ψ ˝ ϕ “ id.

We shall keep the notation apgq, npgq and kpgq used in the above proof. Also, for x, t, θ P R, put

at “

˜

et

e´t

¸

P A nx “

˜

1 x

1

¸

P N kθ “

˜

cos θ ´ sin θ

sin θ cos θ

¸

P K
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Say a function f : G Ñ C is a smooth if the map R3 Ñ C given by pt, x, θq ÞÑ fpatnxkθq is smooth.
This is the same as saying f : G Ñ C is smooth when G is equipped with the usual manifold
structure. We denote the space of smooth functions by C8pGq, and C8

c pGq “ C8pGq X CcpGq.

Theorem 18.1.2. The group G “ SL2pRq is unimodular.

Proof. Let ϕ : G Ñ Rą0 be a continuous homomorphism. We claim ϕ ” 1. Since K is compact, we
have ϕpKq “ 1. Since ϕpat`sq “ ϕpatasq “ ϕpatqϕpasq and ϕ is continuous, there exists x P R such

that ϕpatq “ etx for any t P R. Consider the element w “

˜

0 ´1

1 0

¸

P G; we have watw´1 “ a´t.

Since e´tx “ ϕpa´tq “ ϕpwatw
´1q “ ϕpatq “ etx, and it follows that x “ 0, i.e., ϕpAq “ 0.

Similarly, there exists y P R such that ϕpntq “ ety for any t P R. As arnta´1
r “ ne2rt, it follows that

ety “ ee
2rty, which implies t “ 0, i.e., ϕpNq “ 1.

A quick proof: any homomorphism ϕ factors through the abelianization SL2pRqab, which is
trivial. Hence ϕ is trivial.

Theorem 18.1.3. For any given Haar measures on three of the four groups G, A, N K, there exists
a unique Haar measure on the fourth such that for any f P L1pGq, the integration formula

ż

G

fpxqdx “

ż

A

ż

N

ż

K

fpankqdkdnda

holds. For ϕ P L1pKq and x P G one has
ż

K

ϕpkqdk “

ż

K

ϕpkpkxqqe2tpkxqdk

where tpgq for the unique t P R with apgq “ at.

Put A` :“

#˜

a 0

0 a´1

¸

| a ě 1

+

.

Theorem 18.1.4 (Cartan decomposition). The multiplication induces a surjection

K ˆA` ˆK ÝÑ SL2pRq

Moreover, if pk1, a, k2q and pk1
1, a

1, k1
2q have the same image in SL2pRq, then a “ a1. If in addition

a ‰ id, then pk1, k2q “ ˘pk1
1, k

1
2q.

For f P L1pGq, the following integral formula holds:
ż

G

fpxqdx “ 2π

ż

K

ż 8

0

ż

K

fpk1atk2qdk1dtdk2.

Proof. The surjectivity follows from the singular value decomposition of a matrix. The uniqueness
is a straightforward computation. For the integral formula, consider the map

ϕ : K{t˘ idu ˆA` AN

p˘k, aq apkaqnpkaq
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18.2 Geometry of upper half plane
Denote by H “ tz P C | im z ą 0u the upper half plane. The group GL2pRq` acts on H by Möbius
transformation:

Tgz :“
az ` b

cz ` d
.

The upper half plane H is naturally a Riemannian manifold with the metric:

ds2 “
dx2 ` dy2

y2
“
dzdz

y2

where z “ x ` iy. In other words, the metric tensor g “ pgijq is given by gij “
δij
y

. The complex
structure J on H is given by JpBxq “ ´By, JpByq “ Bx. Then

JT gJ “ g

i.e., g is a hermitian metric on H. For g “

˜

a b

c d

¸

P GL2pRq`, we compute the Jacobian

dTg
dz

“
apcz ` dq ´ cpaz ` bq

pcz ` dq2
“

det g

pcz ` dq2

Note that ImTgpzq “
pdet gq Im z

|cz ` d|2
. One then easily computes that Tg preserves the metric g:

¨

˚

˝

det g

pcz ` dq2
0

0
det g

pcz ` dq2

˛

‹

‚

¨

˚

˝

0
1

2 ImTgpzq2

1

2 ImTgpzq2
0

˛

‹

‚

¨

˚

˝

det g

pcz ` dq2
0

0
det g

pcz ` dq2

˛

‹

‚

“

¨

˚

˝

0
1

2y2
1

2y2
0

˛

‹

‚

Here we write g in terms of the coordinates pz, zq.

18.2.1 Hyperbolic geodesic
For a piecewise differentiable path γ : r0, 1s Ñ H, the hyperbolic length is given by

hpγq :“

ż 1

0

b

gγptqpγ1ptq, γ1ptqqdt “

ż 1

0

d

ˆ

dpx ˝ γq

dt

˙2

`

ˆ

dpy ˝ γq

dt

˙2
dt

py ˝ γqptq
“

ż 1

0

ˇ

ˇ

ˇ

ˇ

dpz ˝ γq

dt

ˇ

ˇ

ˇ

ˇ

dt

Im γptq

Since Tg preserves metric for each g P GL2pRq`, we see hpTgγq “ hpγq.
Let us find the geodesic connecting r ` ia and r ` ib (b ą a ą 0, r P R). Let γptq “ pxptq, yptqq

be any piecewise differentiable path from r ` ia to r ` ib. Then

hpγq “

ż 1

0

d

ˆ

dx

dt

˙2

`

ˆ

dy

dt

˙2
dt

y
ě

ż 1

0

ˇ

ˇ

ˇ

ˇ

dy

dt

ˇ

ˇ

ˇ

ˇ

dt

y
ě

ż 1

0

dy

dt

dt

y
“

ż b

a

dy

y
“ log

b

a

with equality if and only if dx
dt

“ 0 and dy

dt
ě 0, in which case γ is the usual (Euclidean-)line segment

connecting r ` ia and r ` ib.
Suppose that z1, z2 do not have the same real part. Let Q be the unique circle connecting z1, z2

whose center is the intersection bisector of the segment z1z2 and the real axis. Suppose Q intersects
the real axis at z˚

1 ă z˚
2 , as depicted in the picture below.
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z1

z2

z˚
1 z˚

2

Q

Take g P SL2pRq with Tgpz˚
1 q “ 0, Tgpz˚

2 q “ 8. Since Tg is conformal, TgpQq must be the
imaginary axis, and thus the geodesic connecting Tgpz1q, Tgpz2q is the Euclidean segment connecting
them. Since Tg preserves metric, the arc of Q joining z1 and z2 is hence the geodesic joining z1 and
z2.

18.2.2 Formula for hyperbolic distance
For z ‰ w P H, let ρpz, wq denote the length of the geodesic connecting z and w. We already see
ρpia, ibq “ log

b

a
for b ą a ą 0. In general, let Q be the geodesic joining z, w which intersects P1pRq

at z˚ and w˚; we label them in the way that z lies between z˚ and w. There exists a unique element
g P PSL2pRq such that Tgpz˚q “ 0, Tgpw˚q “ 8 and Tgpzq “ i. Since Tgpwq lies between Tgpzq “ i

and Tgpw˚q “ 8, we have Tgpwq “ ir for some r ą 1, and hence

ρpz, wq “ ρpTgpzq, Tgpwqq “ ρpi, irq “ log r.

To find r explicitly in terms of z and w, consider the function τ : H ˆ H Ñ R defined by

τpz, wq :“

ˇ

ˇ

ˇ

ˇ

z ´ w

z ´ w

ˇ

ˇ

ˇ

ˇ

We claim τpTgz, Tgwq “ τpz, wq for g P PSL2pRq. This will follow from the identity

|Tgpzq ´ Tgpwq| “ |z ´ w| ¨ |pTgq1pzqpTgq1pwq|1{2

Let g “

˜

a b

c d

¸

P SL2pRq. Then

Tgpzq ´ Tgpwq “
az ` b

cz ` d
´
aw ` b

cw ` d
“

pz ´ wqpad´ cbq

pcz ` dqpcw ` dq
“

z ´ w

pcz ` dqpcw ` dq

and hence
|Tgpzq ´ Tgpwq| “

|z ´ w|

|cz ` d||cw ` d|
“ |z ´ w||pTgq1pzqpTgq1pwq|1{2.

(recall that pTgq1pzq “ |cz ` d|´2.)
We can use τ to find r. Indeed, let g P PSL2pRq be as in the beginning. Then

τpz, wq “ τpTgz, Tgwq “ τpi, irq “

ˇ

ˇ

ˇ

ˇ

i´ ir

i` ir

ˇ

ˇ

ˇ

ˇ

“
r ´ 1

r ` 1
,

or

r “
1 ` τpz, wq

1 ´ τpz, wq
.

Hence

ρpz, wq “ log r “ log
|z ´ w| ` |z ´ w|

|z ´ w| ´ |z ´ w|
.
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We can also express ρpz, wq using sinh, the hyperbolic sine function. Recall that

tanh
u

2
“
eu ´ 1

eu ` 1
sinh2

u

2
“

tanh2pu{2q

1 ´ tanh2pu{2q

Then
sinh2

ρpz, wq

2
“

τpz, wq2

1 ´ τpz, wq2
“

|z ´ w|2

|z ´ w|2 ´ |z ´ w|2

Since
|z ´ w|2 ´ |z ´ w|2 “ ´pz ´ zqpw ´ wq “ 4 Impzq Impwq

therefore
sinh2

ρpz, wq

2
“

|z ´ w|2

4 Impzq Impwq

As an application of the last formula, we find the hyperbolic circle with center i and radius δ. This
is (with z “ x` iy)

"

z P H | sinh2
ρpz, iq

2
“ sinh2

δ

2

*

“

"

z P H | |z ´ i|2 “ 4y sinh2
δ

2

*

“

"

z P H | x2 ` y2 ` 1 “ 2y

ˆ

2 sinh2
δ

2
` 1

˙

“ 2y cosh δ

*

“
␣

z P H | x2 ` py ´ cosh δq2 “ cosh2 δ ´ 1 “ sinh2 δ
(

18.2.3 Hyperbolic measure on H

The Riemannian volume form on pH, gq is given by

dvol “
a

det gdx^ dy “
dx^ dy

y2
.

Let µ be the corresponding outer Radon measure on H. Then for a measurable E Ď H, we have

µpEq :“

ż

E

dxdy

y2
“

ż

H
1Epx, yq

dxdy

y2

Again, since Tg preserves metric, it follows that Tg preserves measure: µpTgpEqq “ µpEq.
We compute the Gaussian curvature K on H, using Christoffel symbols. Recall

Γkij “
1

2
gkℓpBigjℓ ` Bjgℓi ´ Bℓgijq

Now g11 “ g22 “
1

y2
, g12 “ g21 “ 0, so g11 “ g22 “ y2, g12 “ g21 “ 0. Then

Γ1
11 “

1

2
g11pB1g11 ` B1g11 ´ B1g11q “ 0

Γ2
11 “

1

2
g22pB1g12 ` B1g21 ´ B2g11q “

1

y

Γ1
12 “

1

2
g11pB1g21 ` B2g11 ´ B2g12q “

´1

y

Γ2
12 “

1

2
g22pB1g22 ` B2g21 ´ B2g12q “ 0

Γ1
22 “

1

2
g11pB2g12 ` B2g12 ´ B1g22q “ 0
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Γ2
22 “

1

2
g22pB2g22 ` B2g22 ´ B2g22q “

´1

y

and thus
R1221 “

`

B1Γ
k
22 ´ B2Γ

k
12 ` Γp22Γ

k
1p ´ Γp12Γ

k
2p

˘

gk1 “
´1

y4

Finally, detpgijq “
1

y4
, so the Gaussian curvature is

K “
R1221

detpgijq
“ ´1

Now, using Gauss-Bonnet theorem, we see if ∆ is a geodesic triangle in H with angles α, β, γ,

0 “ pα ` β ` γq ´ π ´

ż

∆

´1dµ

namely,
µp∆q “ π ´ pα ` β ` γq

We can directly compute the geodesic triangles ∆ on H without the Gauss-Bonnet theorem. We
divide the computation into three cases.

• Two sides are vertical geodesics. By applying z ÞÑ z ` a pa P Rq and z ÞÑ λz pλ ą 0q, we can
assume the base of ∆ is an arc of the semicircle centered at 0 with radius 1, depicted below.

∆

α

α

β

βa b

Then
µp∆q “

ż b

a

ż 8

?
1´x2

dxdy

y2
“

ż b

a

dx
?
1 ´ x2

“

ż β

π´α

dθ “ π ´ α ´ β

• One vertex of ∆ lies on R. Then we can send this vertex to 8 by an element of PSL2pRq

without altering the area and the angles. Then the result follows from the first case.

• ∆ “ ABC has no vertex in R Y t8u. By applying an element in PSL2pRq we can assume no
side is vertical. Let D be the intersection of AC and R, as below.

∆A

B

C

D

Then the result follows from the second case. (Note that the angle at D is 0.)
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We can extend our computation to a slightly general domain. Call a subset C Ď H hyper-
bolically starlike if there is a point O in the interior of C such that for all P P C, the geodesic
segment joining O and P lies in C. Then if Π is an n-sided hyperbolically starlike polygon with
angles α1, . . . , αn. Then

µpΠq “ pn´ 2qπ ´ pα1 ` ¨ ¨ ¨ ` αnq

18.3 Hecke algebras

18.3.1 Gelfand pair
Let G be an LCH group and K a compact subgroup of G. Define

CcpG{{Kq :“ tf P CcpGq | fpkgk1q “ fpgq for all g P G, k, k1 P Ku

This is an algebra under convolution: for f, g P CcpG{{Kq

f ˚ gpkyk1q “

ż

G

fpxqgpx´1kyk1qdx “

ż

G

fpxqgppk´1xq´1yqdx “

ż

G

fpkxqgpx´1yqdx “ f ˚ gpyq

Definition. The pair pG,Kq is called a Gelfand pair if CcpG{{Kq is commutative.

Lemma 18.3.1. Let G be an LCH group and K a compact subgroup. If ι : G Ñ G is a continuous
involution such that ιpxq P KxK for all x P G, then G is unimodular and pG,Kq is a Gelfand pair.

Proof. Note that the pullback ι˚ : CcpGq Ñ CcpGq by ι restricts to the identity on CcpG{{Kq as it
preserves pK,Kq-double cosets. For f P CcpG{{Kq and y P G we then have

ż

G

fpxyqdx “

ż

G

fpιpxyqqdx “

ż

G

fpxyqι˚pdxq.

Since ι is an anti-automorphism, ι˚pdxq is a right Haar measure on G, so RHS of the above equals
ż

G

fpxqι˚pdxq “

ż

G

fpιpxqqdx “

ż

G

fpxqdx.

If we can find f P CcpG{{Kq with
ż

G

fpxqdx ‰ 0, varying y P G will prove G is unimodular. This
is easy: pick any g P CcpGq with nonvanishing integral, choose any Haar measure on K, and simply
take f “ KgK (c.f. §2.4.4). Since ∆G|K ” 1, by Fubini we compute

ż

G

fpxqdx “

ż

G

ˆ
ż

K

ż

K

gpkxhqdkdh

˙

dx “

ż

K

ż

K

ˆ
ż

G

gpkxhqdx

˙

dkdh

“

ż

K

ż

K

ˆ
ż

G

gpxqdx

˙

dkdh “ volpKq2
ż

G

gpxqdx ‰ 0

It remains to see CcpG{{Kq is commutative. Since G is unimodular, it follows that ι˚pdxq is a
multiple of dx. Since ι˚ acts trivially on CcpG{{Kq and dx is nonzero when restricts to CcpG{{Kq

as we’ve shown above, it follows that ι˚pdxq “ dx. To conclude, for f, g P CcpG{{Kq and y P G, we
compute

f ˚ gpyq “

ż

G

fpxqgpx´1yqdx

“

ż

G

fpxqgpx´1yqinv˚ι˚pdxq

“

ż

G

fpx´1qgpιpxqyqdx “

ż

G

gpxqfpx´1ιpyqqdx “ g ˚ fpιpyqq “ g ˚ fpyq
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Example 18.3.2 (Archimedean GLn). Take pG,Kq “ pGLnpCq,Upnqq, pSLnpCq,SUpnqq, pGLnpRq,Opnqq

or pSLnpRq,SOpnqq. For g P G, the singular value decomposition allows us to write g “ kak1 with
k, k1 P K and a diagonal and positive. It we denote by g˚ its hermitian transpose, it follows that
g˚ “ pk1q˚ak˚ P KgK, so g ÞÑ g˚ satisfies the condition in Lemma 18.3.1. Hence pG,Kq is a Gelfand
pair in these cases.

Example 18.3.3 (Non-archimedean GLn). Let k be a non-archimedean local field and let ok denote
its ring of integers. We claim

GLnpkq “ GLnpokq

$

’

’

&

’

’

%

¨

˚

˚

˝

ϖr1

. . .

ϖrn

˛

‹

‹

‚

| r1, . . . , rn P Z

,

/

/

.

/

/

-

GLnpokq

where ϖ is a uniformizer of k. Assuming this, we see taking transpose g ÞÑ gt satisfies the condition
in Lemma 18.3.1, so pGLnpkq,GLnpokqq is a Gelfand pair.

The claim is proved using the structure theorem of finitely generated modules over PID. For
g P GLnpkq, take N " 0 so that ϖNg P GLnpokq. Now the structure theorem implies that

ϖNg “ k

¨

˚

˚

˝

ϖs1

. . .

ϖsn

˛

‹

‹

‚

k1

for some k, k1 P GLnpokq and s1, . . . , sn P Zě0. Multiplying both sides by ϖ´N proves the claim.

Example 18.3.4. Take pG,Kq “ pSOpn ` 1q,SOpnqq, where the latter is embedded in the former
as in Example I.7.9.1.

Lemma 18.3.5. Let G be an LCH group and K a compact subgroup.

(i) If pπ, Vπq P pG, then V Kπ “ tv P V | πpkqv “ v for all k P Ku is either trivial, or a topologically
irreducible CcpG{{Kq-module (i.e. contains no proper nontrivial closed submodule)

(ii) If pG,Kq is a Gelfand pair, then dimC V
K
π ď 1 for all pπ, Vπq P pG.

Proof.

(i) Suppose V Kπ ‰ 0, and take v P V Kπ . Fix a Haar measure on K with total mass 1. Since π is
irreducible, CcpGqv is dense in Vπ. For w P V Kπ , take pfnqn Ď CcpGq so that πpfnqv Ñ w in
Vπ. We claim there exists pgnqn Ď CcpG{{Kq such that πpgnqv Ñ w. Put gn “ KfKn . Then

πpgnqv ´ w “

ż

KˆK

ˆ
ż

G

fnpkxk1qπpxqvdx´ w

˙

dkdk1

“

ż

KˆK

πpk´1q

ˆ
ż

G

fnpxqπpxqvdx´ w

˙

dkdk1

so that

∥πpgnqv ´ w∥ ď

ż

KˆK

∥∥πpk´1qpπpfnqv ´ wq
∥∥ dkdk1 “

ż

KˆK

∥pπpfnqv ´ wq∥ dkdk1 “ ∥πpfnqv ´ w∥ .

The second equality holds as π is unitary. This shows πpgnqv Ñ w as we want.

(ii) This follows from the commutativity of CcpG{{Kq and Schur’s lemma.
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18.3.2 Unitary representations of SL2pRq

Take pG,Kq “ pSL2pRq,SOp2qq in this subsection. For λ P C, define

Vλ :“
!

ϕ : G Ñ C | ϕ|K P L2pKq, ϕp˘atnxq “ etp2λ`1qϕpxq for all t P R, n P N, x P G
)

18.4 Explicit Plancherel

18.5 Trace formula
Theorem 18.5.1. Let Γ be a torsion free uniform lattice in SL2pRq. Let ε ą 0, and let h be a
holomorphic function on the strip t| Impzq| ă 1

2 ` εu. Suppose h is even, and hpzq “ Op|z|´2´εq as
|z| Ñ 8. Then

8
ÿ

j“0

hprjq “
volpΓzGq

4π

ż

R
rhprq tanhpπrqdr `

ÿ

rγs‰1

lpγ0q

elpγq{2 ´ e´lpγq{2
gplprqq

where

gptq :“
1

2π

ż

R
hprqe´irtdr

and for γ ‰ 1, γ0 denotes the primitive element underlying γ.

18.6 Weyl Law

18.7 Selberg zeta function
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Part IV

Topology
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Appendix A

Topology

Definition. A topological space is a set X together with a subcollection T Ď 2X called the
topology that contains H and X, closed under arbitrary union and closed under finite intersection.
A map f : pX, TXq Ñ pY, TY q is called continuous if taking preimage induces a map f´1 : TY Ñ TX
between topologies.

Denote by Top the category of topological spaces with morphisms being continuous maps. Top
admits a forgetful functor

ωTop : Top Set

f : pX, TXq Ñ pY, TY q f : X Ñ Y .

ωTop admits both left adjoint and right adjoint, given respectively by X ÞÑ pX, 2Xq and X ÞÑ

pX, tH, Xuq. The former is called the discrete topology on X, while the latter is called the
trivial topology on X. In particular,

Lemma A.0.1. The forgetful functor ωTop : Top Ñ Set preserves limits and colimits.

On a set X there are various topologies. We partially order the set of topologies on X by inclusion
Ď on 2X . For two topologies S, T on X, we say T is finer than S, or S is coarser than T , if S Ď T .
If tTαuα is a collection of topologies on X, then

Ş

α Tα is also a topology on X. Hence the coarsest
topology on X containing a fixed subcollection S Ď 2X is the intersection of all topologies containing
S.

Let S Ď 2X . If T is a topology on X containing S, then T contains

SX :“ tXu Y tS1 X ¨ ¨ ¨ X Sn | tSiuiPrns Ď S, 1 ď n ă 8u

and

TS :“

#

ď

UPA

U | A Ď SX

+

.

Hence any topology containing S contains SX and TS . In fact,

Lemma A.0.2. TS is the coarsest topology on X containing S. In this case, we say S generates
TS , and S is the subbase for the topology TS .

Definition. Let X be a set. A subcollection B Ď 2X is called a base for a topology on X if
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(i) X “
Ť

UPB U , and

(ii) for all U1, U2 P B and x P U1 X U2, there exists U3 P B such that x P U3 Ď U1 X U2.

Lemma A.0.3.

1. If B is a base for a topology on X, then the coarsest topology on X containing B is given by
#

ď

UPA

U | A Ď B

+

.

2. For any S Ď 2X , the collection SX is a base.

Let X be a set. Let tpXα, Tαquα be a collection of topological spaces and fα : Xα Ñ X be a
collection of maps. The final topology on X induced by the maps fα is the finest topology T on
X making each fα : pXα, Tαq Ñ pX, T q continuous. Explicitly, the final topology is given by

tU Ď X | f´1
α pUq P Tα for all αu.

By definition, for any topological space Y , a map f : X Ñ Y is continuous if and only if f ˝ fα :

Xα Ñ Y is continuous.
Likewise, let tgα : X Ñ Xαuα is a collection of maps. The initial topology on X is the coarsest

topology S on X making each gα : pX,Sq Ñ pXα, Tαq continuous. Explicitly, the initial topology
has a subbase given by

tg´1
α pUq | U P Tαuα

By definition, for any topological space Y , a map f : Y Ñ X is continuous if and only if fα ˝ f :

Y Ñ Xα is continuous.
Let F : J Ñ Top be a small diagram. Since Set is complete, the small diagram ωTop ˝ F : J Ñ

Set admits a limit pπα : limωTop ˝ F Ñ ωToppF pαqqqα. Let’s endow limωTop ˝ F with the initial
topology induced by the πα; denote the resulting topological space by limF , and denote again by
πα : limF Ñ F pαq the projection. Then pπα : limF Ñ F pαqqα represents the limit of F .

Similarly, since Set is cocomplete, the small diagram ωTop ˝ F : J Ñ Set admits a colimit
pια : ωToppF pαqq Ñ colimωTop ˝ F qα. Let’s endow colimωTop ˝ F with the final topology induced
by the ια; denote the resulting topological space by colimF , and denote again by ια : F pαq Ñ colimF

the inclusion. Then pια : F pαq Ñ colimF qα represents the colimit of F .

Lemma A.0.4. The category Top is complete and cocomplete.

We name several common topologies. The limit topology on the product space is usually referred
to as the product topology. If X is a topological space and Y Ď X be a subset, the subspace
topology on Y inherited from X is the initial topology on Y induced by the inclusion Y ãÑ X.

For an equivalence relation „ on a set X, the quotient set X{ „ is the set of „ equivalence
classes. If X is a topological space, we topologize X{ „ by the final topology induced by the
projection X Ñ X{ „. This is called the quotient topology on X{ „, and is a quotient object in
Top. If we regard ι :„Ď X ˆX and equip „ with the subspace topology from the product topology
X ˆX, then X{ „ is the coequalizer of pri ˝ ι :„Ñ X, i “ 1, 2 in Top.
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A.1 Filters
Definition. Let X be a set. A family F Ď 2X of sets is called a filter on X if it is closed under
finite intersection, H R F, and for all S P 2X , S P F whenever S contains an element of F.

We partially order the set of all filters on X by the inclusion in 2X . That said, given two filters
F,F1 on X, we say F is finer than F1 (or F1 is coarser than F) if F1 Ď F.

Example A.1.1.

(a) Let X be a set and H ‰ A Ď X. The collection of all subsets in X containing A forms a filter.
This is called the principal filter generated by A.

(b) Let X be a infinite set. A subset A in X is called cofinite if #pXzAq ă 8. The collection
of all cofinite sets in X forms a filter. Particularly, the cofinite sets in N “ Zě1 forms a filter,
called the Fréchet filter.

(c) Let X be a topological space and H ‰ A Ď X. The collection of all neighborhoods of A in X

is a filter, called the neighborhood filter of A.

Let S Ď 2X be a collection of sets. If S is contained in some filter, then it is necessary that any
two set in S has nonempty intersection. In other words,

SX :“

#

č

API

A | I Ď S, #I ă 8

+

does not include the empty set. Conversely, if H R SX, then the collection

F “ FS :“ tU | A Ď U for some A P SXu

is a filter on X. Moreover, every filter containing S must contain F, i.e., F is the coarsest filter that
contains the collection S. We say F is the filter generated by S, and S is a subbase of F. Using
this construction, we easily obtain

Lemma A.1.2. Let F be a filter on X, and let A be a subset of X. There exists a filter on X finer
than F and containing A if and only if A meets every element in F nontrivially.

Let S Ď 2X be a collection of sets. The upward closure of S, which is defined as

SĎ :“ tU | A Ď U for some A P Su

need not be a filter. But, obviously, it is a filter if and only if S ‰ H, H R S, and the intersection
of any two sets in S contains a set in S. In this situation, S “ SX, and SĎ “ FS . We then say S is
a base of SĎ. From the definition it follows that

Lemma A.1.3. Let F be a filter on X. A collection B Ď F of sets in F is a base of F if and only if
any set in F contains a set in B.

Definition. Let X be a set. An ultrafilter on X is a filter maximal in the poset of all filters.

Let F be a filter, and consider the collection

F “ tF1 Ď 2X | F Ď F1, F1 is a filter on Xu.

Let tFαuα Ď F be a chain in F , and put F1 “
Ť

α
Fα. This is a collection of subsets of 2X , and clearly

any two set in F1 has nonempty intersection. Hence F1 generates a filter, which is finer than each
Fα. Hence every chain in F has an upper bound in F , so by Zorn’s lemma F admits a maximal
element. Hence
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Lemma A.1.4. Let X be a set and F a filter on X. Then there exists an ultrafilter on X containing
F.

Lemma A.1.5. Let X be a set.

(i) If F is an ultrafilter on X, then for all A,B P 2X , if AYB P F, then either A P F or B P F1.

(ii) Let S be a subbase of some filter on X. If for any A P 2X we have either A P S or XzA P S,
then S is an ultrafilter.

(iii) Any filter F on X is the intersection of all ultrafilters finer than F2.

Proof.

(i) Suppose for contradiction that there exists A,B P 2X with A,B R F but AYB P F . Consider
the collection F1 :“ tU P 2X | U Y A P Fu. Then F1 is a filter: H R F1 as A R F; if U,U 1 P F1,
then pU X U 1q Y A “ pU Y Aq X pU 1 Y Aq P F as F is a filter; if U P F1 and U 1 Ď U , then
U 1 XA Ď U XA P F , so U 1 XA P F 1. Note that F Ď F1 while F S B P F1, so F1 is strictly finer
than F, a contradiction.

(ii) Let F be any filter containing S. For A P F, we have XzA R F so that XzA R S. Hence A P S

by assumption. This shows F “ S.

(iii) Let A R F. By definition it follows that A contains no set in F. If we put A1 “ XzA, we see A1

meets every set in F. By Lemma A.1.3 there exists a filter F1 finer than F and containing A1.
Now any ultrafilter finer than F 1 cannot contain A (otherwise it would contain H “ AXA1).

Consider a subset Y Ď X of a given set X. If F is a filter on X, when is the collection

F|Y “ tS X Y | S P Fu Ď 2Y

a filter on Y ? Clearly a sufficient and necessary condition is that Y meets every set in F nontrivially.
To see this, note that F|Y is automatically closed under finite intersection. If S P F and S X Y Ď

S1 Ď Y , then S1 “ pS Y S1q X Y P F. Hence F|Y is a filter if and only if it does not contain empty
set, as we claim. In this case, we say F|Y is the induced filter of F on Y . The following properties
are clear:

(a) If F is a filter and Y P F, then F|Y is a filter on Y .

(b) If F induces a filter on Y Ď X, then any base S of F restricts a base FY :“ tA X Y | A P Su

for FY .

(c) Let F be an ultrafilter on X and Y P 2X . Then F induces a filter on Y if and only if Y P F, in
which case F|Y is an ultrafilter on Y .

We explain (c). If F|Y is a filter on Y , then Y meets every set in F nontrivially. The filter generates
by F and Y is then finer than F, so by maximality Y P F. This proves the only if part, and the
if part is (a). To see F|Y is an ultrafilter on Y , let A P 2Y and suppose A R F|Y . This means A
contains no set in F (otherwise A P F , and A “ A X Y P F|Y ). Taking complement, we see XzA

1Interestingly, this means that an ultrafilter behaves like a prime ideal.
2This means F equals its Jacobson radical.
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meets every set in F. By maximality XzA P F, so that Y zA P F|Y . Hence F|Y is an ultrafilter by
Lemma A.1.5.(ii).

We turn to the relative case. Let f : X Ñ X 1 be a map. If B is a filter base on X, then

fpBq :“ tfpSq | S P Bu

is a filter base on X 1: fpBq does not contain empty set, and fpS X S1q Ď fpSq X fpS1q so the
intersection of two sets in fpBq contains a set in fpBq. This induces a map

tfilter bases on Xu tfilter bases on X 1u

B fpBq.

Clearly, this is order-preserving. What’s important is that

Lemma A.1.6. If B is an ultrafilter base on X, then fpBq is an ultrafilter base on X 1.

Proof. Let F (resp. F1) the filter generated by B (resp. fpBq). Let A1 P 2X
1 . If f´1pA1q P F,

then f´1pA1q contains a set A in B, so that fpAq Ď A1. This means A1 P F1. If f´1pA1q R F,
then Xzf´1pA1q P F by Lemma A.1.5.(i), so Xzf´1pA1q contains a set A in B. But then fpAq Ď

fpXzf´1pA1qq Ď XzA1, so that XzA1 P F1. Hence F1 is an ultrafilter by Lemma A.1.5.(ii)

Let’s consider the other way around. Let B1 be a filter base on X 1. For S, T P B1, we have
f´1pSq X f´1pT q “ f´1pS X T q, so

f´1pB1q :“ tf´1pSq | S P B1u

is a filter base on X if and only if f´1pSq ‰ H for each S P B1. This induces a map

tfilter bases on X 1 which every set within meet fpXqu tfilter bases on Xu

B1 f´1pB1q.

For B1 in LHS, the filter base fpf´1pB1qq is finer than B1. On the other hand, if B is a filter base on
X, then fpXq meets every set in B1 “ fpBq so that f´1pB1q is a filter base on X, which is coarser
than B. If Y is a subset of X and f : Y Ñ X is the inclusion, then the above result recovers that
condition under which a filter on X induces a filter on Y .

Example A.1.7 (Product filters). Let tXiuiPI be a collection of set, and let Bi be a filter base on
Xi. On the product X :“

ś

iPI

Xi, the collection B of the subset of X of the form

ź

iPJ

Si ˆ
ź

iPIzJ

Xi

where J Ď I is finite and Si P Bi for i P J , forms a filter base on X. If we denote by pri : X Ñ Xi

the i-th projection, it is clear that the filter generated by B is also generated by the collection

tpr´1
i pSiq | Si P Bi, i P Iu.

If we denote by Fi the filter generated by Fi, the resulting filter on X generated by B is called the
product filter of Fi, and is denoted by

ś

iPI

Fi. Still another way: the product filter
ś

iPI

Fi is the

coarsest filter F on X satisfying the equalities pripF q “ Fi for each i P I.
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Example A.1.8 (Elementary filters). Let X be a set and pxnqně1 be a sequence in X. The sequence
defines a map f : N Ñ X by fpnq :“ xn. The image of the Fréchet filter on N under f is called
the elementary filter associated to the sequence. Unwinding the definition, it is the collection of
subsets S P 2X such that pxnqněk Ď S for some k ě 1. The sets txm | m ě nu pn ě 1q form a
base for the elementary filter. If pxnk

qkě1 is a subsequence of pxnqně1, then the elementary filter
associated to pxnk

q is finer than that to pxnqně1.

Lemma A.1.9. Let X be a set and F be a filter with a countable base. Then F is the intersection
of all elementary filters finer than F.

Proof. Let pAnqně1 be a countable base of F. If we put Bn “
Ş

1ďmďn
Am, then pBnqně1 is again

a countable base of F, and it satisfies Bn`1 Ď Bn for n ě 1. For each n ě 1 if we pick an P Bn,
then the elementary filter associated to the sequence panqně1 is a filter finer than F. Hence the
intersection F1 of all elementary filters finer than F exists, and is finer than F. If F Ĺ F1, pick
S P F1zF. Then Bn Ę S for all n ě 1, so that Bn X pXzSq ‰ H. Choose any bn P Bn X pXzSq;
the elementary filter associated to pbnqn is then finer than F but does not contain S (if so, it would
contain H “ pXzSq X S). This contradicts to the definition of F1.

A.2 Filters and limits in topology
Definition. Let X be a topological space and x P X.

1. The collection Nx of all neighborhoods of x in X is a filter, called the neighborhood filter
of x.

2. x is called a limit point of the filter F on X if F is finer than the neighborhood filter Nx
of x, i.e., Nx Ď F . We also say the filter F converges to x in this case.

3. x is called a limit point of the filter base B (or B converges to x) if x is a limit point of
the filter generated by B.

Let Φ be a collection of filters on X, all of which converge to the same point x. In other words,
the neighborhood filter Nx of x is coarser than any filter in Φ. Hence Nx is still coarser than the
intersection F “

Ş

F 1PΦ

F 1 of all filters in Φ. Recall that a filter is the intersection of all finer ultrafilters

(Lemma A.1.5.(iii)). Hence

Lemma A.2.1. A filter F on X converges to a point x P X if and only if every ultrafilter finer than
F converges to x.

Another related notion to limit points is

Definition. Let X be a topological space and B a filter base on X. A point x P X is called the
cluster point of B if x lies in the closure of all sets in B.

By definition, x P X is a cluster point of the filter base B on X if and only if U X S ‰ H for all
U P Nx and S P B. Hence if x P X is a cluster point of B, there exists a filter F finer both than the
one with base B and Nx. The converse holds by definition. Summary:

Lemma A.2.2. A point x is a cluster point of a filter F if and only if there exists a filter finer than
F that converges to x.
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In particular, every limit point is a cluster point. Also, if F is a ultrafilter, it follows from
maximality that x is a cluster point of F if and only if it is a limit point of F .

Let B be a filter base. By definition x is a cluster point of B if and only if x P
Ş

SPB

S. Hence the

set of cluster points of B is precisely
č

SPB

S

which is a closed set in X. If Y Ď X is a subspace and B is a filter base on Y , then every cluster point
of B lies in the closure Y . Conversely, if x P Y , then the induced filter on Y of the neighborhood
filter Nx of x in X is a filter on Y converging to x. This characterizes the closed sets in X in terms
of filters.

We turn to the relative case.

Definition. Let f : X Ñ Y be a map from a set X to a topological space Y , and let F be a filter
on X. A point y P Y is called a limit point (resp. a cluster point) of f with respect to the
filter F if y is a limit point (resp. a cluster point) of the filter base fpF q.

• The relation “y is a limit point of f with respect to the filter F” is written as

lim
F
f, lim

x,F
fpxq.

• By definition a point y P Y is a limit point of f with respect to the filter F if and only if for
all neighborhoods V of y there exists S P F such that fpSq Ď V , if and only if f´1pV q P F for
all V P Ny.

• A point y P Y is a cluster point of f with respect to the filter F if and only if for all neighbor-
hoods V of y and S P F , there exists x P S such that fpxq P V .

Example A.2.3 (Sequences). Let pxnqně1 be a sequence in a topological space X, which defines a
map f : N Ñ X. A limit point y P X of f with respect to the Fréchet filter on N is called a limit
point of the sequence pxnqn as n Ñ 8, and we write y “ lim

nÑ8
xn in this case. Similarly a cluster

point of f with respect to the Fréchet filter is called a cluster point of the sequence pxnqn. In
other words, a point is a limit (resp. cluster point) of the sequence pxnqn if and only if it is a limit
(resp. cluster point) of the elementary sequence associated to pxnqn.

In a more familiar formulation, a point y P X is a limit of the sequence pxnqn if and only if for
all V P Ny there exists k P N such that pxnqněk Ď V (eventually), and is a cluster point if and only
if for all V P Ny and k P N, there exists l ě k such that xl P V (infinitely often).

Example A.2.4 (Nets). A poset pD,ěq is called directed if any two element has a common upper
bound. Let pD,ěq be a directed set. For a P D, the set Da :“ tx P D | x ě au is called a section of
D relative to a. The collection tDa | a P Du of all sections then form a filter on pD,ěq, by virtue of
the directedness. This is called the section filter on pD,ěq. For example, the Fréchet filter on N
is the section filter on N, directed by the usual relation ě.

Now let f : D Ñ X be a map from the directed set D to a topological space X. A limit (resp.
a cluster point) of f is a limit (resp. a cluster point) of f with respect to the section filter on D.
A map f : D Ñ X is usually called a net in X.

Definition. Let X,Y be two topological spaces and f : X Ñ Y a map. A point y P Y is called a
limit of f at the point a P X if y is a limit point of f with respect to the neighborhood filter Na
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of a in X. In this case we write

y “ lim
xÑa

fpxq

instead, which is more classical. Similarly y is a cluster point of f at a if y is a cluster point of f
with respect to Na.

Lemma A.2.5. A map f : X Ñ Y between topological spaces is continuous at a P X if and only if
lim
xÑa

fpxq “ fpaq.

Proof. By definition, f is continuous at a if and only if for all V P Nfpaq there exists U P Na such
that fpUq Ď V , i.e., the filter base fpNaq is finer than Nfpaq. This is precisely the same thing as
fpaq is a limit point of f at a.

Corollary A.2.5.1. Let f : X Ñ Y be a map between topological spaces.

(i) If f is continuous at a P X, then for every filter base B on X that converges to a, fpBq

converges to fpaq.

(ii) If for every ultrafilter F on X that converges to a, the ultrafilter base fpF q converges to fpaq,
then f is continuous at a.

Proof.

(i) By Lemma A.2.5 the filter base fpNaq is finer than Nfpaq. Hence if F is any filter on X with
Na Ď F , then fpNaq Ď fpF q, so that fpF q is finer than Nfpaq, i.e., fpF q converges to fpaq.

(ii) Suppose f is not continuous at a, so that there exists V P Nfpaq such that f´1pV q R Na. Since
f´1pV q contains no set in Na, A :“ Xzf´1pV q meets every set in Na, so that there exists an
ultrafilter F finer than Na and containing A. Since fpAq X W “ H, so that W R fpF q. It
follows that fpF q does not converge to fpaq.

Corollary A.2.5.2. Let f : X Ñ Y be a map between topological spaces such that f is continuous
at a point a P X. If Z is a set, F a filter on Z, and g : Z Ñ X a map that has a limit a with respect
to F , then f ˝ g has a limit fpaq with respect to F .

Proof. By assumption the filter base gpF q is finer than Na, so the filter base pf ˝ gqpF q is finer than
fpNaq. By Lemma A.2.5 fpNaq is finer than Nfpaq, so pf ˝ gqpF q is finer than Nfpaq.

Let X,Y be two topological spaces and A Ď X a subset. Let a P A and let F be the filter on A

induced by the neighborhood filter Na of a in X. If f : A Ñ Y is a map, we write

y “ lim
xPA, xÑa

fpxq

if y P Y is a limit of f with respect to the filter F , and say y is a limit of f at a relative to the
subspace A. Note that y P fpAq Ď Y . In the special case where tau is not open and A “ Xztau,
we write

y “ lim
x‰a, xÑa

fpxq

instead of y “ lim
xPA, xÑa

fpxq. We make analogous definition for cluster points.

If f : X Ñ Y is a map, we say f has a limit (resp. cluster point) y P Y at a P A relative to A
if y is a limit (resp. cluster point) of f |A : A Ñ Y at a relative to A. If tau is not open (so that
a P Xztau), then a map f : X Ñ Y is continuous at a if and only if fpaq “ lim

x‰a, xÑa
fpxq.
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Lemma A.2.6. Let X be a set, tYiuiPI be a family of topological spaces and fi : X Ñ Y be maps.
Equip X with the initial topology with respect to tfiuiPI . Then a filter F on X converges to a if
and only if for each i P I, the filter base fipF q converges to fipaq.

Proof. The only if part follows from Corollary A.2.5.2. For the if part, let V P Na; by construction
there exists a finite subset J Ď I and for each j P J an open neighborhood Uj of fjpaq such
that a P

Ş

jPJ

f´1
j pUjq Ď V . By assumption we can find S P F such that fjpSq Ď Uj , so that

S Ď f´1
j pfjpSqq Ď f´1

j pUjq, i.e., Uj P F . Since J is finite, it follows that
Ş

jPJ

f´1
j pUjq P F . Hence F

is finer than Na.

A.3 Separation axiom.
Theorem A.3.1. Let X be a topological space. TFAE:

(i) Any two distinct points of X have disjoint neighborhoods.

(ii) For every index set I, the diagonal embedding X Ñ XI has closed image.

(iii) The diagonal in X ˆX is closed.

(iv) The intersection of all closed neighborhoods of a point x P X solely consists of x itself.

(v) If a filter F on X converges to x, then x is the only cluster point of F .

(vi) Every filter on X has at most one limit point.

If either holds, X is called a Hausdorff space, or a T2-space.

Proof. The implications (i)ñ(ii)ñ(iii)ñ(i) are clear.

(i)ñ(iv) Let y ‰ x, and pick V P Ny, U P Nx with V XU “ H; by shrinking we may assume V is open.
Then C :“ XzV is closed, y R C and C P Nx as U Ď C.

(iv)ñ(v) By definition F is finer than Nx. Hence the set of all cluster points of F is
Ş

SPF

S “
Ş

SPNx

S,

which is txu by assumption.

(v)ñ(vi) Clear since every limit point is a cluster point.

(vi)ñ(i) Let x ‰ y P X, and suppose every U P Nx meet every V P Ny. Then tUXV | U P Nx, V P Nyu

forms a base of filter which is finer than Nx and Ny, a contradiction.

Denote by Haus the full subcategory of Top consisting of Hausdorff spaces. Products and
equalizers in Haus are the same as those in Top. In particular, this shows Haus is complete and
the inclusion functor ι : Haus Ñ Top preserves limit. It also admits a left adjoint, which can
be proved by the general adjoint functor theorem as follows. It remains to verify the solution set
condition. For each topological space X, the equivalence classes of continuous surjections from X to
a Hausdorff space Y form a set as Y varies, since each such Y is homeomorphic to a quotient of X
with some topology. Since each continuous map f : X Ñ Y factors through its image with subspace
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topology inherit from Y , this shows the solution set condition. We denote by H : Top Ñ Haus its
left adjoint. For X P Top and Y P Haus we then have a functorial bijection

HomHauspHpXq, Y q HomToppX, ιpY qq
„

Taking Y “ HpXq gives a continuous map π : X Ñ HpXq, and the above map is then given by
f ÞÑ f ˝π. It follows that π is surjective. We then say HpXq is the maximal Hausdorff quotient
of X.

If X is already a Hausdorff space, we take HpXq “ X, π “ idX . Hence H is both a left-adjoint
and a left inverse of ι : Haus Ñ Top. Since Top is cocomplete, it follows that Haus is cocomplete.
Explicitly, a coproduct in Haus is the one in Top (by construction), and a coequalizer in Haus is
the maximal Hausdorff quotient of the coequalizer in Top.

On other other hand, the inclusion ι : Haus Ñ Top has no right adjoint. This follows from the
following characterization of epimorphisms in Haus (actually if part suffices).

Lemma A.3.2. A continuous map X Ñ Y between Hausdorff spaces is epic if and only if it has
dense image.

Proof. The if part follows from Lemma A.3.3. For the only if part, suppose f : X Ñ Y is a morphism
in Haus with fpXq Ĺ Y . Consider the adjunction Y \

fpXq
Y , i.e., gluing two copies of Y along the

subspace fpXq; it is topologized by the final topology of the two inclusions ι1, ι2 : Y Ñ Y \
fpXq

Y .
This clearly Hausdorff. Since fpXq ‰ Y , we have ι1 ‰ ι2, while ι1 ˝ f “ ι2 ˝ f . Hence f is not an
epimorphism.

Lemma A.3.3. Let f, g : X Ñ Y be two continuous maps to a Hausdorff space Y . If the equalizer
eqpf, gq is dense in X, then f “ g.

Proof. Let h “ pf, gq : X Ñ Y ˆY , which is a continuous map. Let ∆Y be the image of Y in Y ˆY

under diagonal embedding. Then ∆Y Ď Y ˆ Y is closed and eqpf, gq “ h´1p∆Y q, so eqpf, gq Ď X is
closed. Since it is dense, it follows that eqpf, gq “ X, i.e. f “ g.

Proposition A.3.4. Let X be a topological space. TFAE:

(i) For each point x P X, the set of all closed neighborhoods of x is a fundamental system of
neighborhoods of x.

(ii) For each x P X and each closed set F Ď X with x R F , there exist a neighborhood of x and a
neighborhood of F that do not intersect.

If either holds and X is Hausdorff, we call X a regular space.

Theorem A.3.5. Let X be a topological space, A Ď X a dense subset, Y a regular space, and
f : A Ñ Y a map. f extends to a continuous map f : X Ñ Y if and only if for each x P X, the limit

lim
yÑx, yPA

fpyq exists. In this case, the extension f is unique.

Proof. The uniqueness follows from Lemma A.3.3. For the existence, define f : X Ñ Y simply by

fpxq “ lim
yÑx, yPA

fpyq.
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To show the continuity, let x P X and V a closed neighborhood of fpxq in Y . By definition there
exists an open neighborhood U of x such that fpU XAq Ď V . Since U is a neighborhood of each of
its points, we have

fpzq “ lim
yÑz, yPUXA

fpyq

for all z P U , whence fpzq P fpU XAq Ď V , as V is closed. Since Y is regular, all closed neighbor-
hoods of a point forms a fundamental system of neighborhoods, and hence the proof is completed.

Corollary A.3.5.1. Let Fi be a filter on a set Xi pi “ 1, 2q, and let F “ F1 ˆ F2 be the product
filter on the product set X “ X1 ˆX2. Let Y be a regular space and f : X Ñ Y a map. If

1. lim
F1ˆF2

f exists and

2. lim
x2,F2

fpx1, x2q “: gpx1q exists for all x1 P X,

then lim
x1,F1

gpx1q exists and equals lim
F1ˆF2

f .

A.4 Compactness and countability
Lemma A.4.1. Let X be a topological space. TFAE:

(i) Every filter on X has at least one cluster point.

(ii) Every ultrafilter on X is convergent.

(iii) Every family of closed sets of X whose intersection is empty contains a finite subfamily whose
intersection is empty.

(iv) Every open cover of X admits a finite subcover.

A topological space satisfying either above condition is said to be (covering) compact.

Proof. (iii)ô(iv) follow from taking complement. Assume (i). Recall by maximality a cluster point
of an ultrafilter is a limit point, so (ii) is fulfilled. (ii)ñ(i) is obvious. For (i)ñ(iii), let S be a family
of closed sets in X with empty intersection. If every finite subfamily of S has nonempty intersection,
then S generates a filter, so it has a cluster point by (i). This is a contradiction as any cluster point
lies in the intersection of all sets in S. For (iii)ñ(i), let F be a filter on X without cluster point.
Then tS | S P F u is a family of closed sets contradicting to (iii).

Corollary A.4.1.1 (Tychonov). A product of compact spaces is compact.

Proof. This follows directly from Lemma A.2.6, Lemma A.1.6 and Lemma A.4.1.(ii).

Definition. Let X be a set. A collection S Ď 2X of subsets of X is said to have the finite
intersection property if

Ş

APF

A ‰ H for any finite subcollection F Ď S.

Corollary A.4.1.2. Let X be a space. Then X is compact if and only if any collection of closed
subsets in X that has the finite intersection property has nonempty intersection.

Proof. This is a reformulation of Lemma A.4.1.(iii).
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Definition. Let X be a topological space.

1. A sequence panqn in X is called convergent if there exists a point a P X such that for any
open neighborhood U of a there exists N ě 0 such that an P U for n ě N .

2. For a subset S of X, a point x P X is called a limit point of S if for every neighborhood U

of x in X, pU X Sqztxu is nonempty.

Definition. Let X be a topological space.

1. X is called limit point compact if every infinite subset of X has a limit point in X.

2. X is called sequentially compact if every sequence in X has a convergent subsequence in
X.

3. X is called Lindelöf if every open cover of X admits a countable subcover.

4. X is called countably compact if every countable open cover of X admits a finite subcover.

5. X is called second countable if the topology on X admits a countable basis.

6. X is called first countable if every point of X admits a countable neighborhood basis.

7. X is called separable if X admits a countable dense subset.

Theorem A.4.2. Let X be a topological space.

(i) If X is compact, then it is limit point compact.

(ii) If X is sequentially compact, then X is countably compact.

(iii) If X is first countable and compact, then X is sequentially compact.

(iv) If X is first countable Hausdorff and limit point compact, then X is sequentially compact.

(v) If X is Lindelöf and sequentially compact, then X is compact.

(vi) If X is second countable, then it is first countable, separable and Lindelöf.

Proof.

(v) Suppose for contrary that U is an open cover of X that does not admit a finite subcover..
Since X is Lindelöf, U admits a countable subcover, say V “ tUnu8

n“1. By assumption, we
can find a sequence ppnqn such that pn P Xz

n
Ť

i“1

Ui. Since X is sequentially compact, ppnqn

admits a convergent subsequence ppnk
qk converging to p P X. Since V covers X, we can find

m ě 1 such that p P Um, and by convergence we can find N ě 0 such that pnk
P Um whenever

k ě N . But for ℓ ě m`N , we have

pnℓ
P Um Ď

m
ď

i“1

Ui Ď

ℓ
ď

i“1

Ui Ď

nℓ
ď

i“1

Ui

a contradiction to our choice of ppnqn.
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Lemma A.4.3. Let f : X Ñ Y be a map between topological space. Suppose x P X has a countable
neighborhood basis N . Then f is continuous at x if and only if for all sequences pxnqn converging
to x, we have lim

nÑ8
fpxnq “ fpxq.

Proof. The only if part holds by Lemma A.2.5. For the in part, write N “ tUnun; we may assume
Un Ě Un`1 for all n ě 1. Suppose f is not continuous at x, so that there exists V P Nfpxq such that
f´1pV q R Nx. Then f´1pV q Ğ Un for all n ě 1. Take xn P Unzf´1pV q; then xn Ñ x and fpxnq R V

for all n ě 1, so fpxnq cannot converges to fpxq.

Definition. A map f : X Ñ Y between topological spaces is called sequentially continuous if
for all x P X and all sequences pxnqn converging to x, we have lim

nÑ8
fpxnq “ fpxq.

Corollary A.4.3.1. Let f : X Ñ Y be a map between topological space with X first countable.
Then f is continuous if and only if f is sequentially continuous.

A.5 Metric spaces
Definition. Let X be a set. A function d : X ˆX Ñ Rě0 satisfies

(i) dpx, yq “ dpy, xq for any x, y P X,

(ii) dpx, yq ď dpx, zq ` dpz, yq for any x, y, z P X, and

(iii) dpx, yq “ 0 if and only if x “ y

is called a metric on X. A pair pX, dq with d a metric on X is called a metric space.

For x P X and r ą 0, the set

Brpxq :“ ty P X | dpx, yq ă ru

is called an open ball centered at x with radius r. It is easy to see that the collection tBrpxq | x P

X, r ą 0u defines a topology on pX, dq, making X a topological space.

Lemma A.5.1. Let pX, dq be a metric space. TFAE:

1. X is second countable.

2. X is separable.

3. X is Lindelöf.

Lemma A.5.2. Let pX, dq be a metric space.

(i) If X is compact, then X is second countable.

(ii) If X is sequentially compact, then X is second countable.

Corollary A.5.2.1. A metric space pX, dq is compact if and only if it is sequentially compact.

Proof. This follows from Lemma A.5.1, Lemma A.5.2 and Theorem A.4.2.

Lemma A.5.3. Let A Ď X be a subset. The closure A is compact if and only if every sequence in
A admits a convergent subsequence.
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Corollary A.5.3.1. Let panqn Ď X be a sequence. Then panqn has compact closure if and only if
every subsequence of panqn admits a convergent subsequence.

Proof. Let A “ tan | n P Zě1u. A subsequence of panqn is a sequence in A, so the only if part follows
directly from Lemma A.5.3.

For the if part, assume that every subsequence of panqn admits a convergent subsequence. By
Lemma A.5.3, it is enough to show every sequence in A admits a convergent subsequence. Let pbnqn

be a sequence in A. We construct a subsequence of pbnqn that is also a subsequence on panqn. Define
ψ, ϕ : N Ñ N as follows. Let ψp1q “ 1 and ϕp1q be any number such that b1 “ aϕp1q. For n ě 2,
define inductively that

ψpnq “ mintk P Z | k ą ψpn´ 1q, bk “ am for some m ą ϕpn´ 1qu

If the set on the right is empty, then for k ą ψpn´1q, we have bk “ am implies m ď ϕpn´1q, so that
pbkqkąψpn´1q Ď ta1, . . . , aϕpn´1qu a finite set. In this case it is possible to construct a subsequence of
pbnqn converging to some ai, where 1 ď i ď ϕpn ´ 1q. Hence we may assume the set of the right is
nonempty (for every n), so that ψpnq ă 8 is well-defined. Define ϕpnq to be any index m ą ϕpn´1q

such that bψpnq “ aϕpnq. By construction ψ and ϕ are strictly increasing, so pbψpnqqn “ paϕpnqqn is a
subsequence, and hence pbψpnqqn admits a convergent subsequence by assumption.

A.6 Baire’s Category
Definition. A topological space X is called a Baire space if every countable intersection of open
and dense subspaces of X is again dense. Equivalently, if X is a countable union of closed sets in
X, then at least one of the closed set has nonempty interior.

Theorem A.6.1. Every LCH space and every complete metric space is a Baire space.

Proof. Let X be either an LCH space or a complete metric space. Let U be an open subset of X
and suppose Ai Ď X is nowhere dense for i “ 0, 1, . . .. Let V0 “ U and define recursively that
V i`1 Ď VizAi.

• In the LCH case, we may find an open set Vi`1 such that Vi`1 Ď V i`1 Ď VizAi with V i`1

compact. Note that the V i satisfy the finite intersection property, so H ‰
Ş

i V i Ď Uz
Ť

iAi.

• In the complete metric case, we take Vi`1 “ B 1
i`1

pxq for some x P VizAi such that B 2
i`1

pxq Ď

VizAi. Thus a sequence xi P Vi is Cauchy, and the completeness shows that the limit exists;
moreover, x “ limn xn P V i for all i, i.e, x P

Ş

i V i Ď Uz
Ť

iAi.

In both cases we’ve shown U Ę
Ť

iAi. Since U is arbitrary open set, we conclude int
Ť

iAi “ H.

A.7 Proper Map
Definition. Let X,Y be spaces. A map f : X Ñ Y is called proper if for every compact K Ď Y ,
the preimage f´1pKq is compact.

Proposition A.7.1. If f : X Ñ Y is a continuous closed map with compact fibre, then f is proper.

336



Proof. Let K be a compact set in Y and tUαuαPI an open cover of f´1pKq. For each y P K, let
Iy Ď I be a finite index set such that tUαuαPIy covers f´1pyq and put Vy :“

Ť

αPIy

Uα. Since f is

closed, Wy :“ Y zfpX zVyq is an open neighborhood of y. By compactness we can find a finite
subset F Ď K such that K Ď

Ť

yPF

Wy. Then f´1pKq Ď
Ť

yPF

Vy “
Ť

yPF, αPIy

Uα. Indeed, for x P X

with fpxq P K, take y P F such that fpxq P Wy; this means x P Vy.

Proposition A.7.2. Let Y be LCH and f : X Ñ Y a continuous proper map. Then f is closed.

Proof. Let C Ď X be closed and L Ď Y be compact. We first show fpCqXL is closed. As CXf´1pLq

is compact,
fpC X f´1pLqq “ fpCq X L Ď Y

is compact, and hence closed in Y . Now for y P fpCq, we can find a compact neighborhood Ly Ď Y

of y. Since all neighborhood of y meet Ly X fpCq, we have

y P Ly X fpCq “ Ly X fpCq Ď fpCq

Corollary A.7.2.1. Let the setting be as above. For every B Ď Y and every open neighborhood
U of f´1pBq in X, there exists an open neighborhood V of B in Y such that f´1pV q Ď U .

Proof. V “ Y zfpXzUq does the job.

A.8 Urysohn’s Lemma
Definition. Let X be a topological space.

1. X is called normal if for any two disjoint closed subspaces C1, C2 Ď X there are open
neighborhoods U, V of C1, C2, respectively such that U X V “ H.

2. X is called completely regular if for each point x P X and a closed subspace C Ď X not
containing x, there exists a continuous map f : X Ñ r0, 1s such that fpxq “ 0 and f ” 1 on
C.

Lemma A.8.1. Let X be an LCH space. If K is compact and U is open with K Ď U , then we can
find a relatively compact open set V with K Ď V Ď V Ď U .

Proof. Cover K by compact neighborhoods of points in K, and by compactness finitely many of
them suffices to do so; let G be their union. If U “ X, then V “ X does the job. If U Ĺ X, let C be
the complement of U . For each p P C, let Wp be an open set such that p R Wp and K Ď Wp; such a
Wp exists by compactness of K. Then tC XGXWpupPC is a collection of compact sets with empty
intersection. The finite intersection property assures that there are points p1, . . . , pn P C such that

C XGXWp1 X ¨ ¨ ¨ XWpn “ H

Then V “ GXWp1 X ¨ ¨ ¨ XWpn does the job.
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Lemma A.8.2. Let X be a topological space. Let prnqně0 be an enumeration of r0, 1s X Q with
r0 “ 0 and r1 “ 1. Suppose pVnqně0 is a family of open sets with the property that rn ď rm if and
only if Vm Ď Vn. Then the function

fpxq :“

#

0 , if x R V0

suptrn | x P Vnu , if x P V0

is continuous.

Proof. For r ą s, one has

f´1ps, rq “
ď

săs1ăs2ăr

Vs1 zVs2

which is open. Similarly, f´1r0, sq and f´1pr, 1s are open. Since such intervals generate the topology
of r0, 1s, this shows f is continuous.

Lemma A.8.3. Let X be space and U an open set. Suppose either

• X is LCH and K Ď U is compact, or

• X is normal and K Ď U is closed in X.

Then we have the following.

(i) There is a continuous map f : X Ñ r0, 1s with f |K ” 1 and supp f Ď U . In the case X is
LCH, f can be constructed so that supp f is compact.

(ii) Let A Ď X be closed and h P C`pAq. If X is LCH we assume h vanishes at infinity. Suppose
h ě 1 on KXA. Then there exists f P CpXq as in (i) with additional property that fpaq ď hpaq

for every a P A.

Proof.

(i) Put r1 “ 0, r2 “ 1 and trnuně3 an enumeration of p0, 1q X Q. Pick V0, V1 be open such that

K Ď V1 Ď V1 Ď V0 Ď V0 Ď U

This is possible by normality if X normal, and by Lemma A.8.1 if X is LCH.
Suppose n ě 2 and V1, . . . , Vn are constructed in a way that ri ă rj implies Vj Ď Vi. Now
we construct Vn`1. Say ri ă rn`1 ă rj with i maximal and j minimal among t1, . . . , nu. By
normality or Lemma A.8.1 we can find Vn such that

Vj Ď Vn`1 Ď Vn`1 Ď Vi

Doing this indefinitely, we obtain a collection tVnuně0 of open sets such that

(a) K Ď V1 Ď V0 Ď U with V0 compact if X is LCH,
(b) i ą j implies Vi Ď Vj .

Define f as in Lemma A.8.2 with the pVnqně0 constructed above. Then f is continuous and
f |K ” 1.

(ii) At each stage of constructing Vn`1 in (ii) (including n “ 1), replace Vi by Vi X ta P A | hpaq ą

rn`1u.

Corollary A.8.3.1. normality ñ completely regularity; LCH ñ completely regularity.

Theorem A.8.4 (Tietze’s).
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A.9 Paracompact Space
We begin with a series of definitions.

Definition. Let X be a topological space.

1. An open cover V of X is a refinement of another open cover U of X if each element of V is
a subset of some element of U .

2. A collection U Ď 2X is called locally finite if each point x P X admits a neighborhood N

which meets only a finite number of the members of U .

3. The space X is called paracompact if X is Hausdorff and every open cover of X has a locally
finite open refinement.

Theorem A.9.1. A metric space pX, dq is paracompact.

Proof. (Due to M.E. Rudin) Given an open cover Uα pα P Aq of X, we aim to find a locally finite
open refinement Vα,n ppα, nq P A ˆ Nq of Uα. By AC, A has a well-ordering, say ď. For each
pα, nq P Aˆ N, define

Vα,n “
ď

x

B2´npxq

where the union is taken over all x P X such that

(i) α is the smallest index with x P Uα. (such α exists since ď is a well-order)

(ii) x R Vβ,j for j ă n and β P A.

(iii) B3¨2´npxq Ď Uα.

We claim the Vα,n is an locally finite open refinement of the Uα.
First, we show the Vα,n cover X. For each x P X, let α P A be the smallest index such that

x P Uα and pick n so large that B3¨2´npxq Ď Uα; thus (i) and (iii) holds. If (ii) holds for x, then
x P Vα,n; otherwise, x P Vα,j for some j ă n. In a nutshell, x P Vα,n for j ď n.

Second, we show the Vα,n is locally finite. Pick x P X and let α P A be the smallest such that
x P Vα,n for some n P N (such pair exists since we’ve shown the Vα,n cover X), and choose j so large
that B2´j pxq Ď Vα,n.

1. If i ě n ` j, then B2´n´j pxq X Dβ,i “ H: Since i ą n, every ball B2´ipyq that constitutes
Vβ,i has its center y outside Vα,n (for otherwise that y P Vα,n X Vβ,i and i ą n would be in
breach of (ii)). Also, since B2´j pxq Ď Vα,n (by our choice), dXpx, yq ě 2´j . But i ě j ` 1 and
n` j ě j ` 1,

2´n´j ` 2´i ď 2´j´1 ` 2´j´1 “ 2´j

so that B2´n´j pxq XB2´ipyq “ H.

2. If i ă n` j, then #tβ P A | B2´n´j pxq X Vβ,i ‰ Hu ď 1: Suppose p P Vβ,i, q P Vγ,i and β ă γ;
we want to show dpp, qq ą 2´n´j`1 (for if it holds and p P Bpx, 2´n´jq, then

dXpq, xq ě |dpq, pq ´ dpp, xq| “ 2´n´j`1 ´ 2´n´j “ 2´n´j

so that q R B2´n´j pxq). By definition there are points y, z such that p P B2´ipyq and q P

B2´ipzq. By (iii), B3¨2´ipyq Ď Uβ , and by (i), z R Uβ . Hence dXpy, zq ě 3 ¨ 2´i and thus

dXpp, qq ě dpy, zq ´ dpy, pq ´ dpz, qq ą 2´i ě 2´n´j`1.
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Remark. Why n`j? By definition, if BrpxqXVβ,i ‰ H, there exists y such that BrpxqXB2´ipyq ‰

H, i.e, y P Br`2´ipxq. If r is picked so small that r ` 2´i ď 2´j , then

y P Bpx, r ` 2´iq Ď B2´j pxq Ď Vα,n

(ii) then forces n ě i.
Hence, if n ă i and j ă i, we can choose an r P p0, 2´j ´ 2´is such that Brpxq X Vβ,i “ H.

Therefore for all i ě n ` j ` 1, we can choose r such that Brpxq X Vβ,i “ H. Nevertheless, it’s
possible to choose other lower bound of i, maxtn, ju ` 1 for instance.

We list some properties of a paracompact space.

Proposition A.9.2. Let X be a paracompact space.

1. A closed subspace of X is paracompact.

2. X is normal.

Another notion that is closely related to the paracompactness is the following.

Definition. Let pUiqiPI be an open cover of the space X. A partition of unity subordinate to
this cover is a collection continuous map tfj : X Ñ r0, 1s | j P Ju such that

1. the collection tsupp fjuj is a locally finite closed refinement of pUiqi, and

2.
ř

j

fjpxq “ 1 for each x P X.

Theorem A.9.3. A space is paracompact if and only if for every open cover there exists a partition
of unity subordinate to it.

Theorem A.9.4. An LCH space X is paracompact if and only if it is a disjoint union of open
σ-compact subspace.

Proof. We first prove the if part. It is clear that a disjoint union of paracompact spaces is paracom-
pact, so we may assume X itself is σ-compact. Suppose X “

Ť

ně1
Kn with each Kn compact. By some

modification we may assume Kn Ď intKn`1. Define compact sets L1 “ K1 and Ln “ KnzintKn´1

for n ě 2. Then Li can only intersect with Li´1 and Li`1 nontrivially. By Lemma A.8.1 we can
find compact sets Mi whose interiors contain Li and only intersect with Mi´1 and Mi`1.

Now let an open cover of X be given. Consider the induced cover on Li, and pick a finite open
refinement such that each cover set is contained in Mi. Then these finite covers taken together
provide a locally finite open refinement of the original cover.

Theorem A.9.5. Let X be an second countable LCH space. Then the one-point compactification
X` is second countable. In particular, X is σ-compact, and is paracompact by Theorem A.9.4.

Proof. Let B be a countable basis for X and let K Ď X be compact. Each point x in K has a
compact neighborhood N , and there exists Ux P B with x P Ux Ď N . By compactness there exists a
finite subset I of K such that K Ď

Ť

xPI

Ux. Put V “ Xz
Ť

xPI

Ux. Then V Y t8u is a neighborhood of

8 in X` contained in the arbitrary neighborhood X`zK. This shows X` is second countable, and
particularly X is σ-compact.
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A.10 The Stone-Weierstrass Theorem
Theorem A.10.1. Let X be LCH and suppose A Ď C0pXq is a C-subalgebra of C0pXq such that

(i) A separates points, i.e., for x ‰ y P X there exists f P A with fpxq ‰ fpyq,

(ii) A is nowhere vanishing, i.e., for x P X there exists f P A with fpxq ‰ 0, and

(iii) A is closed under complex conjugation.

Then A is dense in C0pXq in sup norm.

We begin the proof by making two reductions. By (iii), the R-subspace

A1 “ tf P C0pXq | f “ fu “ C0pX,Rq XA Ď A

is an R-rational structure of A, i.e., the canonical map A1 bR C Ñ A is a C-isomorphism. It is clear
that A1 still satisfies (i) and (ii). Note that the C-isomorphism

C0pX,Rq bR C C0pXq
„

is a topological isomorphism. Indeed, this is continuous by triangle inequality, and hence an iso-
morphism as it is surjective and by open mapping theorem; alternatively, one can simply construct
an inverse and show it is continuous. Hence it suffices to show A1 is dense in C0pX,Rq. It is then
reduced to the

Theorem A.10.2. Let X be LCH and suppose A Ď C0pX,Rq is a R-subalgebra of C0pX,Rq such
that

(i) A separates points, i.e., for x ‰ y P X there exists f P A with fpxq ‰ fpyq and

(ii) A is nowhere vanishing, i.e., for x P X there exists f P A with fpxq ‰ 0.

Then A is dense in C0pX,Rq in sup norm.

To make further reduction, let X` “ X Y t8u be the one-point compactification of X. The
inclusion X Ñ X` induces an identification

C0pX,Rq “ tf P CpX`,Rq | fp8q “ 0u.

Since the evaluation map CpX`,Rq Ñ R at 8 is continuous, C0pX,Rq is closed. Let A1 be the linear
span of A along with all constant functions. Then A1 is a subalgebra of CpX`,Rq, and clearly (i)
and (ii) hold for A1. If A1 is dense in CpX`,Rq, then

A “ A1 X C0pX,Rq “ A1 X C0pX,Rq “ C0pX,Rq

so that A is dense in C0pX,Rq. Hence we only need to show

Theorem A.10.3. Let X be compact suppose A Ď CpX,Rq is a R-subalgebra of CpX,Rq such that

(i) A separates points, i.e., for x ‰ y P X there exists f P A with fpxq ‰ fpyq and

(ii) A is nowhere vanishing, i.e., for x P X there exists f P A with fpxq ‰ 0.

Then A is dense in CpX,Rq in sup norm.
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Tensoring with C yields

Corollary A.10.3.1. Let X be compact and suppose A Ď CpXq is a C-subalgebra of CpXq such
that

(i) A separates points, i.e., for x ‰ y P X there exists f P A with fpxq ‰ fpyq,

(ii) A is nowhere vanishing, i.e., for x P X there exists f P A with fpxq ‰ 0, and

(iii) A is closed under complex conjugation.

Then A is dense in CpXq in sup norm.

The version that we are going to prove the Theorem A.10.3. We break the proof into several
lemmas.

Lemma A.10.4 (Dini’s). Let X be a compact space and let pfnqn Ď CpX,Rq be an increasing
sequence that pointwise converges to a continuous function f : X Ñ R. Then fn Ñ f uniformly.

Proof. Let ε ą 0 be fixed. For each point x P X pick an Nx such that |fpxq ´ fNx
pxq| “ fpxq ´

fNx
pxq ă ε. For each x, define Ux :“ ty P X P fpyq ´ ε ă fNx

pyqu “ pf ´ fNx
q´1p´8, εq. Then

pUxqxPX forms an open cover of X, and by compactness we can find x1, . . . , xn P X such that
X “ Ux1 Y ¨ ¨ ¨ Y Uxn . If we let N “ Nε “ max

1ďmďn
Nxm , we have fpxq ´ ε ă fN pxq for all x P X, so

that ∥f ´ fn∥X ă ε for n ě N . This shows the uniformity.

Lemma A.10.5. Let A Ď CpX,Rq be an R-algebra. If f P A, then |f | P A. Consequently, if
f, g P A, then maxtf, gu, mintf, gu P A.

Proof. Replacing A with A, we assume A is closed. Let 0 ‰ f P A; replacing f with f{ ∥f∥X , we
can assume ´1 ď f ď 1. Then 0 ď f2 ď 1.

Define inductively a sequence ppnqně1 of polynomials on r0, 1s such that p1 ” 0 and

pn`1pxq “ pnpxq ´
1

2
ppnpxq2 ´ xq, x P r0, 1s.

We claim ppnqně1 is an increasing sequence that converges pointwise to
?
x on r0, 1s. We have

pn`1pxq ´
?
x “ ppnpxq ´

?
xq

ˆ

1 ´
1

2

`

pnpxq `
?
x
˘

q

˙

Since 0 ď p1 ď
?
x, by induction we see 0 ď pn ď

?
x for all n ě 1. In particular, we see ppnqně1 is

increasing. For each x P r0, 1s, the sequence ppnpxqqně1 is increasing and bounded above by
?
x, so

it converges to a value, say, gpxq. This defines a function g : X Ñ r0, 1s, and since

0 “ gpxq ´ gpxq “ lim
nÑ8

ppn`1pxq ´ pnpxqq “ ´
1

2

´

lim
nÑ8

pnpxq2 ´ x
¯

“ ´
1

2
pgpxq2 ´ xq

we see gpxq “
?
x. It follows from Lemma A.10.4 that pn Ñ

?
x uniformly. Define fn “

pnpfpxq2q pn ě 1q. Then fn Ñ gpfpxq2q “
a

fpxq2 “ |f | uniformly. Since each fn is a linear
combination of powers of f , fn P A, and hence |f | P A.

Lemma A.10.6. Let x ‰ y P X and a, b P R. There exists f P A such that fpxq “ a, fpyq “ b.

Proof. Since A separates points, we can find h P A such that hpxq ‰ hpyq. Since A vanishes nowhere,
we can find g1, g2 P A such that g1pxq ‰ 0 ‰ g2pyq. Put g “ g21`g22 P A and for each α, β P R consider

the function kα,β :“ αg ` βgh P A. Since det

˜

gpxq gpxqhpxq

gpyq gpyqhpyq

¸

“ gpxqgpyqphpyq ´ hpxqq ‰ 0, we

can find α, β P R such that kα,βpxq “ a and kα,βpyq “ b. Then f “ kα,β does the job.
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Proof. (of Theorem A.10.3.) Let F P CpX,Rq and ε ą 0. Let p P X be fixed. By Lemma A.10.6 for
q ‰ p we can find hp,q P A such that hp,qppq “ F ppq, hp,qpqq “ F pqq. If q “ p, pick hp,q “ F . Set

h1
p,q “ hp,q ´ F ` ε;

then h1
p,qpqq “ ε for each q P X. Since it is continuous, we can find a neighborhood Vq of q such that

h1
p,qpxq ą 0 for x P Vq. The collection tVq | q P Xu forms an open cover of X, so by compactness we

can find q1, . . . , qn P X such that X “ Vq1 Y ¨ ¨ ¨ Y Vqn . Put hp “ maxthp,q1 , . . . , hp,qnu, which lies in
A by Lemma A.10.5. Then for x P X, we have

hppxq ´ F pxq ` ε ě hp,qipxq ´ F pxq ` ε ą 0

where i P rns satisfies x P Vqi . Also, we have hpppq “ F ppq. For each p P X, set

h1
p “ F ´ hp ` ε.

Then h1
pppq “ ε ą 0, so by continuity we can find a neighborhood Up of p such that h1

ppxq ą 0

for x P Up. Again tUp | p P Xu forms an open cover of X, so there exists p1, . . . , pm such that
X “ Up1 Y ¨ ¨ ¨ YUpm . If we put h “ minthp1 , . . . , hpmu, which lies in A by Lemma A.10.5. Then for
x P X, we have

F pxq ´ hpxq ` ε ě F pxq ´ hpipxq ` ε ą 0

where i P rms satisfies x P Upi . Since

hpxq ´ F pxq ` ε “ min
iPrms

hpipxq ´ F pxq ` ε ą 0

for each x P X, these together show that ∥F ´ h∥X ă ε. Since h P A and ε ą 0 is arbitrary, this
proves the density of A in CpX,Rq.

A.11 Isometry of locally compact metric spaces
In this section, fix a metric space pX, dq.

Definition. A map f : X Ñ X is called an isometry if it is bijective and dpfpxq, fpyqq “ dpx, yq

for any x, y P X.

Denote by IpXq “ IpX, dq the set of all isometries on pX, dq. It follows from the definition that
IpXq Ď IsomToppX,Xq, and IpXq is a subgroup under function composition. We topologize IpXq

using the subspace topology inherited from the compact-open topology on XX (c.f. Section 5.1).
Hence it has a subbasis consisting of sets of the form

LpK,Uq :“ tf P IpXq | fpKq Ď Uu

where K (resp. U) runs over all compact (resp. open) subsets of X.
In the following we further assume that pX, dq is connected locally compact.

Lemma A.11.1. pX, dq is separable.

Proof. By Theorem A.9.1 and Theorem A.9.4, X is σ-compact. But a compact metric space is
already separable, being a countable union of separable spaces, X is itself a separable space.
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Lemma A.11.2. IpXq is a second countable Hausdorff topological space.

Proof. That IpXq is Hausdorff follows from the fact that X is Hausdorff, and that IpXq is second
countable follows from Lemma 5.1.2 and Lemma A.11.1.

Lemma A.11.3. Let pfnqn be a sequence in IpXq. If pfnqn is pointwise Cauchy on a subset A Ď X,
then pfnqn also converges pointwise on the closure A of A.

Proof. Let p P A and pick r ą 0 such that the open ball Brppq has compact closure. Let 0 ă ε ă r be
given, pick a point p1 P Bε{3ppq XA and N " 0 such that dpfnpp1q, fmpp1qq ă

ε

3
whenever n,m ě N .

Then for n,m ě N

dpfnppq, fmppqq ď dpfnppq, fnpp1qq ` dpfnpp1q, fmpp1qq ` dpfmpp1q, fmppqq

ă dpp, p1q `
ε

3
` dpp1, pq

ă
ε

3
`
ε

3
`
ε

3
“ ε.

Hence pfnppqqněN Ď BεpfN ppqq. Since fN is an isometry, BεpfN ppqq has compact closure as Brppq

does. It follows that pfnppqqněN has a convergent subsequence in BεpfN ppqq converging to a point
p˚ P BεpfN ppqq. The above estimate then shows that fnppq Ñ p˚ as well.

Lemma A.11.4. Let pfnqn be a sequence in IpXq such that there exists a point x P X such that
pfnpxqqn Ď X is convergent. Then for any p P X, the sequence pfnppqqn Ď X has compact closure.

Proof. Put

S “ tp P X | pfnppqqn Ď X has compact closure.u Ď X

Since pfnpxqqn is convergent and X is LCH, it is easy to see x P S. We are going to show S is closed
and open, so that S “ X by connectedness of X.

• S is closed. Let ppnqn Ď X be a sequence. By a diagonal argument, we may find a subsequence
pfnk

qk of pfnqn such that pfnk
ppnqqk is convergent for any n. By Lemma A.11.3, pfnk

qk also
converges pointwise on any limit point on ppnqn.

• S is open. Let p P S and pick r ą 0 such that Brppq is compact. We claim Br{4ppq Ď S. Let
q P Br{4ppq, and we must show pfnpqqqn has compact closure.

By Corollary A.5.3.1, it is enough to show that every subsequence of pfnpqqqn admits a conver-
gent subsequence. Let pφnpqqqn be any subsequence of pfnpqqqn. Since pφnppqqn has compact
closure, we can find a convergent subsequence pφnk

ppqqk converging to, say p˚; by passing to
a subsequence, we may assume pφnk

ppqqk Ď Br{4pp˚q. Then

dpφnk
pqq, p˚q ď dpφnk

pqq, φnk
ppqq ` dpφnk

ppq, p˚q ă dpq, pq `
r

4
ă
r

4
`
r

4
“
r

2

so that pφnk
pqqqk Ď Br{2pp˚q. The latter set has compact closure, as φnk

ppq P Br{4pp˚q

implies Br{2pp˚q Ď Brpφnk
ppqq “ φnk

pBrppqq, which has compact closure as Brppq does.
Hence pφnk

pqqqk, and thus pφnpqqqn, has a convergent subsequence.

Lemma A.11.5. Let pfnqn be a sequence in IpXq pointwise converging to a function f : X Ñ X.
Then f P IpXq and fn Ñ f in the compact-open topology of IpXq.
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Proof. Since the metric d : X ˆX Ñ R is continuous, for x, y P X, we have

dpfpxq, fpyqq “ lim
nÑ8

dpfnpxq, fnpyqq “ lim
nÑ8

dpx, yq “ dpx, yq.

This shows f preserves metric. Let K be a compact subset of X and ε ą 0. Pick a finite subset
P Ď K such that K Ď

Ť

pPP

Bε{3ppq. Let x P K and pick p P F such that dpx, pq ă
ε

3
. Then

dpfnppq, fppqq ď dpfnppq, fnpxqq ` dpfnpxq, fpxqq ` dpfpxq, fppqq “ dpp, xq ` dpfnpxq, fpxqq ` dpx, pq ă ε

for n ě N , where N is chosen so that dpfnpxq, fpxqq ă
ε

3
whenever n ě N . By Lemma 5.1.3, this

shows fn Ñ f in HomToppX,Xq. It remains to show f P IpXq, i.e., fpXq “ X.
Let p P X and q “ fppq P X. Then

0 “ dpq, fppqq “ lim
nÑ8

dpq, fnppqq “ lim
nÑ8

dpf´1
n pqq, pq

implying that pf´1
n pqqqn converges to p P X. By Lemma A.11.4, the sequence pf´1

n ppqqn has compact
closure for any p P X. Since X is separable, by a diagonal argument we may find a subsequence
pf´1
nk

qk converging pointwise on a countable dense subset of X, whence on the whole X by Lemma
A.11.3. Let p1 “ lim

kÑ8
f´1
nk

ppq; then

lim
kÑ8

dpfnk
pp1q, pq “ lim

kÑ8
dpp1, f´1

nk
ppqq “ dpp1, p1q “ 0

so that fpp1q “ lim
kÑ8

fnk
pp1q “ p. Since p is arbitrary, this shows fpXq “ X.

Lemma A.11.6. Let pfnqn be a sequence in IpXq such that there exists a point x P X such that
pfnpxqqn Ď X is convergent. Then pfnqn admits a convergent subsequence in the compact-open
topology of IpXq.

Proof. By Lemma A.11.4 and the fact that X is separable, we may use a diagonal argument to
obtain a subsequence pfnk

qk of pfnqn that converges pointwise on a countable dense subset of X,
whence on the whole X by Lemma A.11.3. But then Lemma A.11.5 implies that pfnk

qk is convergent
in the compact-open topology of IpXq.

Theorem A.11.7. Let pX, dq be a connected locally compact metric space.

(i) The group of isometries IpXq on X, equipped with the compact-open topology, is an LCH
group, and its action on X is continuous.

(ii) For any x P X, the isotropy subgroup of x is a compact subgroup of IpXq.

Proof. Let pfnqn and pgnqn be two sequences in IpXq converging to f and g in compact-open
topology. For any x P X,

dpfnpgnpxqq, fpgpxqqq ď dpfnpgnpxqq, fnpgpxqqq ` dpfnpgpxqq, fpgpxqqq

“ dpgnpxq, gpxqq ` dpfnpgpxqq, fpgpxqqq Ñ 0

as n Ñ 8. Hence fn ˝ gn Ñ f ˝ g pointwise, and thus in compact-open topology by Lemma A.11.5.
This show the multiplication is continuous. Also,

dpf´1
n pxq, f´1pxqq “ dpx, fnpf´1pxqqq “ dpfpf´1pxqq, fnpf´1pxqqq Ñ 0
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as n Ñ 8, so f´1
n Ñ f in compact-open topology again by Lemma A.11.5. This shows the inversion

is continuous. In conclusion, IpXq is a topological group.
Next, we show the action map IpXq ˆ X Ñ X is continuous. Let pfnqn be a sequence in IpXq

converging to f P IpXq and ppnqn a sequence to X converging to p P X. Then

dpfnppnq, fppqq ď dpfnppnq, fnppqq ` dpfnppq, fppqq “ dppn, pq ` dpfnppq, fppqq (♠)

Let ε ą 0 be given. Pick N " 0 such that dppn, pq ă
ε

2
for n ě N . Put K “ tpn, p | n ě Nu, which

is a compact set by Corollary A.5.3.1. Consider the subbase element LpK,Bε{2pfppqqq of IpXq; then
f P LpK,Bε{2qpfppqq, as dpfppnq, fppqq “ dppn, pq ă

ε

2
. Take N 1 " 0 such that fn P LpK,Bε{2pfppqqq

for n ě N 1. From the estimate p♠q, we see dpfnppnq, fppqq ă ε for n ě N`N 1. Hence fnppnq Ñ fppq,
proving the continuity.

It remains to show IpXq is locally compact. Let x P X and take an relatively compact open
neighborhood U of x. By Theorem A.4.2.(v), Lemma A.11.2 and Lemma A.11.6, the open set
Lptxu, Uq has compact closure. Finally, since the stabilizer tf P IpXq | fpxq “ xu is contained in
Lptpu, Uq, to show it is compact it suffices to show it is closed. If f P IpXq is such that fpxq ‰ x, pick
any open neighborhood U of fpxq not containing x and any compact neighborhood K of x contained
in f´1pUq. Then f P LpK,Uq, and for any g P LpK,Uq, we have gpxq Ď U R x, so gpxq ‰ x.
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Appendix B

Uniformity

B.1 Basics
Definition. A uniform structure, or uniformity, on a set X consists of a collection U Ď 2XˆX

satisfying the following axioms

1. Every subset of X ˆX containing an element of U lies in U

2. U is closed under finite intersection.

3. Every element in U contains the diagonal ∆ of X.

4. If V P U , the V ´1 “ tpy, xq P X ˆX | px, yq P V u P U .

5. For each V P U , there exists W P U such that

W 2 “ W ˝W :“ tpx, zq P X ˆX | D y P X rpx, yq P W ^ py, zq P W su Ď V

An element of U is called an entourage. A set together with a uniformity is called a uniform
space.

• If X is nonempty, then 3. implies H R U , so that U is a filter on X ˆX.

• The conjunction of 4. and 5. is equivalent to the following axiom:

6. For each V P U there exists W P U such that W ˝W´1 Ď V .

If V is an entourage of a uniformity on X, we say x and x1 are V -close if px, x1q P V .

Definition. A fundamental system of entourages of a uniformity is a collection B of entourages
such that every entourage contains an element in B.

• An entourage V such that V “ V ´1 is called symmetric. The symmetric entourage form a
fundamental system of entourages. This follows from 2. and 4.

• If B is a fundamental system of entourages, then so is tV n | V P Bu for each n P N. This
follows from 5.

Proposition B.1.1. A collection B Ď 2XˆX is a fundamental system of entourages of a uniformity
on X if and only if B satisfies the following axioms
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1. The intersection of two elements of B contains an element of B

2. Every element of B contains the diagonal ∆ of X.

3. For each V P B there exists V 1 P B such that V 1 Ď V ´1.

4. For each V P B there exists W P B such that W 2 Ď V .

In particular, if X is nonempty, B forms a fundamental system of the filter formed by the entourages
of this structure.

Proof. Given B Ď 2XˆX , we have to define a uniformity U on X such that B is a fundamental
system of U . Let

U :“ tU Ď X ˆX | DB P B rB Ď U su

We check U defines a uniformity on X.

1. Let U Ď X ˆX with V Ď U for some V P U . Then B Ď V Ď U for some B P B.

2. Let U1, . . . , Un P U . Then Bi Ď Ui for some Bi. We can find B P B such that B Ď B1X¨ ¨ ¨XBn,
and thus B Ď U1 X ¨ ¨ ¨ X Un.

3. Every element in U contains ∆ for every element of B does.

4. For each V P U , we can find B1, B2 P B such that B2 Ď V and B1 Ď B´1
2 , so that B1 Ď V ´1.

5. For each V P U , take B P B such that B Ď V and B1 P B such that B12 Ď B. Then B12 Ď V .

Example B.1.2.

1. Let pX, dXq be a metric space. For each ε ą 0, put

Vε :“ tpx, yq P X | dXpx, yq ă εu

When X “ R with euclidean distance, we call the uniformity generated by the Vε the additive
uniformity on R.

2. Let X be a set and R Ď X ˆX be an equivalence relation. Then ∆ Ď R and R2 “ R´1 “ R,
so R alone is a fundamental system of entourages of a uniformity on X. In particular, if we
take R “ ∆, then the entourages of the corresponding uniformity are all subsets of X ˆ X

containing ∆; this uniformity is called the discrete uniformity on X, and X equipped with
this uniformity is called a discrete uniformity space.

3. For each rational prime p, we can define a uniformity on Z: for each n P N, define

Wn :“ tpx, yq P Z ˆ Z | x ” y pmod pnqu

One easily checks that the Wn form a fundamental system of entourages of a uniformity on Z,
called the p-adic uniformity.
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B.1.1 Topology of a Uniform Space
Proposition B.1.3. Let X be a set with a uniform structure U . For each x P X let Bpxq “ tV pxq |

V P Uu, where V pxq :“ ty P X | px, yq P V u. Then there is a unique topology on X such that for
each x P X, Bpxq is all neighborhoods of x in this topology.

Proof. Let T :“ tU Ď X | @x P U rU P Bpxqsu. We check T defines a topology on X.

1. Let pUiqiPI Ď T and x P U :“
Ť

iPI

Ui. Write Ui “ Vipxq for some V P U for those Ui containing

x. Then
W :“ ptxu ˆ Uq Y ppXztxuq ˆXqq Ď X ˆX

contains a (in fact, every) Vi, so W P U . By construction W pxq “ U , so that U P T .

2. Let U1, U2 P T and x P U :“ U1 X U2. Write U1 “ V1pxq and U2 “ V2pxq. Then W :“

ptxu ˆ Uq Y ppXztxuq ˆ Xq Ď X ˆ X contains V1 X V2 P U , so that W P U . By construction
W pxq “ U , so that U P T .

3. X P T , for X ˆX P U .

Hence T defines a topology on X, and it remains to show that Bpxq is the set of all neighborhoods
of x. We must show if U Ď Bpxq for some x, then U contains an element of T . In fact, we claim
that

x P V :“ ty P X | U P Bpyqu P T

and is contained in U .

• x P V for U P Bpxq.

• Let y P V . Then U P Bpyq so that y P U . Hence V Ď U .

• Let y P V . We need to show V P Bpyq. We contend the following property:

if V P Bpaq, then there is a set W P Bpaq such that V P Bpbq for each b P W .

Indeed, write V “ V 1paq for some V 1 P U . Let V 2 “ V 1 X pV 1q´1 P U and put W :“ V 2paq.
For each b P W , define V 3 :“ ptbu ˆ V q Y ppX ´ tbuq ˆ Xq. Since V 2 Ď V 3, V 3 P U , and by
construction V “ V 3pbq, so V P Bpbq. With help of this property, we can find W P Bpyq such
that U P Bpzq for all z P W ; it follows by definition that y P W Ď V , and thus V P T .

Definition. The topology on X defined above is called the topology induced by the uniform
structure U .

• A uniform space is said to be Hausdorff, compact, or locally compact, etc., if the induced
topology has this property.

Proposition B.1.4. Let X be a uniform space. Let M Ď X ˆX.

1. For every symmetric entourage V , VMV is a neighborhood of M in the product space XˆX.

2. The closure of M in X ˆX is given by

M “
č

V

VMV

where V runs over all symmetric entourages of X.
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Proof. px, yq P VMV means there exists pp, qq P M such that px, pq P V, pq, rq P V , or px, yq P

V ppq ˆ V pqq since V is symmetric. This shows 1. The relation px, pq P V, pq, rq P V also can be
written as pp, qq P V pxq ˆ V pyq. As V runs over all symmetric entourages, V pxq ˆ V pyq forms a
fundamental system of neighborhoods of px, yq in X ˆX; for if U,U 1 are any two entourages, there
is always a symmetric V Ď U X U 1 so that V pxq ˆ V pyq Ď Upxq ˆ U 1pyq. Thus V pxq ˆ V pyq meets
M for each V if and only if px, yq P M , and 2. follows.

Corollary B.1.4.1. If A Ď X is any subset and V is any symmetric entourage of X, then

V pAq :“ tx P X | D a P A rpx, aq P V su

is a neighborhood of A in X, and

A “
č

V

V pAq “
č

UPU
UpAq

where V runs over all symmetric entourages of X and U denotes the set of all entourages in X.

Proof. It is clear that if M “ AˆA, then VMV “ V pAq ˆV pAq. The results follow from the above
proposition and that fact that AˆA “ AˆA.

Corollary B.1.4.2. The interiors (resp. the closures) of the entourages of X in X ˆ X form a
fundamental system of entourages of X.

Proof. If V is an entourage, there is a symmetric entourage W such that W 3 Ď V . By proposition
W 3 is a neighborhood of W , so the interior of V contains W and it is therefore an entourage.
Furthermore, we have W Ď W Ď W 3 Ď V by proposition, so V contains the closure of some
entourage.

Corollary B.1.4.3. In a uniform space, the sets of closed neighborhoods of a point form a funda-
mental system of neighborhoods of the point.

Proof. The above corollary tells that for each x P X, the sets V pxq form a fundamental system of
neighborhood of x, where V runs over all closed entourages of X, and each V pxq is closed in X.

Corollary B.1.4.4. A Hausdorff uniform space is regular.

Proposition B.1.5. A uniform space is Hausdorff if and only if the intersection of all the entourages
is the diagonal ∆ of X.

Proof. Since the closed entourages form a fundamental systems of entourages, it follows that if their
intersection is ∆, the ∆ is closed, and hence X is Hausdorff. Conversely, suppose X is Hausdorff.
Then for any x ‰ y, there exists an entourage such that y R V pxq, i.e., px, yq R V . Hence ∆ is the
intersection of all the entourages.

B.1.2 Uniformly Continuous Maps
Definition. Let X,X 1 be two uniform spaces. A map f : X Ñ X 1 is uniformly continuous if for
each entourage V 1 of X 1, there exists an entourage V of X such that the relation px, yq P V implies
pfpxq, fpyqq P V 1.

• If we put g “ f ˆ f , then f being uniformly continuous means that g´1pV 1q is an entourage
of X whenever V 1 is an entourage of X 1.
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A uniformly continuous map f : X Ñ X 1 is called an isomorphism if f is bijective and gpUq “ U 1,
where U (resp. U 1) is the set of all entourages of X (resp. of X 1).

Example B.1.6.

1. The identity map of a uniform space is uniformly continuous.

2. A constant map of a uniform space into a uniform space is uniformly continuous.

3. Every map from a discrete uniform space into a uniform space is uniformly continuous.

Proposition B.1.7. Every uniformly continuous map is continuous. In particular, every isomor-
phism of uniform spaces is a homeomorphism.

Proof. Let X,X 1 be uniform spaces and f : X Ñ X 1 be uniformly continuous. Let U Ď X 1 be open
and x P f´1pUq. We need to show f´1pUq is a neighborhood of x. Since fpxq P U , U “ V pfpxqq for
some entourage V of X 1. Then pf ˆ fq´1pV q is an entourage of X, and

pfˆfq´1pV qpxq “ ty P X | px, yq P pfˆfq´1pV qu “ ty P X | pfpxq, fpyqq P V u “ f´1pV pfpxqqq “ f´1pUq

so f´1pUq is really a neighborhood of x.

Proposition B.1.8.

1. If f : X Ñ X 1 and g : X 1 Ñ X2 are two uniformly continuous maps, then g ˝ f : X Ñ X2 is
uniformly continuous.

2. A bijection f : X Ñ X 1 is an isomorphism if and only if f and the inverse of f are uniformly
continuous.

B.1.3 Comparison of Uniformities
Definition. If U1 and U2 are two uniform structures on the same set X, we say U1 is finer than U∈

(and U∈ is coarser than U1) if the identity map from pX,U1q to pX,U2q is uniformly continuous.

• Equivalently, U1 is finer than U2 if and only if U2 Ď U1.

• If U1 is finer than U2, then the topology on X induced by U1 is finer than that of induced by
U2.

If U1 is finer than U2 and U1 ‰ U2, we say U1 is strictly finer than U2. Two uniformities are
comparable if one is finer than the other.

Example B.1.9.

1. On a set the finest uniformity is the discrete uniformity, and the coarsest uniformity is that in
which the set of entourages consists of a single set, namely the whole product set.

2. It can happen that a uniformity U1 is strictly finer than a uniformity U2, but their induced
topology are identical. Let X be a nonempty set, for each finite partition ϖ “ pAiq1ďiďn of
X, put

Vϖ “

n
ď

i“1

Ai ˆAi

The set Vϖ form a fundamental system of entourages of a uniformity U on X, called the
uniformity of finite partitions on X. The induced topology on X is the discrete topology,
but if X is infinite, it is clear that U is strictly coarser than the discrete uniformity.
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3. If f : X Ñ X 1 is uniformly continuous, f remains uniformly continuous if we replace X 1 by a
coarser uniformly or replace X by a finer uniformity.

B.2 Initial Uniformities
Proposition B.2.1. Let X be a set, pYiqiPI a family of uniform spaces and fi : X Ñ Yi pi P Iq. For
each i P I let gi :“ fi ˆ fi. Let S “

␣

g´1
i pViq | i P I, Vi is an entourage of Yi

(

and B be the set of
all finite intersections

UpVi1 , . . . , Vinq “ g´1
i1

pVi1q X ¨ ¨ ¨ X g´1
i1

pVinq

of sets of S. Then B is a fundamental system of entourages of a uniformity U on X.

1. It is the coarsest uniformity on X for which all fi are uniformly continuous.

2. A map h : Z Ñ X of a uniform space Z into X is uniformly continuous if and only if each of
the maps fi ˝ h : Z Ñ Yi is uniformly continuous.

Proof. B is closed under finite intersection and each element contains the diagonal of X; if Wi “

g´1
i pViq, then W´1

i “ g´1
i pV ´1

i q and W 2
i “ g´1

i pV 2
i q; hence B is a fundamental system of entourages

of a uniformity U on X. It follows from definition that each fi is uniformly continuous and the
only if part of 2. holds. Suppose that fi ˝ h is uniformly continuous for each i P I. Consider a set
U :“ UpVi1 , . . . , Vinq; by hypothesis, for each 1 ď k ď n, the set Wk :“ ppfik ˝ hq ˆ pfik ˝ hqq´1pUq

is an entourage of Z. Put W “
n
Ş

k“1

Wk; then phpzq, hpz1qq P U if pz, z1q P W .

Corollary B.2.1.1. The topology on X induced by the initial uniformity U on X with respect to
the maps pfiqiPI is also the initial topology on X with respect to the maps pfiqiPI .

Proposition B.2.2 (Transitivity). Let X be a set, let pZiqiPI be a family of uniform spaces, let
pJλqλPΛ be a partition of I and let pYλqλPΛ be a family of sets. For each λ P Λ, let hλ P Y Xλ ; for each
λ P Λ and each j P Jλ, let gjλ P ZYλ

j and put fj “ gjλ ˝ hλ. Let each Yλ carry the initial uniformity
with respect to pgjλqjPJλ . Then the initial uniformity on X with respect to pfiqiPI is the same as
that with respect to phλqλPΛ.

Subspace uniformity
Definition. Let X be a uniform space and A Ď X a subset. The initial uniformity on A with respect
the the natural inclusion A Ď X is called the uniformity induced on A by the uniformity of
X, and A with this uniformity is called the uniform subspace of X.

• If f : X Ñ Y is uniformly continuous, then so is f |A : A Ñ Y . If B Ď Y is a uniform subspace
with fpXq Ď B, then f |B : X Ñ B is uniformly continuous.

Proposition B.2.3. Let A be a dense subset of a uniform space X. Then the closures, in X ˆX,
of the entourages of the uniform subspace A form a fundamental system of entourages of X.

Proof. Note that AˆA is dense in X ˆX. Let V be an open entourage of A; V “ pAˆAq XU for
some open entourage U of X. Then U Ď V Ď U .
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Product uniformity
Definition. If pXiqiPI is a family of uniform spaces, the product uniform space of this family
is the product set X “

ś

iPI

Xi endowed with the initial uniformity with respect to the projection

pi : X Ñ Xi.

Proposition B.2.4. Let f “ pfiq : Y Ñ
ś

iPI

Xi be a map from a uniform space to a product uniform

space. Then f is uniformly continuous if and only if each fi is uniformly continuous.

Corollary B.2.4.1. Let pXiqiPI and pYiqiPI be two families of uniform spaces. For each i P I, let
fi : Xi Ñ Yi be a map. If each fi is uniformly continuous, then so is the product map f : pxiq ÞÑ

pfipxiqq. Conversely, if the Xi are nonempty and f is uniformly continuous, then each fi is uniformly
continuous.

Proposition B.2.5. Let X be a set, let pYiqiPI be two families of uniform spaces, and for each
i P I, let fi : Xi Ñ Yi be a map. Let f : pxq ÞÑ pfipxqq be a map from X to Y “

ś

iPI

Yi, and let U be

the initial uniformity on X with respect to pfiqiPI . Then U is the initial uniformity with respect to
f |fpXq : X Ñ fpXq, where fpXq is viewed as a uniform subspace of Y .

Corollary B.2.5.1. For each i P I, let Ai be a subspace of Yi. Then the uniformity induced on
A “

ś

iPI

Ai by the product uniformity on
ś

iPI

Yi is the same as the product uniformity of the Ai.

Corollary B.2.5.2. Let f : X1 ˆX2 Ñ Y be a uniformly continuous maps from a product uniform
space to a uniform space. Then every partial mapping x2 ÞÑ fpx1, x2q of X2 to Y is uniformly
continuous.

Inverse limits of uniform spaces
Let pI,ďq be a partially ordered set. For each α P I let Xα be a uniform space, and for each pair of
indices α ď β, let fαβ : Xβ Ñ Xα be a map.

Definition. Let the notation be as above. pXα, fαβq is called an inverse system of uniform
spaces if it is an inverse system of sets and for each α ď β, fαβ is uniformly continuous. The initial
uniformity on X :“ lim

ÐÝ
αPI

Xα with respect to the projections fα : X Ñ Xα pα P Iq is called the inverse

limit of the uniformities of the Xα, and is called the inverse limit of the inverse system of
uniform spaces pXα, fαβq.

Proposition B.2.6. Let the notation be as above, and let J be a cofinal subset of I. For each α P I

put gα :“ fα ˆ fα. Then the family of sets g´1
α pVαq, where α runs over J and for each α P J , Vα

runs over a fundamental system of entourages of Xα, is a fundamental system of entourages of X.

B.3 Complete Spaces
Definition. Let X be a uniform space.

1. Let V be an entourage. A subset A Ď X is called V -small if every part of points in A is
V -close (i.e., AˆA Ď V ).

2. A filter F on X is called a Cauchy filter if for each entourage V of X there exists A P F

which is V -small.
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Lemma B.3.1. Let X be a uniform space and V an entourage. If A and B intersect and are
V -small, then AYB is V 2-small.

Proof. Let x, y P AYB and z P AXB. Then px, zq P V and pz, yq P V so that px, yq P V 2.

Example B.3.2. Let X be a uniform space.

1. We say an (infinite) sequence panqně1 Ď X is a Cauchy sequence if the associated elementary
filter is a Cauchy filter. In other words, panqn is Cauchy if for each entourage V of X there
exists N P N such that pan, amq P V whenever n,m ě N .

2. Every convergent filter F is a Cauchy filter.

Proof. If x is a point and V is an symmetric entourage of X, then V pxq P Nx is V 2-small. If
F converges to x, we can find A P F such that A Ď V pxq. In particular, A is V 2-small. (Note
that this is enough as tV 2u also forms a fundamental system of entourage.)

Proposition B.3.3. If f : X Ñ X 1 is a uniformly continuous map, then the image under f of any
Cauchy filter base on X is a Cauchy filter base on X 1.

Proof. Let g “ f ˆ f . If V 1 is an entourage of X 1, then g´1pV 1q is an entourage of X, and the image
under f of a g´1pV 1q-small set is V 1-small; hence the result.

Proposition B.3.4. Let X be a set, pYiqiPI a family of uniform spaces and for each i P I let
fi : X Ñ Yi be a map. Endow X with the initial uniformity with respect to the fi. Then a filter
base B on X is a Cauchy filter base if and only if fipBq is a Cauchy filter base for each i P I.

Proof. The only if part is the proposition above. Suppose fipBq is a Cauchy filter base for each
i P I. Let U :“ UpVi1 , . . . , Vinq be an entourage of X. By hypothesis for each 1 ď k ď n there exists
Aik P B such that fikpAikq is Vik -small. Let M P B be a set contained in all Aik , 1 ď k ď n; then
M is U -small.

Corollary B.3.4.1. If a Cauchy filter on a uniform space X induces a filter on a subset A, then
this filter is a Cauchy filter on the uniform subspace A.

Corollary B.3.4.2. A filter base B on a product uniform space
ś

iPI

Xi is a Cauchy filter if and only

if pipBq is a Cauchy filter for each i P I, where pi is the canonical projection.

B.3.1 Minimal Cauchy filters
Definition. The minimal elements (with respect to inclusion) of the set of Cauchy filters on a
uniform space are called minimal Cauchy filters.

Proposition B.3.5. Let X be a uniform space, and F a Cauchy filter. Then there exists a unique
minimal Cauchy filter F0 coarser than F . If B is a base of F and S the fundamental system of
symmetric entourages of X, then the sets V pMq with pM,V q P B ˆ S form a base of F0.

Proof. The sets V pMq clearly form a base of a filter F0 on X. Moreover, if M is V -small, then V pMq

is V 3-small, so that F0 is a Cauchy filter and is clearly coarser than F . It remains to show if F 1 is
a Cauchy filter coarser than F , then F 1 is finer than F0. For each M P B and V P S, there exists a
V -small set N P F 1; since N P F as well, N XM ‰ H, and thus N Ď V pMq so that V pMq P F 1.
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In particular, if we take F to be the principal filter generated by B “ txu, then the resulting
minimal Cauchy filter F0 has a base consisting of the sets V pxq, which are precisely the neighborhoods
of x in the topology induced by the uniform structure. In sum,

Corollary B.3.5.1. In a uniform space X, for each x P X the neighborhood filter Bpxq is a minimal
Cauchy filter.

Let F be a Cauchy filter and x a cluster point of F . By Lemma A.2.2 there is a filter F 1 finer
than F converging to x. Since F is Cauchy, so is F 1. Let F0 be the unique minimal Cauchy filter
coarser than F . Since Bpxq and F0 are both minimal Cauchy filters coarser than F 1, it forces that
F0 “ Bpxq. In particular, Bpxq Ď F .

Corollary B.3.5.2.

1. Every cluster point of a Cauchy filter F is a limit point of F .

2. Every Cauchy filter that is coarser than a filter converging to x also converges to x.

Let F be a minimal Cauchy filter. If V is an entourage of X, by Corollary B.1.4.2 we can find
an open entourage U Ď V . For each M Ď X, the set UpMq is open, and is contained in V pMq. In
view of the proposition, this shows

Corollary B.3.5.3. Let F be a minimal Cauchy filter. Then every set in F has nonempty interior,
so that F has a base consisting of open sets.

B.3.2 Complete spaces
Definition. A complete space is a uniform space in which every Cauchy filter converges.

• By Proposition B.3.5 and Corollary B.3.5.2, a uniform space is complete if and only if all
minimal Cauchy filter converges.

Proposition B.3.6 (Cauchy’s criterion). Let F be a filter on a set X, and f : X Ñ X 1 be a map
to a complete uniform space X 1. Then lim

F
f exists if and only if fpF q is a Cauchy filter base.

Proof. Since X 1 is complete, by (B.3.2) we deduce that fpF q is Cauchy if and only if fpF q is
convergent, which is the same as saying that lim

F
f exists.

Let Ui pi “ 1, 2q be a uniformity on a set X, and let Ti pi “ 1, 2q be the induced topology on X.
Suppose

(i) U1 is finer than U2, and

(ii) there is a fundamental system of entourages of U1 which are closed in X ˆX in the topology
T2 ˆ T2 (for example, this is satisfied when T1 “ T2).

Let F be a filter on X. Then F converges in the topology T1 if and only if it is Cauchy in the
uniformity U1 and converges in the topology in T2. The only if part is clear, as T2 is coarser than
T1. Conversely, suppose the if part and let x P X be a limit of F in the topology T2. We claim it
is also a limit in T1. Let V P U1 be a symmetric entourage that is closed in the topology T2 ˆ T2.
By assumption F contains a V -small set M . Hence, if x1 P M , then M Ď V px1q. Since V px1q is
closed in the topology T2, we see x P M Ď V px1q, and hence M Ď V 2pxq. This finishes the proof. In
particular,
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Corollary B.3.6.1. In the conditions above, if U2 is a uniformity of a complete space, so is U1.

Lemma B.3.7. Let X be a uniform space.

1. If X is complete and A Ď X is closed, then A is also a complete uniform space.

2. If X is Hausdorff and A Ď X is a complete subspace, then A is closed.

Lemma B.3.8. Let X be a uniform space and A Ď X a dense subspace such that every Cauchy
filter base on A converges in X. Then X is complete.

B.4 Uniformity of Uniform Convergence
Definition. Let X,Y be two sets.

1. If H Ď Y X , for each x P X put

Hpxq :“ tupxq P Y | u P Hu

2. If Φ is a filter base on Y X , for each x P X put

Φpxq :“ tHpxq | H P Φu

3. For each H Ď Y X and A Ď X, put

H|A :“ tu|A : A Ñ Y | u P Hu Ď Y A

Definition. Let X be a set and Y a uniform space. For each entourage V of Y , let

WpV q :“
␣

pu, vq P Y X ˆ Y X | pupxq, vpxqq P V for all x P X
(

As V runs over the set of entourages of Y , the sets WpV q form a fundamental system of entourages
of a uniformity on Y X , called the uniformity of uniform convergence. The topology it induces
is called the topology of uniform convergence.

• If V Ď V 1 are two entourages of Y , then WpV q Ď WpV 1q; WpV q contains the diagonal of Y X

for V contains that of Y ; WpV q´1 “ WpV ´1q for each entourage V of Y ; for each entourage
V of Y , one has WpV q2 Ď WpV 2q.

Denote by pY Xqu the uniform space Y X with the uniformity of uniform convergence. If a filter Φ

converges to an element u in the topology of uniform convergence on Y X , Φ is said to converge
uniformly to u0.

Definition. Let X be a set, Y a uniform space, and S Ď 2X . The uniformity of S-convergence
is the initial uniformity on Y X with respect to the restrictions

Y X pY Aqu

u u|A

where A runs over S. The uniform space obtained by endowing Y X with the uniformity of S-
convergence is denoted by pY XqS.
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• The topology on Y X induced by the uniformity of S-convergence is called the topology of
S-convergence; it is the initial topology on Y X such that the restrictions above are all
continuous.

• By definition, a fundamental system of entourages of pY XqS may be obtained as follows: let
B be a fundamental system of V . Then for pA, V q P S ˆB, define

WpA, V q :“
␣

pu, vq P Y X ˆ Y X | pupxq, vpxqq P V for all x P A
(

The finite intersections of the sets WpA, V q with pA, V q P S ˆB form a fundamental system
of entourages of pY XqS.

• The uniformity of S-convergence is unaltered by replacing S by the set

S1 :“ tU Ď X | U Ď A1 X ¨ ¨ ¨ XAn for some Ai P S and n ě 0u

Thus in study of S-convergence, we can restrict ourselves to the case where the set S satisfies
the following two conditions

(a) Every subset of a set in S belongs to S.

(b) Every finite union of sets of S belongs to S.

If (b) is satisfied, we obtained a fundamental system of entourages of pY XqS by taking all the
sets WpA, V q with pA, V q P S ˆB, where B is a fundamental system of V .
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Appendix C

Algebraic Topology

Definition. Let X,Y be two spaces, and A Ď X a subspace.

(i) A homotopy rel(ative to) A from X to Y is a continuous map F : X ˆ r0, 1s Ñ Y whose
restriction F |Aˆr0,1s is independent of the second argument. If A “ H, we simply say F is a
homotopy.

(ii) Two continuous maps f, g : X Ñ Y are homotopic rel A if there exist a homotopy rel A
F : X ˆ r0, 1s Ñ Y such that f “ F p¨, 0q and g “ F p¨, 1q. In this case we write f „ g rel A.

(iii) Let f, g : X Ñ Y be continuous maps. If f ˝g „ idY and g ˝f „ idX , we say f is a homotopy
equivalence, and say g is a homotopy inverse of f .

C.1 Fundamental groupoids
Definition. A category G is called a groupoid if any morphism in G is invertible.

Let X be a topological space, and x0, x1 P X. We say two paths α, β : r0, 1s Ñ X with
αpiq “ xi “ βpiq pi “ 0, 1q are homotopic if α, β are homotopic rel t0, 1u, say write α „ β. Clearly
„ is an equivalence relation, and we write π1pX;x0, x1q for the set of homotopy classes of paths
from x0 to x1. For a path α from x0 to x1, we write rαs for its class in π1pX;x0, x1q.

Let x2 P X be still another point. If αi : r0, 1s Ñ X pi “ 0, 1q is a path from xi to xi`1, define
α1 ‚ α0 : r0, 1s Ñ X by

α1 ‚ α0ptq “

#

α0p2tq , if 0 ď t ď 1
2

α1p2t´ 1q , if 1
2 ď t ď 1

which is a path from x0 to x1. Such operation descends to homotopy classes, inducing a well-defined
map

π1pX;x1, x2q ˆ π1pX;x0, x1q π1pX;x0, x2q

prβs, rαsq rβ ‚ αs

If x3 P X is still still another point, and α2 : r0, 1s Ñ X a path from x2 to x3, then the path
α2 ‚ pα1 ‚ α0q and pα2 ‚ α1q ‚ α0 are homotopic via the map F : r0, 1s2 Ñ X defined by

F ps, tq “

$

’

&

’

%

α0p 4s
t`1 q , if 0 ď s ď t`1

4

α1p4s´ t´ 1q , if t`1
4 ď s ď t`2

4

α2p 4s´t´2
2´t q , if t`2

4 ď s ď 1
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This implies the operations defined above is associative. For each point x P X, let cx denote the
constant path at x, i.e., cxptq “ x for all t P r0, 1s. For any path γ from x to y P X, we have

rγ ‚ cxs “ rγs “ rcy ‚ γs

via the maps F,G defined by

F ps, tq “

#

x , if 0 ď s ď 1´t
2

γp 2s´1`t
1`t q , if 1´t

2 ď s ď 1
, Gps, tq “

#

γp 2s
t`1 q , if 0 ď s ď t`1

2

y , if t`1
2 ď s ď 1

We can define a category π1pXq as follows. The objects of π1pXq are points of X. For x, y P X,
set

Homπ1pXqpx, yq :“ π1pX;x, yq.

The properties proved above shows this really defines a category. The category π1pXq is called the
fundamental groupoid of the space X. To see it deserves the name “groupoid”, for a path γ from
x to y, define γ´1 : r0, 1s Ñ X by γ´1ptq “ γp1 ´ tq; then

rγ´1 ‚ γs “ rcxs, rγ ‚ γ´1s “ rcys

via the maps Fγ , Fγ´1 defined by

Fγps, tq “

$

’

&

’

%

γpsq , if 0 ď s ď 1´t
2

γp 1´t
2 q , if 1´t

2 ď s ď 1`t
2

γp1 ´ sq , if 1`t
2 ď s ď 1

Hence each element in π1pX;x, yq is invertible, so that π1pXq is a groupoid. In particular, for each
x P X, the set π1pX,xq :“ π1pX;x, xq is a group, called the fundamental group of X with
basepoint x.

To study the fundamental groupoid of a space, we first discuss some formal property of groupoids.

Definition. Let G be a groupoid.

(i) A subcategory of G is called a subgroupoid of G if it is itself a groupoid.

(ii) A morphism between groupoids is a functor. Denote by Grpd the category of groupoids.

(iii) G is called connected if HomGpx, yq ‰ H for any objects x, y in G.

(iv) G is called totally disconnected if HomGpx, yq “ H whenever x ‰ y.

(v) G is called a tree groupoid if #HomGpx, yq “ 1 for any objects x, y in G.

It is clear that the fundamental groupoid defines a functor

π1 : Top Grpd

X π1pXq;

if f : X Ñ Y is a continuous maps, we define π1pfq : π1pXq Ñ π1pY q by x ÞÑ fpxq and rγs ÞÑ

f˚rγs “ rf ˝ γs. For a subset A Ď X, denote by π1pX,Aq the full subcategory of π1pXq whose
objects consists of points in A. Then π1pX,Aq is a full subgroupoid of π1pXq.

The category Grpd admits finite (co)products: the product (resp. coproduct) of two groupoids is
the usual product (resp. coproduct/disjoint union) of two categories. They enjoy the usual universal
properties of (co)products. The similar hold in the category Top. In fact,
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Lemma C.1.1. The fundamental groupoid π1 : Top Ñ Grpd preserves finite (co)products.

Denote by I the tree groupoid with two objects 0, 1. Note that I – π1pr0, 1s, t0, 1uq as groupoids.

Definition. Let C and D be categories. A homotopy (of functors) is a functor F : C ˆ I Ñ D. We
then say the functor F p¨, 0q and F p¨, 1q are homotopic via F .

Let f, g : C Ñ D be functors and F : C ˆ I Ñ D a homotopy with F p¨, 0q “ f, F p¨, 1q “ g. For
each x P C we consider the functor F px, ¨q : I Ñ D. Let ι P HomIp0, 1q. Then F px, ¨q is uniquely
determined by the value θpxq :“ F px, ιq P HomDpF px, 0q, F px, 1qq “ HomDpfpxq, gpxqq. For any
γ P HomCpx, yq, by functoriality we have gpγqθpxq “ θpyqfpγq; as θpxq is invertible for each x, the
functor g is then completely determined by f and θ. Conversely, if f : C Ñ D is a functor, and θ is
an assignment from x P ObpCq to an invertible morphism in D with domain fpxq, and there exists
a homotopy f – g, where g is defined by gpγq :“ θpyqfpγqθpxq´1. As for the topological spaces we
can define homotopy inverse of a functor, and homotopy equivalence of categories.

Lemma C.1.2.

1. Homotopy of functors defines an equivalence relation.

2. A homotopy equivalence is fully faithful.

3. If f „ g : X Ñ Y are homotopic, then π1pfq, π1pgq : π1pXq Ñ π1pY q are homotopic.

Now we discuss the van Kampen theorem. Let X be a space, and X1, X2 Ď X be subspaces such
that int X1 Y int X2 “ X. Put X0 “ X1 XX2. Then the diagram

X0 X1

X2 X

is a fibre coproduct.

Theorem C.1.3. Let A be a subspace of X that meets every path-connected components of
X0, X1, X2. Then the diagram

π1pX0, X0 XAq π1pX1, X1 XAq

π1pX2, X2 XAq π1pX,Aq

is a fibre coproduct.

C.2 Covering spaces

C.3 ∆-complexes
Let R8 be a separable Hilbert space with standard orthonormal basis e0, e1, . . .. For n P Zě0, define
the standard n-simplex

∆n :“

#

n
ÿ

k“0

tkek |

n
ÿ

k“0

tk “ 1, tk ě 0 for 0 ď k ď n

+

.
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For any points v0, . . . , vn, define an n-simplex as

rv0, . . . , vns : ∆n R8

n
ř

k“0

tkek
n
ř

k“0

tkvk

Each point vk is called a vertex of the simplex. The n ´ 1-simplex rv0, . . . , pvk, . . . , vns with one
vertex deleted is called a face of rv0, . . . , vns. For the standard simplex ∆n, the union of all its faces
is called the boundary of ∆n, denoted as B∆n, and the complement ∆nzB∆n is called the open
simplex, denoted by ∆˝

n. We identify each face of ∆n with ∆n via the canonical linear isomorphism
that preserves the ordering of the vertices.

Definition. Let X be a topological space. A ∆-complex structure on X is a collection of
continuous maps

S “ tσα : ∆npαq Ñ Xuα

(assume two maps with distinct label are distinct maps) such that

(i) S is closed under restriction to faces, and

(ii) the restriction σα|∆˝
npαq

is injective, and each point of X lies in the image of precisely one such
restriction, X “

Ť

α
σαp∆˝

npαq
q,

(iii) a set A Ď X is open if and only if σ´1
α pAq is open in ∆npαq for each α.

Let X be a topological space with a ∆-complex structure tσαuαPI . For each n P Zě0, put
In “ tα | npαq “ nu. Define X0 “

Ů

αPI0
∆

pαq
0 . There is a natural injection φ0 : X0 Ñ X by

φ0pα, xq “ σαpxq (this is injective as ∆˝
0 “ ∆0 and (ii)). For n ě 1, define inductively that

Xn “ Xn´1 \
ğ

αPIn

∆pαq
n { „

with Xn´1 Q x „ pα, vq P
Ů

αPIn
∆

pαq
n if and only if v P B∆

pαq
n and φn´1pxq “ σαpvq. Define

φn : Xn Ñ X by φn|Xn´1 “ φn´1, and for pα, pq P ∆
pαq
n , set φnpα, pq “ σαppq. This is well-defined

as we quotienting out the relation „, and is injective by (ii) again. In this way we obtain a filtration

X0 Ď X1 Ď ¨ ¨ ¨ Ď Xn Ď ¨ ¨ ¨

and a collection of compatible injections φn : Xn Ñ X. Taking direct limit yields an injection

φ : lim
ÝÑ
ně0

Xn Ñ X,

which is surjective by (ii), and is a homeomorphism by (iii).
More abstractly, define a category ∆ as follows. Objects of ∆ are nonnegative integers Zě0 (more

commonly, objects are the sets rns :“ t0, 1, . . . , nu), and for p, q P Zě0,

Hom∆pp, qq :“ tf : rps Ñ rqs | i ď j ñ fpiq ď fpjqu Ď HomSetprps, rqsq.

Definition. A simplicial set is a functor X P r∆op,Sets.
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Let h∆ : ∆ Ñ r∆op,Sets be the Yoneda embedding of the category ∆. Put ∆n “ h∆pnq “

Hom∆p¨, nq. To a simplicial set X : ∆ Ñ Set we associate a category whose objects are all natural
transformations ∆n Ñ X pn ě 0q and morphisms are all natural transformations ∆n Ñ ∆m over X;
this is the comma category h∆ Ó X.

Define a functor FX : h∆ Ó X Ñ r∆op,Sets by the composition FX :“ h∆ ˝ ω, where ω : h∆ Ó

X Ñ ∆ is the forgetful functor (a morphism ∆n Ñ ∆m corresponds to, by Yoneda lemma, an
element f P ∆mpnq “ Hom∆pn,mq). We have

X – lim
ÝÑ

∆nÑX

∆n :“ colimFX

by the following abstract nonsense.

Theorem C.3.1. Let C be a (locally small) category, h : C Ñ rCop,Sets its Yoneda embedding,
F P rCop,Sets a presheaf, and ω : h Ó F Ñ C the forgetful functor. Then F is isomorphic to the
colimit of the diagram h Ó F

ω
ÝÑ C h

ÝÑ rCop,Sets.

Proof. Put J “ h Ó F . Before we actually start the proof, we describe the category J and its
forgetful functor ω : J Ñ C in an another but equivalent way. By definition, the category J consists
of

• objects: pA, hpAq Ñ F q, where A P ObpCq and hpAq Ñ F is a natural transformation.

• morphisms: f : pA, hpAq Ñ F q Ñ pB, hpBq Ñ F q is a natural transformation f : hpAq Ñ hpBq

such that phpBq Ñ F q ˝ f “ phpAq Ñ F q.

By Yoneda lemma, giving an object pA, hpAq Ñ F q amounts to giving a pair pA, aq P ObpCq ˆF pAq,
and a morphism f : pA, aq Ñ pB, bq is a morphism f : A Ñ B simply satisfying F pfqpbq “ a. The
forgetful functor ω : J Ñ C is rather clear in this setting.

Let F : J Ñ rCop,Sets be the functor defined in the theorem. For each pA, hpAq Ñ F q P ObpJq,
the natural transformation in the second component gives a natural transformation F pA, hpAq Ñ

F q “ hpAq Ñ F . A morphism pA, hpAq Ñ F q Ñ pB, hpBq Ñ F q in J gives a commuting triangle.
In sum, this defines a cocone from F to F .

To show F is the colimit of the diagram F , let G be any contravariant functor and pF pA, hpAq Ñ

F q Ñ GqpA,hpAqÑF q be a cocone. By definition, F pA, hpAq Ñ F q “ hpAq, and by Yoneda lemma,
an object pF pA, hpAq Ñ F q Ñ G is the same as a triple pA, a, aq, where pA, aq is the description
mentioned in the first paragraph, and A P GpAq. Define a natural transformation T : F Ñ G as
follows. For A P ObpCq, define the map TA : F pAq Ñ GpAq by TApaq “ a, where for a P F pAq,
the element a P GpAq is the unique element such that pA, a, aq represents a element in the cocone
pF pA, hpAq Ñ F q Ñ GqpA,hpAqÑF q. The commutativity condition for the cocone implies that T is a
natural transformation. By construction this is the unique natural transformation S : F Ñ G such
that S ˝ phpAq Ñ F q “ phpAq Ñ Gq, and this finishes the proof.

Define the geometric realization functor | ¨ | : r∆op,Sets Ñ Top as follows. For the repre-
sentable functor ∆n, define

|∆n| :“ re0, . . . , ens “ ∆n Ď R8.

If f : ∆n Ñ ∆m is a natural transformation corresponding to a non-decreasing map f : rns Ñ rms,
define |f | : |∆n| Ñ |∆m| by |f |peiq :“ efpiq and extending linearly. For any presheaf X : ∆ Ñ Set,
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define the functor |FX | : h∆ Ó X Ñ Top by |FX |pf : ∆n Ñ ∆mq :“ |f |, and define

|X| “ lim
ÝÑ

∆nÑX

|∆n| :“ colim|FX |.

If T : X Ñ Y is a natural transformation of presheaves on ∆, it induces a morphism h∆ Ó X Ñ h∆ Ó

Y and hence a continuous map |T | : |X| Ñ |Y | in an obvious way. It is clear that two definitions for
|∆n| and the morphisms |∆n Ñ ∆m| coincide.

In fact, the geometric realization functor is has a right adjoint. For p P Zě0 and a topological
space X, we define

rSppXq :“ HomTopp∆n, Xq

which is the set of all singular p-simplexes. Each non-decreasing map rns Ñ rms defines canonically
a linear map ∆n Ñ ∆m, which then induces a map rSmpXq Ñ rSnpXq. Hence rSX is a contravariant
functor from ∆ to Set, so rSX is a simplicial set. This defines a functor rS : Top Ñ r∆op,Sets.

Lemma C.3.2. There exists a bijection

HomTopp|X|, Y q Homr∆op,SetspX, rSY q
„

functorial in X,Y .

Proof. By the universal property of colimit,

HomTopp|X|, Y q – lim
∆nÑX

HomTopp|∆n|, Y q.

By a previous theorem, it suffices to find a functorial bijection

HomTopp|∆n|, Y q – Homr∆op,Setsp∆n, rSY q.

This follows from Yoneda’s lemma:

Homr∆op,Setsp∆n, rSY q – rSY pnq “ rSnpY q “ HomTopp|∆n|, Y q.

Let X be a space with ∆-complex structure. We define a simplicial set ∆X : ∆ Ñ Set as
follows. For n ě 0, let ∆Xpnq be the set of all n-simplices; in a previous term, ∆Xpnq “ In. For
a non-decreasing map f : rns Ñ rms and a m-simplices σ : ∆m Ñ X, just define f˚σ : ∆n Ñ X,
where f˚ : ∆n Ñ ∆m is the canonical linear map. This defines a morphism ∆Xpfq : Xm Ñ Xn in
a compatible way.

We describe simplicial sets alternatively. For n ě 1 and i P rns, define εi “ εin : rn´ 1s Ñ rns by

εipjq “

#

j , if j ă i

j ` 1 , if j ě i

For n ě 0 and i P rns, define ηi “ ηin : rn` 1s Ñ rns by

ηipjq “

#

j , if j ď i

j ´ 1 , if j ą i

They satisfy the following identities:
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(a) εjn`1ε
i
n “ εin`1ε

j
n for i ă j.

(b) ηjnη
i
n`1 “ ηinη

j`1
n`1 for i ď j.

(c) ηjn´1ε
i
n “

$

’

&

’

%

εin´1η
j´1
n´2 , if i ă j

id , if i “ j or j ` 1

εi´1
n´1η

j
n´2 , if i ą j ` 1

Lemma C.3.3. Every non-decreasing map f : rns Ñ rms can be uniquely factorized as

f “ εi1 ¨ ¨ ¨ εisηj1 ¨ ¨ ¨ ηjt

with m ě i1 ą ¨ ¨ ¨ ą is ě 0 ď j1 ă ¨ ¨ ¨ ă jt ă n and n´ t` s “ m.

Proof. Write i1 ą ¨ ¨ ¨ ą is for the elements in the set rmszfprnsq, and j1 ă ¨ ¨ ¨ ă jt for the elements
in j P rns such that fpjq “ fpj ` 1q.

Theorem C.3.4. A simplicial set X : ∆ Ñ Set is exactly a family of sets Xn pn ě 0q together with
the maps din : Xn Ñ Xn´1, s

i
n : Xn Ñ Xn`1 satisfying

(a) dind
j
n`1 “ djnd

i
n`1 for i ă j.

(b) sin`1s
j
n “ sj`1

n`1s
i
n for i ď j.

(c) dins
j
n´1 “

$

’

&

’

%

sj´1
n´2d

i
n´1 , if i ă j

id , if i “ j or j ` 1

sjn´2d
i´1
n´1 , if i ą j ` 1

The maps di “ din are called the i-th face operators, and sj “ sjn are called the j-th degeneracy
operators.

C.3.1 KpG, 1q-space
Definition. Let G be an abstract group. A topological space X is called a KpG, 1q-space if it has
a contractible universal covering and has fundamental group isomorphic to G.

Let G be a group. Define a functor EG : ∆ Ñ Set by

EGpnq “ HomSetprns, Gq

(rules for morphisms are clear). For g0, . . . , gn P G, we write rg0, . . . , gns for the element in EGpnq

defined by i ÞÑ gi. This defines a simplicial set, so we can form its geometric realization |EG|. The
group G acts on each EGpnq: each g P G sends an n-simplex rg0, . . . , gns to rgg0, . . . , ggns. This
defines a natural isomorphism g : EG Ñ EG, whence inducing a homeomorphism g : |EG| Ñ |EG|.
Clearly g ˝ h “ gh, so this defines a G-action on |EG|; this is a free G-action.

Lemma C.3.5. Let X be a ∆-complex on which a group G acts in the way that its sends each
simplex of X onto another simplex via linear homeomorphism. If the G-action is free, then it is a
covering space action, i.e., X Ñ X{G is a covering space.

Proof. Let p P X and σ : ∆n Ñ X be the unique simplex of X whose interior σp∆˝
nq contains p.

Take U be any open neighborhood of p in σp∆˝
nq such that U Ď σp∆˝

nq. Then the translation of U
by G is pairwise disjoint.

We now proceed to build an open neighborhood of U in X whose translations by G are pairwise
disjoint.
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The space |EG| is contractible: define a homotopy ht : EG Ñ EG by sliding each x P rg0, . . . , gns

along the ling segment in re, g0, . . . , ens to res. Note this is not a deformation retract, as ht carries
res around the loop re, es Ď |EG|.

Define BG “ Gz|EG| and topologized by quotient topology. Previous discussion implies that
EG Ñ BG is a universal cover map. In particular, the fundamental group of BG is isomorphic to
G, so BG is KpG, 1q. Moreover, BG inherits a ∆-complex structure from |EG|, which we describe
below. Note that each simplex in |EG| can be written as

rg0, g0g1, . . . , g0g1 . . . gns “ g0re, g1, g1g2, . . . , g1 ¨ ¨ ¨ gns

In particular, we have

BGpnq “ tre, g1, g1g2, . . . , g1 ¨ ¨ ¨ gns | g1, . . . , gn P Gu “ tf P HomSetprns, Gq | fp0q “ eu.

Alternatively, we can define the functor BG as above, form the geometric realization |BG|, and
prove that |EG| Ñ |BG| is a cover map. For simplicity, we put

rg1| ¨ ¨ ¨ |gns :“ re, g1, g1g2, . . . , g1 ¨ ¨ ¨ gns.

By construction the boundary of rg1| ¨ ¨ ¨ |gns consists of

rg2| ¨ ¨ ¨ |gns, rg1| ¨ ¨ ¨ |gigi`1| ¨ ¨ ¨ |gns, rg1| ¨ ¨ ¨ |gn´1s.

Theorem C.3.6. The homotopy type of a KpG, 1q CW-complex is uniquely determined by the
group G.

The theorem is easily deduced from the following theorem.

Theorem C.3.7. Let X be a connected CW-complex and let Y be a KpG, 1q. Then each homo-
morphism π1pX,x0q Ñ π1pY, y0q is induced by a map pX,x0q Ñ pY, y0q unique up to a homotopy
fixing x0.

C.4 Singular (co)homology with local coefficients
Definition. Let X be a space. A bundle of groups is a functor G : Π1pXq Ñ Gp from the
fundamental groupoid to the category of groups.

C.5 de Rham theorem with local system
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Part V

Real analysis
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Appendix D

Measure and Integration

D.1 Basics
Definition. Let X be a set, and A Ď 2X .

(i) A is called an algebra (of sets) if X P A and it is closed under complement, finite union and
finite intersection.

(ii) A is called a σ-algebra if X P A and it is closed under complement, countable union and
countable intersection.

(iii) A is called an increasing class (resp. decreasing class) if
Ť

ně1
An P A (resp.

Ş

ně1
Bn) when

pAnqněq Ď A is an increasing sequence (resp. pBnqně1 Ď A is a decreasing sequence).

(iv) A is called a monotone class if it is both an increasing class and a decreasing class.

(v) A is called a π-system if it is closed under finite intersection.

(vi) A is called a Dynkin class/d-system/λ-system if

• X P A,

• AzB P A if B Ď A and A,B P A, and

•
Ť

ně1
An P A if pAnqně1 Ď A is an increasing sequence in A.

The following property is obvious.

Lemma D.1.1. Let S Ď 2X and suppose tAα | α P Iu is a collection of algebras (resp. σ-algebras,
monotone classes, π-systems, d-systems) that contains S. Then

Ş

αPI Aα Ď 2X is an algebra (resp.
σ-algebra, monotone class, π-system, d-system).

Definition. Let S Ď 2X . We denote by apSq, σpSq, mcpSq, πpSq, dpSq the smallest algebra, σ-
algebra, monotone class, π-system, d-system, respectively, containing S. They are said to be gen-
erated by S.

Lemma D.1.2. Let X be a set and A Ď 2X be an algebra. If A is either an increasing class or a
decreasing class, then A is a σ-algebra.
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Proof. Suppose A is increasing, and let pAnqně1 be a sequence in A. For n ě 1, define A1
n “

Ť

mďn
Am.

Then pA1
nqn is an increasing sequence in A, and hence

Ť

ně1
An “

Ť

ně1
A1
n P A. This shows A is closed

under countable union. Next, for n ě 1, define A2
n “

Ş

mďn
Am. Then pA2

nqn is a decreasing sequence

so that
Ş

ně1
An “

Ş

ně1
A2
n P A. This proves A is a σ-algebra.

Suppose A is decreasing. We prove A is a σ-algebra by showing it is increasing. Let pAnqně1 be
an increasing sequence in A. Define Bn “ XzAn pn ě 1q; then Bn is a decreasing sequence, so that
Ş

ně1
Bn P A. But then

Ť

ně1
“ Xz

Ş

ně1
Bn P A, this shows A is increasing.

Theorem D.1.3 (Dynkin’s π-λ theorem). Let X be a set and P a π-system. Then σpP q “ dpPq.

Proof. By definition, we have dpP q Ď σpP q. For the reverse inclusion, we must show dpP q is a
σ-algebra.

D.1.1 Measure and Integration
Definition. Let pX,Aq be a measurable space. A (positive) measure on pX,Aq is a function
µ : A Ñ r0,8s such that µpHq “ 0 and countably additive, i.e.,

µ

˜

8
ď

n“1

An

¸

“

8
ÿ

n“1

µpAnq

if pAnqně1 Ď A is a disjoint sequence of measurable sets. The triple pX,A, µq is called a (positive)
measure space.

Lemma D.1.4. Let pX,A, µq be a measure space.

(i) For A,B P A, A Ď B implies µpAq ď µpBq.

(ii) If pAnqně1 Ď A is an increasing sequence, then lim
nÑ8

µpAnq “ µ

˜

ď

ně1

An

¸

.

(iii) If pAnqně1 Ď A is a decreasing sequence such that µpA1q ă 8, then lim
nÑ8

µpAnq “ µ

˜

č

ně1

An

¸

.

Definition. Let pX,Aq be a measurable space and µ be a measure on pX,Aq.

(i) µ is finite if µpXq ă 8.

(ii) A measurable set M P A is called σ-finite if there exists an ascending sequence pAnqně1 Ď A
with µpAnq ă 8 pn ě 1q and M “

ď

ně1

An.

(iii) µ is σ-finite if X is σ-finite.

Definition. Let X be a set.

(i) A simple function on X is a function s : X Ñ C with finite image.

Suppose in addition pX,A, µq is a measure space.

(ii) A µ-simple function on X is a simple measurable function s on X with µptx P X | spxq ‰

0uq ă 8.
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We now come to the definition of the integration on a measure space pX,A, µq. If s is a
non-negative µ-simple function on X, write

s “
ÿ

αPspXq

α1s´1pyq.

This is a finite sum, and µps´1pyqq ă 8 for each y P spXq. For each E P A, define the integral of
s on E against by µ as

ż

E

sdµ :“
ÿ

αPspXq

α ¨ µpE X s´1pyqq ă 8.

For a non-negative measurable function f : X Ñ r0,8s, define the integral of f on E against µ
as

ż

E

fdµ “ sup
0ďsďf

ż

E

sdµ

where s runs over all non-negative µ-simple functions with s ď f . We say f is (µ-)integrable if
the integral

ż

X

fdµ is finite.

Lemma D.1.5. If f : X Ñ r0,8s is integrable, then tx P X | fpxq “ 8u has measure zero and
tx P X | fpxq ă 8u is σ-finite.

Proof. Let A8 “ tx P X | fpxq “ 8u and for each n ě 1 let An “

"

x P X | fpxq ą
1

n

*

.

Remark. It might happen that the domain of supremum is empty. If we relieve the condition
to allow each s´1pyq has infinite measure, then it is nonempty by

Lemma D.1.6. Let f : X Ñ r0,8s be a measurable function. Then there exists an increasing
non-negative simple measurable functions psnqn with sn ď f such that sn Ñ f pointwise.

For convenience, denote by
ż i

E

fdµ the integral defined by approximation of arbitrary non-

negative simple measure functions. Then
ż i

E

fdµ “

ż

E

fdµ if µ is σ-finite. Indeed, if X “

8
ď

n“1

Xn with Xn Ď Xn`1 and µpXnq ă 8, then for any measurable E,F , by Lemma D.1.4.(ii)

sup
n

ż

E

1FXXn
dµ “ lim

nÑ8
µpE X F XXnq “ µpE X F q “

ż i

E

1F dµ

Moreover, we have

Lemma D.1.7. Let f ě 0 be measurable. Then tx P X | fpxq ‰ 0u is σ-finite if
ż i

X

fdµ is
finite.

Proof. For n ě 1, consider the set An :“

"

x P X | fpxq ě
1

n

*

. By definition

8 ą

ż i

X

fdµ ě

ż i

An

fdµ ě
µpAnq

n
.
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This implies µpAnq ă 8. Since tx P X | fpxq ‰ 0u “
ď

ně1

An, this completes the proof.

Hence, if
ż i

X

fdµ is finite, we have
ż i

X

fdµ “

ż

X

fdµ. However, the converse needs not hold
as in general it might happen for a measurable set E with µpEq “ 8, every measurable subset
of E has zero measure.

In general, a measurable function f : X Ñ C is called (µ-)integrable if |f | : X Ñ r0,8q is
integrable. The set of all complex-valued integrable functions is denoted by L1pX,µq. For f P

L1pX,µq, write f “ u` iv with u, v real-valued and write u˘, v˘ for their positive (resp. negative)
parts. Define the integral of f on E against µ as

ż

E

fdµ “

ż

E

u`dµ´

ż

E

u´dµ` i

ż

E

v`dµ´ i

ż

E

v´dµ.

D.2 Riesz’s Representation Theorem
Definition. Let X be a topological space.

1. The σ-algebra generated by the topology on X is denoted by B, and an element in B is called
a Borel set.

2. A measure on the measurable space pX,Bq is called a Borel measure.

Let µ be a Borel measure on X.

(i) µ is outer regular if µpMq “ inf

"

µpUq | M Ď U Ď
open

X

*

for all M P B.

(ii) µ is weakly inner regular if µpUq “ sup

"

µpKq | X Ě
cpt
K Ď U

*

for all open sets U .

(iii) µ is inner regular if µpMq “ sup

"

µpKq | X Ě
cpt
K Ď M

*

for all M P B.

(iv) µ is regular if it is outer regular and inner regular.

(v) µ is locally finite if every point x P X admits an open neighborhood U with µpUq ă 8.

(vi) µ is (outer) Radon if it is locally finite, outer regular and weakly inner regular.

Lemma D.2.1. For an outer Radon measure µ on a topological space X and every measurable
A Ď X with µpAq ă 8, one has

µpAq “ sup
KĎA

K : compact

µpKq

In particular, if µpXq ă 8, then µ is regular.

Theorem D.2.2 (Riesz’s Representation Theorem). Let X be an LCH space and let Λ : CcpXq Ñ C
be a positive linear functional. Then there exists a unique outer Radon measure

Λf “

ż

X

fdµ

for all f P CcpXq.
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Theorem D.2.3. Let X be an LCH space. Then every bounded linear functional Φ on C0pXq is
represented by a unique regular complex Borel measure µ, in the sense that

Φf “

ż

X

fdµ

for every f P C0pXq. Moreover, the norm of Φ is the total variation of µ.

Proof. For a regular complex Borel measure µ on X, define Φµ : C0pXq Ñ C by the formula

Φµpfq :“

ż

X

fdµ

where f P C0pXq. Clearly, we have |Φµpfq| ď ∥f∥8 ∥µ∥ for all f P C0pXq, so Φµ is a bounded
operator. Thus we obtain a well-defined association

MrpX,Cq C0pXq_

µ Φµ

The above estimate show ∥Φµ∥ ď ∥µ∥, and to show this is norm-preserving, we must show the
reversed inequality. Let ε ą 0 and suppose ∥µ∥ ‰ 0. By definition of ∥µ∥ we can find a finite

Borel-measurable partition tAnuNn“1 of X such that
N
ř

n“1
|µpAnq| ą ∥µ∥ ´ ε. By regularity of µ we

can find compact Kn Ď An such that |µpAnq ´ µpKnq| ď N´1ε, so

∥µ∥ ´ ε ă

N
ÿ

n“1

|µpAnq| ď

N
ÿ

n“1

|µpKnq| ` ε ď

N
ÿ

n“1

|µ|pKnq ` ε

or, ∥µ∥´ 2ε ă
N
ř

n“1
|µ|pKnq; we may assume µpKnq ‰ 0 for each n. Now choose f P CcpXq such that

∥f∥8 ď 1 and fpxq “
µpKnq

|µpKnq|
for each n (this is possible for there are only finitely many Kn and

since X is LCH, we have Urysohn Lemma in hand). If we put K “
N
Ť

n“1
Kn, then

ż

K

fdµ “

N
ÿ

n“1

|µpKnq| ą ∥µ∥ ´ 2ε and
ˇ

ˇ

ˇ

ˇ

ż

Kc

fdµ

ˇ

ˇ

ˇ

ˇ

ď |µ|pKcq ă 2ε

It follows that

∥Φµ∥ ě |Φµpfq| “

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

ą ∥µ∥ ´ 4ε

Since ε is arbitrary, this proves ∥Φµ∥ ě ∥µ∥. Being norm-preserving, this also show µ ÞÑ Φµ is
injective.

What is left to do is show that µ ÞÑ Φµ is surjective. For this, we first the real case:

MrpX,Rq C0pX,Rq_

µ Φµ

Let Φ : C0pXq Ñ R be a positive linear functional. The restriction of Φ to CcpXq is positive, so by
Theorem D.2.2 there exists an outer Radon measure µ such that Φpfq “

ż

X

fdµ for all f P CcpXq.
By weak inner regularity we have µpXq “ sup

fPCcpXq
0ďfď1

Φpfq ď ∥Φ∥ ă 8, so µ is finite. Now since Φ and

Φµ are continuous and CcpXq is dense in C0pXq, we have Φ “ Φµ in C0pX,Rq_. The proof of real
case is completed by virtue of the following lemma.
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Lemma D.2.4. Let X be an LCH space. Then for all Λ P C0pX,Rq_ we have the decomposition
Λ “ Λ` ´ Λ´ with Λ˘ P C0pX,Rq_ and positive.

The complex case follows from expressing a functional by the sum of its real and imaginary part,
and the proof is finished.

D.3 Signed and Complex Measures

D.3.1 Signed Measures
Definition. Let pX,Aq be a measurable space and µ : A Ñ r´8,8s be a function.

1. µ is called finitely additive if for a finite disjoint family tAiu
n
i“1 Ď A, we have

µ

˜

n
ď

i“1

Ai

¸

“

n
ÿ

i“1

µpAiq

2. µ is called countably additive if for a sequence of disjoint measurable sets tAiu
8
i“1, we have

µ

˜

8
ď

i“1

Ai

¸

“

8
ÿ

i“1

µpAiq

3. µ is called a signed measure if µ is countably additive and µpHq “ 0.

4. A signed measure is called finite if it takes values in R.

• Suppose µ is a signed measure on pX,Aq. Then for A P A, the sum µpAq ` µpAcq is defined,
and is equal to µpXq. Hence, if µpAq “ 8 for some A P A, then µpXq “ 8; if µpAq “ ´8 for
some A P A, then µpXq “ ´8. Hence a signed measure can only attain one of the values ˘8.

In the same way we see if µpAq is finite, then µpBq is finite for all measurable subsets B of A.

• If no possible confusion occurs, we will omit the σ-algebra A and simply say X is a measurable
space and an element in A a measurable set. Moreover, when we say “µ is a signed measure
on X”, we implicitly mean that X is a measurable space.

Lemma D.3.1. Let X be a measurable space and µ a signed measure on X. If tAiu is an increasing
sequences of measurable sets, then

µ

˜

n
ď

i“1

Ai

¸

“ lim
iÑ8

µpAiq

If tAiu is a decreasing sequence of measurable sets with µpAnq finite for some n, then

µ

˜

n
č

i“1

Ai

¸

“ lim
iÑ8

µpAiq

Definition. Let µ be a signed measure on a measurable space X.

1. A subset A Ď X is called a positive set if it is measurable and for all measurable subset E
of A, µpEq ě 0.

2. A subset A Ď X is called a negative set if it is measurable and for all measurable subset E
of A, µpEq ď 0.
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Lemma D.3.2. Let µ be a signed measure on X and let A Ď X be a measurable set such that
´8 ă µpAq ă 0. Then there exists a negative set B contained in A such that µpBq ď µpAq.

Proof. We delete some subset with positive measure from A and take B to be the remaining part.
Let

δ1 :“ suptµpEq | E Ď A, E measurableu ě 0 pfor µpHq “ 0q

and choose a measurable subset A1 of A such that µpA1q ě min

"

1

2
δ1, 1

*

. Construct inductively

the sequences tδnu and tAnu such that

δn :“ sup

#

µpEq | E measurable, E Ď Az

n´1
ď

i“1

Ai

+

and An is a measurable subset of Az
n´1
Ť

i“1

Ai such that µpAnq ě min

"

1

2
δn, 1

*

. Now define A8 :“

8
Ť

n“1
An and B “ AzA8. Since each An is disjoint with non-negative measure, µpA8q ě 0 by

countable additivity, and hence

µpAq “ µpA8q ` µpBq ě µpBq

It remains to show B is a negative set. Since µpAq is finite, so is µpA8q “
8
ř

n“1
µpAnq, implying

δn Ñ 0. For any measurable subset E of B, we have µpEq ď δn for all n P N, so µpEq ď 0.

Theorem D.3.3 (Hahn Decomposition Theorem). Let X be a measurable space and let µ be a
signed measure on X. Then we can find two disjoint subsets P and N of X such that P is a positive
set, N is a negative set and X “ P \N .

The pair pP,Nq is called a Hahn decomposition for the signed measure µ.

Proof. Since µ cannot take ˘8 at the same time, for definiteness we assume µ does not take ´8

as its values. Let

L :“ inftµpAq | A is a negative set for µu

The set on the right is nonempty since H is a negative set. Choose a sequence tAnu of negative sets
for which L “ lim

nÑ8
µpAnq, and put N “

8
Ť

n“1
An. Every measurable subset of N can be decomposed

as a disjoint union of measurable subsets, each of which contained in some An, so N is negative as
well. Hence L ď µpNq ď µpAnq for all n P N, and therefore L “ µpNq. Since µ does not attain ´8,
µpNq is finite.

Let P “ N c. We claim P is positive. If P contained some measurable set A with µpAq ă 0,
then A would contain some negative set B with µpBq ă 0 by Lemma D.3.2, and N \B would be a
negative set such that

µpN \Bq “ µpNq ` µpBq ă µpNq “ L

a contradiction to definition of L. Hence P must be positive for µ.

Corollary D.3.3.1 (Jordan Decomposition Theorem). Every signed measure is the difference of
two positive measures, at least one of which is finite.
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Proof. Let µ be a signed measure on X, and pP,Nq a Hahn decomposition for µ. Define µ` and µ´

on X by

µ`pAq :“ µpAX P q, µ´pAq :“ ´µpAXNq

It follows from definition that µ` and µ´ are positive measure, and since µ cannot attain ˘8

simultaneously, at least one of the values µpP q and µpNq is finite, and hence at least one of the
measures µ` and µ´ is finite.

Let pP,Nq be a Hahn decomposition for the signed measure µ on X, and let µ` and µ´ be the
positive measures constructed in the last proof. For a measurable set A and any of its measurable
subset B, we have

µpBq “ µ`pBq ´ µ´pBq ď µ`pBq ď µ`pAq

Since µ`pAq “ µpAX P q, this implies

µ`pAq “ suptµpBq | B measurable, B Ď Au

Likewise

µ´pAq “ supt´µpBq | B measurable, B Ď Au

This says that µ` and µ´ are independent of the choice of Hahn decomposition pP,Nq for µ. The
measures µ` and µ´ are called the positive part and the negative part of µ, and the expression
µ “ µ` ´ µ´ is called the Jordan decomposition of µ. Moreover, they are minimal in the sense
that if µ “ λ1 ´ λ2 with each λi positive, then

µ`pAq “ µpAX P q ď λ1pAX P q ď λ1pAq

µ´pAq “ µpAXNq ď λ2pAXNq ď λ2pAq

Definition. The variation of a signed measure µ on X is the positive measure |µ| on X defined
by |µ| :“ µ` ` µ´. The total variation ∥µ∥ is defined by ∥µ∥ :“ |µ|pXq.

• It is easy to see |µpAq| ď |µ|pAq for all measurable A. In fact, |µ| is the smallest positive
measure possessing this property. Let ν be another positive measure such that |µpAq| ď νpAq

for all measurable A. Let pP,Nq be a Hahn decomposition for µ. Then for measurable A, we
have µ`pAq “ |µpAX P q| ď νpAX P q and µ´pAq ď νpAXNq, so

|µ|pAq “ µ`pAq ` µ´pAq ď νpAX P q ` νpAXNq “ νpAq

D.3.2 Complex Measures
Definition. Let pX,Aq be a measurable space. A complex measure on pX,Aq is a function
µ : A Ñ C that is countably additive, namely, for a sequence of disjoint measurable sets tAiu

8
i“1,

we have

µ

˜

8
ď

i“1

Ai

¸

“

8
ÿ

i“1

µpAiq

For a complex measure µ, define its variation |µ| by

|µ|pAq :“ sup

#

8
ÿ

n“1

|µpAnq|
ˇ

ˇ tAnu is a measurable partition of A
+

and the total variation ∥µ∥ is defined by ∥µ∥ :“ |µ|pXq.
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• For a complex measure µ, we must have µpHq “ 0 by countable additivity, and thus |µ|pHq “ 0.

• We can write µ “ µ1 ` iµ2, where µ1, µ2 are finite signed measures on X, so by Jordan
decomposition we have

µ “ µ1 ´ µ2 ` iµ3 ´ iµ4

where the µi are the finite positive measures on X. This is called the Jordan decomposition
of µ if µ1 ´µ2 and µ3 ´µ4 are the Jordan decomposition of the real and imaginary parts of µ.

Since each µi is finite, this implies |µ| only takes finite values. In particular, ∥µ∥ ă 8.

• It can be shown that in the definition of |µ|pAq, it is enough to go through all finite measurable
partitions of A. To see this, denote

|µ|f pAq :“ sup

#

N
ÿ

n“1

|µpAnq|
ˇ

ˇ tAnuNn“1 is a finite measurable partition of A
+

Then clearly |µpAq| ď |µ|f pAq ď |µ|pAq for all measurable A. Using the same argument in the
next proposition, we can prove |µ|f is a measure. But then for any measurable partition tAnu

of A
8
ÿ

n“1

|µpAnq| ď

8
ÿ

n“1

|µ|f pAnq “ |µ|f pAq

so by definition, |µ|pAq ď |µ|f pAq. These proves |µ|f “ |µ|.

Proposition D.3.4. Let µ be a complex measure on X. Then the variation |µ| of µ is a finite
positive measure on X.

Proof. It remains to show |µ| is countably additive. Let E be a measurable set and tEnu be any
measurable partition of E. If tAnu is any other measurable partition of E, then

ÿ

n

|µpAnq| “
ÿ

n

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

m

µpAn X Emq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

n

ÿ

m

|µpAn X Emq| “
ÿ

m

ÿ

n

|µpAn X Emq| ď
ÿ

m

|µ|pEmq

Conversely, let tn P R such that tn ă |µ|pEnq and tAnmum a measurable partition of En such that
ř

m
|µpAnmq| ą tn for each n. Then

ÿ

n

tn ď
ÿ

n,m

|µpAnmq| ď |µ|pEq

so that
ÿ

n

|µ|pEnq ď |µ|pEq. This shows |µ| is countably additive.

Let pX,Aq be a measurable space. Denote by MpX,A,Rq the collection of all finite signed mea-
sures on pX,Aq, and MpX,A,Cq the collection of all complex measures. It is clear that MpX,A,Rq

and MpX,A,Cq are vector spaces over R and C, respectively, and the total variation defines a norm
on each of them. For convenience, let call a finite signed measure a real measure.

Lemma D.3.5. Let µ be a finite signed measure. We can also think of µ as a complex measure.
Then two variation coincide.
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Proof. By |µ| we mean the variation defined by the Jordan decomposition. Let A be measurable
and tAnu a measurable partition of A. Then

|µpAq| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“1

µpAnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

n“1

|µpAnq| ď

8
ÿ

n“1

|µ|pAnq “ |µ|pAq

so that

|µpAq| ď sup

#

8
ÿ

n“1

|µpAnq|
ˇ

ˇ tAnu is a measurable partition of A
+

ď |µ|pAq

We know the middle term defines a positive measure, and since |µ| is the smallest positive measure ν
satisfying |µpAq| ď νpAq for all measurable A, this forces the second inequality to be an equality.

Proposition D.3.6. Let pX,Aq be a measurable space. Then the spaceMpX,A,Rq andMpX,A,Cq

are complete under the total variation norm.

Proof. It suffices to show every absolutely convergent series converges in MpX,A,Rq or MpX,A,Cq.

Let tµnu be a sequence of real or complex measures such that
8
ÿ

n“1

∥µn∥ ă 8.

For a complex measure µ, we can write µ “ µ1 ` iµ2 with µ1 and µ2 finite real, and we have
|µpAq| ě |µ1pAq| and |µpAq| ě |µ2pAq|, so by minimality we have ∥µ∥ ě ∥µ1∥ and ∥µ∥ ě ∥µ2∥. Hence
it suffices to deal with the real case. Still, write the Jordan decomposition µ “ µ` ´ µ´, so that
|µ| “ µ` ` µ´. This implies ∥µ∥ ě ∥µ˘∥, so we can further reduce to the positive measure case.

Now assume each µn is a finite positive measure such that
8
ÿ

n“1

µnpXq ă 8.

Lemma D.3.7. Let tµnu be a sequence of positive measures on X. Then the function µ defined

by µpAq :“
8
ÿ

n“1

µnpAq is a positive measures on X.

Proof. We need to show µ is countably additive. Let tAnu be a disjoint sequence of measurable sets
on X. What we must prove is

8
ÿ

n“1

8
ÿ

m“1

µnpAmq “

8
ÿ

m“1

8
ÿ

n“1

µnpAmq

Since each summand is non-negative, this clearly holds.

By this lemma, we see the formula µpAq :“
8
ÿ

n“1

µnpAq defines a positive measure on X, and since

µpXq ă 8, it is a finite measure.

Finally we discuss the integration with respect to a real or complex measure. Let pX,Aq be a
measurable space, and denote by BpX,A,Rq and BpX,A,Cq the space of bounded real-valued and
complex-valued, respectively, A-measurable functions on X. If µ is a real measure on pX,Aq and
µ “ µ` ´ µ´ is the Jordan decomposition of µ, then the integral for f P BpX,A,Rq with respect to
µ is defined by

ż

fdµ :“

ż

fdµ` ´

ż

fdµ´
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and this defines a linear functional on BpX,A,Rq. If µ “ ν1 ´ ν2 for some finite positive νi, then
ν1 ` µ´ “ ν2 ` µ`, so

ż

X

fdν1 `

ż

X

fdµ´ “

ż

X

fdν2 `

ż

X

fdµ`

or
ż

fdµ “

ż

fdµ` ´

ż

fdµ´ “

ż

fdν1 ´

ż

fdν2

If A P A and µ P MpX,A,Rq, then
ż

1Adµ “ µpAq holds, so the formula

µ ÞÑ

ż

fdµ

defines a linear functional on MpX,A,Rq when f is a step function. By DCT it follows that this
holds for every f P BpX,A,Rq. In sum, we have a bilinear pairing

BpX,A,Rq ˆMpX,A,Rq R

pf, µq

ż

X

fdµ

Similarly if µ is a complex measure on pX,Aq, we can write the Jordan decomposition of µ to
define its integral, and the above statements remain valid in the complex case. Now we define a
norm on BpX,A,Rq and BpX,A,Cq by

∥f∥8 :“ supt|fpxq| | x P Xu

If µ is a real or complex measure on pX,Aq and f “
ř

ai1Ai is a simple function with each Ai

disjoint, then
ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

aiµpAiq
ˇ

ˇ

ˇ
ď
ÿ

|ai||µpAiq| ď
ÿ

|ai||µ|pAiq “

ż

X

|f | d|µ|

Since each function in BpX,A,Rq and BpX,A,Cq is the uniform limit of a sequence of simple
functions, it follows that the inequality holds for every bounded measurable function f . In particular,
we have

ˇ

ˇ

ˇ

ˇ

ż

X

fdµ

ˇ

ˇ

ˇ

ˇ

ď ∥f∥8 ∥µ∥

D.3.3 ˚-algebra of complex measures
Let pX,Aq and pY,Bq be two measurable spaces and let µ and ν be real measures on pX,Aq and
pY,Bq, respectively. Write the Jordan decomposition of µ “ µ` ´ µ´, ν “ ν` ´ ν´. We then define
the product measure µb ν by the formula

µb ν “ µ` b ν` ´ µ` b ν´ ´ µ´ b ν` ` µ´ b ν´

Then for A P A and B P B, the identity pµ b νqpA ˆ Bq “ µpAqνpBq holds, and for E P A b B, we
have the following integration formula

µb νpEq “

ż

X

νpExqdµpxq “

ż

Y

µpEyqdνpyq
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All of these follow from Theorem D.4.4. To see the integration formulas above, for example, we have

µb νpEq “ µ` b ν`pEq ´ µ` b ν´pEq ´ µ´ b ν`pEq ` µ´ b ν´pEq

“

ż

X

ν`pExqdµ`pxq ´

ż

X

ν´pExqdµ`pxq ´

ż

X

ν`pExqdµ´pxq `

ż

X

ν´pExqdµ´pxq

“

ż

X

ν`pExqdµpxq ´

ż

X

ν´pExqdµpxq

“

ż

X

νpExqdµpxq

If µ and µ1 are two real measures, then

pµ` µ1q b νpEq “

ż

X

νpExqdpµ` µ1qpxq “

ż

X

νpExqdµpxq `

ż

X

νpExqdµ1pxq

so pµ`µ1q b ν “ µb ν `µ1 b ν. A similar formula holds for the second argument. In sum, the map

MpX,A,Rq ˆMpY,B,Rq MpX ˆ Y,A b B,Rq

pµ, νq µb ν

is a bilinear map. If µ and ν are complex measures, we define similarly µb ν P MpX ˆ Y,AbB,Cq

by using Jordan decomposition for complex measures and linearity, and all the above results hold
as well.

Let G be a topological group and consider the Banach space of (finite) complex Borel measures
MpG,Cq on G. For µ, ν P MpG,Cq, we define their convolution

µ ˚ νpAq :“

ż

GˆG

1Apxyqdpµb νqpx, yq

In other word, if we write mult : G ˆ G Ñ G to be the multiplication of G, then µ ˚ ν is the
pushforward measure of the product measure µ b ν by mult. It follows from DCT that for all
bounded Borel-measurable function f we have

ż

G

fdpµ ˚ νq :“

ż

GˆG

fpxyqdpµb νqpx, yq

When µ and ν are finite positive, by Fubini’s theorem, we have
ż

GˆG

1Apxyqdpµb νqpx, yq “

ż

G

ˆ
ż

G

1Apxyqdνpyq

˙

dµpxq “

ż

G

νpx´1Aqdµpxq

“

ż

G

µpAy´1qdνpyq

By linearity this holds for arbitrary complex measures µ and ν, and this implies ˚ defines a bilinear
map on MpG,Cq particularly. Similarly, we have

ż

G

fdpµ ˚ νq “

ż

G

ˆ
ż

G

fpxyqdµpxq

˙

dνpyq “

ż

G

ˆ
ż

G

fpxyqdνpyq

˙

dµpxq

for all bounded Borel-measurable functions f . For νi P MpGq, i “ 1, 2, 3, we have

ν1 ˚ pν2 ˚ ν3qpAq “

ż

G

pν2 ˚ ν3qpx´1Aqdν1pxq “

ż

G

ż

G

ν3py´1x´1Aqdν2pyqdν1pxq

pν1 ˚ ν2q ˚ ν3pAq “

ż

G

ν3pu´1Aqdpν1 ˚ ν2qpuq “

ż

G

ż

G

ν3ppxyq´1Aqdν1pxqdν2pyq
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It follows that ˚ is associative. Let µe be the Dirac measure at the identity e P G; that is, for all

Borel sets A of G, define µepAq :“

#

1 , if e P A

0 , if e R A
. Then µe is the identity element of the operation

˚. Indeed, for µ P MpGq,

µ ˚ µepAq “

ż

G

µpAy´1qdµepyq “ µpAy´1q|y“e “ µpAq

and similarly µe ˚ µpAq “ µpAq. Finally, if tAiu is a measurable partition of X, then

8
ÿ

i“1

|µ ˚ νpAiq| “

8
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ż

X

νpx´1Aiqdµpxq

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

i“1

ż

X

|νpx´1Aiq|d|µ|pxq “

ż

X

˜

8
ÿ

i“1

|νpx´1Aiq|

¸

d|µ|pxq

ď

ż

X

∥ν∥ d|µ|pxq “ ∥ν∥ ∥µ∥

Letting tAiu run over all possible measurable partitions of X, we obtain ∥µ ˚ ν∥ ď ∥µ∥ ∥ν∥. In sum,

Proposition D.3.8. pMpG,Cq, ˚q is a unital Banach algebra.

Let inv : G Ñ G be the inversion on G. For µ P MpG,Cq, define a new measure µ˚ P MpG,Cq

µ˚pAq “ pinv˚µqpAq “ µpA´1q

where ¨ is the complex conjugation; this is well-defined since inv is a homeomorphism. It is clear that
µ ÞÑ µ˚ defines an involution on MpG,Cq, and by definition of total variation we have ∥µ∥ “ ∥µ˚∥;
this makes MpG,Cq a unital Banach ˚-algebra.

Now assume G is a locally compact Hausdorff group. Choose a left Haar measure dx once and
for all. There is a map

L1pGq MpG,Cq

f dµf pxq :“ fpxqdx

In fact, this is an algebra ˚-homomorphism. Indeed, if f, g P L1pGq, then

µf˚gpAq
Fubini

“

ż

G

ż

G

1Apxqfpyqgpy´1xqdxdy

px ÞÑ yxq “

ż

G

ˆ
ż

G

1Apyxqgpxqdx

˙

fpyqdy

“

ż

G

µgpy´1Aqdµf pyq

“ µf ˚ µgpAq

and

µf˚ pAq “

ż

G

1Apxq∆Gpx´1qfpx´1qdx
2.3.1.4

“

ż

G

1Apx´1qfpxqdx “

ż

G

1A´1pxqdµf pxq “ µ˚
f pAq

It is also norm-preserving, for by Corollary D.6.5.1 we have |µf | “ µ|f |, so

∥µf∥ “

ż

X

d|µf | “

ż

X

|f |dx “ ∥f∥1
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D.3.4 Regular measure
In what follows let X denote a locally compact Hausdorff space and B be the σ-algebra of Borel sets
in X. For simplicity, we put MpX,Fq “ MpX,B,Fq where F “ R or C.

Definition. For a topological space, a complex Borel measure µ on it is called regular if its total
variation |µ| is a regular measure, in the sense that it is finite on compact sets and every measurable
set can be approximated by open sets from above, and every open set can be approximated by
compact sets from below.

• In our previous term, a positive measure is regular if and only if it is finite on compact sets,
outer regular, and weakly inner regular. If X is LCH, then a positive regular measure is the
same as a outer Radon measure.

• If µ is regular, for Borel A and ε ą 0 we can find a compact set K Ď A such that for all
Borel B with K Ď B Ď A we have |µpAq ´ µpBq| ă ε. Indeed, since |µ| is regular, we can find
compact K such that |µ|pAzKq ă ε. Then for any such B, we have

|µpAq ´ µpBq| “ |µpAzBq| ď |µ|pAzBq ď |µ|pAzKq ă ε

Proposition D.3.9. Let µ be a complex Borel measure on X. TFAE:

(i) µ is regular;

(ii) the positive measures appearing in the Jordan decomposition are regular;

(iii) µ is a linear combination of finite positive regular Borel measures.

Proof. Let µ be complex regular and let µ1 be any positive finite measure appearing in the Jordan
decomposition of µ. Then µ1 ď |µ|. Let ε ą 0 be given.

• If A is Borel and U Ě A is open such that |µ|pAq ă |µ|pUq ` ε, then µ1pUzAq ď |µ|pUzAq ă ε

so that

µ1pUq “ µ1pAq ` µ1pUzAq ă µ1pAq ` ε

• If A is Borel and K Ď A is compact such that |µ|pAq´ε ă |µ|pKq, then µ1pAzKq ď |µ|pAzKq ă

ε so that

µ1pKq “ µ1pAq ´ µ1pAzKq ą µ1pAq ´ ε

This shows µ1 is regular, so (ii) holds. Clearly (ii) implies (iii). For (iii) ñ(i), the proof is similar to
that of (i) ñ(ii) and use the fact that if µ “ α1µ1 ` ¨ ¨ ¨ `αnµn where αi P C and the µi are positive,
then |µ| ď |α1|µ1 ` ¨ ¨ ¨ ` |αn|µn.

Let us denote by MrpX,Fq Ď MpX,Fq the set of all F-valued regular Borel measures, where
F “ R, C.

Lemma D.3.10. MrpX,Fq is a closed subspace of MpX,Fq.

Proof. By the previous proposition we see MrpX,Fq is a linear subspace. It remains to show
MrpX,Fq is closed. First note that if µ P MrpX,Fq and ν P MpX,Fq with ∥µ´ ν∥ ă ε for some
ε ą 0, then for any Borel A and open U Ě A with |µ|pUzAq ă ε, we have

|ν|pUzAq ď ∥ν ´ µ∥ ` |µ|pUzAq ă 2ε
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This shows the limit of sequences of outer regular measures is again outer regular. Similarly for
weakly inner regular. This concludes the proof.

Proposition D.3.11. Let G be an LCH group. The subspace MrpG,Fq is ˚-closed. Hence MrpG,Fq

is a (non-unital) Banach ˚-algebra.

Proposition D.3.12. Let µ be a regular positive Borel measure on X and f P L1pµq. Then the
complex measure µf is regular.

Proposition D.3.13. Let µ be a regular positive Borel measure on X and ν P MrpX,Cq. TFAE:

(i) There exists f P L1pµq such that ν “ µf .

(ii) ν ! µ.

(iii) Each compact subset K of X that satisfies µpKq “ 0 also satisfies νpKq “ 0.

Proof. By regularity (ii) ô(iii), and clearly (i) ñ(ii). It remains to show (ii) ñ(i). Since |ν| is finite
regular, we can find an increasing sequence of compact subsets Kn in X such that |ν|pKnq Ñ |ν|pXq.

Locally finiteness of µ implies µpKnq is finite, so the measure µ0 defined y µ0pAq :“ µ

ˆ

AX
Ť

ně1
Kn

˙

is σ-finite. Now ν ! µ implies ν ! µ0, so by Radon-Nikodym theorem there exists f P L1pµ0q such
that ν “ pµ0qf . By redefining f so that it vanishing outside

Ť

ně1
Kn, we have ν “ µf .

Corollary D.3.13.1. Let X be an LCH space and µ a regular positive Borel measure on X. Then
the map

L1pµq MpX,Cq

f dµf pxq :“ fpxqdx

induces a linear isometry onto the subspace MrpX,Cq consisting of those ν with ν ! µ.

D.4 Fubini’s Theorem

D.4.1 Product Measure
Let pX,Aq and pY,Bq be measurable spaces. Define A b B to be the smallest σ-algebra on X ˆ Y

which contains tAˆB | pA,Bq P A ˆ Bu. For E Ď X ˆ Y , x P X, y P Y , define

Ex :“ ty P Y | px, yq P Eu Ey :“ tx P X | px, yq P Eu

These are called the x-section and y-section of E, respectively.

Lemma D.4.1. If E P A b B, then Ex P B and Ey P A for all x P X and y P Y .

Similarly, for f P X ˆ Y Ñ C, x P X, y P Y , define

fx : Y C

y fpx, yq

fy : X C

x fpx, yq

Lemma D.4.2. Let f be a A b B-measurable function on X ˆ Y . Then

1. fx is B-measurable for each x P X.
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2. fy is A-measurable for each y P Y .

Now comes to measure. Let pX,A, µq and pY,B, νq be σ-finite measure spaces.

Lemma D.4.3. For E P A b B, rx ÞÑ νpExqs is A-measurable and ry ÞÑ µpEyqs is B-measurable.

Theorem D.4.4. Let X,Y be as above. Then there exists a unique measure µbν on the σ-algebra
A b B such that

pµb νqpAˆBq “ µpAqνpBq

for all pA,Bq P A ˆ B. Further, for E P A b B,

pµb νqpEq “

ż

X

νpExqdµpxq “

ż

Y

µpEyqdνpyq

D.4.2 Fubini’s in σ-finite case
Theorem D.4.5 (Fubini’s Theorem). Let pX,µq and pY, νq be two σ-finite measure spaces, and let
f be a measurable function on X ˆ Y .

(a) If f ě 0, then the two partial integrals
ż

X

fpx, yqdµpxq and
ż

Y

fpx, yqdνpyq define measurable
functions such that Fubini’s formula holds:

ż

XˆY

fpx, yqdpµb νqpx, yq “

ż

X

ż

Y

fpx, yqdνpyqdµpxq “

ż

Y

ż

X

fpx, yqdµpxqdνpyq

(b) If f is complex valued and one of the iterated integrals
ż

X

ż

Y

|fpx, yq|dνpyqdµpxq or
ż

Y

ż

X

|fpx, yq|dµpxqdνpyq

is finite, then f is integrable and the Fubini’s formula holds.

D.4.3 Fubini’s in LCH cases
Lemma D.4.6. Let µ be an outer Radon measure on X. Suppose F is a subfamily of CcpXq

consisting of functions ϕ ě 0 such that for ϕ, ψ P F there exists a function η P F with η ě ϕ, ψ.
Then

(i) x ÞÑ sup
ϕPF

ϕpxq is measurable.

(ii) If
#

x P X | sup
ϕPF

ϕpxq ‰ 0

+

is σ-finite, then sup
ϕPF

ż

X

ϕpxqdx “

ż

X

sup
ϕPF

ϕpxqdx.

Proof. Put gpxq :“ sup
ϕPF

ϕpxq.

(i) Since each ϕ is measurable, so is g.

(ii) By assumption tx P X | gpxq ‰ 0u is σ-finite. This implies the integration of g can be computed
by simple functions with finite support.

That ě is obvious. For ď, let s “
m
ř

i“1

ai1Ai
be a simple function with s ď g and µpAiq ă 8.

By weakly regularity for a given ε ą 0 we can find compact Ki Ď Ai such that
ż

X

sdµ ă

m
ÿ

i“1

aiµpKiq ` ε
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Let K “
m
Ť

i“1

Ki and write s0 “
m
ř

i“1

ai1Ki
. For given 0 ă δ ă 1 one has p1 ´ δqs0pxq ă gpxq for

all x P K. In particular, for each x P K we can find ϕx P F such that p1 ´ δqs0pxq ă ϕxpxq.
Consider the open sets

Ux :“ ty P X | p1 ´ δqs0pyq ă ϕxpyqu

These form an open cover of K, so by compactness we can find x1, . . . , xn P K such that
K Ď Ux1 Y ¨ ¨ ¨ Y Uxn . By assumption there exists ϕ P F such that ϕ ě ϕx1 , . . . , ϕxn . Then
ϕ ą p1 ´ δqs0, so that

ż

X

sdµ ă

ż

X

s0dµ` ε ă
1

1 ´ δ

ż

X

ϕdµ` ε

Varying ϕ P F first, then s ď g, we obtain (by the remark in the beginning)
ż

X

gdµ ď
1

1 ´ δ
sup
ϕPF

ż

X

ϕdµ` ε

Letting δ, ε Ñ 0` concludes the proof.

Theorem D.4.7 (Fubini’s Theorem for Radon measures). Let µ and ν be outer Radon measures
on the LCH spaces X and Y , respectively. Then there exists a unique outer Radon measure µ b ν

on X ˆ Y such that

(a) If f : XˆY Ñ C is µbν-integrable, then the partial integrals
ż

X

fpx, yqdµpxq and
ż

Y

fpx, yqdνpyq

define integrable functions such that Fubini’s formula holds:
ż

XˆY

fpx, yqdpµb νqpx, yq “

ż

X

ż

Y

fpx, yqdνpyqdµpxq “

ż

Y

ż

X

fpx, yqdµpxqdνpyq

(b) If f : X ˆ Y Ñ C is measurable such that A “ tpx, yq P X ˆ Y | fpx, yq ‰ 0u is σ-finite, then
if one of the iterated integrals

ż

X

ż

Y

|fpx, yq|dνpyqdµpxq or
ż

Y

ż

X

|fpx, yq|dµpxqdνpyq

is finite, then f is integrable and the Fubini’s formula holds.

Proof. The uniqueness follows from the Riesz’s Representation Theorem, since the Fubini’s formula
determines the values of the integral on CcpX ˆ Y q.

For the existence, observe that on each compact set K “ K1 ˆ K2 there is a unique product
measure pµb νqK on K such that integration with respect to pµb νqK is given by Fubini’s formula,
by the classical Fubini’s. Since pµ b νqL restricts to pµ b νqK whenever K Ď L with L “ L1 ˆ L2

compact, these measures pµb νqK determines a well-defined positive functional on CcpX ˆ Y q. Let
µb ν denote the resulting outer Radon measure from the Riesz’s Representation Theorem.

To show (a), a standard argument reduces us to the case f “ 1A for some measurable A Ď XˆY
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with finite measure. If A “ U is open (with finite measure), a repeated use of Lemma D.4.6 shows
ż

X

ż

Y

1U px, yqdydx “

ż

X

ż

Y

sup
0ďϕď1U

ϕpx, yqdydx “ sup
0ďϕď1U

ż

X

ż

Y

ϕpx, yqdydx

“ sup
0ďϕď1U

ż

XˆY

ϕpx, yqdpµb νqpx, yq

“

ż

XˆY

sup
0ďϕď1U

ϕpx, yqdpµb νqpx, yq

“

ż

XˆY

1U px, yqdpµb νqpx, yq

If A “ K is compact, let V be a relatively compact open neighborhood of K; then 1K “ 1V ´1V zK ,
so (a) holds in this case as well. It follows from MCT that (a) holds for A being σ-compact. But
by weakly inner regularity a measurable set with finite measure is a disjoint union of σ-compact set
and a null set, it remains to consider the case A “ N being null. Let ε ą 0 and U an open set
containing N with measure less than ε. Then

ż

X

ż

Y

1N px, yqdydx ď

ż

X

ż

Y

1U px, yqdydx “

ż

XˆY

1U ă ε

Letting ε Ñ 0 gives (a).
For (b), it suffices to show |f | is integrable. Write A “

8
Ť

n“1
An with pAnqn increasing and each

An being of finite measure. Define fn : X ˆ Y Ñ C by fn “ mint|f |1An
, nu. Then pfnqn is an

increasing sequence of integral functions converging pointwise to |f |. By (a), we have
ż

XˆY

fnpx, yqdpµb νqpx, yq “

ż

Y

ż

X

fnpx, yqdxdy ď

ż

Y

ż

X

|fpx, yq|dxdy

for all n P N. Now (b) follows from MCT.

D.5 Lp-space and the Riesz-Fischer Theorem
Definition. Let pX,A, µq be a measure space.

1. For 1 ď p ă 8, let LppXq be the set of all measurable functions f : X Ñ C such that

∥f∥p :“
ˆ
ż

X

|f |pdµ

˙
1
p

ă 8

2. Let L8pXq be the set of measurable functions f : X Ñ C such that f is bounded outside a
measure zero set. For such f , put

∥f∥8 “ inftc ą 0 | µt|fpxq| ą cu “ 0u

“ inf
µpNq“0

sup
xRN

|fpxq|

In other words, L8pXq consists of measurable functions f : X Ñ C with finite ∥f∥8 ă 8.

• We show two definitions for ∥¨∥8 coincide. Let c ą 0 be such that Nc :“ tx P X | |fpxq| ą cu

is null. Then for x R Nc, we have |fpxq| ď c, so that

inf
µpNq“0

sup
xRN

|fpxq| ď c.
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On the other hand, let N be a null set such that f is bounded outside N and put cN :“

sup
xRN

|fpxq|. Then tx P X | |fpxq| ą cNu Ď N is null, and

inftc ą 0 | µt|fpxq| ą cu “ 0u ď cN

• Let f P L8pXq. The set tx P X | |fpxq| ě ∥f∥8u is µ-null, since

tx P X | |fpxq| ą ∥f∥8u “
č

ně1

"

x P X | |fpxq| ą ∥f∥ `
1

n

*

and each set involved is null by definition.

Proposition D.5.1 (Jensen). Let pX,A, µq be a positive measure space with µpXq “ 1. Suppose
φ : pa, bq Ñ R is a convex function, f P L1pµq with a ď fpxq ď b for x P X. Then

φ

ˆ
ż

X

fdµ

˙

ď

ż

X

φ ˝ fdµ.

Proposition D.5.2 (Young). Let a, b ě 0 and p, q ą 1 with 1

p
`

1

q
“ 1. Then

ab ď
ap

p
`
bq

q

with equality if and only if ap “ bq.

Proof. This follows from Jensen’s inequality: since ´ log is convex, we have

´ log

ˆ

ap

p
`
bq

q

˙

ď
´ log ap

p
`

´ log bq

q
“ ´ log ab.

Proposition D.5.3 (Hölder). Let 1 ď p1, . . . , pn ď 8 be such that
n
ř

i“1

1

pi
“ 1 and fi P Lpi , i “

1, . . . , n. Then
n
ś

i“1

fi P L1 and ∥∥∥∥∥ n
ź

i“1

fi

∥∥∥∥∥
1

ď

n
ź

i“1

∥fi∥pi

Proof. First assume 1 ď p1, . . . , pn ă 8. By normalizing we may assume ∥fi∥pi “ 1; then we must

show
∥∥∥∥ n
ś

i“1

fi

∥∥∥∥ ď 1. To this end, we invoke the Jensen’s inequality: for all ai ą 0, one has

n
ÿ

i“1

1

pi
log ai ď log

n
ÿ

i“1

1

pi
ai

Apply this inequality with ai “ |fi|
pi ; we obtain

log |f1 ¨ ¨ ¨ fn| ď log

ˆ

|f1|p1

p1
` ¨ ¨ ¨ `

|fn|pn

pn

˙

or |f1 ¨ ¨ ¨ fn| ď
|f1|p1

p1
` ¨ ¨ ¨ `

|fn|pn

pn
. This shows f1 ¨ ¨ ¨ fn is integrable. Integrating both sides we see

∥f1 ¨ ¨ ¨ fn∥1 “

ż

X

|f1 ¨ ¨ ¨ fn|dµ ď

ż

X

ˆ

|f1|p1

p1
` ¨ ¨ ¨ `

|fn|pn

pn

˙

dµ “
1

p1
` ¨ ¨ ¨ `

1

pn
“ 1
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Let us deal with the case p1 “ ¨ ¨ ¨ “ ps “ 8. Then p´1
s`1 ` ¨ ¨ ¨ ` p´1

n “ 1 and the result above
shows ∥fs`1 ¨ ¨ ¨ fn∥1 ď ∥fs`1∥ps`1

¨ ¨ ¨ ∥fn∥pn . By induction we are reduced to the situation that if
∥f∥1 ă 8 and ∥g∥8 ă 8, then ∥fg∥1 ă 8. This is trivial, for |fg| ď |f | ∥g∥8 a.e., and thus

ż

X

|fg|dµ ď

ż

X

|f |dµ ∥g∥8 “ ∥f∥1 ∥g∥8

Proposition D.5.4 (Minkowski). Let 1 ď p ď 8. Then for f, g P Lp, we have f ` g P Lp with

∥f ` g∥p ď ∥f∥p ` ∥g∥p

Thus ∥¨∥p is a semi-norm on Lp for every 1 ď p ď 8.

Let 1 ď p ď 8. Since ∥¨∥p is a semi-norm in Lp, it follows that the zero set Np :“ ∥¨∥´1
p p0q of

the semi-norm forms a C-vector subspace of the Lp. Define

Lp :“ Lp{Np

Note that ∥f∥p “ 0 if and only if f is a null function, i.e., f |XzN ” 0 for some set N of measure
zero. Then ∥¨∥p is a norm on Lp. We ask whether Lp is a Banach space.

Theorem D.5.5 (Riesz-Fischer). Let 1 ď p ď 8 and suppose pfnq is a sequence in LppXq that is
Cauchy with respect to ∥¨∥p. Then there exists f P LppXq and a subsequence pfnk

qk of pfnq such
that fnk

pxq Ñ fpxq for every x outside a set of measure zero.

Proof. We distinguish the cases p “ 8 and 1 ď p ă 8. First consider the easier case, namely when
p “ 8. Suppose pfnqn is a Cauchy sequence in L8. Put

An “ tx P X | |fnpxq| ą ∥fn∥8u pn P Nq

Bn,m “ tx P X | |fnpxq ´ fmpxq| ą ∥fn ´ fm∥8u pn,m P Nq

All An and Bn,m are null, so if we put E to be their (countable) union, then E is null, and on the
complement of E, the sequence pfnqn converges uniformly to a bounded function f on XzE. Extend
f across E by zero; then f P L8 and

∥fn ´ f∥8 ď sup
xRE

|fpxq ´ fnpxq| Ñ 0 as n Ñ 8.

Lemma D.5.6.

1. A Hilbert space is separable if and only if it has a countable orthonormal basis.

2. If X is a second countable Hausdorff space with a finite Radon measure µ, then the Hilbert
space L2pX,µq is separable.

Proof.

1.
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2. Let C be a countable basis of X. Any element in C has finite measure. By adding every finite
intersection of sets in C to itself, we may assume C is closed under finite intersection and C is
still countable. Consider the subspace H spanned by all 1U with U P C. By exclusion-inclusion
principal, H contains all characteristic functions of finite unions of sets in C.

Let U be any open subset of X and say U “
Ť

nPN
Un for Un P C. Then 1U1Y¨¨¨YUn Ñ 1U in

L2. It follows that H Ď L2pX,µq contains all characteristic function of open sets. Since µ
is Radon, H contains all simple functions. Since the space of simple functions are dense in
L2pX,µq, it follows that H “ L2pX,µq.

Lemma D.5.7. Let pX,A, µq and pY,B, νq be two finite positive measure spaces. Then for 1 ď p ă

8, the map
LppX,µq bC L

ppY, νq LppX ˆ Y, µb νq

is injective with dense image.

Proof. By the definition of product measures and integration, it suffice to show that each 1C pC P

A b Bq can be approximated by 1AˆB ppA,Bq P A ˆ Bq. Consider

S “

"

C Ď
meas

Ω ˆ Ω | for all ε ą 0 there exist A,B Ď
meas

Ω with |1C ´ 1AˆB | ă ε

*

.

D.5.1 Duality
Let µ be a positive measure on X, and suppose 1 ď p ď 8 and let q be the exponent conjugate of
p, i.e., 1

p
`

1

q
“ 1. By Hölder’s inequality, if g P Lqpµq, then the map Φg : L

ppµq Ñ C defined by

Φgpfq :“

ż

X

fgdµ

is a bounded linear functional with norm at most ∥g∥q. In sum, the map

Φ : Lqpµq Lppµq_

g Φg

is a norm-decreasing linear functional.

Proposition D.5.8. For 1 ď p ă 8, the map Φ is norm-preserving.

Proof.

D.6 Radon-Nikodym Theorem
In this section we fix a measurable space pX,Aq. By a (unadorned) measure on pX,Aq we mean
either the positive or the complex measure.

Definition. Let µ be a positive measure on pX,Aq. A measure λ is absolutely continuous with
respect to µ if λpEq “ 0 for E P A whenever µpEq “ 0. In this case we write λ ! µ.
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Definition.

1. Let λ be a measure on pX,Aq. If there exists A P A such that λpEq “ λpE XAq for all E P A,
we say λ is concentrated on A.

2. Two measures λ1 and λ2 on pX,Aq are called mutually singular if there exists A P A such
that λ1 is concentrated on A and λ2 is concentrated on Ac. In this case we write λ1 K λ2.

Proposition D.6.1. Let λ, λ1, λ2 be measures on pX,Aq and µ be a positive measure.

(i) If λ is concentrated on A, so is |λ|.

(ii) If λ1 K λ2, then |λ1| K |λ2|.

(iii) If λ1 K λ and λ2 K λ, then λ1 ` λ2 K λ.

(iv) If λ1 ! µ and λ2 ! µ, then λ1 ` λ2 ! µ.

(v) If λ is signed, then λ ! µ if and only if λ˘ ! µ.

(vi) If λ1 ! µ and λ2 K µ, then λ1 K λ2.

(vii) If λ ! µ and λ K µ, then λ “ 0.

Proof.

(i) For all measurable E, |λ|pEq “ sup
tEnu

ř

|λpE X Enq| “ sup
tEnu

ř

|λpE X En XAq| “ |λ|pE XAq

(ii) This follows from (i).

(iii) Say λi is concentrated on Ai. Then λ1 ` λ2 is concentrated on A :“ A1 Y A2 and λ is
concentrated on Ac.

(iv) Obvious.

(v) Let pP,Nq be a Hahn decomposition of λ. Let A P A be such that µpAq “ 0. Then µpAXP q “

0 “ µpA X Nq. If λ ! µ, then λ`pAq “ λpA X P q “ 0 “ λpA X Nq “ λ´pAq, so λ˘ ! µ. The
converse follows from (iv).

(vi) Say λ2 is concentrated on A. Then for all measurable E Ď A, since µ is concentrated on Ac,
µpEq “ 0, so that λ1pEq “ 0 by absolute continuity. Hence λ1 is concentrated on Ac.

(vii) By (vi) we have λ K λ, so λ “ 0 obviously.

Proposition D.6.2. Let µ be a positive measure on pX,Aq. Let F “ R or C.

1. The subspace Mµ,s :“ tν P MpX,A, F q | ν K µu is closed in MpX,A, F q.

2. The subspace Mµ,a :“ tν P MpX,A, F q | ν ! µu is closed in MpX,A, F q.

Proof.
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1. Let pνnqn Ď Mµ,s be a sequence converging to ν. Say νn is concentrated on An and µ is

concentrated on Bn with An X Bn “ H. Put A “
8
Ť

n“1
An and B “

8
Ş

n“1
Bn. Then µ is clearly

concentrated on B. If E is measurable with E XA “ H. Then in particular, E XAn “ H for
each n, so νnpEq “ νnpE XAnq “ 0 for all n, whence νpEq “ lim

nÑ8
νnpEq “ 0. This shows ν is

concentrated on A, so ν K µ.

2. Let pνnqn Ď Mµ,a be a sequence converging to ν. If µpAq “ 0, then νnpAq “ 0 for all n, so
νpAq “ lim

nÑ8
νnpAq “ 0. Thus ν ! µ.

Theorem D.6.3. Let µ be a positive σ-finite measure on pX,Aq, and λ be a positive σ-finite or
complex measure. If λ ! µ, then there exists a unique function h which is

• finite nonnegative A-measurable if λ is positive σ-finite, or

• complex µ-integrable if λ is complex

such that

λpAq “

ż

A

hdµ

for all A P A. The function h is called the Radon-Nikodym derivative of λ with respect to µ,
and we write h “

dλ

dµ
and dλ “ hdµ.

Proof. If λ is complex, we can use Jordan decomposition for complex measures to write λ as a sum
of positive finite measures which are absolutely continuous with respect to µ. If λ is positive σ-finite,
say X “

8
Ť

n“1
Xn with λpXnq ă 8 and µpXnq ă 8 for each n, then by restricting to each Xn we can

assume λ and µ are both finite. Hence we are reduced to show the following statement. If µ and λ

are positive finite measures with λ ! µ, then there exists a real valued µ-integrable function h such
that λpAq “

ż

A

hdµ for all measurable A.
As said in the previous paragraph, we assume µ and λ are finite positive. Set τ “ µ ` λ. For

every ϕ P L2pτq, by Cauchy Schwarz we have
ˇ

ˇ

ˇ

ˇ

ż

X

ϕdµ

ˇ

ˇ

ˇ

ˇ

ď

ż

X

|ϕ|dµ ď

ż

X

|ϕ|dτ ď

ˆ
ż

X

|ϕ|2dτ

˙
1
2

τpXq
1
2

Hence the map
L2pτq C

ϕ

ż

X

ϕdµ

is a bounded linear functional. The same is true for the map ϕ ÞÑ

ż

X

ϕdλ. Since L2pτq is a Hilbert
space, by Riesz’s Representation theorem there exist unique τ -square-integrable functions f and g

such that
ż

X

ϕdλ “

ż

X

fϕdτ,

ż

X

ϕdµ “

ż

X

gϕdτ

for all ϕ P L2pτq.
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Let ϕ be a nonnegative A-measurable function. Let pϕnqn be an increasing sequence of positive
step functions such that ϕn Ñ ϕ pointwise. By MCT applied to the identity

ż

X

ϕndλ “

ż

X

fϕndτ

we see ϕ P L1pλq if and only if fϕ P L1pτq. Similarly, ϕ P L1pµq if and only if gϕ P L1pτq.
Let N “ tx P X | gpxq “ 0u. Then µpNq “

ż

X

g1Ndτ “ 0, so λpNq “ 0 as well by absolute
continuity λ ! µ. Define

hpxq “

$

&

%

fpxq

gpxq
, if x P XzN

0 , if x P N

For every measurable ϕ : X Ñ C, ϕ P L1pλq if and only if fϕ “ ghϕ P L1pτq (since λpNq “ 0), if
and only if hϕ P L1pµq (since µpNq “ 0). Hence

ż

X

ϕdλ “

ż

X

fϕdτ “

ż

X

ghϕdτ “

ż

X

hϕdµ

for all ϕ P L1pλq. In particular, by taking ϕ “ g P L2pτq Ď L1pλq we obtain h P L1pµq.
It remains to show h is unique (up to a null function) in each case. Suppose g, h : X Ñ r0,8q

are A-measurable and λ is finite such that

λpAq “

ż

A

gdµ “

ż

A

hdµ

Then
ż

A

pg ´ hqdµ “ 0 for all measurable A. By taking A “ tg ě hu and A “ tg ď hu, we see

pg ´ hq` “ 0 and pg ´ hq´ “ 0 µ-almost everywhere, whence g “ h µ-almost everywhere. If λ is
σ-finite, write X “

8
Ť

n“1
Xn with λpXnq ă 8, then the preceding arguments show g “ h µ-almost

everywhere on each Xn, whence on X. The case λ being complex can be dealt with in a similar
fashion.

Proposition D.6.4. Let µ be a complex measure on pX,Aq. Then there exists a measurable
function h such that |hpxq| “ 1 for all x P X such that dµ “ hd|µ|.

Proof. Since µ ! |µ|, by Radon-Nikodym there exists h P L1p|µ|q such that dµ “ hd|µ|. For each
r ą 0, put Ar “ tx P X | |hpxq| ă ru, and let tEnu be a measurable partition of Ar. Then

ÿ

n

|µpEnq| “
ÿ

n

ˇ

ˇ

ˇ

ˇ

ż

En

hd|µ|

ˇ

ˇ

ˇ

ˇ

ď
ÿ

n

r|µ|pEnq “ r|µ|pArq

so that |µ|pArq ď r|µ|pArq. If r ă 1, this forces |µ|pArq “ 0. Thus |h| ě 1 a.e.
On the other hand, if |µ|pEq ą 0, we have

ˇ

ˇ

ˇ

ˇ

1

|µ|pEq

ż

E

hd|µ|

ˇ

ˇ

ˇ

ˇ

“
|µpEq|

|µ|pEq
ď 1

Lemma D.6.5. Let pX,A, µq be a positive finite measure space and f P L1pµq. If S Ď C is a closed
subset such that the average

AEpfq “
1

µpEq

ż

E

fdµ

lie in S for every E P A with µpEq ą 0. Then fpxq P S for almost all x P X.
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Proof. The complement of S can be covered by countably closed ball, so it suffices to show µpf´1pDqq “

0 for all closed ball D Ď Sc. If µpf´1pDqq ą 0,

ˇ

ˇAf´1pDqpfq ´ α
ˇ

ˇ “
1

µpf´1pDqq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

f´1pDq

pf ´ αqdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

µpf´1pDqq

ż

f´1pDq

|f ´ α|dµ ď r

where α is the center of D and r the radius of D. This is impossible for Af´1pDqpfq P S and
D Ď Sc.

By this lemma, we deduce that |h| ď 1 a.e.
In sum, we have proved that |h| “ 1 a.e. The proposition follows once we redefine h on tx P X |

|hpxq| ‰ 1u so that hpxq “ 1 throughout the whole X.

Corollary D.6.5.1. Let µ be a positive measure on pX,Aq and f P L1pµq. Consider the finite
measure µf given by

µf pAq “

ż

A

fdµ

Then |µf | “ µ|f |.

Proof. By the previous proposition, there exists a measurable function h of absolute value 1 such
that dµf “ hd|µf |. Then

hd|µf | “ dµf “ fdµ

so that d|µf | “ hfdµ, where ¨ is complex conjugation. Since |µf | ě 0 and µ ě 0, it follows that
hf ě 0 µ-almost everywhere, whence hf “ |f | µ-almost everywhere, i.e., |µf | “ |f |dµ “ µ|f |.

Theorem D.6.6. Let µ be a positive measure. Let λ be either a real, complex or σ-finite positive
measure. Then there are unique real, complex, or σ-finite measures λa and λs on pX,Aq such that

• λa ! µ and λs K µ, and

• λ “ λa ` λs.

The expression λ “ λa`λs is called the Lebesgue decomposition of λ. λa is called the absolutely
continuous part of λ, and λs is called the singular part of λ.

Proof. First assume λ is positive finite. Define

Nµ :“ tB P A | µpBq “ 0u

and let tBnun Ď Nµ be a sequence such that λpBnq Ñ sup
BPNµ

λpBq as n Ñ 8. Let N “
Ť

ně1
Bn and

define the measures λa, λs by the formulas

λapAq “ λpAXN cq, λs “ λpAXNq

for all A P A. Then λ “ λa ` λs. Since µpNq “ 0, we have λs K µ. Since λpNq “ sup
BPNµ

λpBq,

if B Ď N c is A-measurable with µpBq “ 0, then λpBq “ 0, for otherwise N Y B P Nµ and
λpN YBq ą λpNq. Hence λa ! µ.
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Suppose λ is real or complex. Apply the preceding construction to the positive finite measure
|λ|. Then we have a µ-null set N such that the Lebesgue decomposition |λ| “ |λ|a ` |λ|s is given by

|λ|apAq :“ |λ|pAXN cq, |λ|spAq :“ |λ|pAXNq

Then the measures λa, λs defined by

λapAq “ λpAXN cq, λs “ λpAXNq

clearly give the Lebesgue decomposition of λ.
Assume λ is σ-finite positive and let tXnu be a measurable partition of X such that λpXnq ă 8

for each n. Consider the restriction of λ and µ to each Xn; then we obtain a sequence tNnu of µ-null
sets with Nn Ď Xn. Let N “

Ť

ně1
Nn. Then the measures λa, λs defined by

λapAq “ λpAXN cq, λs “ λpAXNq

give the Lebesgue decomposition of λ.
It remains to show the uniqueness. Let λ “ λa ` λs “ λ1

a ` λ1
s be Lebesgue decompositions of λ.

If λ is finite, then

λa ´ λ1
a “ λ1

s ´ λs.

Since λa ´ λ1
a ! µ and λ1

s ´ λs K µ, it follows that λa ´ λ1
a “ λ1

s ´ λs “ 0, as wanted. The case λ
being positive σ-finite is proved as usual by choosing a measurable partition of X with each piece
finite under λ.

D.7 Bochner Integral

Let V be a Banach space. For a function f : X Ñ V we aim to define an integral
ż

X

fdµ P V such
that for every continuous linear functional α on V we have

α

ˆ
ż

X

fdµ

˙

“

ż

X

αpfqdµ

Let pV, ∥¨∥q be a Banach space and pX,A, µq a (positive) measure space. A simple function is
a function s : X Ñ V that can be written as

s “

n
ÿ

j“1

1Aj
bj (♠)

for some pairwise disjoint measurable sets Aj P A of finite measure and some bj P V . Define
ż

X

sdµ :“
n
ÿ

j“1

µpAjqbj P V

This is clearly independent of the expression p♠q, and it satisfies

•
∥∥∥∥ż
X

sdµ

∥∥∥∥ ď

ż

X

∥s∥ dµ;

• for every linear functional α : V Ñ C, one has

α

ˆ
ż

X

sdµ

˙

“

ż

X

αpsqdµ
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Equip V with the Borel σ-algebra. A measurable function f : X Ñ V is called Bochner
integrable if there exists a sequence sn of simple functions such that

lim
nÑ8

ż

X

∥f ´ sn∥ dµ “ 0

We call such psnq an approximating sequence of f .

Proposition D.7.1.

(a) If f is Bochner integrable and psnq is an approximating sequence, then the sequence of vectors
ż

X

sndµ converges. Its limit does not depend on the choice of the approximating sequence.

Define the integral of f to be this limit
ż

X

fdµ :“ lim
nÑ8

ż

X

sndµ

(b) For every Bochner integrable function f one has∥∥∥∥ż
X

fdµ

∥∥∥∥ ď

ż

X

∥f∥ dµ ă 8

(c) Let f be Bochner integrable. For every continuous linear operator T : V Ñ W to a Banach
space W one has

T

ˆ
ż

X

fdµ

˙

“

ż

X

T pfqdµ

(d) If V “ C, then the Bochner integral coincides with the usual integral.

Proof.

(a) ∥∥∥∥ż
X

sndµ´

ż

X

smdµ

∥∥∥∥ ď

ż

X

∥sn ´ sm∥ dµ “

ż

X

∥sn ´ f ` f ´ sm∥ dµ

ď

ż

X

∥sn ´ f∥ dµ`

ż

X

∥f ´ sm∥ dµ

so this value tends to 0 as n,m Ñ 8. Let prnq be another approximating sequence of f . Then∥∥∥∥ż
X

sndµ´

ż

X

rndµ

∥∥∥∥ ď

ż

X

∥sn ´ rn∥ dµ “

ż

X

∥sn ´ f ` f ´ rn∥ dµ

ď

ż

X

∥sn ´ f∥ dµ`

ż

X

∥f ´ rn∥ dµ Ñ 0 as n Ñ 0

(b) Let psnq be an approximating sequence of f . Then ∥sn∥ Ñ ∥f∥ in L1pXq, for

0 ď lim
nÑ8

ż

X

| ∥f∥ ´ ∥sn∥ | ď lim
nÑ8

ż

X

∥f ´ sn∥ “ 0

so that
ż

X

∥f∥ “

ż

X

∥f ´ sn ` sn∥ ď

ż

X

∥f ´ sn∥ `

ż

X

∥sn∥ ă 8

Then ∥∥∥∥ż
X

f

∥∥∥∥ “ lim
nÑ8

∥∥∥∥ż
X

sn

∥∥∥∥ ď lim
nÑ8

ż

X

∥sn∥ “

ż

X

∥f∥ ă 8
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(c) By continuity, we have

T

ˆ
ż

X

f

˙

“ T

ˆ

lim
nÑ8

ż

X

sn

˙

“ lim
nÑ8

ż

X

T psnq

Since T is continuous, we can find C ą 0 such that ∥T pvq∥ ď C ∥v∥ for all v P V , and so
∥T pfq∥ ď C ∥f∥. In particular, T pfq is integrable. Estimate∥∥∥∥ż

X

T pfq ´

ż

X

T psnq

∥∥∥∥ ď

ż

X

∥T pfq ´ T psnq∥ “

ż

X

∥T pf ´ snq∥ ď C

ż

X

∥f ´ sn∥ Ñ 0

(d) It follows from the last estimate with T “ id.

Definition.

(i) A function f : X Ñ V is called separable if there exists a countable subset C Ď V such that
fpXq Ď C, where C is the closure of C in V .

• If V is separable (as topological spaces), then any function is automatically separable in the
sense above.

(ii) A function f : X Ñ V is essentially separable if there exists a measurable zero set N Ď X

such that f |XzN is separable.

Lemma D.7.2. Let X be a topological space and f : X Ñ V a continuous function with σ-compact
support. Then f is separable.

Proof. Being σ-compact, let supp f “
8
Ť

n“1
Kn with compact Kn Ď X. Then fpXq Ď

8
Ť

n“1
fpKnq.

Since f is continuous, fpKnq is compact; being a compact metric space, fpKnq is itself separable.

Proposition D.7.3. For a measurable function f : X Ñ V TFAE:

(i) f is Bochner integrable.

(ii) f is essentially separable and
ż

X

∥f∥ dµ ă 8.

Proof. Suppose f is Bochner integrable. Then by Lemma D.7.1.(b),
ż

X

∥f∥ dµ ă 8. To show that f
is essentially separable, let psnq be an approximating sequence of f . Since each sn has finite image,
the Banach subspace of V generated by the snpXq, n P N is separable. The set N :“ f´1pV zEq is
a countable union N “

Ť

ně1
Nn, where

Nn :“

"

x P X | ∥fpxq ´ e∥ ě
1

n
for all e P E

*

Since lim
nÑ8

ż

X

∥f ´ sn∥ “ 0, each Nn has zero measure, and so does N .

Conversely, suppose f is essentially separable and
ż

X

∥f∥ ă 8. Up to a measure zero set we

may assume f is separable. Let C “ tcnuně1 Ď V be countable such that fpXq Ď C. For each
pn, δq P N ˆ Rą0, put

Aδn :“ tx P X | ∥fpxq∥ ě δ, ∥fpxq ´ cn∥ ă δu
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Since f is measurable, each Aδn is measurable. We make some modification:

Dδ
n :“ Aδnz

ď

kăn

Aδk

Then for a fixed δ ą 0, the Dδ
n are pairwise disjoint, and

ď

ně1

Aδn “
ğ

Dδ
n “ f´1pfpXqzBδp0qq

for C is dense in fpXq. Since ∥f∥ is integrable, f´1pfpXqzBδp0qq has finite measure. Let

sn “

n
ÿ

j“1

1
D

1
n
j

cj

Then sn is a simple function. We content that sn Ñ f pointwise. Let x P X.

• fpxq “ 0. Then snpxq “ 0 for every n. Great.

• fpxq ‰ 0. Then ∥fpxq∥ ě
1

n
for some n P N, and for m ě n one has

x P
ď

νě1

D
1
m
ν

so that for each m ě n there exists a unique, by disjointness, ν0 with D
1
m
ν0 , and hence smpxq “

cν0 , and ∥fpxq ´ cν0∥ ă
1

m
.

This shows sn Ñ f . Also, by construction we have ∥sn∥ ď 2 ∥f∥. Since

• ∥f ´ sn∥ Ñ 0 pointwise, and

• ∥f ´ sn∥ ď ∥f∥ ` ∥sn∥ ď 3 ∥f∥,

by DCT we obtain
ż

X

∥f ´ sn∥ dµ Ñ 0 as wanted.

Corollary D.7.3.1. Let X be an LCH space and µ a Radon measure. Then every continuous
function f : X Ñ V with compact support is Bochner integrable.

Proof. Since ∥f∥ P CcpXq, it follows from Proposition and Lemma above that f is integrable.

Lemma D.7.4. Let G be an LCH group. If f P CcpGq and g P L1pGq, then the Bochner integral
ż

G

fpxqLxg dx

exists in the Banach algebra L1pGq, and equals the convolution product f ˚ g.

Proof. Consider the function
ϕ : G L1pGq

x fpxqLxg

This is continuous by Lemma 2.6.7, and since it has compact support (as f does), by Corollary
D.7.3.1 it is Bochner integrable. Thus

ż

G

ϕpxq dx P L1pGq, and to see it coincides with f ˚ g, it
suffices to show

h ˚

ż

G

ϕpxqLxg dx “ h ˚ f ˚ g
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for all h P CcpGq by Lemma 2.6.9.
Let h P CcpGq. For ϕ P L1pGq and y P G, the integral h ˚ ϕpyq exists, and

|h ˚ ϕpyq| ď

ż

G

|hpzq|ϕpz´1yq|dz

2.3.1.4
“

ż

G

∆pz´1q|hpyz´1q||ϕpzq|dz

ď C ∥ϕ∥1

with C ě 0 for the function z ÞÑ ∆pz´1q|hpyz´1q| is continuous. This implies the linear functional

α : L1pGq C

ϕ h ˚ ϕpyq

is continuous. Then for ϕ “

ż

G

fpxqLxg dx, it follows

h ˚ ϕpyq “ αpϕq “ α

ˆ
ż

G

fpxqLxg dx

˙

“

ż

G

fpxqαpLxgqdx

“

ż

G

ż

G

gpxqhpzqgpx´1z´1yqdzdx

“ h ˚ f ˚ gpyq

D.7.1 Cauchy’s Integral Formula
Definition. Let Ω Ď C be an open set, f : Ω Ñ V be holomorphic in the sense of Definition 3.1.1
and γ : r0, 1s Ñ Ω be C1. The path integral is defined as

ż

γ

fpzqdz :“

ż

r0,1s

fpγptqqγ1ptqdt

Theorem D.7.5 (Cauchy’s Integral Formula). Let Ω Ď C be an open set and f : Ω Ñ V be
holomorphic. Suppose D Ď Ω is an open disc with D Ď Ω, then for every z P D, we have

fpzq “
1

2πi

ż

BD

fpξq

ξ ´ z
dξ

Proof. It follows from Hahn-Banach theorem, Proposition D.7.1.(c) and the usual Cauchy’s Integral
Formula in complex analysis.

Corollary D.7.5.1. Let the situation be as in the theorem, and let D be an open disc around the
origin such that D Ď Ω. Then there exist vn P V such that

fpzq “

8
ÿ

n“0

vnz
n

holds for every z P D, and the sum converges uniformly on every closed subset of D.
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Proof. If z P D and ξ P BD, then
ˇ

ˇ

ˇ

ˇ

z

ξ

ˇ

ˇ

ˇ

ˇ

ă 1, which means that the geometric series

8
ÿ

n“0

ˆ

z

ξ

˙n

“
1

1 ´ z{ξ

converges uniformly for pz, ξq in D ˆ BD. Applying the Cauchy’s formula, we obtain

fpzq “
1

2πi

ż

BD

fpξq

ξ ´ z
dξ “

1

2πi

ż

BD

1

ξ

fpξq

1 ´ z{ξ
dξ

“
1

2πi

ż

BD

fpξq

ξ

8
ÿ

n“0

ˆ

z

ξ

˙n

dξ

“
1

2πi

8
ÿ

n“0

zn
ż

BD

fpξq

ξn`1
dξ

The last step is justifies by the uniform convergence.

D.8 Gelfand-Pettis integral
Let V be a topological vector space such that the continuous dual V _ separates points, in the sense
that for each v P V there exists ℓ P V _ with ℓpxq ‰ 0. Consider the evaluation pairing

V _ ˆ V C

pℓ, xq xℓ, xy :“ ℓpxq

A subset S Ď V _ is said to be separating if x ‰ 0, then ℓpxq ‰ 0 for some ℓ P S. Equivalently, if
ℓpxq “ 0 for all ℓ P S, then x “ 0.

Let pX,A, µq be a measure space, and f : X Ñ V be a function. For ℓ P V _, the composition
ℓ ˝ f : X Ñ C is complex-valued, and it makes sense to talk about the measurablity and integrablity
in the usual sense.

Definition. Suppose V _ is separating. f : X Ñ V is Dunford integrable if ℓ ˝ f is measurable
for all ℓ P V _, and for each A P A there exists an element dA P V __ such that

dApT q “

ż

A

ℓ ˝ fdµ

for all ℓ P V _. We say f is Pettis integrable if dA P V for each A P A. In any case, we write

dA “:

ż

A

fdµ

and call it the Dunford (resp. Pettis) integral of f .
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Appendix E

Functional Analysis

E.1 Banach Space Basics
In the following let pD, | ¨ |q be a non-discrete valued division ring. We assume | ¨ | is an absolute
value on D, namely, | ¨ | satisfies the triangle inequality.

Definition. Let X be a left vector space over D.

(i) A (D-)norm on X is a function ∥¨∥ : X Ñ Rě0 satisfying

(a) ∥x∥ “ 0 if and only if x “ 0.

(b) ∥rx∥ “ |r| ∥x∥ for r P D and x P X.

(c) ∥x` y∥ ď ∥x∥ ` ∥y∥ for x, y P X.

The pair pX, ∥¨∥q is called a normed linear space over D.

(ii) Let ∥¨∥ be a norm on X. The pair pX, ∥¨∥q is called a Banach space if D is complete and the
underlying metric space is complete.

For two normed linear spaces pX, ∥¨∥Xq, pY, ∥¨∥Y q, consider the space

BpX,Y q “ HomDpX,Y q X HomToppX,Y q

of all continuous D-linear functions from X to Y . It is naturally a left D-module. This is naturally
equipped with a norm, called the operator norm. For any T P HomDpX,Y q define

∥T∥op “ sup
0‰xPD

∥Tx∥Y
∥x∥X

ď 8.

It follows formally that ∥¨∥op is a D-norm, except we do not on which space the norm is finite. The
following lemma finds the space.

Lemma E.1.1. BpX,Y q “ tT P HomDpX,Y q | ∥T∥op ă 8u.

Proof. If ∥T∥op ă 8, then by definition ∥Tx∥Y ď ∥T∥op ∥x∥X for all x, so T is Lipschitz continuous.
In particular, T is continuous.

For the other way around, note since D is non-discrete, we can (and we do) choose a P D with
|a| ą 1. Suppose T : X Ñ Y is a D-linear map. If T is continuous, in particular it is continuous at

398



0, so there exists δ ą 0 such that ∥Tx∥Y ă 1 for ∥x∥X ă δ. Now for x P X, there exists n P Z such

that |an| ď
∥x∥X
δ

ď |an´1|. Then
∥∥∥ x

an´1

∥∥∥
X

ă δ so 1 ą

∥∥∥T ´ x

an´1

¯∥∥∥
Y

“
∥Tx∥Y
|an´1|

, or

∥Tx∥Y ă |an´1| ď
∥x∥X
δ|a|

.

This is true for all x P X, so ∥T∥op ă 8.

This shows pBpX,Y q, ∥¨∥opq is a normed linear space. A element in BpX,Y q is usually called a
bounded operator.

Lemma E.1.2. If Y is Banach, then BpX,Y q is Banach. The converse holds if BpX,Dq ‰ 0.

Proof. Assume Y is Banach. Let pTnqn Ď BpX,Y q be a Cauchy sequence. Then pTnpxqqn Ď Y is
Cauchy for each x P X. Now by completeness of Y , we can define a D-linear map T : X Ñ Y

by setting T pxq :“ lim
nÑ8

Tnpxq. We prove T is continuous by showing ∥T∥op ă 8. Since pTnqn is
Cauchy, there exists N ě 0 such that ∥Tnpxq ´ Tmpxq∥Y ď ∥x∥X for all n,m ě N and x P X. Since
∥¨∥Y : Y Ñ R is continuous, letting m Ñ 8 gives ∥Tnpxq ´ T pxq∥Y ď ∥x∥X , so

∥T pxq∥Y ď ∥Tnpxq∥Y ` ∥x∥X “ p∥Tn∥op ` 1q ∥x∥X .

This proves ∥T∥op ď ∥Tn∥op ` 1 ă 8. The proof for Tn Ñ T in BpX,Y q is the same.
For the converse, assume BpX,Y q is Banach and BpX,Dq ‰ 0. Take 0 ‰ α P BpX,Dq. Let

pynqn be a Cauchy sequence in Y and define Tn P BpX,Y q by Tnpxq “ αpxqyn. Then for x P X and
n,m ě 1

∥Tnpxq ´ Tmpxq∥Y “ ∥αpxqyn ´ αpxqym∥Y “ |αpxq| ∥yn ´ yn∥Y ď ∥α∥op ∥x∥X ∥yn ´ ym∥Y .

This says that ∥Tn ´ Tm∥op ď ∥α∥op ∥yn ´ ym∥Y for all n,m ě 1. Since pynqn is Cauchy and α is
bounded, this shows that pTnqn is Cauchy in BpX,Y q. Since BpX,Y q is complete, T :“ lim

nÑ8
Tn

exists. Let x R kerα and define y “ αpxq´1T pxq P Y . We claim yn Ñ y as n Ñ 8. This is clear:

∥yn ´ y∥Y “
∥∥αpxq´1Tnpxq ´ αpxq´1T pxq

∥∥
Y

ď |αpxq|´1 ∥Tn ´ T∥op Ñ 0

as n Ñ 8.

Definition. Let X be left vector space over D.

(i) D˚ :“ HomDpX,Dq is called the algebraic dual of D.

(ii) D_ :“ BpX,Dq is called the continuous dual of D. Without otherwise stated, we always
equip D_ with the operator norm.

E.1.1 Compact operators
Definition. Let X,Y be two normed linear spaces over D. A bounded operator T : X Ñ Y is
called compact if it sends bounded subsets to precompact subsets.

Lemma E.1.3. Let X,Y be two normed linear spaces over D and T : X Ñ Y a bounded operator.
TFAE:

(i) T is compact.

(ii) If panqn Ď X is a bounded sequence, then pTanqn Ď Y admits a convergent subsequence.

Proof. Since Y is a metric space, the equivalence follows from Lemma A.5.3.
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E.1.2 Hahn-Banach
Let D be a non-discrete valued division ring, and let X be a normed linear space over D. We
try to extend a bounded functinoal T : M Ñ D on a subspace M of X to a larger space without
increasing the operator norm. Let x P XzM . We have to find y P D such that the extension
T 1 : M ‘ Dy Ñ D of T given by T 1pxq “ y satisfies ∥T 1∥op ď ∥T∥op. It suffices to find y such that
|T 1pm´ xq| ď ∥T∥op ∥m´ x∥ for all m P M , or

|T pmq ´ y| ď ∥T∥op ∥m´ x∥ pm P Mq

or

y P
č

mPM

B
D

∥T∥op∥m´x∥pT pmqq

We consider the case where D is non-archimedean. For this introduce

Definition. A normed linear space pX, ∥¨∥q is called non-archimedean if ∥¨∥ satisfies the ultra-
metric inequality: ∥x` y∥ ď maxt∥x∥ , ∥y∥u for all x, y P X.

If X is non-archimedean, then for m,m1 P M

|T pmq ´ T pm1q| ď ∥T∥op
∥∥m´m1

∥∥ ď ∥T∥op maxt∥m´ x∥ ,
∥∥m1 ´ x

∥∥u

In particular, we see if ∥m´ x∥ ď ∥m1 ´ x∥, then B
D

∥T∥op∥m´x∥pT pmqq Ď B
D

∥T∥op∥m1´x∥pT pm1qq, so
!

B
D

∥T∥op∥m´x∥pT pmqq | m P M
)

is a collection of closed balls totally ordered by set inclusion. If D is locally compact, then this is
non-empty by finite intersection property. More generally,

Definition. A metric space is called spherically complete if each collection of decreasing closed
balls has a common point.

The same property shows that a locally compact non-archimedean division ring is spherically
complete. The above result together with a Zorn’s lemma argument shows

Theorem E.1.4 (Ingleton). Let D be a spherically complete non-archimedean division ring, X a
non-archimedean normed linear space over D and M Ď X a subspace. Then the restriction

X_ M_

T T |M

is surjective, and each fibre contains a functional with the same bound.

We now turn to the case when D is archimedean. The case D “ R or C is contained in §E.3.3.
The case D “ H need more assumption. See https://arxiv.org/abs/math/0609160v1

Theorem E.1.5 (Hahn-Banach’s). Let M be s subspace of a Banach space V and let α : M Ñ C
be linear with |αpxq| ď ∥x∥ for all x P M . Then α extends to a linear function V Ñ C such that
|αpxq| ď ∥x∥ holds for all x P V .

Corollary E.1.5.1. Let E Ď V be a Banach subspace of V .

1. The restriction map V _ Ñ E_ is surjective, and for α P E_, its fibre contains α1 P V _ with
∥α1∥ “ ∥α∥.

2. V _ separates points. In other words, if v, w P V such that αpvq “ αpwq for all α P V _, then
v “ w.
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E.1.3 Corollaries of Baire category
Theorem E.1.6 (Uniform Boundedness Principle). Let V be a Banach space and E a normed
linear space. Let tΛαuαPA be a collection of bounded linear maps from V to E. Then either there
exists M ă 8 such that ∥Λα∥ ď M for all α P A, or sup

αPA
∥Λαv∥ “ 8 for all v in some dense Gδ set

in X.

Theorem E.1.7 (Open Mapping Theorem). A bounded surjective linear operator between Banach
spaces is an open map.

Theorem E.1.8 (Closed Graph Theorem). Suppose that T : V Ñ W is a linear map between
Banach spaces such that the graph

ΓT :“ tpv, Tvq | v P V u Ď V ˆW

is a closed in the product topology. Then T is bounded.

Let T : V Ñ W be a linear map between normed spaces. The projection pr1 : ΓT Ñ V is always
an linear isomorphism, so we can use this to define the graph norm ∥¨∥T : V Ñ Rě0:

∥v∥T :“ ∥v∥V ` ∥Tv∥W

The identity map pV, ∥¨∥T q Ñ pV, ∥¨∥V q is clearly continuous, and for this to be open it is equivalent
to saying that T is bounded. The closed graph theorem amounts to saying that ΓT Ď V ˆ W is
closed if and only if ∥¨∥T is complete.

Lemma E.1.9. Let V be a Banach space and W a closed subspace. Then the quotient space V {W

is also a Banach space equipped with the quotient norm

∥a`W∥ :“ inft∥a` w∥ | w P W u

Proof. We must show it is V {W is complete with respect to the quotient norm. Let pan ` W qn be
a Cauchy sequence. Passing to a subsequence we may assume

8
ř

n“1
∥an`1 ´ an ` wn∥ ă 8 for some

wn P W . Since V is complete, a :“
8
ř

n“1
pan`1 ´an `wnq defines an element of V . Since the quotient

map v ÞÑ v`W is norm-decreasing, we see an`W Ñ a`W with respect to the quotient norm.

Lemma E.1.10. Suppose F be a complete subspace of a normed vector space E. If F has finite
codimension in E, then E is complete.

Proof. It at once reduces to the case E{F is one dimensional. Fix an x P E ´ F . Suppose pwnqn is
Cauchy in E. Since the quotient map E Ñ E{F is norm-decreasing, if we write wn “ vn `anx with
vn P F and an P C for each n, then panx`F qn is Cauchy in E{F . Recall that any finite dimensional
normed space over C is complete. Thus anx`F Ñ ax`F for some a P C and by definition we can
find un P F such that ∥anx` un ´ a∥ ď ∥ax´ anx` F∥ ` n´1 for each n. Therefore

∥pvn ´ unq ´ pvm ´ umq∥ ď ∥wn ´ wm∥ ` ∥panx` unq ´ pamx` umq∥

ď ∥wn ´ wm∥ ` ∥ax´ anx` F∥ ` n´1 ` ∥ax´ amx` F∥ `m´1

and so pvn ´ unqn is Cauchy. Since F is complete, vn ´ un Ñ v P F . Now define w “ v ` a.

∥wn ´ w∥ ď ∥pvn ´ unq ´ v∥ ` ∥panx` unq ´ a∥ ď ∥pvn ´ unq ´ v∥ ` ∥ax´ anx` F∥ ` n´1

The right hand side Ñ 0 as n Ñ 8, from which we conclude wn Ñ w.
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Lemma E.1.11. Let B be a Banach space and E be a proper closed subspace. For each ε ą 0

there exists x P B with ∥x∥ “ 1 such that inf
yPE

|x´ y| ą 1 ´ ε.

Proof. If ε ě 1, the assertion is obvious. Assume 0 ă ε ă 1. Pick x1 P BzE. Since E is closed,
d :“ inf

yPE
∥x´ y∥ ą 0. Pick y1 P E with d ď ∥x1 ´ y1∥ ď d ` η, where η ą 0 is to be chosen. Put

x “
x1 ´ y1

∥x1 ´ y1∥
. Then for y P E, we have

∥x´ y∥ “

∥∥∥∥x1 ´ py1 ` ∥x1 ´ y1∥ yq

∥x1 ´ y1∥

∥∥∥∥ ě
d

∥x1 ´ y1∥
ě

d

d` η
“ 1 ´ ε

once we choose η “
dε

1 ´ ε
ą 0.

Proposition E.1.12. A Banach space is locally compact if and only if it is finite dimensional.

Proof. The if part is obvious. Suppose B is a locally compact Banach space. In particular, the unit
ball B1 is compact. Let v1 P BB1. For n ě 2, use the previous lemma to choose v1, . . . , vn P BB1

inductively so that
discpvi; spantv1, . . . , vi´1uq ą

1

2

If B is infinite dimensional, then we obtain an infinite sequence pvnqn Ď BB1 with ∥vi ´ vj∥ ą
1

2
whenever i ‰ j. But BB1 is (sequentially) compact, this is a contradiction.

Proposition E.1.13. A normed space is separable if and only if it admits a sequence of linearly
independent vectors whose linear span is dense.

Proof. Let E be a separable normed space. Let C be a countable dense subset, and from C we choose
a maximal linearly independent subset C 1. By construction, C Ď spanC 1, so spanC 1 is dense. For
the only if part, their linear span over Q is a countable dense subset.

E.2 Hilbert Space Basics

E.2.1 Riesz’s Representation Theorem
In the section, let pH, x, yq be a complex Hilbert space, i.e., a complete inner product space over C.

Definition.

1. Let S be a subset of H. The orthogonal complement of S is

SK :“ tv P H | xv, wy “ 0 for all w P Su

2. A projection p : V Ñ V is called an orthogonal projection if it verifies the following
equivalent conditions:

(i) For all v P V , v ´ pv P pIm pqK.

(ii) pIm pqK “ ker p and pker pqK “ pIm pq.

(iii) p is self-adjoint.

We will show the equivalence between 2.(i),(ii),(iii) in the sequel. For this moment, by orthogonal
projection we mean 2.(i).
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Theorem E.2.1. Let W Ď H be a closed convex subset and x P H.

1. There exists a unique element y P W minimizing the distance ∥x´ w∥ pw P W q.

2. If W is a subspace, then x´ y P WK.

Hence, the orthogonal projection onto a closed subspace always exists.

Proof. The essence of this proof is the parallelogram law:

∥v ` w∥2 ` ∥v ´ w∥2 “ 2p∥v∥2 ` ∥w∥2q,

which is valid for every inner product space.

1. We begin with the uniqueness. Suppose y, y1 P W are two elements that attain the minimum
d. Then∥∥py ´ xq ` py1 ´ xq

∥∥2 `
∥∥py ´ xq ´ py1 ´ xq

∥∥2 “ 2p∥y ´ x∥2 `
∥∥y1 ´ x

∥∥2q “ 4d2

or

4d2 ě 4

∥∥∥∥x´
y ` y1

2

∥∥∥∥ `
∥∥y ´ y1

∥∥2 ě 4d2 `
∥∥y ´ y1

∥∥2 ě 0

by minimality, or 0 ě ∥y ´ y1∥2 ě 0. This forces y “ y1.

For existence, d :“ inf
wPW

∥x´ w∥; by definition, we can find a sequence pwnqně1 such that

d ď ∥x´ wn∥ ď d`
1

n
for each n ě 1. We have

∥wm ´ x` wn ´ x∥2 ` ∥wm ´ x´ wn ` x∥2 “ 2p∥wm ´ x∥2 ` ∥wn ´ x∥2q.

Then

∥wm ´ wn∥2 “ 2p∥wm ´ x∥2 ` ∥wn ´ x∥2q ´ 4

∥∥∥∥wn ` wm
2

´ x

∥∥∥∥2
ď 2

˜

ˆ

d`
1

m

˙2

`

ˆ

d`
1

n

˙2
¸

´ 4d2

“ 4d

ˆ

1

m
`

1

n

˙

` 2

ˆ

1

m2
`

1

n2

˙

The estimate in the end of the second line holds as wn ` wm
2

P W by convexity. This shows
pwnqn is a Cauchy sequence; since W is closed, we can find its limit y P W in W . Then
∥x´ y∥ “ d as we want.

2. Let w P W and consider the pencil x ´ y ´ tw pt P Cq. Then ∥x´ y ´ tw∥ r ě ∥x´ y∥2 “ d2,
or

|t|2 ∥w∥2 ´ 2Reptxx´ y, wyq ě 0.

If xx´ y, wy ‰ 0, say xx´ y, wy “ ru for some r ą 0, u P S1. Take t “ εu; then

ε2 ∥w∥2 ´ 2rε ě 0.

This is absurd as ε is arbitrary. Hence xx´ y, wy “ 0.
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Lemma E.2.2. If S is a subset of H, then SK is a closed subspace of H and S “ pSKqK.

Proof. It is clear that SK is a subspace of H. Let pvnqn Ď SK be a sequence converging to v P S.
Then for w P S,

|xv, wy| “ |xv ´ vn ` vn, wy| “ |xv ´ vn, wy| ď ∥v ´ vn∥ ∥w∥

so that xv, wy “ 0 for all w P S, i.e., v P SK. For the last assertion, note S Ď pSKqK is clear, and since
the latter is closed, it follows S Ď pSKqK. For the reverse inclusion, we use Theorem E.2.1. First,
note that ppSKqKqK “ SK. Indeed, for subsets S Ď T , one has SK Ě TK. Thus SK Ě ppSKqKqK Ě SK

and we have equality throughout. Second, by (E.2.1) for v P pSKqK we can write v “ x ` y with
x P S and y P S

K
Ď SK. We must show y “ 0, and proving xy, wy “ 0 for all w P H suffices.

• w P S. Then xy, wy “ 0 for y P SK and w can be approximated by elements in S.

• w P S
K

Ď SK. Then
xy, wy “ xv, wy

loomoon

“0 since vPpSKqK

´ xx,wy
loomoon

“0 since xPS

“ 0

This proves y “ 0, and thus v P S.

Theorem E.2.3 (Riesz’s Representation Theorem). For T P H_, there exists a unique y P H

such that T pxq “ xx, yy. In other words, the inner product H ˆ H Ñ C induces a conjugate-linear
isomorphism H – H_.

Proof. The uniqueness is clear. Let N :“ kerT . If N “ H, then take y “ 0. Otherwise, since N is
closed, by Theorem E.2.1 we have H “ N‘NK, and T restricts to an isomorphism T |NK : NK Ñ C.

Let v0 P NK be of norm one and set w “ T pv0qv0. For each v P V , we can write v “ x ` λv0

with x P N, λ P C. Then

xv, wy “ xλv0, T pv0qv0y “ λT pv0q “ T pvq

Corollary E.2.3.1. For T P BpHq, there exists a unique T˚ P BpHq, called the adjoint of T , such
that

xTv,wy “ xv, T˚wy

for all v, w P H.

E.2.2 Orthonormal Basis
Definition. Let H be a Hilbert space.

1. A subset A Ď H is orthonormal if ∥u∥ “ 1 for all u P A and xu, vy “ 0 for all u ‰ v P A.

2. A maximal (with respect to the inclusion) orthonormal subset A ofH is called an orthonormal
basis of H.

• A Zorn’s lemma argument shows that every orthonormal subset of H is contained in an or-
thonormal basis of H. In particular, a nontrivial Hilbert space has an orthonormal basis.
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Let S be an arbitrary set. For a function φ : S Ñ r0,8s, define

ÿ

sPS

φpsq :“ sup

#

ÿ

sPS1

φpsq | S1 Ď S, #S1 ă 8

+

A moment consideration shows that this exactly means the integral of φ with respect to the counting
measure # on S. In this situation, we write ℓppSq “ Lpp#q. Note that for φ P ℓ2pSq, the set
tx P S | φpxq ‰ 0u is at most countable.

Theorem E.2.4. Let A be an orthonormal set in H, and let P “ spanCA.

1. We have the Bessel’s inequality
ÿ

αPA

|x̂pαq|2 ď ∥x∥2

for all x P H, where x̂ : A Ñ C is defined by x̂pαq :“ xx, αy.

2. The association
Φ : H ℓ2pAq

x x̂

is a surjective continuous linear map whose restriction to P is an isometry onto ℓ2pAq.

Proof. 1. holds with A replaced by any of its finite subset, so it holds for A as well by definition.
In particular, this shows the map Φ defined in 2. is well-defined. It is clear that Φ is linear, and for
continuity, one notes that for x, y P H, by 1. we have

∥Φpyq ´ Φpxq∥2 “ ∥ŷ ´ x̂∥2 ď ∥y ´ x∥

Then Φ|P : P Ñ ℓ2pAq is an isometry whose image consists of those functions with finite support;
clearly, ΦpP q is dense in ℓ2pAq. Φ|P being isometric, we see that Φ|P : P Ñ ℓ2pAq is then a surjective
isometry.

Theorem E.2.5. Let A be an orthonormal set in H. TFAE:

(a) A is an orthonormal basis of H.

(b) The linear span of A is dense in H.

(c) The equality
ÿ

αPA

|x̂pαq|2 “ ∥x∥2

holds for all x P H.

(d) The Parseval’s identity
ÿ

αPA

x̂pαqŷpαq “ xx, yy

holds for all x, y P H.
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Proof. (a) ñ (b) follows from Lemma E.2.1, and (b) ñ (c) follows from Theorem E.2.4 by noting
that LHS of (c) is ∥x̂∥22. (c) ñ (d) follows from the polarization identity

4xx, yy “ ∥x` y∥2 ´ ∥x´ y∥2 ` i ∥x` iy∥2 ´ i ∥x´ iy∥2

Finally, if A is not maximal, then we can find 0 ‰ u P HzA such that ûpαq “ 0 for all α P A. Then
(d) leads to (with x “ y “ u) 0 “ ∥u∥2 ą 0, a contradiction.

Proposition E.2.6. Let H be a Hilbert space and A,B be two orthonormal basis. Then #A “ #B.

Proof. Let A “ teiuiPI and B “ tfjujPJ . By Parseval’s identity, for every fj P B we have
ÿ

iPI

|xfj , eiy|2 “ ∥fj∥2 “ 1

Let Inj :“

"

i P I | xfj , eiy ě
1

n

*

. The above identity implies #Inj ă 8, so Ij :“
Ť

nPN
Inj is countable.

By Parseval’s identity again, we have
ÿ

jPJ

|xfj , eiy|2 “ ∥ei∥2 “ 1

and this implies that I “
Ť

jPJ

Ij . Hence #I ď #pJ ˆ Nq “ #J . Symmetrically we have #J ď #I,

so #A “ #I “ #J “ #B.

Proposition E.2.7. Let pxnqn be an orthogonal sequence in a Hilbert space H. Then the following
are equivalent.

(i)
8
ÿ

n“1

xn converges in norm topology of H.

(ii)
8
ÿ

n“1

∥xn∥2 ă 8.

(iii)
8
ÿ

n“1

xxn, yy converges for all y P H.

Proof. We have
∥∥∥∥ M
ř

n“N

xn

∥∥∥∥2 “
M
ř

n“N

∥xn∥2 by our assumption, so (ii) implies (i). By Cauchy-Schwarz,

(i) implies (iii). Now assume (iii). For each N P N, define an operator ΛN on H by

ΛNy “

N
ÿ

n“1

xxn, yy.

By (iii), the sequence pΛNyqN converges for all y P H, so by uniform boundedness principal, the
sequence p∥ΛN∥qN is bounded. But

∥ΛN∥ “ ∥xx1 ` ¨ ¨ ¨ ` xN , ¨y∥ “ ∥x1 ` ¨ ¨ ¨ ` xN∥ “

´

∥x1∥2 ` ¨ ¨ ¨ ` ∥xN∥2
¯

1
2

we see (iii) implies (ii).
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E.2.3 Constructions
Proposition E.2.8. For a Hilbert space H, its continuous dual H_ is also a Hilbert space, with
the inner product

xf, gy :“
ÿ

αPA

fpαqgpαq

where A is an orthonormal basis of H. The sum is independent of the choice of orthonormal basis. In
this way, the isomorphism described in Theorem E.2.3 is an antilinear norm-preserving isomorphism.

Proof. The sum always converges by Bessel’s inequality and Riesz’s Representation theorem, and it
is clear that it defines an inner product on H_. Let B be another orthonormal basis of H. Then
we can find aαβ P C pα P A, β P Bq such that α “

ř

βPB

aαββ., and they satisfy
ř

βPB

aαβaα1β “ δαα1 as

well as
ř

αPA

aαβaαβ1 “ δββ1 ; thus

ÿ

αPA

fpαqgpαq “
ÿ

αPA

ÿ

β,β1PB

aαβaαβ1fpβqgpβ1q “
ÿ

βPB

fpβqgpβq

For the last assertion, we use the notation in the proof of Theorem E.2.3. We use an orthonormal
basis of N together with v0 to compute ∥T∥; then

∥T∥2 “ T pv0qT pv0q “ T pwq “ xw,wy “ ∥w∥2

In fact, the norm defined by this inner product is the same as the operator norm. Keep the notation
as above; then

∥T∥2op “

˜

sup
∥v∥“1

|T pvq|

¸2

“ |T pv0q|2 “ T pv0qT pv0q “ ∥T∥2

as wanted.

Definition. Let tHiuiPI be a family of Hilbert spaces. The algebraic direct sum has a natural inner
product:

xv, wy :“
ÿ

iPI

xvi, wiy

for v “ pviq, w “ pwiq. The completion of
À

iPI

Hi is called the Hilbert direct sum, and is denoted

by x

À

iPI

Hi. If there is no confusion, the hat is usually omitted.

• One can identity x

À

iPI

Hi with the space
"

pviq P
ś

iPI

Hi |
ř

iPI

∥vi∥2 ă 8

*

.

Definition. For two Hilbert spaces V,W , their algebraic tensor products (over the base field) V bW

has a natural inner product defined by

xv b w, v1 b w1y “ xv, v1yxw,w1y

and extend by linearity in the first component and by conjugate-linearity in the second argument.
The completion of V bW is called the Hilbert tensor product, and is denoted by V pbW .
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• To show the formula actually defines an inner product, we must show it is positive definite. Let
x “

n
ř

i“1

vibwi P V bW . By a Gram-schmidt process we can assume pwiq
n
i“1 is an orthonormal

sequence. Then

xx, xy “
ÿ

1ďiďjďn

xvi, vjyxwi, wjy “

n
ÿ

i“1

∥vi∥2 ě 0

so x “ 0 iff v1 “ . . . “ vn “ 0, iff xx, xy “ 0. This proves the positive definiteness.

Let’s see an example of tensor products of Hilbert spaces. Let pX,µq, pY, νq be either two σ-finite
measure spaces, or two LCH spaces with µ, ν Radon measures. In these two cases one can define
the product measure µb ν on X ˆ Y . Consider the bilinear map

L2pX,µq ˆ L2pY, νq L2pX ˆ Y, µb νq

pf, gq f b g : px, yq ÞÑ fpxqgpyq.

This is well-defined by Fubini’s theorem, and the universal property of tensor products implies it
descends to a homomorphism

L2pX,µq b L2pY, νq L2pX ˆ Y, µb νq.

Again by Fubini it preserves inner product. Since the codomain is complete, it further passes to a
homomorphism from the Hilbert space tensor product

L2pX,µq pbL2pY, νq L2pX ˆ Y, µb νq.

Let pφαqα and pψβqβ be orthonormal bases for L2pX,µq and L2pY, νq. We claim pφα b ψβqα,β is an
orthonormal basis for L2pX ˆ Y, µb νq. The orthonormality is clear. To show it is an orthonormal
basis, let f P L2pX ˆ Y, µb νq satisfy

ż

XˆY

pφα b ψβq fdpµb νq “ 0

for all α, β. We need to show f “ 0 in L2pX ˆ Y, µb νq. By Fubini,

0 “

ż

X

ˆ
ż

Y

ψβpyqfpx, yqdνpyq

˙

φαpxqdµpxq.

Since pφαqα is an orthonormal basis, this implies the function x ÞÑ

ż

Y

ψβpyqfpx, yqdνpyq is zero in

L2pX,µq. Again, since pψβqβ is an orthonormal basis, it follows that fpx, yq “ 0 in L2pXˆY, µbνq.
We record this as a

Lemma E.2.9. Let pX,µq, pY, νq be either two σ-finite measure spaces, or two LCH spaces with
µ, ν Radon. Then the canonical map

L2pX,µq pbL2pY, νq L2pX ˆ Y, µb νq.

is a Hilbert space isomorphism.
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E.3 Topological vector spaces
For the definition of a topological vector space, see §2.5. Let D be a non-discrete valued division
ring (i.e., with a nontrivial absolute value | ¨ |).

Definition. Let V be a left vector space over D (without topology).

1. A subset M Ď V is called balanced if λM Ď M for all |λ| ď 1.

2. For a subset S Ď V , the balance hull of S is the smallest balanced set containing S, and the
balanced core is the largest balanced subset of S.

3. For two sets S, T Ď V , we say S absorbs T if there exists α ą 0 such that T Ď λS for all
|λ| ě α.

4. A subset is called absorbent if it absorbs every singleton in V .

5. A subset is called bounded if it is absorbed by any unit-neighborhood of V .

Lemma E.3.1. Let V be a left topological vector space over D.

1. The balanced core of a unit-neighborhood of V remains a unit-neighborhood.

2. Every unit-neighborhood is absorbent.

3. V admits a unit-neighborhood basis consisting of balanced absorbent subset and is stable
under dilation.

Proof.

1. Let U be a unit-neighborhood and U0 its balanced core. By continuity, we can find α ą 0 and
a unit-neighborhood W such that λW Ď U for all |λ| ď α. Since D is non-discrete, we can
take µ P Dˆ with |µ| ď α. Then µW Ď U , and for any ν P D with |ν| ď 1, that |µν| ď α

implies that νµW Ď U . But this means µW Ď U0.

2. This follows from the continuity of the multiplication map D ˆ V Ñ V .

3. This follows from the previous two.

Lemma E.3.2. Let V be a first countable Hausdorff left topological vector space over D. Then
there exists a metric d : V ˆ V Ñ Rě0 such that

1. the topology defined by d is the one on V ,

2. all open balls centred at 0 are balanced, and

3. d is invariant in the sense that dpx` z, y ` zq “ dpx, yq for all x, y, z P V .

In particular, every metrizable left vector space over D admits an invariant metric.

Proof. Let tUnun be a balanced unit-neighborhood basis of V such that

Un`1 ` Un`1 ` Un`1 ` Un`1 Ď Un
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for all n ě 1. Put

B “

#

r “

8
ÿ

n“1

cnprq2´n | pcnprqqn Ď t0, 1u and all but finitely many are 0

+

;

note that B Ď r0, 1q X Q. For r ě 1, put Aprq :“ V , and for r P B,

Aprq :“ c1prqU1 ` c2prqU2 ` ¨ ¨ ¨ “

8
ÿ

i“1

ciprqUi.

Note that this is a finite sum. Finally, for v P V , define fpvq :“ inftr | v P Aprqu and for v, w P V ,
define dpv, wq “ fpv ´ wq.

To show d is a metric, we first show that

Aprq `Apsq Ď Apr ` sq, r, s P D.

If r` s ě 1, then Apr` sq “ V and the containment is trivial. Assume r` s ă 1. If cnprq ` cnpsq “

cnpr` sq for all n ě 1, then clearly Aprq `Apsq “ Apr` sq. Otherwise, let N be the smallest n such
that cnprq ` cnpsq ‰ cnpr ` sq. Then cN prq “ cN psq “ 0 and cN pr ` sq “ 1, so

Aprq Ď c1prqU1 ` ¨ ¨ ¨ ` cN´1prqUN´1 ` UN`1 ` UN`2 ` ¨ ¨ ¨

Ď c1prqU1 ` ¨ ¨ ¨ ` cN´1prqUN´1 ` UN`1 ` UN`1

and likewise

Apsq Ď c1psqU1 ` ¨ ¨ ¨ ` cN´1psqUN´1 ` UN`1 ` UN`2 ` ¨ ¨ ¨

Ď c1psqU1 ` ¨ ¨ ¨ ` cN´1psqUN´1 ` UN`1 ` UN`1.

These two show that Aprq ` Apsq Ď c1pr ` sqU1 ` ¨ ¨ ¨ ` cN´1pr ` sqUN´1 ` UN Ď Apr ` sq as
cN pr ` sq “ 1.

From the containment, we see if r, s P D with r ă s, then

Aprq Ď Aprq `Apr ´ sq Ď Apsq.

Hence tAprqurPD is totally ordered. We claim

fpv ` wq ď fpvq ` fpwq

for all v, w P V . Indeed, we may assume fpvq ` fpwq ă 1, and for a fixed ε ą 0 we can find r, s P D

such that fpvq ă r, fpwq ă s while r ` s ă fpvq ` fpwq ` ε. Then v P Aprq, w P Apsq so that
v ` w P Aprq `Apsq Ď Apr ` sq, implying

fpv ` wq ď r ` s ă fpvq ` fpwq ` ε.

Since this is true for all ε ą 0, it follows that fpv ` wq ď fpvq ` fpwq.
Since each Aprq is balanced, fpxq “ fp´xq. Also, fp0q “ 0. If v ‰ 0, then x R Un “ Ap2´nq for

some n, and so fpxq ě 2´n ą 0. This show 3. For δ ą 0,

Bδ :“ tv P V | dpv, 0q ă δu “ tfpvq ă δu “
ď

răδ

Aprq.

If δ ă 2´n, then Bδ Ď Un, so tBδuδ is a unit-neighborhood for V , proving 1. Since each Aprq is
balanced, so is Bδ and 2. is proved.
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If V is a left topological vector spaces over D and M Ď V is any D-subspace (without topology),
the quotient space V {M with quotient topology is still a left topological vector spaces over D.

Denote by TVSD the category of left topological vector spaces over D with morphisms being
continuous D-linear maps. Denote by HausTVSD the full subcategory of TVSD consisting of
Hausdorff left topological vector spaces over D. The inclusion functor ι : HausTVSD Ñ TVSD,
like the inclusion functor Haus Ñ Top (c.f §A.3), has a left adjoint. Explicitly, define H : TVSD Ñ

HausTVSD by HpV q :“ V {t0u

HpT : V Ñ W q “ HpT q : V {t0u Ñ W {t0u.

That V {t0u is Hausdorff follows from Lemma 1.1.1.
If W is Hausdorff, then HpW q “ W . Any continuous D-linear map T : V Ñ W to a Hausdorff

left topological D-vector space W uniquely factors through V Ñ V {t0u; in fact, it factorizes as
V Ñ V {t0u

Hpfq
ÝÑ HpW q “ W . Hence H is a left adjoint and a left inverse of the inclusion ι :

HausTVSD Ñ TVSD.

Lemma E.3.3. TVSD is complete and cocomplete.

Proof. Construct the underlying vector spaces of (co)limits as in VecD, and topologize them by
initial (resp. final) topologies induced by canonical morphisms.

Corollary E.3.3.1. HausTVSD is complete and cocomplete.

Proof. Product topology of Hausdorff spaces is Hausdorff, and subspace topology of a Hausdorff
space is Hausdorff. Hence HausTVSD is complete.

E.3.1 Metrizable TVS
Lemma E.3.4. Let V be a metrizable vector space over D and W a closed subspace. Then the
quotient V {W is metrizable. Further, if V is complete, so is V {W .

Proof. Let f, d be as in the proof of Lemma E.3.2. Define f 1 : V {W Ñ Rě0 by

f 1pv `W q :“ inf
wPW

fpv ` wq.

It is clear that f 1 is well-defined. If f 1pv ` W q “ 0, pick a sequence pvnqn Ď v ` W such that
fpvnq Ñ 0 as n Ñ 8. But fpvnq “ dpvn, 0q, this means vn Ñ 0 as n Ñ 8. Since W is closed, v`W

is closed and hence 0 P v `W . This shows pv `W, v1 `W q ÞÑ f 1ppv ´ v1q `W q defines a metric on
V {W . To show this defines the same topology on V {W , note that

tv P V | fpvq ă ru `W “ tv `W P V {W | f 1pv `W q ă ru

as 0 P W . Since V Ñ V {W is open, it sends a unit-neighborhood basis of V to a unit-neighborhood
basis of V {W . This shows what we want.

Suppose V is complete. Let pan `W qn be a Cauchy sequence. Passing to a subsequence we may
assume

8
ř

n“1
fpan`1´an`wnq ă 8 for some pwnqn P W . Since V is complete, a :“

8
ř

n“1
pan`1´an`wnq

defines an element of V . Since fpv`W q ď fpvq for all v P V , we see an `W Ñ a`W in V {W .

Definition. Let V,W be two left topological vector spaces over D. A continuous D-linear map
T : V Ñ W is called strict if the induced map V { kerT Ñ ImT is an D-isomorphism.
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Definition. A complete metrizable vector space over D is called an F -space over D.

Theorem E.3.5 (Open mapping theorem). Let V,W be two metrizable vector spaces over D, and
let T : V Ñ W be a continuous D-linear map. Suppose V is complete. Then TFAE:

(i) T is strict and surjective.

(ii) W is complete and T is surjective.

(iii) For every unit-neighborhood U of V , the closure T pUq is a unit-neighborhood of W .

Proof. If (i) holds, then W “ ImT – V { kerT . Since V is complete and kerT is closed, V { kerT is
complete. Hence W is complete, showing (ii).

Assume (ii) and let U be a unit-neighborhood of V . Pick a balanced unit-neighborhood U 1 of
V such that U 1 ` U 1 Ď U . If r P D with |r| ą 1, then V “

Ť

ně1
rnU 1. Indeed, if x P V , then

by continuity x P sU 1 for some s P D. Pick n ě 1 such that |s| ď |r|n. Since U 1 is balanced,
sU 1 “

s

rn
rnU 1 Ď rnU 1 and hence x P rnU 1. Consequently W “

Ť

ně1
T prnU 1q “

Ť

ně1
rnT pU 1q. Now

by Baire Category theorem, at least one rnT pU 1q has non-empty interior, so T pU 1q has non-empty
interior. Finally, if y P T pU 1q is an interior point, then 0 “ y ` p´yq implies that 0 is an interior
point of T pU 1q ` T pU 1q Ď T pU 1q ` T pU 1q Ď T pUq.

Assume (iii). We need the following

Lemma E.3.6. Let X,Y be two metric spaces with X complete. Let f : X Ñ Y be a continuous
map such that for each r ą 0 there exists ρprq ą 0 such that for all x P X,

Bρprqpfpxqq Ď fpBrpxqq

holds. Then for all a ą r, the containment Bρprqpfpxqq Ď fpBapxqq holds.

Proof. Let prnqně1 Ď Rą0 such that r1 “ r and a “
8
ř

i“1

rn. Also, let pρnqně1 Ď Rą0 satisfy ρ1 “ ρprq

and Bρnpfpxqq Ď fpBrnpxqq for all x P X. We assume that ρn Ñ 0 as n Ñ 8.
Let x0 P X and y P Bρprqpfpx0qq. We are going to show that y P fpBapx0qq. Define pxnqně1 Ď X

inductively such that xn P Brnpxn´1q and T pxnq P Bρn`1
pyq. If x0, . . . , xn´1 have been constructed

as we want, then y P Bρnpfpxn´1qq Ď fpBrnpxn´1qq so that there exists xn P Brnpxn´1q with
fpxnq P Bρn`1

pyq. Since dpxn, xn`mq ď rn`1 ` ¨ ¨ ¨ ` rn`m is arbitrarily small if n " 0, pxnqn is
Cauchy in X. Since X is complete, it has a limit, say, x P X. Since dpx, x0q ă

ř8
n“1 rn “ a,

x P Bapx0q. Since f is continuous, fpxnq Ñ fpxq. But fpxnq P Bρn`1pyq with ρn Ñ 0, it forces that
fpxq “ y. This finishes the proof.

Return to the theorem. Equip V and W with invariant metrics inducing their topologies. By
(iii) and translation, the map T satisfies the assumption of the lemma, so for a ą r ą 0, we have
Bρprqp0q Ď T pBap0qq for some ρprq. This shows T is open, and hence T is strict.

Corollary E.3.6.1. Let V and W be two F -spaces over D.

1. Any bijective continuous D-linear map V Ñ W is an isomorphism of topological vector spaces.

2. A continuous D-linear map T : V Ñ W is strict if and only if ImT Ď W is closed.

Proof.
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1. This follows from Theorem E.3.5.(ii)ñ(i).

2. The only if part is clear. Now if ImT Ď W is closed, then ImT is a complete metrizable vector
space so T : V Ñ ImT is strict by Theorem E.3.5.(ii)ñ(i).

Corollary E.3.6.2 (Closed graph theorem). Let V and W be two F -spaces over D. A D-linear
map T : V Ñ W is continuous if and only if the graph ΓT Ď V ˆW is closed.

Proof. The only if part is clear. If ΓT Ď V ˆW is closed, then it is complete metrizable. Since the
projection pr1 : ΓT Ñ V is bijective and continuous, it is an isomorphism by Corollary E.3.6.1.1.
Then T “ pr2 ˝ pr´1

1 : V Ñ W is continuous.

E.3.2 Semi-norms
Definition. Let V be a left vector space over D. A map p : V Ñ Rě0 is called a semi-norm if
pprvq “ |r|ppvq for all r P D, v P V and ppv ` wq ď ppvq ` ppwq for all v, w P V .

• It follows from the last inequality that |ppvq ´ ppwq| ď ppv ´ wq holds for all v, w P V .

Lemma E.3.7. Let V be a topological left vector space over D and p : V Ñ Rě0 a semi-norm.
TFAE:

1. p is continuous.

2. p is continuous at 0.

3. p is uniformly continuous.

4. For all r ą 0, the set W pp, rq :“ tv P V | ppvq ă ru is open in V .

5. There exists r ą 0 such that W pp, rq is a unit-neighborhood of V .

6. For all r ą 0, the set V pp, rq :“ tv P V | ppvq ď ru is a unit-neighborhood in V .

Proof. 3 ñ1 ñ2 ñ4 ñ5 ñ6 ñ3 is clear.

Corollary E.3.7.1. If p is a continuous semi-norm on V and q is another semi-norm on V such
that q ď p, then q is continuous.

Let p be a semi-norm on a left vector space V over D. For each α ą 0, the subset

V pp, αq :“ tv P V | ppvq ď αu

is balanced, absorbent and satisfies V pp, α{2q `V pp, α{2q Ď V pp, αq. It is direct to see tV pp, αquαą0

forms a fundamental system of unit-neighborhoods of a unique vector space topology on V . We
say the topology is defined by the semi-norm p, and say V equipped with this topology a
semi-normed space.

Let S be a collection of semi-norms on V . The upper bound of the topologies defined by the
semi-norms p P S has a fundamental system of unit-neighborhoods of the form

Ş

pPS1
V pp, αpq, where

αp ą 0 and S1 Ď S is finite. The topology is the coarsest topology that is invariant under translations
and making all p P S continuous. We say this topology is defined by S, and it defines a vector space
topology over D on V . Conversely, if V is a topological left vector space over D and S is a collection
of semi-norms on V which induces the topology on V , we say S is a fundamental system of
semi-norms.
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Definition. A topological left vector space over D whose topology in defined by a collection of
semi-norms is called a locally convex space.

Denote by LCSD the full subcategory of TVSD consisting of locally convex spaces over D. The
inclusion functor LCSD Ñ TVSD admits a left adjoint constructed as follows. For X P TVSD, let
SX collect all continuous semi-norms on X. Denote by LCpXq the left D-vector space X equipped
the topology induced by SX . If T : X Ñ Y is a morphism in TVSD and p P SY , we have p˝T P SX ,
so T : LCpXq Ñ LCpY q is continuous; we then define LCpT q “ T . Moreover, LCpXq “ X if X is
locally convex. It follows that LC is a left adjoint left inverse of the inclusion LCSD Ñ TVSD. By
Lemma E.3.3 we conclude that

Lemma E.3.8. LCSD is complete and cocomplete.

Proof. Product topology of locally convex spaces is locally convex, and a subspace topology of a
locally convex space is locally convex. Hence LCSD is complete.

We will discuss more in detail the locally convex colimit in §E.4.2.

Lemma E.3.9. Let V be a topological left vector space over D whose topology is defined by a
collection of semi-norms S.

1. The closure of 0 in V is tv P V | ppvq “ 0 for all p P Su.

2. If V is Hausdorff and S is countable, then V is metrizable.

Proof. 1. follows from the definition, and 2. follows from Lemma E.3.2.

Definition. A complete Hausdorff topological left vector space over D whose topology is defined
by a countable collection of semi-norms is called a Fréchet space over D.

Example E.3.10. Let M be a smooth manifold with volume form ω. For f, g P CcpMq, set

xf, gy :“

ż

M

fgω.

This defines an inner product on CcpMq. We denote by L2pM,ωq its Hilbert space completion. For
f P L2pM,ωq, put ∥f∥2 :“

a

xf, fy to be the associated norm.
Assume there exists smooth vector fields X1, . . . , Xm such that tpX1qp, . . . , pXmqpu generates

TpM for each p P M . For i1, . . . , ik P rms, define a function pi1,...,ik : C8pMq Ñ r0,8s by

pi1,...,ikpfq :“ ∥Xi1 ¨ ¨ ¨Xikf∥2 ď 8.

Denote by V Ď C8pMq the subspace consisting of all f P C8pMq with all pi1,...,ikpfq finite. Then
each pi1,...,ik defines a semi-norm on V . We equip V with the topology induced by these semi-norms;
then V is a first countable Hausdorff topological vector space over C. We claim V is complete, so it
is a Fréchet space. We begin by showing that for each φ P C8

c pMq and f P V , we have φf P V and
the map

V V

f φf

is continuous. Indeed, by Leibniz’s rule we have

Xi1 ¨ ¨ ¨Xikpφfq “
ÿ

aj1,...,jp,l1,...,lk´p
pXj1 ¨ ¨ ¨XjpφqpXl1 ¨ ¨ ¨Xlk´p

fq
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with aj1,...,jp,l1,...,kk´p
P R independent of φ and f . This implies

∥Xi1 ¨ ¨ ¨Xikpφfq∥2 ď max |aj1,...,jp,l1,...,kk´p
| ¨ max

∥∥Xj1 ¨ ¨ ¨Xjpφ
∥∥
M

¨
ÿ∥∥Xl1 ¨ ¨ ¨Xlk´p

f
∥∥
2

proving the continuity.

Definition. Let V be a left vector space over D. A collection S of semi-norms on V is separating
if

č

pPS

tv P V | ppvq “ 0u “ t0u

Lemma E.3.11. Let V be a left vector space over D. The collection S of semi-norms is separating
if and only if the topology defined by S is Hausdorff.

Proof. Assume S is separating. Say v ‰ w. Then there exists p P S such that ppv ´ wq ‰ 0. Then
tx P V | ppv ´ xq ă 2´1 ¨ ppv ´ wqu and tx P V | ppw ´ xq ă 2´1 ¨ ppv ´ wqu are neighborhoods of
v, w respectively that are disjoint, indeed, were x lying in the intersection, we would have

ppv ´ wq ď ppv ´ xq ` ppx´ wq ă ppv ´ wq

a contradiction. For the other direct, suppose the topology induced by S is Hausdorff. If v ‰ 0,
then there exist r ą 0 and a finite subset S1 Ď S such that v R

Ş

pPS1
V pp, rq. But then for p P S1 we

have ppvq ą r ą 0.

In the rest of this subsection we assume all vector spaces are over R.

Definition. Let V be a vector space over R.

1. A subset S is called convex if tS ` p1 ´ tqS Ď S for all 0 ď t ď 1.

2. For a subset A, the intersection of all convex subsets containing A is called the convex hull
convA of A.

Lemma E.3.12. Let V be a topological vector space over R.

(i) If p : V Ñ Rě0 is a continuous semi-norm, for all r ą 0, the sets W pp, rq and V pp, rq are
convex balanced unit-neighborhood.

(ii) If C is a convex balanced open unit-neighborhood in V , then the Minkowski functional
pC : V Ñ Rě0 defined by

pCpvq “ inftt ě 0 | v P tCu

is a continuous semi-norm on V .

Proof.

(i) That V pp, rq and W pp, rq are neighborhoods is shown in Lemma E.3.7. For v, w P V pp, rq and
0 ď t ď 1,

pptv ` p1 ´ tqwq ď pptvq ` ppp1 ´ tqwq ď tppvq ` p1 ´ tqppwq ă r,

and pptvq ď tppvq ă r. This shows V pp, rq is balanced and convex. The assertion for W pp, rq

is proved in the same way.
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(ii) We first show pC is a semi-norm. Let 0 ‰ v P V . For r P Rˆ,

pCprvq “ inftt ě 0 | rv P tCu “ inftt ě 0 | |r|v P tCu

“ inftt ě 0 | v P |r|´1tCu “ |r| ¨ inftt ě 0 | v P tCu “ |r|pCpvq.

The second equality uses that tC is balanced.

For v, w P V , say t, s ą 0 is such that v P tC and w P sC. Then

v ` w P tC ` sC “ pt` sq

ˆ

t

t` s
C `

s

t` s
C

˙

Ď pt` sqC

by convexity of C. Hence pCpv ` wq ď pCpvq ` pCpwq.

It remains to show pC is continuous. By Lemma E.3.7 we must show V ppC , rq is a unit-
neighborhood for any r ą 0. This is clear, as for v P rC we have pCpvq ď r.

Corollary E.3.12.1. Let V be a topological vector space over R admitting a unit-neighborhood ba-
sis U convex balanced open sets. Then the topology on V is induced by those Minkowski functionals
associated to U .

Proof. We claim for U P U that

U “ tv P V | pU pvq ă 1u.

If pU pvq ă 1, then v P tU for some 0 ď t ă 1, and hence v P U . Conversely, for v P U , by continuity
of action of R on V , there exists δ ą 0 such that p1 ` rqv P U as long as 0 ă r ă δ. But then
v P p1 ` rq´1U , or pU pvq ď p1 ` rq´1 ă 1.

For t P R, we have tv P V | pU pvq ă |t|u “ tU , so this finishes the proof.

Lemma E.3.13. Let X be a locally convex space, and Y Ď X a subspace. If p : Y Ñ Rě0 is a
continuous semi-norm on W , there exists a continuous semi-norm p1 on X such that p1|Y “ p.

Proof. This amounts to showing that every convex balanced open unit-neighborhood of Y is the
intersection of Y with a convex balanced open unit-neighborhood of X. Let U be a convex balanced
open unit-neighborhood of Y ; then there exists an open unit-neighborhood V1 of X such that
V1 X Y “ U . Pick any convex balanced open unit-neighborhood V of X contained in V1.

We claim convpV YUq is a convex balanced open unit-neighborhood of X such that Y XconvpV Y

Uq “ U . That convpV Y Uq is convex and balanced are clear. For openness, write

convpV Y Uq “
ď

0ďtď1

ptV ` p1 ´ tqUq.

Each set tV ` p1 ´ tqU p0 ă t ď 1q is open in X, while U pt “ 0q is not. For v P U , εv P V for
some ε ą 0. Then the vector 1 ´ ε` tε

t
v P Y p0 ă t ă 1q tends to v as t Ñ 1. Since U is open,

1 ´ ε` tε

t
v P U for some 1 ą t ą 0. Then p1 ´ ε` tεqv P tU , or v P tU ` p1 ´ tqεv Ď tU ` p1 ´ tqV .

This proves convpV X Uq Ď X is open.
It remains to show Y X convpV YUq “ U . The containment Ě is clear. If y P Y X convpV YUq,

then y “ tv ` p1 ´ tqu for some v P V, u P U , 0 ď t ď 1. If t “ 0, 1, then y P Y X pV Y Uq Ď U . For

0 ă t ă 1, we have then v “
y ´ p1 ´ tqu

t
P V X Y Ď U , so y P U .
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E.3.3 Hahn-Banach
In this subsection, all vector spaces are over R.

Definition. Let V be a vector space.

1. A subset C is called a cone with vertex x0 if x0 ` tpC ´ x0q Ď C for all t P Rą0. A cone is
a cone with vertex 0.

2. A cone C is called pointed (resp. non-pointed) if 0 P C (resp. 0 R C).

3. A cone C is called proper if C does not contain any line passing through 0.

4. For a subset A, the intersection of all convex cones containing A is called the convex cone
generated by A.

Lemma E.3.14. A pointed convex cone C is proper if and only if the non-pointed cone C 1 :“ Czt0u

is convex.

Proof. If C contains a line passing through 0, then C 1 obviously cannot be convex. Conversely, if
C is proper, then for x, y P C 1, the closed segment tx ` p1 ´ tqy P C, 0 ď t ď 1. If the segment
contains 0, then x “ λy for some λ ă 0. This implies C contains a line passing through 0 and x, a
contradiction.

Definition. A vector space V together with a relation ď such that

1. x ď y implies x` z ď y ` z for all z P V

2. x ě 0 implies rx ě 0 for all r P Rě0

is called a pre-ordered vector space. If ď is a partial order, then we say V is a ordered vector
space.

Definition. An ordered topological vector space is a ordered vector space V together with a
vector space topology such that the subset tx P V | x ě 0u is closed in V .

Lemma E.3.15. Let V be an ordered topological vector space.

1. The subset tx P V | x ď 0u is closed.

2. V is Hausdorff.

Proof. 1. follows from the fact that x ÞÑ ´x is a homeomorphism. 2. follows since t0u “ tx ě

0u X tx ď 0u.

Lemma E.3.16. Let V be a vector space.

1. If V is a pre-ordered vector space, the subset tx P V | x ě 0u is a pointed convex cone.

2. If C is a pointed convex cone, then the relation x ď y ô y ´ x P C makes V a pre-ordered
vector space and is the unique one such that C “ tx P V | x ě 0u.

3. The relation in 2. is a partial order if and only if C is proper.

Proof.
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1. Clearly the subset is a pointed cone. For x, y ě 0 and 0 ď t ď 1, since t, 1 ´ t ě 0, we have
tx, p1 ´ tqy ě 0 and hence tx` p1 ´ tqy ě 0. This shows the convexity.

2. Clear.

3. C is proper if and only if C X ´C “ t0u, i.e. ď is a partial order.

Lemma E.3.17. Let V be a pre-ordered vector space and W a subspace of V such that every
element in V is bounded by some element in W . Then for any positive linear functional f :W Ñ R
(i.e., fptx ě 0uq Ď Rě0) there exists a positive linear functional rf : V Ñ R extending f . Moreover,
for any such extension rf and x P V , we have

sup
yPW, yďx

fpyq ď rfpxq ď inf
yPW,xďy

fpyq.

Proof. We consider the special case when V “ W `Rx. If x P W then the lemma is trivial. Assume
x R W . By assumption there is y P W with x ď y, and also z P W with ´x ď ´z, or z ď x. Then
z ď x ď y and hence fpzq ď fpyq. In particular, the two numbers in the moreover part are finite
and supyPW, yďx fpyq ď infyPW,xďy fpyq Any extension rf : V Ñ R of f is uniquely determined by its
value at x, and it is positive if and only if w` rx ě 0 implies fpwq ` r rfpxq ě 0 for all w P W, r P R.
To show it is possible, we only need to consider the case r “ 0, 1, ´1. The case r “ 0 is ok since f
is positive. If r “ 1, then w ` x ě 0 ñ fpwq ` rfpxq ě 0 means for ´w ď x we have rfpxq ě fp´wq.
For this we only need to take rfpxq ě supyPW, yďx fpyq. From r “ ´1, we likewise see we need to
take rfpxq ď infyPW,xďy fpyq. We already see such rfpxq exists.

For general case, consider the set

tpW 1, gq | W Ď W 1 Ď V, g is a positive linear functional extending fu

is nonempty and is clearly partially ordered. By Zorn’s lemma there exists a maximal element
pW0, g0q, and we must show W0 “ V . For any x P V , by the first paragraph we can extend g0 to
W0 ` Rx, so by maximality x P W0. The moreover part also follows from the first paragraph.

Theorem E.3.18 (Hahn-Banach, analytic form). Let p : V Ñ R be a sub-linear function, i.e.,
ppx ` yq ď ppxq ` ppyq and pprxq “ rppxq for all x, y P V, r P Rě0. Let W be a subspace of V and
f : W Ñ R be a linear functional such that f ď p|W . Then there exists a functional h : V Ñ R
extending f such that h ď p.

Proof. The set C “ tpx, aq P V ˆR | ppxq ď au is a pointed convex cone in V ˆR. Define a functional
F :W ˆ R Ñ R by setting

F px, aq “ ´fpxq ` a.

Then F is positive with respect to the pre-order structure ď defined by C X pW ˆ Rq. Indeed, if
px, aq P CXpWˆRq, then ppxq ď a so that ´fpxq`a ě ´ppxq`a ě 0. Now for any px, aq P V ˆR, we
have py, bq ě px, aq (with ď defined by C) if and only if ppy´xq ď b´a. We then see p0, a1q P W ˆR
with a ě pp´xq ` a satisfies p0, a1q ě px, aq. Hence all assumptions in Lemma E.3.17 are met, so
there exists a positive linear function rF : V ˆ R Ñ R extending F . Now

rF px, aq “ rF px, 0q ` a rF p0, 1q “: ´hpxq ` aF p0, 1q “ ´hpxq ` a

so h extends f . Finally, for all x P E and a P R with ppxq ď a, we have 0 ď rF px, aq so that hpxq ď a.
Varying a yields hpxq ď ppxq.
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Corollary E.3.18.1. Let V be a vector space and p : V Ñ Rě0 a semi-norm.

1. If W is a subspace and f : W Ñ R is a functional such that |f | ď p, then f has an extension
h : V Ñ R with |h| ď p.

2. For any x P V , there exists a functional f : V Ñ R such that fpxq “ ppxq and |f | ď p.

Corollary E.3.18.2. Let V be a vector space over C, W Ď V a complex subspace and f :W Ñ C a
C-linear functional. If p : V Ñ Rě0 is a semi-norm such that |f | ď p|W , then there exists a C-linear
functional h : V Ñ C extending f such that |h| ď p.

Proof. The real part fr :“ Re f : W Ñ R satisfies |fr| ď p|W , so by Corollary E.3.18.1.1. there
exists an extension hr : V Ñ R with |hr| ď p. Define h : V Ñ C by setting hpxq “ hrpxq ´ ihrpixq;
then Reh “ hr, and

|hpxq| “ |Re eiθhpxq| “ |Rehpeiθxq| “ |hrpe
iθxq| ď ppeiθxq “ ppxq

for some θ P R, i.e., |h| ď p.

E.4 Locally convex spaces

E.4.1 Boundedness
Lemma E.4.1. Let X be a left topological vector space over D with topology induced by the
collection S of semi-norms on X.

(i) A subset B Ď X is bounded if and only if ppBq Ď Rě0 is bounded for all p P S.

(ii) A precompact subset of X is bounded.

(iii) A Cauchy sequence in X is bounded.

Proof.

(i) Note a subset is bounded if and only if it is absorbed by sets in a unit-neighborhood basis of
X. Also, for p P S, r ą 0 and α P D, we have αV pp, rq “ V pp, |α|rq. These two observations
prove (i).

(ii) It suffices to show a compact set is bounded. This is clear as each p P S is continuous on X.

(iii) It can be shown that points in a Cauchy sequence is precompact, whence bounded by (ii). We
argue directly. Let panqn be a Cauchy sequence. Let p P S and r ą 0. Then there exists N ą 0

such that an ´ aN P V pp, rq whenever n ě N , or panqněN Ď aN ` V pp, rq Ď V pp, r ` ppaN qq.
Then panqn Ď V pp, r ` ppa1q ` ¨ ¨ ¨ ` ppaN qq. Since p P S is arbitrary, by (i) this shows panqn

is bounded.
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E.4.2 Locally convex colimits
In this subsection all vector spaces are over R. Denote also by HausLCSR the full subcategory of
LCSR consisting of Hausdorff locally convex spaces. Then there are inclusions

LCSR

HausLCSR TVSR

HausTVSR

In §A.3 we see the inclusion Haus Ñ Top does not preserve epimorphisms, so we cannot expect
colimits are preserves under these inclusions.

Let F : J Ñ LCSR be a small diagram. Let pfα : F pαq Ñ colimF qα be the colimit of F viewed
as a VecR-valued diagram. Our goal is to equip a locally convex topology on colimF making it a
colimit of F in LCSR. Let Uα be the collection of all convex unit-neighborhoods of F pαq. Let

U “ tconvtfαpUαquα Ď colimF | Uα P Uα for all αu .

We declare this to be a unit-neighborhood basis of colimF and topologize colimF with the unique
vector space topology induced by U .

Lemma E.4.2. With this topology, the cocone pfα : F pαq Ñ colimF qα is the colimit of F in LCSR.

Proof. We must show colimF is a locally convex space. That it is locally convex follows from
construction. Continuity of R-action on colimF follows from those on the F pαq. Take Uα P Uα for
each α; by continuity of addition on F pαq we can find Vα P Uα such that Vα ` Vα Ď Uα. Then
convtfαpVαquα ` convtfαpVαquα Ď convtfαpUαquα, proving the continuity.

That F pαq Ñ colimF is continuous follows from construction. Suppose pgα : F pαq Ñ Xqα is a
cocone in LCSR. By the universal property in VecR, there exists a unique linear map g : colimF Ñ

X compatible with maps in the cocones. Take a convex unit-neighborhood V Ď X, and take Uα P Uα
such that gαpUαq Ď X. Then

gpconvtfαpUαquαq Ď convtgαpUαquα Ď X,

which proves the continuity of g : colimF Ñ X.

Definition. We call colimF with this locally convex topology the locally convex colimit of the
small diagram F : J Ñ LCSR.

Lemma E.4.3. A semi-norm p : colimF Ñ Rě0 is continuous if and only if p ˝ fα : F pαq Ñ Rě0 is
continuous for each α.

Proof. Only if part is clear. For the if part, assume p ˝ fα : F pαq Ñ Rě0 is continuous for each α.
Fix an r ą 0. Then ppα, rq “ tv P F pαq | pαpvq ă ru is a convex unit-neighborhood of F pαq, and
hence convtV ppα, rquα is a convex unit-neighborhood of colimF by construction. For xα P V ppα, rq

and aα P r0, 1s with aα “ 0 for all but finitely many α and
ÿ

α

aα “ 1, we have

p

˜

ÿ

α

aαxα

¸

ď
ÿ

α

aαppxαq “
ÿ

α

aαpαpxαq ă
ÿ

α

aαr “ r.

This shows convtV ppα, rquα Ď V pp, rq, so by Lemma E.3.7 p is continuous.
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Corollary E.4.3.1. A linear map T : colimF Ñ X to a locally convex space is continuous if and
only if T ˝ fα : F pαq Ñ X is continuous for each α.

Proof. Say the topology on X is induced by the collection S of the semi-norms. Then T is continuous
if and only if p ˝ T is continuous for each p P S. By Lemma E.4.3 this amounts to saying p ˝ T ˝ fα

is continuous for each p P S and α, which is the same as saying T ˝ fα : F pαq Ñ X is continuous for
each α.

Next we consider a special kind of diagrams. By abuse of notations we view N as a category with
morphisms induced by the well-order ď. A diagram F : Nop Ñ LCSR of type N is called strict if
for each n ą m, the map Fnąm : F pmq Ñ F pnq is a topological embedding with proper image (i.e.,
not surjective). The locally convex colimit of F is then called the strict (locally convex) colimit.

Lemma E.4.4. Let pfn : F pnq Ñ colimF qn be a strict colimit.

(i) For any continuous semi-norm pn on F pnq, there exists a continuous semi-norm p on colimF

such that p ˝ fn “ pn.

(ii) Each fn is a topological embedding.

(iii) If each F pnq is Hausdorff, then colimF is Hausdorff.

Proof. That fn is injective already holds in VecR. Also, we have an ascending filtration

f1pF p1qq Ĺ ¨ ¨ ¨ Ĺ fnpF pnqq Ĺ ¨ ¨ ¨ Ď colimF

of colimF such that
Ť

ně1
fnpF pnqq “ colimF . For (i), let pn be a continuous semi-norm on F pnq.

By Lemma E.3.13 and induction, for each m ą n there exists a continuous semi-norm pm on F pmq

such that pm ˝ fmąm´1 “ pm´1. We then can define p : colimF Ñ Rě0 by setting ppxq :“ pnpxq

if x P fnpF pnqq. This is clearly a semi-norm. For r ą 0, the set V ppm, rq Ď F pmq is open
and convex. By construction convtV ppm, rquměn is an convex open set in colimF . But then
convtV ppm, rquměn Ď V pp, rq, so by Lemma E.3.7 p is continuous.

For (ii), if we denote by g : fmpF pmqq Ñ F pmq the inverse of fm, then we must show g is
continuous. Let p be a continuous semi-norm on F pmq. By (i) there exists a continuous semi-norm
p1 on colimF such that p1 ˝ fn “ p. Then p ˝ g “ p1|fmpF pmqq, which is continuous. Since p is
arbitrary, this proves the continuity of g.

For (iii), if v ‰ 0 and, say, v P fmpF pmqq, from Lemma E.3.11 we have find a continuous semi-
norm pm such that pmpvq ‰ 0. By (i) there is then a continuous semi-norm p on colimF such that
ppvq ‰ 0. Hence colimF is Hausdorff by Lemma E.3.11.

Lemma E.4.5. Let F : Nop Ñ LCSR be strict. A subset B Ď colimF is bounded if and only if
there exists some n such that B Ď F pnq and B is bounded in F pnq.

Proof. Assume B Ď F pnq and is bounded in F pnq for some n. For each m take a convex open
unit-neighborhood Un Ď F pnq; we must show convtUmum absorbs B. But B Ď tUn for some t ą 0

as B is bounded in F pnq, so B Ď t convtUmum.
We turn to the only if part. Let B Ď colimF be a bounded subset. If B Ď F pnq for some n ě 1,

using an argument similar to that in the first paragraph we see B is bounded in F pnq. Hence it
remains to show B is indeed contained in some F pnq. Suppose it is not the case. Our goal is then
to construct a continuous semi-norm on colimF that is not bounded on B, which will lead to a
contradiction to Lemma E.4.1.(i).
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By Lemma E.4.4.(ii) there is no loss in identifying F pnq with its image fnpF pnqq in colimF . By
replacing F pmq with its subsequence, we can find a sequence pxnqn Ď B such that x1 P BXF p1q and
xn P pB X F pnqqzfnąn´1pF pn ´ 1qq pn ě 2q. Pick any continuous semi-norm p1 on F p1q such that
p1px1q “ 1. We are going to construct ppnqn inductively in a way that pn is a continuous semi-norm
on F pnq such that pn ˝ fnąn´1 “ pn´1 and pnpxnq “ n for n ě 2. Once this is done, we may define
p : colimF Ñ Rě0 by setting ppxq “ pnpxq if x P F pnq. This is a semi-norm, and is continuous by
Lemma E.4.3. Moreover, ppxnq “ n Ñ 8 as n Ñ 8, so it is not bounded on B, as desired.

Suppose pn is constructed. Put H “ fn`1ąnpF pnqq ` Rxn`1. In fact, this is a direct sum in
TVSR. Define q : H Ñ Rě0 by qpfn`1ąnpxq ` αxn`1q “ pnpxq ` |α|pn ` 1q, where α P R and
x P F pnq. Then q is a continuous semi-norm on H such that q ˝ fn`1ąn “ pn. By Lemma E.3.13 we
can find a continuous semi-norm pn`1 on F pn` 1q such that pn`1|H “ q. Then pn`1 ˝ fn`1ąn “ pn

and pn`1pxn`1q “ n` 1 as wanted.

Corollary E.4.5.1. Let F : Nop Ñ LCSR be strict.

(i) A subset K is compact in colimF if and only if there exists some n such that K Ď F pnq and
K is compact in F pnq

(ii) If panqn is a Cauchy sequence in colimF , then there exists some N such that panqn Ď F pNq

and panqn is Cauchy in F pNq.

We turn to colimits in HausLCSR. Recall the inclusion HausTVSR Ñ TVSR admits a left
adjoint left inverse H : TVSR Ñ HausTVSR, given by sending V to its maximal Hausdorff quotient
V {t0u. These all restrict to LCSR and HausLCSR, i.e., H : LCSR Ñ HausLCSR is still a left
adjoint and a left inverse of ι : HausLCSR Ñ LCSR. In particular HausLCSR is complete and
cocomplete. Explicitly,

Lemma E.4.6. If F : LCSR Ñ Set is a functor represented by X P LCS, then F ˝ι : HausLCSR Ñ

LCS is represented by HpXq.

Proof. By assumption we have a bijection

F pY q HomLCSpX,Y q
„

functorial in Y P LCS. Hence

pF ˝ ιqpY q HomLCSpX, ιpY qq HomHausLCSpHpXq, Y q
„ „

functorial in Y P HausLCSR.

Hence, if F : J Ñ HausLCSR is a small diagram, then Hpcolim ι ˝ F q with those canonical
morphisms represents the colimit colimF of F .

E.4.3 Fréchet spaces and LF spaces
Definition. A locally convex colimit (resp. strict colimit) of Fréchet spaces is called an LF space
(resp. strict LF space).
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E.5 Unbounded operators
Let k be a unital ring, and X,Y be two left k-modules. Giving a k-linear map X Ñ Y amounts to
specifying a k-submodule Γ of X ˆ Y such that the projection prX |Γ : Γ Ñ X is bijective. In fact,
a function X Ñ Y is nothing but a subset of X ˆ Y whose projection to X is bijective. Following
these rudimental ideas, we introduce

Definition. Let Γ Ď X ˆ Y be a k-submodule.

(i) For y P Y , put

Γ´1pyq :“ tx P X | px, yq P Γu.

For x P X, put

Γpxq :“ ty P X | px, yq P Γu.

(ii) The domain of Γ is

DpΓq “ prXpΓq,

and the image of Γ is

ImpΓq “ prY pΓq.

(iii) The kernel of Γ is

ker Γ “ Γ´1p0q.

(iv) The inverse of Γ is the k-submodule

Γ´1 “ tpy, xq | px, yq P Γu Ď Y ˆX.

(v) If Z is another left k-module and Γ1 Ď Y ˆ Z is a k-submodule, then the composition
Γ1 ˝ Γ Ď X ˆ Z is

Γ1 ˝ Γ “ tpx, zq | px, yq P Γ and py, zq P Γ1 for some y P Y u.

(vi) If Γ1 is another k-submodule of X ˆ Y , then the sum Γ ` Γ1 Ď X ˆ Y is

Γ ` Γ1 :“ tpx, y ` zq | px, yq P Γ, px, zq P Γ1u.

For r P k,

rΓ :“ tpx, ryq | px, yq P Γu.

Not confuse Γ ` Γ1 with the module generation.

(vii) An extension of Γ is a k-submodule Γ1 of X ˆ Y containing Γ.

Lemma E.5.1. A k-submodule Γ Ď X ˆ Y is the graph of a k-linear map DpΓq Ñ Y if and only if
Γp0q “ 0.
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Proof. The only if part is clear as a linear map sends 0 to 0. Conversely, we must show if
px, yq, px, zq P Γ, then y “ z. Since Γ is a submodule, we have p0, y ´ zq “ px, yq ´ px, zq P Γ,
and hence y ´ z P Γp0q. The assumption forces y ´ z “ 0, or y “ z.

Definition. A k-submodule Γ Ď X ˆ Y with Γp0q “ t0u is called an (unbounded) operator
from X to Y . In the case X “ Y , we say Γ is an operator on X.

We further assume k is a topological unital ring, and X,Y are two left topological k-modules.

Definition. Let Γ Ď X ˆ Y be a k-submodule.

(i) The closure of Γ is simply the closure Γ of Γ in the product topology of X ˆ Y . We say Γ is
closed if it is its closure.

Assume in addition that Γ is an operator.

(ii) Γ is closable if Γp0q “ t0u.

(iii) Γ is densely defined if DpΓq is dense in X.

E.5.1 Self-adjoint operators
Now assume k “ R or C, and X,Y are two Hilbert spaces.

Definition. Let Γ Ď X ˆ Y be a k-linear subspace. The adjoint Γ˚ of Γ is the k-linear subspace
of Y ˆX given by

Γ˚ “ tpy, xq P Y ˆX | xy, vyY “ xx, uyX for all pu, vq P Γu.

Lemma E.5.2. Let Γ Ď X ˆ Y be a k-linear subspace.

(i) Γ˚p0q “ DpΓqK.

(ii) Γ˚ “ JpΓqK, where

JpΓq “ tpy,´xq | px, yq P Γu.

In particular, Γ˚ is always closed.

(iii) pΓ˚q˚ “ Γ.

(iv) Γp0q “ DpΓ˚qK.

(v) If Γ1 Ď X ˆ Y is a k-linear subspace containing Γ, then pΓ1q˚ Ď Γ˚.

Proof.

(i) If y P DpΓqK, then xu, yyY “ 0 for all u P DpΓq. Then xu, yyY “ 0 “ xv, 0yX for all pu, vq P Γ,
so p0, yq P Γ˚. If p0, yq P Γ˚, then xu, yyY “ xv, 0yX “ 0 for all pu, vq P Γ, so y P DpΓqK.

(ii) px, yq P Γ˚ if and only if xv, xyX “ xu, yyY for all pu, vq P Γ, or xpx, yq, pv,´uqyXˆY “ 0, if and
only if px, yq P JpΓqK.

(iii) pΓ˚q˚ “ JpΓ˚qK “ JpJpΓqKqK “ JpJpΓqqKK “ ΓKK “ Γ.

(iv) This follows from (i) and (iii).
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(v) Immediate from the definition and Γ Ď Γ1.

Corollary E.5.2.1. For an operator T from X to Y , the adjoint T˚ is an operator from Y to X if
and only if DpT q is dense in X.

Proof. T˚ is an operator if and only if T˚p0q “ 0, if and only if DpT qK “ 0 by Lemma E.5.2.(i), or
DpT q is dense.

Definition. A densely defined operator Γ on X is called symmetric if Γ˚ Ě Γ, is called self-
adjoint if Γ˚ “ Γ, and is called positive if it is self-adjoint and xΓx, xy ě 0 for all x P DpΓq.

Lemma E.5.3. If T is a symmetric operator on X, then T˚˚ is a closed symmetric operator on X.

Proof. Since DpT q Ď DpT˚q and DpT q is dense, DpT˚q is dense. Hence T˚˚ is an operator by
Corollary E.5.2.1. By Lemma E.5.2.(ii) T˚˚ is closed. By Lemma E.5.2.(iii), DpT˚˚q “ DpT q. Since
DpT q Ď DpT q, it follows that T˚˚ is densely defined. Finally, by Lemma E.5.2.(v), that T Ď T˚

implies T˚˚ Ď T˚˚˚.

Corollary E.5.3.1. A self-adjoint operator on X is closed.

Lemma E.5.4. If T is an injective self-adjoint operator on X, then T´1 is self-adjoint.

Proof. Note that p´T q˚ “ ´T˚. Since T is self-adjoint, p´T q˚ “ ´T . Also, T´1 “ Jp´T q and
JpT´1q “ ´T .

By Lemma E.5.2 and T is closed, it follows ´T is closed and we have

T´1 “ Jp´T q “ Jp´T qKK “ pp´T q˚qK “ p´T qK “ JpT´1qK “ pT´1q˚

It remains to show T´1 is densely defined. This follows from the following lemma.

Lemma E.5.5. Let T be a densely defined operator on X. Then pImT qK “ kerT˚. If T is further
closed, then pImT˚qK “ kerT .

Proof. y P pImT qK if and only if xTx, yy “ 0 for all x P DpT q, or xx, T˚yy “ 0. Since DpT q is dense,
it’s the same as saying xx, T˚yy “ 0 for all x P X, or T˚y “ 0.

Assume further T is closed. Applying what we’ve shown to T˚, we obtain pImT˚qK “ kerT˚˚.
By Lemma E.5.2.(iii), we have T˚˚ “ T “ T , so pImT˚qK “ kerT .

Definition. For a k-linear subspace Γ Ď X ˆ Y , a core C Ď DpΓq of Γ is a subspace such that the
closure of Γ X pC ˆ Y q is Γ.

Theorem E.5.6. Let T be a closed and densely defined operator on X. Then idX `T˚T :

DpidX `T˚T q Ñ X is densely defined, bijective and the inverse pidX `T˚T q´1 has operator norm
ď 1. Both pidX `T˚T q´1 and T˚T are positive and self-adjoint, and DpT˚T q is a core for T

Proof. For v P X, by Lemma E.5.2.(ii) and (iii) and closedness of T , there exist px, yq P DpT˚qˆDpT q

such that pv, 0q “ pT˚x,´xq ` py, Tyq. Hence y P DpT˚T q “ DpidX `T˚T q and v “ T˚x ` y “

pidX `T˚T qy. This proves the surjectivity. For injectivity, let y P DpidX `T˚T q “ DpT˚T q Ď DpT q

and v :“ pidX `T˚T qy. Compute

xy, vy “ ∥y∥2 ` xy, T˚Tyy “ ∥y∥2 ` ∥Ty∥2 .
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If v “ 0, then y “ 0, proving the injectivity. Since

∥v∥2 “ xv, vy “ ∥y∥2 ` 2 ∥Ty∥2 ` ∥T˚Ty∥2 ě ∥y∥2 ,

this shows the inverse pidX `T˚T q´1 has operator norm ď 1. In particular, it is bounded. The
above computation also shows that if v K DpT˚T q and v “ pidX `T˚T qy for some y P DpT˚T q,
then 0 “ xy, vy implies y “ 0 and hence v “ 0. This shows DpT˚T q is dense in X. It is clear that
T˚T is positive and symmetric, so idX `T˚T is also positive and symmetric. Since it is bijective,
idX `T˚T must be self-adjoint and hence closed with self-adjoint inverse by Corollary E.5.3.1 and
Lemma E.5.4. It is easy to see the inverse is also positive.

It remains to show DpT˚T q is a core for T . It suffices to show the orthogonal complement of
T X pDpT˚T q ˆXq in T is 0. Let x P DpT q and y P DpT˚T q. Then

xpx, Txq, py, Tyqy “ xx, yy ` xTx, Tyy “ xx, pidX `T˚T qyy.

If px, Txq lies in the orthogonal complement of DpT˚T q ˆ X, then xx, pidX `T˚T qyy “ 0 for all
y P DpT˚T q. Since idX `T˚T is surjective, it follows that x “ 0.

Definition. A densely defined operator T on X is normal if T˚T “ TT˚.

Lemma E.5.7. If T is a normal operator on X, then DpT q “ DpT˚q. In particular, DpT˚T q “

DpTT˚q “ DpT 2q “ DppT˚q2q.

Proof. For u P DpT˚T q “ DpTT˚q Ď DpT q XDpT˚q, we have

∥u∥2 ` ∥Tu∥2 “ xu, uy ` xTu, Tuy “ xpidX `T˚T qu, uy

xpidX `TT˚qu, uy “ ∥u∥2 ` ∥T˚u∥2 .

By Theorem E.5.6 and normality, DpT˚T q “ DpTT˚q is a core for both T and T˚, so the above
equality implies DpT q “ DpT˚q.

Lemma E.5.8. If T is a normal operator on X, then pidX `T˚T q´1T Ď T pidX `T˚T q´1.

Bounded transforms

Definition. For a closed and densely defined operator T on X, set

IT :“ pidX `T˚T q´1 and ZT :“ TI
1
2

T .

Note that IT P BpXq is positive by Theorem E.5.6, and its square root is well-defined by Theorem
12.1.3. We call ZT the bounded transform of T .

Lemma E.5.9. Let T be a closed and densely defined operator on X. Then

(i) ZT is bounded with ∥ZT ∥op ď 1 and

IT “ idX ´Z˚
TZT .

(ii) If T 1 is another such operator like T and ZT “ ZT 1 , then T “ T 1.

(iii) If T is normal, then Z˚
T “ ZT˚ .

(iv) If T is normal (resp. self-adjoint, positive), then so is ZT .
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Proof.

(i)

(ii) By (i), we have

IT “ idX ´Z˚
TZT “ idX ´Z˚

T 1ZT 1 “ IT 1 ,

so T˚T “ pT 1q˚T 1 and TIT “ ZT I
1
2

T “ ZT 1I
1
2

T 1 “ T 1IT 1 “ T 1IT . Hence T “ T 1 on DpT˚T q “

DppT 1q˚T 1q. Since DpT˚T q and DppT 1q˚T 1q are respectively cores of T and T 1 by Theorem
E.5.6, so T “ T 1.

Cayley transforms

Lemma E.5.10. Let T be a symmetric operator on X. Then for z P CzR, the operator T ` z idX :

DpT q Ñ X is injective and has a continuous inverse.

Proof. Write z “ x ` iy with x, y P R. If T is symmetric, so is T ` x idX . Hence we can assume
x “ 0. By symmetry, we have

xTv, ivy “ ´ixv, Tvy “ ´xTv, ivy,

so xTv, ivy is imaginary. Hence

∥pT ` iy idXqv∥2 “ ∥Tv∥2 ` ∥yv∥2 “ ∥Tv∥2 ` y2 ∥v∥2 .

This implies T ` iy idX : DpT q Ñ X is injective and bounded below, and hence has a continuous
inverse.

Lemma E.5.11. Let T be a closed symmetric operator on X. Then

UT :“ pT ´ i idXqpT ` i idXq´1 : DpUT q :“ DppT ` i idXq´1q Ñ X

is a well-defined closed isometric operator. Moreover, idX ´UT : DpUT q Ñ X is injective and

T “ ipidX `UT qpidX ´UT q´1.

The operator UT is called the Cayley transform of T .

Proof. By Lemma E.5.10 and its proof, pT ` i idXq´1 : DppT ` i idXq´1q Ñ X is well-defined and
continuous, and

∥pT ˘ i idXqv∥2 “ ∥Tv∥2 ` ∥v∥2 “: ∥pv, Txq∥2XˆX (♠)

Then for v P DpUT q, we have

∥v∥2 “
∥∥T pT ` i idXq´1v

∥∥2 `
∥∥pT ` i idXq´1v

∥∥2
“

∥∥T pT ` i idXq´1v
∥∥2 `

´

∥UT v∥2 ´
∥∥T pT ` i idXq´1v

∥∥2¯ “ ∥UT v∥2 .

This proves UT is an isometry.
To show UT is closed, let pxnqn Ď X be such that pT ` i idXqxn “: yn Ñ y and pT ´ i idXqxn “:

zn Ñ z. We must show UT y “ z. To this end, since T is closed, by p♠q we see pxn, Txnq Ñ px, Txq

for some x P X. Hence y “ pT ` i idXqx and z “ pT ´ i idXqx by closedness, and so UT y “ z.
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Suppose v P DpUT q such that pidX ´UT qv “ 0. Write v “ pT ` i idXqw for some w P DpT q; then
UT v “ pT ´ i idXqw, and hence

0 “ pT ` i idXqw ´ pT ´ i idXqw “ 2iw.

This implies w “ 0, whence v “ 0. Finally,

Tw “ 2´1pidX `UT qv “ ipidX `UT qpidX ´UT q´1w

for w P DpT q, so that T “ ipidX `UT qpidX ´UT q´1 as we claimed.

Lemma E.5.12. Let U be a closed isometric operator on X such that ImpidX ´Uq is dense in X.
Then there exists a unique closed symmetric operator T on X with U “ UT .

Proof. First we show idX ´U is injective. For y, z P DpUq, compute

xy, pidX ´Uqzy “ xy, zy ´ xy, Uzy “ xUy,Uzy ´ xy, Uzy “ xpU ´ idXqy, Uzy.

If pidX ´Uqy “ 0, then xy, pidX ´Uqzy “ 0 for all z P DpUq so that y P ImpidX ´UqK. By hypothesis
this implies y “ 0.

Define T “ ipidX `UqpidX ´Uq´1. Then DpT q “ DppidX ´Uq´1q “ ImpidX ´Uq is dense in X.

• T is symmetric. Let x, y P DpUq. Then

xT pidX ´Uqx, pidX ´Uqyy “ ixpidX `Uqx, pidX ´Uqyy

“ ixx, yy ` ixUx, yy ´ ixx,Uyy ´ ixUx,Uyy

“ i pxUx, yy ´ xx,Uyyq .

On the other hand,

xpidX ´Uqx, T pidX ´Uqyy “ ´ixpidX ´Uqx, pidX `Uqyy “ i pxUx, yy ´ xx,Uyyq .

Equating these two shows that T is symmetric.

• U “ UT . On DpT q “ DppidX ´Uq´1q we have

T ` i idX “ ipidX `UqpidX ´Uq´1 ` ipidX ´UqpidX ´Uq´1 “ 2ipidX ´Uq´1.

We deduce DpUq “ ImppidX ´Uq´1q “ ImpT ` i idXq “ DppT ` i idXq´1q “ DpUT q. We also
compute

T ´ i idX “ ipidX `UqpidX ´Uq´1 ´ ipidX ´UqpidX ´Uq´1 “ 2iUpidX ´Uq´1

so that

UT “ pT ´ i idXqpT ` i idXq´1 “ UpidX ´Uq´1pidX ´Uq “ U

• T is closed. This is clear: for pxnqn Ď DpT q “ ImpidX ´Uq, let pynqn Ď DpUq be such that
xn “ pidX ´Uqyn. Then Txn “ ipidX `Uqyn. If pxn, Txnq Ñ px, zq converges, then both
yn and Uyn converge. Since U is closed, we have pyn, Uynq Ñ py, Uyq, so that pxn, Txnq Ñ

ppidX ´Uqy, ipidX `Uqyq “ px, Txq.
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Theorem E.5.13. Let T be a closed symmetric operator on X. Then

DpUT qK “ tx P DpT˚q | T˚x “ ixu

ImpUT qK “ tx P DpT˚q | T˚x “ ´ixu

and

DpT˚q “ DpT q ‘DpUT qK ‘ ImpUT qK

Proof. Suppose x P DpT˚q and T˚x “ ix. For y P DpUT q “ ImpT ` i idXq, write y “ pT ` i idXqz

for some z P DpT q. Then

xx, yy “ xx, Tzy ´ ixx, zy “ xix, zy ´ ixx, zy “ 0.

This proves x P DpUT qK. Conversely, suppose x P DpUT qK “ ImpT ` i idXqK. Then xx, pT `

i idXqyy “ 0 for all y P DpT q, so that

xx, Tyy “ xix, yy.

This implies px, ixq P T˚, so that T˚x “ ix. The second equality is proved in the same way.
Since UT is isometric, we have ∥px,UTxq∥2XˆX “ 2 ∥x∥2 “ 2 ∥UTx∥2. Since UT is closed, it

follows that DpUT q and ImpUT q are closed in X. In particular, by Theorem E.2.1 we deduce

X “ DpUT q ‘DpUT qK “ ImpT ` i idXq ‘DpUT qK.

Let x P DpT˚q. By the decomposition applied to pT˚ ` i idXqx, we see

pT˚ ` i idXqx “ pT ` i idXqx1 ` x2

for x1 P DpT q and x2 P DpUT qK. Since T Ď T˚, we have pT ` i idXqx1 “ pT˚ ` i idXqx1. Since
T˚x2 “ ix2, we have x2 “ pT˚ ` i idXqpp2iq´1x2q. Putting these together shows

pT˚ ` i idXqx “ pT ` i idXqx1 ` pT˚ ` i idXqpp2iq´1x2q

so that x´ x1 ´ p2iq´1x2 P kerpT˚ ` i idXq “ ImpUT qK. This proves

DpT˚q “ DpT q `DpUT qK ` ImpUT qK.

Suppose 0 “ x1 ` x2 ` x3 for x1 P DpT q, x2 P DpUT qK, x3 P ImpUT qK. Then

0 “ pT˚ ` i idXqpx1 ` x2 ` x3q “ pT ` i idXqx1 ` 2ix2.

Since pT ` i idXqx1 P ImpT ` i idXq “ DpUT q and x2 P DpUT qK, it follows that x2 “ 0 and
pT ` i idXqx1 “ 0. Since T ` i idX is injective, x1 “ 0. Hence x3 “ 0 as well, proving the sum is
direct.

Corollary E.5.13.1. A closed symmetric operator T on X is self-adjoint if and only if UT is unitary.

Proof. T is self-adjoint if and only if DpT q “ DpT˚q, if and only if DpUT qK “ ImpUT qK “ t0u by
the theorem. Since UT is closed and isometric, this implies DpUT q “ ImpUT q “ X.
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E.5.2 Spectrum
Let k “ C and X a complex topological vector space.

Definition. Let T be an operator on X. For λ P C, put

Tλ “ λ idX ´T : DpT q Ñ X.

The resolvent set of T is

ρpT q “ tλ P C | Tλ : DpT q Ñ ImTλ has dense image and a continuous inverse.u

For λ P ρpT q, the operator RλpT q :“ pλ idX ´T q´1 : ImTλ Ñ DpT q Ď X is called the resolvent
operator of T (at λ). The complement

σpT q :“ C z ρpT q

is called the spectrum of T . Define

σppT q :“ tλ P C | λ idX ´T is not injective.u
σcpT q :“ tλ P C | λ idX ´T is injective with dense image, but RλpT q is not continuous.u
σrpT q :“ tλ P C | λ idX ´T is injective with non-dense image.u

σp is the point spectrum, σc is the continuous spectrum, and σr is the residual spectrum.
Immediately from the definition,

σpT q “ σppT q \ σcpT q \ σrpT q.

An element in σppT q is called an eigenvalue of T .

Lemma E.5.14. Let X be a complex Banach space and T a closed linear operator on X. For λ P C,
TFAE:

(i) λ P ρpT q.

(ii) Tλ : DpT q Ñ X is bounded below and has dense image.

(iii) Tλ : DpT q Ñ X is bijective.

In particular, RλpT q is a genuine continuous linear map X Ñ X.

Proof. Assume (i). For (ii) we must show there exists C ą 0 such that ∥Tλx∥ ě C ∥x∥ for all
x P DpT q. Write x “ Rλy for some y P ImTλ; then y “ Tλx and

∥x∥ “ ∥Rλy∥ ď ∥Rλ∥op ∥y∥ “ ∥Rλ∥op ∥Tλx∥ .

This implies ∥Tλx∥ ě C ∥x∥ with C “ ∥Rλ∥´1
op .

Assume (ii). To show ImTλ “ X, let y P X and take pxnqn Ď X such that Tλxn Ñ y in X; this
is possible as Tλ has dense image. Since Tλ is bounded below, it follows that pxnqn is Cauchy; let
x “ lim

nÑ8
xn. Since T is closed, ppxn, Txnqqn Ñ px, yq in X ˆX implies y “ Tx.

Assume (iii). Since T is closed, Tλ is closed and hence Rλ is closed. It follows from the closed
graph theorem that Rλ is continuous.

Theorem E.5.15. Let T be an operator on X. Then the resolvent ρpT q is open in C, and the
function

ρpT q BpXq

λ RλpT q

is holomorphic.
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Appendix F

Smooth manifolds

F.1 Inverse function theorem
We start with some classical results in calculus.

Theorem F.1.1 (Implicit function theorem). Let
g : Rn ˆ Rm Rm

px, yq gpx, yq

be C1 and ξ P

Rn, η P Rm be given that gpη, ξq “ 0. Assume that the det

ˆ

Bg

By
pξ, ηq

˙

‰ 0. Then there exist

positive numbers a, b such that there exists a unique C1 function ϕ : Bapξq Ñ Bbpηq with ϕpξq “ η

such that
g´1p0q X pBapξq ˆBbpηqq “ tpx, ϕpxqq | x P Bapξqu

Furthermore, if g is Cp, so is ϕ (including p “ 8).

Theorem F.1.2 (Inverse function theorem). Let θ : Rm Ñ Rm be C1 with θ1pηq be invertible for
some η P Rm. Then there exists an open neighborhood U of η such that

(i) θpUq is open in Rm

(ii) θ|U : U Ñ θpUq is bijective, with inverse ϕ

(iii) ϕ : θpUq Ñ U is C1

Theorem F.1.3 (Constant rank theorem). Let f : Rm Ñ Rn be C1 and p P Rm. Suppose
rank f 1pxq “ r in a neighborhood U of p. Then under suitable (smooth) changes of coordinates near
p P U and fppq P Rn, the map f assumes the form

px1, . . . , xmq ÞÑ px1, . . . , xr, 0, . . . , 0q

Proof. Write f “ pf1, . . . , fnq. Since rank f 1|U ” r and p P U , we can replace U by a smaller

neighborhood so that, WLOG, the r ˆ r principal minor
ˆ

Bfi
Bxj

˙

1ďi,jďr

is invertible. Now consider

the map
Φ : U Rm

x “ px1, . . . , xmq pf1pxq, . . . , frpxq, xr`1, . . . , xmq
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By our choice, the Jacobian of this map is nonvanishing at p, so by restricting to a smaller neigh-
borhood again, we may assume this map is a C1-diffeomorphism. Now consider the commutative
triangle

U Rn

ΦpUq

„ Φ

f

f

One easily sees that fpx1, . . . , xmq “ px1, . . . , xr, hpx1, . . . , xmqq for some C1 map h. But rank f
1

is constant on ΦpUq, by considering the Jacobian of f we see Bh

By
” 0, where y “ pxr`1, . . . , xmq.

Hence h is independent of y. Finally, let F : Rn Ñ Rn be the diffeomorphism defined by F pu, vq “

pu, v ´ hpuqq. Then F ˝ fpx, yq “ px1, . . . , xr, 0, . . . , 0q, as wanted.

F.2 Basic definitions
Definition.

1. An n-dimensional smooth manifold Mn is a second countable Hausdorff space together
with a (smooth) atlas tpUα, φα : Uα Ñ φαpUαq Ď

open
Rnqu such that the Uα covers M and the

transition map
φαβ :“ φβ ˝ φ´1

α : φαpUα X Uβq Ñ φβpUα X Uβq

is smooth (in the usual sense) for each α, β. An element in the atlas is called a chart. We
also write n “ dimRM .

2. Let the notation be as above. For a chart tU,φu, write φppq “ px1ppq, . . . , xnppqq for each
p P U . The functions x1, . . . , xn are called the local coordinates.

3. Let M,N be two smooth manifolds and f : M Ñ N a continuous map. f is said to be Ck /
smooth if for each chart pU,φq of M and pV, ψq of N with fpUq Ď V , the composition

ψ ˝ f ˝ φ´1 : φpUq Ñ U Ñ V Ñ ψpV q

is Ck / smooth.

Next we review the concepts of tangent vectors and tangent spaces.

Definition. Let M be a smooth manifold.

1. For U Ď
open

M , denote by C8pUq “ C8pU,Rq the space of smooth real-valued functions on U .

2. For p P M , denote by C8
p pMq the stalk of smooth functions at p, i.e.

C8
p pMq “ lim

ÝÑ
pPU Ď

open
M

C8pUq

where the C8pUq are directed by restriction. An element in C8
p pMq is called a germ.

3. For a smooth curve γ : R Ñ M with γp0q “ p, we define Dγ : C8
p pMq Ñ R by

Dγf “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpγptqq

Each Dγ is called the tangent vector to γ at p. Denote by TpM the space of all tangent
vectors of p at M , and call it the tangent space of M at p.
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4. For each p P M , a derivation at p is an R-linear map D : C8
p pMq Ñ R satisfying the Leibniz

rule:
Dpfgq “ fppqDpgq ` gppqDpfq

Proposition F.2.1. Let M be an n-dimensional smooth manifold and p P M .

1. TpM is an n-dimensional real vector space. To be precise, let x1, . . . , xn be a local coordinate

around p. Then TpM “ spanR

"

B

Bxi

*

i“1,...,n

.

2. Every derivation at p is a tangent vector at p.

Example F.2.2. Rn is an n-dimensional smooth manifold. For each p P Rn and a vector v P Rn,
define γv “ p` tv. Then there is a linear isomorphism

Rn TpRn

v Dγv

Definition. Let M,N be smooth manifolds, p P M and f :M Ñ N a smooth map. The differen-
tial of f at p is a linear map f˚ “ f˚p : TpM Ñ TfppqN defined by

f˚Dγ “ Df˝γ

• If D is a derivation at p, we have pf˚Dqg “ Dpg ˝ fq.

• Let γ : R Ñ M be a smooth curve. Then Dγ “ γ˚

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

.

1. f :M Ñ N is an immersion if f˚ is injective at all points of M .

2. f :M Ñ N is a submersion if f˚ is surjective at all points of M .

3. If f is injective and immersive, then pM,fq is called an immersed submanifold of N .

4. f : M Ñ N is an embedding if f is injective, immersive and homeomorphic onto its image
fpMq, where fpMq is equipped with the subspace topology from N . In this case, we say pM,fq

is an embedded/regular submanifold of N .

For a later use, let us mention the famous Sard’s theorem.

Definition. Let f :M Ñ N be a smooth map between smooth manifolds.

1. A point p P M is called a critical point of f if f˚,p : TpM Ñ TfppqN is not surjective.

2. The image of a critical point under f is called a critical value of f .

3. A point q P N is called a regular value of f if it is not a critical value of f .

• Note that q P N is regular if and only if q R fpMq or q P fpMq and f is submersive on the
fibre f´1pqq.

Theorem F.2.3 (Sard). If f : M Ñ N is smooth, then the set of critical values of f has measure
zero1.

1On a smooth manifold there is a natural concept of null sets, which can be defined without having a measure.
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Proposition F.2.4. Let Mm be a smooth manifold and r P N0. If S is a subspace of M such that for
each p P S we can find a chart pU,φq of M near p such that φpUXSq “ tx1 “ ¨ ¨ ¨ “ xr “ 0u Ď φpUq,
then S is itself a manifold of dimension m ´ r (codimension r) and pS, ι : S Ď Mq is a regular
submanifold of M .

Proof. Let π : Rm Ñ Rm´r be the projection to the last m ´ r coordinates. Near each p we
find a chart pUp, φpq such that φppU X Sq “ tx1 “ ¨ ¨ ¨ “ xr “ 0u. Put Vp :“ Up X S and
ψp “ π ˝ φp : Vp Ñ Rm´r. We claim tpVp, ψpqupPM forms a smooth atlas of S. It suffices to
check the transition map is smooth. To this end, let p ‰ q P M with Vp X Vq ‰ H. If we write
φq ˝φ´1

p px1, . . . , xmq “ ph1pxq, . . . , hmpxqq, then ψq ˝ψ´1
p pxr`1, . . . , xmq “ phr`1p0, yq, . . . , hmp0, yqq,

where y “ pxr`1, . . . , xmq, which is clearly smooth. Finally, ι : S Ď M is clearly injective and
immersive since in local coordinates it is an inclusion, and it is a topological embedding since S is
with subspace topology.

Theorem F.2.5 (Constant rank theorem). Let Mm, Nn be smooth manifolds and p P M . Let
f : M Ñ N a smooth map such that rank f˚,x “ r in an open neighborhood U of p. Then we can
find a chart φ near p and a chart ψ near fppq such that f assumes the form

M N

Rm Rn

px1, . . . , xmq px1, . . . , xr, 0, . . . , 0q

f

φ´1

f

ψ´1

Corollary F.2.5.1. Let f :Mm Ñ Nn be a smooth map and q P N . Suppose f˚ has constant rank
r in a neighborhood of f´1pqq, then f´1pqq is a regular submanifold of M of codimension r.

Proof. Let p P f´1pqq. By Constant rank theorem we can find a chart pU,φq near p and a chart
pV, ψq near fppq “ q with fpUq Ď V and ψpqq “ 0 such that we have the commutative diagram

U V

φpUq ψpV q

px1, . . . , xmq px1, . . . , xr, 0, . . . , 0q

f

φ´1

f

ψ´1

Then φpU X f´1qq “ f
´1

p0q “ tx1 “ ¨ ¨ ¨ “ xr “ 0u, so that f´1pqq is a regular submanifold by
Proposition F.2.4.

Corollary F.2.5.2. Let Mm, Nn be smooth manifolds and f :M Ñ N a smooth map.

1. If f is immersive at p P M , then f is locally an embedding near p, i.e., we can find an open
neighborhood U of p and such that f |U : U Ñ N is an embedding.

2. If q P fpMq is a regular value of f , then f´1pqq is a regular submanifold of M .

3. If f is an embedding, then pfpMq, ι : fpMq Ď Nq is the regular submanifold of the type in
Proposition F.2.4, i.e., it is locally the zero locus of some local coordinates.
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Proof.

1. By Constant rank theorem, we can find a chart pU,φq of M near p and a chart pV, ψq near
fppq with fpUq Ď V such that f : U Ñ V is of the form px1, . . . , xmq ÞÑ px1, . . . , xm, 0, . . . , 0q.
This shows f |U Ñ N is an embedding.

2. This is just Corollary F.2.5.1 with r “ n.

3. For each p P M , let pUp, φpq and pVp, ψpq be the charts found as in 1. Since f is a topological
embedding, we can find an open neighborhood Wp of fppq such that fpUpq “ Wp X fpMq.
Replacing Vp by Vp XWp, we are then in the situation as Proposition F.2.4.

Lemma F.2.6. Let Mm Ď Rn be a embedded submanifold. Let p P M and assume there exists
a smooth function f : U Ñ R defined on an open neighborhood U of p in Rn such that f |UXM is

constant. Then the vector
ˆ

Bf

Bx1
, . . . ,

Bf

Bxn

˙ˇ

ˇ

ˇ

ˇ

p

is perpendicular to TpM Ď TpRn “ Rn.

Proof. Choose a local coordinate system y1, . . . , yn of Rn near p such that M is defined by ym`1 “

¨ ¨ ¨ “ yn “ 0. Put xi “ θipy
1, . . . , ynq, so that B

Byi
“

n
ÿ

j“1

Bθj
Byi

B

Bxj
near p. If we write gpy1, . . . , ynq “

fpx1, . . . , xnq, then the constancy condition on f implies

0 “
Bg

Byi
“

n
ÿ

j“1

Bf

Bxj
Bθj
Byi

holds for any 1 ď i ď m. These equations give exactly the result that we want.

Proposition F.2.7. Let f :M Ñ N be a smooth map and φ : S Ñ N be an immersed submanifold.
Suppose fpMq Ď φpSq and let f0 :M Ñ S be the unique map such that f “ φ ˝ f0.

(i) If f0 is continuous, then f0 is smooth.

(ii) If φ is an embedding, then f0 is continuous.

Proof. (ii) is clear. For (i), assume f0 is continuous. Let p P S; by Corollary F.2.5.2.1. we can find
an open neighborhood V of p in S such that φ|V : V Ñ N is an embedding. Then

f0|f´1
0 pV q “

´

φ|
φpNq

V

¯´1

˝ f |
φpV q

f´1
0 pV q

is smooth.

F.3 Vector fields

F.3.1 Tangent bundles
Let Mm be a smooth manifold. We form the (set-theoretic) disjoint union

TM :“
ğ

pPM

TpM “ tpp, vq | p P M, v P TpMu

This is called the tangent bundle of M . We are going to topologize TM and gives it a smooth
structure.
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We have the canonical projection π : TM Ñ M , sending pp, vq to p. Let pU,φq be a chart on M

and write φ “ px1, . . . , xmq. Then for each p P U , TpM is spanned by the B

Bxi

ˇ

ˇ

ˇ

ˇ

p

. By identifying the

B

Bxi
with the standard basis of Rm, we have a set-theoretic bijection:

π´1pUq U ˆ Rm

˜

p,
m
ÿ

i“1

ai
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

pp, a1, . . . , amq

We now use the cover tπ´1pUqu to define a topology on TM . Say a subset S Ď TM is open iff for
every chart U on M , the image of π´1pUq XS in U ˆRn is open in the product topology. Then each
π´1pUq is open in TM because if V is another chart, then π´1pUq X π´1pV q “ π´1pU X V q, and in
V ˆ Rm, it is pU X V q ˆ Rm, an open subset. One checks easily that this topology is Hausdorff and
second countable.

For a chart pU,φq on M , let Φ be the composition π´1pUq Ñ U ˆ Rm Ñ φpUq ˆ Rm. Then
tpU,Φqu forms a smooth atlas on TM . We must show the transition map is smooth. Suppose
pV, ψ “ py1, . . . , ymqq is another chart that meets U . Let f “ ψ ˝ φ´1 be the transition map.

By definition, f˚,p
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“
ř

j

Bfj
Bxi

ˇ

ˇ

ˇ

ˇ

p

B

Byj

ˇ

ˇ

ˇ

ˇ

p

. If we write Jp “

˜

Bfi
Bxj

ˇ

ˇ

ˇ

ˇ

p

¸

ij

, then there is a smooth

diffeomorphism
pU X V q ˆ Rm pU X V q ˆ Rm

pp, a1, . . . , amq pp, pa1 ¨ ¨ ¨ amqJTp q

This is clearly a smooth map, for the transition map f is smooth so that the Jacobian Jp is smooth
in p as well. This finishes our construction, and this atlas makes TM into a real 2m-dimensional
smooth manifold.

Definition. Let M be a smooth manifold. A smooth vector bundle of rank r over M is a pair
pE, πE : E Ñ Mq enjoying the following properties

(a) πE : E Ñ M is a surjective smooth map.

(b) Each fibre π´1ppq of p P M has a structure of real r-dimensional vector space.

(c) πE is locally trivial of rank r, i.e., for each p P M there is an open neighborhood U of p
and a smooth diffeomorphism ϕ : π´1

E pUq Ñ U ˆ Rr such that the triangle

π´1
E pUq U ˆ Rr

U

πE

ϕ

pr1

commutes, and for each q P U , the restriction ϕ|π´1
E pqq : π

´1
E pqq Ñ tqu ˆ Rr is a linear isomor-

phism. Such a pU, ϕq is called a local trivialization of E.

• In this language, the tangent bundle TM is a smooth vector bundle of rank m over Mm.

• We say M ˆ Rd is the trivial bundle of rank d over M .
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Definition. Let M be a smooth manifold and pE, πEq a vector bundle over M .

1. For an open set U Ď M , a section of E over U is a continuous map s : U Ñ E with π˝s “ idU .

2. A vector field on M is a section over M of the tangent bundle TM .

For an open set U Ď M , denote by ΓpU,Eq the set of all continuous sections of E over U . Also
denote by Γ8pU,Eq (resp. ΓcpU,Eq, Γ8

c pU,Eq) the subspace of smooth (resp. compactly supported,
compactly supported smooth) sections of E over U . Each space forms a real vector space. For short
hand, put

XpMq “ Γ8pM,TMq.

3. If f : M Ñ N is a smooth diffeomorphism and X P XpMq, the pushforward of X by f is
the vector field f˚X defined by pf˚Xqq :“ f˚,pXp, where q “ fppq.

F.3.2 Local flows
Definition. Let X be a smooth vector field on a smooth manifold M .

1. An integral curve of X is a smooth curve γ : pa, bq Ñ M such that γ˚,s

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“t

s

˙

“ Xγpsq

for each a ă s ă b. We always assume 0 P pa, bq.

2. Let the notation be as in 1. If p “ γp0q, we say γ is an integral curve of X starting from p.
γ is called maximal if its domain cannot be extended further.

3. A local flow is a smooth map F : pa, bq ˆ M Ñ M (with 0 P pa, bq) such that F p0, pq “ p for
all p P M and F ps` t, pq “ F ps, F pt, pqq for all p P M, s, t P pa, bq with s` t P pa, bq.

4. A local flow generated by X is a local flow F : pa, bq ˆM Ñ M such that for each p P M ,
F p¨, pq : pa, bq Ñ M is an integral curve of X. The vector field X is called the infinitesimal
generator of the flow F .

Theorem F.3.1. Let X be a smooth vector field on M , p P M and U an open neighborhood of p.

1. There exists a unique maximal integral curve of X starting from p.

2. There exists a local flow F : p´ε, εq ˆ W Ñ U generated by X for some small ε ą 0 and
p P W Ď

open
U .

Lemma F.3.2. Let M,N be smooth manifolds and f :M Ñ N be a continuous map.

1. f is smooth if and only if f˚g :“ g ˝ f P C8pMq for all g P C8pNq.

2. A vector field X on M is smooth if and only if Xf P C8pMq for all f P C8pMq.

3. If N “ R, then f is smooth if and only if f is C1 and Xf P C8pMq for all X P XpMq.

Proof.

1. The only part is clear. For the if part, let pV, ψ, y1, . . . , ynq be a chart of N . Let p P V and
choose a compact neighborhood K of p in V . By Urysohn’s lemma we can find a smooth
function θ P C8pNq` such that θ|K ” 1 and ψ|NzV “ 0. Then ψK :“ ψpθ, θ, . . . , θq : N Ñ Rn

is a well-defined smooth function that ψK |K “ ψ|K . Since yk ˝ ψK : N Ñ R is smooth, by
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assumption f˚pyk ˝ψKq “ yk ˝ψK ˝f is smooth. Let pU,φq be any chart such that fpUq Ď K.
Then

yk ˝ ψ ˝ f ˝ φ´1 “ yk ˝ ψK ˝ f ˝ φ´1 : φpUq Ñ R

is smooth for each k P rns, so that ψ ˝ f ˝ φ´1 : φpUq Ñ ψpKq is smooth. Running over all
such U and K shows f is smooth.

2. Locally near a point p P X, write X “
ř

ai
B

Bxi
. As in 1. we can extend the functions xj , ai

to global functions which are unchanged near p. Then Xpxjq “ aj . Now 2. is clear.

3. The only if part is clear. For the if part, by extension using bump functions as before, the
question becomes a purely local one. Then the result becomes obvious, as a function on Rm

is smooth if and only if all its partial derivatives exist and are smooth.

For X,Y P XpMq, XY :“ X ˝ Y : C8pMq Ñ C8pMq is an R-linear map, but fails to be a
derivation in general. Indeed, for f, g P C8pMq,

XY pfgq “ XpY pfqg ` Y pgqfq “ XY pfqg `XY pgqf ` Y pfqXpgq ` Y pgqXpfq

To cancel out the last to term, we subtract Y Xpfgq so that

XY pfgq ´ Y Xpfgq “ XY pfqg `XY pgqf ´ pY Xpfqg ` Y Xpgqfq

“ pXY ´ Y Xqpfqg ` pXY ´ Y Xqpgqf

Then XY ´ Y X is a derivation on C8pMq.

Definition. For X,Y P XpMq, the Lie bracket rX,Y s is a smooth vector field given by the
derivation XY ´ Y X. In other words, for p P M and f P C8

p pMq,

rX,Y spf :“ XppY fq ´ YppXfq

Proposition F.3.3. For a smooth manifold M , the space XpMq of smooth vector fields on M

together with the Lie bracket defined above is a real Lie algebra.

Proposition F.3.4. Let f :M Ñ N be a smooth diffeomorphism. For X,Y P XpMq, we have

f˚rX,Y s “ rf˚X, f˚Y s

Proof. This is a direct computation. Let q “ fppq, p P M .

pf˚rX,Y sqqg “ f˚,prX,Y spg “ rX,Y sppg ˝ fq

“ XppY pg ˝ fqq ´ YppXpg ˝ fqq

“ Xpppf˚Y qg ˝ fq ´ Ypppf˚Xqg ˝ fq

“ pf˚Xqqpf˚Y qg ´ pf˚Y qqpf˚Xqg “ rf˚X, f˚Xsqg

where we have used the equality pf˚Xqg ˝ f “ Xpg ˝ fq
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F.3.3 Lie derivatives of vector fields
Definition. Let X be a vector field and φ : p´ε, εq ˆ W Ñ U be a local flow generated by X. For
t P p´ε, εq, put φt “ φpt, ¨q : W Ñ U . If Y is a vector field and p P W , define the Lie derivative
of Y in X by2

pLXY qp “ lim
tÑ0

pφ´tq˚,φtppqYφtppq ´ Yp

t
“

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pφ´tq˚,φtppqYφtppq P TpM

Here note that φ0ppq “ p for any p P W , so pφ0q˚,p “ id on TpM .

Proposition F.3.5. Let X be a vector field and φ the local flow generated by X.

(i) For f P C8pMq, we have Xppfq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpφtppqq.

(ii) For Y P XpMq, we have LXY “ rX,Y s.

Proof.

(i) The question is local, we may write X “
n
ř

i“1

ai
B

Bxi
and φt “ pφ1

t , . . . , φ
n
t q with φi0 “ xi and

d

dt
φitppq “ aipφtppqq. Then

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpφtppqq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpφ1
t ppq, . . . , φnt ppqq “

n
ÿ

i“1

Bf

Bxi

ˇ

ˇ

ˇ

ˇ

p

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

φitppq “

n
ÿ

i“1

aippq
Bf

Bxi

ˇ

ˇ

ˇ

ˇ

p

“ Xppfq.

(ii) Let f P C8pMq. Then

pLXY qppfq “ lim
tÑ0

pφ´tq˚,φtppqYφtppqpfq ´ Yppfq

t
“ lim
tÑ0

Yφtppqpf ˝ φ´tq ´ Yppfq

t

where we use the identity pf˚Xqg ˝ f “ Xpg ˝ fq again. Write f ˝ φ´t “ f ` tht with
h0 “ ´Xpfq. Applying Y , we obtain

Yqpf ˝ φ´tq “ Yqpfq ` Yqpthtq “ Yqpfq ` tYqphtq.

Plugging into the expression above, we see

pLXY qppfq “ lim
tÑ0

Yφtppqpfq ` tYφtppqphtq ´ Yppfq

t

“ lim
tÑ0

Yφtppqpfq ´ Yppfq

t
` Ypph0q “ XppY pfqq ´ YppXpfqq.

Here the last identity results from (i).

Corollary F.3.5.1. Let X,Y be two vector fields and φt, ψs the respective local flows defined on
U . TFAE:

1. rX,Y s “ 0 on U .

2. pφtq˚Y “ Y for any small enough t.

3. For any p P U , φt ˝ ψsppq “ ψs ˝ φtppq for any small t, s.
2The tangent space TpM is finite dimensional over R, so it has a unique norm topology, which allows us to talk

about limit.
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F.3.4 Integral submanifolds
Definition. Let Mn be a smooth manifold and let 0 ď k ď n.

1. A rank k distribution of TM is a subset H Ď TM satisfying

(a) Hp :“ H X TpM is a k-dimensional subspace for any p P M , and

(b) H is smooth, in the sense that Hp “ spanR

#

n
ř

j“1

aij
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

+k

i“1

holds in a small neigh-

borhood p for any p P M , where the aij are smooth.

2. A distribution H is involutive if for any X,Y P XpMq such that Xp, Yp P H for any p P M ,
we have rX,Y sp P H for any p P M .

Theorem F.3.6 (Frobenius’). Let Mn be a smooth manifold and H a rank k distribution on TM .
If H is involutive, then for any p P M , there exists a local chart pU, x1, . . . , xnq about p such that

H “ spanR

"

B

Bxi

*k

i“1

in U .

Proof. We prove this by induction on k “ rank H; note that when k “ 1, H is automatically
involutive. Let p P M and choose a local chart pU, x1, . . . , xnq about p (where the image of p

is the origin). Then H “ spanR

"

n
ř

i“1

ai
B

Bxi

*

in U . Let φt be the local flow in U generated by

X “
n
ř

i“1

ai
B

Bxi
. Consider the function

F : px1, . . . , xn´1, tq ÞÑ φtpx
1, . . . , xn´1, 0q,

defined on a reasonable domain. We compute the Jacobian of F at the origin:

F 1p0q “

¨

˚

˚

˚

˚

˝

a1p0q

In´1 a2p0q

...

O1,n´1 anp0q

˛

‹

‹

‹

‹

‚

Up to a rearrangement and shrinking U , we may assume an is nonvanishing in U , implying that
F 1p0q is invertible. This means we can use px1, . . . , xn´1, tq as a new coordinates. By construction,

we have F˚,p

˜

B

Bt

ˇ

ˇ

ˇ

ˇ

p

¸

“ XF ppq, or F˚

B

Bt
“ X, so that pF´1q˚X “

B

Bt
. This means in the chart

px1, . . . , xn´1, tq, we have H “ R
B

Bt
.

For general k ě 2, take a small neighborhood around p so that H “ spanRtV1, . . . , Vku, where
the Vi are vector fields defined near p. By the k “ 1 case applied to RVk, we can find a coordinate
chart py1, . . . , ynq such that RVk “ R

B

Byk
. Write rVi, Vjs “ Vij ` aijVk p1 ď i, j ď k ´ 1q for some

Vij P spanRtV1, . . . , Vk´1u. By replacing Vi with Vi ´ Vipy
kqVk, we obtain

0 “ Vi,ppVjpy
kqq ´ Vj,ppVipy

kqq “ rVi, Vjsppykq “ Vij,ppykq ` aijppqVk,ppykq “ aijppq

i.e., aij “ 0. Thus spanRtV1, . . . , Vk´1u is involutive, so by induction we can find pz1, . . . , znq such

that spanRtV1, . . . , Vk´1u “ spanR

"

B

Bzi

*k´1

i“1

. So far we have arrived at

H “ spanR

"

B

Bz1
, . . . ,

B

Bzk´1
, Vk

*

,
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and we have found a function h such that Vkphq “ 1 while B

Bzi
h “ 0 for 1 ď i ď k´ 1. In particular,

we may assume Vk P spanR

"

B

Bzi

*n

i“k

Write Vk “
n
ř

i“k

bi
B

Bzi
. Since H is involutive,

H Q

k´1
ÿ

j“1

aj
B

Bzi
` ciVk “

„

B

Bzi
, Vk

ȷ

“

n
ÿ

j“k

Bbj
Bzi

B

Bzj
.

Plugging h into the first expressing gives ci ” 0, so the bracket actually lies in spanRtV1, . . . , Vk´1u,
whence from the second expression we read off Bbj

Bzi
” 0 for j ě k. It follows that the bj only depend

on the variables zk, . . . , zn.
Using the coordinate pz1, . . . , zk´1, zk . . . , znq, we identify Rn with Rk´1 ˆ Rn´k`1. What we

obtained above simply says that Vk is a vector field that entirely lies in t0u ˆ Rn´k`1. By the
case k “ 1 applied the RVk regarded as in the manifold Rn´k`1, we can find xk, . . . , xn such that
RVk “ R

B

Bxk
. Now the coordinates pz1, . . . , zk´1, xk, . . . , xnq about p in M does the job for us, and

the induction step is completed.

Definition. Let M be a smooth manifold and H Ď TM a rank k distribution. An immersed
submanifold f : N Ñ M is called an integral submanifold for H if for every p P N , the image of
f˚,p : TpN Ñ TfppqM is precisely Hfppq.

Let H Ď TM be an involutive distribution of rank k. By Theorem F.3.6, for each p P M we can

find a connected chart pUp, x
1
p, . . . , x

n
p q such that H “ spanR

"

B

Bxip

*k

i“1

in U . Then the slices

Sppcq :“ tx P Up | pxk`1
p , . . . , xnp q “ cu, c P Rn´k

are closed submanifolds of Up such that TqSppcq “ Hq for q P Sppcq. With our new language, each
slice Sppcq Ñ M is an integral submanifold for H. In fact, if f : N Ñ M is a connected integral
submanifold for H with image fpNq Ď Up, then fpNq Ď Sppcq for some c P Rn´k. Indeed, if we
denote by π “ pxk`1

p , . . . , xnp q : Rn Ñ Rn´k, then pπ ˝ fq˚ “ 0 identically, so π ˝ f is a constant, as
N is connected.

We are going to construct a maximal integral submanifold for H passing through a fixed point
p P M . Let p P M . Define

K “

#

x P M |
there exists a piecewise smooth γ : p´ε, 1 ` εq Ñ M such that γp0q “ p, γp1q “ p,

and all of its smooth pieces are integral curves for H

+

.

We topologize K as follows. By second countability of M , we can find a countable subset F Ď M

such that tUq | q P F u covers M ; we assume p P F . For each x P K, there exists qx P F such
that x P Uqx , so x P Sqx :“ Sqxpcq for some c P Rn´k. Note that Sqx Ď K. We use the cover
tpSqx , x

1
qx |Sqx

, . . . , xkqx |Sqx
q | x P Ku to give K a smooth structure. If we can show this topology is

second countable, then K is then a (path-)connected k-dimensional smooth manifold. For this, fix
some q P F , and we only need to show the set

tc P Rn´k | Sqpcq Ď Ku

is at most countable. Each point x P K is joined to p by a piecewise smooth curve γ. Take
pqiq

n
i“0 Ď F with q0 “ p so that γ|r0,1s passes through Uqi in order. Since each smooth part of γ

is an integral curve, it starts with p in U0, and passes through Uq1 in some slices, and then passes
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through Uq2 in some slices, and so on. To show the countability, it suffices to show that for q, r P F

and c P Rn´k, the set

td P Rn´k | Sqpcq X Srpdq ‰ Hu

is at most countable. For this, notice that Sqpcq X Ur is an open submanifold of Ur, so it has
(at most) countably many connected components, each being an integral submanifold for H in Ur.
Hence Sqpcq X Ur is contained only in a countably union of the slices Srpdq in Ur.

Hence, the inclusion f : K Ñ M is then a connected integral submanifold for H passing through
p. We claim it is maximal. If g : N Ñ M is a connected integral submanifold passing through p,
then any point in N can be joined to g´1ppq by a piecewise smooth curve, as N is path-connected.
Hence every point in gpNq is connected to p by a piecewise smooth curve in gpNq, whence by a
piecewise integral curve for H. In conclusion, gpNq Ď K.

Corollary F.3.6.1. Let Mn be a smooth manifold and H a rank k involutive distribution on TM .
Then for each p P M , there exists a unique maximal connected integral submanifold K Ñ M for H
passing through p.

Integral submanifolds behave well categorically, in the following sense.

Lemma F.3.7. Let f : N Ñ M be a smooth map and φ : P Ñ M an integral submanifold for
an involutive distribution H Ď TM of rank k. Suppose fpNq Ď φpP q, and let f0 : N Ñ P be the
unique map such that f “ φ ˝ f0. Then f0 is continuous. In particular, f0 is smooth by Corollary
F.2.7.

Proof. Let U be an open set in P , p P U and x P f´1
0 ppq. Take a chart pV, y1, . . . , ymq centred at

φppq such that Spcq :“ ty P V | pyk`1, . . . , ymq “ cu are integral submanifolds for H in V , and pick
an neighborhood p P U 1 in U such that φpU 1q “ Sp0q. Take W to be the connected component of
f´1pV q containing x; then W is open in N . To show the continuity it suffices to show f0pW q Ď U 1.
Since φ is injective, it suffices to show fpW q Ď Sp0q. Furthermore, since fpxq P fpW q X Sp0q and
fpW q lies in a component of V XφpP q, it suffices to show each component C of V XφpP q is contained
in some Spcq.

Let π “ pyk`1, . . . , ymq : V Ñ Rm´k. Since P is separable and V XφpP q is a disjoint union of the
slices Spcq, the image πpV X φpP qq is at most countable. Since C is connected, πpCq is a connected
countable set in Rm´k, whence #πpCq “ 1.

F.4 Complex manifolds
We start with the definition of holomorphic maps in higher dimensional cases. A general point in
Cn is denoted by pz1, . . . , znq, and we write zk “ xk ` iyk with xk, yk P R. Introduce the differential
operators

Bk “
B

Bzk
“

1

2

ˆ

B

Bxk
´ i

B

Byk

˙

, Bk “
B

Bzk
“

1

2

ˆ

B

Bxk
` i

B

Byk

˙

.

Note that this makes sense as a function in zk can be viewed as a function in xk and yk. These
operators define sections of the complexified tangent bundle of Cn:

Bk, Bk : Cn Ñ pTCnq bR Cn :“
ğ

pPCn

TpCn bR C.
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Definition. Let U be an open set in Cn.

(i) A smooth function f : U Ñ C is holomorphic if Bkf : U Ñ C is a zero function for all
k “ 1, . . . , n.

(ii) A smooth function g : U Ñ Cn is holomorphic if each component prℓ ˝ g : U Ñ C of g is
holomorphic in the sense of (i).

Each tangent space TpCn is by definition a real vector space of dimension 2n. Multiplication by
i defines an R-linear isomorphism I : Cn Ñ Cn:

Ip. . . , xk, yk, . . .q “ p. . . ,´yk, xk, . . .q

satisfying I2 “ ´ id. The usual identification Cn – TpCn allows I to act on TpCn, in the way that

I

ˆ

B

Bxk

˙

“
B

Byk
, and I

ˆ

B

Byk

˙

“ ´
B

Bxk
. We then have the eigendecomposition of TpCn bR C with

respect to I bR idC:

TpCn bR C “ spanCtB1, . . . Bnu ‘ spanCtB1, . . . , Bnu

The former is the i-eigenspace, and the latter is the ´i-eigenspace. We shall write

T 1,0
p Cn :“ spanCtB1, . . . Bnu

T 0,1
p Cn :“ spanCtB1, . . . , Bnu

and form

T 1,0Cn “
ğ

pPCn

T 1,0
p Cn, T 0,1Cn “

ğ

pPCn

T 0,1
p Cn.

The real vector space TpCn together with the R-automorphism becomes a complex vector space:
for x, y P R and v P Cn, we can define

px` iyqv :“ xv ` yIpvq.

The usual identification then defines a C-isomorphism from pTpCn, Iq to Cn.

Lemma F.4.1. Let f : Cn Ñ C be a smooth function. TFAE:

1. f is holomorphic.

2. f˚,p : TpCn Ñ TfppqC “ C is C-linear for each p P Cn.

Definition.

(i) An n-dimensional complex manifold is an 2n-dimensional smooth manifold such that each
transition map is holomorphic (we regard the image of a chart as an open set in Cn – R2n).

(ii) A smooth map f : X Ñ Y between complex manifolds is called holomorphic if it is locally
is a holomorphic map.

(iii) A complex vector bundle over a complex manifold is a smooth vector bundle such that
each fibre is a complex vector space.

(iv) A holomorphic vector bundle over a complex manifold is a complex manifold that is also
a complex vector bundle such that the bundle projection and each local trivialization are
holomorphic.
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In contrast, we will refer to smooth vector bundles as real vector bundles. An atlas tpUα, φαqu

of X making X a complex manifold is called a holomorphic atlas of X. Locally we write φαppq “

pz1ppq, . . . , znppqq P φαpUαq Ď
open

Cn for each p P Uα.
Let X be a complex manifold of dimension n. By construction, the tangent bundle TX is a real

vector bundle of rank 2n. To emphasize, we write it as TRX instead. The complexified tangent
bundle

TCX “ TRX bR C :“
ğ

pPX

TpX bR C

can be easily shown to be a complex vector bundle over X. Recall the construction of TRX. Since
we use an holomorphic atlas on X, the transition map of TRX is holomorphic fholo=> dfholo. This
makes TRX a holomorphic vector bundle over X. To emphasize the holomorphic structure, we
denote by TX the real tangent bundle TRX together with this holomorphic structure.

The multiplication by i on the second component of charts of TRX are compatible with the
transition maps, obtaining a global real bundle automorphism J : TRX Ñ TRX.

F.5 Smooth partition of unity
In this section, for a topological space X, we use CcpXq to denote the space of real-valued continuous
functions with compact support (rather than the complex-valued ones).

Let M be a smooth manifold of dimension n. By Theorem A.9.5, M is paracompact (the second
countability is imposed to a manifold in our definition). In this subsection we construct a “smooth”
partition of unity subordinate to any given open cover of M , by modifying the proof of Theorem
A.9.4.

Define f : R Ñ R by fptq “ 1ě0ptqe´ 1
t . A direct computation of derivatives of f at t “ 0 shows

that f P C8pRq. For 0 ă a ă b, the function f1pxq :“ fppb ´ aqpx ´ aqq is then a smooth function
with f1pxq “ 0 if and only if x ď a or x ě b. Define f2 : R Ñ R by

f2pxq :“

ż b

x

f1ptqdt

N
ż b

a

f1ptqdt

Then f2 P C8pRq` and f2pxq “

#

1 , if x ď a

0 , if x ě b
Define ϕ : Rn Ñ R by

ϕpxq “ f2p∥x∥2q

We have ϕ P C8pRnq` and ϕpxq “

#

1 , if ∥x∥2 ď a

0 , if ∥x∥2 ě b
. Using this function, we first prove a

smooth version of Urysohn’s lemma:

Lemma F.5.1. Let Mn be a smooth manifold, K a compact subset and U an open neighborhood
of K in M . Then we can find ψ P C8pMq` such that ψ|K “ 1 and ψ|MzU “ 0.

Proof. Let p P K and choose an open chart φp : Up Ñ Rn of p in U with φpppq “ 0. The
preceding discussion allows us to find ϕp P C8

c pUpq` and 0 ă a ă b with Bbp0q Ď φppUpq with

ϕppxq “

#

1 , if ∥φppxq∥2 ď a

0 , if ∥φppxq∥2 ě b
Let us put Vp :“ φ´1

p pBap0qq. By compactness of K, we can find
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p1, . . . , pn P K such that

K Ď

n
ď

i“1

Vi Ď

n
ď

i“1

suppϕi Ď U

where Vi :“ Vpi and ϕi :“ ϕpi . Since suppϕi Ď Upi , we can extend ϕi to the whole M by setting
ϕi|MzUpi

“ 0, so that we can view ϕi P C8
c pMq`. Finally define

ψ “ 1 ´ p1 ´ ϕ1qp1 ´ ϕ2q ¨ ¨ ¨ p1 ´ ϕnq P C8pMq.

As K Ď
n
Ť

i“1

Vi, ψ is identically 1 on K, and as
n
Ť

i“1

suppϕi Ď U , ψ vanishes outside U . In addition,

for x P UzK, by construction (of ϕp) we have ψpxq P r0, 1s, so in fact ψ P C8pM, r0, 1sq.

We proceed to construct a smooth partition of unity. Let p P M and let U be an open neigh-
borhood of p. By the preceding discussion, we can find gp P C8

c pUq` with gpppq ą 0 and supp gp

having nonempty interior. That supp gp Ď U implies that gp extends (by zero) to a global smooth
function, which we still denote by gp P C8

c pMq`.
We start our construction of a smooth partition of unity subordinate to the given open cover

pUαqα of M . By Theorem A.9.5, M is σ-compact, so there exists an increasing sequence pEnqn of
relatively compact open sets of M with En Ď En`1. For each n P N, the annulus Kn :“ EnzEn´1

is compact, and it contained in the open annulus An :“ En`1zEn´2. For each p P Kn, let Wp be an
chart about p contained in Uα X An, and let gp P C8

c pMq` be such that gpppq ą 0 and supp gp has
nonempty interior Vp and is contained in Wp. We can find a finite subcollection of tVpu that covers
Kn. Collecting these Vp, we obtain a locally finite open refinement pVnqnPN of pUαqα.

Let gn be the corresponding function to Vn. For each p P M , we see tn P N | gnppq ‰ 0u is
nonempty and finite. Thus it is legal to define

ψnppq :“
gnppq

ř

m gmppq
P r0, 1s

for each p P M and n P N. Clearly, ψn P C8pMq, suppψn “ supp gn “ Vn is compact, and
ř

n ψn ” 1. This finishes our construction.
In addition, if we define ψα :“

ř

VnĎUα

ψn (ψα “ 0 if the range of summation is empty), then

pψαqα is a partition of unity with the same index set as Uα, but each suppψα fails to be compact.

Let ℓ P N. If we define ϕn :“
gℓn

ř

m g
ℓ
m

, then pϕnqn is a smooth partition of unity subordinate to

pUαqα with smooth ℓ-th root.

F.6 Density and integration
Let V be an n-dimensional real vector space. A frame on V is an ordered basis β “ pβ1 ¨ ¨ ¨ βnq for
V . Denote by F pV q the set of all frames on V . There is a canonical bijection F pV q – IsomRpRn, V q,
by sending β to a linear map Tβ defined by ei ÞÑ βi. The general linear group GLnpRq acts on the
set F pV q on the right, and the action is free and transitive.

Let M be an n-dimensional smooth manifold. Define the (tangent) frame bundle of M

FM “ F pTMq :“
ğ

pPM

F pTpMq.
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This is a smooth principal GLnpRq-bundle (c.f. §I.7.2), which we show now. Let us put π : FM Ñ M

to be the projection. Let pU,φq be a local coordinates of M ; then φ˚,p : TpU Ñ Rn is a linear
isomorphism. The fibrewise bijections F pTpMq Ñ IsompRn, V q – GLnpRq glues to a bijection

π´1pUq U ˆ GLnpRq

pp, βq pp, φ˚,p ˝ Tβq

The general linear group GLnpRq acts on the bundle FM from the right in a natural way, making this
bijection GLnpRq-equivariant. We now equip FM with the final topology induced by the “inclusions”
U ˆGLnpRq Ñ π´1pUq Ď FM . It is clear that this topology and the above local trivialization make
FM into a smooth principal GLnpRq-bundle as we promised. For convenience, we denote the section
U Ñ U ˆtidu Ď U ˆGLnpRq – π´1pUq by σφ “ σpU,φq; explicitly, σppq “ pp, φ´1

˚,ppe1q, . . . , φ´1
˚,ppenqq.

Let s P R and define the one-dimensional representation ρs : GLnpRq Ñ Rˆ “ GLpRq by
ρspAq “ |detA|´s. The associated bundle FMˆGLnpRq pR, ρsq (c.f. §I.7.2) of FM Ñ M intertwining
ρs is called the s-density bundle of X, and is denoted by VolsM . A continuous (resp. smooth)
s-density is then a continuous (resp. smooth) global section of the s-density bundle VolsM . Partic-
ularly, a density is referred to as a 1-density, and we simply write VolpMq :“ Vol1M . Also, we put
ΓpU,VolsMq (resp. Γ8pU,VolsMq) be the set of all continuous (resp. smooth) s-densities defined
on U Ď

open
M .

Let pU,φq be a local chart of M , and let σ “ σφ : U Ñ π´1pUq Ď FM be the associated local
section. Then a local trivialization of VolsM is given by

φpUq ˆ R U ˆ R π´1
d pUq

pp, vq rσppq, vs

where πd : VolsM Ñ M denotes the projection, and rσppq, vs denotes the class of pσppq, vq in VolsM .
We describe its inverse: if rpp, βq, ws P π´1

d pUq, pick A P GLnpRq such that β “ pφ´1
˚,ppeiqq1ďiďnA,

and send rpp, βq, ws to pp, |detA|´swq. If pV, ψq is another local chart with U X V ‰ H, then the
corresponding transition map on VolsM is then

φpU X V q ˆ R ψpU X V q ˆ R

pφppq, vq pψppq, |detpθUV q˚,φppq|´svq

(♣)

where θUV “ ψ ˝ φ´1 : φpU X V q Ñ ψpU X V q is the transition map on M .
The representation ρs can be realized in terms of functions. Consider the set VolspRnq of functions

ω : Rn ˆ ¨ ¨ ¨ ˆ Rn Ñ R satisfying ωpAv1, . . . , Avnq “ |detA|sωpv1, . . . , vnq. It is clear that VolspRnq

is one-dimensional, and GLnpRq acts on VolspRnq on the left by

pA˚ωqpv1, . . . , vnq :“ ωpA´1v1, . . . , A
´1vnq “ |detA|´sωpv1, . . . , vnq.

Thus, via the local chart pU,φq, we can understand each element v P R in the fibre of VolsM at p
as a function ωp : TpM ˆ ¨ ¨ ¨ ˆ TpM Ñ R satisfying ωppφ´1

˚,ppe1q, . . . , φ´1
˚,ppenqq “ v and

ωppAX1, . . . , AXnq “ |detA|ωppX1, . . . , Xnq.

where A P GLpTpMq and detA :“ detpφ´1
x,p ˝ A ˝ φx,pq. Such a function is called an s-density on

the vector space TpM . For a section ω of VolsM , we shall always think of ωp as an s-density on
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TpM . We say an s-density ω is positive if ωp is a non-negative function on TpM ˆ ¨ ¨ ¨ ˆ TpM ; this
is a well-defined notion independent of the choice of φ due to the transition rule p♣q of VolsM .

Let f :M Ñ N be a smooth map of smooth manifolds. For a section ω of VolsN defined on V ,
we define the pullback density f˚ω : f´1pV q Ñ VolsM by means of

pf˚ωqppX1, . . . , Xnq “ ωfppqpf˚,pX1, . . . , f˚,pXnq.

It is easy to see f˚ω defines a section of VolsM on f´1pV q, and it is smooth as long as ω is.
Let U Ď Rn be an open set. On Rn there is a natural s-density λ determined by λpe1, . . . , enq “ 1.

If ω : U Ñ VolspUq is a continuous (resp. smooth) section of compact support, there exists a
continuous (resp. smooth) function c : U Ñ R such that ωp “ cppqλ. Indeed, cppq is the image of
p under the composition U Ñ VolspUq – U ˆ R pr2

ÝÝÑ R, where we use idU as the chart on U . Now
define

ż

U

ω :“

ż

Rn

cppqdλppq

where dλ is the usual Lebesgue measure on Rn.
Now let pU,φq be a local chart of M , ω P VolpMq with suppω Ď U . Define

ż

M

ω :“

ż

φpUq

pφ´1q˚ω.

To see this is well-defined let pV, ψq be another local chart with suppω Ď V . We must show
ż

φpUq

pφ´1q˚ω “

ż

ψpV q

pψ´1q˚ω.

Put θ “ ψ ˝ φ´1 to be the transition map. By definition we have θ˚pψ´1q˚ω “ pφ´1q˚ω. Thus it
suffices to show

ż

W

θ˚η “

ż

θpW q

gη

where W, θpW q are opens in Rn, θ :W Ñ θpW q is a diffeomorphism, g P CcpθpW qq and η is a density
on θpW q. Write ηp “ cppqλ. Then

pθ˚ηqqpX1, . . . , Xnq “ cpθpqqqηθpqqpθ˚,qX1, . . . , θ˚,qXnq “ cpθpqqq|det θ˚,q|ηθpqqpX1, . . . , Xnq

so that the desired identity now follows from from the change of variables rule on Rn.
By a partition of unity argument, we obtain a unique linear functional

ż

M

: ΓcpM,VolpMqq R

satisfying
ż

M

ω “

ż

Rn

cdλ as long as suppω lies in a local chart pU,φq of M and pφ´1q˚ω “ cλ. In

addition, if ω is a positive density, we see from the construction that
ż

M

ω ě 0.
If ω is a positive density, the composition

CcpMq ΓcpM,VolpMqq R

f fω

ş

M
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defines a positive linear functional on CcpMq, so by Riesz’s representation theorem, there exists a
unique outer Radon measure µ “ µω on M such that

ż

M

fdµ “

ż

M

fω

for any f P CcpMq. Generally, if ω is an arbitrary density, we can define a positive density |ω| by
setting |ω|p :“ |ωp| for any p P M , which is well-defined because of p♣q, so it gives rise to a outer
Radon measure µ|ω|. If |ω| is smooth (e.g. ω is smooth and positive), then |ω| is a smooth measure in
the sense of 16.5. Conversely, if µ is a smooth measure on M , then the Radon Nikodym derivatives
of µ (with respect to the Lebesgue measure on any chart) glue to a smooth positive density on M .

F.7 Differential forms
Let V an n-dimensional vector space over a field k. Consider the space AppV q of all alternating
p-linear map on V . Clearly, AppV q – Homkp

Źp
V, F q –

Źk
V _. To put it explicitly, let x1, . . . , xn

be a k-basis for V and put dx1, . . . , dxn to be the dual basis in V _. For I “ ti1, . . . , ipu Ď rns with
1 ď i1 ă i2 ă ¨ ¨ ¨ ă ip ď n, define dxI P AppV q by dxIpxj1 ^ ¨ ¨ ¨ ^ xjpq “ δIJ for all 1 ď j1 ă ¨ ¨ ¨ ă

jp ď n and extending linearly. Then for f P AppV q, we have f “
ř

I:i1ă¨¨¨ăip

fpxi1 , . . . , xipqdxI . Thus

AppV q “ spanF tdxI | I : i1 ă ¨ ¨ ¨ ă ipu –
ľp

V _

We then transfer the wedge product on
Źp

V _ to AppV q via this bijection. Under this bijection, we
have dxI “ dxi1 ^ ¨ ¨ ¨ ^ dxip .

Let M be an n-dimensional smooth manifold. We have constructed its tangent bundle TM .
Define the cotangent bundle pTMq_ “ T˚M to be the dual bundle of TM . Set-theoretically,
T˚M “

Ů

pPM

pTpMq_ is the disjoint union of the cotangent spaces, and we have a natural projection

π : T˚M Ñ M . Let U be a chart on M and x1, . . . , xn its local coordinates. Then for p P U ,
dx1, . . . , dxn is a basis for pTpMq_ and we have a bijection π´1pUq – U ˆ Rn. In this way we turn
T˚M into a 2n-dimensional smooth manifold. In a similar fashion we construct the k-th exterior
power of the cotangent bundle

Źk
T˚M :“

Ů

pPM

Źk
pTpMq_.

Denote by

ΩkpMq “ Γ8pM,
ľk

T˚Mq

the smooth global sections of the bundle
Źk

T˚M Ñ M . An element in ΩkM is called a (smooth)
k-form. Locally, a k-form ω has the form

ř

aIdx
I , where the aI are smooth functions. From this

one sees ΩkM is a module over the ring C8pMq of real-valued smooth functions on M . An element
in ΩnM , where n “ dimM , is called a top form on M .

For ω P ΩkM and X1, . . . , Xk vector fields on M , define ωpX1, . . . , Xkq to be a (continuous)
function M Ñ R by

ωpX1, . . . , Xkqppq :“ ωppX1,p, . . . , Xk,pq

The wedge product defined fibrewise gives a globally defined wedge product:

^ : ΩkM ˆ ΩℓM ÝÑ Ωk`ℓM

This makes
À

kě0

ΩkM an unital noncommutative associative C8pMq-algebra.
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For a smooth map φ :M Ñ N , define the pullback map φ˚ : ΩkN Ñ ΩkM by the formula

pφ˚ωqppX1, . . . , Xkq “ ωφppqpφ˚,pX1, . . . , φ˚,pXkq.

When k “ 0 it is just the pullback map CpNq Ñ CpMq given by f ÞÑ f ˝ φ. Let U, V be open sets
in Rn and φ : U Ñ V a smooth map. Then for ω “ fdx1 ^ ¨ ¨ ¨ ^ dxn, we have

pφ˚ωqp “ fpφppqqdetφ˚,p dx
1 ^ ¨ ¨ ¨ ^ dxn

Concisely, φ˚ω “ pf ˝ φqdetφ˚ dx1 ^ ¨ ¨ ¨ ^ dxn

Let ω be a top form on M . For each p P M , ωp is a function TpM ˆ ¨ ¨ ¨ ˆ TpM Ñ R satisfying
ωppAX1, . . . , AXnq “ pdetAqωppX1, . . . , Xnq for any Xi P TpM and A P GLpTpMq, where detA :“

detpφ˚,p˝A˝φ´1
˚,pq for any local chart φ about p. Clearly, the map |ω| :M Ñ

Ů

pPM

tTpMˆ¨ ¨ ¨ˆTpM Ñ

Ru defined by

|ωp|pX1, . . . , Xnq :“ |ωppX1, . . . , Xnq|

is a continuous section of VolpMq, and it defines a positive density |ω| P ΓpM,VolpMqq.

F.7.1 Exterior derivative
Let M be an n-dimensional smooth manifold. Define the exterior derivative

d : ΩkpMq Ωk`1pMq

as follows. For f P Ω0pMq “ C8pMq, define df P Ω1pMq by

dfpXq :“ Xf.

For k ě 1 and ω P ΩkpMq, locally write ω “ fdxI , where x1, . . . , xn is a local coordinates and
I Ď rns has size k. Then

dω :“ df ^ dxI .

Lemma F.7.1. Let U Ď Rn be an open set. Then d : ΩkpUq Ñ Ωk`1pUq the only linear operator
that satisfies the following properties.

(i) For ω P ΩppUq, η P ΩqpUq, we have dpω ^ ηq “ dω ^ η ` p´1qpω ^ dη.

(ii) For f P Ω0pUq, we have dfpXq “ Xf .

(iii) d ˝ d “ 0.

In particular, the lemma shows that the exterior derivative is well-defined, i.e., independent of
the choice of the local charts.

F.7.2 Lie derivatives of forms
Let M be a smooth manifold. For a vector field X and a k-form ω on M , the Lie derivative LXω
at p P M is defined by

pLXωqp “ lim
tÑ0

φ˚
t pωφtppqq ´ ωp

t
“

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pφ˚
t ωqp P

k
ľ

pTpMq_

where φt is a flow of X defined in a neighborhood of p.
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Lemma F.7.2. For f P C8pMq and a vector field X, we have

LXf “ Xf.

Proof. Fix a p P M and a flow φt of X. Then

pLXfqp “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pφ˚
t fqp “

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpφtppqq “ Xpf

where the last equality is Proposition F.3.5.

Lemma F.7.3. Let X be a smooth vector field.

(i) We have LX ˝ d “ d ˝ LX .

(ii) For ω P ΩppMq and η P ΩqpMq, we have

LXpω ^ ηq “ LXω ^ η ` ω ^ LXη.

In other words, LX defines a derivation on the algebra
À

pě0
ΩppMq.

Theorem F.7.4. For ω P ΩkpMq and X,Y1, . . . , Yk P XpMq, we have

LXpωpY1, . . . , Ykqq “ pLXωqpY1, . . . , Ykq `

k
ÿ

i“1

ωpY1, . . . , Yi´1,LXYi, Yi`1, . . . , Ykq.

F.7.3 Interior multiplication
Let V be an n-dimensional vector space over a field k. For v P V , define the operator

ιv : A
ppV q Ap´1pV q

by the formula

ιvωpv1, . . . , vp´1q “ ωpv, v1, . . . , vp´1q.

when p ě 1, and ιvf :” 0 for any f P A1pV q “ V _. This is called the interior multiplication by
v, and this gives a linear map

ι : V End
Ź

V _

v ιv.

Lemma F.7.5. For v P V and α1, . . . , αp P V _, we have

ιvpα1 ^ ¨ ¨ ¨ ^ αpq “

p
ÿ

i“1

p´1qi´1αipvqα1 ^ ¨ ¨ ¨ ^ pαi ^ ¨ ¨ ¨ ^ αk.

Theorem F.7.6 (Cartan formula). For a smooth vector field X on a manifold, we have

LX “ d ˝ ιX ` ιX ˝ d.

Corollary F.7.6.1. Let k ě 1. For ω P ΩkpMq and X0, . . . , Xk P XpMq, we have

dωpX0, . . . , Xkq “

k
ÿ

i“0

p´1qiXipωpX0, . . . ,xXi, . . . , Xkqq

`
ÿ

0ďiăjďk

p´1qi`jωprXi, Xjs, X0, . . . ,xXi, . . . ,xXj , . . . , Xkq,

Corollary F.7.6.2. Let ω be a form, X P XpMq and f P C8pMq. Then

LfXω “ fLXω ` df ^ ιXω.
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F.8 Orientations and integration
Let V be an n-dimensional real vector space. There is a natural map F pV q Ñ

Źn
V _zt0u given by

β ÞÑ dβ :“ dβ1 ^ ¨ ¨ ¨ ^ dβn. We say two frames β and γ are equivalent, and write β „ γ, if dβ and
dγ lies in the same connected component in

Źn
V _zt0u. An orientation is then an equivalence

class of „ on F pV q, or equivalently, a connected component of
Źn

V _zt0u. It follows that V admits
precisely two orientations.

Let M be an n-dimensional smooth manifold. A continuous local section of the tangent frame
bundle FM defined over U is called a (continuous) frame on U . For an open set U Ď M , we
say two frames X and Y are equivalent, and write X „ Y , if Xp „ Yp for any p P M . Note that
if U is a local chart on M , then X “ pX1, . . . , Xnq for some continuous vector fields Xi on U . An
orientation on M is a collection µ “ pµpqpPM such that each µp is an orientation on TpM and for
each p P M , there are an open neighborhood U and a frame X on U on U satisfying Xp P µp. In
other words, we require an orientation on M is locally represented by a continuous frame.

Definition.

(i) A smooth manifold that admits an orientation is called orientable.

(ii) A smooth manifold with an orientation is called oriented.

Suppose M is connected, and let µ, ν be two orientations on M . Define f :M Ñ t˘1u by fppq “
#

1 , if µp “ νp

´1 , if µp ‰ νp
. Let pU, x1, . . . , xnq be a connected local chart of M on which, say, µ and ν are

represented by frames X and Y , respectively. Then on U , we can write dpYpq “ αY ppqdx1^¨ ¨ ¨^dxn

and dpXpq “ αXppqdx1^¨ ¨ ¨^dxn for some non-vanishing continuous functions αX , αY on U . Hence
dpYpq “ pαY α

´1
X qppqdpXpq with αY α

´1
X continuous and non-vanishing. Hence p ÞÑ sgnpαY α

´1
X qppq

is constant on U , which implies that f is locally constant on M . As we assume M is connected, f
is constant on the whole M . Hence either µ “ ν or µ “ ´ν. This proves

Lemma F.8.1. There are precisely two orientations on a connected orientable smooth manifold.

Suppose M is oriented by µ. Let pU, x1, . . . , xnq be a connected local coordinates of M , and
suppose µ is represented by pX1, . . . , Xnq on µ. Write Xi “

n
ř

j“1

aij
B

Bxj
so that dx1 ^ ¨ ¨ ¨ ^

dxnpX1, . . . , Xnq “ detpaijq. Replacing x1 by ´x1 if necessary, we may assume detpaijq ą 0.
Let tpUα, x

1
α, . . . , x

n
αquα be such a collection of local charts with tUαu being a cover of M . Let pψαqα

be a (smooth) partition of unity subordinate to tUαu as in F.5, and define

ω “
ÿ

α

ψαdx
1
α ^ ¨ ¨ ¨ ^ dxnα.

This is a well-defined smooth top form on M . For p P M , we have ψαppq ě 0 for any α and ą 0 for
at least one α, and thus

ωppX1,p, . . . , Xn,pq “
ÿ

α

ψαppqpdx1α ^ ¨ ¨ ¨ ^ dxnαqppX1,p, . . . , Xn,pq ą 0

i.e., ω is a (smooth) volume form on M .
Conversely, let ω be a (smooth) volume form on M . At each point p P M choose an ordered

basis pX1,p, . . . , Xn,pq of TpM such that ωppX1,p, . . . , Xn,pq ą 0. Let pU,φ, x1, . . . , xnq be a connected
local coordinates of M , and write pφ´1q˚ω “ fdx1 ^ ¨ ¨ ¨ ^ dxn for a smooth nonvanishing function
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f ; by suitable replacement we may assume f ą 0 on U . Write Xi “
n
ř

j“1

aij
B

Bxj
on U ; then

by our choice, we have fpφppqqdetpaijpφppqqq ą 0 for every p P U , or detpaijpφppqqq ą 0, so

pX1,p, . . . , Xn,pq „

˜

B

Bx1

ˇ

ˇ

ˇ

ˇ

p

, . . . ,
B

Bxn

ˇ

ˇ

ˇ

ˇ

p

¸

for p P U . Hence p ÞÑ pX1,p, . . . , Xn,pq defines a orientation

on M . Thus

Lemma F.8.2. A smooth manifold is orientable if and only if it admits a (smooth) volume form.

An easy argument shows that if ω and ω1 are two smooth volume forms on M , then ω “ fω1

for a unique nowhere vanishing smooth function f on M . Say ω „ ω1 if ω “ fω1 for some smooth
f ą 0 on M . This sets up an equivalence relations on the set of smooth volume forms on M , and
it is bijection with the orientations on M . Thus an oriented smooth manifold can be described as a
pair pM, rωsq, where rωs “ tfω | f P C8pMq, f ą 0u is a equivalence class containing the volume
form ω.

Definition. A diffeomorphism φ : pM, rωsq Ñ pN, rηsq of smooth manifolds is orientation-preserving
(resp. orientation-reversing) if rφ˚ωs “ rηs (resp. rφ˚ωs “ r´ηs).

Let pM, rωsq be an oriented smooth manifold. Let pU, x1, . . . , xnq and pV, y1, . . . , ynq be two local
charts on M intersecting nontrivially. Assume rdx1^¨ ¨ ¨^dxns “ rω|U s and rdy1^¨ ¨ ¨^dyns “ rω|V s.
If we put θ to be the transition map from U to V , then dx1 ^ ¨ ¨ ¨ ^ dxn “ detpθ˚qdy1 ^ ¨ ¨ ¨ ^ dyn on
UXV . A moment consideration shows that we must have detpθ˚q ą 0 on UXV . Conversely, if M is a
smooth manifold that admits an oriented atlas, i.e., a smooth atlas such that the Jacobian of every
transition map is positive, one may construct (smooth) volume form ω on M by a (smooth) partition
of unity argument (we always orient Rn by dx1 ^ ¨ ¨ ¨ ^ dxn) in a way that rω|U s “ rdx1 ^ ¨ ¨ ¨ ^ dxns

for any oriented chart pU, x1, . . . , xnq. Given an oriented atlas on M , there is a unique maximal
oriented atlas (with respect to inclusion) containing it, and the set of all maximal oriented atlas is in
bijection with the equivalence classes of smooth volume forms. Hence we can specify an orientation
of M by a maximal oriented atlas.

For an oriented manifold M , we usually denote by ´M the same manifold but with opposite
orientation. Precisely, if pU, x1, . . . , xnq is an oriented chart on M , then pU,´x1, x2 . . . , xnq is set to
be an oriented chart on ´M .

Finally, we discuss the theory of integration via forms. Assume M is an oriented manifold, and
we only use oriented charts on M . Denote by

Ωnc pMq “ ΓcpM,
ľn

T˚Mq

the space of continuous top forms with compact support. Similar to the argument for densities with
compact support, we obtain

Proposition F.8.3. Let Mn be an oriented manifold. Then there exists a unique linear map
ż

M

: ΩncM R

α

ż

M

α

such that if φ : U Ñ φpUq Ď Rn is an oriented chart of M and if α P ΩncM with suppα Ď U , then
ż

M

α “

ż

Rn

pφ´1q˚α :“

ż

Rn

apxqdx1 ¨ ¨ ¨ dxn

where pφ´1q˚α “ apxqdx1 ^ ¨ ¨ ¨ ^ dxn and the last expression is the usual integration on Rn.
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Hence, for any top form ω on M , there is a linear functional

Iω : CcpMq ΩncM R

f fω

ş

M

On the other hand, recall that we can construct a positive density |ω| for any top form ω, which
induces an outer Radon measure µ|ω| on M . So we have two theories for integration on M :

ż

M

fω “: Iωpfq and
ż

M

f |ω| “:

ż

M

fdµ|ω|.

In the oriented case, there is another way to define |ω| in terms of forms but not densities. If
pU,φ, x1, . . . , xnq is an oriented local chart, then pφ´1q˚ω “ fdx1 ^ ¨ ¨ ¨ ^ dxn for some continuous
function f defined on U . Define a form |ω| by requiring pφ´1q˚|ω| :“ |f |dx1 ^ ¨ ¨ ¨ ^ dxn. This is
well-defined since we only use oriented charts on M . Although two defined |ω| are totally different,
it is clear that I|ω| “

ż

M

dµ|ω|. Particularly, if ω is a volume form representing the orientation of M ,
then |ω| “ ω (this holds as we only use oriented charts), and the two ways to integrating functions
coincide.

F.9 Stokes’ theorem

F.9.1 Manifold with boundary

F.9.2 Stokes’ theorem
Theorem F.9.1 (Stokes’). If M is an oriented smooth n-manifold with boundary BM and ω is a
smooth pn´ 1q-form on M with compact support, then

ż

M

dω “

ż

BM

ω

F.9.3 Applications
In this subsection we redefine

ΩpcpMq “ Γ8
c pM,

ľp
T˚Mq

to be the space of smooth p-forms with compact support.

Lemma F.9.2 (Integration by parts). Let M be an oriented smooth n-manifold with boundary, X
a smooth vector field, ω P ΩpcpMq and η P ΩqcpMq with p` q “ n. Then

ż

M

LXω ^ η “

ż

BM

ιXpω ^ ηq ´

ż

M

ω ^ LXη.

Proof. By Lemma F.7.3.(ii), it suffices to show
ż

M

LXpω ^ ηq “

ż

BM

ιXpω ^ ηq.

By Cartan formula, we have

LXpω ^ ηq “ ιX ˝ dpω ^ ηq ` d ˝ ιXpω^q “ d ˝ ιXpω ^ ηq.
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Hence
ż

M

LXpω ^ ηq “

ż

BM

ιXpω ^ ηq

by Stokes’ theorem.

Corollary F.9.2.1. Let M be an oriented smooth n-manifold with boundary, X a smooth vector
field, ω P ΩnpMq a top form and f, g P C8

c pMq. Then
ż

M

pXfqgω “

ż

BM

fg ¨ ιXω ´

ż

M

fpXgqω ´

ż

M

fg ¨ LXω
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Appendix G

Riemannian geometry

G.1 Tensors
Let Mn be a smooth manifold. For p, q P Zě0, we can form the bundle

T p,qM “ TM b ¨ ¨ ¨ b TM
looooooooomooooooooon

p times

bTM_ b ¨ ¨ ¨ b TM_
looooooooooomooooooooooon

q times

A (smooth) pp, qq-tensor defined on an open subspace U Ď M is then a (smooth) section t : U Ñ

T p,qM of the bundle projection πp,q : T p,qM Ñ M .

• A p0, 0q-tensor is simply a smooth function on M .

• We call a p0, kq-tensor a covariant k-tensor.

• We call a pk, 0q-tensor a contravariant k-tensor.

Let ω be a covariant k-tensor with k ą 0. For each p P M , ωp P TpM
_ b ¨ ¨ ¨ b TpM

_ can be viewed
canonically as a linear functional

ωp : TpM b ¨ ¨ ¨ b TpM Ñ R

We say ω is a symmetric (resp. alternating) tensor if ωp is symmetric (resp. alternating) for each
p P M . For each covariant k-tensor ω, we define

symkωpv1, . . . , vkq :“
1

k!

ÿ

σPSk

ωpvσp1q, . . . , vσpkqq

which is a symmetric k-tensor. Likewise, we define

altkωpv1, . . . , vkq :“
1

k!

ÿ

σPSk

sgnpσqωpvσp1q, . . . , vσpkqq

G.2 Affine connections
Recall that for a smooth manifold M , the symbol XpMq denotes the set of all smooth vector fields
on M . For f P C8pMq and X P XpMq, we can define fX P XpMq by pfXqppgq “ fppqXppgq for
any g P C8pMq and p P M . In this way XpMq becomes a C8pMq-module.
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Definition. Let M be a smooth manifold. An affine connection is a C8pMq-module homomor-
phism ∇ : XpMq Ñ EndR XpMq satisfying the Leibniz’s rule:

∇XpfY q “ f∇XpY q ` pXfqY

for X,Y P XpMq and f P C8pMq, where ∇X P EndR XpMq usually denotes the image of X under
∇.

Let U be any open subspace of M . An affine connection ∇ on M induces an affine connection
∇U on U : let X,Y P XpUq and p P U . Pick any X 1, Y 1 P XpMq such that X 1, Y 1 agree with X, Y

on a neighborhood V of p in U . For q P V , define

pp∇U qXpY qqq :“ p∇X1 pY 1qqq

The following lemma guarantees that the right hand side is independent of the choice of X 1, Y 1.

Lemma G.2.1. Let ∇ be an affine connection on M , U an open subspace and X,Y P XpMq. If
X|U “ 0 or Y |U “ 0, then ∇XpY q|U “ 0.

Proof. Let p P U and g P C8pMq. By Urysohn’s lemma, we can find f P C8pMq such that fppq “ 0

and f |MzU “ 1. If X|U “ 0, then fX “ X, and

∇XpY qgppq “ ∇fXpY qgppq “ fppq∇XpY qgppq “ 0.

Similarly, if Y |U “ 0, then fY “ Y , and

∇XpY qgppq “ ∇XpfY qgppq “ fppq∇XpY qgppq ` pXpfqpYpgq “ 0

Take any local chart pU, x1, . . . , xnq of M . Then on U ,

p∇U q B
Bxi

B

Bxj
“

n
ÿ

k“1

Γ k
ij

B

Bxk
(♣)

for some (uniquely defined) smooth functions Γ k
ij P C8pUq. If y1, . . . , yn is another local coordinates

of U , we obtain another collection of smooth functions tΓ
1 k
ij u by

p∇U q B
Byi

B

Byj
“

n
ÿ

k“1

Γ
1 k
ij

B

Byk
.

Using Leibniz’s rule and chain rule, a tedious computation shows that

Γ
1 γ
αβ “

ÿ

i,j,k

Bxi

Byα
Bxj

Byβ
Byγ

Bxk
Γ k
ij `

ÿ

j

B2xj

ByαByβ
Byγ

Bxj
. (♠)

On the other hand, if U is an open cover of M and on each U P U is a collection of function Γ k
ij

satisfying p♠q whenever two open sets in U overlap, we can define an affine connection ∇U on each
U P U by p♣q, and hence an affine connection ∇ on M by

∇XpY qp “ p∇U qX1 pY 1qp

where p P M , U P U is any open set containing p, and X 1, Y 1 are vector fields on U obtained from
restriction of X,Y to U .
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Lemma G.2.2. Let X,Y P XpMq and suppose Xp “ 0 for some p P M . Then ∇XpY qp “ 0 as well.

Proof. Let pU, x1, . . . , xnq be a local chart near p, and write X “

n
ÿ

i“1

fi
B

Bxi
. Then fippq “ 0, and

∇XpY qp “

n
ÿ

i“1

fippq∇ B
Bxi

pY qp “ 0.

In particular, if v P TpM and Y P XpMq, we may define

∇vpY q :“ ∇XpY qp P TpM

where X is any smooth vector field on X with Xp “ v (this always exists by, for example Urysohn’s
lemma). In other words, for each p, an affine connection ∇ on M induces a well-defined R-linear
map

∇ : TpM HomRpXpMq, TppMqq

Let M be a smooth manifold and ∇ an affine connection on M . We can regard ∇ as a XpMq-
valued R-linear pairing:

∇ : XpMq ˆ XpMq XpMq

that is C8pMq-linear in the first argument and satisfies the Leibniz’s rule in the second argument.
In other word, ∇ is an R-linear map

∇ : ΓpTMq ΓppTMq_ b TMq

that satisfies the Leibniz’s rule in the sense that

∇pfXq “ df bX ` f∇pXq

for any f P C8pMq and X P ΓpTMq “ XpMq. Here for a smooth vector bundle E Ñ M , we denote
by ΓpEq its smooth global sections. Generally,

Definition. Let E Ñ M be a smooth vector bundle. A bundle connection is an R-linear map

∇ : ΓpEq ΓppTMq_ b Eq

satisfying

∇pfsq “ df b s` f∇psq

for any f P C8pMq and s P ΓpEq.

In this language, an affine connection on M is simply a bundle connection on the tangent bundle
TM of M . Similar to the situation above, a bundle connection can also be seen as a map ∇ :

ΓpTMq ˆ ΓpEq Ñ ΓpEq, or ∇ : ΓpTMq Ñ EndR ΓpEq.
Suppose f : M Ñ N is a diffeomorphism and ∇ is an affine connection on N . We can pullback

∇ to an affine connection f˚∇ on M by

pf˚∇qXpY q :“ pf´1q˚p∇f˚Xpf˚Y qq.

If M “ N , i.e., f is a diffeomorphism on M , we say f is an affine transformation if f˚∇ “ ∇,
i.e., ∇ is f-invariant.
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Definition. Let G be a Lie group. An affine connection ∇ is called left-invariant if for each g P G,
the left translation ℓg : G Ñ G by g is an affine transformation.

• Let X1, . . . , Xn be a basis of LG, the space of left-invariant vector fields on G. Then if ∇ is
left-invariant, each ∇Xi

Xj is left-invariant as well. In fact, for each g P G,

pℓgq˚∇XiXj “ pℓgq˚p∇pℓg´1 q˚Xi
pℓg´1q˚Xjq “ ppℓgq˚∇qXipXjq “ ∇XipXjq

• We can define an affine connection ∇ on G by requiring ∇XipXjq to be any left invariant
vector fields. For any vector fields X,Y , write X “

n
ř

i“1

fiXi and Y “
n
ř

i“1

giXi for some

smooth functions fi, gi P C8pGq. Then

∇XY :“
ÿ

i,j

fi∇Xi
pgjXjq :“

ÿ

i,j

pfiXipgjqXj ` gj∇XiXjq

so for any g P G,

∇pℓgq˚Xppℓgq˚Y q “ pℓgq˚p∇XY q

Hence, such defined affine connection ∇ is left-invariant. In particular, if we recall LiepGq –

LG, it follows that there is a bijection:

tleft-invariant affine connections on Gu HomRpLiepGq bR LiepGq,LiepGqq

∇ rpX,Y q ÞÑ ∇X1 pY 1qes

where X 1, Y 1 P LG are the left-invariant vector fields with X 1
e “ X, Y 1

e “ Y .

G.3 Parallelism
Definition. Let M be a smooth manifold with an affine connection ∇. A vector field X P XpMq is
said to be parallel along a curve γ : I Ñ M if

∇γ1ptqX “ 0 P TγptqM

for any t P I.

Let X,Y be two vector fields and pU, x1, . . . , xnq a local chart. Write X “

n
ÿ

i“1

Xi B

Bxi
and

Y “

n
ÿ

i“1

Y i
B

Bxi
. Then

∇XY “

n
ÿ

j“1

∇XY
j B

Bxj
“

n
ÿ

j“1

XpY jq
B

Bxj
`

n
ÿ

j“1

Y j∇X
B

Bxj

“

n
ÿ

j“1

XpY jq
B

Bxj
`

n
ÿ

i,j,k“1

XiY jΓ k
ij

B

Bxk

“

n
ÿ

k“1

˜

XpY kq `

n
ÿ

i,j“1

XiY jΓ k
ij

¸

B

Bxk

In particular, for a fixed vector field X and p P U , the vector p∇XY qp only depends on the XppY jq

and Y jppq.
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Let γ : I Ñ M be a curve, and write γ1ptq “

n
ÿ

i“1

aiptq
B

Bxi

ˇ

ˇ

ˇ

ˇ

γptq

in U . Fix s P I. We can always

find smooth functions f1, . . . , fn defined near p “ γpsq satisfying

pxi ˝ γqpsq “ fipsq and Xpfi “ aipsq for 1 ď i ď n.

Form a vector field Y “

n
ÿ

i“1

fi
B

Bxi
. Then

p∇XY qp “

n
ÿ

k“1

˜

Xppfkq `

n
ÿ

i,j“1

XippqfjppqΓ k
ij ppq

¸

B

Bxk

ˇ

ˇ

ˇ

ˇ

p

“

n
ÿ

k“1

˜

aipsq `

n
ÿ

i,j“1

Xippqpxj ˝ γqpsqΓ k
ij ppq

¸

B

Bxk

ˇ

ˇ

ˇ

ˇ

p

.

The right hand side is independent of the choice of the auxiliary vector field Y . By abuse of notation,
denote this value by p∇Xγ

1qγpsq.

Definition. A curve γ : I Ñ M is called a geodesic if

p∇γ1γ1qγptq “ 0 P TγptqM

for any t P I.
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Appendix H

Lie Algebras

Definition. A Lie algebra over a field k is a k-vector space L together with an alternating
k-bilinear pairing r, s : Lˆ L Ñ L, called the Lie bracket, satisfying the Jacobi’s identity:

rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0

for all x, y, z P L.

• If A is an associative k-algebra, then r, s : A ˆ A Ñ A defined by rx, ys :“ xy ´ yx makes A a
Lie algebra over k. Hence an associative algebra is naturally a Lie algebra.

Definition. Let L,L1 be two Lie algebras over a field k. A Lie algebra homomorphism φ : L Ñ

L1 is a k-linear map that preserves the Lie brackets:

φprx, ysq “ rφpxq, φpyqs

for all x, y P L.

• Thus we have constructed a category LieAlgk of Lie algebras over k. A Lie algebra isomor-
phism is then an isomorphism in this category, which is precisely a Lie algebra homomorphism
that is also a k-linear isomorphism.

• For each x P L we associate it with an endomorphism adLpxq : L Ñ L defined by adLpxqy :“

rx, ys. The map
adL : L Endk L

x adLpxq

is called the adjoint representation of the Lie algebra L. By Jacobi’s identity, ad is a Lie
algebra homomorphism. If the Lie algebra L is clear from the context, we also write adx and
adpxq for adLpxq “ adL x.

Definition. Let L be a Lie algebra over a field k.

1. A Lie subalgebra of L is a k-linear subspace H of L such that rx, ys P H whenever x, y P H.

2. A Lie ideal of L is a Lie subalgebra I such that rx, ys P I whenever x P L, y P I.

• If I is a Lie ideal of L, we write I � L.

• If I is a Lie ideal, then the quotient space L{I is naturally a Lie algebra over k.
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Proposition H.0.1. The usual isomorphism theorems hold in LieAlgk. Precisely:

1. Let φ P HomLieAlgk
pL,L1q. Then kerφ � L, and for N � L contained in kerφ, the canonical

map L{N Ñ L1 is a Lie algebra homomorphism.

2. If H is a Lie subalgebra of L and I � L, then H ` I is a Lie subalgebra of L, H X I is a Lie
ideal of H, and the natural homomorphism H{H X I – H ` I{I is a Lie algebra isomorphism.

3. If I, J � L with I Ď J , then J{I is a Lie ideal of L{I, and the natural homomorphism
L{J – pL{Iq{pJ{Iq is a Lie algebra isomorphism.

4. If I �L, then the set of Lie ideals in L containing I is in bijection with the set of Lie ideals in
L{I.

Definition. Let A be a (possibly nonassociative) k-algebra. A (k-linear) derivation is a k-linear
map D : A Ñ A satisfying the Leibniz’s rule: Dpxyq “ xDpyq `Dpxqy for all x, y P A. Write Derk A

for the space of derivations on A, which is a subspace of Endk A.

• If L is a Lie algebra over k, then

Derk L :“ tD P Endk L | Dprx, ysq “ rDx,Dys for all x, y P Lu.

In fact, Derk L is a Lie subalgebra of Endk L.

• Thanks to Jacobi’s identity we see the image adpLq of the adjoint representations ad : L Ñ

Endk L. An element in adpLq is called an inner derivation.

• If δ P Derk L and x P L, then adLpxq “ adLpδpxqq. In particular, adpLq Ď Derk L is a Lie ideal.

Definition. Let L be a Lie algebra over k.

1. ZpLq “ tx P L | rx, Ls “ 0u is the center of L.

2. For a subset S Ď L, CLpSq “ tx P L | rx, Ss “ 0u is the centralizer of S in L, which is a Lie
subalgebra of L (by Jacobi’s identity).

3. For a subset S Ď L, NLpSq “ tx P L | rx, Ss Ď Su is the normalizer of S in L, which is a Lie
subalgebra (also by Jacobi’s identity).

4. rL,Ls “ spanktrx, ys | x, y P Lu is called the commutator / derived subalgebra of L.

5. Put Lp1q “ L and Lpnq “ rLpn´1q, Lpn´1qs pn ě 2q. The sequence

L “ Lp1q Ě Lp2q Ě ¨ ¨ ¨ Ě Lpnq Ě ¨ ¨ ¨ Ě t0u

is the derived series of L. If Lpnq “ 0 for some n ě 1, then L is called solvable.

6. Put L1 “ L and Ln “ rL,Ln´1s pn ě 2q. The sequence

L “ L1 Ě L2 Ě ¨ ¨ ¨ Ě Ln Ě ¨ ¨ ¨ Ě t0u

is the lower central series of L. If Ln “ 0 for some n ‰ 1, then L is called nilpotent.

7. L is called abelian if rL,Ls “ 0.

8. L is called simple if rL,Ls ‰ 0 and L contains no proper nonzero Lie ideal.
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Lemma H.0.2. Let L be a Lie algebra over k.

1. If L is nilpotent, then L is solvable.

2. If L is solvable (resp. nilpotent), then every homomorphic image of L is solvable (resp. nilpo-
tent).

3. If I � L is a solvable (resp. nilpotent) Lie ideal and K Ď L is a solvable (resp. nilpotent) Lie
subalgebra, then I `K is solvable (resp. nilpotent).

4. If L{ZpLq is nilpotent, then L is nilpotent.

Definition. Let L be a Lie algebra over k. Since the sum of two solvable Lie ideals of L is again a
solvable Lie ideal, there exists a maximal solvable Lie ideal in L. This is called the radical

H.1 Universal enveloping algebras
In this subsection, let k be any field and L an (possibly infinite dimensional) Lie algebra over k.
Notice that a associative algebra A is naturally a Lie algebra: pa, bq ˆ AˆA ÞÑ ab´ ba is clearly a
Lie bracket.

Definition. The universal enveloping algebra of L is an associative unital algebra UpLq over k
together with a k-linear map ι : L Ñ UpLq representing the functor Algk Q A ÞÑ HomLieAlgk

pL,Aq.
In other words, the map

HomAlgk
pUpLq, Aq HomLieAlgk

pL,Aq

ϕ ϕ ˝ ι

is a bijection functorial in A. Here Algk denotes the category of unital associative k-algebras.

The existence can be easily established. Indeed, let J be the two sided ideal of the tensor algebra
TL generated by the elements xb y ´ y b x´ rx, ys px, y P Lq. Put

UpLq “ TL{J

and denote by ι : L Ñ UpLq the composition of natural maps L Ñ TL Ñ UpLq. One readily checks
that pUpLq, ιq really represents the functor described above.

Let π : TL Ñ UpLq be the natural projection. Put TmL “
À

0ďnďm
TnL and Um “ πpTmq; for

convenience, put U´1 :“ 0. In this way we obtain a filtration

0 “ U´1 Ď k “ U0 Ď U1 Ď ¨ ¨ ¨ Ď Um Ď Um`1 Ď ¨ ¨ ¨ Ď UpLq

of the universal enveloping algebra UpLq. The filtration respects the multiplication: UpUq Ď Up`q,
which makes the associated Zě0-graded abelian group

G “
à

mě0

Gm :“
à

mě0

Um{Um´1

a unital associative k-algebra.
Since πpTmLq Ď πpTmq “ Um, the composition ϕm : TmL Ñ Um Ñ Gm of natural maps is

well-defined. As πpTmzTm´1q “ UmzUm´1, the map ϕm is surjective. The maps ϕm pm ě 0q then
together define a surjective linear map ϕ : TL Ñ G that sends 1 to 1. It is easy to see that ϕ is an
algebra homomorphism. Moreover,
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Lemma H.1.1. ϕpxb y ´ y b xq “ 0 P G for any x, y P L.

Proof. By definition, πpxb y ´ y b xq P U2. On the other hand,

πpxb y ´ y b xq “ πpxqπpyq ´ πpyqπpxq “ rπpxq, πpyqs “ πprx, ysq P U1,

so that ϕpxb y ´ y b xq P U1{U1 “ 0.

By the lemma, ϕ factors through the projection TL Ñ Sym L, inducing a unital k-algebra
homomorphism ω : Sym L Ñ G.

Theorem H.1.2 (Poincaré-Birkhoff-Witt; PBW). The homomorphism

ω : Sym L Ñ G

is an isomorphism of (graded) k-algebras.
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Appendix I

Lie Groups

I.1 Lie Groups and Examples
Definition. A Lie group G is a smooth manifold G which is also an abstract group such that the
multiplication µ : GˆG Ñ G and the inversion inv : G Ñ G are smooth.

• For g P G, let ℓg : G Ñ G be defined by ℓgpxq “ gx. Similarly, define rg : G Ñ G by
rgpxq “ xg.

A homomorphism of two Lie groups G Ñ H is a smooth map that is also a group homomor-
phism.

Lemma I.1.1. Let G be a Lie group and e be the identity element of G.

1. µ˚,pe,eq : TeGˆ TeG Ñ TeG is just addition, and inv˚,e : TeG Ñ TeG is multiplication by ´1.

2. In the definition of a Lie group, we do not need to assume the smoothness of inv.

Proof.

1. Let γ : p´ε, εq Ñ G be a curve with γp0q “ e and put X :“ γ˚,e

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

P TeG. We compute

µ˚pX, 0q, and the result will ensue by linearity. Define γ̃ptq :“ pγptq, eq. We have

µ˚pX, 0qf “ µ˚γ̃˚

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

f “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fppµ ˝ γqptqq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpγptqq “ γ˚

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

f “ Xf

so that µ˚pX, 0q “ X.
The second statement follows from chain rules. We have µpγptq, invpγptqqq “ e, so taking
differential, we have

0 “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

µpγptq, invpγptqqq “ µ˚pid, invq˚γ˚

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

“ µ˚pid, inv˚qX “ X ` inv˚X

so that inv˚X “ ´X.

2. It suffices to show there exists a unit-neighborhood U of G such that inv|U is smooth. Indeed,
for g ‰ 1 P G, the diagram

gU G

U G

inv|gU

ℓg´1 rg

inv|U
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commutes, and since ℓg and rg are diffeomorphisms, it follows that inv|gU is smooth as well.
Letting g run over G proves the global smoothness of inv.

To find U , we use Implicit function theorem. By 1, µ˚ is an isomorphism in the second
argument, so we can find open unit-neighborhoods U, V and a smooth map ϕ : U Ñ V such
that µpg, ϕpgqq “ e for g P U . But then ϕ coincides with inv on U , so inv is smooth as well.

Example I.1.2 (0-dimensional Lie groups). All finite groups with discrete topology are zero-
dimensional Lie groups. Some important examples are the symmetric groups Sn, the alternating
groups An and the cyclic groups Cn “ Z{n.

Example I.1.3 (Direct product). If G,H are Lie groups, so is their direct product GˆH with usual
group structure and smooth structure. For instance, the n-dimensional torus Rn{Zn – pR{Zqn –

pS1qn is a Lie group.

Example I.1.4 (Identity component). Let G be a Lie group and G0 be the identity component
of G, i.e., the connected component containing the identity element e. Then

• G0 is a normal subgroup of G. Since inv : G Ñ G is a homeomorphism, invG0 is a connected
subset of G containing e, so invG0 Ď G0. Now for g P G0, gG0 is connected and contains e as
well, so gG0 Ď G0. The normality is shown in the same fashion.

• G0 is open. Indeed, this follows from the fact that G0 is locally connected.

Hence G0 is an open (and closed) subgroup of G, so it is itself a Lie group.

Example I.1.5 (Matrix groups). Let V be a finite dimensional real/complex vector space. The
group of linear isomorphisms AutV is an open subspace of EndV , and hence it has a smooth
structure. Taking a basis for V , we see that the multiplication on AutV is just a polynomial map,
so AutV is a Lie group. Hence GLnpRq and GLnpCq are Lie groups.

• GLnpRq has two connected components. The identity component is

GLnpRq` :“ tg P GLnpRq | det g ą 0u

and the other component is tg P GLnpRq | det g ă 0u. To see GLnpRq` is connected, note that
it is generated (as groups) by elementary matrices with positive determinant.

• GLnpCq is connected.

• The tangent space of GLnpkq at the identity for k “ R, C can be regarded as the matrix ring
Mnpkq.

Consider the special linear groups SLnpRq and SLnpCq. We show they are Lie groups. Let k “ R, C.

• 1 is a regular value of det : GLnpkq Ñ kˆ. To show this, we compute the differential of det.
For A “ paijq P GLnpkq, by definition we have

detA “ p´1qiai1mi1 ` ¨ ¨ ¨ ` p´1qijaijmij ` ¨ ¨ ¨ ` p´1qinainmin

where the mij are determinant of the matrix obtained by deleting the i-th row and the j-th
column of A. Hence det1 A “ pp´1qijmijq1ďi,jďn, so a matrix A P GLnpkq is a critical point of
det if and only all mij “ 0. For A P SLnpkq, since detA “ 1, it follows every matrix in SLnpkq

is a regular point of det. By regular level set theorem, SLnpkq is then a regular submanifold
of GLnpkq of codimension 1.
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• SLnpkq is a Lie group. It remains to show the multiplication is smooth, and this follows easily
from Proposition F.2.7.

Example I.1.6 (Orthogonal groups). Let k be a field and B a k-bilinear form on a finite dimensional
k-vector space V . Then we have an associated group

tT P Autk V | BpTv, Twq “ Bpv, wq for all v, w P V u

• k “ R, B the standard inner product on Rn. Then we have the orthogonal group1

OnpRq “ Opnq :“ tA P GLnpRq | ATA “ Inu

As GLnpRq, OnpRq also splits into two connected components, and the identity component is
the special orthogonal groups

SOnpRq “ SOpnq :“ tA P OnpRq | detA “ 1u

• k “ C, B the standard Hermitian product on Cn. Then we have the unitary groups

UnpRq “ Upnq :“ tA P GLnpCq | A˚A “ Inu

We can similar define the special unitary group

SUnpRq :“ tA P UnpCq | detA “ 1u

These groups are compact, for they are closed and bounded in the affine space kn2 . We show Opnq

is a regular submanifold of GLnpRq.

• Define f : GLnpRq Ñ GLnpRq by fpAq “ ATA. We prove f has constant rank on GLnpRq, so
that Opnq “ f´1pInq is a regular submanifold by constant level set theorem.

• For A,B P GLnpRq, we have fpABq “ pABqTAB “ BT fpAqB, so that

f ˝ rB “ ℓpBT q´1 ˝ rB ˝ f

Taking differential at A, we have

f˚,AB ˝ prBq˚,A “ pℓpBT q´1q˚,fpAqB ˝ prBq˚,fpAq ˝ f˚,A

Since the left and right translation are diffeomorphisms, we see rank f˚,AB “ rank f˚,A for all
A,B P GLnpRq. Since B is arbitrary, this proves f has constant rank.

• We determine rank f˚,In . Let X P MnpRq and γ : R Ñ GLnpRq a curve such that γp0q “ In

and γ˚,0
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

“ X. Then

f˚,InX “ f˚,Inγ˚,0
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

γptqT γptq “ XT `X

Hence rank f˚,In “
n2 ` n

2
, and thus dimR Opnq “ n2 ´

n2 ´ n

2
“
n2 ` n

2
.

1The notation OnpRq implicitly tells that On is a real algebraic group and we are taking its real points OnpRq “

Opnq. Same remark for the incoming groups.
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I.1.1 Symplectic groups
Recall the real quaternion algebra is a 4-dimensional real algebra

H “ R ` Ri` Rj ` Rij

with i2 “ j2, ij “ ´ji. Concretely, it is the R-algebra of 2 ˆ 2 complex matrices of the form
˜

a b

´b a

¸

“

˜

a

a

¸

`

˜

b

´b

¸

“ a` bj

with matrix multiplication and addition. Here we identify z P C with
˜

z

z

¸

P H, and j :“

˜

1

´1

¸

. The multiplication rule is given by

zj “ jz for z P C, j2 “ ´1

If a` bj ‰ 0, then its determinant |a|2 ` |b|2 is nonzero, and its multiplicative inverse is a´ bj

|a|2 ` |b|2
.

This show H is a division ring, and we can think C as a subfield of H.

• The center Z of H is R. Clearly, R Ď Z, and Z is a finite field extension of R. If R Ĺ Z,
then Z “ C. However, if we take z P HzC, we have Zpxq “ Cpxq “ C which is absurd. Hence
R “ Z.

• H is a C-vector space with C acting by the left multiplication. t1, ju forms a C-basis for H.

• There is an involution, called conjugation, on H given by

H H

h “ a` bj h :“ a´ bj

This is the restriction of the conjugate transpose g ÞÑ g˚ on GLp2,Cq to H. Hence, it is an
anti-R-automorphism, which coincides with complex conjugation on C. The norm for h is
defined as Nphq :“ hh “ deth, so if h ‰ 0, the multiplicative inverse of h is Nphq´1h.

• As a real vector space, H has a basis consisting of

1 “

˜

1

1

¸

, i “

˜

i

´i

¸

, j “

˜

1

´1

¸

, k “

˜

i

i

¸

“ ij

The quaternion of the form ai ` bj ` ck with a, b, c P R is called a pure quaternion. Every
h P H has a unique decomposition h “ r ` q with r real and q pure. We have r ` q “ r ´ q,
and therefore Npr ` qq “ r2 ´ q2. Hence if q is pure, Npqq “ ´q2 so that q2 ď 0.

- The subspace of pure quaternions can be characterized only using the ring structure on
H: If h “ r` q with r real and q pure, then h2 “ r2 ` q2 ` 2rq is real if and only if r “ 0

or q “ 0, and is non-positive if and only if r “ 0.

• The standard isomorphisms H – R4 and H – C2 are norm-preserving. The group

Spp1q :“ th P H | Nphq “ 1u
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is called the quaternion group, or group of unit quaternions. In terms of matrices, we see

Spp1q “

#˜

a b

´b a

¸

| a, b P C, |a|2 ` |b|2 “ 1

+

“ SUp2q

and the isomorphism H – R4 identifies Spp1q with the unit sphere S3.

The basic statements of linear algebra may be formulated for modules over division rings. For
example,

EndHpHnq “ tf P EndRpHnq | fpzxq “ zfpxq for all z P H, x P Hnu

can be identified with the matrix ring MnpHq. Under the identification, we see

GLnpHq “ AutHpHnq “ EndHpHnq X AutRpHnq.

We topologize H by the norm defined above; equivalently, since H is a finite dimensional real vector
space, it is automatically a real Banach space. Then GLnpHq is an open subspace of MnpHq, and is
a 4n2-dimensional Lie groups.

• The standard isomorphism H “ C ` Cj – C2 induces a standard C-isomorphism Hn “

Cn ` Cnj – C2n. Left multiplication by j induces an R-endomorphism

j : C2n – Hn Hn – C2n

pu, vq “ u` vj jpu` vjq “ ´v ` uj “ p´v, uq

An H-endomorphism φ : Hn Ñ Hn is the same of a C-endomorphism φ : C2n Ñ C2n that
commutes with j. Thus in matrix, φ assumes the form

˜

A ´B

B A

¸

P M2npCq

with A,B P MnpCq.

• There is a inner product on Hn, the standard symplectic product:

xh, ky :“
n
ÿ

i“1

hiki

for h “ ph1, . . . , hnq, k “ pk1, . . . , knq P Hn. The corresponding norm is xh, hy “
n
ř

i“1

Nphiq ě 0.

The (compact) symplectic group is defined to be the norm-preserving H-automorphisms:

Sppnq :“tφ P GLnpHq | Npφphqq “ Nphq for all h P Hu

“tφ P GLnpHq | xφh, φky “ xh, ky for all h, k P Hu

Under the standard (norm-preserving) isomorphism Hn – C2n, we have

Sppnq “

#˜

A ´B

B A

¸

P Up2nq | A,B P MnpCq

+

An element in Sppnq is called a symplectic matrix.
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• Left multiplication by j is not C-linear. However, right multiplication by j is C-linear:

J : C2n – Hn Hn – C2n

pu, vq “ u` vj pu` vjqj “ ´v ` uj “ p´v, uq

In matrix form, J “

˜

0 ´In

In 0

¸

P GLnpCq. Denote by c : C2n Ñ C2n the complex conjuga-

tion. Then j “ c ˝ J , and a unitary matrix A is symplectic if and only if AcJ “ cJA. Sine
Ac “ cA, it becomes cAJ “ cJA, i.e., JA “ AJ “ pAT q´1J , or ATJA “ J . Dropping the
condition that A being unitary, we obtain the complex symplectic group

Spp2n,Cq “ tA P GL2npCq | ATJA “ Ju

Then Sppnq “ Spp2n,Cq X Up2nq.

• That Spp2n,Cq and Sppnq are Lie groups can be shown in the same way as for Opnq. We have
the following lattices

GL2npRq`

GLnpRq` GLnpRq GLnpCq GLnpHq GL2npCq

SOpnq Opnq Upnq Sppnq Spp2n,Cq

SOp2nq Up2nq

• Consider the “adjoint” action of Hˆ on H:

Ad : Hˆ ˆ H H

pq, xq Adpqqpxq :“ qxq´1.

Note that Npqxq´1q “ NpqqNpxqNpqq´1 “ Npxq. We claim if x is pure quaternion, then so
is qxq´1. Indeed, if we write qxq´1 “ r ` s with r real and s pure, then

0 ě ´Npxq “ ´qNpxqq´1 “ qx2q´1 “ pqxq´1q2 “ r2 ` s2 ` 2rs.

Since rs is nonreal unless r “ 0 or s “ 0 and s2 ď 0, we must have qxq´1 “ s is pure. Hence
the adjoint action of Hˆ on H stabilizes the subspace of pure quaternions ImH.

The subspace ImH is clearly isomorphic to R3 as real vector spaces:

ψ : ImH R3

ai` bj ` ck pa, b, cq.

Actually it gives more: it is norm-preserving, and for v, u P ImH, we have

vu “ ´ψpvq ¨ ψpuq ` ψ´1pψpvq ˆ ψpuqq. (♠)
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In view of this formula, it is natural to define an inner product p , q on ImH by pu, vq :“ Repuvq;
this turns ψ into a linear isometry. Now consider the restriction of Ad to Spp1q ˆ ImH; since
NpAdpqqxq “ Npxq, it induces a map

Ad : Spp1q OpImHq

q rAdpqq : x ÞÑ qxq´1 “ qxqs.

Identifying OpImHq with Op3q, this yields a continuous homomorphism Ad : Spp1q Ñ Op3q.
Since Spp1q – S3 is connected and Adp1q “ id P SOp3q, we see AdpSpp1qq Ď SOp3q. The kernel
kerAd ď Spp1q is t˘1u, which can be easily seen from p♠q. We contend Ad : Spp1q Ñ SOp3q

is surjective by showing its image contains all rotations.

Restricting ψ to the norm one elements, we obtain ψ : ImH X Spp1q – S2. From the formula
p♠q again, we see each element v P ImH X Spp1q can be completed to a basis tv, w, uu such
that v, w, u P ImH X Spp1q with vw “ u, wu “ v, uv “ w and v2 “ w2 “ u2 “ ´1.

Pick v P ImH X Spp1q and w, u as above. We claim that

Adpcos θ ` v sin θq

fixes v and acts as rotation by 2θ on spantw, uu Ď ImH. To begin with, we observe that

cos θ ` v sin θ “ cos θ ´ v sin θ.

This can be seen as follows: the natural identification H – R4 preserves norm, so

|| cos θ ` v sin θ||2 “ cos2 θ ` sin2 θ ´ v cos θ sin θ ` v sin θ cos θ “ 1

while pcos θ ` v sin θqpcos θ ´ v sin θq “ 1. This verifies our observation. Now compute

Adpcos θ ` v sin θqv “ pcos θ ` v sin θqvpcos θ ´ v sin θq

“ p´ sin θ ` v cos θqpcos θ ´ v sin θq “ v

Adpcos θ ` v sin θqu “ pcos θ ` v sin θqupcos θ ´ v sin θq

“ pu cos θ ` w sin θqpcos θ ´ v sin θq “ u cos 2θ ` w sin 2θ

Adpcos θ ` v sin θqw “ pcos θ ` v sin θqwpcos θ ´ v sin θq

“ pw cos θ ´ u sin θqpcos θ ´ v sin θq “ w cos 2θ ´ u sin 2θ

This proves the claim.

In conclusion, we obtain a short exact sequence of Lie groups:

1 t˘1u Spp1q SOp3q 1Ad

so that Spp1q is a double cover of SOp3q.

I.1.2 Spin
Definition. Let pV,Qq be a finite dimensional real quadratic space. The Clifford algebra CpQq

is a unital R-algebra together with an R-linear map i “ iQ : V Ñ CpQq such that

(i) ipxq2 “ ´Qpxq.1 in CpQq for all x P V , and
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(ii) if A is any unital R-algebra with an R-linear map j : V Ñ A such that jpxq2 “ ´Qpxq.1,
then there exists a unique unital R-algebra homomorphism ϕj : CpQq Ñ A fitting in the
commutative triangle:

CpQq A

V

i j

By universal property nonsense, a Clifford algebra is unique up to a unique isomorphism. It is
easy to construct a Clifford algebra CpQq as a quotient of the tensor algebra: define I to be the
two-sided ideal of IV generated by txb x`Qpxq.1 | x P V u, and define

CpQq “ TV {I.

An obvious candidate for i : V Ñ CpQq is the composition V Ñ TV Ñ TV {I “ CpQq.

Example I.1.7. Let Q : Rn Ñ R be the usual norm function: Qpxq “ ∥x∥2. Denote by Cn “

CnpRq “ Cp∥¨∥2q the corresponding Clifford algebra. Let teiu
n
i“1 be the standard basis for Rn.

Then their image in Cn satisfies

e2i “ ´1, eiej “ ´ejei if i ‰ j.

If n “ 0, by construction we have C0 “ R. If n “ 1, we have an algebra isomorphism

C1 C

a` be1 a` bi

and if n “ 2, we have

C2 H

a` be1 ` ce2 ` de1e2 a` bi` cj ` dk

We introduce two canonical maps on CpQq. The opposite algebra CpQqop satisfies the universal
properties (ii) for any opposite unital R-algebras, and hence for all unital R-algebras. Hence there
exists a unique unital R-algebra anti-isomorphism

p¨qt : CpQq CpQq

satisfying pxyqt “ ytxt and pxtqt “ x for any x, y P CpQq; it is uniquely determined by xt “ x for
x P ipV q.

By the universal property, the R isomorphism V Ñ CpQq given by x ÞÑ ´x extends uniquely to
a unique R-algebra automorphism

α : CpQq CpQq

satisfying α ˝ α “ id and αpxq “ ´x for x P ipV q. For ν P Ně0

CpQqν “ tx P CpQq | αpxq “ p´1qνxu

to be the eigenspace of α with eigenvalue p´1qν ; we have CpQq “ CpQq0 ‘ CpQq1. This is a
Z{2Z-grading on CpQq in the sense that xy P CpQqν`µ whenever x P CpQqν and y P CpQqµ.
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In general, if A “ A0 ‘A1 and B “ B0 ‘B1 are two Z{2Z-graded algebras, their (vector space)
tensor product AbB naturally inherits a Z{2Z-grading given by

pAbBq0 “ pA0 bB0q ‘ pA1 bB1q

pAbBq1 “ pA0 bB1q ‘ pA1 bB0q

with multiplication

pa1 b bqpab b1q “ p´1qνµpa1aq b pbb1q

where a P Aµ and b P Bν . To stress this extra structure, we denote such tensor product as Ab2 B.
If pV, P q and pW,Qq are real quadratic spaces, we can form the orthogonal direct sum pV ‘

W,P ‘Qq by pP ‘Qqpv, wq “ P pvq `Qpwq. Define

f : V ‘W CpP q b2 CpQq

pv, wq iP v b 1 ` 1 b iQw.

We check fpv, wq2 “ ´pP pvq ` Qpwqqp1 b 1q, so that by universal property this extends to a map
f : CpP ‘Qq Ñ CpP q b2 CpQq on Clifford algebras. Indeed,

fpv, wq2 “ piP v b 1 ` 1 b iQwq2

“ piP v b 1q2 ` piP v b 1qp1 b iQwq ` p1 b iQwqpiP v b 1q ` p1 b iQwq2

“ ´P pvq.1 b 1 ` iP v b iQw ´ iP v b iQw ´ 1 bQpwq.1

“ ´pP pvq `Qpwqqp1 b 1q.

We claim f is an isomorphism by constructing its inverse. This is easy. The inclusions V Ñ

V ‘W, W Ñ V ‘W induces homomorphisms φ : CpP q Ñ CpP ‘Qq, ψ : CpQq Ñ CpP ‘Qq. Then

CpP q b2 CpQq CpP q ‘ CpQq

v b w φpvqψpwq

is the inverse of f .
Recall that every real quadratic space pV,Qq admits an orthogonal decomposition pV,Qq –

n
À

i“1

pVi, Qiq with dimVi “ 1 (so that dimV “ n). The above isomorphism implies that

CpQq “ CpQ1q b2 CpQ2q b2 ¨ ¨ ¨ b2 CpQnq

We compute CpQq when dimV “ 1. By construction this is simply

CpQq –
RrXs

X2 `Qpe1q

where e1 is any nonzero vector in V . In particular, dimCpQq “ 2. For general V , we conclude from
the above decomposition that

dimR CpQq “ 2n.

Moreover, if e1, . . . , en are a basis for V , then

CpQq “ spanRtei1 ¨ ¨ ¨ eik | 1 ď i1 ă ¨ ¨ ¨ ă ik ď nu.
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In particular, the canonical map i : V Ñ CpQq is injective, so we may view V as a subspace of CpQq

without loss of generality.
We introduce more terms. Composing α and p¨qt, we obtain an algebra anti-automorphism

p¨q˚ : CpQq CpQq

x αpxqt “ αpxtq.

Define the norm N : CpQq Ñ CpQq by Npxq “ xx˚. For x P V , we have Npxq “ xp´xq “ Qpxq.1.
Also, put

ΓpQq “ tx P CpQqˆ | αpxq.v.x´1 P V for all v P V u.

This is a subgroup of the unit group CpQqˆ, called the Clifford group of Q.

Lemma I.1.8. α : CpQq Ñ CpQq and p¨qt : CpQq Ñ CpQq induces an automorphism and anti-
automorphism of the group ΓpQq respectively.

Let us turn to the case the Clifford algebra Cn “ Cp∥¨∥2q of the euclidean space pRn, ∥¨∥2q. Then

Cn “

n
â

i“1

pR ` Reiq Ě Rn

with a basis ei1 ¨ ¨ ¨ eik p1 ď i1 ă ¨ ¨ ¨ ă ik ď nq and relations e2i “ ´1, eiej “ ´ejei pi ‰ jq. Put
Γn “ Γp∥¨∥2q. From the definition of Γn, it admits a representation

ρ : Γn AutRn

defined as ρpxqv “ αpxqvx´1 px P Γn, v P Rnq.

Lemma I.1.9. ker ρ “ Rˆ.1 P Cn.

Proof. Let x P ker ρ; then αpxqv “ vx for all v P Rn. Write x “ x0 ` x1 with xi P Cin. Then

vx0 ` vx1 “ vx “ αpxqv “ px0 ´ x1qv

so that x0v “ vx0 and ´x1v “ vx1 for all v P Rn. Write

x0 “ a0 ` e1b
1

with a0 P C0
n, b

1 P C1
n such that they do not contain any e1 in their basis expression. Taking v “ e1

yields

a0 ` e1b
1 “ x0 “ e´1

1 x0e1 “ ´e1pa0 ` e1b
1qe1 “ a0 ` b1e1 “ a0 ´ e1b

1

so that e1b1 “ 0. Hence x0 contains no monomial with a factor e1. Repeating this argument shows
that x0 P R.1. Next write x1 “ a1 ` e1b

0 with a1 P C1
n, b

0 P C0
n such that they do not contain any

e1 in their basis expression. Then

a1 ` e1b
0 “ x1 “ ´e´1

1 x1e1 “ e1pa1 ` e1b
0qe1 “ a1 ´ e1b

0

so that e1b0 “ 0. The same argument implies x1 P R.1 Ď C0
n, whence x1 P C0

n X C1
n “ t0u, i.e.,

x1 “ 0. Hence x “ x0 P R X Γn “ Rˆ.

Lemma I.1.10. NpΓnq Ď Rˆ, and N |Γn
: Γn Ñ Rˆ is a homomorphism with Npαpxqq “ Npxq.
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Proof. Let x P Γn. We claim Npxq P ker ρ so that Npxq P Rˆ.1. For v P Rn, we compute

ρpNpxqqv “ αpNpxqqvNpxq´1 “ αpxqxtvpx˚q´1x´1 “ αpxqpαpx´1qvxqtx´1 “ αpxqαpxq´1vxx´1 “ v.

Hence Npxq P ker ρ. For x, y P Γn, since Npyq P Rˆ, we have

Npxyq “ xypxyq˚ “ xyy˚x˚ “ xNpyqx˚ “ xx˚Npyq “ NpxqNpyq.

Last,

Npαpxqq “ αpxqαpxq˚ “ αpxqxt “ αpxx˚q “ αpNpxqq “ Npxq

as Npxq P R.

Lemma I.1.11. Rnzt0u Ď Γn, and if x P Rnzt0u, then ρpxq is the reflection in the hyperplane
orthogonal to x. Also, ρpΓnq Ď Opnq.

Proof. Let x P Rnzt0u. Choose a basis teiu
n
i“1 such that x “ ∥x∥ e1. Since Rˆ.1 Ď ker ρ, we have

ρpxq “ ρp∥x∥ e1q “ ρpe1q; we may assume e1 “ x. Then we have

ρpe1qe1 “ αpe1qe1e
´1
1 “ ´e1

ρpe1qej “ αpe1qeje
´1
1 “ e1eje1 “ ej pj ‰ 1q.

This proves the first part. For x P Γn, v P Rnzt0u,

Npρpxqvq “ Npαpxqvx´1q “ NpαpxqqNpvqNpxq´1 “ Npvq,

so that ρpxq P Opnq (as Npvq “ ∥v∥2 .1).

Definition. For n ě 1, define

Pinpnq “ kerN |Γn
“ tx P Cp∥¨∥2qˆ | xx˚ “ 1, αpxqvx´1 P Rn for all v P Rn u

Theorem I.1.12. The sequence

t1u t˘1u Pinpnq Opnq t1u
ρ

is a short exact sequence of groups.

Proof. By Cartan-Dieudonne theorem and Lemma I.1.11, ρ : Pinpnq Ñ Opnq is surjective. Finally,

kerpρ|Pinpnqq “ ker ρX kerN “ pRˆ.1q X kerN “ t˘1u.

Via this exact sequence, we can topologize the set Pinpnq, making it a topological group. With
this topology, ρ : Pinpnq Ñ Opnq becomes a double cover. Moreover, since Opnq is a Lie group,
Pinpnq then admits a unique smooth structure so that Pinpnq is a Lie group and ρ is a smooth
homomorphism.

Define the spin group

Spinpnq :“ ρ´1pSOpnqq
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Then we have a short exact sequence of Lie groups:

t1u t˘1u Spinpnq SOpnq t1u
ρ

When n “ 1, we have C1 “ C and

Pinp1q “ tz P S1 | zpiRqz´1 Ď iRu “ xiy “ Z{4Z,

so that Spinp1q “ t˘1u “ Z{2Z. For n ě 2, we claim

ρ : Spinpnq Ñ SOpnq

is a nontrivial double cover. To see this we claim Spinpnq is path-connected. To show this it suffices
to show there is a path connecting 1 and ´1. Define γ : r0, πs Ñ Cn by

γptq “ cosptq ` sinptqe1e2

The two endpoints are exactly ˘1, and this is so constructed that

γptq´1 “ cosptq ´ sinptqe1e2 “ γptq˚

An easy computation shows that γptq P Pinpnq. It follows from an argument that γptq P Spinpnq for
all t. Since SOpnq is connected, the preceding result also implies that Spinpnq is connected for n ě 2.
Since SOpnq is the identity component of Opnq, we conclude that Spinpnq is the identity component
of Pinpnq.

We consider the case n “ 3. We have an injective algebra homomorphism

κ : H C3

a` bi` cj ` dk a` be2e3 ` ce3e1 ` de1e2

It follows from the definition of p¨qt that this map is ˚-equivariant and hence norm-preserving, and
it restricts to an injective homomorphism κ : Hˆ Ñ Γ3. There is a commutative square:

Hˆ ˆ ImH ImH

Γ3 ˆ R3 R3

κˆψ

Ad

ψ

ρ

which can be easily checked. Restricting κ to norm one elements, we obtain κ : Spp1q Ñ Spinp3q.
Since both sides have the same dimension and are connected, this is an isomorphism.

There is another description of Spinpnq:

Lemma I.1.13. Spinpnq “ Pinpnq X C0
n.

I.2 Left Invariant Vector Fields and Exponential Maps
Proposition I.2.1. Let G be a Lie group. Then G is parallelizable, i.e., the tangent bundle TG is
isomorphic to the trivial bundle Gˆ TeG.
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Proof. The isomorphism is given by

pg,Xq pg, pℓgq˚,eXq

Gˆ TeG TG

G

pr1 π

Definition. For a Lie group G, the vector space LiepGq :“ TeG is called the Lie algebra of G.

1. A smooth vector field X P XpGq is left invariant if for all g P G, the diagram

TG TG

G G

pℓgq˚

X

ℓg

X

commutes, i.e, pℓgq˚,hXh “ Xgh, or simply, pℓgq˚X “ X, i.e, X is invariant under pushforward
by ℓg. Denote by LG Ď XpGq the space of left-invariant smooth vector field on X.

• For X P LiepGq via the trivialization GˆTeG – TG we associate it with a left-invariant vector
field g ÞÑ pℓgq˚,eX. This establishes a one-one correspondence between LiepGq and LG.

• To justify the name of LiepGq, recall in Proposition F.3.3 we saw that XpGq is a Lie algebra.
We restrict the bracket to LG and transfer it to LiepGq. To show it is well-defined, we must
show if X,Y P XpGq is left-invariant, then so is rX,Y s; but this follows from Proposition F.3.4.

• Explicitly, let X,Y P TeG and put X 1, Y 1 P XpGq be the associated left-invariant vector fields.
Then rX,Y s P TeG is defined by rX 1, Y 1se.

Proposition I.2.2. For f : G Ñ H a homomorphism of Lie groups, the differential f˚,e : TeG Ñ

TeH is a Lie algebra homomorphism.

Proof. For X P LiepGq, let X 1 P LG be its associated left-invariant vector field. Then we must show
the identity in LiepHq

f˚,erX
1, Y 1se “ rpf˚,eXq1, pf˚,eY q1se

For h P C8pHq, compute

rpf˚,eXq1, pf˚,eY q1seh “ pf˚,eXq1
eppf˚,eY q1hq ´ pf˚,eY q1

eppf˚,eXq1hq

“ f˚,eXppf˚,eY q1hq ´ f˚,eY ppf˚,eXq1hq

“ Xppf˚,eY q1h ˝ fq ´ Y ppf˚,eXq1h ˝ fq

On the other hand,

f˚,erX
1, Y 1seh “ rX 1, Y 1seph ˝ fq “ XpY 1ph ˝ fqq ´ Y pX 1ph ˝ fqq
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Hence, it suffices to show Y 1ph ˝ fq “ pf˚,eY q1h ˝ f . For g P G,

pf˚,eY q1h ˝ f |g “ pf˚,eY q1
fpgqh

“ pℓfpgqq˚,ef˚,eY h

“ Y ph ˝ ℓfpgq ˝ fq “ Y ph ˝ f ˝ ℓgq

“ pℓgq˚,eY ph ˝ fq

“ Y 1
gph ˝ fq

Here the identity ℓfpgq ˝ f “ f ˝ ℓg holds due to the fact that f is a group homomorphism.

I.2.1 Exponential Maps
Suppose X is a left-invariant vector field on a Lie group G and α is an integral curve of X starting
from e. Then gα “ ℓg´1α is an integral curve of X starting from g for every g P G; indeed,

pℓg´1αq˚,s

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“t

s

˙

“ pℓg´1q˚,αpsqXαpsq “ Xgαpsq

This shows αps ` tq “ αpsqαptq whenever s, t, s ` t lie in the domain of α, for t ÞÑ αps ` tq and
t ÞÑ αpsqαptq are both integral curves for X starting from αpsq. Hence the maximal integral curve
α for X starting from e is defined over R, and the local flow generated by X is actually global, and
is given by F pt, gq :“ ℓg´1αptq “ gαptq.

A homomorphism R Ñ G of Lie groups is called a one-parameter subgroup of G. The above
discussion shows that the integral curve of X starting from e is a one-parameter subgroup. In fact,
we have a correspondence

HomLieGppR, Gq LiepGq

α α˚,0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

αX X

where in the second map we identify LiepGq with LG, and αX is the integral curve for X starting
from e.

Proposition I.2.3. The exponential map defined by

exp : LiepGq G

X αXp1q

is smooth, and its differential at 0 is the identity map.

Proof. The map
R ˆGˆ LiepGq Gˆ LiepGq

pt, g,Xq pgαXptq, Xq

is a flow of the smooth vector field pg,Xq ÞÑ pXg, 0q P Tpg,XqpG ˆ LiepGqq – TgG ˆ LiepGq, so it is
smooth. Thus its restriction to t1u ˆ teu ˆ LiepGq, which is X ÞÑ pαXp1q, Xq, is smooth, and so is
the map exp : X ÞÑ αXp1q.
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For the second statement, note that both s ÞÑ αtXpsq and s ÞÑ αXptsq are integral curves of tX
starting from e, so they are the same map. In particular,

expptXq “ αtXp1q “ αXptq

so that d

dt

ˇ

ˇ

ˇ

ˇ

t“0

expptXq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

αXptq “ X. Hence exp˚,0 “ idLiepGq.

Proposition I.2.4 (Naturality). A homomorphism f : G Ñ H of Lie groups induces a commutative
diagram

LiepGq LiepHq

G H

expG

f˚,e

expH

f

Proof. Let X P LiepGq. The one parameter subgroup t ÞÑ fpαXptqq has differential

pf ˝ αXq˚,0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

“ f˚,eα
X
˚,0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

“ f˚,eX

at the origin, so
exppf˚,eXq “ fpαXp1qq “ fpexppXqq

I.2.2 Adjoint Representations
With the group structure of G, we have an alternative description of the Lie bracket on LiepGq.

Lemma I.2.5. For each g P G, let cpgq : G Ñ G be defined by cpgqx :“ gxg´1. The homomorphism

Ad : G AutLiepGq

g cpgq˚,e

is smooth, called the adjoint representation of G.

Proof. Locally, Ad sends g to the Jacobian matrix of cpgq. Since cpgq is smooth, so is each entry of
its Jacobian.

Proposition I.2.6. The differential Ad˚,e : LiepGq Ñ EndLiepGq coincides with the adjoint repre-
sentation of the Lie algebra LiepGq.

Proof. For each X,Y P LiepGq, we must show Ad˚pXqY “ adX Y “ rX,Y s. For f P C8pGq, we
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have

Ad˚pXqY f “
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0AdpαXpsqqY f “
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0cpαXpsqq˚Y f

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0Y pf ˝ cpαXpsqqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0

ˆ

αY ptq˚

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

pf ˝ cpαXpsqqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpαXpsqαY ptqαXp´sqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0fpαXpsqαY ptqαXp´sqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0fpαXpsqαY ptqq `
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

0fpαY ptqαXp´sqq

˙

“ XY f ´ Y Xf “ rX,Y sf

Here we used chain rule: for real-valued fpx, yq, we have d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpt, tq “ fxp0, 0q ` fyp0, 0q.

Example I.2.7. A finite dimensional real vector space V , as a Lie group, coincides with its Lie
algebra T0V , and for v P T0V “ V , αvptq :“ tv is the integral curve (one parameter subgroup) of v.
T0V is an abelian Lie algebra, for its adjoint representation is a trivial map. Generally, an abelian
Lie group has abelian Lie algebra.

The torus Rn{Zn has Lie algebra Rn, and the one parameter subgroup for v P Rn is αvptq “

tv mod Zn.

Example I.2.8 (General linear groups). Let V be a finite dimensional real/complex/quaternionic
vector space. The group AutV of automorphisms on V has Lie algebra EndV . The one parameter
subgroup for X P EndV is

αXptq :“ etX “

8
ÿ

n“0

ptXqn

n!

In the proof of Proposition I.2.6, we see

adX Y “
B

Bs

ˇ

ˇ

ˇ

ˇ

“0

B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

αXpsqαY ptqαXp´sq

We use this formula to compute the Lie bracket on EndV . We have

αXpsqαY ptqαXp´sq ” p1 ` sXqp1 ` tY qp1 ´ sXq ” 1 ` tY ` stpXY ´ Y Xq pmod ps2, t2qq

Taking derivatives yields adX Y “ XY ´ Y X.
Also, the adjoint representation Adpgq : EndV Ñ EndV is given by AdpgqY “ gY g´1. To see

this,
cpgqαY ptq “ getY g´1 “ etgY g

´1

“ αgY g
´1

ptq

Differentiating at t “ 0, we obtain AdpgqY “ gY g´1.

Example I.2.9 (Matrix groups). By Proposition I.2.4, if G Ď AutV is a closed Lie subgroup,
then the exponential map on G is the same as that of on AutV . Hence for X P LiepGq ď EndV ,

expGX “
8
ř

n“0

ptXqn

n!

• LiepSLpnqq “ slpnq :“ tA P glpnq | trA “ 0u.
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• LiepSOpnqq “ sopnq :“ tA P glnpRq | A`AT “ 0u.

• LiepUpnqq “ upnq :“ tA P glnpCq | A`A˚ “ 0u.

• LiepSUpnqq “ supnq :“ tA P upnq | trA “ 0u.

• LiepSppnqq “ sppnq :“ tA P glnpHq Ď gl2npCq | A`A˚ “ 0u “

#˜

A ´B

B A

¸

P up2nq | A,B P MnpCq

+

Note that expSO(n) and expU(n) are surjective, while expSL2pRq is not.

I.2.3 Applications
No small subgroup argument

Proposition I.2.10 (No small subgroup). LetG be a Lie group. ThenG admits a unit-neighborhood
U such that U contains no nontrivial subgroup of G.

Proof. Let V,U be unit neighborhoods of LiepGq and G, respectively, such that expG : V Ñ U is
a homeomorphism. If x P U is such that xn P U for all n P Z, say x “ exp a for a P V , then
xn “ pexp aqn “ exppnaq, and thus na P V for all n P Z. If we pick V to a bounded set, then this
forces a “ 0, and thus x “ e.

Commutativity and adjoint representation

Lemma I.2.11. A connected topological groupG is generated (as groups) by any unit-neighborhood.

Proof. Let U be an open unit-neighborhood of G; replacing U X U´1 Ď U , we may assume U is
symmetric. Then the subgroup xUy “

8
Ť

n“1
Un generated by U is open, and hence closed. G being

connected, it follows that G “ xUy.

Proposition I.2.12. A homomorphism of connected Lie groups is determined by its differential at
the identity.

Proof. Let f : G Ñ H be a homomorphism of Lie groups. Consider the diagram

LiepGq LiepHq

G H

expG

f˚,e

expH

f

Since expG is a local diffeomorphism, we can find an open unit-neighborhood U of LiepGq such that
expG |U is bijective and expGpUq Ď G is open. Since G is connected, G “ xexpGpUqy, and the result
follows.

Corollary I.2.12.1. Let G be a connected Lie group. TFAE:

1. G is abelian.

2. Ad : G Ñ AutLiepGq is trivial.

3. ad : LiepGq Ñ EndLiepGq is trivial.
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Proposition I.2.13. For a Lie group G, its identity component G0 is abelian if and only if exp :

LiepGq Ñ G is a homomorphism.

Proof. WLOG we assume G “ G0 is connected. If exp : LiepGq Ñ G is a homomorphism, then
since LiepGq is an abelian group, its image is abelian, and since G “ xexpG LiepGqy, G is abelian.
Suppose G is abelian. Then the multiplication µ : G ˆ G Ñ G is a Lie group homomorphism, and
the result follows from the naturality.

Corollary I.2.13.1. If G0 is abelian, then exp : LiepG0q “ LiepGq Ñ G0 is surjective.

Some classifications

Lemma I.2.14. LetG, H be Lie groups and f : G Ñ H a bijective (abstract) group homomorphism.
If f is a local diffeomorphism, then f : G Ñ H is a Lie group isomorphism.

Theorem I.2.15. A connected abelian Lie group G is isomorphic to Tt ˆ Rr.

Proof. The exponential map expG : LiepGq Ñ G is a surjective homomorphism, so we have an
abstract group isomorphism G – LiepGq{ ker expG. Since expG is a local diffeomorphism, ker expG Ď

LiepGq is discrete; in particular, this shows G – LiepGq{ ker expG is a local diffeomorphism, if we
view LiepGq{ ker expG as a product of a torus and a vector space. Hence G – LiepGq{ ker expG is a
Lie group isomorphism.

Here we use the fact that every discrete subgroup of Rn is a finite rank abelian subgroup.

Corollary I.2.15.1. A compact abelian Lie group G is isomorphism to Tt ˆ F , where F is a finite
abelian group.

Proof. The identity component G0 of G is compact connected abelian, so G0 – Tt, and since G is
compact, G{G0 “: F is finite abelian. So far we have an short exact sequence of abelian groups

0 G0 G F 0
p

Since G0 is divisible, this short exact sequence splits, so we can find a section s : F Ñ G of p.
Consider the maps

G0 ˆ F G

pg, fq g ` spfq

pg ´ ps ˝ pqpgq, ppgqq g

They are mutually inverses, so we have an abstract group isomorphism. Again, this is a local
diffeomorphism, so G0 ˆ F – G as Lie groups.

Topological generators of tori

Definition. An element x of a topological group G is called a topological generator if G “ xxy.

Theorem I.2.16 (Kronecker). A vector v “ pv1, . . . , vnq P Rn represents a topological generator of
Tn :“ Rn{Zn if and only if 1, v1, . . . , vn are Q-linearly independent.
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Proof. The exact sequence

0 Zn Rn Tn 0

defining the torus canonically identifies Rn “ LieRn “ LieTn, so the projection Rn Ñ Tn is the
same as the exponential map by naturality, so a Lie group homomorphism f : Tn Ñ S1 induces a
commutative diagram

0 Zn Rn Tn

0 Z R S1

f˚|Zn f˚ f

so that f˚pv1, . . . , vnq “ α1v1 ` ¨ ¨ ¨ ` αnvn for some αi P Z. Now the following statements are
equivalent:

(i) 1, v1, . . . , vn are linearly dependent over Q.

(ii)
n
ř

i“1

aivi P Q for some non-all-zero ai P Q.

(iii)
n
ř

i“1

aivi P Z for some non-all-zero ai P Z.

(iv) v mod Zn is in the kernel of some nontrivial homomorphism f : Tn Ñ S1.

(v) v mod Zn is not a topological generator.

(i) ô(ii) ô(iii) are clear. (iii) ô(iv) follows from the first paragraph. (iv) ô(v) is obvious, so it
remains to show (v) ô(iv). A nongenerator rvs :“ v mod Zn is contained is a proper closed subgroup
H ď Tn, and the quotient Tn{H is a nontrivial compact connected abelian Lie group, so Tn{H – Tk

for some k P N, and rvs lies in the kernel of the nontrivial homomorphism

Tn Ñ Tn{H – Tk “ S1 ˆ ¨ ¨ ¨ ˆ S1 pr1
Ñ S1

Corollary I.2.16.1. A compact Lie group contains a dense cyclic subgroup if and only if the group
is isomorphic to Tn – Z{ℓZ for some k P N0, ℓ P N.

Proof. Take a topological generator t P Tn and pick x P Tn such that ℓx “ t. Then the subgroup
generated by px, 1q is dense in Tn – Z{ℓZ. Conversely, if a compact Lie group G contains a dense
cyclic subgroup, say xay, then G is abelian, so G – Tn ˆ F for some finite F . But pr2paq generates
F , so F is cyclic.

I.2.4 Dynkin’s formula

In this subsection let G be a Lie subgroup of GLnpRq. Recall that 1 ´ e´x

x
“

8
ÿ

n“0

p´1qn

pn` 1q!
xn. Using

this power series identity, for X P LiepGq we can define

1 ´ e´ adX

adX
:“

8
ÿ

n“0

p´1qn

pn` 1q!
padXqn P EndpLiepGqq
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Theorem I.2.17. Let γ : R Ñ LiepGq be a smooth curve. Then

d

dt
eγptq “ eγptq

ˆ

1 ´ e´ adX

adX

˙

pγ1ptqq

“

ˆˆ

eadX ´ 1

adX

˙

pγ1ptqq

˙

eγptq

Proof. Define φ : R2 Ñ MnpRq by

φps, tq “ e´sγptq B

Bt
esγptq.

To prove the theorem, we must show φp1, tq “

ˆ

1 ´ e´ adX

adX

˙

pγ1ptqq. Firstly, since φp0, tq “ 0 we
have

φp1, tq “

ż 1

0

B

Bs
φps, tqds.

Now compute

B

Bs
φps, tq “ ´γptqe´sγptq B

Bt
esγptq ` e´sγptq B

Bt
pγptqesγptqq

“ e´sγptq

ˆ

´γptq
B

Bt
esγptq ` γ1ptqesγptq ` γptq

B

Bt
esγptq

˙

“ e´sγptqγ1ptqesγptq “ Adpe´sγptqqγ1ptq “ e´s adpγptqqγ1ptq.

Thus

φp1, tq “

ż 1

0

e´s adpγptqqγ1ptqds “

ż 1

0

8
ÿ

n“0

p´sqn

n!
pad γptqqnγ1ptqds

“

8
ÿ

n“0

p´1qnsn`1

pn` 1q!
pad γptqqnγ1ptq

ˇ

ˇ

ˇ

ˇ

ˇ

1

0

“

ˆ

1 ´ e´ adX

adX

˙

pγ1ptqq.

This shows the first equality. For the second equality, it suffices to note

leγptq “ reγptq ˝ Adpeγptqq “ reγptq ˝ ead γptq.

Corollary I.2.17.1. For X P LiepGq, the exponential map expG : LiepGq Ñ G is a local diffeomor-
phism near X if and only if 2πiZzt0u are not the eigenvalues of adX on LiepGq.

Proof. Let Y P LiepGq. Consider the curve γ : R Ñ LiepGq defined by γptq :“ X ` tY . Then by
Theorem I.2.17, we have

pexpGq˚,0pY q “ eX
ˆ

1 ´ e´ adX

adX

˙

pY q.

Hence we only need to show 1 ´ e´ adX

adX
is invertible if and only if the eigenvalues of adX are away

from 2πiZzt0u. For this we may work in C. If we put adX in its Jordan form, then we see the

eigenvalues of 1 ´ e´ adX

adX
are of the form 1 ´ e´λ

λ
, where λ runs over all eigenvalues of adX; if λ “ 0,

it is 1. Hence 1 ´ e´ adX

adX
is invertible if and only if 1 ´ e´λ

λ
‰ 0 for all λ, i.e., λ R 2πiZzt0u.
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To formulate the Dynkin’s formula, we set some notations, only for the sake of convenience.
If g is a Lie algebra and Xi P g, put

rXn, . . . , X3, X2, X1s “ rXn, . . . , rX3, rX2, X1ss, . . .s

and

rXpinq
n , . . . , X

pinq
1 s “ r

in copies
hkkkkkikkkkkj

Xn, . . . , Xn, . . . ,

i1 copies
hkkkkkikkkkkj

X1, . . . , X1s

Theorem I.2.18 (Dynkin’s formula). For X,Y P LiepGq sufficiently small, the vector Z P LiepGq

defined by

eXeY “ eZ

is explicitly given by the formula

Z “
ÿ p´1qn`1

n

1

pi1 ` j1q ` ¨ ¨ ¨ ` pin ` jnq

rXpi1q, Y pj1q, . . . , Xpinq, Y pjnqs

i1!j1! ¨ ¨ ¨ in!jn!

where the sum runs over all pi1, . . . , in, j1, . . . , jnq P pZě0q2n with ik ` jk ě 1 for all n P N.

Proof. Pick an open neighborhood U of 0 P LiepGq on which exp : U Ñ exppUq is invertible with
inverse log : exppUq Ñ U . Here log is the usual logarithm for matrices given by the power series.
Pick an open neighborhood V Ď U of 0 so that exppV q2 exppV q´2 Ď expU . For X,Y P V , define
γ : r0, 1s Ñ LiepGq by γptq “ etXetY . Then Zptq :“ logpγptqq is the unique smooth curve in U such
that eZptq “ γptq. Differentiating, with the aid of Theorem I.2.17, we obtain

ˆˆ

eadZptq ´ 1

adZptq

˙

pZ 1ptqq

˙

eZptq “ XeZptq ` eZptqY.

Since exp is a local diffeomorphism near Zptq, from the proof of Corollary I.2.17.1 we see 1 ´ e´ adZptq

adZptq
is invertible on LiepGq, and hence

Z 1ptq “

ˆ

eadZptq ´ 1

adZptq

˙´1

pX ` eZptqY e´Zptqq “
adZptq

eadZptq ´ 1
pX ` AdpeZptqqY q.

Since eZptq “ etXetY , we have

eadZptq “ AdpeZptqq “ AdpetXqAdpetY q “ et adXet adY ,

so that

Z 1ptq “
adZptq

eadZptq ´ 1
pX ` et adXet adY Y q “

adZptq

eadZptq ´ 1
pX ` et adXY q.

From the power series identity x “ logp1`pex´1qq “

8
ÿ

n“1

p´1qn´1

n
pex´1qn “ pex´1q

8
ÿ

n“1

p´1qn´1

n
pex´

1qn´1, we obtain, by inserting x “ adZptq,

adZptq

eadZptq ´ 1
“

8
ÿ

n“1

p´1qn´1

n
pet adXet adY ´ 1qn´1
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Hence,

Z 1ptq “

8
ÿ

n“1

p´1qn´1

n
pet adXet adY ´ 1qn´1pX ` et adXY q

“

8
ÿ

n“1

p´1qn´1

n

¨

˝

ÿ

pi,jqPZ2
ě0´tp0,0qu

ti`j

i!j!
padXqipadY qj

˛

‚

n´1
˜

X `

˜

8
ÿ

i“0

ti

i!
padXqi

¸

Y

¸

.

The proof follows from expanding the integrating (note that Zp0q “ 0).

I.2.5 Representation on smooth functions
Let G be a Lie group. For X P LiepGq “ LG and f P C8pGq, we have

Xfpgq “ Xgf “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpgαXptqq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpg expGptXqq.

Lemma I.2.19. For f P CpGq, we have f P C8pGq if and only if f is C1 and Xf P C8pGq for each
X P LiepGq.

Proof. THe only if part is clear. For the if part, we claim this implies Xf P C8pGq for each
X P XpGq. Let p P G and K a compact neighborhood of p in some chart pU, x1, . . . , xnq about p.
It suffices to show Xf is smooth in K. Let X1, . . . , Xn be a basis for LiepGq; then X1|K , . . . , Xn|K

is also a basis for TqG for q P K. By shrinking K if necessary, by linear algebra we can write
B

Bxi

ˇ

ˇ

ˇ

ˇ

K

“
n
ř

j“1

ajXj |K for some smooth functions aj P C8pKq, so that B

Bxi
f is smooth in K. Hence

Xf is smooth in K. Now the result follows from Lemma F.3.2.3.

Clearly, each X P LiepGq yields an operator on C8pGq. Hence we obtain a linear map

LiepGq EndR C
8pGq

X rf ÞÑ Xf s.

This is the restriction to LiepGq of the canonical action XpGq Ñ EndC8pGq. The Lie algebra
structure on XpGq is so defined that it is a Lie algebra homomorphism, and LG is a Lie subalgebra
of XpGq. In particular, this shows

LiepGq EndR C
8pGq

is a Lie algebra homomorphism. We record this as a lemma.

Lemma I.2.20. For a Lie group G, the map LiepGq Ñ EndR C
8pGq is a Lie algebra homomorphism.

I.3 Lie Subgroups
Definition. A Lie subgroup of a Lie group G is an injective homomorphism of Lie groups f :

H Ñ G.

• H needs not be a regular submanifold ofG. Nevertheless, H is always an immersed submanifold
of G since such an f must have constant rank. One way to see this is using naturality of exps.
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Lemma I.3.1. Let G be a Lie subgroup and f : H Ñ G a Lie subgroup. Then

f˚,epLiepHqq “ tX P LiepGq | expGptXq P fpHq for all t P Ru.

Proof. Let X P LiepHq. By naturality we have fpexpHptXqq “ expGpf˚,eptXqq for all t P R,
so f˚,epXq lies in RHS. Conversely, let X P LiepGq such that expGptXq P fpHq for all t P R.

Define γ : R Ñ H by γptq :“ f´1pexpGptXqq, and put Y “ γ˚,0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

P LiepHq. Then

γptq “ expHptY q, and by naturality

expGptf˚,epY qq “ fpexpHptY qq “ fpγptqq “ expGptXq.

Since expG is a local diffeomorphism, this implies X “ f˚,epY q.

Theorem I.3.2 (Cartan). An abstract subgroup H of a Lie group G is a regular submanifold of G
if and only if H is closed in G.

Proof. Note that a regular submanifold is locally closed. Thus we can find an open unit-neighborhood
U ofG such thatHXU is closed in U . We claimH “ H. For h P H, by definition we have g P hUXH,
so h´1g P U XH “ U XH, hence h P H. Hence H is closed.

Conversely, we assume H is a closed abstract subgroup of G. By translation, it suffices to find
an open unit-neighborhood of G on which H is a submanifold.

1° Let V, U be open unit-neighborhoods of LiepGq and G, respectively, such that expG : V Ñ U

is a smooth diffeomorphism. Put log : U Ñ V to be its inverse.

2° Consider the set B “ tX P LiepGq | Dphnq Ď logpH X Uq with hn Ñ 0 such that hn
|hn|

Ñ Xu.
Then expG tX P H for all t P R and X P B.

Since |hn| Ñ 0, if we take mn “

Z

t

hn

^

P Z, we have mn|hn| Ñ t, so that

expmnhn “ exp

ˆ

mn|hn|
hn

|hn|

˙

Ñ exp tX

On the other hand, expmnhn “ pexphnqmn P H. Since H is closed, exp tX P H.

3° The set h “ ttX | t P R, X P Bu is a linear subspace of LiepGq.

Let X,Y P h and consider hptq :“ logpexpptXq expptY qq. Then lim
tÑ0

hptq

t
“ h˚,0

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

˙

“

X ` Y , and hptq

|hptq|
“
hptq

t

t

|hptq|
Ñ

X ` Y

|X ` Y |
. Thus X ` Y

|X ` Y |
P B and X ` Y P h.

4° exp h is a unit-neighborhood of H.

Let D be any linear complement of h in LiepGq. Consider the map

ψ : D ‘ h G

pX,Y q expX expY

Since exp˚ “ idLiepGq, ψ is a local diffeomorphism. We prove 4° by contradiction. Choose
pXn, Ynq P D ‘ h with ψpXn, Ynq P H, Xn ‰ 0 and pXn, Ynq Ñ 0. Since D is closed, we can
find X P D such that, by passing to subsequences, Xn

|Xn|
Ñ X; since |X| “ 1, X ‰ 0. Because

expYn P H by 2°, expXn P H as well, so X P B Ď h by 2°, a contradiction.
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This completes the proof because by 4° we can find an open unit-neighborhood W of G such that
W X H “ U X exp h and on it exp is invertible, so we obtain a chart of H around the identity. In
addition, by 4°and Lemma I.3.1,

5° The equality holds:

LiepHq “ h “ tX P LiepGq | expGptXq P H for all t P Ru

Corollary I.3.2.1. Let G, H be Lie groups and f : G Ñ H be a continuous abstract group
homomorphisms. Then f is automatically smooth, so f is a Lie group homomorphism.

Proof. Consider the graph of f :

Γf :“ tpg, fpgqq | g P Gu Ď GˆH

By assumption Γf is a closed subgroup of G ˆ H, so Γf is a closed Lie subgroup of G ˆ H. Now
consider the first projection π “ pr1|Γf

: Γf Ñ G; it is clear that π is a smooth homeomorphism.
We claim π˚,e is an isomorphism. Assuming this, we see π´1 is a local diffeomorphism, and hence
π´1 is smooth everywhere. Hence f “ pr2 ˝ π´1 is smooth.

View LiepΓf q Ď LiepGq ˆ LiepHq. Then LiepΓf q X LiepHq “ 0. For if X P LiepΓhq X LiepHq,
then exp tX P Γf X H “ teu, i.e., X “ 0. This shows π˚ : LiepΓf q Ñ LiepGq is injective. Hence
dimLiepΓf q ď dimLiepGq with equality if and only if π˚ is an isomorphism. But π is a homeomor-
phism, by invariance of dimension, we must have dimΓf “ dimG as smooth manifolds, and hence
equality holds.

Remark. Alternatively, we can show dimLiepΓf q “ dimLiepGq by measure theory. If dimLiepΓf q ă

dimLiepGq, then the (smooth) image of Γf in G is of measure zero, a contradiction to the bijectivity
of π. Note that here the second countability of Γf and G are used. However, if we do not impose
the second countability on the definition of manifolds, the proof still works with slight modification.
To show injectivity of π˚ we may replace Γf by its identity component, and thus we may assume
G and Γf are connected; but this automatically forces G and Γf to be second countable, thanks to
the fact euclidean spaces are second countable.

I.4 Correspondence between Lie Groups and Lie Algebras
Definition. Let p : X̃ Ñ X be a continuous map between topological space. p is called a covering
map if each x P X admits an open neighborhood U such that f´1pUq is a union of disjoint open
sets in X̃ each of which being mapped homeomorphically onto U by p.

Lemma I.4.1. Let f : G Ñ H be a continuous group homomorphism between topological groups.
If H is connected and there exists a unit-neighborhood U of G such that fpUq is open and f |

fpUq

U :

U Ñ fpUq is a homeomorphism, then f is a covering map.

Proof. We have f´1pfpUqq “
Ů

xPker f

Ux. Hence the covering property is verified at the identity of

H. Since H is connected and fpUq is open, f is surjective. Then for h P H and any g P f´1phq, we
have f´1pfpgUqq “

Ů

xPker f

gUx.
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Theorem I.4.2. Let f : G Ñ H be a homomorphism of Lie groups.

(i) The differential f˚ : LiepGq Ñ LiepHq is a Lie algebra homomorphism.

(ii) ker f˚ “ Liepker fq. Thus f˚ is injective if and only if ker f is discrete.

(iii) If H is connected, f˚ is surjective if and only if f is surjective, and f˚ is an isomorphism if
and only if f is a covering map.

Proof.

(i) This is Proposition I.2.2.

(ii) For X P LiepGq, by naturality f˚X “ 0 implies fpexpptXqq “ 0 for all t P R, and vice versa.
By Lemma I.3.1, the last condition is equivalent to X P Liepker fq. For the second assertion,
note that for a Lie group G, LiepGq “ 0 if and only if G is discrete.

(iii) If f˚ is surjective, then by Constant rank theorem the image of f contains a unit neighborhood
U of H. Since H is connected, H “ xUy Ď fpGq Ď H. If f is surjective and f is nowhere
submersive, then by Sard’s theorem, fpGq Ď H is of measure zero, a contradiction. Hence f
is submersive at some point of G, and by translation f˚ is surjective.

If f˚ is an isomorphism, f is a local diffeomorphism, and hence by Lemma f is a covering map.
Conversely, if f is a covering map, then ker f is discrete and f is surjective, so f˚ is bijective
by (ii) and the first statement of (iii).

Proposition I.4.3. Let G be a Lie group. For X,Y P LiepGq, rX,Y s “ 0 if and only if etXesY “

esY etX .

Proof.

adX Y “ Ad˚,epXqY “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

AdpetXqY “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

cpetXq˚Y “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pcpetXqesY q˚

Hence adX Y “ 0 if and only if pcpetXqesY q˚ is constant in t. But it is

pcpetXqesY q˚ “ petXesY e´tXq˚ “ esY˚ “ Y

so cpetXqesY is an integral curve of Y starting from e, and thus cpetXqesY “ esY .

Corollary I.4.3.1. For a connected Lie group G, we have ZpLiepGqq “ LieZpGq.

Proof. Note that ZpGq is a closed subgroup of G, so it is a Lie group by Theorem I.3.2. For
X P LiepGq, by Proposition I.4.3 we have X P ZpLiepGqq if and only if etX commutes with elements
of the form eY . But such elements generate G by Lemma I.2.11, so etX commutes with G, i.e.,
etX P ZpGq. Taking differential yields X P LiepZpGqq.

Lemma I.4.4. For a Lie group G and g P G, we have LieCGpgq “ tX P LiepGq | AdpgqX “ Xu.

Proof. Note that CGpgq is a closed subgroup of G, so it is a Lie group by Theorem I.3.2. If X P

LieCCpgq, then etXg “ getX for all t P R, or

etX “ getXg´1 “ cpgqetX “ etAdpgqX

by Proposition I.2.6 and naturality. Taking differential gives X “ AdpgqX. Reversing the argument
gives the other containment.
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Lemma I.4.5. Let G be a Lie group and H ď G a connected closed subgroup. Then LieCGpHq “

CLiepGqpLiepHqq.

Proof. If X P LieCGpHq and Y P LieH, then etXesY “ esY etX for all t, s P R. By Proposition I.4.3
this means rX,Y s “ 0, i.e., X P CLiepGqpLiepHqq. Conversely, if X P LieCp LiepGqqpLiepHqq, then
etXesY “ esY etX for all t, s P R and Y P LiepHq. By Lemma I.2.11 this implies etXh “ hetX for all
h P H. Hence etX P CGpHq, and hence X P LieCGpHq.

Theorem I.4.6. Let G be a connected Lie group. Then the map

tH ď G : Lie subgroupu th Ď LiepGq : Lie subalgebrau

H LiepHq

is an inclusion-preserving bijection with inverse h ÞÑ xexpG hy ď G.

Proof. The injectivity is clear. Let h Ď LiepGq be a Lie subalgebra. By regarding LiepGq as the space
of left-invariant vector fields LG of G, the subalgebra h corresponds to an involutive distribution of
TG of rank dimR h. By Frobenius integrability theorem, there exists a unique connected (immersed)
submanifold f : H Ñ G such that f˚,hpThHq “ pℓfphqq˚,eh for all h P H. Define multH : HˆH Ñ G

and invH : H Ñ G by multH “ multG ˝ pf ˆ fq and invH “ invG ˝ f . We claim their image lie in H,
and by Lemma F.3.7 they are automatically smooth with respect to the smooth structure of H. It
suffices to show (we use usual notations for groups) hk´1H “ H for h, k P H. Note that e P hk´1H

and it is connected, so we only need to show it is an integral submanifold for h. This follows from
the uniqueness part of integrability theorem, as Thk´1phk

´1H “ pℓhk´1pq˚,eh “ Thk´1pH. Hence H
is a Lie subgroup of G with Lie algebra h. This shows the surjectivity.

Theorem I.4.7. Let G,H be two connected Lie groups with G simply connected. If φ : LiepGq Ñ

LiepHq is a Lie algebra homomorphism, then there exists a Lie group homomorphism f : G Ñ H

such that f˚,e “ φ.

Proof. Define

a “ tpX,φpXqq P LiepGq ‘ LiepHq | X P LiepGqu Ď LiepGˆHq.

Note the Lie bracket on LiepGˆHq is the same as that on the Lie algebra direct sum LiepGq‘LiepHq.
Since φ preserves Lie bracket, a is a Lie subalgebra of LiepGˆHq. By Theorem I.4.6, there exists a
connected Lie subgroup D ď GˆH with Lie algebra a. The composition g : D Ď GˆH

pr1
Ñ G is a

Lie group homomorphism whose differential is a pr1
Ñ LiepGq, an isomorphism. By Theorem I.4.2.(iii),

g is a covering map. Since we assume G is simply connected, g is actually an isomorphism. Then
the homomorphism f :“ pr2 ˝ g´1 : G Ñ H does the job.

Definition. A complex Lie group is a Lie group G together with a holomorphic structure such
that the multiplication and inversion are holomorphic.

Suppose G is a complex Lie group. The real tangent space LiepGq admits a complex structure
given by multiplication by i, so LiepGq is automatically a complex Lie algebra. In particular, every
left invariant vector field is holomorphic, and exp : LiepGq Ñ G is holomorphic. If f : G Ñ H is a
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smooth Lie group homomorphism between complex Lie groups such that f˚,e : LiepGq Ñ LiepHq is
complex linear, then f is holomorphic, which is a consequence of naturality.

Suppose G is a connected Lie group and f : H Ñ G a connected real Lie subgroup. Suppose
LiepHq, as a subspace of LiepGq, is closed under multiplication by i. We claim H admits a complex
structure, making its a complex Lie group. Indeed, let X1, . . . , Xm be a basis for LiepHq. For h P H,
consider the map

LiepHq H

m
ÿ

i“1

tiXi h expHpt1X1 ` ¨ ¨ ¨ ` tmXmq

This is a local diffeomorphism, so it provides a chart for H about h. This is called the canonical
coordinates of the first kind. In view of the naturality

LiepHq H

LiepGq G

all such coordinates provide H a holomorphic structure, and make the structure map f : H Ñ G

holomorphic. Moreover, if g :M Ñ G is any holomorphic map with gpMq Ď fpHq, then the unique
map g0 :M Ñ H with g “ f ˝ g0 is holomorphic.

I.4.1 Adjoint group
Let F “ R, C, and let g be a finite dimensional Lie algebra over F . If F “ C is complex, we denote
by gR the underlying real Lie algebra. Define the automorphism group

AutF g “ tT P GLF pgq | rTv, Tws “ rv, ws for all v, w P gu.

Here GLF pgq denotes the group of invertible elements in EndF g. In any case, AutF g is a closed
subgroup of GLF pgq, so it is a Lie group itself. If F “ C, by definition

AutC g “ GLCpgq X AutR gR Ď GLRppgRq.

For a (possibly non-associative non-unital non-commutative) algebra A over F , a derivation
D : A Ñ A is an F -linear map satisfying the Leibniz rule: Dpxyq “ Dpxqy ` xDpyq. Denote
DerF A Ď EndF A the space of all derivations on A. In the case of a Lie algebra g,

DerF g :“ tD P EndF A | Dprv, wsq “ rDv,ws ` rv,Dws for v, w P gu.

Due to the Jacobi identity, we have adpgq Ď DerF g.

Lemma I.4.8. If g is real, then LiepAutR gq “ DerR g. If g is complex, then LiepAutC gq “ DerC g.

If F “ R, denote by Int g the unique connected Lie subgroup of AutR g with Lie algebra ad g. If
F “ C, the definition is unaffected by using AutC g instead of AutR g as the ambient group, since
ad g “ ad gR. We call Int g the adjoint group of the Lie algebra g.

If G is a Lie group with Lie algebra g, differentials of conjugation induce a representation Ad :

G Ñ AutR g. The image AdpGq is called the adjoint group of the Lie group G, which is a Lie
subgroup of AutR g. Thanks to Corollary I.4.3.1 (or Corollary I.7.7.3), we see LiepAdpGqq “ ad g.
Then Adpgq˝ “ Int g. Hence one may thinks of Int g as a universal version of AdpGq that can be
defined without any reference to a particular group G.
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I.5 Compact Lie Groups

I.5.1 Compact Lie Algebras
Definition. Let g be a real Lie algebra.

1. g is a compact Lie algebra if the adjoint group Int g is compact.

2. A Lie subalgebra k is compactly embedded in g if the unique connected Lie subgroup Intg k

of Aut g with Lie algebra adg k Ď End g is compact.

Lemma I.5.1. Let G be a Lie group with Lie algebra g. If K is a compact subgroup of G with Lie
algebra k, then k is compactly embedded in g. In particular, the Lie algebra of a compact Lie group
is a compact Lie algebra.

Proof. Since K is compact, so is its identity component K˝. Since AdgpK˝q also has Lie algebra
adg k (Corollary I.7.7.3), it coincides with Intg k. In particular, Intg k is compact.

Suppose G is a compact Lie group with Lie algebra g. On g there always exists an inner product
invariant under AdpGq-action. Indeed, let x , y : g ˆ g Ñ R be any inner product, and define

pv, wq :“

ż

G

xAdpgqv,Adpgqwydg

where dg is the normalized Haar measure on G so that volpG, dgq “ 1. Since pv, vq ą 0, this is still
an inner product, and since dg is left-invariant, pAdpgqv,Adpgqwq “ pv, wq for any g P G, v,w P g.
Furthermore, for X P g, differentiating the equation pAdpetXqv,AdpetXqwq “ pv, wq yields

padpXqv, wq ` pv, adpXqwq “ 0.

That is adpXq is skew-symmetric with respect to this inner product.

Lemma I.5.2. Let G be a compact Lie group with Lie algebra g.

(i) Then g is reductive, i.e., g “ Zpgq ‘ rg, gs with rg, gs semisimple.

(ii) The Killing form on g is negative semidefinite.

Proof. Pick an AdpGq-invariant inner product p , q on g.

(i) If a is a Lie ideal of g, then so is its orthogonal complement aK (note that Lie ideals are
precisely ad g-invariant subspaces), and we have g “ a ‘ aK. This shows g is ad g completely
reducible, i.e., reductive.

(ii) Since adX is skew-symmetric, the eigenvalue of adX is purely imaginary. Hence trpadXq2 ď 0.

Lemma I.5.3. Let g be a real Lie algebra. If the Killing form on g is negative definite, then g is a
compact Lie algebra.

Proof. By Cartan criterion, g is semisimple, so ad g “ Der g. By Lemma I.4.8, we then have
Int g “ pAut gq˝, and thus Int g ď Aut g is closed. Since the Killing form is an inner product
such that ad g acts by skew-symmetric operators, we see Int g Ď Opgq. Thanks to the negative
definiteness, Opgq is compact, and hence Int g is compact.
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Theorem I.5.4. Let G be a compact connected Lie group with Lie algebra g. Let ZG be it center
and let Gss be the connected Lie subgroup of G with Lie algebra rg, gs. Then Gss has finite center,
pZGq˝ and Gss are closed subgroup, and G “ pZGq˝Gss.

Proof. Let ČpZGq˝ and ĄGss be the universal covers of pZGq˝ and Gss, respectively. Then LiepČpZGq˝q “

Zpgq and LiepĄGssq “ rg, gs. By Lemma I.5.2.(i), we see that ČpZGq˝ ˆ ĄGss is a simply connected Lie
group with Lie algebra Zpgq ‘ rg, gs – g. By Theorem I.4.7 and Theorem I.4.2.(iii), there exists a
covering map π : ČpZGq˝ ˆ ĄGss Ñ G. By looking at the Lie algebras, we see that π maps ČpZGq˝ onto
pZGq˝ and maps ĄGss onto Gss. In particular, this shows G “ pZGq˝Gss.

Next we show the center Zss of Gss is finite. Pick a faithful representation τ : G Ñ GLpV q on
a finite dimensional complex vector space (14.5.1.2), and write V “ V1 ‘ ¨ ¨ ¨ ‘ Vr for its irreducible
decomposition (14.1.3). Put τipgq :“ τpgq|Vi

. Since Zss is central in G, by Schur’s lemma each τipgq

is a scalar for g P Zss. But rg, gs is semisimple, this implies every one dimensional representation of
rg, gs is trivial. By naturality this implies every one dimensional representation of Gss is trivial. In
particular, det τipgq “ 1 for all g P Gss. Hence τipgq acts by a di-root of unity, where di “ dimVi.
Since τ is injective, we’ve obtained an injection

Zss

r
ź

i“1

µdipCq.

Since RHS is finite, so is Zss.
Finally we tackle with the closedness. Since ZG is clearly closed, pZGq˝ is also closed. By Lemma

I.5.2 the Killing form on g is negative semidefinite. Since rg, gs is a Lie ideal of g, the Killing form
on rg, gs is the restriction of that on g to rg, gs. Since rg, gs is semisimple, by Cartan’s criterion the
Killing form is nondegenrate. Hence the Killing form on rg, gs is negative definite. Hence Intrg, gs is
compact by Lemma I.5.3. But Intrg, gs – AdpGssq, and Ad : Gss Ñ AdpGssq is a finite cover (as the
kernel Zss is finite), we conclude that Gss is compact as well. In particular, it is a closed subgroup
of G.

I.5.2 Maximal Tori
In this subsection, let G be a connected compact Lie group with Lie algebra g0 and denote by
g “ g0 bR C its complexification.

Definition. A maximal torus in G is a compact connected Lie subgroup of G that is maximal
(with respect to inclusion) among all such subgroups.

• By Corollary I.2.15.1, tori are precisely those Lie groups isomorphic to pS1qk.

• A torus T in G is maximal if and only if LiepT q Ď g0 is maximal abelian. Indeed, this follows
from Theorem I.4.6 and the fact that the closure of a torus is again a torus.

Let T be a maximal torus in G with Lie algebra t0. By Lemma I.5.2 g0 is (real) reductive, so
g0 “ Zpg0q ‘ rg0, g0s. Since t0 is maximal abelian, t0 “ Zpg0q ‘ t10 for some maximal abelian t10 in
rg0, g0s. Complexifying, we obtain

g “ Zpgq ‘ rg, gs

with rg, gs semisimple, t1 :“ t10 bR C maximal abelian in rg, gs, and t0 bR C “: t “ Zpgq ‘ t1.

Lemma I.5.5. t1 is a maximal toral subalgebra in rg, gs.

493



Proof. Elements in adg0
pt0q act by skew symmetric operators on g0, so they are diagonalizable over

C. In particular, the same holds for adgptq and hence for adrg,gspt
1q. So t consists of semisimple

elements.

Using the root space decomposition for rg, gs, we have

g “ Zpgq ‘ t1 ‘
à

αPpt1q_

rg, gsα

“: t ‘
à

αP∆pg,tq

gα

where gα is the α-weight space

gα “ tX P g | rH,Xs “ αpHqX for all H P tu

and ∆pg, tq is the set of roots:

∆pg, tq “ tα P t_zt0u | gα ‰ 0u.

The decomposition here

g “ t ‘
à

αP∆pg,tq

gα

is the eigenspace space decomposition of g with respect to ad t.
Recall on g0 there is an AdpGq-invariant inner product. In particular AdpT q acts on g0 by

orthogonal operators. Extending the inner product to an hermitian inner product on g0, we see again
that AdpT q acts on g by unitary operators. Since T is abelian, the AdpT q-action is simultaneously
diagonalizable, and the above root space decomposition is the eigenspace decomposition. Indeed,
recall T is generated by exp t0, so it suffices to check gα is a common eigenspace for texpH | H P t0u.
But for X P gα, H P t0, we have

AdpexpHqX “ eadHX “ eαpHqX.

In general we have AdptqX “ ξαptqX pt P T q for a unique character ξα P HomTopGppT, S1q. From
above we see ξαpexpHq “ eαpHq and the differential of ξα is α|t0 . As a consequence, we see α|t0 is
purely imaginary.

Lemma I.5.6. Let T be a maximal torus in G, t “ LiepT qC Ď g “ LiepGqC, and ∆ “ ∆pg, tq. If
H P t satisfies αpHq ‰ 0 for all α P ∆, then CgpHq “ t.

Proof. Say X P CgpHq, and write X “ H 1 `
ř

αP∆Xα for its root space decomposition. Then

0 “ rH,Xs “ 0 `
ÿ

αP∆

rH,Xαs “
ÿ

αP∆

αpHqXα.

Since αpHq ‰ 0, it follows that Xα “ 0 and hence X “ H 1 P t.

Theorem I.5.7. For a compact connected Lie group G, any two maximal abelian subalgebras of
g0 are conjugate via AdpGq.

Proof. Let T and T 1 be two maximal tori of G, and t0 “ LiepT q, t10 “ LiepT 1q be their Lie algebras.
Since #∆pg, t1q ă 8. by Lemma I.5.6 and the fact that a real vector space cannot be a finite union
of its proper subspaces, we can find X P t10 such that CgpXq “ t1. Similarly, we can find Y P t0 such
that CgpY q “ t
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Let p, q be an AdpGq-invariant inner product on g0. Since G is compact, the function g ÞÑ

pAdpgqX,Y q P R attains its minimum; say g0 P G minimizes this function. Then for any Z P g0, the
function R Q r ÞÑ pAdpexp rZqAdpg0qX,Y q is a smooth function which is minimized at r “ 0. In
particular,

0 “
d

dr

ˇ

ˇ

ˇ

ˇ

r“0

pAdpexp rZqAdpg0qX,Y q “ padpZqAdpg0qX,Y q “ prZ,Adpg0qXs, Y q “ pZ, rAdpg0qX,Y sq.

Since Z is arbitrary, we conclude that rAdpg0qX,Y s “ 0, i.e., Adpg0qX P Cg0
pY q “ t0. Then

t0 “ Cg0
pAdpg0qXq “ Adpg0qCg0

pXq “ Adpg0qt10,

and the equality holds by maximality.

Corollary I.5.7.1. For a compact connected Lie group G, any two maximal tori are conjugate.

Theorem I.5.8. If G is a connected compact Lie group and T is a maximal torus, then each element
in G is conjugate to an element in T .

Corollary I.5.8.1. Let G be a connected compact Lie group.

1. Every element of G lies in a maximal torus of G.

2. The center ZpGq lies in every maximal torus of G.

Corollary I.5.8.2. If G is a connected compact Lie group, then the exponential map expG :

LiepGq Ñ G is surjective.

Theorem I.5.9. Let G be a connected compact Lie group, and S ď G be a torus in G. Then
g P CGpSq, then there exists a torus S1 in G containing S and g.

Corollary I.5.9.1. Let G be a connected compact Lie group.

(i) The centralizer of a torus in G is connected.

(ii) A maximal torus of G equals its centralizer in G.

I.5.3 Analytic Weyl group
Let G be a connected compact Lie group and let T be a maximal torus. The analytic Weyl group
W “ W pG,T q of G is defined as the quotient

W pG,T q “ NGpT q{CGpT q “ NGpT q{T.

The second equality is Corollary I.5.9.1.(ii). The Weyl group W acts on T by conjugations, and
hence acts on t0 “ LiepT q. Note W acts faithfully on T , and hence faithfully on t0.

Lemma I.5.10. Let G be a connected compact Lie group and T a maximal torus.

(i) T meets every conjugacy classes of G, and two elements in T are conjugate in G if and only if
they are conjugate via W pG,T q. Hence, the conjugacy classes of G are in bijection with the
quotient T {W pG,T q.

(ii) A continuous function f P CpT q extends to a conjugate-invariant continuous function on G if
and only if it is invariant under W pG,T q.
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Proof.

(i) The first part of (i) is Theorem I.5.8. Suppose t, s P T are conjugate, i.e., t “ gsg´1 for some
g P G. Consider the centralizer CGptq; the Lie algebra of CGptq is

LieCGptq “ tX P LiepGq | AdptqX “ Xu

by Lemma I.4.4. Since LiepT q and AdpgqLiepT q are maximal toral in CGptq0, by Theorem I.5.7
there exists g1 P CGptq such that LiepT q “ Adpg1gqLiepT q. Exponentiating gives g1g P NGpT q.
Since pg1gqspg1gq´1 “ g1tg1´1 “ t, we are done.

(ii) Since W pG,T q acts on T by conjugation, the only if part is clear. Conversely, suppose f P CpT q

is invariant under Weyl group action. Composing with the map G Ñ G{conj – T {W pG,T q,
we obtain a map f : G Ñ C invariant under conjugation. It remains to show it is continuous.
Suppose pgnqn Ď G is a sequence converging to g, and let pxnqn Ď G be such that xngnx´1

n P T

for each n. Since G and T are compact, by passing to a subsequence we can assume pxnqn and
pxngnx

´1
n qn are convergent, say to x and t. Then xgx´1 “ t by continuity and

lim
nÑ8

fpgnq “ lim
nÑ8

fpxngnx
´1
n q “ lim

nÑ8
fptnq “ fptq “ fpgq

by continuity of f on T . Hence f P CpGq.

Recall that roots ∆pLiepGqC,LiepT qCq on LiepT q are purely imaginary. In view of this, put

tR “ iLiepT q Ď LiepT qC.

Then all roots on tR are real, and there is an injective homomorphism ∆pLiepGqC,LiepT qCq Ñ t_R .
The negative of an invariant inner product on LiepT q induces an invariant inner product B on tR.
Then B induces an isomorphism

H : t_R tR

λ Hλ.

Let us denote by x, y the inner product on t_R induced by B; we have

xλ, µy “ BpHλ,Hµq “ λpHµq “ µpHλq

Denote by piZpLiepGqqq_ the image of iZpLiepGqq under this isomorphism.

Lemma I.5.11. ∆pLiepGqC,LiepT qCq spans the orthogonal complement of piZpLiepGqqq_. In par-
ticular, it defines a root system in the orthogonal complement.

Proof. Let λ P ∆pLiepGqC,LiepT qCq and µ P piZpLieGqq_. Then

xλ, µy “ λpHµq “ 0.

(Recall ∆pLiepGqC,LiepT qCq is constructed in a way that it is trivial on ZpLiepGqq.) Also, recall that
∆pLiepGqC,LiepT qCq is a root system on rLiepGq,LiepGqs and LiepGq “ ZpLiepGqq‘rLiepGq,LiepGqs,
so the dimension matches, proving that ∆pLiepGqC,LiepT qCq generates the orthogonal complement
of piZpLiepGqqq_.
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For each α P ∆pLiepGqC,LiepT qCq there is a reflection sα on tR; explicitly

sαpxq :“ x´
2xx, αy

∥α∥2
α.

Clearly sα acts as identity on piZpLieGqq_, and is the usual reflection on its orthogonal complement.
Define the (algebraic) Weyl group W p∆pLiepGqC,LiepT qCqq by

W p∆pLiepGqC,LiepT qCqq :“ xsα | α P ∆pLiepGqC,LiepT qCqy ď GLpt_R q.

On the other hand, since the analytic Weyl group W pG,T q acts on LiepT q, it also acts on
tR “ iLiepT q and hence on t_R . This induces a homomorphism W pG,T q Ñ GLpt_R q.

Theorem I.5.12. The image of W pG,T q Ñ GLpt_R q coincides with W p∆pLiepGqC,LiepT qCqq.

Proof. To avoid cumbersome notations, set

g0 “ LiepGq, t0 “ LiepT q, g “ LiepGqC, t “ LiepT qC.

In view of Theorem I.5.4 and Lemma I.5.2, we may assume G is semisimple, i.e., g0 is semisimple.
Let us identify W pG,T q with its image in GLpt_R q.

To see W p∆pg, tqq Ď W pG,T q, let α P ∆pg, tq. Denote by ¨ the complex conjugation on g with
respect to t0, and extend B, an invariant inner product on g0, to an hermitian inner product on
g. Recall values of α P ∆pg, tq on t0 are purely imaginary, so αpHq “ ´αpHq for H P t. Hence if
Eα P gα, then Eα P g´α; if we write Eα “ Xα ` iYα with Xα, Yα P g0, then

rXα,Hs “ ´
1

2
rH,Eα ` Eαs “ ´

1

2
αpHqpEα ´ Eαq “ ´iαpHqYα.

Also, since rgβ , gβs “ 0 for every root β, we have

rXα, Yαs “
1

4i
rEα ` Eα, Eα ´ Eαs “ ´

1

2i
rEα, Eαs “

1

2i
BpEα, EαqHα.

Since BpEα, Eαq ą 0, define

r :“

?
2π

∥α∥
b

BpEα, Eαq

.

Since Xα P g0, g :“ erXα P G. For H P tR, compute

AdpgqH “ erXαH “
ÿ

kě0

rk

k!
padXαqkH.

If αpHq “ 0, then AdpgqH “ H. If H “ Hα, then

r2padXαq2Hα “ r2rXα, rXα,Hαss “ ´
r2

2
αpHαqBpEα, EαqHα “ ´π2Hα.

Thus

AdpgqHα “
ÿ

kě0

r2k

p2kq!
padXαq2kHα `

ÿ

kě0

r2k`1

p2k ` 1q!
padXαq2k`1Hα

“
ÿ

kě0

p´1qkπ2k

p2kq!
Hα `

ÿ

kě0

p´1qkπ2k

p2k ` 1q!
rrXα,Hαs

“ pcosπqHα ` rπ´1psinπqrXα,Hαs “ ´Hα.
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Hence Adpgq leaves tR invariant and acts as sα on tR. This shows W p∆pg, tqq Ď W pG,T q.
Next, note that W pG,T q permutes roots. Indeed, for H P t, α P ∆pg, tq, Eα P gα and g P NGpT q,

rH,AdpgqEαs “ AdpgqrAdpg´1qH,Eαs “ AdpgqαpAdpg´1qHqEα “ pgαqpHqAdpgqEα.

This shows gα P ∆pg, tq.
Let Π be a base for ∆pg, tq, and let g P W pG,T q. Then gΠ is also a base for ∆pg, tq, so there

exists w P W p∆pg, tqq such that wgΠ “ Π. We claim wg acts as identity on tR. If so, then
g “ w´1 P W p∆pg, tqq, as wanted.

To this end, let w1 P NGpT q represent w and g1 P NGpT q represent g. Let ∆` be the positive roots
in Π, and let δ “

1

2

ř

αP∆`
α. Then wgδ “ δ why, so Adpw1g1qHδ “ Hδ. If S “ xexppirHδq | r P Ry ď

G, then S is a torus and w1g1 P CGpSq. We claim

Cg0pLieSq “ t0.

If so, by Lemma I.4.5, Corollary I.5.9.1.(i) and Theorem I.4.6, then CGpSq “ T , i.e., w1g1 P T . This
shows Adpw1g1q is an identity on T , and hence on tR.

It remains to prove our contention. Note that if α is a positive root, then xδ, αy ą 0. Hence
αpHδq ‰ 0 for all α P ∆pg, tq, and hence CgpHδq “ t by Lemma I.5.6. Now

Cg0pLieSq “ g0 X CgpLieSq “ g0 X CgpHδq “ g0 X t “ t0

as claimed.

I.5.4 Integral forms
Let G be a connected compact Lie group and T a maximal torus.

Lemma I.5.13. For a λ P LiepT q_
C , TFAE:

(i) For H P LiepT q that satisfies exppHq “ 1, we have λpHq P 2πiZ.

(ii) There exist ξ P HomTopGppT, S1q such that ξpexpHq “ eλpHq for all H P LiepT q.

Such an element λ is called an analytically integral form. In particular, every root in ∆pLiepGqC,LiepT qCq

is analytically integral.

Proof. The in particular part is clear. Assume (ii). If H P LiepT q satisfies exppHq “ 1, then 1 “

ξpexpHq “ eλpHq so that λpHq P 2πiZ. This proves (i). Now assume (i). Recall exp : LiepT q Ñ T

is a continuous surjective homomorphism, so it induces a homeomorphism LiepT q{ ker exp
„
Ñ T . By

(i) the continuous map LiepT q Q H ÞÑ eλpHq descends to a continuous homomorphism ξ : T Ñ Cˆ.
Since T is compact, ξpT q Ď S1 and (ii) is proved.

Lemma I.5.14. If λ P LiepT q_
C is analytically integral, then 2xλ, αy

∥α∥2
P Z for all α P ∆pLiepGqC,LiepT qCq.

A functional satisfying this integral condition is called an algebraically integral form.

Proof. Let ¨ denote the complex conjugation on LiepGqC with respect to LiepGq, and extend an invari-
ant inner product on LiepGq to a hermitian inner productB on LiepGqC. Fix α P ∆pLiepGqC,LiepT qCq
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and pick a nonzero Eα P pLiepGqCqα; normalize Eα so that BpEα, Eαq “
2

∥α∥2
. Write Eα “ Xα`iYα

with Xα, Yα P LiepGq and put Zα “ ´i ∥α∥´2
Hα P LiepGq. Then

rZα, Xαs “
i

∥α∥2
rXα,Hαs “ Yα

rXα, Yαs “ Zα

rZα, Yαs “ Xα,

by the computation in Theorem I.5.12. The assignment

pXα, Yα, Zαq Ø

˜

1

2

˜

0 i

i 0

¸

,
1

2

˜

0 1

´1 0

¸

,
1

2

˜

´i 0

0 i

¸¸

defines a Lie algebra isomorphism

RXα ‘ RYα ‘ RZα – sup2q.

Since SUp2q is simply connected, by Theorem I.4.7 there exists a Lie group homomorphism φ :

SUp2q Ñ G whose differential is the above Lie algebra map. Under the complexification of the above

Lie algebra map, h :“

˜

1 0

0 ´1

¸

P sup2qC maps to 2iZα “ 2 ∥α∥´2
Hα. Hence

φ˚,epihq “ ´2Zα “ 2i ∥α∥´2
Hα

and

1 “ φp1q “ φpe2πihq “ e2πiφ˚,ephq “ e2πip2∥α∥
´2Hαq.

Since λ is analytically integral, by Lemma I.5.13.(i), we have λp2πip2 ∥α∥´2
Hαqq P 2πiZ, and hence

2xλ, αy

∥α∥2
P Z.

Hence we have the inclusions

Z∆pLiepGqC,LiepT qCq Ď tanalytically integral formsu Ď talgebraically integral formsu

I.6 Semisimple Lie groups
Definition. A Lie group is called nilpotent/solvable/semisimple if it is connected and its Lie
algebra is nilpotent/solvable/semisimple.

I.7 Lie Group Actions

I.7.1 Topological Group Actions
For G an abstract group, a (left) G-set is a nonempty set X together with a group homomorphism
G Ñ SX , where SX denotes the group of all bijections on X. For two G-sets X,Y , a set-theoretic
map f : X Ñ Y is called G-equivariant if fpgxq “ gfpxq for all x P X and g P G. In this way we
obtain the category of G-sets.

Let G be a topological group. A (left) G-space is a nonempty topological space X on which
G acts on the left such that the action map G ˆ X Ñ X is continuous. For two G-spaces X,Y , a
continuous map f : X Ñ Y is called G-equivariant if fpgxq “ gfpxq for all g P G and x P X.
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• For x P X, the subset Gx :“ tgx | g P Gu Ď X is called the G-orbit of x, and the subgroup
Gx :“ tg P G | gx “ xu is called the isotropy group of x, or the stabilizer of x.

• The set of all G-orbits is denoted by Gå
X, and is called the orbit space. We equip Gå

X with
the final topology with respect to the projection X Ñ

G
åX.

• With the above topology, GåX is a G-space and the projection X Ñ GåX is open and
G-equivariant.

• If G is a Lie group, a smooth G-space is required to be a smooth manifold on which G acts
smoothly.

Definition. Let G be a group and X a G-set.

1. The action is faithful/effective if the associated map G Ñ SX is injective, where SX is the
group of all bijections on X.

2. The action is free if all stabilizers are trivial.

3. The action is transitive if #Gå
X “ 1. In this case, X is called a homogeneous G-set.

4. If the action is free and transitive, then X is called a principal homogeneous G-set, or a
G-torsor.

• For a subgroup H ď G, the left coset space G{H is a homogeneous G-set. Conversely, if X is a
homogeneous G-set, any point x P X gives a set-theoretic G-equivariant bijection G{Gx – X.

• For X a homogeneous space and x P X, the map G{Gx Ñ X is always continuous, but it may
not be a homeomorphism.

• For a subgroup H, the G-action on G{H is faithful if and only if H contains no trivial normal
subgroup.

Example I.7.1. Consider the real line pR,`q with usual euclidean topology and the torus pR2{Z2,`q

with usual topology. Let α P R zQ and consider the topological subgroup F :“ tpx, αxq | x P Ru ď

R2{Z2. This is isomorphic to R as abstract groups, and the identity map R Ñ F is continuous, but
it is not open.

Proposition I.7.2. Let G a topological group and H ď G a subgroup. Equip the left coset space
G{H with the quotient topology.

1. The projection π : G Ñ G{H is an open map. If H is compact, then π is also a closed map.

2. If H is normal, G{H is a topological group.

3. The natural G-action on G{H is continuous, and G{H is a homogeneous G-space.

4. If G is Hausdorff, then G{H is Hausdorff if and only if H is closed.

5. If H and G{H are compact, then so is G.

6. If H and G{H are connected, then so is G.

Proof.
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1. For U Ď G open, π´1πpUq “
Ť

gPH

gU is open. If H is compact, for C Ď G closed, π´1πpCq “

CH is closed.

4. If G{H is Hausdorff, then H “ π´1peHq is closed. Suppose H is closed. We must show the
diagonal ∆ “ ∆G{H is closed in G{H ˆ G{H. It suffices to show pπ ˆ πq´1p∆q is closed in
G ˆ G. Note that pg, g1q P pπ ˆ πq´1p∆q if and only if gH “ g1H, i.e, g´1g1 P H. Hence
pπ ˆ πq´1p∆q “ q´1pHq is a closed set, where q : GˆG Ñ G is defined by qpgg1q “ g´1g1.

5. π : G Ñ G{H is closed (by 1.) with compact fibre (each of which homeomorphic to H), so
it is proper by Proposition A.7.1. Since G{H is compact by assumption, G “ π´1pG{Hq is
compact.

6. We prove if G{H is connected and G is not connected, then H is not connected. Let U, V be
disjoint nonempty open sets in G with U Y V “ G. Since π is open, by connectivity of G{H

we have πpUq X πpV q ‰ H, i.e., we can find a coset gH with U X gH ‰ H ‰ V X gH. But
then gH “ pU Y V q X gH “ pU X gHq Y pV X gHq so gH – H is not connected.

Lemma I.7.3. Let X be a homogeneous G-space. Suppose there exists x0 P X such that every
open unit-neighborhood U of G the subspace Ux0 Ď X contains x0 in its interior. Then the natural
map G{Gx Ñ X is open for all x P X, and hence a homeomorphism.

Proof. By translation, it suffice to show G{Gx0
Ñ X is open. We must show for every open subset

V of G, V x0 Ď X is open. Let g P V ; then g´1V is an open unit neighborhood of G, so x0 lies in
the interior of g´1V x0. Hence gx0 lies in the interior of V x0 for all g P V , and the proof is done.

Theorem I.7.4. Let X be a homogeneous G-space. Suppose

• G is LCH and separable, and

• X is Hausdorff and a Baire space.

Then G{Gx Ñ X are homeomorphisms for all x P X.

Proof. Let x0 P X be any point and U an open unit-neighborhood of G. By the last lemma, it suffices
to show x0 lies in the interior of Ux0. Let W Ď U be a compact symmetric unit-neighborhood such
that W 2 Ď U . Let S Ď G be a countable dense subset. Then it is easy to see G “

Ť

sPS

sW , so

X “
Ť

sPS

sWx0 is a countable union of compact sets which are closed since X is Hausdorff. Since X

is Baire, s1Wx0 has nonempty interior for some s1 P S, i.e., s1gx0 lies in the interior of s1Wx0 for
some g P W . Hence x0 lies in the interior of g´1Wx0 “ Wx0 Ď Ux0, as wanted.

I.7.2 Principal Bundles
Definition. A fibre bundle pE,B, π, F q consisting of three topological spaces E,B, F together
with a continuous surjection π : E Ñ B such that each point x P B has an open neighborhood U

for which there is a homeomorphism ϕ : π´1pUq Ñ U ˆ F making the triangle

π´1pUq U ˆ F

U

π

ϕ

pr1
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commute, where π´1pUq is given the subspace topology from E.

• E is called the total space, B the base space, F the fibre space and π the bundle
projection. The homeomorphism ϕ in the definition is called a local trivialization. A fibre
bundle pE,B, π, F q is sometimes written as F Ñ E

π
Ñ B, or simply E π

Ñ B.

• ϕ induces a homeomorphism on the fibre π´1pbq “: Eb Ñ tbu ˆ F for each b P U . Also, since
pr1 is open, the bundle projection π is an open map.

• A cover map p : Y Ñ X with X connected is a fibre bundle pY,X, p, p´1pxqq, where x P X is an
arbitrary point and p´1pxq is a discrete subspace of Y . Moreover, a fibre bundle pE,B, π, F q

is a cover if and only if F is discrete.

A morphism between fibre bundles pE,B, π, F q and pE1, B1, π1, F 1q consists of two continuous
maps ϕ : E Ñ E1 and ψ : B Ñ B1 making the diagram

E E1

B B1

π

ϕ

π1

ψ

commute.

• Since π is surjective, ψ is determined by ϕ. We say ϕ is the bundle map covering ψ.

Definition. Let G be a topological group. A principal G-bundle is a fibre bundle G Ñ P
π

Ñ X

together with a continuous right G-action P ˆG Ñ P such that each local trivialization π´1pUq Ñ

U ˆG is G-equivariant, where G acts on U ˆG by right translation on G.

• G is called the structure group of the principal bundle. Each local trivialization induces a
homeomorphism Px Ñ G with inverse G Ñ Px given by g ÞÑ xg.

• By definition, π induces a continuous bijection P {G Ñ X, and each fibre is a G-torsor.

• For a Lie group G, a principal G-bundle π : P Ñ X is smooth if all maps and actions involved
are smooth. Then the bundle map π is submersive since locally it is π´1pUq Ñ U ˆG

pr1
Ñ U .

A morphism from a principal G-bundle P
π

Ñ X to a principal H-bundle Q
p

Ñ Y is a
morphism pϕ, ψq of fibre bundles P π

Ñ X to Q p
Ñ Y together with a continuous group homomorphism

θ : G Ñ H such that ϕpygq “ ϕppqθpgq for all y P P and g P G.

Let P π
Ñ X be a principal G-bundle, and let ϕ : π´1pUq Ñ U ˆ G be a local trivialization.

Consider the continuous map σ “ σϕ : U “ U ˆ t1u
ϕ´1

Ñ π´1pUq Ď P ; clearly, π ˝ σ “ idU , so
σ : U Ñ P is a section to the bundle projection π : P Ñ X. For g P G, since ϕ is equivariant, we
have

ϕpσpxqgq “ ϕpσpxqqg “ px, 1qg “ px, gq

so that ϕ is completely determined by σ.
Let ϕ : π´1pUq Ñ U ˆG and ψ : π´1pV q Ñ V ˆG be two local trivializations with U X V ‰ H.

On the intersection we have the transition map:

ψ ˝ ϕ´1 : pU X V q ˆG Ñ pU X V q ˆG
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This induces a map θ : U X V Ñ G satisfying pψ ˝ ϕ´1qpx, 1q “ px, θpxqq. Since ψ and ϕ are
G-equivariant, we have

pψ ˝ ϕ´1qpx, gq “ pψ ˝ ϕ´1qpx, 1qg “ px, θpxqqg “ px, θpxqgq

On the other hands, pψ ˝ ϕ´1qpx, 1q “ px, θpxqq “ px, 1qθpxq implies σϕpxq “ σψpxqθpxq, where σϕ
and σψ are their associated local sections.

Let ϕi : π´1pUiq Ñ Ui ˆ G be three local trivializations with U1 X U2 X U3 ‰ H. Then we have
three transition maps θij :“ ϕj ˝ ϕ´1

i which satisfy

px, θ13pxqq “ ϕ3ϕ
´1
1 px, 1q “ ϕ3ϕ

´1
2 ϕ2ϕ

´1
1 px, 1q “ ϕ3ϕ

´1
2 px, θ12pxqq “ px, θ23pxqθ12pxqq

i.e., the cocycle condition
θ13pxq “ θ23pxqθ12pxq

Conversely,

Theorem I.7.5. Let X be a space with an open cover tUαu and G a topological group. Suppose
for each pair pα, βq, there exists θα,β : Uαβ Ñ G such that each triple pα, β, γq satisfies the cocycle
condition. Then there exists a unique (up to isomorphism) principal G-bundle P π

Ñ X with local
trivializations ϕα such that the transition maps are given by the θαβ .

Definition. Let G be a topological group, P π
Ñ X a principal G-bundle and F a left G-space. Let

G act on the product space P ˆ F diagonally, i.e., pp, vqg :“ ppg, g´1vq. The (right) coset space
pP ˆ F q{G is called the associated bundle of P with typical fibre F and base X, and is
denoted by E “ P ˆG F .

• We topologize P ˆG F as usual so that P ˆG Ñ P ˆG F is an open continuous map.

• The bundle projection π : P Ñ X gives rise to a continuous surjection P ˆF
pr1
Ñ P

π
Ñ X. Since

the G-action on P preserves fibres, the map induces a continuous surjection πE : P ˆGF Ñ X.

• For pp, vq P PˆGF , denote by rp, vs its equivalence class in PˆGF . For w, v P F , rp, vs “ rp, ws

if and only if p “ pg, v “ g´1w for some g P G. Since G acts freely on P , we have g “ 1, so
v “ w. Hence for each p P P , the map

ρp : F Eπppq

v rp, vs

is a homeomorphism into. This is also surjective: for rq, vs P Eπppq, we have q “ pg for some
g P G, so rq, vs “ rpg, vs “ rp, gvs. Hence each p P P parametrizes the fibre Eπppq by the typical
fibre F .

• Let σ : U Ñ P be a local section of π. The map

ψσ : U ˆ F π´1
E pUq

px, vq rσpxq, vs

is a homeomorphism (note that the local section σ is open). Thus the associated bundle
E

πE
Ñ X is a fibre bundle.
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• Suppose σ : U Ñ P and τ : V Ñ P are two local sections, and θ : U X V Ñ G be the
transition map so that τpxq “ σpxqθpxq for x P U X V . If we denote by ψσ, ψτ the associated
trivializations, then

pψσ ˝ ψ´1
τ qpx, vq “ ψ´1

σ prτpxq, vsq “ ψ´1
σ prσpxq, θpxqvsq “ px, θpxqvq

Let σ : X Ñ E “ P ˆGX be a section to the associated bundle π : E Ñ X. Take any v P F and
define fσ : P Ñ F by

fσppq “ ρ´1
p pσpπpp, vqqq P F

where ρp : F Ñ Eπppq is the map v ÞÑ rp, vs defined as above. The map clearly is independent of the
choice of v. This map is P -equivariant, i.e., fσppgq “ g´1fppq for all p P P, g P G. Indeed,

fσppgq “ ρ´1
pg pσpπppg, vqqq “ ρ´1

pg σpπpp, gvqq “ g´1ρpσpπpp, gvqq “ g´1fppq,

where we use the identity ρpgpvq “ ρppgvq here. Conversely, let f : P Ñ F be equivariant and define
f 1 : P Ñ E by f 1ppq “ ρpfppq P Eπppq. For g P G,

f 1ppgq “ ρpgfppgq “ ρppgg´1fppqq “ ρpfppq “ f 1ppq

so f 1 is constant along pG. Hence it descends to a map σf : X Ñ E (recall that P {G – X).
Next we see how σ ÞÑ fσ behaves under local trivialization. Let χ : U Ñ P be a section to P Ñ X;

then ϕχ : U ˆ G Ñ P given by px, gq ÞÑ χpxqg is a local trivialization, and ψχ : U ˆ F Ñ π´1pUq

given by px, vq ÞÑ rχpxq, vs is a local trivialization. Write ψχ ˝´1 σ|U : U Ñ π´1pUq – U ˆ F as
x ÞÑ px, τpxqq for some τ : U Ñ F ; in other word,

σpxq “ ψχpx, τpxqq “ rχpxq, τpxqs.

Then fσpχpxqq “ ρ´1
χpxq

σpπpχpxq, vqq “ ρ´1
χpxq

rχpxq, τpxqs “ τpxq, and hence

fσ ˝ ϕχpx, gq “ fσpχpxqgq “ g´1fσpχpxqq “ g´1τpxq P F.

From which we see fσ is smooth if and only if σ is smooth. This defines a bijection

Γ8pX,P ˆG Xq tf P C8pP, F q | fppgq “ g´1fppq for all g P G, p P P u

I.7.3 Homogeneous Spaces
Proposition I.7.6. Let G be a Lie group and H ď G a closed subgroup. Then G{H has a unique
smooth structure that makes the projection G Ñ G{H a smooth principal bundle with the structure
group H (with H acting on G by right translation).

Proof. Choose a Euclidean metric on LiepGq, and let LiepGq “ V ‘LiepHq be an orthogonal decom-
position. Let Vε :“ tX P V | |X| ă εu and Dε :“ expVε. Take ε ą 0 so small that exp : Vε Ñ Dε is
a diffeomorphism; this makes Dε is smooth manifold with TeDε “ V .

1) For ε ą 0 small enough, the map

µ : Dε ˆH G

pg, hq gh
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is an open embedding. The differential of µ at pe, eq is addition V ‘LiepHq Ñ LiepGq, so we can
find ε ą 0 small enough and some open unit-neighborhood U of H such that µ : DεˆU Ñ DεU

is diffeomorphism. Translating shows µ : Dε ˆH Ñ G is a local diffeomorphism everywhere.

It remains to show we can make µ injective by choosing ε small enough. Let d1, d2 P Dε and
h1, h2 P H such that d1h1 “ d2h2. Then h1h

´1
2 “ d´1

1 d2. Let V Ď
open

G such that U “ V X H

and let ε ą 0 so small that D´1
ε Dε Ď V . Then h :“ h1h

´1
2 “ d´1

1 d2 P V X H “ U . Since µ is
injective on Dε ˆ U , that µpd1, hq “ µpd2, eq implies d1 “ d2 and h “ e, or h1 “ h2, showing
the global injectivity.

2) The sets Ug :“ gDεH, g P G are invariant under right H-action. For g P G, define hg :

Ug{H Ñ Dε by

h´1
g : Dε Dε ˆ teu Dε ˆH DεH gDεH “: Ug Ug{H„

µ
„

ℓg
„

π

h´1
g is a continuous bijection, and is open since it is a composition of open maps, so it is

a homeomorphism. Let g, g1 P G such that we can find x, y P Dε with h´1
g pxq “ h´1

g1 pyq.
This means gx “ g1yh for some h P H, so that yh “ g1´1gx, which implies y “ pr1py, hq “

pr1µ´1pg1´1gxq, which is smooth in x. Hence G{H is made into a smooth manifold with the
atlas hg, g P G.

For g P G, define φg : Ug Ñ Ug{H ˆH by

φ´1
g : Ug{H ˆH Dε ˆH DεH gDεH “ Ug

hgˆid µ ℓg

In the course of the proof we also see that dimG{H “ dimG´dimH and TepG{Hq – LiepGq{LiepHq

given by the splitting LiepGq “ V ‘ LiepHq.

3) It remains to show G{H is Hausdorff and second countable. The second follows from the
openness of G Ñ G{H, and the first is Proposition I.7.2.4.

4) The uniqueness follows from the following lemma.

Lemma I.7.7. Let X,Y, Z be smooth manifolds with a commutative diagram with each map
continuous

X Y

Z
π

f

g

If f is smooth and π is submersive, then g is smooth on πpXq.

Proof. Since π is submersive, πpXq is open in Z. Let z P πpXq and x P π´1pzq. By Con-
stant rank theorem we can find a chart U about x such that π : U Ñ πpUq takes the
form px1, . . . , xnq ÞÑ px1, . . . , xsq, where n “ dimX, s “ dimZ. Define ψ : πpUq Ñ U

by px1, . . . , xsq ÞÑ px1, . . . , xs, 0, . . . , 0q. Then ψ is smooth on πpUq, and on πpUq we have
g “ g ˝ π ˝ ψ “ f ˝ ψ is smooth.

To conclude the proof, it suffices to take X “ G, Y “ Z “ G{H, f “ π the canonical projection
G Ñ G{H and g “ idG{H .
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Corollary I.7.7.1. If N�G is a closed normal subgroup of a Lie group G, then G{N with canonical
smooth and group structures is a Lie group.

Corollary I.7.7.2. Let f : G Ñ H be a Lie group homomorphism and N �G be a normal closed
subgroup contained in ker f . Then the induced abstract group homomorphism G{N Ñ H is a Lie
group homomorphism.

Corollary I.7.7.3. Let f : G Ñ H be a Lie group homomorphism. Then fpGq is a Lie subgroup
of H with Lie algebra LiepfpGqq “ f˚,epLiepGqq Ď LiepHq.

Proof. By the last corollary, the canonical map G{ ker f Ñ H is a Lie group homomorphism. Since
it is injective, this is a Lie subgroup of H. Since G{ ker f – fpGq as groups, this proves the first
statement, and the Lie algebra part follows from Lemma I.3.1.

Proposition I.7.8. Let G be a Lie group and M be a smooth homogeneous left G-space. Then the
map

f : G{Gx M

gGx gx

is a diffeomorphism. (See also Theorem I.7.4.) In particular, Gx Ñ G Ñ M is a smooth principal
bundle.

Proof. It is clear that f is a continuous bijection. Also, f is smooth, since locally it is U Ñ UˆGx –

π´1pUq Ñ M where π : G Ñ G{Gx is the projection. It remains to show f is immersive (then f

is automatically a diffeomorphism). Since f is G-equivariant, it has constant rank. Now since f is
injective, it must be immersive by Constant rank theorem.

Example I.7.9.

1. SOpnq acts smoothly on Rn on the left, and when n ě 2 the orbits are the spheres tx P Rn |

|x| “ ru, r ě 0. To see this, let x ‰ y P Rn such that |x| “ |y| “ r ą 0. Consider the
plane spanned by x and y and let y1 be a unit vector lying on the plane that is orthonormal
to x. Extending x{r and y1 to be orthonormal basis of Rn, we may assume x “ pr, 0, 0, . . . , 0q

and y “ pa, b, 0, . . . , 0q with a2 ` b2 “ r2. Now we can easily find A P SOp2q such that
A :“ A‘ In´2 P SOpnq takes x to y.

Particularly, SOpnq acts transitively on the n´1-sphere Sn´1. The unit vector e1 “ p1, 0, . . . , 0q

has stabilizer consisting of matrices of the form
˜

1 0

0 C

¸

with C P SOpn´1q, so we have a diffeomorphism SOpnq{SOpn´1q – Sn´1, and the SOpn´1q-
principal bundle

SOpn´ 1q Ñ SOpnq Ñ Sn´1

Similarly, the Opnq-action on Sn´1 gives rise to the Opn´ 1q-principal bundle

Opn´ 1q Ñ Opnq Ñ Sn´1
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2. Similarly, the natural SUpnq-action on Cn has orbits tz P Cn | |z| “ ru, r ě 0. In particular,
SUpnq acts transitively on S2n´1, and the stabilizer of e1 P Cn is SUpn ´ 1q Ď SUpnq. This
gives a diffeomorphism SUpnq{SUpn´ 1q – S2n´1 and an SUpn´ 1q-principal bundle

SUpn´ 1q Ñ SUpnq Ñ S2n´1

Similarly, there is a Upn´ 1q-principal bundle

Upn´ 1q Ñ Upnq Ñ S2n´1

A similar argument shows that letting Sppnq act on Hn gives rise to a principal bundle

Sppn´ 1q Ñ Sppnq Ñ S4n´1

3. The group SUpnq acts on Cn, and the induced action on CPn´1 “ Pn´1
C “ PpCnq is transitive.

The stabilizer of the line Ce1 consists of matrices of the form
˜

a 0

0 C

¸

P SUpnq

and this is the image of the embedding

Upn´ 1q SUpnq

C

˜

detC´1 0

0 C

¸

In this way we get a principal bundle

Upn´ 1q Ñ SUpnq Ñ PpCnq (♠)

Similarly we have an embedding Opn´ 1q Ñ SUpnq and a principal bundle

Opn´ 1q Ñ SOpnq Ñ PpRnq

4. In the case p♠qpn “ 2q, we have Up1q “ S1, SUp2q “ S3 and PpC2q “ S2 the Riemann sphere.
Hence we have a principal bundle

S1 Ñ S3 Ñ S2

This is called the Hopf fibration. Explicitly, the bundle projection is

S3 S2

pa, bq ra : bs “
a

b

In polar coordinates, it is

pr0e
iθ0 , r1e

iθ1q ÞÑ
r0
r1
eipθ0´θ1q, r20 ` r21 “ 1

5. Let U an n-dimensional real/complex/quaternionic inner product space. An orthonormal
k-frame is an ordered orthonormal set in U . The (compact) Stiefel manifold VkpUq is
the set of all orthonormal k-frames of U . Topologize VkpUq as a (closed) subspace of the
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product of k-copies of the unit sphere in U . The orthogonal group OpUq acts VkpUq on the
left continuously and transitively.

Let us consider the case U “ Rn. Then the stabilizer of pe1, . . . , ekq is Opn ´ kq, and thus by
Theorem I.7.4 we have a homeomorphism Opnq{Opn´kq – VkpRnq (of course one can use this
to topologize VkpRnq). We use this bijection to give a smooth structure on VkpRnq, so we have
a principal bundle

Opn´ kq Ñ Opnq Ñ VkpRnq

Similarly, we have
Upn´ kq Ñ Upnq Ñ VkpCnq

Sppn´ kq Ñ Sppnq Ñ VkpHnq

In fact, for k ă m ď n, we have a fibre bundle

Vm´kpRn´kq Ñ VmpRnq Ñ VkpRnq

where the last projection sends an m-frame onto the k-frame formed by its first k-vectors.

6. Let U an n-dimensional real/complex/quaternionic vector space. The Grassmannian GrkpUq

is the set of all k-planes in U . There is a natural surjection π : VkpUq Ñ GrkpUq sending an
k-frame to the plane it spans, and we use this to topologize GrkpUq; this coincides with the
usual topology imposed on GrkpUq. Consider the case U “ Rn. Then the natural surjection
is a principal Opkq-bundle:

Opkq Ñ VkpRnq Ñ GrkpRnq

The orthogonal group OpUq also acts on GrkpUq transitively. The stabilizer of the k-plane
Rk “ Rk ˆ t0u Ď Rk ˆ Rn´k is Opkq ˆ Opn´ kq Ď Opnq via the embedding

pA,Bq ÞÑ

˜

A

B

¸

Hence we have a homeomorphism GrkpRnq –
Opnq

Opkq ˆ Opn´ kq
, and we can use this map to

define a smooth structure on GrkpRnq, and hence we obtain a principal bundle

Opkq ˆ Opn´ kq Ñ Opnq Ñ GrkpRnq

Of course, we can reverse the process: use the usual smooth structure on GrkpRnq and show
the Opnq-action on is smooth. Similarly, we have

Upkq ˆ Upn´ kq Ñ Upnq Ñ GrkpCnq

Sppkq ˆ Sppn´ kq Ñ Sppnq Ñ GrkpHnq

On the other hand, GLnpRq acts transitively on GrkpRnq, and the stabilizer of Rk is the
subgroup P consisting matrices of the form

˜

A ˚

C

¸

, A P GLkpRq, C P GLn´kpRq

so we have diffeomorphisms

GLnpRq{P – GrkpRnq –
Opnq

Opkq ˆ Opn´ kq
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7. We have a natural action of SL2pRq on the upper half plane H (not confused with the quater-
nion). It is smooth and transitive, and the stabilizer of i is SOpnq, so we have a diffeomorphism
SL2pRq{SOp2q – H.

Also, SL2pCq acts on P1
C smoothly and transitively, and the stabilizer of 8 is the subgroup P

of upper triangular matrices with determinant 1. Hence P1
C – SL2pCq{P .

I.7.4 Proper Free Actions
Definition. Let G be a topological group and M a right G-space. We say the G-action on M is
proper if the continuous map

M ˆG M ˆM

pm, gq pm,mgq

is proper.

Theorem I.7.10. Let G be a Lie group and M a smooth right G-space on which the action is proper
and free. Then the orbit space M{G has a unique smooth structure of dimension dimM ´ dimG

such that the canonical projection M Ñ M{G is a smooth principal G-bundle.

I.8 Integration on Lie groups
In this section, for a topological space X, we use CcpXq to denote the space of real-valued continuous
functions with compact support (rather than the complex-valued ones).

I.8.1 Left Invariant densities and forms
Let M be a smooth manifold with a smooth Lie group action G. For g P G, we write ℓg for the
diffeomorphism p ÞÑ g.p on M .

Definition. An s-density (resp. form) ω on M is called G-invariant if ℓ˚
gω “ ω for any g P G.

• Denote by VolspMqG (resp. pΩkMqG) the set of G-invariant s-densities (resp. k-forms) on M .

• As the G-action is smooth, we easily see that any G-invariant s-density (resp. k-form) is
automatically smooth.

Assume either ω is a G-invariant density on M , or M is oriented, ω is G-invariant top form and
G acts on M in an orientation-preserving way. Then for any f P CcpMq,

ż

M

pℓ˚
gfqω “

ż

M

pℓ˚
gfqpℓ˚

gωq “

ż

M

ℓ˚
g pfωq “

ż

M

fω. (♠)

The last equality holds for the first case since ω is a density, and holds for the second case as ℓg is
orientation-preserving.

Now consider the Lie group G of dimension n acting on itself. There are two bijections, one
being canonical:

pΩnGqG
Źn

LiepGq

ω ωe
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and the other canonical up to a choice of local charts about the identity e P G:

VolpGqG VolpLiepGqq

η ηe

Since dimVolpLiepGqq “ 1, it follows that G admits a left-invariant smooth positive density η, and
such η is unique up to a positive scalar. Also, as dimR

Źn
LiepGq “ 1, G admits a left-invariant

smooth volume form ω such that ωe represents a to-be-given orientation of LiepGq, and such ω is
unique up to a positive scalar as well. Clearly, |ω| is a left-invariant smooth positive density as long
as ω is a left-invariant smooth volume form.

Let η be a left-invariant positive density on G. By p♠q, we see the outer Radon measure µη is
left-invariant. In other words µη is a left Haar measure on G.

We compute the modular function ∆G of G. Let f P CcpGq and g P G. Then
ż

G

r˚
g fη “

ż

G

prgq˚pfr˚
g´1ηq “

ż

G

fr˚
g´1η “

ż

G

fc˚
gω “

ż

G

f |detAdpgq|η.

By Theorem 2.3.1.3., we deduce that

∆Gpgq “ |detAdpg´1q|

for every g P G. Similarly, for a left-invariant volume form ω on G, we have

r˚
gω “ pdetAdpgqqω.

Hence, a left-invariant volume form on G is right invariant if and only if detAdpgq : G Ñ Rˆ is
trivial.

Next, let H be a closed subgroup of G. By Theorem I.3.2, H is a regular submanifold of G, so it
is a Lie group as well. We discuss the integration on the homogeneous space G{H. We already see
in Theorem 2.4.6 that a G-invariant exists on G{H if and only if ∆G|H “ ∆H . By the result above,
this is equivalent to saying |detAdGphq| “ | detAdHphq| for any h P H.

For g P G, denote by ℓg : G{H Ñ G{H the map given by g1H ÞÑ gg1H. For h P H, the
conjugation cphq : G Ñ G defined by cphqg :“ hgh´1 descends to a map cphq : G{H Ñ G{H, which
coincides with ℓh. Indeed cphqpgHq “ hgh´1H “ hgH “ ℓhpgHq. Define

AdG{H : H AutTeHG{H

h pℓhq˚,eH

It is easy to see that detAdG{Hphq “
detAdGphq

detAdHphq
(c.f. Proposition I.7.6).

A density η on G{H is G-invariant if and only if η “ ℓ˚
gη. In particular, we have η “ ℓ˚

hη for any
h P H. Evaluating at H “ eH, we must have

ηHpX1, . . . , Xnq “ ηhHppℓhq˚,hHX1, . . . , pℓhq˚,hHXnq “ |detpℓhq˚,eH |ηHpX1, . . . , Xnq

for any Xi P THpG{Hq, so that 1 “ |detpℓhq˚,eH | “ |detAdG{Hphq| for any h P H. Conversely, if
|detAdG{Hphq| “ 1 for any h P H, it is easy to show G{H admits a nontrivial G-invariant positive
density on G{H. By the same computation one shows that G{H admits a G-invariant volume form
if and only if detAdG{Hphq “ 1 for any h P H.

In summary:
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Proposition I.8.1. Let G be a Lie group and H a closed subgroup of G.

1. Any left Haar measure on G is a smooth measure in the sense of 16.5.

2. ∆Gpgq “ |detAdGpg´1q| for any g P G.

3. G{H admits a nontrivial G-invariant positive density if and only if

|detAdGphq| “ |detAdHphq|

for any h P H. This is the case if H is compact.

4. G{H admits a G-invariant volume form if and only if

detAdGphq “ detAdHphq

for any h P H.

5. If H is connected, then detAdG{Hphq “ |detAdG{Hphq| for any h P H.

Proof. The function h ÞÑ |detAdG{Hphq| is a continuous homomorphism H Ñ Rą0, so if H is
compact, it must be trivial as t1u is the only compact subgroup of Rą0. Similarly, the function
h ÞÑ detAdG{Hphq is a continuous homomorphism H Ñ Rˆ, so if H is connected, its image must
lie entirely in Rą0, hence 4.

Let us conclude this subsection by a discussion on integration on principal G-bundles, where G
is a LCH group or a Lie group. Let π : M Ñ X be a principal G-bundle with M, X LCH; in fact,
it suffices to assume X is Hausdorff, as M{G – X and M{G is always locally compact. Let dg be a
left Haar measure on G. For f P CcpMq, define a function

ż

G

f :M Ñ R by

ˆ
ż

G

f

˙

pxq :“

ż

G

fpxgqdg

The integral exists as the domain of integration is actually π´1pxGq X supp f , which is compact.
Since dg is left-invariant, the integral is G-invariant, so

ż

G

f P CcpXq. By the way, this shows that
ż

G

defines a map CcpMq Ñ CcpXq, and this is usually called the integration along the fibre,
and is denoted by f ÞÑ π˚f (pushforward f along the bundle projection π).

Now take any outer Radon measure µ on X, and form the linear functional CcpMq Ñ R by

f ÞÑ

ż

X

ˆ
ż

G

f

˙

dµ

This is positive linear functional on CcpMq, so by Riesz’s representation theorem it is uniquely
determined by a outer Radon measure on M , which we denote by dµb dg. Hence

ż

M

fdµb dg “

ż

X

ˆ
ż

G

f

˙

dµ “

ż

X

ˆ
ż

G

fpxgqdg

˙

dµpxq

The measure dµb dg is G-invariant if and only if
ż

X

ˆ
ż

G

fpxgqdg

˙

dµpxq “

ż

X

ˆ
ż

G

fpxgg1qdg

˙

dµpxq “ ∆Gppg1q´1q

ż

X

ˆ
ż

G

fpxgqdg

˙

dµpxq

for any g1 P G, i.e., G is unimodular.
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Conversely, suppose we are given an outer Radon measure ν on M . A similar argument in Lemma
2.4.2, together with a version of Lemma 2.4.3, shows that π˚ : CcpMq Ñ CcpXq is surjective. Define
a linear functional I : CcpXq Ñ I as follows. For g P CcpXq, take any f P CcpMq with π˚f “ g and
put Ipgq :“

ż

M

fdν. The same argument in Theorem 2.4.6.(i) shows I is positive and well-defined
as long as we assume ν satisfies

ż

M

fpxgqdνpxq “ ∆Gpg´1q

ż

M

fpxqdνpxq pg P Gq.

By Riesz’s representation theorem again I is uniquely determined by an outer Radon measure, which
we usually denote by dµ “

dν

dg
(not confused with Radon Nikodym derivative!). Again, it satisfies
ż

M

fdν “

ż

X

ˆ
ż

G

fpxgqdg

˙

dµpxq

Let us go to the smooth world. Let G be a Lie group and assume π : M Ñ X is a smooth
principal G-bundle. We claim if the measure µ on X is from some positive density, then the measure
dµbdg on M is also from a positive density. Since G is a Lie group, dg is a smooth measure, and we
identify it with a left-invariant positive density on G. Define dµ b dg as a density on G as follows.
For p P M , take a local trivialization U ˆ G around p, and say p corresponds to px, gq P U ˆ G.
Then TpM – TxU ˆ TgG, and define

pdµb dgqppX1, . . . , Xn, Y1, . . . , Ymq “ pdµqppX1, . . . , XnqpdgqgpY1, . . . , Ymq.

To show this is well-defined, if V ˆG is another trivialization about p, then there exists θ : UXV Ñ G

such that the transition map from U ˆG to V ˆG is given by px1, g1q ÞÑ px1, θpx1qg1q. Using the fact
that dg is left-invariant, we see dµb dg is a well-defined density on M . It follows from Fubini’s the
integration against the density dµb dg is really the same as what we define above.

I.8.2 Invariant de Rham cohomology
In this subsection, for a smooth manifold M , we use ΩkM denote the smooth global sections of
Źk

pTMq_ Ñ M instead. There is a de Rham complex

0 Ω0M Ω1M Ω2M ¨ ¨ ¨ ΩmM 0d d d

where m “ dimM , and d : ΩkM Ñ Ωk`1M is the exterior derivative. The cohomology of the de
Rham complex is called the de Rham cohomology of M , and is denoted by H‚

dRpM,Rq.
Suppose G is a Lie group acting on M smoothly; denote by α : G Ñ DiffeopMq the action map.

A smooth k-form ω P ΩkM is called (G-)invariant if αpgq˚ω “ ω for any g P G. Put pΩkMqG to
be the subspace of invariant k-forms. Since dαpgq˚ “ αpgq˚d, the sequence ppΩ‚MqG, dq forms a
subcomplex of the de Rham complex pΩ‚M,dq. The inclusion then induces a map on cohomology
groups HkppΩ‚MqG, dq Ñ Hk

dRpM,Rq. Again, as dαpgq˚ “ αpgq˚d, the group G acts on Hk
dRpM,Rq

naturally, and the above cohomology map goes into Hk
dRpM,RqG. Hence we have a map

HkppΩ‚MqG, dq Ñ Hk
dRpM,RqG.

We are going to show that this is an isomorphism when G is a compact Lie group.
Assume G is compact; we normalize the Haar measure so that the total volume of G is 1. Define

I : ΩkM Ñ ΩkM by

IpωqppX1, . . . , Xkq “

ż

G

pαpgq˚ωqppX1, . . . , Xkqdg “

ż

G

ωαpgqppαpgq˚,pX1, . . . , αpgq˚,pXkqdg.
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The integral is well-defined as the integrand is continuous in g and G is compact. Taking a chart
about p, we can see Ipωq is really a smooth k-form, so I is well-defined. In fact, Ipωq P pΩkMqG

because dg is a left-invariant Haar measure. Thus I actually defines a map I : ΩkM Ñ pΩkMqG.

Lemma I.8.2. I : ΩkM Ñ pΩkMqG restricts to the identity on pΩkMqG, and is a chain map.

Proof. The first is clear. For the second, we apply Corollary F.7.6.1 to compute

dpIωqpX0, . . . , Xkqppq “

k
ÿ

i“0

p´1qiXippIωqpX0, . . . ,xXi, . . . , Xkqqppq

`
ÿ

0ďiăjďk

p´1qi`jpIωqpprXi, Xjs, X0, . . . ,xXi, . . . ,xXj , . . . , Xkq

“

k
ÿ

i“0

p´1qiXi,p

ż

G

ωppαpgq˚,pX0, . . . , {αpgq˚,pXi,p, . . . , αpgq˚,pXk,pqqdg

`
ÿ

0ďiăjďk

p´1qi`j
ż

G

ωppα˚,prXi, Xjsp, X0,p, . . . , {αpgq˚,pXi,p, . . . , {αpgq˚,pXj,p, . . . , αpgq˚,pXk,pqdg

Since G is compact, Xi,p and
ż

interchange, giving

dpIωqpX0, . . . , Xkqppq “

ż

G

pdωqppαpgq˚,pX0,k, . . . , αpgq˚,pXk,pqdg “ IpdωqpX0, . . . , Xkqppq

Theorem I.8.3. The inclusion ppΩ‚MqG, dq Ñ pΩ‚M,dq induces an isomorphism

HkppΩ‚MqG, dq – Hk
dRpM,RqG.

Proof. Denote by J the inclusion. We saw right before Lemma I.8.2 that I ˝ J “ id. In particular,
this shows J˚ : HkppΩ‚MqG, dq Ñ Hk

dRpM,Rq is injective and I˚ : Hk
dRpM,Rq Ñ HkppΩ‚MqG, dq is

surjective. We need to show J˚ is surjective onto Hk
dRpM,RqG.

Let ω P ΩkM be a closed form represent a class in Hk
dRpM,RqG. Let g P G. Since ω represents

a class invariant under G, we have ω ´ αpgq˚ω “ dη for some η “ ηg P Ωk´1M . Therefore, for any
smooth p-cycle γ P ∆ppMq, by Stokes’ theorem we have

ż

γ

ω ´

ż

γ

αpgq˚ω “

ż

γ

dη “

ż

Bγ

η “ 0,

and hence by Fubini,
ż

γ

Ipωq “

ż

γ

ˆ
ż

G

αpgq˚ωdg

˙

“

ż

G

pαpgq˚ωq dg “

ż

G

ˆ
ż

γ

ω

˙

dg “

ż

γ

ω.

By de Rham theorem, Ipωq and ω represent the same cohomology class, and this finishes the proof.

Assume further G is connected. Then αpgq is homotopic to αpeq “ idM , implying the G-action
on H‚

dRpM,Rq is trivial. Hence taking M “ G in Theorem I.8.3 yields

Corollary I.8.3.1. Let G be a compact connected Lie group. Then H‚
dRpG,Rq is naturally isomor-

phic to H‚p
Ź‚

HomRpLiepGq,Rq, dq, where d is given by

dωpX0, . . . , Xkq “
ÿ

0ďiăjďk

p´1qi`jωprXi, Xjs, X0, . . . ,xXi, . . . ,xXj , . . . , Xkq.
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I.8.3 Integration by parts on Lie groups
Lemma I.8.4. Let G be a Lie group and ω be a top form. If ω is left-invariant, then LXω “ 0 for
all X P LiepGq. The converse holds if G is connected.

Proof. The flow generated by X can be given by φtpgq “ expGptXqg. We then have

φ˚
t ω “ ℓ˚

expGptXq´1ω.

Hence LXω “ 0 if and only if t ÞÑ ℓ˚
expGptXq´1ω, if and only if ℓ˚

expGptXq´1ω “ ω. The latter holds
for every X P LiepGq if ω is left-invariant.

Suppose G is connected; by Lemma I.2.11 we have G “ xexpGptqX | t P R, X P LiepGqy.
Consequently, LXω “ 0 for all X P LiepGq if and only if ℓ˚

gω “ ω for all g P G, i.e., ω is left-
invariant.

Corollary I.8.4.1. Let G be a Lie group, ω a left-invariant top form and X P LiepGq. Then for
f, g P C8

c pGq, we have
ż

G

pXfqgω “ ´

ż

G

fXpgqω.

Proof. This follows from integration by parts and Lemma I.8.4.
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Part VII

Algebra

515



Appendix J

Central simple algebra

In this chapter an algebra is only assumed to be unital and associative. All modules are referred to
as left modules. For a ring R, denote by Rop the opposite ring. Hence an Rop-module is naturally
identified as a right R-module.

J.1 Semisimplicity
Definition. Let R be a ring. An R-module is called simple if it is nonzero and contains no proper
nontrivial R-submodules.

Lemma J.1.1 (Schur). Let R be a ring and M,N be two simple R-modules. Then HomRpM,Nq “

t0u Y IsomRpM,Nq.

Proof. If f : M Ñ N be a nonzero R-homomorphisms, then ker f ‰ M and Im f ‰ 0. Hence
ker f “ 0 and Im f “ N by simplicity, so f is an isomorphism.

Corollary J.1.1.1. Let R be a ring and M a simple R-module. Then EndRM is a division ring.

Definition. Let R be a ring. An R-module is called semisimple if any of its submodule is its
direct summand.

Lemma J.1.2. Let R be a ring and M a semisimple R-module. Then every nonzero submodule of
M contains a simple submodule.

Proof. It suffices to show for each 0 ‰ v P M , the submodule Rv contains a simple module. Consider
the homomorphism f : R Ñ M given by fprq “ rv. Since v ‰ 0, ker f ‰ R, so it is contained in
a maximal ideal m of R by Zorn’s lemma. Now mv Ď M is a submodule, so by semisimplicity
M “ mv ‘ N for some submodule N . Then Rv “ mv ‘ pN X Rvq, for if rv “ mv ` n for some
m P m, and n P N , then n “ pr´mqv P Rv. Since m is maximal, it follows that N2 XRv is a simple
R-module.

Lemma J.1.3. Let R be a ring and M a nonzero R-module. TFAE:

(i) M is semisimple.

(ii) M is a sum of its all simple submodules.

(iii) M is the direct sum of a collection of its simple submodules.
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Proof. For (i)ñ(ii), consider the collection of submodules
#

ÿ

iPI

Mi Ď M | pMiqiPI is a family of simple submodules of M
+

.

This set is partially ordered by inclusion, and contains joins. By Zorn’s lemma, it contains a maximal
element; call it N. If it were not M , by semisimplicity M “ N ‘ N 1 with N 1 ‰ 0. By Lemma J.1.2
N 1 would contain a simple submodule, which contradicts to the maximality of N . Hence M “ N .

For (ii)ñ(iii), say M “
ř

iPIMi with each Mi being a simple submodule of M . Let J Ď I be
a maximal index subset such that the sum N :“

ř

iPJMi is direct. But then N “ M , for either
Mi X Mj “ 0 or Mi “ Mj holds by simplicity. The direction (iii)ñ(i) is proved by the same
argument.

Lemma J.1.4. Every subquotient of a semisimple module is again semisimple. Arbitrary direct
sum of semisimple modules is semisimple.

Lemma J.1.5. Let R be a ring and M a semisimple R-module. Suppose M admits a decomposition

M “ M‘r1
1 ‘ ¨ ¨ ¨ ‘Mrn

n

with 0 ă ri ă 8, Mi being its simple submodule and each Mi and Mj being non-isomorphic. If

M “ L‘s1
1 ‘ ¨ ¨ ¨ ‘ Lskk

is another decomposition of the same type, then k “ n, and up to permutation Mi – Li, si “ ri for
i P rns.

Let R be a ring and M an R-module. There is a natural pairing

EndRM ˆM M

pφ,mq φpmq.

With this map we turn M into an EndRM -module which extends its R-module structure. Notice
that

EndEndRM M “ ZpEndRMq

the center of the ring EndRM , and the natural map R Ñ EndRM has image lying in ZpEndRMq.

Theorem J.1.6 (Jacobson density). Let R be a ring and M a semisimple R-module. For each
f P EndEndRM M and a finite subset S Ď M , there exists r P R such that rv “ fpvq for v P S.

Proof. Let s “ #S. We begin by proving the special case when S “ tvu is a singleton. By
semisimplicity, write M “ Rv ‘ N , and denote by π : M Ñ Rv Ď M the projection, which lies in
EndRM . Then

fpvq “ fpπpvqq “ πpfpvqq

so fpvq “ rv for some r P R.
For s ą 1, consider the map f‘s : M‘s Ñ M‘s. We claim that f‘s commutes with all

EndRpM‘sq. Assuming this, by the previous case we’ve proven, by write S “ pviqiPrss we see there
exists r P R such that f‘pv1, . . . , vsq “ rpv1, . . . , vsq, which is what we want.
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It suffices to show f‘s commutes with any φ P EndRpM‘sq. Write φ “ pφijq1ďi,jďn with
φij P EndRM such that

φpx1, . . . , xnq “

˜

n
ÿ

j“1

φ1jxj , . . . ,
n
ÿ

j“1

φnjxj

¸

Then since f P EndEndRM M , it commutes with all φij ’s, whence

fnpφpx1, . . . , xnqq “ fn

˜

n
ÿ

j“1

φ1jxj , . . . ,
n
ÿ

j“1

φnjxj

¸

“

˜

n
ÿ

j“1

fpφ1jxjq, . . . ,
n
ÿ

j“1

fpφnjxjq

¸

“

˜

n
ÿ

j“1

φ1jfpxjq, . . . ,
n
ÿ

j“1

φnjfpxjq

¸

“ φpfnpx1, . . . , xnqq.

This proves the claim.

Equip M with discrete topology, and equip EndRM with pointwise convergence topology (or
compact-open topology.) The theorem can be restated as saying that the image of the natural map

R ÝÑ EndRM

is dense in EndEndRM M .

Definition. A ring R is called primitive if it admits a faithful simple R-module.

Lemma J.1.7. Let D be a division ring and M a D-module. Assume S Ď EndDM is a transitive
subring, in the sense that for any x, y P M with x ‰ 0, there exists φ P S with φx “ y. Then S is
primitive.

Proof. Clearly M has a S-module structure, and it is faithful. For any 0 ‰ x P M , by transitivity
of S we see Sx “ M . This finishes the proof.

Corollary J.1.7.1. A ring R is primitive if and only if it is isomorphic to a dense subring of EndD V
for some division ring D and a (discrete) D-module V .

Proof. Assume R is primitive, and say M is the faithful simple R-module. By Schur’s lemma,
D :“ EndRM is a simple R-module, and the natural map R Ñ D is injective by faithfulness. Now
R is a dense subring of EndDM by Theorem J.1.6.

Now assume R is a dense subring of EndD V . By Lemma J.1.7 it suffices to show R is transitive.
But any nonzero element x in V is contained in a D-basis for V , so for any y P V we can find
φ P EndD V with φpxq “ y. By density of S we can choose φ P S. This proves the transitivity, and
concludes the proof.

Lemma J.1.8. Let D be a division ring. Then MnpDq is left artinian and left noetherian for each
n ě 1.

Proof. Denote

Ij :“ tTej | T P MnpDqu

where ej “ pδijqiPrns. By construction this is a left ideal of MnpDq and clearly

MnpDq “ I1 ‘ ¨ ¨ ¨ ‘ In.
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We claim each Ij is a simple MnpDq-submodule. Assuming this, we see MnpDq admits a finite
composition series, which proves the lemma.

This amounts to show Dn is a simple MnpDq-module. But this is immediate as MnpDq “

EndDpDnq and by linear algebra (over D).

Theorem J.1.9. Let R be a primitive ring and M a faithful simple R-module. Put D “ EndRM ,
which is a division ring.

(i) The ring R is left artinian if and only if n :“ dimDM ă 8. If it is the case, R – MnpDq.

(ii) If R is not left artinian, then for any n ě 1 there exists a subring Rn of R with a surjective
homomorphism Rn Ñ MnpDq.

Proof.

(i) Let β be a D-basis for M . For any finite subset γ Ď β, define

Iγ “ annRpγq :“ tr P R | rx “ 0 for all r P γu.

This is an ideal of R, and Iγ Ě Iγ1 if γ Ď γ1. When γ Ĺ γ1, the containment Iγ Ě Iγ1 is strict,
as we can always find a D-linear map φ so that φ|γ1zγ “ id while φ|γ ” 0. By density we can
find such φ in R. Hence, if R is left artinian, then β must be finite.

As long as β is finite, by density the natural map R Ñ EndDM is surjective. This proves
R – EndDM – MnpDq. Along with Lemma J.1.8, this proves (i).

(ii) Let β be a D-basis for M . For each finite subset γ Ď β, denote by Mγ the D-submodule
generated by γ. Then Rγ :“ tr P R | rMγ Ď Mγu is a subring of R and

Iγ :“ annRpγq “ annRγ
pγq

is a two-sided ideal of Rγ . Then Mγ is naturally an Rγ{Iγ-module. Moreover, the natural
map Rγ Ñ Rγ{Iγ Ñ EndDMγ is surjective. Indeed, any D-linear map of Mγ extends to a
linear map on M . Since #γ is finite, by density we can interpolate that extension of γ by an
element in r P R. This concludes the proof of (ii).

Definition. Let R be a ring.

1. R is called simple if it is nonzero and contains no proper nontrivial two-sided ideal.

2. R is called semisimple if every R-module is semisimple.

Lemma J.1.10. A simple ring is primitive.

Proof. Let R be a simple ring. Since R ‰ 0, by Zorn’s lemma there exists a left maximal ideal m.
Then the quotient R{m is a simple R-module. Consider its annihilator

annRpR{mq :“ tr P R | rx P m for all x P Ru.

This is clearly a proper left ideal. In fact, it is also a right ideal: if rx P m for all x P R, then
rpsxq P m for any s, x P R particularly. Now by simplicity it follows that annRpR{mq is trivial,
proving that R{m is faithful.
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Lemma J.1.11. A ring R is semisimple if and only if it is semisimple as a left R-module. In this
case, R is a finite direct sum of simple left ideals of R.

Proof. The only if part follows from definition. The if part follows from Lemma J.1.4. The last
assertion follows from Lemma J.1.3 and apply the decomposition there to the identity 1.

Corollary J.1.11.1. Let R be a ring. TFAE:

(i) R – MnpDq for some n ě 1 and a division ring D.

(ii) R is simple and semisimple.

(iii) R is simple and left artinian.

(iv) R is primitive and left artinian.

In this case, all simple R-modules are isomorphic.

Proof.

(i)ñ(ii) A two sided ideal of MnpDq has the form MnpIq with I a two sided ideal of D. Since D is
division, I is either 0 or the whole D. This proves MnpDq is simple. That MnpDq is semisimple
follows from the proof of Lemma J.1.8 and Lemma J.1.3.

(ii)ñ(iii) Follows from Lemma J.1.11 (so that it has a composition series).

(iii)ñ(iv) Follows from Lemma J.1.10.

(iv)ñ(i) Follows from Theorem J.1.9.

To see the last assertion, write MnpDq “
À

1ďjďn

Ij as in Lemma J.1.8. If M is a simple MnpDq-

module, then IjM ‰ 0 for some j P rns, whence IjM “ M by simplicity. Pick any x P M such that
Ijx ‰ 0. Then the map r ÞÑ rx provides an isomorphism Ij – M . Finally, each Ij is isomorphic to
Dn.

Corollary J.1.11.2 (Artin-Wedderburn). A ring is semisimple if and only if it is isomorphic to
Mn1

pD1q ˆ ¨ ¨ ¨ ˆMnr
pDrq for some r P Zě1, ni P Zě1 and some division rings Di.

Proof. The if part is clear by Corollary J.1.11.1.(i)ñ(ii), Lemma J.1.11 and Lemma J.1.4. For the
only if part, by Lemma J.1.11 a semisimple ring R is R-isomorphic to a finite sum of simple R-
modules. Write R “

À

1ďiďr

Mni
i for some ni ě 1, where each Mi is mutually non-isomorphic. By

Schur’s lemma, we have

EndRR “
à

1ďiďr

EndRpMni
i q –

à

1ďiďr

Mni
pEndRMiq.

But EndRR – Rop, so

R –
à

1ďiďr

Mni
pDiq

where Di “ pEndRMiq
op.

Corollary J.1.11.3. The opposite ring of a semisimple ring is semisimple. Every semisimple ring
is two-sided artinian and Noetherian.
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Lemma J.1.12. Let n, n1 ě 1 and D,D1 be division rings. If MnpDq – Mn1 pD1q, then n “ n1 and
D “ D1.

Proof. Regard MnpDq as EndDpDnq. Then by density, the injection D Ñ EndDpDnq maps onto
the center. Hence D – D1. That n “ n1 follows at once if we take the dimension.

J.2 Central simple algebra
In this section fix a field k. We assume every k-algebra is finite dimensional over k, and k is contained
in the center.

Definition. An k-algebra R is central if k “ ZpRq exactly.

Definition. An k-algebra is simple if it is simple as a ring.

Lemma J.2.1. Let R be a k-algebra. Then R is simple if and only if R – MnpDq for some n ě 1

and some division k-algebra D. Moreover, n is unique and D is unique up to k-isomorphism. If R
is central, so is D.

Proof. Since dimk R ă 8, by Corollary J.1.11.1, we see R is simple if and only if R – MnpDq for
some n ě 1 and division ring D. Taking the center gives an injection k Ñ ZpRq – ZpDq Ď D, so D
is a k-algebra. If R is central, so is D. Now the moreover part follows from Lemma J.1.12.

Lemma J.2.2. Let R be a central k-algebra. Then R is simple if and only if the map

R bk R
op Endk R

pr, r1q rx ÞÑ rxr1s

is an k-algebra isomorphism.

Proof. Notice both sides have the same dimension over k. If R contains a nonzero proper two-sided
ideal I, then every k-linear map in the image of R bk R

op leaves I stable. In particular, when R is
not simple, the map is not surjective, whence not an isomorphism.

Now assume R is simple. This means R is simple as a left C :“ R bk R
op-module. Since R is

central, we have a canonical map k Ñ EndC R. Since EndC R is division by Schur’s lemma, it follows
that EndC R “ k. But Jacobson density then implies the natural map C Ñ EndEndC RR “ Endk R

is surjective (recall dimk R ă 8 by our convention).

Corollary J.2.2.1. Let R,S be two simple k-algebras. If R is central over k, then Rbk S is simple.
If moreover S is central over k, then R bk S is central.

Proof. Let n “ dimk R. By Lemma J.2.2,

Rop bk R bk S – pEndk R
opq bk S – Mnpkq bk S – MnpSq.

If Rbk S contains a nontrivial proper two-sided ideal, so does Rop bk Rbk S. But MnpSq is simple
(as S is), so this R bk S must be simple.

Assume in addition that S is central. Then the center of MnpSq is k. If R bK S is not central,
then the center of Rop bk R bk S will be strictly larger than k, a contradiction.

Corollary J.2.2.2. Let R be a central k-algebra.
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(i) For any field extension k1{k, R bk k
1 is central simple over k1 if and only if R is simple.

(ii) R is simple if and only if R bk k – Mnpkq for some algebraic closure of k and some n ě 1.

(iii) If R is simple, then dimk R is a square.

Proof.

1. Assume R is simple. By Lemma J.2.2 we have

Rop bk bR bk k
1 – Mnpk1q.

Since Mnpk1q is central over k1, it forces Rbk k
1 to be central over k1. Likewise the simplicity

follows (or by Corollary J.2.2.1).

Assume R1 :“ R bk k
1 is central simple. By Lemma J.2.2, R1 bk1 R1op Ñ Endk1 R1 is an

isomorphism. Notice

R1 bk1 R1op “ R bk R
op bk k

1,

Endk1 R1 “ pEndk Rq bk k
1, and the map R1 bk1 R1op Ñ Endk1 R1 is the base change of R bk

Rop Ñ Endk R to k1. Hence RbkR
op Ñ Endk R is also an isomorphism, whence the simplicity

follows by Lemma J.2.2 again.

2. Since Mnpkq is central simple, that if part follows from (i). For the other way around, we know
R bk k – MnpDq for some division k-algebra D. It suffices to show D “ k. Indeed, for any
x P D, the subalgebra kpxq Ď D is an algebraic extension of k, so x P k.

3. Since dimk R “ dimk R bk k, this follows from (ii).

Corollary J.2.2.3. let k1{k be a finite extension of degree n. Suppose R is a central simple k-algebra
of dimension n2 that contains a subfield k-isomorphic to k1. Then R bk k

1 – Mnpk1q.

Proof. Assume simply that k1 Ď R. Then R is naturally a left k1-module and dimk1 R “ n. Now we
have a nonzero k-linear R Ñ Endk1 R given r ÞÑ rx ÞÑ xrs. Extending k1-linear we get a nonzero
k1-linear map R bk k

1 Ñ Endk1 pRq. By simplicity this is then an isomorphism.

Theorem J.2.3 (Noether-Skolem). Suppose R is a simple k-algebra and S a central simple k-
algebra. Then Sˆ acts on HomAlgk

pR,Sq transitively by conjugation on S.

Proof. Let f, g P HomAlgk
pR,Sq. Consider two R bk S

op-modules structures on S:

pr, sq1v :“ gprqvs

pr, sq2v :“ fprqvs.

Since Rbk S
op is a simple and finite dimensional over k, by Corollary J.1.11.1 it is semisimple and

there is only one isomorphism class of simple modules. A dimension consideration shows that these
two R bk S

op must be isomorphic; denote

φ : S1 Ñ S2
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an R bk S
op-isomorphism, where the subscript indicates its module structure. Then

φpgprqvsq “ φppr, sq1vq “ pr, sq2φpvq “ fprqφpvqs.

Taking r “ 1 yields φpvsq “ φpvqs, so φ is an Sop-homomorphism. Since S is simple an an Sop-
module (as we are assuming dimk S ă 8), it follows that φpvq “ βv for some β P Sˆ. But then

βgprq “ φpgprqq “ φppr, 1q11q “ pr, 1q2φp1q “ fprqφp1q “ fprqβ

so that gprq “ β´1fprqβ for any r P R, as we claim.

Definition. Let k1{k be a field extension and R a k-algebra. We say R splits over k1 if Rbk k
1 –

Mnpk1q for some n ě 1. If R splits over k, we simply say R splits. When R splits over k1, we also
say k1 splits R.

For two central simple algebras A,B over k, we write A „ B if Abk B
op splits.

Lemma J.2.4. „ is an equivalence relation.

Proof. Reflexivity is clear. For symmetry, we claim for two k-algebras A,B, we have

pAbk Bqop – Bop bk A
op.

This is clear: the map is given by ab b ÞÑ bb a. To see this is an algebra homomorphism, note that

pab bq ¨op pxb yq “ pxab ybq ÞÑ pybb xaq “ pb, aq ¨ ¨ ¨ py, xq.

Finally, assume A „ B and B „ C. We must show Abk C
op splits. By assumption

pAbk B
opq bk pB bk C

opq “ Abk pEndk B
opq bk C

op

splits over k. Say LHS – Mnpkq and Endk B
op – Mbpkq, so

Mnpkq – AbkMbpkq bk C
op.

But

AbkMbpkq – MbpAq – Mbpkq bk A

so

Mnpkq – Mbpkq bk Abk C
op.

Since AbkC
op is central simple, AbkC

op – McpDq for some c ě 1 and a central division k-algebra.
Then

Mnpkq – Mbpkq bkMcpDq – Mbpkq bkMcpkq bk D – MbcpDq.

By Lemma J.1.12, we see k “ D, proving A „ C.

Lemma J.2.5. Say A – MnpDq and B – MmpD1q are two central simple algebras over k. Then
A „ B if and only if D „ D1, if and only if D – D1.
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Proof. We have

Abk B
op – MnpDq bkMmpD1opq – MnmpD bk D

1opq.

If we write D bk D
1op “ MlpD

2q for some division D2, by Lemma J.1.12 we see A „ B if and only
if D2 “ k. The last equivalence follows from Lemma J.1.12 and Theorem J.2.2.

Definition. The Brauer group of k is

Brpkq :“ tcentral simple algebras over ku{ „ .

The multiplication is induced by pA,Bq ÞÑ AbkB. The identity is the equivalence class consisting of
split algebras. For a central simple algebra A, the inverse is, by Lemma J.2.2, given by its opposite
algebra Aop.

For any extension k1{k, tensoring with k1 induces a group homomorphism

Brpkq Brpk1q

A Abk k
1

on Brauer groups. This is well-defined by Corollary J.2.2.2. Denote by Brpk1{kq its kernel so that
there is an exact sequence

1 Brpk1{kq Brpkq Brpk1q

By construction

Brpk1{kq “
␣

A P Brpk1q | A splits over k1
(

.

Lemma J.2.6 (Double commutant). Let A be a central simple k-algebra and B a simple k-
subalgebra of A. Then CApCApBqq “ B and

pdimk Bqpdimk CApBqq “ dimk A.

Proof. Let R “ AbkB
op, which is simple by Corollary J.2.2.1 and semisimple by Corollary J.1.11.1,

as it is finite dimensional over k. Under the isomorphism EndAA – Aop, it is direct to see EndRA

maps onto CApBqop.
Let M be the “the” faithful simple R-module, and put D “ EndRM . Since A is an R-module,

we can write A – Ma for some a ě 1. Hence EndRpAq – MapDq so that

CApBq – MapDopq

implying

dimk CApBq “ a2 dimkD.

On the other hand, by Jacobson density we see R – EndEndRM M “ EndDM . If we write M – Dm

as D-modules, then R – MmpDq, whence

m2 dimkD “ dimk R “ pdimk Aqpdimk Bq

Since A – Ma – Dam, it follows that dimk A “ am dimkD, and

pdimk Bqpdimk CApBqq “ a2pdimkDq ˆ
m2 dimkD

dimk A
“ dimk A.
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To conclude, notice that

CApCApCApBqqq “ CApBq

holds unconditionally. Applying the equality with B replaced by CApBq, we see

dimk B “ dimk CApCApBqq.

Since B Ď CApCApBqq tautologically, it follows that CApCApBqq “ B. When B is commutative,
then B Ď CApBq so pdimk Bq2 ď dimk A.

Corollary J.2.6.1. Let D be a central simple division k-algebra of dimension n2. If K is a subfield
of D containing k, then dimkK ď n with equality if and only if K “ CDpKq.

Proof. Since K is commutative, K Ď CDpKq so that

pdimkKq2 ď pdimkKqpdimk CDpKqq “ dimkD

by Lemma J.2.6. This proves dimkK ď n. If dimkK ă n, then dimk CDpKq “ pdimkDq{pdimkKq ą

n so that K Ĺ CDpKq. Adjoining any element in CDpKqzK to K will yield a subfield of D strictly
larger than K. This proves the equality part.

Theorem J.2.7. Let D be a central simple division algebra over k of dimension n2.

(i) Maximal subfields of D are exactly those k-subalgebras of D which are their own centralizers
in D, and they are degree n extension of k. Every subfield of D containing k is contained in a
maximal subfield.

(ii) Every non-maximal subfield of D containing k admits a proper separable extension in D.

(iii) D has a maximal subfield separable over k.

(iv) Every maximal subfield of D splits D.

(v) If a degreeN extension k1{k splitsD, then n | N and there exists a k-embedding k1 Ñ MN{npDq

whose image is its own centralizer in MN{npDq.

In particular, a degree n extension of k that splits D is k-isomorphic to maximal subfield of
D.

Proof. (i) follows from Corollary J.2.6.1. For (ii) and (iii), we claim D contains a proper separable
extension of k when n ą 1. Suppose otherwise there exists a q ě 1 such that xq P k for every x P D.
The number q then must be a prime and is a power of Char k, so that x ÞÑ xq is a k-endomorphism
on D. Hence x ÞÑ xq has its image in the center of D. But this continues to be true when we base
change to an algebraic closure k of k. Since D bk k – Mnpkq, we must have n “ 1. This proves our
claim.

Now let K be a subfield of D containing k with rK : ks ă n. Consider the K-subalgebra CDpKq

of D. This is division, and is central by Lemma J.2.6. Hence CDpKq contains a proper separable
extension of K by what we’ve proven. This proves (ii) and (iii).

Let’s prove (iv). Let K be a maximal subfield of D, and put R “ D bk K. Let R act on D as
usual so that D is a simple R-module. The kernel of the map R Ñ EndkD is a two-sided ideal of
R not containing 1, so it is injective, i.e., D is an faithful R-module. So by Jacobson density

R – EndEndRDpDq.
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In the proof of Lemma J.2.6 we saw EndRpDq – CDpKqop “ K, so R – EndK D – MdpKq for some
d ě 1.

Finally we prove (v). By assumption

D bk K – MnpKq.

RHS has a simple module of K-dimension n, e.g. M “ Kn, so it is also a D-module and its has
dimension

dimDM “
dimkM

dimkD
“
nN

n2
“ N{n.

This shows n | N , and we have a natural embedding K Ñ EndDM – MN{npDq. By Lemma J.2.6,
we have

dimk CMN{npDqpKq “
dimkMN{npDq

dimkK
“
N2

N
“ N.

Since K Ď CMN{npDqpKq, this proves K “ CMN{npDqpKq.
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