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1 Semisimplicity

1.1 Simplicity
Definition. A division ring K is a ring with 1 ‰ 0 such that every non-zero element is a unit.

• Every non-zero module M over K has a basis, and the cardinalities of two bases are the same. We call
this cardinality the dimension of M over K.

Proof. For simplicity, assume M admits a finite generating set S = tsiu
m
i=1. We prove the replacement

theorem: if T is a K-linearly independent subset of M , then we can find T 1 Ď S with #T 1 = #T such
that (SzT 1) Y T still generates.

We prove this by induction on n = #T , n = 0 being nothing to do. Assume n ě 1, and write
T = tv1, . . . , vnu. By induction we can find T 2 say

= ts1, . . . , sn´1u Ď S such that (SzT 2) Y (T ztvnu)

generates. Write vn = a1v1 + ¨ ¨ ¨ + an´1vn´1 + ansn + ¨ ¨ ¨ + amsm for some ai P K. Since T is linearly
independent, at least one of an, . . . , am is nonzero, say an ‰ 0. Then

sn = ´(a´1
n anv1 + ¨ ¨ ¨ + a´1

n an´1vn´1 + a´1
n vn + a´1

n an+1sn+1 + ¨ ¨ ¨ + a´1
n amsm)

Take T 1 = T 2 Y tsnu; then (SzT 1) Y T generates.

Definition. Let R be a ring. An R-module is simple if it is non-zero and it contains no proper trivial
submodule.

Proposition 1.1 (Schur’s lemma). Let E,F be simple R-module. Then every non-zero R-homomorphism
from E to F is an isomorphism. In particular, EndR(E) is a division ring.

Proof. Let f : E Ñ F be a nonzero homomorphism. Then ker f Ď E and Im f Ď F ; by simplicity, we must
have ker f = 0 and Im f = F . Thus f : E Ñ F is an isomorphism.

Proposition 1.2. Let E = En1
1 ‘¨ ¨ ¨‘Enrr be a direct sum of simple modules, the Ei being non-isomorphic,

and each Ei being repeated ni times in the sum. Then, up to a permutation, E1, . . . , Er are uniquely
determined up to isomorphisms, and the multiplicities n1, . . . , nr are uniquely determined.

Proof. Suppose there is an isomorphism

En1
1 ‘ ¨ ¨ ¨ ‘ Enrr Fm1

1 ‘ ¨ ¨ ¨ ‘ Fmss

where the Ei are non-isomorphic, and the Fj are non-isomorphic. By Schur’s lemma, we see each Ei must be
isomorphic to some Fj , and vice versa. It follows that r = s and after a permutation, Ei – Fi. Furthermore,
the isomorphism must induce an isomorphism

Enii Fmii

for each i. Since Ei – Fi, we may assume Ei = Fi. Hence we are reduced to proving: if E is a simple module
and En – Em, then n = m. Since EndR(En) is an EndR(E) = K-vector space isomorphic to the n ˆ n

matrix ring Mn(E), which has dimension n2 over K. Thus the multiplicity n is uniquely determined.
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1.2 Semisimplicity
Let R be a ring.

Proposition 1.3. For an R-module E, TFAE:

(i) E is a sum of a family of simple submodules.

(ii) E is the direct sum of a family of simple submodules.

(iii) Every submodule F of E is a direct summand of E.

If E satisfies one of the both condition, E is called semisimple.

Proof.

(i) ñ(ii) Say E =
ř

tEi | i P Iu with Ei ď E. Let J Ď I be a maximal subset such that the sum E1 =
ř

tEj |

j P Ju is direct. To show (ii), it suffices to show each Ei (i P I) is contained in the sum. For each Ei,
Ei XE1 is a submodule of Ei, so it is either 0 or Ei; if it is 0, then J is not maximal, a contradiction.

(ii) ñ(iii) Say E =
ř

tEi | i P Iu with Ei ď E and the sum being direct. Let J Ď I be the maximal subset such
that the sum F +

ř

tEj | j P Ju is direct. The argument above shows (iii).

(iii) ñ(i) We first show every nonzero submodule of E contains a simple module, and it suffices to consider the
principal submodule Rv with E Q v ‰ 0. The kernel of the homomorphism R Ñ Rv is a proper left ideal
L of R, and thus is contained in a maximal ideal M of R. Then M/L is a maximal (proper) submodule
of R/L, and hence Mv is a maximal (proper) submodule of Rv being isomorphic to M/L under the
isomorphism R/L Ñ Rv. Write E =Mv‘M 1 for some submodule M 1. Then Rv =Mv‘ (M 1 XRv),
for x P Rv can be written as x = mv +m1, and m1 = x´mv P Rv. Since Mv is maximal, M 1 XRv is
simple.

Let E1 be the sum of all simple submodules of E. If E1 ‰ E, then E = E1 ‘ F for some F ‰ 0, and
there exists a simple submodule of F as proved above, a contradiction to the definition of E1.

Proposition 1.4. Every submodule or quotient module of a semisimple module is semisimple.

Proof. Let E be a semisimple module and F be a submodule of E. Let F 1 be the sum of all simple submodules
of F and write E = F 1 ‘ F 2 for some F 2. Every element x P F has a unique expression x = x1 + x2 with
x1 P F 1 and x2 P F 2, and so x2 = x ´ x1 P F . Hence F = F 1 ‘ (F 2 X F ). Then we must have F = F 1

(otherwise, F 2 X F contains a simple submodule of F ).
For the quotient module, write E = F ‘F3 for some F3; then E/F – F3 is semisimple as shown above.

1.3 Jacobson’s Density Theorem
Let E be a semisimple R-module. Let R1 = EndR(E). There is a R-bilinear pairing

R1 ˆ E E

(φ, x) φ(x)

and thus a homomorphism R1 Ñ EndR(E), making E an R1-module. There is also a homomorphism
R Ñ EndR1(E), given by R Q r ÞÑ [fr : x ÞÑ rx]. This is due to the fact φ(rx) = rφ(x) for all φ P R1. We
ask how large is the image of this homomorphism.
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Theorem 1.5 (Jacobson). Let E be semisimple over R and let R1 = EndR(E). Let f P EndR1(E). For
x1, . . . , xn P E there exists r P R such that rxi = f(xi) for i = 1, . . . , n. In particular, if E is finite over R1,
then the natural map R Ñ EndR1(E) is surjective.

We equip R and E with discrete topology and equip EndR1(E) with pointwise convergence topology; E
being discrete, the topology on EndR1(E) is the same as the compact-open topology. The theorem above
then shows that the homomorphism R Ñ EndR1(E) is dense.

Proof. (of Theorem 1.5) First consider the case n = 1. Since E is semisimple, we can write E = Rx‘ F for
some F . Let π : E Ñ Rx be the projection; then π P R1, and hence f(x) = f(πx) = πf(x). Thus f(x) P Rx,
as wanted. For general n ě 1, consider En and F := EndR(En). We need a lemma.

Lemma 1.6. Let E be an R-module, R1 := EndR(E), n ą 0 and F = EndR(En). If f P EndR1(E), then
the homomorphism

fn : En En

(x1, . . . , xn) (f(x1), . . . , f(xn))

is F -linear.

Proof. Let φ P F ; write φ = (φij)1ďi,jďn with φij P EndR(E) = R1 such that

φ(x1, . . . , xn) =

(
n
ÿ

j=1

φ1jxj , . . . ,
n
ÿ

j=1

φnjxj

)

Then since f P EndR1(E), it commutes with any element of R1, and thus

fn(φ(x1, . . . , xn)) = fn

(
n
ÿ

j=1

φ1jxj , . . . ,
n
ÿ

j=1

φnjxj

)
=

(
n
ÿ

j=1

f(φ1jxj), . . . ,
n
ÿ

j=1

f(φnjxj)

)

=

(
n
ÿ

j=1

φ1jf(xj), . . . ,
n
ÿ

j=1

φnjf(xj)

)
= φ(fn(x1, . . . , xn))

Return to the proof. By Lemma, fn P EndF (En). Since En is semisimple, by the first paragraph, applied
to En, we can find r P R such that r(x1, . . . , xn) = fn(x1, . . . , xn), as desired.

Corollary 1.6.1 (Burnside). Let E be a finite dimension vector space over an algebraically closed field k

and let R be a subalgebra of Endk(E). If E is a simple R-module, then R = EndR1(E).

Proof. We contend EndR(E) = k. Since E is simple, R1 = EndR(E) is a division ring containing k such that
k Ď Z(R1). Let α P R1. Then k(α) is a field. Furthermore, R1 is contained in Endk(E) as a k-subspace, and
therefore finite dimensional over k. Hence k(α)/k is finite, and hence k(α) = k for k is algebraically closed.
This proves that R1 = k.

Now let tv1, . . . , vnu be a k-basis for E. Let A P Endk(E). By Jacobson’s density theorem, there exists
r P R such that rvi = Avi for i = 1, . . . , n. Since the effect of A is determined by its effect on a basis, we
conclude R = Endk(E).

The above Corollary is used in the following situation. Let E be a finite dimensional vector space over
k. Let G be a multiplicative submonoid of GL(E). A G-invariant subspace F of E is such that σF Ď F

for all σ P F . We say E is G-simple if it has no trivial proper G-invariant subspace. Let R = k[G] be the
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subalgebra of Endk(E) generated by G over k. Since G is assumed to be a monoid, it follows that R consists
of the linear combination

ÿ

aiσi

with ai P k and σi P G. Then we see a subspace F of E is G-invariant if and only if it is R-invariant. Thus
E is G-simple if and only if it is R-simple.

Corollary 1.6.2. Let E be a finite dimensional vector space over k and let G be a multiplicative submonoid
of GL(E). If E is G-simple, then k[G] = Endk(E).

When k is not algebraically closed, we still get some result.

Definition. An R-module E is faithful if the structure homomorphism R Ñ EndZ(E) is injective.

Corollary 1.6.3 (Wedderburn). Let R be a ring and E a simple faithful R-module. Let D = EndR(E) and
assume that E is finite dimensional over D. Then R = EndD(E).

Proof. Let tv1, . . . , vnu be a D-basis for E. Given A P EndD(E), by Jacobson’s density theorem there exists
r P R such that rvi = Avi for i = 1, . . . , n. Hence R Ñ EndD(E) is surjective. Since E is faithful over R,
R Ñ EndD(E) is injective, and our corollary is proved.

Suppose R is a finite dimensional k-algebra, and assume R has a unit element. If R has no trivial proper
two-sided ideal, then any nonzero R-module R is faithful, for the kernel of R Ñ Endk(E) is a two sided ideal
not equal to R. If E is simple, then E is finite dimensional over k. Then D = EndR(E) is a finite dimensional
division algebra over k. Wedderburn’s theorem gives a representation of R as the ring of D-endomorphisms
of E.

Corollary 1.6.4. Let R be a ring, finite dimensional algebra over an algebraically closed field k. Let V be
a finite dimensional vector space over k with a simple faithful representation ρ : R Ñ Endk(V ). Then ρ is
an isomorphism; in other words, R – Mn(k).

Proof. We apply Wedderburn’s theorem with E = V . Note that D = EndR(V ) is finite dimensional over k.
Given α P D, since k(α) is a commutative subfield of D, so k(α) = k by assumption that k is algebraically
closed.

Theorem 1.7. Let k be a field, R a k-algebra, and V1, . . . , Vm finite dimensional k-spaces which are also
simple R-module, and such that Vi is not R-isomorphic to Vj for i ‰ j. Then there exist elements ei P R

such that ei acts as the identity on Vi and eiVj = 0 if j ‰ i.

Proof. Let E = V1 ‘ ¨ ¨ ¨ ‘ Vm. Let pi : E Ñ Vj be the canonical projection. We have pi P EndR1(E), for
if φ P R1, then φ(Vj) Ď Vj by Schur’s lemma. Since the Vj are finite dimensional over k, the result follows
from Jacobson’s density theorem.

Corollary 1.7.1 (Bourbaki). Let k be a field, R be a k-algebra and E,F R-modules finite dimensional over
k. Assume either

(i) k is characteristic zero and E,F are semisimple over R.

(ii) E,F are simple over R.

For each r P R let rE and rF be the corresponding k-endomorphisms on E and F respectively. Suppose that
Tr(rE) = Tr(rF ) for all α P R. Then E – F as R-modules.
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Proof. For (ii), assume otherwise. Then by Theorem we can find e P R such that eE = idE and eF (F ) = 0.
Then dimk E = Tr(eE) = Tr(eF ) = 0, a contradiction (recall a simple module is nonzero).

For (i), let V be a simple R-module and suppose E = V n‘E1 and F = V m‘F 1 with E1 and F 1 contains
no V . Let e P R be such that eV = idV and 0 on E1 and F 1. Then

ndimk V = Tr(eE) = Tr(eF ) = mdimk V

It follows that n = m. Note that the characteristic 0 is used, because the values of the trace are in k.

In the language of representations, suppose G is a monoid, and we have two semisimple representations
into finite dimensional k-spaces

ρ : G Ñ Endk(E) and ρ1 : G Ñ Endk(F )

Assume that Tr ρ(σ) = Tr ρ1(σ) for all σ P G. Then ρ and ρ1 are isomorphic. Indeed, we let R = k[G], so
that ρ and ρ1 extend to representations of R. By linearity one has that Tr ρ(r) = Tr ρ1(r) for all r P R, so
one can apply Corollary above.
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2 Local ζ-integral on GL(1)
We first set up our notation. Let p ď 8 be a rational prime and Qp the p-adic completion of Q. The p-adic
absolute value is denoted by | ¨ |p : Qp Ñ Rě0.

• p = 8. Then | ¨ |8 = | ¨ | is the usual absolute value on R.

• p ă 8. Then | ¨ |p is the normalized absolute value such that |p|p = p´1.

Then (Q, |¨|p) is a Banach space. If F is a finite extension of Qp, define |¨|F : F Ñ Rě0 by |a|F := |NF/Qp(a)|p.
Then |¨|F is an absolute value on F and F is complete with respect to |¨|F . Note that when F = C, |z|C = |zz|

is the square of the usual norm on C.
Suppose p ă 8. Let dx be a Haar measure on Qp. Then vol(Zp, dx) ‰ 0, and for a P Qp,

vol(aZp, dx) = |a|p vol(Zp, dx)

so that d(ax) = |a|dx, i.e.
ż

Qp
f(xa´1)dx = |a|

ż

Qp
f(x)dx

for all f P Cc(Qp). This means dx
|x|

is a Haar measure on Qˆ
p .

ż

Zˆ
p

dx

|x|
=

ż

Zˆ
p

dx = (1 ´ p´1) vol(Zp, dx)

We usually normalize dx so that vol(Zp, dx) = 1. Similarly, we normalized the Haar measure on Qˆ
p , denoted

by dˆx, so that vol(Zˆ
p , d

ˆx) =
1

1 ´ p´1

dx

|x|
. When p = 8, we simply take dx to be the Lebesgue measure

and dˆx =
dx

|x|
.

If p = 8, Qp = R, let ψ8 : R Ñ C be given by ψ8(x) = e2πix. If p ă 8 by given by ψp(x) = e´2πitxu,
where t¨u : Qp Ñ Q is the fractional part

"

a´n

pn
+
a1´n

pn´1
+ ¨ ¨ ¨ +

a´1

p
+ a0 + ¨ ¨ ¨

*

:=
a´n

pn
+ ¨ ¨ ¨ +

a´1

p
P Q

These are called the standard additive characters on Qp.
Let S(Qp) be the space of Schwartz-Bruhat functions on Qp: when p = 8, S(R) consists of the

usual Schwartz functions on R, and when p ă 8, S(QP ) is the space of all locally constant functions with
compact support.

We define the Fourier transform on S(Qp):

S(Q) S(Qp)

f f̂(x) :=

ż

Qp
f(y)ψp(xy)dy

Example.

1. p = 8, f(x) = e´πx2 . Then f̂(x) = f(x).

2. p ă 8, f(x) = IaZp(x), a P Qp. Then yIaZp(x) = |a|Ia´1Zp(x). In particular, xIZp = IZp .

Proposition 2.1.
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1. If φ P S(Qp), then φ̂ P S(Qp).

2. We have p

pφ(x) = φ(´x).

In particular, the Fourier transform defines a bijection on S(Qp).

2.1 Functional equation for Riemann ζ-functions
Let χ : (Z/nZ)ˆ Ñ Cˆ be a Dirichlet character of conductor N . We extend χ to Z by setting χ(n) = 0 if
(n,N) ą 1. Define

L(s, χ) :=
8
ÿ

n=1

χ(n)

ns

This is absolutely convergent for Re s ą 1.

Theorem 2.2.

(i) For Re s ą 1, we have
L(s, χ) =

ź

pă8

1

1 ´
χ(p)

ps

(ii) L(s, χ) has an analytic continuation to the whole plane C with the only simple pole at s = 1.

(iii) We have the functional equation: define

Λ(s, χ) := L(s, χ) ¨

$

’

&

’

%

π´ s
2Γ
(s
2

)
, if χ(´1) = 1

π´ s+1
2 Γ

(
s+ 1

2

)
, if χ(1) = 1

where Γ(s) is the usual Gamma function, which has a meromorphic continuation with the only simple
poles at s = 0,´1,´2, . . .. Then there exists a unique number W (χ) P S1, called the root number,
such that

Λ(1 ´ s, χ´1) = Ns´ 1
2W (χ)Λ(s, χ)

We prove this theorem when χ = 1 is the trivial character. (i) is clear. For (ii) and (iii), we proceed as
follows.

Integral representation of the ζ-function. Define the θ-function θ : R Ñ C by

θ(t) :=
ÿ

nPZ
e´πn2t

This series converges compactly on R. Consider the Mellin transform of θ̃ := 1

2
θ ´ 1: for Re s ą 0

M(θ̃)(s) :=

ż 8

0

θ̃(t)ts
dt

t
=

ż 8

0

ÿ

ně1

e´πnt2ts
dt

t
=

ÿ

ně1

ż 8

0

e´πn2tts
dt

t
=

ÿ

ně1

1

(πn2)s

ż 8

0

e´ttsdˆt

= π´sΓ (s) ζ(2s) = Λ (2s)
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Poisson summation formula.

Theorem 2.3. If φ P S(R), then
ÿ

nPZ
φ(n) =

ÿ

nPZ
φ̂(n)

Corollary 2.3.1. For t ą 0, we have

θ(t) =
1

?
t
θ

(
1

t

)
The argument.

2.2 Local L-functions on Qp

Let χ : Qˆ
p Ñ Cˆ be a continuous group homomorphism.

• p = 8, Qp = R. Then χ = | ¨ |r signε for some r P C and ϵ P t0, 1u. Then we define

L(s, χ) := ΓR(s+ r + ϵ)

where ΓR(s) := π´ s
2Γ
(s
2

)
.

• p ă 8.

- χ unramified, i.e., χ|Zˆ
p

” 1. Then define

L(s, χ) :=
1

1 ´ χ(p)p´s

- χ ramified, i.e., χ|Zˆ
p

‰ 1. Then define

L(s, χ) := 1

The function L(s, χ) is called the L-function for χ.

Definition. For φ P S(Qp) and χ : Qˆ
p Ñ Cˆ, define (formally) the Tate integral/local ζ-integral

Z(φ, χ, s) :=

ż

Qˆ
p

φ(x)χ(x)|x|sdˆx, s P C

Example. We compute Tate integrals of some test functions.

• p = 8, φ(x) = e´πx2 or xe´πx2 .

• p ă 8, χ unramified, φ = IZp .

• p ă 8, χ ramified, φ = I1+pnZp , where n = c(χ) is the conductor.

2.3 Intrinsic definition for L(s, χ)

For χ : Qˆ
p Ñ Cˆ, we can find σ0 P R such that

χ(x) = χu(x)|x|σ0

where χu : Qˆ
p Ñ S1 is a unitary character. Then Z(φ, χ, s) = Z(φ, χu, s + σ0) by definition. Thus in the

study of local zeta integrals, we may assume χ is unitary.
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Proposition 2.4. If χ is a unitary character, Z(φ, χ, s) is absolutely convergent for Re s ą 0.

Theorem 2.5.

(i) For φ P S(Qp) and χ : Qˆ
p Ñ C, the Tate integral Z(φ, χ, s) has a meromorphic continuation to C.

(ii) For φ P S(Qp),

Ξ(φ, χ, s) :=
Z(φ, χ, s)

L(s, χ)

is an entire function on C.

(iii) We have local functional equation:

Z(φ̂, 1 ´ s, χ´1)

Z(φ, s, χ)
= γ(s, χ)

is a constant independent of φ P S(Qp). The constant γ(s, χ) is called the γ-factor for χ.

Remark 2.6.

1. Let OC be the ring of entire functions on C. Then L(s, χ) is the gcd of local zeta integrals, i.e.,
ÿ

φPS(Qp)
OCZ(φ, s, χ) = OCL(s, χ)

in the field FracOC of meromorphic functions on C.

2. Consider ρ : Qˆ
p Ñ AutS(Qp) defined by right translation: ρ(x)φ(z) = φ(zx). One computes

Z(ρ(x)φ, χ, s) = χ´1|x|´sZ(φ, χ, s)

Hence
Z(¨, χ, s) P HomQˆ

p
((ρ,S(Qp)), χ´1| ¨ |´s)

and the map
φ ÞÑ

Z(φ, χ, s)

L(s, χ)

ˇ

ˇ

ˇ

ˇ

s=0

P HomQˆ
p
(S(Qp), χ´1)

is a non-zero intertwining operator.

Proposition 2.7. Given φ1, φ2 P S(Qp), we have

Z(φ1, χ, s)Z(φ̂2, χ
´1, 1 ´ s) = Z(φ2, χ, z)Z(φ̂1, χ

´1, 1 ´ s)

with 0 ă Re s ă 1.

As before we compute the ratio Z(φ̂, 1 ´ s, χ´1)

Z(φ, s, χ)
explicitly for some particular test function φ.

• p = 8.

• p ă 8, χ unramified.

• p ă 8, χ ramified.

11



Definition. Define the ϵ-factor for χ : Qˆ
p Ñ Cˆ

ϵ(s, χ, ψp) =

#

iϵ , if p = 8, χ = signϵ| ¨ |n

1 , if p ă 8, χ unramified

If p ă 8 and χ is ramified, let c(χ) be the conductor of χ and choose any t P pc(χ)Zˆ
p . Define

ϵ(s, χ, ψp) =

ż

t´1Zˆ
p

χ´1(x)|x|´sψp(x)dx

= |t|s´1χ(t)

ż

Zˆ
p

χ´1(x)ψp

(x
t

)
dx

Definition. Define the γ-factor for χ : Qˆ
p Ñ Cˆ

γ(s, χ, ψp) =
L(1 ´ s, χ´1)

L(s, χ)
ϵ(s, χ, ψp)

Theorem 2.8.
Z(φ̂, 1 ´ s, χ´1)

Z(φ, s, χ)
= γ(s, χ, ψp)

for 0 ă Re s ă 1.

Lemma 2.9. Let t P pcZˆ
p , c = c(χ) ě 1.

1. ϵ(s, χ, ψp) = |t|sϵ(0, χ, ψp).

2. ϵ(0, χ, ψp)ϵ(0, χ´1, ψp) = |t|´1χ(´1)

Theorem 2.10. Z(φ, χ, s) has a meromorphic continuation to C.
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3 Haar measures

3.1 GLn(Qp) is unimodular
Let p ď 8 be a prime. For X = (xij) P GLn(Qp), define

dX := | detX|´np

n
ź

i,j=1

dxij

Then dX is a Haar measure on GLn(Qp), and it is unimodular. To see this, note that GLn(Qp) is generated
by the matrices of the forms:

(i) Aa := a1E11 + ¨ ¨ ¨ + anEnn for a = (ai)1ďiďn P
(
Qˆ
p

)n.

(ii) Bi,j,a := In + aEij for a P Zp (resp. R) and 1 ď i ‰ j ď n.

(iii) Ci,j := In ´ Eii ´ Ejj + Eij + Eji for 1 ď i ‰ j ď n.

We must show for ϕ P Cc(GLn(Qp)) and A P GLn(Qp),
ż

GLn(Qp)
ϕ(X)dX =

ż

GLn(Qp)
ϕ(AX)dX =

ż

GLn(Qp)
ϕ(XA)dX

When A = Aa, then doing change of variable aixij = yij , we have dyij = d(aixij) = |ai|pdxij and detY =

detAX = detAdetX, so that
ż

GLn(Qp)
ϕ(AX)dX =

ż

GLn(Qp)
ϕ(Y )

| detA|np

| detY |np

ź

i,j

dyij
|ai|p

=

ż

GLn(Qp)
ϕ(Y )dY =

ż

GLn(Qp)
ϕ(X)dX

The same holds for Y = XA. For (ii) and (iii), note that under the open compact subgroup GLn(Zp) for
p ă 8 (resp. the unit cube when p = 8) is unchanged (resp. has the same volume) under the transformation
X ÞÑ Bi,j,aX and X ÞÑ Ci,jX, so the Haar integral has the formula above. The same holds for the right
translation.

3.2 Basic representation theory
In the following we let p ă 8 be a finite prime and G = GL2(Qp).

Definition.

1. Let V be a C-vector space. We say (ρ, V ) is a representation of G if ρ : G Ñ AutC V is a group
homomorphism.

2. If (ρ1, V1) and (ρ2, V2) are representations of G, we define the space of intertwining operators to be

HomG((ρ1, V1), (ρ2, V2)) := tf P HomC(V1, V2) | f(ρ1(g)v) = ρ2(g)f(v) for all g P G, v P V u

3. A representation (ρ, V ) of G is smooth if for any v P V , there exists an open subgroup U ď G such
that ρ(g)v = v for all g P U . Equivalently, (ρ, V ) is smooth if and only if

V =
8
ď

n=1

V Kn

where the Kn are the standard open-compact subgroups of G = GL2(Qp) defined by

Kn = tg P GL2(Zp) | g ” I2 (mod pn)u = I2 + pnM2(Zp)

13



4. A representation (ρ, V ) of G is admissible if for all open compact K ď G, we have dimC V
K ă 8.

5. A representation (ρ, V ) is irreducible if V does not contain any proper nontrivial G-invariant subspace
of V .

In the theory of representation of finite groups G, a representation (ρ, V ) of G is equivalent to a C[G]-
module V , where

C[G] := tf : G Ñ Cu = CG

and C[G] acts on V by
ρ(f).v :=

ÿ

gPG

f(g)ρ(g).v

for all f P C[G] and v P V . Here C[G] is a finite dimensional C-algebra with multiplication given by the
convolution: for f1, f2 P C[G], define f1 ˚ f2 P C[G] by

f1 ˚ f2(x) :=
ÿ

gPG

f1(xg
´1)f2(g)

Then (C[G], ˚) is a (usually non-commutative) C-algebra, and V is a C[G]-module.
In algebra, C[G] usually denotes the group ring of G:

C[G] =
à

gPG

C[g]

with [g1].[g2] := [g1g2] for all g1, g2 P G.

Lemma 3.1. (C[G], ˚) is isomorphic to the group ring of G defined above, via the map 1g ÞÑ [g], where ⊮g
is the characteristic function of the set tgu.

3.2.1 Hecke algebra

Definition. Let f : G = GL2(Qp) Ñ C be a function.

1. For an open compact U ď G, f is called bi U-invariant if f(u1gu2) = f(g) for all u1, u2 P U and
g P G. Equivalently, f descends to a map f : UzG/U Ñ C on the set of double cosets.

2. Define

H(G) :=

$

&

%

f : G Ñ C | supp f is compact, DU ď
cpt

open

G such that f is bi U -invariant.

,

.

-

Fix a Haar measure dg on G. For f1, f2 P H(G), define f1 ˚ f2 P H(G) by

f1 ˚ f2(x) :=

ż

G

f1(xg
´1)f2(g)dg

for all x P G. Then (H(G), ˚) is an associative C-algebra, called the Hecke algebra of G = GL2(Q)p.

Note that H(G) has no unit element (for G is not compact). However, for every open compact U ď G,
define

eU :=
1

vol(U, dg) IU P H(G)

Lemma 3.2. Let U be an open compact subgroup of G.
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1. eU is idempotent, i.e., eU ˚ eU = eU .

2. Put H(G,U) := eUH(G)eU . Then H(G,U) is a C-algebra with the identity eU , and

H(G,U) = tf P H(G) | f is bi U -invariantu

In particular, eU ˚ f ˚ eU = f for f P H(G,U).

Suppose (ρ, V ) is a smooth admissible representation of G. Then we can view V as a H(G)-module as
follows. For f P H(G) and v P V , define

ρ(f)v :=

ż

G

f(g)ρ(g)vdg P V

This is in fact a finite sum. Let U ď G be compact open such that f is bi U -invariant and v P V U . Cover
supp f by finitely many translations of U , say supp f = g1U Y ¨ ¨ ¨ Y gnU . Then

ρ(f).v =
n
ÿ

i=1

f(gi)ρ(gi)v

Lemma 3.3.

(i) For ϕ1, ϕ2 P H(G) and v P V , one has ρ(ϕ1 ˚ ϕ2)v = ρ(ϕ1)ρ(ϕ2)v. In particular, this means V is a
H(G)-module.

(ii) For open compact U ď G, ρ(eU )V = V U .

(iii) If V is an H(G)-module, then V U is an H(G,U)-module for any open compact U ď G.

(iv) V is simple as a H(G)-module if and only if each V Kn is a simple H(G,Kn)-module.

Proof.

(i) Compute directly.

ρ(ϕ1 ˚ ϕ2).v =

ż

G

ϕ1 ˚ ϕ2(g)ρ(g).vdg

=

ż

G

(
ż

G

ϕ1(gh
´1)ϕ2(h)dh

)
ρ(g).vdg

(Fubini) =
ż

G

ż

G

ϕ1(gh
´1)ϕ2(h)ρ(g).vdgdh

(invariant) =
ż

G

ż

G

ϕ1(g)ϕ2(h)ρ(gh).vdgdh

=

ż

G

ϕ1(g)ρ(g).

(
ż

G

ϕ2(h)ρ(h).vdh

)
dg

= ρ(ϕ1)ρ(ϕ2).v

(ii) This follows from (i) and Lemma 3.2.1: ρ(eU )ρ(eU )V = ρ(eU ˚ eU )V = ρ(eU )V , so ρ(eU )V Ď V U .
Conversely, we need to show ρ(eU )V

U = V U . For v P V U ,

ρ(eU )v =

ż

G

eU (x)ρ(g)vdg =
1

vol(U, dg)

ż

U

ρ(g)vdg = v

(iii) For f P H(G,U) we have eU ˚ f ˚ eU = f by Lemma 3.2.2, so that

ρ(f)V U = ρ(eU )ρ(f)ρ(eU )V
U Ď ρ(eU )V = V U
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(iv) Let 0 ‰ W Ĺ V Kn be a proper submodule. Then H(G)W = V as V is simple. Then

V Kn = eKnV = eKnH(G)W = H(G,Kn)eKnW = H(G,Kn)W =W

a contradiction. Conversely, let 0 ď W Ĺ V be a proper H(G)-module. Since W =
8
Ť

n=1
WKn ,

0 ‰ WKn Ĺ V Kn for some n, but this contradicts the simplicity of V Kn as a H(G,Kn)-module.

Proposition 3.4. There is a bijection

tsmooth admissible representation of Gu ÐÑ tsmooth admissible H(G)-moduleu

where a smooth admissible H(G)-module (ρ, V ) means that V =
8
Ť

n=1
ρ(eKn)V with dimC ρ(eKn)V ă 8.

Under this bijection, the irreducible representations of G correspond to simple H(G)-modules.

3.2.2 Traces

In general, for V with dimC V = 8 we cannot define naive trace Tr(ρ(g)) for g P G. Nevertheless, if V
is smooth admissible, then for all f P H(G), f is bi U -invariant for some open compact U ď G, so that
eU ˚ f ˚ eU = f . Thus

ρ(f)V Ď ρ(eU )V = V U

so that dimC ρ(f)V ă 8. Then we can define Tr ρ(f) := Tr ρ(f)|V U ; this is well-defined by the following
elementary lemma.

Lemma 3.5. Let T : V Ñ V be a linear operator such that ImT Ď U,W for some finite-dimensional
subspaces U,W of V . Then TrT |U = TrT |W .

Proof. It suffices to show TrT |U = TrTUXW , so we may assume W Ď U in the first place. Let w1, . . . , wn

be a basis for W and extend it to a basis w1, . . . , wn, u1, . . . , um for U . Then by writing down the matrix
explicitly we easily see TrT |U = TrT |W .

Theorem 3.6. Let (ρ1, V1) and (ρ2, V2) be irreducible smooth admissible representation of G = GL2(Qp).
If Tr ρ1 = Tr ρ2 on H(G), then (ρ1, V1) – (ρ2, V2).

Proof. We first prove a lemma.

Lemma 3.7. If for all n P N we have V Kn1 – V Kn2 as H(G,Kn)-modules, then V1 – V2 as H(G)-modules.

Proof. Since K1 Ě K2 Ě K3 Ě ¨ ¨ ¨ , we have

V K1 Ď V K2 Ď V K3 Ď ¨ ¨ ¨ Ď V Kn Ď ¨ ¨ ¨

and V =
8
Ť

n=1
V Kn by smoothness. Fix a σ1 P IsomK1(V

K1
1 , V K1

2 ) and let σ2 P IsomK2(V
K2
1 , V K2

2 ). Then

σ2|
V
K1
1

P IsomK1
(V K1

1 , V K1
2 )

Since each Vi is irreducible, by Lemma 3.3.(iv) each V Kni is a simple H(G,Kn)-modules, so by Schur’s lemma
σ2|

V
K1
1

= λσ1 for some λ P Cˆ. Replacing σ2 by λ´1σ2, we may assume σ2|
V
K1
1

= σ1. Continuing in this
way, we can construct σ P IsomG(V1, V2) such that σV Kn1

= σn for each n.

By this Lemma, it suffices to show V Kn1 – V Kn2 as H(G,Kn)-modules for each n P N. Since each V Kni

is a simple H(G,Kn)-module and Tr ρ1 = Tr ρ2 on H(G,Kn) by assumption, it follows from Jacobson’s
density theorem that V Kn1 – V Kn2 for each n P N, hence the theorem.
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3.3 Contragredient representation
Let G = GL2(Qp) with p ă 8 a finite prime, and (π, V ) a smooth admissible representation of G. Put
V ˚ := HomC(V,C) to be the algebraic dual of V , and define

π_ : G AutC(V _)

by π_(g)Λ(v) := Λ(π(g´1)v). V ˚ is too big to be smooth. To fix this, define the smooth dual

V _ =

$

&

%

Λ P V ˚ | DU ď
open
cpt

G such that π_(g)Λ = Λ for all g P U

,

.

-

A linear functional Λ P V _ is the smooth dual is said to be smooth.

Definition. (π_, V _) := (π_|V _ , V _) is called the contragredient representation of (π, V ).

Let
x , y : V ˆ V _ C

(v,Λ) xv,Λy := Λ(v)

be the canonical pairing.

Lemma 3.8. If 0 Ñ U
α
Ñ V

β
Ñ W Ñ 0 is an exact sequence of smooth admissible G-modules, then

0 Ñ W_ β˚

Ñ V _ α˚
Ñ U_ Ñ 0

is also exact.

Proof.

• Suppose Λ P W_ such that β˚Λ = Λ ˝ β = 0. Since V β
Ñ W is surjective, Λ = 0.

• Let Λ P U_. Then we can find Λ1 P V ˚ in the algebraic dual such that α˚Λ1 = Λ. Let K ď G =

GL2(Qp) be a compact open subgroup such that π_(eK)Λ = Λ. Then

α˚
(
π_(eK)Λ1

)
(v) :=

ż

G

eK(g)Λ1(π(g´1)αv)dg =

ż

G

eK(g)Λ1(απ(g´1)v)dg

=

ż

G

eK(g)α˚Λ1(π(g´1)v)dg

= π_(eK)(α˚Λ1)(v) = π_(eK)Λ(v) = Λ(v)

Since π_(eK)Λ1 P V _ is smooth (see Homework 2), this shows the surjectivity of α˚.

• Suppose Λ P V _ is such that α˚Λ = 0 in U_. Then we can find Λ1 P W˚ in the algebraic dual such
that β ˚ Λ1 = Λ. The same argument as above says we can replace Λ1 by a smooth one.

Proposition 3.9. Let (π, V ) be a smooth admissible representation.

(i) For all compact open K ď G, the restriction Λ ÞÑ Λ|V K is an isomorphism (V _)K Ñ (V K)˚.

(ii) (π_, V _) is admissible.

(iii) The pairing x , y : V ˆ V _ Ñ C is a perfect pairing, in the sense that for all compact open K ď G, the
induced map V K ˆ (V _)K Ñ C is perfect. In particular, V – (V _)_.
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Proof.

(i) Suppose Λ P (V _)K such that Λ|V K = 0. Then for v P V

Λ(v) = π_(eK)Λ(v)

=

ż

G

eK(g)Λ(π(g´1)v)dg

= Λ

ż

G

eK(g)π(g´1)vdg = Λ

ż

G

eK(g´1)π(g)vdg

= Λ(π(eK)v) = 0

for π(eK)v P V K . Hence Λ = 0, proving the injectivity.

For the surjectivity, let Λ P (V K)˚ and pick Λ1 P V ˚ in the algebraic dual such that Λ1|V K = Λ. But
as in the proof of Lemma 3.8, we have

(π_(eK)Λ1)|V K = π_(eK)(Λ1|V K ) = π_(eK)Λ = Λ

Since π_(eK)Λ1 P (V _)K , we are done.

(ii) By (i), dimC(V
_)K = dimC(V

K)˚ = dimC V
K ă 8.

(iii) This follows from (i), (ii), the fact (iii) holds trivially in the finite dimensional case, and Lemma 3.7.

Remark 3.10. For ϕ P H(G) and Λ P V ˚, we always have π_(ϕ)Λ P V _. This is the p-adic analogue of
approximation by smooth functions.

Suppose (π, V ) an irreducible smooth admissible representation of G = GL2(Qp). Consider a new repre-
sentation defined by

π̆ : G AutC(V )

g π̆(g) := π( tg´1)

Then (π̆, V ) is also irreducible smooth admissible.

Theorem 3.11. There is an isomorphism (π̆, V ) – (π_, V _).

3.4 Td-space
Definition.

1. A topological space is a td-space if it admits a compact open basis. Equivalently, it is a totally
disconnected locally compact space.

2. A topological group is a td-group if its underlying space is a td-space.

In the following let X be a td-space. We put

S(X) := tϕ : X Ñ C | ϕ is smooth (i.e. locally constant) with compact supportu (= C8
c (X))

D(X) := HomC(S(X),C) (no continuity is concerned)

Lemma 3.12. For closed Z Ď X, we have an exact sequence

0 S(X ´ Z) S(X) S(Z) 0

The first arrow is “extending by zero”, and the second arrow is the restriction.
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Proof. If ϕ P S(X) such that ϕ|Z = 0, then since ϕ is locally constant, we can find open W containing Z
such that ϕ|W ” 0, implying suppϕ Ď X ´W Ď X ´Z, i.e. ϕ P S(X ´Z). This shows the complex is exact
in the middle.

To show the complex is exact in the last position, note that by definition S(Z) is generated by the 1V ’s,
where V = U X Z for open U in X; then 1V = 1U |Z , showing the exactness.

We can regard S(X) as a C-algebra, with pointwise multiplication; note that S(X) has no identity
element unless X is compact. For x P X, put

mx := tϕ P S(X) | ϕ(x) = 0u � S(X)

Then S(X)/mx – C.

Definition.

1. A S(X)-module M is smooth if for all m P M , there exists open compact V Ď X such that 1V .m = m.

2. The fibre of M at x P X is defined as Mx :=
M

mxM
.

Lemma 3.13. Let M be a smooth S(X)-module.

(i) m P mxM ô 1V .m = 0 for all sufficiently small open compact neighborhoods V of x.

(ii) If Mx = 0 for all x P X, then M = 0.

Proof.

(i) Assume m = ϕ.m1 for some ϕ P mx; then we can find an open compact neighborhood W of x such that
ϕ|W ” 0. Then for all V Ď W sufficiently small, 1V .m = 1V ϕ

loomoon

=0

.m1 = 0.

For the converse, take an open compact V such that 1V .m = m by virtue of smoothness. If x R V ,
then 1V P mx so that m = 1V .v P mxM . If x P V , then by assumption, then we can find x P W Ď V

small enough such that 1V .m = 0. Thus

1V´W .m = 1V .m´ 1W .m = m

Since 1V´W (x) = 0, m P mxM .

(ii) Givenm P M , there exists an open compact V inX such that 1W .m = 0 for all open compact W Ď V Ď X.
Since Mx = 0 for all x P X, then for each x P V we can find an open compact x P Vx Ď V such that
1Vx .m = 0. Then

V =
ď

xPV

Vx = Vx1
Y ¨ ¨ ¨ Y Vxn

for some x1, . . . , xn P V by compactness. Put V1 = Vx1
, V2 = Vx2

´ Vx1
, and so on; then

V = V1 \ ¨ ¨ ¨ \ Vn

Thus
m = 1Vm =

n
ÿ

i=1

1Vim = 0

the last equality resulting from the underlined statement.
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Suppose X, Y are td-spaces and f : Y Ñ X is a continuous map. Then S(X) acts on S(Y ) via f , defined
by

ϕ.ξ(y) = ϕ(f(y))ξ(y)

for all ϕ P S(X), ξ P S(Y ) and y P Y . Then S(Y ) is a smooth S(X)-module. Indeed, for ξ P S(Y ), since
f(suppϕ) is compact, we can cover it by a finite number of open compact sets V1 . . . , Vn; denote their union
by V and ϕ = 1V . Then if y P suppϕ, ϕ(f(y))ξ(y) = ξ(y), and if y R suppϕ, ξ(y) = 0. Thus ϕ.ξ = ξ.

In general, f˚(S(X)) Ę S(Y ) unless f is proper.

Proposition 3.14. For x P X, put Yx := f´1(x) Ď
closed

Y . Then the restriction S(Y ) Ñ S(Yx) induces an
isomorphism S(Y )x – S(Yx).

Proof. By the exact sequence

0 S(X ´ Z) S(X) S(Z) 0

it suffices to show that S(Y ´ Yx) = mxS(Y ). By definition we have mxS(Y ) Ď S(Y ´ Yx). Conversely,
suppose ϕ P S(Y ´ Yx). Since suppϕ is compact, f(suppϕ) is compact not containing x, and thus we can
find an open neighborhood U of x such that f´1(U) does not intersect with suppϕ. Now consider 1U .ϕ. If
y P suppϕ, then 1U (f(y))1f´1(U)(y) = 0; if y R suppϕ, then ϕ(y) = 0. From these we conclude 1U .ϕ = 0,
and by Lemma 3.13.(i) we see ϕ P mxS(Y ).

Consider X = G = GL2(Qp), and the right invariant distributions

D(G)G := t∆ P D(G) | ∆(ρgϕ) = ∆(ϕ) for all g P Gu

where ρgϕ(x) := ϕ(xg) for all x, g P G and ϕ P S(G). The integral
ż

G

dg P D(G)Gzt0u. Furthermore, we can

show D(G)G = C
ż

G

dg.

Proposition 3.15. dimC D(G)G ď 1.

Proof. It suffices to show that if ∆ P D(G)G is such that ∆(1K0
) = 0 for some open compact subgroup

K0 ď G, then ∆ ” 0. Suppose K ď K0 is an open compact subgroup of K0, and put ℓ = [K0 : K]; the index
is finite for K0 is compact and K is open. Then

K = K0g1 \K0g2 \ ¨ ¨ ¨ \K0gℓ

so that 1K0
= ρg´1

1
1K + ¨ ¨ ¨ + ρg´1

ℓ
1K . Thus

∆(1K0
) =

ℓ
ÿ

n=1

∆(ρg´1
n

1K) =
ℓ
ÿ

n=1

∆(1K) = ℓ ¨ ∆(1K)

Thus ∆(1K) = 0 for all sufficiently small open compact subgroups K of G. Since S(G) is generated by the
characteristic functions of all sufficiently small open compact subgroups, it follows that ∆ ” 0.

3.5 Theorem
Theorem 3.16. If ∆ : H(G) Ñ C is a linear functional invariant under conjugation, then ∆ is also invariant
under transpose.
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4 Local Whittaker Functionals

4.1 Bessel distributions

4.2 Multiplicity one of Whittaker models
Let (π, V ) be an irreducible smooth admissible representation of G = GL2(Qp), and ψ : Qp Ñ C a nontrivial
character. The set

Wπ,ψ := tΛ P V ˚ | Λ(π(n(x))v) = ψ(x)Λ(v)u

is called the space of Whittaker functionals. Note that we are considering all algebraic duals of V , not
only the smooth ones.

Proposition 4.1. dimCWπ,ψ ď 1 (Homework 2)

Proposition 4.2. If dimC V = 1, then dimCWπ,ψ = 0.

Proof. Since dimC V = 1, π : G Ñ GL(V ) = Cˆ factors through the abelianization Gab det
– Qˆ

p , so that
π(g)v = χ(det g)v for some character χ : Qˆ

p Ñ C. Then for Λ P Wπ,ψ, we have

ψ(x)Λ(v) = Λ(π(n(x))v) = Λ(χ(det n(x))v) = Λ(v)

Since ψ is chosen to be nontrivial, this implies Λ = 0.

Lemma 4.3. If V N(Qp) ‰ 0, then dimC V = 1, and π(g).v = χ(det g)v for some continuous character
χ : Qˆ

p Ñ Cˆ.

Proof. Let 0 ‰ v P V N(Qp) and H ď G the stabilizer of v. Then H Ě N(Qp) and H is open by smoothness.
By openness we see (

1

a 1

)
P H for a P pnZp, n " 0

Now use the very important identity in GL2(Qp):(
1

a 1

)
=

(
1 a´1

1

)(
a´1

´a

)(
1 a´1

1

)

This implies
(

a´1

´a

)
P H for 0 ‰ |a| Ñ 0. Put w0 :=

(
a´1

´a

)
. Then

(
1

x 1

)
= w´1

0

(
1 ´a2x

1

)
w0 P H

for all x P Qp. Thus H contains
#(

1

x 1

)
,

(
1 y

1

)+
x,yPQ

, a generating set of SL2(Qp). Hence SL2(Qp) ď

H, so that V SL2(Qp) ‰ 0. Since SL2(Qp) is normal in G, V SL2(Qp) is G-invariant, and thus V = V SL2(Qp) by
irreducibility. This means the action of G on V factor through G/SL2(Qp)

det
– Qˆ

p which is abelian. Thus
dimC V = 1, and the second statement follows at once.

Corollary 4.3.1. If 0 ‰ dimC V ă 8, then dimC V = 1.
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Proof. Choose a basis of V and consider the intersection U of their stabilizer in G. By smoothness and
finiteness, it is a nonempty open subgroup. Let x P Qp and take a P Qˆ

p making |ax| Ñ 0 so small that
n(ax) P U . Then (

1 x

1

)
=

(
a´1

1

)(
1 ax

1

)(
a

1

)
so that n(x) P U . This shows N(Qp) Ď U , and thus dimC V = 1 by Lemma 4.3.

Theorem 4.4. Suppose ψ : Qp Ñ Cˆ be a nontrivial continuous homomorphism, and dimC V ą 1. Then
dimCWπ,ψ = 1.

Proof. It suffices to show Wπ,ψ ‰ 0. We proceed in the following steps.

1) Let 1 ‰ ψ : Qp Ñ Cˆ be a continuous homomorphism. We know ψ(x) = ψp(ax) for some a P Qˆ
p . We

contend that if Wπ,ψp ‰ 0, then Wπ,ψ ‰ 0. This is easy, for if we are given Λ P Wπ,ψp , then the map

Λa(v) := Λ(π

(
a

1

)
v) lies in Wπ,ψ.

We prove the theorem by contradiction. By 1) we then have Wπ,ψ = 0 for all ψ ‰ 1.

2) We equip V with another structure of smooth S(Qp)-modules as follows: for ϕ P S(Qp) and v P V ,
define

ϕ.v :=

ż

Qp
ϕ̂(x)π(n(x))vdx

Here ϕ̂(x) :=
ż

Qp
ϕ(y)ψp(xy)dy is the Fourier transform. It is clear V then becomes an S(Qp)-module.

To see the smoothness, for v P V , since (π, V ) is smooth, we can find N " 0 such that π(n(x))v = v

for x P pNZp. Take ϕ = 1p´NZp . Then

ϕ̂(x) =

ż

p´NZp
ψp(xy)dy = pN1pNZp(x)

so that

ϕ.v =

ż

pNZp
pNπ(n(x))vdx = pN

ż

pNZp
vdx = v

Consider the fibre of this S(Qp)-action. For x P Qp, by Lemma 3.13.1,

mxV =
␣

v P V | 1x+pnZpv = 0 for n " 0
(

=

#

v P V |

ż

p´nZp
ψp(xy)π(n(y))vdy = 0 for n " 0

+

On the other hand, for x P Qp define

ψx : Qp Cˆ

y ψp(´xy)

and consider the subspace Vψx(N) := spanC tπ(n(a))v ´ ψx(a)v | v P V, a P Qpu. We contend the
equality (important!!)

Vψx(N) = mxV
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Ď : For v = π(n(a))w ´ ψx(a)w.
ż

p´nZp
ψ(xy)π(n(y))vdy =

ż

p´nZp
ψ(xy) (π(n(a))w ´ ψx(a)w) dy

=

ż

p´nZp
ψp(xy)π(n(y + a))wdy ´

ż

p´nZp
ψp(x(y ´ a))π(n(y))wdy

= 0

if n " 0 so that a P p´nZp.
Ě : Let v P mxV . Then

0 =

ż

p´nZp
ψp(xy)π(n(y))vdy

Take N " 0 so that π(n(t))v = v for t P pNZp and xy P Zp for all y P p´nZp. Then

0 =
ÿ

yPp´nZp/pNZp

ψp(xy)π(n(y)v)

=
ÿ

yPp´nZp/pNZp

ψp(xy)

π(n(y)v) ´ ψp(´xy)
looomooon

=ψx(y)

v

+ #p´nZp
pNZp

v

and hence

v = ´#
(
p´nZp
pNZp

)´1
ÿ

yPp´nZp/pNZp

ψp(xy) (π(n(y)v) ´ ψx(y)v) P Vψx(N)

This proves the contention. Now Vx :=
V

mxV
=

V

Vψx(N)
, so

V ˚
x =Wπ,ψx

3) Recall in 1) we are assuming Wπ,ψx = 0 for all x ‰ 0. By Lemma 3.13.2, we have an injection

V
ś

xPQp
Vx = V0 =

V

m0V

This forces
0 = m0V = Vψ0(N) = spanC tπ(n(a))v ´ v | v P V, a P Qpu

so that V = V N(Qp). By Lemma 4.3, dimC V = 1, a contradiction to our assumption.

We saw before that if V is a smooth admissible representation of G = GL2(Qp), then V is a module of
the Hecke algebra H(G). In fact,H(G) = S(G) as sets, but with different ring multiplication:

(H(G), ˚) : ϕ1 ˚ ϕ2(x) :=

ż

G

ϕ1(xg
´1)ϕ2(g)dg

(S(G), ¨) : ϕ1 ¨ ϕ2(x) := ϕ1(x)ϕ2(x)

When G = Qp, we can also define (H(Qp), ˚). But in this case, they are isomorphic as rings via the Fourier
transform:

(H(G), ˚) (S(G), ¨)

ϕ ϕ̂
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4.3 Uniqueness of Whittaker models
For a nontrivial continuous homomorphism ψ : Qp Ñ Cˆ, consider the space

Wψ := tW : G Ñ C | W is locally constant, W (n(x)g) = ψ(x)W (g)u

on which G acts by the right translation: ρ(g)W (x) =W (xg).

Theorem 4.5. Let (π, V ) be an irreducible smooth admissible representation with dimC V = 8. Then

dimC HomG((π, V ), (ρ,Wψ)) = 1

Proof. Consider the maps

HomG((π, V ), (ρ,Wψ)) Wπ,ψ

f [Λf (v) = f(v)(1)]

[fΛ(v)(g) = Λ(π(g)v)] Λ

„

The maps are well-defined and are mutually inverses. Hence the result follows from Theorem 4.4.

Let 0 ‰ f : (π, V ) Ñ (ρ,Wψ). Since V is irreducible, f must be injective. Let

Im f :=Wψ(π)

This is called the Whittaker model of (π,V ) in (ρ,Wψ). We have (ρ,Wψ(π)) – (π, V ), and Theorem
4.5 is equivalent to the uniqueness of the Whittaker model, i.e.,

if (ρ,Wψ(π)) and (ρ,Wψ(π)
1) are subrepresentations of (ρ,Wψ), each of which isomorphic to (π, V ), then

Wψ(π) =Wψ(π)
1 identically.
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5 Jacquet module
Let (π, V ) be an irreducible smooth admissible representation of G = GL2(Qp). For a continuous homomor-
phism ψ : Qp Ñ Cˆ, put

Vψ(N) =

#

π

(
1 x

0 1

)
v ´ ψ(x)v | x P Qp, v P V

+

Ď V

Then we have two spaces

Jψ(V ) := V /Vψ(N)

Wπ,ψ :=

#

Λ : V Ñ C | Λ(π

(
1 x

0 1

)
v) = ψ(x)Λ(x)

+

= Jψ(V )˚ = HomC(Jψ(V ),C)

Theorem 5.1. If ψ ‰ 1 and dimC V ą 1, then

dimC Jψ(V ) = 1

Proof. This follows from Theorem 4.4.

If ψ = 1, we write
J(V ) := J1(V ) = V /V (N)

where

V (N) = V1(N) = spanC

#

π

(
1 x

0 1

)
v ´ v | x P Qp, v P V

+

J(V ) is called the Jacquet module of V .

Lemma 5.2. If ψ : Qp Ñ Cˆ be a continuous homomorphism, then there exists a P Qp such that ψ(x) =
ψp(ax) for all x P Qp. Here ψp is the standard character on Qp:

ψp(x) = e´2πitxup

Proof. We show that ψ is trivial on pNZp for some N " 0. Let W be an sufficiently small open disk in C
with center 1:

W = tz P Cˆ | |z ´ 1| ă εu

Lemma 5.3. If ε is small enough, then W contains no nontrivial subgroup of Cˆ.

Proof. Recall that exp : C Ñ Cˆ is a local diffeomorphism. Then we can find an open neighborhood U of
0 such that exp ||U : U Ñ exp(U) = W is an isomorphism. If W contains a nontrivial subgroup, then there
exists U Q z0 ‰ 0 such that exp(z0)n P W for all n P Z, i.e., nz0 P U for all n P Z, a contradiction.

Pick W as in the lemma. Then ψ´1(W ) is an open set containing 0 in Qp, so we can find N " 0 such
that pNZp Ď ψ´1(W ). The lemma implies ψ(pNZp) = t1u. Then for each n ą 0,

ψ|p´nZp :
p´nZp
pNZp
loomoon

a finite cyclic group

Ñ C

Lemma 5.4. The character group
{p´nZp
pNZp

is generated by x ÞÑ ψp(p
´Nx).
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Proof. We have isomorphisms

p´nZp
pNZp

Zp
pn+NZp

Z
pn+NZ

x pnx

x x mod pn+N

The character group
{Z
pn+NZ

is generated by the map x ÞÑ e´2πixp´(N+n) . The number x

pN+n
in the exponent

can be replaced by the number
"

x

pN+n

*

p

. Thus
{p´nZp
pNZp

is generated by the map

x ÞÑ e
´2πitxp´Nu

p = ψp(p
´Nx)

Thus can find an P p´nZp such that

ψ(x) = ψp(anx) for all x P p´nZp

If x P p´mZp, m ą n, then
ψp(amx) = ψp(anx) for all x P p´nZp

or ψ((am ´ an)x) = 1 for all x P p´nZp, or am ´ an P pnZp. Thus tanunPN is a Cauchy sequence in Qp; say
an Ñ a P Qp. Then ψ(x) = ψp(ax) for all x P Qp.

Let

T =

#(
a

d

)
| a, d P Qˆ

p

+

Ď G

For t P T , tNt´1 Ď N , so that π(t)V (N) Ď V (N). Thus (π, J(V )) is an representation of T :

π(t)(v mod V (N)) := π(t)v mod V (N)

Since (π, V ) is smooth, it is clear from definition that (π, J(V )) is smooth.

Theorem 5.5. J(V ) is an admissible representation of T .

Proof.

1˝ Let

Tn =

#(
a

d

)
| a, d ” 1 (mod pnZp)

+

Ď T

J(V ) being smooth, we have

J(V ) =
8
ď

n=1

J(V )Tn

so we only need to show dimC J(V )Tn ă 8. The number n is fixed throughout this proof. Consider

KN
n :=

#(
a b

c d

)
P GL2(Zp) | a, d ” 1 (mod pn), c ” 0 (mod pN )

+
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Assume dimC V
Kn
n = d, and choose x1, . . . , xd+1 P J(V )Tn . There is a natural projection

V K
n
n J(V )Tn

v [v] := v mod V (N)

But this is not surjective. To fix this, note that for [v] P J(V )Tn , v P V can be replaced by

c

ż

1+pnZp

ż

1+pnZp

ż

Zp
π

(
a1 b

a2

)
v dbdˆa1d

ˆa2

for some constant c ‰ 0. Indeed, write
ż

1+pnZp

ż

1+pnZp

ż

Zp
π

(
a1 b

a2

)
v dbdˆa1d

ˆa2

=

ż

Zp
π

(
1 b

1

)(
ż

1+pnZp

ż

1+pnZp
π

(
a1

a2

)
v dˆa1d

ˆa2

)
db

Since π is smooth, there exists some M " 0 such that the above sum becomes

vol(pMZp)
ÿ

bPZp/pM
π

(
1 b

1

)(
ż

1+pnZp

ż

1+pnZp
π

(
a1

a2

)
v dˆa1d

ˆa2

)

Since [v] = v mod V (N) is fixed by Tn, we see the above integral reduces to

vol(pMZp)
ÿ

bPZp/pM
π

(
1 b

1

)
vol(1 + pnZp)2[v] = vol(pMZp)#(Zp/pM ) vol(1 + pnZp)2[v].

Then c := vol(pMZp)#(Zp/pM ) vol(1 + pnZp)2 = vol(1 + pnZp)2 works. In particular, this shows that
[v] P J(V )Tn has a representative fixed by

Bn =

#(
a b

0 d

)
P GL2(Zp) | a, d ” 1 (mod pn), b P Zp

+

In other words,

V Bn ÝÑ J(V )Tn

is surjective. Say xi P J(V )Tn is represented by some vi P V Bn , i = 1, . . . , d+ 1.

2˝ We have KN
n = BnN

´(pNZp) for N ě n, where

N´(pNZp) =

#(
1 0

x 1

)
| x P pNZp

+

This is because for
(
a b

c d

)
P KN

n , by definition d P 1 + pnZp Ď Zˆ
p so that we can write

(
a b

c d

)
=

(
a´ bc/d b

0 d

)(
1 0

c/d 1

)

Since J(V ) is smooth, we can find N " n such that each vi is fixed by N´(pNZp). Thus vi P V K
N
n for

i = 1, . . . , d+ 1.
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3˝ For open compact K 1,K ď G and x P G, define

[K 1xK] : V K V K
1

v
1

vol(K)
π(1K1xK).v =

1

vol(K)

ż

K1xK

π(g)v dg

This is essentially a finite sum: if we write K 1xK =
m
Ů

i=1

yiK for some yi, then

[K 1xK]v =
m
ÿ

i=1

π(yi)v

Take K = KN
n = B1

nN
´(pNZp), K 1 = Kn

n and x =

(
pm

1

)
, where N " n ě 1 and m = N ´n; then

Kn
nxK

n
N =

pm´1
ğ

y=0

(
pm y

0 1

)
K (♠)

To see this, we start with studying the double coset

Kn
N

(
p 0

0 1

)
Kn
N+1

Compute (
a b

0 d

)(
1 0

e 1

)(
p

1

)
=

(
p bd´1

1

)(
a

d

)(
1

pe 1

)

If b P Zp, a, d P 1 + pnZp and e P pNZp, then bd´1 P Zp and pe P pN+1Zp. Also,(
p α

1

)
Kn
N+1 =

(
p β

1

)
Kn
N+1

if and only if

KN+1
n Q

(
p´1 ´αp´1

1

)(
p β

1

)
=

(
1 p´1(β ´ α)

1

)
These show that

KN
n

(
p 0

0 1

)
KN+1
n =

p´1
ğ

y=0

(
p y

0 1

)
KN+1
n

(♠) can be derived exactly in the same way, and thus the map [K 1xK] has the form

V K
N
n V K

n
n

x
pm´1
ÿ

y=0

π

(
pm y

0 1

)
v
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Then we have a commutative diagram

vi v P V K
N
n V K

n
n [Kn

nxK
N
n ]v

xi [v]J(V )Tn J(V )Tn

[
pm´1
ÿ

y=0

π

(
pm y

0 1

)
v

]

= pmπ

(
pm

1

)
[v]

[Kn
nxK

N
n ]

Φ

where Φ is induced by [Kn
nxK

N
n ]. The description given above in the right shows that Φ is in fact a

C-vector space isomorphism.

4˝ Since t[Kn
nxK

N
n ]viui=1,...,d+1 Ď V K

n
n and dimC V

Kn
n := d, there exist α1, . . . , αd+1 P C not all zero

such that
d+1
ÿ

i=1

αi[K
n
nxK

N
n ]vi = 0

Then

0 =
d+1
ÿ

i=1

αi ¨ pmπ

(
pm

1

)
xi = Φ

(
d+1
ÿ

i=1

αi ¨ xi

)
in J(V )Tn

ñ 0 =
d+1
ÿ

i=1

αi ¨ xi in J(V )Tn

so that any d+ 1 elements in J(V )Tn are linearly dependent, proving dimC J(V )Tn ď d.

Theorem 5.6. dimC J(V ) ď 2.

Proof. Suppose J(V ) ‰ 0. Since J(V ) is admissible as a representation of T , (J(V )_)Tn ‰ 0 and dimC(J(V )_)Tn ă

8 for some n " 0. Then the action of T on (J(V )_)Tn factors through T/Tn, which is a finite abelian group.
Since T is abelian, there exist Λ P J(V )_zt0u (in some irreducible sub T/Tn-repn of (J(V )_)Tn) and con-
tinuous homomorphism χ : T Ñ Cˆ (by Schur’s lemma) such that

π_(t)Λ = χ´1(t)Λ, t P T

Then
Λ : J(V ) C

π(t)x χ(t)Λ(x)

Extending to B = TN by 0 across N , we have (recall that J(V ) = V /V (N))

Λ : V C

π(tn)x χ(t)Λ(x)
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for t P T and n P N (we also extend χ : B Ñ Cˆ by setting χ|N ” 1). Then

0 ‰ Λ P HomB((V, π|B), (C, χ)) = HomG((V, π), indGB χ)

by the Frobenius reciprocity, where

indGB χ :=

$

&

%

f : G Ñ C
ˇ

ˇ

ˇ

ˇ

f(bg) = χ(b)f(g) for b P B

DU ď
open
cpt

G such that f(gu) = f(g) for all g P G, u P U

,

.

-

and G acts on indGB χ by ρ : G Ñ AutC indGB χ defined by ρ(g)f(x) = f(xg). The isomorphism is given as
below:

Lemma 5.7 (Frobenius reciprocity). Let G be a td-group and H a closed subgroup. Suppose (V, π) and
(W,ρ) be smooth representations of G and H, respectively. Then there is an isomorphism

HomH((V, π)|B , (W,ψ)) – HomG((V, π), indGH(W,ψ))

where indGHW is defined by

indGBW :=

$

&

%

f : G Ñ W

ˇ

ˇ

ˇ

ˇ

f(bg) = ψ(b)f(g) for b P B

DU ď
open
cpt

G such that f(gu) = f(g) for all g P G, u P U

,

.

-

with G acts on indGB χ by ρ : G Ñ AutC indGBW defined by ρ(g)f(x) = f(xg).

Proof. Define

HomH((V, π)|B , (W,ψ)) HomG((V, π), (indGHW,ρ))

T TG(v)(g) := T (π(g)v)

TH(v) := T (v)(1) T

(¨)G

(¨)H

The only thing that needs to check is the well-definedness.

• Let T P LHS. Then for v P V, g, g1 P G

TG(π(g)v)(g1) = T (π(g1)π(g)v) = T (π(g1g)v) = TG(v)(g1g) = ρ(g)TG(v)(g1)

For v P V , by smoothness we can find open compact U ď G by which v is fixed. Then for g P G and
u P U ,

TG(v)(gu) = T (π(gu)v) = T (π(g)π(u)v) = T (π(g)v) = TG(v)(g)

so that TG(v) P indGBW .

• Let T P RHS. Then for v P V , h P H

TH(π(h)v) = T (π(h)v)(1) = ρ(h)T (v)1 = T (v)(h) = ψ(h)T (v)(1) = ψ(h)TH(v)

For v P V , by smoothness we can find open compact U ď G such that ρ(u)T (v) = T (v) for all u P U ,
and thus for g P G and h P U XB, we have

ψ(h)TH(v) = ρ(h)T (v)1 = T (v)1 = TH(v)

Thus TH(v) is smooth so that TH(v) P W .
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By definition, indGB χ is smooth, and it is also admissible by

Lemma 5.8 (Iwasawa decomposition). G = BK, where K = GL2(Zp).

Proof. For g =

(
a b

c d

)
, we have

g =

(
det g/c a

0 c

)(
0 ´1

1 d/c

)
if ordp c ď ordp d, and

g =

(
det g/d b

0 d

)(
1 0

c/d 1

)
if ordp c ą ordp d.

To see how does this imply the admissibility, suppose generally (W,ψ) is a smooth admissible represen-
tation of B. A function f P indGBW is determined by f |K forf(bk) = ρ(b)f(k). Let U ď G be open compact.
Then any function f P (indGBW )U induces f : K/K X U Ñ W . Since K is compact, K/K X U is a finite
group. At this point, if W is finite dimensional, then (indGBW )U Ď spanCtf : K/K X U Ñ Cu is also finite
dimensional. In general, let x1, . . . , xn P K be a complete set of representative of K/K X U . Then f(xi) is
fixed by B X xiUx

´1
i so that f(xi) P WBXxiUx

´1
i which is finite dimensional thanks to the admissibility of

W . Thus dimC(indGBW )U ă 8 as well.
Then HomG(V, indGB χ) ‰ 0, and since V is irreducible, we have V ãÑ indGB χ is injective.

Lemma 5.9. If we have an exact sequence of admissible smooth representations of G

0 V1 V2 V3 0α β

then
0 J(V1) J(V2) J(V3) 0

is also exact.

Proof. The nontrivial part is to show J(V1) Ñ J(V2) is injective. If x = [v] P J(V1) with α(x) = 0 in J(V2).
Then α(v) P V2(N), i.e..

ż

p´nZp
π

(
1 x

1

)
α(v) dx = 0 for n " 0

Since the integral is in fact a finite sum (which can be seen by choosing U ď p´nZp that fixes v and α(v)

simultaneously), it follows that

α

(
ż

p´nZp
π

(
1 x

1

)
vdx

)
= 0

Since α is injective, it follows that
ż

p´nZp
π

(
1 x

1

)
vdx = 0, i.e., v P V1(N).
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By this lemma, it suffices to show dimC J(indGB χ) ď 2, or dually dimC(J(indGB χ))˚ ď 2.

J(indGB χ)˚ = tL : indGB χ Ñ C | L(ρ(n)f) = L(f) for n P Nu

Consider the projection
S(G) indGB χ

ϕ pχ(ϕ)(g) :=

ż

B

ϕ(bg)χ´1(b)db

pχ

where db is the right-invariant Haar measure on B. This is in fact surjective, for if f P indGB χ, let ϕ :=

f ¨ 1K P S(G). Then

pχ(ϕ)(g) =

ż

B

f(bg)1K(bg)χ´1(b)db =

ż

B

f(g)1K(bg)db = f(g) vol(K XB, db)

For L P J(indGB χ)˚, put ∆ = ∆L := L ˝ pχ : S(G) Ñ C; then ∆ P D(G).
Let B ˆN act on B by τ(b, n)x = b´1xn. For (b1, n) P B ˆN ,

pχ(τ(b1, n)
˚ϕ)(g) =

ż

B

ϕ(b´1
1 bgn)χ´1(b)db

=

ż

B

ϕ(bgn)χ´1(b1b)d(b1b)

= χ´1δ´1
B (b1).ρ(n)pX(ϕ)(g)

(where δB is the modular character of B.) Thus

∆(τ(b1, n)
˚ϕ) = χδB(b

´1
1 )L(ρ(n)pχ(ϕ)) = χδB(b

´1
1 )∆(ϕ)

Lemma 5.10 (Bruhat decomposition). We have

G = B \BwB

where w =

(
0 1

´1 0

)
.

It follows that we have an exact sequence

0 S(BwB) S(G) S(B) 0

Taking dual, we have
0 D(BwB) D(G) D(B) 0

so
0 D(BwB)χ D(G)χ D(B)χ

where
D(¨)χ := t∆ P D(¨) | τ(b, n)˚∆ = χ(b´1)∆ for (b, n) P B ˆNu

Since BˆN acts on BwB and B respectively, we have B =
B ˆN

BBˆN
and BwB =

B ˆN

(BwB)BˆN
as topological

spaces.

Lemma 5.11. For G a td-group and χ a continuous character of G, dimC D(G)χ ď 1.

Proof. Let ∆ P D(G)χ and K0 ď G a compact open subgroup such that ∆(χ´11K0) = 0 (note that χ P S(G)
thanks to its continuity and by a no small subgroup argument). We need to show that ∆ ” 0.
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Since B and BwB a quotient of B ˆN , we obtain

dimC D(B)χ,dimC D(BwB)χ ď dimC D(B ˆN)χ ď 1

so that dimC D(G)χ ď 2. Finally, since pχ is injective, the pullback map

p˚
χ : J(indGB χ) D(G)χ

L p˚
χL = L ˝ pχ

is injective, so dimC J(indGB χ) ď 2.

Remark 5.12. This is a general method to study the representation of G = GL2(Qp). We have several
important subgroup

Borel subgroup

B =

#(
a b

d

)+
ď G

N =

#(
1 b

1

)+
T =

#(
a

d

)+
unipotent radical maximal torus / Levi subgroup

Ď Ď

Say (π, V ) a representation of G, form J(V ) = V /V (N) and prove that J(V ) is a admissible representation
of T . If J(V ) ‰ 0, V is a subrepresentation of indGB χ.
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6 Classification of (g, K)-modules

6.1 Basics on real Lie groups
Let G be a Lie group. For x P G, denote T (G)x to be the tangent space of G at x, that is

T (G)x := tD : OG,x Ñ C | D is a derivation at the point xu

where OG,x is the real algebra of smooth functions defined around x. Then we can form the tangent bundle

T (G) =
ğ

xPG

T (G)x

Definition. Lie(G) = T (G)e is called the Lie algebra of G, where e is the identity element of G.

For g P G, put
ρg : G G

x xg

λg : G G

x g´1x

For X P Lie(G), we can construct a right invariant vector field LX ; namely, a smooth section

LX : G Ñ TG

with LX(e) = X and for all g P G, the diagram

G TG

G TG

ρg

LX

ρg˚

LX

commutes. It is clear that LX(g) := ρg˚X is the unique right invariant vector field with LX(e) = X.

Theorem 6.1. For X P Lie(G), there exists a unique curve γX : R Ñ G such that

• γX(0) = e;

• γ1
X(t0) := (γX)˚

(
d

dt

ˇ

ˇ

ˇ

ˇ

t=t0

)
= LX(γX(t0)) for all t0 P R.

Such a curve is called the integral curve for LX . Moreover, the unique local flow Φ(g, t) : GˆR Ñ G for
LX is smooth and is given by Φ(g, t) = gγX(t).

Definition. Define the exponential map

exp : Lie(G) G

X γX(1)

The exp is smooth and is a local diffeomorphism at the origin.

• We have d

dt

ˇ

ˇ

ˇ

ˇ

t=0

exp(tX) =
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

γX(t) = γ1
X(0) = X.
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Example. Let G = GL2(R) or one of its connected components G = GL2(R)+ = tA P GL2(R) | detA ą 0u.
Note that GL2(R)+ � GL2(R) has index two.

With the standard coordinates xij on G,

Lie(G) =
à

1ďi,jď2

RXij

where for f P OG,e

Xij(f) =
Bf

Bxij
(e)

With this standard basis, Lie(G) =M2(R). For X P M2(R) = Lie(G), we have

γX(t) = etX =
8
ÿ

n=0

Xntn

n!

Then exp : Lie(G) Ñ G has the form

exp(X) = eX =
8
ÿ

n=0

Xn

n!

When G = GL2(R), we will write t ÞÑ etX to mean the integral curve for LX .

Definition. For X P Lie(G), let ρ(X) : OG,e Ñ OG,e be the derivation defined by

ρ(X)f(g) =
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

f(getX)

Note that ρ(X)f(e) = X(f).

Definition. Define the Lie bracket [, ] : Lie(G) ˆ Lie(G) Ñ Lie(G) by

[X,Y ]f := X(ρ(Y )f) ´ Y (ρ(X)f)

for f P OG,e. It satisfies the Jacobi’s identity

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

With the exponential map, we can show that G has no small subgroup, i.e., there exists an open neigh-
borhood of e in G such that W contains no nontrivial subgroup of G. Further, we can show that if G1 is a
compact td-group and f : G1 Ñ G is a continuous group homomorphism, then f(G1) Ď G must be finite.

6.2 Representations
Definition. A representation (π,H) of G = GL2(R) consists of a Hilbert space (H, x, y) and a homomor-
phism π : G Ñ AutCH such that the action map

GˆH H

(g, v) π(g).v

is continuous. We say (π,H) is unitary if for all g P G,

xπ(g)v, π(g)wy = xv, wy

for all v, w P H.
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Let C8
c (G) denote the space of smooth functions on G with compact support. We define the smooth

convolution. Let dg be the right invariant Haar measure on G. For ϕ P C8
c (G) and v P H, define

π(ϕ).v :=

ż

G

ϕ(g)π(g).vdg

In fact, π(ϕ).v is defined to be the unique vector in H such that for all w P H,

xπ(ϕ)v, wy =

ż

G

ϕ(g)xπ(g)v, wydg

The existence and the uniqueness of such vector is guaranteed by the Rieze’s representation theorem.

Definition. A vector v P H is C1 if for all X P Lie(G), the limit

lim
tÑ0

π(etX).v ´ v

t

exists. If it exists, we put

π(X).v := lim
tÑ0

π(etX).v ´ v

t
=

d

dt

ˇ

ˇ

ˇ

ˇ

t=0

π(etX).v

Inductively, we say v P Ck (k ě 2) if π(X).v P Ck´1 for all X P Lie(G). Put

Hsm := tv P H | v P Ck for all k ě 1u

to be the subspace of smooth vectors in H.

• If ϕ P C8
c (G) and v P H, then π(ϕ)v P Hsm. Indeed,

π(X)π(ϕ)v =
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

π(etX)π(ϕ).v =
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

ż

G

ϕ(g)π(etXg)vdg

=
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

ż

G

ϕ(e´tXg)π(g)vdg

´

ż

G

ϕX(g)π(g)vdg

where ϕX(g) :=
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

ϕ(e´tXg).

Let tϕnu be an approximate of identity on G, namely,

(1) ϕn P C8
c (G) for all n,

(2)
ż

G

ϕn(g)dg = 1 for all nn and

(3) for all open neighborhoods U of e, lim
nÑ8

ż

U

ϕn(g)dg = 1.

Lemma 6.2. For all v P H, lim
nÑ8

π(ϕn)v = v, where tϕnu is an approximate of identity. In particular, Hsm

is dense in H.
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6.3 Classification
Definition. Let G = GL2(R), g = Lie(G), K = O(2). A (g ,K)-module (π,V ) is a C-vector space with
a Lie algebra homomorphism π : g Ñ EndC V and a group homomorphism π : K Ñ AutC(V ) such that

• for all X P LieK Ď g, we have

π(X)v =
d

dt

ˇ

ˇ

ˇ

ˇ

t=0

π(etX)v

• for all X P g and k P K

π(AdkX)v = π(k)π(X)π(k´1)v

where Adk := (ck)˚,e and ck : G Ñ G is defined by ck(x) = kxk´1.

and the representation (π, V ) of K is admissible, or K-finite, i.e.

• for all v P V , the C-span of tπ(k)v | v P Ku is finite dimensional.

In addition, we assume V is smooth, i.e., for all X P LieK, v P V, Λ P V _, the function

R Q t ÞÑ xπ(etX)v,Λy P C

is smooth in the usual sense.

For an Lie algebra g over C, we can define the universal enveloping algebra U(g) by the quotient
T (g)/I, where T (g) is the tangent algebra generated by the C-module g, and I is the two-sided ideal
generated by the elements [X,Y ]´XbY +Y bX. The resulting quotient U(g) is then a (non-commutative)

C-algebra. More precisely, if g has a C-basis x1, . . . , xd, and [xi, xj ] =
d
ř

ℓ=1

bℓijxℓ with bℓij P C, then the

Poincaré-Birkhoff-Witt theorem, , or PBW theorem, says that

U(g) =
à

a1,...,adPN0

Cxa11 ¨ ¨ ¨xadd

with xixj = xjxi +
d
ř

ℓ=1

bℓijxℓ. In particular, if g is an abelian Lie algebra, then U(g) = C[x1, . . . , xd].

For a Lie algebra g, we have the adjoint representation

ad : g End g

X adX : Y ÞÑ [X,Y ]

The Jacobi identity becomes

ad[X,Y ] = adX adY ´ adY adX in End g

We have the Killing form on g, which is by definition the symmetric bilinear form B(X,Y ) := Tr(adX adY )
on g. The Jacobi identity tells

B(adZ X,Y ) = ´B(X, adZ Y )

Let us assume the Killing form B is nondegenerate. Then for a basis x1, . . . , xd for g, there exists a dual
basis y1, . . . , yd satisfying B(xi, yj) = δij . The Casimir element is defined as

∆ := x1y1 + ¨ ¨ ¨ + xdyd =
d
ÿ

i=1

xiyi P U(g)
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Proposition 6.3.

1. The element ∆ is independent of the choice of basis x1, . . . , xd.

2. ∆ lies in the center of U(g).

Example. Consider the sl2(R) = Lie SL2(R) = tA P M2(R) | TrA = 0u. We have sl2(R) = RH+ ‘ RR+ ‘

RL+, where

H+ =

(
1 0

0 ´1

)
, R+ =

(
0 1

0 0

)
, L+ =

(
0 0

1 0

)

with the relations

[H+, R+] = 2R+, [H+, L+] = ´2L+, [R+, L+] = H+

Thus, with respect to the ordered basis tH+, R+, L+u,

adH+ =

0 0 0

0 2 0

0 0 ´2

 , adR+ =

 0 0 1

´2 0 0

0 0 0

 , adL+ =

0 ´1 0

0 0 0

2 0 0


In matrices, the Killing form B is

B =

8 0 0

0 0 4

0 4 0


and thus the dual basis is 1

8
H+,

1

4
L+,

1

4
R+. The Casimir element is then 1

8
H2

+ +
1

4
R+L+ +

1

4
L+R+. For

convenience, let us put

∆ = H2
+ + 2R+L+ + 2L+R+ P Z(U(sl2(R)))

Consider g := Lie GL2(R). The Killing form B on g is degenerate. To see this, note that

g = sl2(R) ‘ R

(
1 0

0 1

)

The element J =

(
1 0

0 1

)
commutes with everyone, i.e, adJ = 0 on g. Thus J ‰ 0 lies in the radical of B.

Nonetheless,

U(g) = R[J ] bR U(sl2(R))

so the constructed element ∆ also commutes with elements in U(g).
Consider the action of K = O(2). We have AdgX = gXg´1 for all g P G = GL2(R) and X P g. Then

B(AdgX,Adg Y ) = B(X,Y ) and thus

Adg∆ = Adg(H+)
2 + 2Adg(R+)Adg(L+) + 2Adg(L+)Adg(R+) = ∆

In particular, Adk∆ = ∆ for all k P K. Therefore, for any (g,K)-module (π, V ), we have π(∆) P

End(g,K)(V ).
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Proposition 6.4 (Schur’s lemma). If (π, V ) is an irreducible admissible (g,K)-module and X P g such that
π(X) P End(g,K)(V ), then π(X) acts on V by a scalar.

In particular, π(∆) and π(J) acts on V as scalars, where

J =

(
1 0

0 1

)
P g

Let G+ = GL2(R)+ = tg P M2(R) | det g ą 0u; then g := LieG = LieG+. Put

K+ := K XG+ = SO2(R) =

#(
cos θ sin θ

´ sin θ cos θ

)
| θ P R

+

which is an index two abelian subgroup of K+. Let (π, V ) be an admissible irreducible (g,K+)-module,
which is defined in a similar way as (g,K)-modules. Let gC := gbRC and

H = ´i

(
0 1

´1 0

)
, R =

1

2

(
1 i

i ´1

)
, L =

1

2

(
1 ´i

´i ´1

)
For each ℓ P Z, define the weight ℓ space

V (ℓ) :=

#

v P V | π

(
cos θ sin θ

´ sin θ cos θ

)
v = eiℓθv

+

By K+-finiteness, together with the fact yK+ = {R/2πZ = tx ÞÑ eiℓx | ℓ P Zu, we have the decomposition

V =
à

ℓPZ
V (ℓ)

with each V (ℓ) finite dimensional. ???
We have the following formulas. For v P V (ℓ),

1. π(H)v = ℓv.

2. If we put kθ :=
(

cos θ sin θ
´ sin θ cos θ

)
, then

π(Adkθ L)v = π(kθLk
´1
θ )v = e2iθπ(L)v

π(Adkθ L)v = π(kθLk
´1
θ )v = e2iθπ(L)v

In particular, this means R : V (ℓ) Ñ V (ℓ+ 2) and L : V (ℓ) Ñ V (ℓ´ 2).

Since (π, V ) is irreducible, by Schur’s lemma, π(∆) = λ∆ id and π(J) = λJ id for some constant λ∆, λJ P C.
Pick 0 ‰ v P V (ℓ) and form the subspace

V 1 = Cv ‘
à

ně1

CRnv ‘
à

ně1

CLnv

This is a (g,K+)-submodule of V , so by irreducibility of V , V = V 1. In particular, dimC V (ℓ) = 0 or 1 for
each ℓ P Z. Put

ΣV := tℓ P Z | dimC V (ℓ) = 1u

Then V =
à

ℓPΣV

V (ℓ), and if ℓ1, ℓ2 P ΣV , then ℓ1 ” ℓ2 (mod 2). Let ϵ P t0, 1u be the parity of V , i.e., ϵ ” ℓ

(mod 2) for all ℓ P ΣV .
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Theorem 6.5.

1. If λ∆ is not of the form m2 ´ 1, m P Z, or λδ = m2 ´ 1 for some m P Z with m ” ϵ (mod 2), then

ΣV = tℓ P Z | ℓ ”2 ϵu

2. If λ∆ = m2 ´ 1 with m ” ϵ+1 (mod 2), then there are three possibilities of ΣV . If we put m = k+1,
then either

• ΣV = t|k|, |k| + 2, . . .u = tℓ P Z | ℓ ě |k|, ℓ ”2 ϵu,

• ΣV = t´|k|,´|k| + 2, . . . , |k| ´ 2, |k|u = tℓ P Z | |ℓ| ď |k|, ℓ ”2 ϵu, or

• ΣV = t´|k|,´|k| ´ 2, . . .u = tℓ P Z | ℓ ď ´|k|, ℓ ”2 ϵu.

Example. A continuous character χ : Rˆ Ñ Cˆ has the form χ = | ¨ |ssignε with s P C, ε P t0, 1u. Now
pick s1, s2 P C, ϵ1, ϵ2 P t0, 1u and put χi = | ¨ |sisignεi . Form the unitary induction indGB(χ1, χ2)

I(χ1, χ2) =

#

f : GL2(R) Ñ C | f is smooth and K-finite, f
((

a1 b

0 a2

)
g

)
= χ1(a1)χ2(a2)

ˇ

ˇ

ˇ

ˇ

a1
a2

ˇ

ˇ

ˇ

ˇ

1
2

f(g)

+

Then V = I(χ1, χ2) is a (g,K)-module, and in particular a (g,K+)-module. For ℓ P Z, we have

V (ℓ) =
␣

f P I(χ1, χ2) | f(gkθ) = eiℓθf(g)
(

The Iwasawa decomposition G = BK+ implies dimC V (ℓ) ď 1, with equality if and only if ℓ ” ϵ1 + ϵ2

(mod 2). To see the equality, if f P V (ℓ), then

(´1)ℓf(e) = eiℓπf(e) = f

(
´1 0

0 ´1

)
= (´1)ϵ1+ϵ2

Thus f ‰ 0 if and only if f(e) ‰ 0, if and only if ℓ ” ϵ1 + ϵ2 (mod 2). Then

ΣV = tℓ P Z | ℓ ” ϵ := ϵ1 + ϵ2 (mod 2)u

For ℓ ”2 ϵ, let φℓ P V (ℓ) be the unique function with φℓ(e) = 1. If we put s = s1 ´ s2, then

1. ρ(R)φℓ =
s+ 1 + ℓ

2
φℓ+2.

2. ρ(L)φℓ =
s+ 1 ´ ℓ

2
φℓ´2.

3. ρ(R+)φℓ(e) = 0.

4. ρ(H+)φℓ(e) = s+ 1.

5. ρ(∆) = (s2 ´ 1)φℓ, so that λ∆ = s2 ´ 1.

6. ρ(J)φℓ = (s1 + s2)φℓ, so that λJ = s1 + s2.
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7 Kirillov Model
Let ψ : Qp Ñ Cˆ be the standard additive character ψ = ψp, and (π, V ) an irreducible smooth admissible
representation of G = GL2(Qp). Recall we have Whittaker functional

Λ : V Ñ C

associated with ψ satisfying
Λ(π(n(x))v) = ψ(x)Λ(v)

Define
C0(Qˆ

p ) := tϕ : Qˆ
p Ñ C | suppϕ is bounded in Qpu

Clearly, both S(Qp), S(Qp) Ď C0(Qˆ
p ). Let

B1 =

#(
a b

0 1

)
| a P Qˆ

p , b P Qp

+

ď G

and let (Kψ, C0(Qˆ
p )) be the representation of B1 given by

Kψ

(
a b

0 1

)
ϕ(x) := ψ(bx)ϕ(xa)

Then Kψ : B1 Ñ GL(C0(Qˆ
p )) is called the Kirillov representation.

Consider the map
(π, V ) C0(Qˆ

p )

v ξv(a) := Λ

(
π

(
a 0

0 1

)
v

)

Note that this association [v ÞÑ ξv] is an intertwining operator: for g =

(
a b

0 1

)
P B1 and x P Qˆ

p

ξπ(g)v(x) = Λ

(
π

(
x 0

0 1

)
π

(
a b

0 1

)
v

)

= Λ

(
π

(
1 bx

0 1

)
π

(
ax 0

0 1

)
v

)
= ψ(bx)Λ

(
π

(
ax 0

0 1

)
v

)

and

Kψ(g)ξv(x) = ψ(bx)ξv(ax) = ψ(bx)Λ

(
π

(
ax 0

0 1

)
v

)

so that ξπ(g)v(x) = Kψ(g)ξv(x) as claimed.

Proposition 7.1. v ÞÑ ξv is injective if dimV = 8.

Proof. Let v P V and ξv = 0. Recall the space

Vψ(N) = spanC

#

π

(
1 x

0 1

)
v ´ ψ(x)v | x P Qp, v P V

+

Ď V
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Recall Theorem 5.1 that dimC Jψ(V ) = 1 with Jψ(V ) := V /Vψ(N). In this setting, Λ : Jψ(V ) Ñ C is an
isomorphism (note ψ ‰ 1). Then

ξv = 0 ô Λ

(
π

(
a 0

0 1

)
v

)
= 0 for all a P Qˆ

p

ô π

(
a 0

0 1

)
v P Vψ(N) for all a P Qˆ

p

ñ v P Vψa(N) for all a P Qˆ
p

where ψ(x) := ψ(ax). The last implication is because that if we write

π

(
a 0

0 1

)
v =

ÿ

x,w

(
π

(
1 x

0 1

)
w ´ ψ(x)w

)
then

v =
ÿ

x,w

(
π

(
a´1 0

0 1

)
π

(
1 x

0 1

)
w ´ ψ(x)π

(
a´1 0

0 1

)
w

)

=
ÿ

x,w

π
(
1 a´1x (=:y)

0 1

)
π

(
a´1 0

0 1

)
w ´ ψ(x)π

(
a´1 0

0 1

)
w

loooooooomoooooooon

=:w1


=

ÿ

x1,w1

(
π

(
1 y

0 1

)
w1 ´ ψ(ay)w1

)

We view V as a smooth S(Qp)-module, where the action is given by

ϕ.v := π(pϕ)v

for ϕ P S(Qp), v P V , where pϕ is the Fourier transform of ϕ (with respect to the standard character ψp). For
a P Qˆ

p , put Va := Jψa(V ), which is the stalk of V at a P Qˆ
p . Then

v P Vψa(N) for all a P Qˆ
p ñ v = 0 in Va for all a P Qˆ

p (♠)

By Lemma 3.13, we have an injective map

V
ź

aPQp

Va

Suppose for contradiction that v ‰ 0. Then (♠) and the injectivity of the above map force that v ‰ 0 in the
Jacquet module V0 = J(V ) = V /V (N). Denote

K := tv P V | ξv = 0u

Then the above map induces an injective map

K ãÑ V0 = J(V )

For v P K, we have π
(
1 x

0 1

)
v P K for all x P Qp. Indeed, we have ξπ(g)v = Kψ(g)ξv = 0 with g =

(
1 x

0 1

)
.

Then

K Q v ´ π

(
1 x

0 1

)
v ” 0 (mod V (N))
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so that the injectivity implies that

v =

(
1 x

0 1

)
v

for all x P Qp. This (by a lemma in the class) implies dimV = 1 since 0 ‰ v P K, a contradiction.

Suppose (π, V ) is an irreducible smooth admissible representation with dimV = 8. The proposition
shows we have an injective operator

(π, V ) C0(Qˆ
p )

v ξv(a) := Λ

(
π

(
a 0

0 1

)
v

)

Let Kψ(π) Ď C0(Qˆ
p ) be the image; then

V – Kψ(π) = tξv | v P V u Ď C0(Qˆ
p )

The action of G on V is transferred to an action on Kψ(π) via this map, namely,

Kψ : G GL(Kψ(π))

g [Kψ(g) : ξv ÞÑ ξπ(g).v]

(Kψ,Kψ(π)) is called the Kirillov model of (π, V ). In general, it is difficult to write down explicitly the
action of GL2(Qp) on Kψ(π), but we know

Kψ

(
a b

0 1

)
ξv(x) = ψ(bx)ξv(xa)

Recall the Kirillov representation (Kψ, C0(Qˆ
p )) ofB1 defined above. Consider its subrepresentation (Kψ,S(Qˆ

p )).

Theorem 7.2. (Kψ,S(Qˆ
p )) is an irreducible representation of B1.

Proof. For any a P Qˆ
p and a continuous homomorphism ν : Zˆ

p Ñ Cˆ, define ϕa,ν P S(Qˆ
p ) by

ϕa,ν(x) := ν(ax)1Zˆ
p
(ax)

Lemma 7.3.

S(Qˆ
p ) = spanCtϕa,ν | a P Qˆ

p , ν : Zˆ
p Ñ Cˆu

Proof. Let ϕ P S(Qˆ
p ). Then ϕ(x) =

ÿ

nPZ
ϕ(x)1Zˆ

p
(pnx). We first show a smooth function φ supported on

Zˆ
p can be written as a sum of characters. Let H be a subgroup of Zˆ

p such that on each coset of H, φ is
a constant; this is possible, for Zˆ

p is compact (and totally disconnected). Then φ descends to the quotient
φ1 : Zˆ

p /H Ñ C. Since Zˆ
p /H is a finite abelian group, φ1 =

ÿ

νP
{Zˆ
p /H

aν ¨ ν, and hence so is φ.

Each ϕ(x)1Zˆ
p
(pnx) can be viewed (under suitable dilation) as a smooth function on Zˆ

p , so the above
argument proves the lemma.

Suppose 0 ‰ W Ď S(Qˆ
p ) is B1-invariant. We want to show W = S(Qˆ

p ).
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1) There exists ϕa,ν P W for some a, ν. To show this, take 0 ‰ ϕ P W . Since ϕ is compactly supported,
we can find n P Z such that ϕ|pnZˆ

p
‰ 0 while ϕ|pmZˆ

p
= 0 for all m ă n. Write

ϕ(pnu) =
ÿ

νP
yZˆ
p

aν ¨ ν(u)

where u P Zˆ
p and xZˆ

p denotes the continuous dual, and

aν :=

ż

Zˆ
p

ϕ(pnu)ν´1(u)dˆu

This is in fact a finite sum, as said in the above lemma.

Since ϕ ‰ 0, we have aν ‰ 0 for some ν P xZˆ
p . Define

ϕν(x) :=

ż

Zˆ
p

ϕ(pnux)ν´1(u)dˆu

=

ż

Zˆ
p

Kψ

(
pnu

1

)
ϕ(x)ν´1(u)dˆu

Then [x ÞÑ ϕν(x)] lies in W , for ϕ P W and W is B1-invariant. Note that ϕν(xu) = ν(y)ϕν(x) for all
u P Zˆ

p . Define

ϕ+pn,ν(x) :=

ż

Zp
Kψ

1
z

pn

1

ϕν(x)dz P W

=

ż

Zˆ
p

ψ

(
zx

pn

)
ϕν(x)dz = ϕν(x)IpnZp(x)

The last equality is because ψ = ψp is the standard additive character. Then

ϕpn,ν(x) = ϕ+pnν(x) ´ ϕ+pn+1,ν(x) = ϕν(x)IpnZˆ
p
(x) P W

2) For µ P xZˆ
p ztνu, let c := pn be the conductor of µ and consider

ż

Zˆ
p

µ´1(u)Kψ

(
1

au

c
1

)
ϕa,ν(x)d

ˆu P W

=

ż

Zˆ
p

µ´1(u)ψp

(aux
c

)
ϕa,ν(x)d

ˆu

= ϵ(0, µ´1)µ
(ax
c

)
ϕa,ν(x)

= ϵ(0, µ´1)µ´1(c)
‰0

ϕa,µν(x)

where we have extended µ to be a character on Qˆ
p by setting µ(p) := 1, and

ϵ(0, µ´1) :=

ż

Zˆ
p

µ´1(u)ψp(u)d
ˆu

Thus ϕa,µν P W for all µ ‰ ν, so that ϕa,µ P W for all µ P xZˆ
p . Finally,

Kψ

(
a1

1

)
ϕa,ν = ϕaa1,ν

so that ϕa,µ P W for all a P Qˆ
p , µ P xZˆ

p . Thus W = S(Qˆ
p ).
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Lemma 7.4. For all v P V (N), we have ξv P S(Qˆ
p ). Further we have a commutative diagram

V Kψ(π) C0(Qˆ
p )

V (N) S(Qˆ
p )

„

Ď

„

Ď

Proof. Recall

V (N) = spanC

#

π

(
1 x

0 1

)
v ´ v | x P Qp, v P V

+

For v = π

(
1 x

0 1

)
w ´ w with x ‰ 0,

ξv(y) = π

(
1 x

0 1

)
ξw(y) ´ ξw(y) = (ψ(xy) ´ 1)ξw(y)

If y P x´1Zp, then ψ(xy) = 1 so that ξv(y) = 0; in particular, ξv(y) P S(Qˆ
p ).

On the other hand, V (N) is a B1-module for(
a b

0 1

)(
1 x

1

)
=

(
1 ax

1

)(
a b

1

)

so by the theorem we have either V (N) = 0 or V (N) – S(Qˆ
p ). But if V (N) = 0, then V N ‰ H so that

dimC V = 1 by Lemma 4.3, a contradiction.

Conclusion. For (π, V ) admissible smooth irreducible representation of G = GL2(Q) with dimV = 8, we
have

S(Qˆ
p ) Ď Kψ(π) Ď C0(Qˆ

p )

with
Kψ(π)

S(Qˆ
p )

–
V

V (N)
= J(V )

and (by Theorem 5.6)

dimC
Kψ(π)

S(Qˆ
p )

ď 2

Now recall the space

Wψ = tW : G Ñ C | W is smooth, W (n(x)g) = ψ(x)W (g)u

and the map
V Wψ

v Wv(g) := Λ(π(g)v)

45



Let Wψ(π) Ď Wψ denote the image of V under this map, and let G act on Wψ(π) by right translation
ρ : G Ñ GL(Wψ(π)), namely, ρ(g)W (x) := W (xg). Then (ρ,Wψ(π)) is called the Whittaker model of
(π, V ). We have a commutative triangle

v Wv

v (π, V ) (ρ,Wψ(π)) W

ξv (Kψ,Kψ(π)) ξW (a) :=W

((
a

1

))„

„

„
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8 Classification of Irreducible Representations of GL2(Qp)

8.1 Weil representation
For two characters χ1, χ2 : Qˆ

p Ñ Cˆ, define χ : B Ñ Cˆ by

χ

(
a1 b

a2

)
= χ1(a1)χ2(a2)

and

I(χ1, χ2) = IndGB χ :=

"

f : G Ñ
smooth

C | f(bg) = χ(b)δB(b)
1
2 f(g)

*

= indGB χδ
1
2

B

where
δB : B R+(
a1 b

a2

)
ˇ

ˇ

ˇ

ˇ

a1
a2

ˇ

ˇ

ˇ

ˇ

p

is the modular character of B. Now let G act on I(χ1, χ2) by right translation:

ρ : G GL(I(χ1, χ2))

g ρ(g)f(x) := f(xg)

By Lemma 5.8 (and the argument below there), I(χ1, χ2) is an admissible smooth representation of G.

Definition. The space of Bruhat-Schwartz functions is defined as

S(Q2
p) = S(Qp) bC S(Qp) := spanCtφ1 b φ2(x, y) := φ1(x)φ2(y) | φi P S(Qp)u

on which G acts by right translation:

ρ : G GL(S(Q2
p))

g ρ(g)Φ(x, y) := Φ((x y)g)

Definition. On S(Q2
p) we define the partial Fourier transform

S(Q2
p) S(Q2

p)

Φ Φ„

Here Φ„ is defined by the integral

Φ„(x, y) :=

ż

Qp
Φ(x, a)ψp(ay)da

where da is the self-dual Haar measure on Qp (in this case, da is chosen so that vol(Zp, da) = 1).

When Φ = φ1 b φ2 is a simple tensor, then

(φ1 b φ2)
„ = φ1 b xφ2

Since φ ÞÑ pφ is an isomorphism on S(Qp), the partial Fourier transform is an isomorphism

S(Q2
p) S(Q2

p)

Φ Φ„

„
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and this induces a new action of G on S(Q2
p):

ωψ : G GL(S(Q2
p))

such that
(ωψ(g)Φ)

„ := ρ(g)Φ„

(ωψ,S(Q2
p)) is called the Weil representation of G = GL2(Qp). By definition,

(¨)„ P IsomG((ωψ,S(Q2
p)), (ρ,S(Q2

p)))

and ωψ is smooth (for ρ is smooth).

Formulas. For Φ P S(Q2
p) and ψ = ψp, we have the following:

(i) ωψ

(
a

a´1

)
Φ(x, y) = |a|Φ(xa, ya).

(ii) ωψ

(
1 b

1

)
Φ(x, y) = ψ(bxy)Φ(x, y).

(iii) ωψ

(
1

´1

)
Φ(x, y) =

ż

Q2
p

Φ(a, b)ψ(ay + bx)dadb.

(iv) ωψ

(
a

1

)
Φ(x, y) = Φ(ax, y).

Proof. The first step to prove these formulas is to take „ and prove the corresponding identities.

(i) We need to show

ρ

(
a

a´1

)
Φ„(x, y) =:

(
ωψ

(
a

a´1

)
Φ(x, y)

)„

(x, y) =

(
|a|ρ

(
a

a

)
Φ

)„

(x, y)

Now just compute(
|a|ρ

(
a

a

)
Φ

)„

(x, y) =

ż

Qp
|a|Φ(ax, at)ψ(yt)dt

=

ż

Qp
Φ(ax, t)ψ(ya´1t) = Φ„(ax, a´1y) = ρ

(
a

a´1

)
Φ„(x, y)

(ii)

Φ„(x, bx+ y) = ρ

(
1 b

1

)
Φ„(x, y) =

ż

Qp
ψ(bxt)Φ(x, t)ψ(yt)dt =

ż

Qp
Φ(x, t)ψ((bx+ y)t)dt

(iii) We need to show

Φ„(´y, x) = ρ

(
1

´1

)
Φ„(x, y) =

ż

Qp

(
ż

Q2
p

Φ(a, b)ψ(at+ bx)ψ(yt)dadb

)
dt

Let Φ = φ1 b φ2. Expanding, we have
ż

Qp

(
ż

Q2
p

Φ(a, b)ψ(at+ bx)ψ(yt)dadb

)
dt =

ż

Qp
xφ1(t)xφ2(x)ψ(yt)dt = φ1(´y)xφ2(x) = Φ„(´y, x)
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(iv)

Φ„(ax, y) = ρ

(
a

1

)
Φ„(x, y) =

(
ρ

(
a

1

)
Φ

)„

(x, y) =

ż

Qp
Φ(ax, t)ψ(ty)dt

8.2 Construction of Whittaker functional
Given χ = (χ1, χ2) : Qˆ

p Ñ Cˆ and Φ P S(Q2
p), define

WΦ,χ : G C

g χ1| ¨ |
1
2 (det g)

ż

Qˆ
p

ωψ(g)Φ(t, t
´1)χ1χ

´1
2 (t)dˆt

The integral really takes place on a compact set, so it is absolutely convergent. To see this, since Φ has
compact support, so does ωψ(g)Φ. Then ωψ(g)Φ(t, t

´1) ‰ 0 if and only if |t| ď C1 and |t´1| ď C2 for some
C1, C2 ą 0, i.e.,

0 ă C´1
2 ď |t| ď C1

The map WΦ,χ is a Whittaker functional of ψ, i.e., WΦ,χ is smooth and satisfies

WΦ,χ(n(x)g) = ψ(x)WΦ,χ(g)

for all x P Qp and g P G.

• Smoothness. This follows from that ωψ is smooth.

• Expanding the LHS, we see

WΦ,χ(n(x)g) = χ1| ¨ |
1
2 (det(n(x)g))

ż

Qˆ
p

ωψ(n(x)g)Φ(t, t´1)χ1χ
´1
2 (t)dˆt

For.(ii)
= χ1| ¨ |

1
2 (det g)

ż

Qˆ
p

ψ(x)ωψ(g)Φ(t, t
´1)χ1χ

´1
2 (t)dˆt

= ψ(x)WΨ,χ(g)

The map [Φ ÞÑ WΦ,χ] P HomG((ρ,S(Q2
p)), (ρ,Wψ)) is NOT intertwining. Nevertheless, formally we have

χ´1
1 | ¨ |´

1
2 (a)Wρ(g)Φ„,χ

((
a 0

0 1

))
=

ż

Qˆ
p

(ωψ(g)Φ)
„(at, t´1)χ1χ

´1
2 (t)dˆt

=

ż

Qˆ
p

ż

Qp
ωψ(g)Φ(at, x)ψ(t

´1x)χ1χ
´1
2 (t)dxdˆt

=

ż

Qˆ
p

ż

Qp
ωψ(g)Φ(t, x)ψ(at

´1x)χ1χ
´1
2 (a´1t)dxdˆt

= χ´1
1 χ2(a)

ż

Qˆ
p

ż

Qp
ωψ(g)Φ(t, tx)ψ(ax)χ1χ

´1
2 | ¨ |(t)dxdˆt
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Changes of variables are valid if wt(χ1χ
´1
2 ) ą 0 is assumed. If we write (t, tx) = (0, t)wn(x), where

w =

(
0 ´1

1 0

)
, then

χ´1
2 | ¨ |´

1
2 (a)Wρ(g)Φ„,χ

((
a 0

0 1

))
=

ż

Qˆ
p

ż

Qp
ωψ(g)Φ((0 t)wn(x))ψ(ax)χ1χ

´1
2 (t)|t|dxdˆt

=

ż

Qp
fωψ(g)Φ,χ(wn(x))ψ(ax)dx

where fΦ,χ is the function defined by

fΦ,χ : G C

g χ1| ¨ |
1
2 (det g)

ż

Qˆ
p

Φ((0 t)g)χ1χ
´1
2 | ¨ |(t)dˆt

This is a local zeta integral, or a Tate integral, on GL(1), and it converges absolutely when wt(χ1χ
´1
2 ) ą ´1.

(Recall the weight of a character χ is the unique real number wt(χ) such that |χ| = | ¨ |wt(χ).) When

wt(χ1χ
´1
2 ) ą ´1, we check that fΦ,χ P I(χ1, χ2). For b =

(
a1 ˚

a2

)
P B,

fΦ,χ(bg) = χ1| ¨ |
1
2 (det bg)

ż

Qˆ
p

Φ((0 t)bg)χ1χ
´1
2 | ¨ |(t)dˆt

(t ÞÑ a´1
2 t) = χ1| ¨ |

1
2 (a1a2 det g)

ż

Qˆ
p

Φ((0 t)g)χ1χ
´1
2 | ¨ |(a´1

2 t)dˆt

= χ1(a1)χ2(a2)

ˇ

ˇ

ˇ

ˇ

a1
a2

ˇ

ˇ

ˇ

ˇ

1
2
ż

Qˆ
p

Φ((0 t)g)χ1χ
´1
2 | ¨ |(t)dˆt

= χ(b)δB(b)
1
2 fΦ,χ(g)

Again, Φ ÞÑ fΦ,χ is NOT intertwining. Nevertheless, we have ρ(g)fΦ,χ = χ1| ¨ |
1
2 (det g)fρ(g)Φ,χ; indeed, by

definition,

ρ(g)fΦ,χ(x) = χ1| ¨ |
1
2 (detxg)

ż

Qˆ
p

Φ((0 t)xg)χ1χ
´1
2 | ¨ |(t)dˆt

= χ1| ¨ |
1
2 (detxdet g)

ż

Qˆ
p

ρ(g)Φ((0 t)x)χ1χ
´1
2 | ¨ |(t)dˆt

= χ1| ¨ |
1
2 (det g)fρ(g)Φ,χ(x)

In the following, we always assume wt(χ1χ
´1
2 ) ą 1.

Consider the diagram
Φ fΦ„,χ

S(Q2
p) I(χ1, χ2)

WΦ,χ Wψ

On each space G act by right translation.
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Proposition 8.1.

1. If fΦ„,χ = 0, then WΦ,χ = 0.

2. The map Φ ÞÑ fΦ„,χ is surjective onto I(χ1, χ2).

By this proposition, we obtain a (colored) arrow

S(Q2
p) I(χ1, χ2)

Wψ

making this triangle commutative. To show this proposition, we need the following.

Lemma 8.2. For all x P Qp, we have the identity
ż

Qp
WΦ,χ

(
a

1

)
χ´1
2 | ¨ |´

1
2 (a)ψ(ax)da = fΦ„,χ(wn(x))

where w =

(
0 ´1

1 0

)
P G = GL2(Qp) is the Weyl element.

Proof. Define ξ˚ : Qˆ
p Ñ C by

ξ˚(a) :=WΦ,χ

(
a

1

)
χ´1
2 | ¨ |´

1
2 (a)

For.(iv)
= χ1χ

´1
2 (a)

ż

Qˆ
p

Φ(at, t´1)χ1χ
´1
2 (t)dˆt

Then ξ˚ P L1(Qp), for (first replace t by t´1 in the definition of ξ˚)
ż

Qp
|ξ˚(a)|da ď

ż

Qp
|χ1χ

´1
2 (a)|

ż

Qˆ
p

|Φ(at´1, t)||χ1χ
´1
2 (t´1)|dˆtda

=

ż

Qˆ
p ˆQp

|Φ(at´1, t)||χ1χ
´1
2 (at´1)|dˆtda

(a ÞÑ at) =

ż

Qˆ
p ˆQp

|Φ(a, t)||χ1χ
´1
2 (a)||t|dˆtda

(|t|dˆtda = |a|dtdˆa) =

ż

QpˆQˆ
p

|Φ(a, t)||χ1χ
´1
2 | ¨ |(a)|dtdˆa ă 8

because suppΦ is compact and wt(χ1χ
´1
2 | ¨ |) ą 0. Now for the sake of absolute convergence, we have

ż

Qp
ξ˚(a)ψ(ax)da =

ż

Qp

ż

Qˆ
p

Φ(at, t´1)χ1χ
´1
2 (at)ψ(ax)dˆtda

(t ÞÑ ta´1) =

ż

Qp

ż

Qˆ
p

Φ(t, t´1a)χ1χ
´1
2 (t)ψ(ax)dˆtda

(a ÞÑ at) =

ż

Qp

ż

Qˆ
p

Φ(t, a)χ1χ
´1
2 (t)ψ(atx)|t|dˆtda

=

ż

Qˆ
p

Φ„(t, tx)χ1χ
´1
2 | ¨ |(t)dˆt

= fΦ„,χ(wn(x))
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The last equality holds because of det(wn(x)) = 1 and

(t tx) = (0 t)

(
´1

1 x

)
= (0 t)wn(x)

Remark 8.3. If wt(χ1χ
´1
2 ) ą 0, then
ż

Qp
fΦ„,χ(wn(x))ψ(´ax)dx =WΦ,χ

(
a

1

)
χ´1
2 | ¨ |´

1
2 (a)

for all a P Qˆ
p . This is a kind of Fourier inversion formula.

Proof. (of Proposition 8.1.1) Suppose fΦ„,χ = 0; in particular, fΦ„,χ(wn(x)) = 0 for all x P Qp. Let

ξ˚(a) =WΦ,χ

(
a

1

)
χ´1
2 | ¨ |´

1
2 (a)

be the same as in Lemma 8.2. Then by the same lemma, we have
ż

Qp
ξ˚(a)ψ(ax)da = 0 for all x P Qp

Integrating, for N " 0 and x P Qˆ
p , we have

0 =

ż

p´NZp

ż

Qp
ξ˚(a)ψ(ab)ψ(´bx)dadb

=

ż

Qp
ξ˚(a)

ż

p´NZp
ψ(b(a´ x))dbda

(ψ = ψp) =

ż

Qp
ξ˚(a)Ix+pNZp(a)da

= ξ˚(x) vol(pnZp)

since ξ˚ is smooth (and if N " 0, x and a are sufficiently close). This proves ξ˚(x) = 0; putting x = 1, this
gives WΦ,χ(e) = 0.

In general, for all g P G, we have

fΦ„,χ = 0 ñ 0 = ρ(g)fΦ„,χ = fρ(g)Φ„,χ = f(ωψ(g)Φ)„,χ ñ 0 =Wωψ(g)Φ,χ(e) ñ WΦ,χ(g) = 0

The third implication follows from the case we prove above, and the last implication follows from the
definition of WΦ,χ:

Wωψ(g)Φ,χ(e) = χ1| ¨ |
1
2 (det e)

ż

Qˆ
p

ωψ(e)ωψ(g)Φ(t, t
´1)χ1χ

´1
2 (t)dˆt

= χ1| ¨ |
1
2 (det g)´1WΦ,χ(g)

Proof. (of Proposition 8.1.2) For f P I(χ1, χ2), f is completely determined by f |K by Iwasawa decomposition,
where K = GL2(Zp). Now define Φ P S(Q2

p) by

Φ(x, y) =

#

χ´1
1 | ¨ |´

1
2 (det k)f(k) , if (x y) = (0 1)k for some k P K

0 , otherwise
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We have suppΦ Ď (0 1)K is compact, and

fΦ,χ(k) = χ1| ¨ |
1
2 (det k)

ż

Qˆ
p

Φ((0 t)k)χ1χ
´1
2 | ¨ |(t)dˆt

= χ1| ¨ |
1
2 (det k)

ż

Zˆ
p

χ´1
1 | ¨ |´

1
2 (tdet k)f(

(
1

t

)
k)χ1χ

´1
2 | ¨ |(t)dˆt

= χ1| ¨ |
1
2 (det k)

ż

Zˆ
p

χ´1
1 | ¨ |´

1
2 (tdet k)χ2| ¨ |´

1
2 (t)f(k)χ1χ

´1
2 | ¨ |(t)dˆt

=

ż

Zˆ
p

f(k)dˆt = f(k)

Since Φ ÞÑ Φ„ is bijective, we are done.

Therefore, we obtain an operator
I(χ1, χ2) Wψ

fΦ„,χ WΦ,χ

We show this is intertwining; denote this operator by Θ temporarily. We must show

Θ(ρ(g)fΦ„,χ) = ρ(g)Θ(fΦ„,χ)

We have seen that ρ(g)fΦ,χ = χ1| ¨ |
1
2 (det g)fρ(g)Φ,χ; in other words,

ρ(g)fΦ„,χ = χ1| ¨ |
1
2 (det g)fρ(g)Φ„,χ = χ1| ¨ |

1
2 (det g)f(ωψ(g)Φ)„,χ

On the other hand,

Wωψ(g)Φ,χ(x) = χ1| ¨ |
1
2 (detx)

ż

Qˆ
p

ωψ(x)ωψ(g)Φ(t, t
´1)χ1χ

´1
2 (t)dˆt = χ´1

1 | ¨ |´
1
2 (det g)WΦ,χ(xg)

Thus

Θ(ρ(g)fΦ„,χ) = Θ(χ1| ¨ |
1
2 (det g)f(ωψ(g)Φ)„,χ) = χ1| ¨ |

1
2 (det g)Wωψ(g)Φ,χ

= χ1| ¨ |
1
2 (det g)χ´1

1 | ¨ |´
1
2 (det g)ρ(g)WΦ,χ

= ρ(g)WΦ,χ = ρ(g)Θ(fΦ„,χ)

as desired. We will use this map to study the irreducibility of I(χ1, χ2).

8.3 Classification

Recall N =

#

n(x) :=
(
1 x

1

)
| x P Qp

+

Lemma 8.4.
I(χ1, χ2)

N ‰ 0 ô χ1χ
´1
2 = | ¨ |´1

If either holds, then dimC I(χ1, χ2)
N = 1.

Proof. By Bruhat decomposition, we have G = B \ BwB = B \ BwN . Then f P I(χ1, χ2)
N is uniquely

determined by f(e) and f(w). Recall the very important identity that holds for all x P Qˆ
p :(

1

x 1

)
=

(
x´1 1

x

)(
´1

1

)(
1 x´1

1

)
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Then

f

(
1

x 1

)
= f

((
x´1 1

x

)
w

(
1 x´1

1

))
= χ´1

1 χ2| ¨ |´1(x)f (w)

For |x| sufficiently small, since f is smooth, we have

f(e) = χ´1
1 χ2| ¨ |´1(x)f(w)

This implies either χ1χ
´1
2 = | ¨ |´1 or f(e) = f(w) = 0 (i.e. f ” 0), and f is uniquely determined by f(e).

This shows dimC I(χ1, χ2)
N = 1.

Proposition 8.5. Consider the pairing

x , y : I(χ1, χ2) ˆ I(χ´1
1 , χ´1

2 ) C

defined by

xf1, f2y :=

ż

K

f1(k)f2(k)dk

Then

(i) The pairing is perfect, i.e., for all compact open U ď G, the induced pairing

I(χ1, χ2)
U ˆ I(χ´1

1 , χ´1
2 )U Ñ C

is perfect. In particular, I(χ´1
1 , χ´1

2 ) – I(χ1, χ2)
_.

(ii) The pairing is G-equivariant, i.e.,
xρ(g)f1, ρ(g)f2y = xf1, f2y

for all g P G = GL2(Qp).

Proof. By Iwasawa decompsotion G = BK elements in I(χ1, χ2) are uniquely determined by their restriction
to K = GL2(Zp), i.e.,

I(χ1, χ2) – tf : K Ñ C | f(bg) = χ(b)f(g) for all b P K XB, g P Ku

We show that if f P I(χ1, χ2) is such that xf, gy = 0 for all g P I(χ´1
1 , χ´1

2 ), then f = 0. For a fixed k1 P K,
let U ď G be compact open such that f(k1U) = f(k1). Define g : G Ñ C such that

g(x) :=

#

χ´1δ
1
2

B(b) , if x = bk1u for some b P B, u P U

0 , otherwise

To see g is well-defined, suppose bk1u = b1k1u
1 for some other b1 P B, u1 P U . Then b1´1b = k1u

1u´1k´1
1 P

k1Uk
´1
1 . We now take U smaller so that k1Uk´1

1 is contained in the conductor of χδ´ 1
2

B . Then χ´1δ
1
2

B(b
1´1b) =

1, or χ´1δ
1
2

B(b) = χ´1δ
1
2

B(b
1), as wanted. It is clear that g P I(χ´1

1 , χ´1
2 ). Now

0 = xf, gy = f(k1)

ż

KXBk1U

δB(b)dk

which implies f(k1) = 0. Thus f ” 0.
To show the pairing is G-equivariant, we use the integration formula

ż

G

f(g)dg =

ż

B

ż

K

f(bg)dkdLb
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where dLb is the left invariant Haar measure on B. On the other hand, consider

pχ : S(G) I(χ1, χ2)

ϕ pχ(ϕ)(g) =

ż

B

ϕ(bg)χ´1δ
´ 1

2

B (b)db

where db is a chosen right invariant Haar measure on B.

• pχ is surjective. The proof is similar to that of Proposition 8.1.2. For f P I(χ1, χ2), define ϕ P S(G)
by

ϕ(g) =

#

f(g) , if g P K

0 , otherwise

Then

pχ(ϕ)(g) =

ż

B

ϕ(bg)χ´1δ
´ 1

2

B (b)db

=

ż

BXKg´1

f(bg)χ´1δ
´ 1

2

B (b)db

=

ż

BXKg´1

χ(b)δB(b)
1
2 f(g)χ´1δ

´ 1
2

B (b)db

= f(g) vol(B XKg´1, db)

• pχ is intertwining. For

pχ(ρ(g)ϕ)(x) =

ż

B

ρ(g)ϕ(bx)χ´1δ
´ 1

2

B (b)db =

ż

B

ϕ(bxg)χ´1δ
´ 1

2

B db = pχ(ϕ)(xg) = ρ(g)pχ(ϕ)(x)

Now for f1 P I(χ1, χ2) and f2 P I(χ´1
1 , χ´1

2 ), choose ϕ1 P S(G) such that pχ(ϕ1) = f1
ż

K

f1(k)f2(k)dk =

ż

K

(
ż

B

ϕ1(bk)δ
´ 1

2

B χ´1(b)db

)
f2(k)dk

=

ż

K

ż

B

ϕ1(bk)f2(bk)dbdk

=

ż

G

ϕ1(g)f2(g)dg

Let us write the last integral as (ϕ1, f2). Then

xρ(g)f1, ρ(g)f2y = (ρ(g)ϕ1, ρ(g)f2) = (ϕ1, f2) = xf1, f2y

for pχ(ρ(g)ϕ) = ρ(g)pχ(ϕ) = ρ(g)f1 and dg is right-invariant.

Theorem 8.6.

(i) I(χ1, χ2) is irreducible if χ1χ
´1
2 ‰ | ¨ |˘.

(ii) I(χ1, χ2) has a unique irreducible (infinite dimensional) subrepresentation, denoted by I(χ1, χ2)s, if
χ1χ

´1
2 = | ¨ |, and the sequence is exact

0 I(χ1, χ2)S I(χ1, χ2) Cχ1| ¨ |´
1
2 ˝ det 0

(iii) I(χ1, χ2) has a unique one-dimensional subrepresentation if χ1χ
´1
2 = | ¨ |´1.

0 Cχ1| ¨ |
1
2 ˝ det I(χ1, χ2) I(χ1, χ2)Q 0
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Proof. Taking dual, if necessary, we can always assume that wt(χ1χ
´1
2 ) ą ´1. Consider the composition

(which is well-defined by Proposition 8.1)

I(χ1, χ2) Wψ C0(Qˆ
p )

fΦ„,χ ξΦ,χ(a) :=WΦ,χ

(
a

1

)

This map is injective. To see this, assume ξΦ,χ = 0. By Lemma 8.2, this implies fΦ„,χ(wn(x)) = 0 for all
x P Qp. By Bruhat decomposition G = B\BwN , to see f = 0, it suffices to show f(e) = 0, but this follows
from the smoothness of ξΦ,χ and that BwN is dense in G. Let V be the image of I(χ1, χ2) in Wψ; then
V – I(χ1, χ2).

Suppose V contains a proper nontrivial invariant subspace 0 ‰ U Ĺ V . Consider

U(N) = spanCtρ(n(x))u´ u | u P U, x P Qpu Ď U

• U(N) = 0. Then U = UN ‰ 0, and by Lemma 8.4 we see χ1χ
´1
2 = | ¨ |´1.

• U(N) ‰ 0. Then U(N) = V (N)(= S(Qˆ
p )) by Theorem 7.2 and Lemma 7.4, so

V (N) = U(N) Ď U Ď V

thus (V /U)_ Ď (V /V (N))_ = (V _)N = I(χ´1
1 , χ´1

2 )N by Proposition 8.5. Since U is proper, this
implies 0 ‰ I(χ´1

1 , χ´1
2 )N , hence χ´1

1 χ2 = | ¨ |´1 by Lemma 8.4.

Hence, if I(χ1, χ2) is irreducible, we must have χ1χ
´1
2 ‰ | ¨ |˘ by our discussion, whence (i).

(ii) χ1χ
´1
2 = | ¨ |. Since U is chosen arbitrary, it follows dimC V /U = 1 and that U is the unique irreducible

subrepresentation. Thus we have the exact sequence

0 U V – I(χ1, χ2) Cχ1| ¨ |´
1
2 ˝ det 0

We must explain why V /U – Cχ1| ¨ |´
1
2 ˝ det. We have

(V /U)_ = I(χ´1
1 , χ´1

2 )N = Cχ´1
1 | ¨ |

1
2 ˝ det

By Proposition 3.9.(iii), we have

V /U = ((V /U)_)_ = (Cχ´1
1 | ¨ |

1
2 ˝ det)_ = Cχ1| ¨ |´

1
2 ˝ det

The last isomorphism results from the definition of contragredient action.

(iii) χ1χ
´1
2 = | ¨ |´1. This follows from (ii) and the fact that taking contragredient is an exact functor.

Definition. Consider the induced module (ρ, I(χ1, χ2)) and Theorem 8.6.

1. For χ1χ
´1
2 ‰ | ¨ |˘, let π(χ1, χ2) denote the isomorphism class of (ρ, I(χ1, χ2)). This is called the

principal series.

2. Denote by St the unique irreducible subrepresentation of I(| ¨ |
1
2 , | ¨ |´

1
2 ), and call it the standard

Steinberg representation. For χ0 : Qˆ
p Ñ Cˆ, we have

St b χ0 = (ρ, I(χ0| ¨ |
1
2 , χ0| ¨ |´

1
2 )S)

This is called the the Steinberg representation, or the special / degenerate principal series.
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• We have π(χ1, χ2)
_ = π(χ´1

1 , χ´1
2 ).

• Put χ1 = χ0| ¨ |
1
2 and χ2 = χ0| ¨ |´

1
2 . Then χ1χ

´1
2 = | ¨ |, so the Steinberg representation St b χ0 is the

unique irreducible subrepresentation of I(χ1, χ2), and we have the following commutative digram

0 I(χ1, χ2)S I(χ1, χ2) Cχ1| ¨ |´
1
2 ˝ det 0

0 St b χ0 I(χ0| ¨ |
1
2 , χ0| ¨ |´

1
2 ) Cχ0 ˝ det 0

with exact rows. Taking contragredient, and with the identification I(χ1, χ2)
_ = I(χ´1

1 , χ´1
2 ), we have

0 Cχ´1
1 | ¨ |

1
2 ˝ det I(χ´1

1 , χ´1
2 ) I(χ´1

1 , χ´1
2 )Q 0

0 Cχ´1
0 ˝ det I(χ0| ¨ |

1
2 , χ0| ¨ |´

1
2 ) (St b χ0)

_ 0

so that (St b χ0)
_ – I(χ´1

0 | ¨ |´
1
2 , χ´1

0 | ¨ |
1
2 )Q. We will prove in the following that, in fact,

(St b χ0)
_ – St b χ´1

0 = I(χ´1
0 | ¨ |

1
2 , χ´1

0 | ¨ |´
1
2 )S

Definition. Let (π, V ) be a representation of G = GL2(Qp) and χ : Qˆ
p Ñ Cˆ a character. Define

π b χ : G GL(V )

by (π b χ)(g).v = χ(det g)π(g)v. The new representation (π b χ, V ) is called (π,V ) twisted by χ.

• We have (ρb µ, I(χ1, χ2)) – (ρ, I(χ1µ, χ2µ)), given by

I(χ1, χ2) I(χ1µ, χ2µ)

f f b (µ ˝ det) : g ÞÑ f(g)µ(det g)

Indeed, for x, g P G, we have

ρ(g)(f b (µ ˝ det))(x) = f(xg)µ(detxg)
= µ(det g)(ρ(g)f b (µ ˝ det))(x) = (ρb µ)(g)f b (µ ˝ det)(x)

Then π(χ1, χ2) b µ = π(χ1µ, χ2µ) in the principal series case.

Definition. Let (π, V ) be an irreducible representation of G = GL2(Qp). Let a P Qˆ
p and consider

(
a

a

)
;

being in the center of G, we have π
(
a

a

)
P EndG(V, V ). Let U be an compact open subgroup of G such

that V U ‰ 0. Then π

(
a

a

)
P EndG(V U , V U ), and since dimC V

U ă 8, π
(
a

a

)
has an eigenvalue. By

Schur’s lemma we can find ω(a) P C such that π
(
a

a

)
v = ω(a)v for all v P V . The resulting character

ω : Qˆ
p Ñ C is called the central character of π.

Proposition 8.7. For (π, V ) irreducible, we have π_ – π b ω´1.
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Proof. From Theorem 3.11 we have an isomorphism (π_, V _) – (π̆, V ), where π̆(g) := π( tg´1). It suffices

to show ω̆ – π b ω´1. For g =

(
a b

c d

)
, we have

tg´1 ¨ det g =

(
d ´c

´b a

)
= wgw´1

where w =

(
0 1

´1 0

)
. Now define

θ : (π̆, V ) (π b ω´1, V )

v θ(v) = π(w´1)v

Compute

θ(π̆(g)v) = π(w´1)π( tg´1)v = π(w´1wgw´1 det g´1)v = ω´1(det g)π(gw´1)v = π b ω´1(g)θ(v)

Corollary 8.7.1.

1. For χ1χ
´1
2 ‰ | ¨ |˘, we have π(χ1, χ2)

_ = π(χ2, χ1).

2. For χ0 : Qˆ
p Ñ Cˆ, we have (St b χ0)

_ = St b χ´1
0 .

Proof.

1. The central character of (ρ, I(χ1, χ2)) is ω = χ1χ2. Thus

π(χ´1
1 , χ´1

2 ) = (π(χ1, χ2))
_ = π(χ1, χ2) b (χ1χ2)

´1 = π(χ´1
2 , χ´1

1 ).

2. (St b χ0)
_ = (St b χ0) b χ´2

0 – St b χ´1
0 .

Let (π, V ) be an irreducible representation of G = GL2(Qp). We will consider the Whittaker model
Wψ(π) of π. Recall the space

Wψ := tW : G Ñ C | W is smooth, W (n(x)g) = ψ(x)W (g)u

Let ω be the central character of π. For W P Wψ, define

W b ω´1(g) :=W (g)ω´1(det g)

Then W b ω´1 P Wψ, as det n(x) = 1 for all x P Qp. Then

(ρ,Wψ(π) b ω´1) – (ρb ω´1,Wψ(π)) – (π b ω´1, V ) – (π_, V _)

where the first isomorphism is defined by W b ω´1 ÞÑ W , and hence

Wψ(π
_) =Wψ(π) b ω´1

by the uniqueness of Whittaker models.
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8.4 Useful integration formulas

Let G = GL2(Qp), K = GL2(Zp), N =

#(
1 ˚

0 1

)+
, B =

#(
˚ ˚

˚

)+
, T =

#(
˚

˚

)+
, where ˚ P Qp.

Then for f P S(G), we have the following integration formulas.
ż

G

f(g)dg =

ż

B

ż

K

f(bk)dkdLb (♠)

=

ż

B

ż

N

f(bwn)dndLb (♣)

where w =

(
0 1

´1 0

)
. (♠) results from the Iwasawa decomposition, and (♣) results from the Bruhat

decomposition together with the fact that vol(B, dg) = 0. (proofs to be filled) Also,
ż

B

f(b)dLb =

ż

T

ż

N

f(tn)dndt

Note that the formulas above hold up to a positive scalar, due to the uniqueness of Haar measures. We will
determine the scalar when we really need it.

Recall in the proof of Proposition 8.5 we showed the map

S(G) I(| ¨ |
1
2 , | ¨ |´

1
2 )

f f(g) :=

ż

B

f(bg)dLb

is surjective; take χ = (| ¨ |
1
2 , | ¨ |´

1
2 ) so that χδ

1
2

B = δB , and thus χ´1δ
´ 1

2

B db = δ´1
B db = dLb. Hence for

f P I(| ¨ |
1
2 , | ¨ |´

1
2 ), take any S(G) Q f ÞÑ f and compute

ż

K

f(k)dk
(♠)
=

ż

B

ż

K

f(bk)dkdLb

(♣)
=

ż

B

ż

N

f(bwn)dndLb =

ż

B

f(wn)dn

Consider the pairing x , y : I(χ1, χ2)ˆI(χ´1
1 , χ´1

2 ) Ñ C defined in Proposition 8.5. For (f1, f2) in the domain,
we have f1f2 P I(| ¨ |

1
2 , | ¨ |´

1
2 ), and hence

xf1, f2y =

ż

K

f1(k)f2(k)dk =

ż

N

f1(wn)f2(wn)dn (♡)

The first integral takes place on a compact set, so we can easily know its convergence. The second integral
takes place on an abelian group, so the computation is rather easy.

8.5 Whittaker models for Steinberg representations
Let (π, V ) be an irreducible smooth admissible representation of G = GL2(Qp).

:::::::::
Principal

:::::::
series. (π, V ) – π(χ1, χ2) for some χ1, χ2 : Qˆ

p Ñ C such that χ1χ
´1
2 ‰ | ¨ |˘. Then the

Whittaker model of V is

Wψ(π) =
␣

WΦ,χ | Φ P S(Q2
p)
(

This follows from Proposition 8.1.2 and the uniqueness of Whittaker models.
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::::::::::
Steinberg

::::::::::::::::
representation. (π, V ) = St b χ0 Ĺ I(χ0| ¨ |

1
2 , χ0| ¨ |´

1
2 ), where χ0 : Qˆ

p Ñ Cˆ. Put χ =

χ0| ¨ |
1
2 , χ0| ¨ |´

1
2 . Then

Wψ(π) Ĺ
␣

WΦ,χ | Φ P S(Q2
p)
(

We want to characterize the subspace Wψ(π).

Proposition 8.8. For π = St b χ0,

Wψ(π) =

#

WΦ,χ | Φ P S(Q2
p),

ż

Qp
Φ(x, 0)dx = 0

+

Proof. Our assumption is (π, V ) = (ρ, I(χ1, χ2)S), where χ1 = χ0| ¨ |
1
2 and χ2 = χ0| ¨ |´

1
2 . Note that

I(χ1, χ2)S =
␣

f P I(χ1, χ2) | xf, χ´1
0 ˝ dety = 0

(

where x , y is the pairing defined in Proposition 8.5. To see this, the same proposition says

I(χ1, χ2)S =

(
I(χ´1

1 , χ´1
2 )

Cχ´1
0 ˝ det

)_

= tT P I(χ´1
1 , χ´1

2 )_ | T (χ´1
0 ˝ det) = 0u

=
␣

f P I(χ1, χ2) | xf, χ´1
0 ˝ dety = 0

(

By Proposition 8.1.2, each f P I(χ1, χ2) has the form fΦ„,χ for some Φ P S(Q2
p). Then fΦ„,χ P I(χ1, χ2)S if

and only if

0 = xfΦ„,χ, χ
´1
0 ˝ dety =

ż

K

fΦ„,χ(k)χ
´1
0 (det k)dk

(♡)
=

ż

N

fΦ„,χ(wn)χ
´1
0 (detwn)dn

=

ż

Qp

ż

Qˆ
p

Φ„((0 t)wn(x))|t|2dˆtdx

=

ż

Qp

ż

Qˆ
p

Φ„(´t,´tx)|t|2dˆtdx

=

ż

Qp

ż

Qp
Φ„(t, x)dtdx =

ż

Qp
Φ(t, 0)dt

where the last equality follows from definition: since Φ„(x, y) =

ż

Qp
Φ(x, y)ψ(ay)da, letting y = 0 yields

Φ„(x, 0) =

ż

Qp
Φ(x, a)da.

8.6 Summary
Let (π, V ) be an irreducible smooth admissible representation of G = GL2(Qp) with dimC V = 8. Consider
the Jacquet module J(V ).

• J(V ) = 0. In this case, (π, V ) is called supercuspidal.

• J(V ) ‰ 0. As in the first paragraph of the proof of Theorem 5.6, we can find χ : T Ñ Cˆ and
0 ‰ Λ P HomG(V, indGB χ). Since V is irreducible, Λ embeds V into indGB χ = IndGB χδ

´ 1
2

B . Denote
χδ

´ 1
2

B = (χ1, χ2), so indGB χ = I(χ1, χ2).

- χ1χ
´1
2 ‰ | ¨ |

˘
. Then (π, V ) = π(χ1, χ2) = I(χ1, χ2), and it is called the principal series.

- χ1χ
´1
2 = | ¨ |

˘
. Then we can find χ0 such that π = St b χ0, and (π, V ) is called the Steinberg

representation.
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9 Theory of L-functions on GL2(Qp)

Let (π, V ) be an irreducible representation of G = GL2(Qp) with dimV = 8. Consider the Whittaker model
Wψ(π) of (π, V ).

Definition. For W P Wψ(π) and s P C, define formally the local ζ-integral

Ψ(W, s) :=

ż

Qˆ
p

W

(
a

1

)
|a|s´ 1

2 dˆa

where dˆa is the normalized Haar measure such that vol(Zˆ
p , d

ˆa) = 1. In general, if χ : Qˆ
p Ñ Cˆ is a

character, we define

Ψ(W,χ, s) :=

ż

Qˆ
p

W

(
a

1

)
χ(a)|a|s´ 1

2 dˆa

Theorem 9.1.

1. Ψ(W, s) converges absolutely for Re s " 0, and has a meromorphic continuation to C.

2. There exists a unique L-factor L(s, π) such that

Ξ(W, s) :=
Ψ(W, s)

L(s, π)

is entire for all W P Wψ(π), and exists W0 P Wψ(π) such that Ξ(W0, s) = 1. In other words, L(s, π) is
the gcd of tΨW,suWPWψ(π).

In general, a function L(s, π) is called an L-factor if L(s, π)´1 = Q(p´s) where Q P C[X] with
Q(0) = 1, i.e.,

L(s, π)´1 =
ź̊

i=1

(1 ´ αip
´s)

for some αi P Cˆ.

3. We have the functional equation: for W P Wψ(π), define

xW (g) :=W (gw)ω´1(det g) = ρ(w)W b ω´1(g) P Wψ(π
_)

where w =

(
1

´1

)
and ω is the central character. Then there exists an epsilon factor ϵ(s, χ, ψ) such

that
Ψ(xW, 1 ´ s)

L(1 ´ s, π_)
=

Ψ(W, s)

L(s, π)
¨ ϵ(s, π, ψ)

If (π, V ) = π(χ1, χ2), then

L(s, π) = L(s, χ1)L(s, χ2)

ϵ(s, π, ψ) = ϵ(s, χ1, ψ)ϵ(s, χ2, ψ)

If (π, V ) = St b χ0 Ď I(χ0| ¨ |
1
2 , χ0| ¨ |´

1
2 ), write χ1 = χ0| ¨ |

1
2 and χ2 = χ0| ¨ |´

1
2 ; then

L(s, π) = L(s, χ1)

ϵ(s, π, ψ) = ϵ(s, χ1, ψ)ϵ(s, χ2, ψ)
L(1 ´ s, χ´1

1 )

L(s, χ2)
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If (π, V ) is supercuspidal, then

L(s, π) = 1

ϵ(s, π, ψ) = complicated

Similar to the GL(1), we define the γ-factor for π to be

γ(s, π, ψ) :=
L(1 ´ s, π_)

L(s, π)
ϵ(s, π, ψ)

Then the functional equation takes the form

Ψ(xW, 1 ´ s)

Ψ(W, s)
= γ(s, π, ψ)

9.1 Principal Series
Let (π, V ) – π(χ1, χ2), χ1χ

´1
2 ‰ | ¨ |˘ be a principal series. Put χ = (χ1, χ2). Then

Wψ(π) := tWΦ,χ | Φ P S(Q2
p)u

We may assume Φ = φ1 b φ2 with φi P S(Qp). Compute

Ψ(WΦ,χ, s) =

ż

Qˆ
p

WΦ,χ

(
a

1

)
|a|s´ 1

2 dˆa

=

ż

Qˆ
p

χ1| ¨ |
1
2 (a)

ż

Qˆ
p

Φ(at, t´1)χ1χ
´1
2 (t)dˆt|a|a´ 1

2 dˆa

=

ż

Qˆ
p

ż

Qˆ
p

Φ(at, t´1)χ1χ
´1
2 (t)χ1(a)|a|sdˆadˆt

(a ÞÑ at´1, t ÞÑ t´1) =

ż

Qˆ
p

ż

Qˆ
p

Φ(a, t)χ1(a)|a|sχ2(t)|t|
sdˆtdˆa

(Φ = φ1 b φ2) =

(
ż

Qˆ
p

φ1(a)χ1(a)|a|sdˆa

)(
ż

Qˆ
p

φ(t)χ2(t)|t|
sdˆ

)
= Z(φ1, χ1, s)Z(φ2, χ2, s)

which is a product of two Tate integrals. From the theory of L-functions on GL(1), we find the function

Ψ(WΦ,χ, s) = Z(φ1, χ1, s)Z(φ2, χ2, s)

has analytic continuation

Ψ(WΦ,χ, s)

L(s, χ1)L(s, χ2)
=
Z(φ1, χ1, s)

L(s, χ1)
¨
Z(φ2, χ2, s)

L(s, χ2)

so that

L(s, π) = L(s, χ1)L(s, χ2)

From the formula.(iv), we know

ωψ(w)Φ(x, y) =

ż

Q2
p

Φ(a, b)ψ(ay + bx)dadb

(Φ = φ1 b φ2) = xφ2 b xφ1(x, y)
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Then

WΦ,χ(gw) = χ1| ¨ |
1
2 (t)

ż

Qˆ
p

ωψ(gw)Φ(t, t
´1)χ1χ

´1
2 (t)dˆt

= χ1| ¨ |
1
2 (t)

ż

Qˆ
p

ωψ(g)xφ2 b xφ1(t, t
´1)χ1χ

´1
2 (t)dˆt =W

xφ2bxφ1,χ(g)

Consequently,

Ψ(zWΦ,χ, 1 ´ s) = Ψ(W
xφ2bxφ1,χ(g), ω

´1, 1 ´ s)

= Z(xφ2, χ1ω
´1, 1 ´ s)Z(xφ1, χ2ω

´1, 1 ´ s)

Recall that the central character of (π, V ) = (ρ, I(χ1, χ2)) is ω = χ1χ2. Thus

Ψ(zWΦ,χ, 1 ´ s) = Z(xφ2, χ
´1
2 , 1 ´ s)Z(xφ1, χ

´1
1 , 1 ´ s)

and

L(1 ´ s, π_) = L(1 ´ s, π b ω´1) = L(1 ´ s, χ1ω
´1)L(1 ´ s, χ2ω

´1) = L(1 ´ s, χ´1
2 )L(1 ´ s, χ´1

1 )

From the theory of L-functions on GL(1) we deduce that

ϵ(s, π, ψ) = ϵ(s, χ1, ψ)ϵ(s, χ2, ψ)

9.2 Steinberg Representation
Assume (π, V ) = St b χ0 for some character χ0 : Qˆ

p Ñ Cˆ. Put χ1 = χ0| ¨ |
1
2 and χ2 = χ0| ¨ |´

1
2 . We know

its Whittaker model is

Wψ(π) =

#

WΦ,χ | Φ P S(Q2
p),

ż

Qp
Φ(x, 0)dx = 0

+

Assume Φ = φ1bφ2 with φi P S(Qp). The the imposed condition on elements of Wψ(π) means xφ1(0)φ2(0) =

0, i.e., xφ1(0) = 0 or φ2(0) = 0, i.e., xφ1 P S(Qˆ
p ) or φ2 P S(Qˆ

p ). The computation in the principal series case
shows

Ψ(WΦ,χ, s) = Z(φ1, χ1, s)Z(φ2, χ2, s)

If φ2 P S(Qˆ
p ), then Z(φ2, χ2, s) P C[ps, p´s], so the ratio

Ψ(WΦ,χ, s)

L(s, χ1)
=
Z(φ1, χ1, s)

L(s, χ1)
¨ Z(φ2, χ2, s)

is entire. If xφ1 P S(Qˆ
p ), then

Ψ(WΦ,χ, s)

L(s, χ1)
=
Z(φ1, χ1, s)

L(s, χ1)
¨ Z(φ2, χ2, s)

=
Z(xφ1, χ

´1
1 , 1 ´ s)

L(1 ´ s, χ´1
1 )

ϵ(s, χ1, ψ) ¨ Z(φ2, χ2, s)

= Z(xφ1, χ
´1
1 , 1 ´ s)ϵ(s, χ1, ψ) ¨

Z(φ2, χ2, s)

L(1 ´ s, χ´1
1 )

Recall that χ1χ
´1
2 = | ¨ |. Then

L(1 ´ s, χ´1
1 )´1 = 1 ´ χ´1

1 (p)|p|1´s = 1 ´ χ´1
2 (p)|p|´s = ´χ´1

2 (p)|p|´sL(x, χ2)
´1

and therefore
Ψ(WΦ,χ, s)

L(s, χ1)
= Z(xφ1, χ

´1
1 , 1 ´ s)ϵ(s, χ1, ψ) ¨

Z(φ2, χ2, s)

L(x, χ2)
¨ (´χ´1

2 (p)|p|´s)

is entire. Now the theorem follows from the theory of L-functions on GL(1).
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9.3 Supercuspidal
Let (π, V ) be supercuspidal and identify V with its Kirillov model Kψ(π). Since J(V ) = 0 by definition, we
have Kψ(π) = S(Qˆ

p ). Then the Whittaker model is

V Wψ(π)

ξ Wξ

(
a

1

)
:= ξ(a)

and the local zeta integral

Ψ(Wξ, s) =

ż

Qˆ
p

ξ(a)|a|s´ 1
2 dˆa P C[s, s´1]

is entire. Thus L(s, π) = 1.
We proceed to prove the existence of epsilon factor ϵ(s, χ, ψ) and the functional equation. For ξ P V =

S(Q)ˆ
p ), ν P xZˆ

p and n P Z, put

pξn(ν) = ξ^
n (ν) :=

ż

Zˆ
p

ξ(pnu)ν(u)dˆu P C

and

pξ(ν, t) = ξ^(ν, t) :=
ÿ

nPZ

pξn(ν) ¨ tn

This is a polynomial in t, t´1 since ξ P S(Qˆ
p ) the support of ξ is bounded above and below.

Put w =

(
0 1

´1 0

)
and for ν P xZˆ

p define

φν(a) := 1Zˆ
p
(a)ν(a) P S(Qˆ

p )

Then

• S(Qˆ
p ) is spanned by the π

(
pn

1

)
φν . See the lemma in Theorem 7.2.

• xφν(µ, t) =

#

1 if µν = 1
0 if µν ‰ 1

, where 1 denotes the trivial character.

Define C(π, ν, t) P C[t, t´1] by

C(π, ν, t) := {π(w)φνω(ν, t)

where ν P xZˆ
p and ω is the central character of π.

Lemma 9.2. Let z0 = ω(p). For any ν P xZˆ
p we have

{π(w)ξ(ν, t) = C(π, ν, t) ¨ pξ(ν´1ω´1, z´1
0 t´1)

Proof. For any ξ P V = S(Qˆ
p ), ptu

∆(ξ) = {π(w)ξ(ν, t) = ´(π, ν, t) ¨ pξ(ν´1ω´1, z´1
0 t´1)

We need to show ∆(ξ) = 0, and we verify ∆(φµ) = 0 first.
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• µ = νω. Then

∆(φνω) = {π(w)φνω(ν, t) ´ C(π, ν, t) ¨ yφνω(ν
´1ω´1, z´1

0 t´1)
loooooooooooomoooooooooooon

=1

= C(π, ν, t) ´ C(π, ν, t) = 0

• µ ‰ νω. Then

∆(φνω) = {π(w)φνω(ν, t) ´ 0 = {π(w)φνω(ν, t)

Observe that π(w)φµ is the eigenfunction of Zˆ
p with eigencharacter ωµ´1: for a P Zˆ

p ,

π

(
a

1

)
π(w)φµ = π(w)π

(
1

a

)
φµ = π(w)ω(a)π

(
a´1

1

)
φµ

= ωµ´1(a)π(w)φµ

Thus

{π(w)φµn(ν) =

ż

Zˆ
p

π(w)φµ(p
nu)ν(u)dˆu = π(w)φµ(p

n)

ż

Zˆ
p

ωµ´1ν(u)dˆu = 0

if ωµ´1ν ‰ 1 ô µ ‰ ων, so that

∆(φνω) = {π(w)φνω(ν, t) =
ÿ

nPZ

{π(w)φµn(ν)t
n = 0

Next we show ∆(π

(
pn

1

)
φµ) = 0, from which we can conclude the lemma.

∆(π

(
pn

1

)
φµ) =

(
π(w)π

(
pn

1

)
φµ

)^

(ν, t) ´ C(π, ν, t)

(
π

(
pn

1

)
φµ

)^

(ν´1ω´1, z´1
0 t´1)

=

(
π

(
pn

(
p´n

1

))
π(w)φµ

)^

(ν, t) ´ C(π, ν, t)(z´1
0 t´1)´n

xφµ(ν
´1ω´1, z´1

0 t´1)

= zn0 t
n
{π(w)φµ(ν, t) ´ C(π, ν, t)(z´1

0 t´1)´n
xφµ(ν

´1ω´1, z´1
0 t´1)

= zn0 t
n∆(φµ) = 0

Now we use this lemma twice and the fact w2 = ´1.

pξ(ν, t) = {π(´w2)ξ(ν, t) = ω(´1) {π(w)π(w)ξ(ν, t)

= ω(´1)C(π, ν, t) ¨ {π(w)ξ(ν´1ω´1, z´1
0 t´1)

= ω(´1)C(π, ν, t)C(π, ν´1ω´1, z´1
0 t´1) ¨ pξ(ν, t)

Hence

C(π, ν, t)C(π, ν´1ω´1, z´1
0 t´1) = ω(´1)

Since C(π, ν, t) P C[t, t´1], this implies C(π, ν, t) = Atn for some A P Cˆ and n P Z. Finally,

Ψ(Wξ, s) =

ż

Qˆ
p

ξ(a)|a|s´ 1
2 dˆa =

ÿ

nPZ
|pn|s´ 1

2

ż

Zˆ
p

ξ(pnu)dˆu = pξ(1, p 1
2 ´s)
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Recall that xW (g) :=W (gw)ω´1(det g). Then

Ψ(xWξ, 1 ´ s) =

ż

Qˆ
p

Wξ

((
a

1

)
w

)
ω´1(a)|a|1´s´ 1

2 dˆa

=
ÿ

nPZ
|pn|1´s´ 1

2

ż

Zˆ
p

Wξ

((
pnu

1

)
w

)
)ω´1(pnu)dˆu

=
ÿ

nPZ
pn(s´ 1

2 )z´n
0

ż

Zˆ
p

π(w)ξ(pnu)ω´1(u)dˆu

= {π(w)ξ(ω´1, ps´ 1
2 z´1

0 )

By the lemma we have

{π(w)ξ(ω´1, ps´ 1
2 z´1

0 ) = C(π, ω´1, ps´ 1
2 z´1

0 )pξ(1, p 1
2 ´s)

Now we define our dreamed epsilon factor:

ϵ(s, π, ψ) := C(π, ω´1, ps´ 1
2 z´1

0 ) = Apns for some A P Cˆ, n P Z

Then we attain the functional equation

Ψ(xWξ, 1 ´ s) = ϵ(s, π, ψ)Ψ(Wξ, s) for all ξ P V = S(Qˆ
p )

9.4 Archimedean Case
Let (π, V ) be an irreducible (g,K)-module, where g = Lie(GL2(R)) and K = O(2). Then (π, V ) Ď I(χ1, χ2)

with χ1χ
´1
2 = | ¨ |ssignϵ, s P C, ϵ P t0, 1u.

• s´ ϵ R 1 + 2Z. Then π – π(χ1, χ2) is the principal series and

V =
à

ℓ”ϵ (mod 2)

V (ℓ)

with dimC V (ℓ) = 1.

• s´ ϵ P 1 + 2Z and s = k ´ 1 ě 0, where k is the minimal weight of π. Let σk Ď I(| ¨ |
k´1
2 , | ¨ |

1´k
2 signk)

be the unique irreducible subrepresentation. Then π = σk b χ0 Ď I(χ1, χ2) is the discrete series of
weight k when k ě 2, and is the limit discrete series when k = 1. In this case,

V =
à

ℓěk, ℓď´k
ℓ”k (mod 2)

V (ℓ)

For π – π(χ1, χ2), we have

Wψ(π) =
!

WΦ,χ | Φ(x, y) = p(x, y)e´π(x2+y2), p P C[x, y]
)

where ψ = ψ8 is the standard additive character. If π = σk b χ0, then

Wψ(π) =

"

WΦ,χ | Φ(x, y) = p(x, y)e´π(x2+y2), p P C[x, y],
ż

R
xi

BjΦ

Byj
(x, y)dx = 0 for i+ j = k ´ 2

*

where χ = (χ0| ¨ |
k´1
2 , χ0| ¨ |

1´k
2 signk). To see this, put χ = (χ1, χ2) for brevity. Consider the pairing

x , y : I(χ1, χ2) ˆ I(χ´1
1 , χ´1

2 ) Ñ C defined by

xf1, f2y =

ż

O(2)

f1(x)f2(x)dx
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This pairing is Lie GL2(R)-invariant, in the sense that for all X P Lie GL2(R) we have

xXf1, f2y = ´xf1, Xf2y

and is O(2)-invariant, in the sense that

xρ(g)f1, f2y = xf1, ρ(g
´1)f2y

To be filled
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10 Intertwining Operators
Let p ď 8 be a rational prime. For s P C and χ1, χ2 : Qˆ

p Ñ Cˆ, put I(χ1, χ2, s) := I(χ1| ¨ |s, χ2| ¨ |´s).
Define ℓN : I(χ1, χ2, s) Ñ C by

ℓN (f) :=

ż

Qp
f

((
0 ´1

1 0

)(
1 x

0 1

))
dx

Formally, we write

ℓN (f) =

ż

|x|ď1

f

(
0 ´1

1 x

)
dx+

ż

|x|ą1

f

((
x´1 ´1

0 x

)(
1 0

x´1 1

))
dx

(x ÞÑ x´1) =

ż

|x|ď1

f

(
0 ´1

1 x

)
dx+

ż

|x|ă1

χ1χ
´1
2 | ¨ |2s(x)f

(
1 0

x 1

)
dˆx

The first term always exists, and the second term is a Tate integral. Thus ℓN (f) converges absolutely when
wt(χ1χ

´1
2 )+2Re(s) ą ´1, and by Theorem 2.5.(i), ℓN : I(χ1, χ2, s) Ñ C has a “meromorphic continuation”

to C.
For Re(s) " 0, define M(χ1, χ2, s) : I(χ1, χ2, s) Ñ I(χ2, χ1,´s) by

M(χ1, χ2, s)f(g) := ℓN (ρ(g)f)

To see g ÞÑ ℓN (ρ(g)f) P I(χ2, χ1,´s), compute

M(χ1, χ2, s)f

((
a b

0 d

)
g

)
=

ż

Qp
f

((
0 ´1

1 0

)(
1 x

0 1

)(
a b

0 d

)
g

)
dx

=

ż

Qp
f

((
d 0

0 a

)(
0 ´1

1 0

)(
1 a´1xb+ a´1b

0 1

)
g

)
dx

=

ż

Q
χ1(d)χ2(a)

ˇ

ˇ

ˇ

ˇ

d

a

ˇ

ˇ

ˇ

ˇ

s+ 1
2 ˇ
ˇ

ˇ

a

d

ˇ

ˇ

ˇ
f

((
0 ´1

1 0

)(
1 x

0 1

)
g

)
dx

= χ2(a)χ1(d)
ˇ

ˇ

ˇ

a

d

ˇ

ˇ

ˇ

´s+ 1
2

ℓN (ρ(g)f)

Introduce the normalized intertwining operator

M˚(χ1, χ2, s) := L(2s, χ1χ
´1
2 )´1M(χ1, χ2, s)

By Theorem 2.5.(ii), this is a well-defined map for all s P C.
To proceed, we first extend the modular function δB : B Ñ Rą0 to a function on GL2(Qp), by setting

δB(g) = δB(b) if g = bk, b P B, k P K. To see this is well-defined, if bk = b1k1 with b, b1 P B, k, k1 P K, then
b´1b1 = kk1´1 P BXK = B(Zp). Since B(Zp) ď B is compact, δB(B(Zp)) is a compact subgroup of Rą0, so
δB(B(Zp)) = t1u. Consequently, δB(b´1b1) = 1, or δB(b1) = δB(b). In conclusion, we obtain a well-defined
map δB : GL2(Qp) Ñ Rą0 Ď Cˆ.

For f P I(χ1, χ2) and s P C, we see fδsB P I(χ1, χ2, s); this is called a flat section, which can be viewed
as a section of the bundle

Ů

sPC
I(χ1, χ2, s) Ñ C, and “flat” means fδsB |K = f |K is independent of s. Consider

the composition

M(χ1, χ2) : I(χ1, χ2) I(χ1, χ2, s) I(χ2, χ1,´s) I(χ2, χ1)

f fδsB

M˚(χ1, χ2, s) (¨)|s=0
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Definitely, for f P I(χ1, χ2), we define

M(χ1, χ2)f :=M˚(χ1, χ2, s)(fδ
s
B)|s=0

We now study the action of M(χ1, χ2) on the Godement section:

fΦ,χ,s(g) = χ1| ¨ |s+
1
2 (det g)

ż

Qˆ
p

Φ((0 t)g)χ1χ
´1
2 | ¨ |2s+1(t)dˆt

where χ = (χ1, χ2). For this, we introduce the sympletic Fourier transform. For Φ P S(Q2
p), define

pΦ(x, y) :=

ż

Q2
p

Φ(u, v)ψp(´vx+ uy)dudy

=

ż

Q2
p

Φ(u, v)ψp

((
u v

)( 0 1

´1 0

)(
x

y

))
dudv

Clearly, if Φ = φ1 b φ2 P S(Q2
p) is a pure tensor, then

pΦ(x, y) = xφ2(´x)xφ1(y)

Proposition 10.1. For Φ P S(Q2
p), we have

M(χ1, χ2, s)fΦ,χ,s = γ(2s, χ1χ
´1
2 , ψ)´1f

pΦ,χsw,´s

where χ = (χ1, χ2) and χsw = (χ2, χ1), and γ is the γ-factor.

Proof. By linearity, we may assume Φ = φ1 b φ2 is a pure tensor. Further, using the formulas

fΦ,χ,s(g) = χ1| ¨ |s+
1
2 (det g)fρ(g)Φ,χ,s(e)

f
pΦ,χ,s(g) = χ2| ¨ |´s+

1
2 (det g)f

{ρ(g)Φ,χ,s
(e)

we only need to show

M(χ1, χ2, s)fΦ,χ,s(e) = γ(2s, χ1χ
´1
2 , ψ)´1f

pΦ,χsw,´s(e)

First, we have

f
pΦ,χsw,´s(e) = xφ2(0)Z(xφ1, χ2χ

´1
1 , 1 ´ 2s)

Secondly, compute the left hand side.

M(χ1, χ2, s)fΦ,χ,s(e) =

ż

Qp
fΦ,χ,s

((
0 ´1

1 0

)(
1 x

0 1

))
dx

=

ż

Qp

ż

Qˆ
p

Φ(t, tx)χ1χ
´1
2 | ¨ |2s+1(t)dˆtdx

(x ÞÑ xt´1) =

ż

Qp

ż

Qˆ
p

Φ(t, x)χ1χ
´1
2 | ¨ |2s(t)dˆtdx

= xφ2(0)

ż

Qˆ
p

φ1(t)χ1χ
´1
2 | ¨ |2s(t)dˆt

= xφ2(0)Z(φ1, χ1χ
´1
2 , 2s)

Thus from Theorem 2.5.(iii) we obtain

M(χ1, χ2, s)fΦ,χ,s(e)

f
pΦ,χsw,´s(e)

=
Z(φ1, χ1χ

´1
2 , 2s)

Z(xφ1, χ2χ
´1
1 , 1 ´ 2s)

= γ(2s, χ1χ
´1
2 , ψ)´1
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11 Local Jacquet-Langlands Correspondence
Assume that (V, x , y) is a finite dimensional nondegenrate quadratic space over Qp, p ď 8. Let ψ : Qp Ñ Cˆ

be a nontrivial additive character. Then we have the Weil representation

ωψ : SL2(Qp) ˆ O(V ) GL(S(V ))

defined by the following formulas

(i) ωψ(1, h)Φ(x) = Φ(h´1x) for x P V .

For simplicity, define rV : SL2(Qp) Ñ GL(S(V )) by rV (g) := ωψ(g, 1) and assume m := dimV is even.

(ii) rV

(
a 0

0 a´1

)
Φ(x) = ((´1)

m(m´1)
2 detV, a)p ¨ |a|

m
2 ¨Φ(xa), where (¨, ¨)p is the Hilbert symbol, and detV

is the determinant of the bilinear form x , y.

(iii) rV

(
1 b

0 1

)
Φ(x) = ψ

(
b xx, xy

2

)
Φ(x).

(iv) rV

(
0 1

´1 0

)
Φ(x) = γψ(V )pΦ(x), where γψ(V ) is the Weil index, and

pΦ(x) :=

ż

V

Φ(y)ψ(xx, yy)dy

is the Fourier transform in which dy is chosen so that the inversion formula holds.

Denote by qV : V Ñ Qp the associated quadratic form; then we have

qV (x) =
1

2
xx, xy

xx, yy = qV (x+ y) ´ qV (x) ´ qV (y)

The Weil index depends on the form qV , so we also write γψ(V ) = γψ(qV ). For a P Qˆ
p , put

γψ(a) := γψ(ax
2)

Then one can prove that γψ(a) P µ8(C). We list some properties of the Weil index. By definition, γψ(V ) is
the unique number such that

ż

V

Φ(y)ψ(qV (y))dy = γψ(V )

ż

V

pΦ(y)ψ(´qV (y))dy

holds for all Φ P S(V ), where dy is the self-dual measure with respect to (ψ, qV ). We have

• γψ(V1 ‘ V2) = γψ(V1)γψ(V2).

• γψ(´qV ) = γψ(gV )
´1.

• γψ(a)γψ(b) = γψ(1)γψ(ab) ¨ (a, b)p for all a, b P Qˆ
p .

70



11.1 Quaternion algebras
For a, b P Qˆ

p , define a four dimensional Qp-algebra

D := Da,b = Qp ‘ Qpα ‘ Qpβ ‘ Qpαβ

with relation α2 = a, β2 = b, αβ = ´βα. On D there is a natural involution:

D D

z = x1 + x2α+ x3β + x4αβ z := x1 ´ x2α ´ x3β ´ x4αβ

Then one has z1 ¨ z2 = z2 ¨ z1. We use this to define the reduced trace

TrD/Qp(z) := z + z = 2x1 P Qp

and the reduced norm

ν(z) = ND/Qp(z) := zz = x21 ´ x22a´ x23b+ x24ab P Qp

Then (D, ν) is a quadratic space: define x , yD : D ˆD Ñ Qp by

xz, wyD := ν(zw) ´ ν(z) ´ ν(w) = TrD/Qp(zw)

In terms of the ordered basis t1, α, β, αβu, the matrix representation of this pairing is
2

´2a

´2b

2ab


so detD = 16a2b2. Consider the Weil representation rD : SL2(Qp) Ñ GL(S(D)). We first compute the Weil
index:

γψ(D) = γψ(Qp ‘ Qp(´a) ‘ Qp(´b) ‘ Qpab)

= γψ(1)γψ(´a)γψ(´b)γψ(ab)

= γψ(a)γψ(b) (a, b)pγψ(´a)γψ(´b)

= (a, b)p

Thus γψ(D) = 1 if and only if (a, b)p = 1, if and only if D – M2(Qp). In this case, we have ν(x) = detx.
Suppose γψ(D) = (a, b)p = ´1; then D is the unique division algebra over Qp with dimD = 4. Consider

the group of norm one elements:

D1 := tz P D | ν(z) = zz = 1u

It is a compact group. Let Ω : Dˆ Ñ GL(U) be a finite dimensional complex irreducible representation of
the group Dˆ. Consider the space

S(D,Ω) := tΦ P S(D) bC U | Φ(xz1) = Ω(z´1
1 )Φ(x) for all z1 P D1u

where Ω(z´1
1 )Φ(x) really means (idC bΩ(z´1

1 ))Φ(x). We let SL2(Qp) act on S(D,Ω) by Weil representation:

rD(g)Φ(x) := (rD(g) b idU )Φ(x)
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Extend the action of SL2(Qp) to

G+ := tg P GL2(Qp) | det g P ν(Dˆ)u

by

rD

(
a 0

0 1

)
Φ(x) := |a|

m
4 Ω(z)Φ(xz) = |a|Ω(z)Φ(xz)

if a = ν(z) P ν(Dˆ), where m = dimD = 4. Then we obtain a representation of G+

rD : G+ Ñ GL(S(D,Ω))

If p ă 8, one can find an unramified quadratic extension contained in D so that ν(Dˆ) = Qˆ
p , implying

that G+ = GL2(Qp). If p = 8, then G+ = GL2(R)+ is the index two subgroup consisting of matrices with
positive determinant.

11.1.1 Non-archimedean cases

Assume p ă 8. As said above, the extended Weil representation rD : GL2(Qp) Ñ GL(S(D,Ω)) is a
representation of the whole group GL2(Qp). Consider a sequence of maps

0 S(Qˆ
p ) b U S(D,Ω) U

Φ Φ(0)

ξ Φξ : z ÞÑ |ν(z)|´1Ω(z´1)ξ(ν(z))

ℓ

We claim this is an exact sequence. If Φξ = 0, then since ν(Dˆ) = Qˆ
p , this means ξ = 0 itself. Now suppose

Φ(0) = 0. Since Φ is locally constant, this means Φ P S(Dˆ) b Ω. But Ω(xz)Φ(xz) = Ω(x)Φ(x) for all
z P D1, so the map

Ω(x)Φ(x) : Dˆ Ñ U

factors through Dˆ/D1, which is isomorphic to Qˆ
p via the reduced norm map ν : Dˆ Ñ Qˆ

p . Thus we can
find ξ P Qˆ

p Ñ U such that Ω(x)Φ(x) = ξ(ν(x)) for each x P Dˆ. Since Φ is locally constant, we must have
ξ P S(Qˆ

p ) b U , and Φ = Φx ÞÑ|x|ξ(x).
Since Φ(xz1) = Ω(z1)

´1Φ(x) for all z P D1, in particular Φ(0) P UΩ(D1).

• dimU = 1. Then Ω(D1) = t1u, because D1 is the commutator subgroup of Dˆ. To see this, if x = x,
then x2 = xx = 1 so that x = ˘1. Otherwise, Qp(x) is a quadratic extension of Qp. In any case, as
long as xx = 1, there exists a quadratic subfield L of D containing x. By Hilbert’s theorem 90, there
exists y P L such that x = yy´1. Moreover by Noether-Skolem theorem we can find σ P Dˆ such that
σzσ´1 = z for all z P L. Thus x = yσy´1σ lies in the commutator subgroup. Thus Ω factors through
Dˆ/D1, and we can find χ : Qˆ

p Ñ Cˆ such that Ω = χ ˝ ν.

• dimU ą 1. Since D1 Ĺ Dˆ is a normal subgroup, UΩ(D1) is also stable under Dˆ. Since U is
irreducible, we must have UΩ(D1) = 0 or UΩ(D1) = U . But if the latter were to occur, Ω would factor
through Dˆ/D1, which is an abelian group, implying dimU = 1, a contradiction. Thus in this case we
must have UΩ(D1) = 0.

Let us assume dimU ą 1. Then the above discussion shows ξ ÞÑ Φξ is an isomorphism S(Qˆ
p ) b U Ñ

S(D,Ω). We claim

ΦKψ(g)ξ = rD(g)Φξ

72



for all g =

(
a b

0 1

)
. Indeed, for x P Dˆ

rD

(
a b

0 1

)
Φξ(x) = ψ(bν(x))rD

(
a 0

0 1

)
Φξ(x)

(a = ν(z)) = ψ(bν(x))|a|Ω(z)Φξ(xz)

= ψ(bν(x))|ν(z)|Ω(z)|ν(xz)|´1Ω(z´1x´1)ξ(ν(xz))

= ψ(bν(x))|ν(x)|´1Ω(x´1)ξ(ν(x)a)

= |ν(x)|´1Ω(x´1)Kψ

(
a b

0 1

)
ξ(ν(x)) = ΦKψ(g)ξ(x)

Thus (rD,S(D,Ω)) and (Kψ,S(Qˆ
p )) b U are isomorphic as B1-representations. If we use this isomorphism

to transfer the action of rD to S(Qˆ
p ), we see (rD,S(Qˆ

p )) is an irreducible supercuspidal representation of
GL2(Qp) by Theorem 7.2 and Lemma 7.4. Let us put

JL(Ω) := (rD,S(Qˆ
p ))

Next assume dimU = 1. Then we have seen Ω = χ ˝ ν for some χ : Qˆ
p Ñ Cˆ. In this case

S(D,Ω) = tΦ P S(D) | Φ(xz1) = Φ(x) for all z1 P D1u

and we have an exact sequence

0 S(Qˆ
p ) b U S(D,Ω) Cℓ

Consider the map Φ0(x) := IZˆ
p
(ν(x)). Since D1 is compact, it is clear that Φ0 P S(D,Ω). We have

ℓ(Φ0) = Φ0(0) = 0 but

ℓ(rD(w)Φ0) = rD(w)Φ0(0) = ´

ż

D

Φ0(x)dx ‰ 0 (♠)

This means ℓ : S(D,Ω) Ñ C is surjective, so we have an short exact sequence

0 S(Qˆ
p ) b U S(D,Ω) C 0ℓ

We claim

ℓ

(
rD

(
a b

0 d

)
Φ

)
= χ(ad)

ˇ

ˇ

ˇ

a

d

ˇ

ˇ

ˇ
ℓ(Φ)

It follows from definition that

rD

(
a 0

0 1

)
Φ(0) = |a|χ(a)Φ(0), rD

(
1 b

0 1

)
Φ(0) = Φ(0)

and

rD

(
a 0

0 a

)
Φ(0) = rD

(
a2 0

0 1

)
rD

(
a´1 0

0 a

)
Φ(0)

= |a2|χ(a2)rD

(
a´1 0

0 a

)
Φ(0) = |a2|χ(a2)|a´1|2Φ(0) = χ(a2)Φ(0)
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If for each Φ P S(D,Ω) we define

fΦ(g) := ℓ(rD(g)Φ)

then f defines a map S(D,Ω) Ñ I(χ| ¨ |
1
2 , χ| ¨ |´

1
2 ). Let us show that S(D,Ω) is irreducible. Suppose V is an

invariant proper subspace of S(D,Ω). By definition for each Φ ‰ 0 P S(D,Ω) we can find b P Qp such that

rD

(
1 b

0 1

)
Φ ´ Φ ‰ 0

This then implies 0 ‰ V (N) Ď S(Qˆ
p ) X V . If V ‰ 0, then by irreducibility of (Kψ,S(Qp)ˆ), this forces

S(Qˆ
p ) = V (N) Ď V , and hence V = S(Qˆ

p ) as S(Qˆ
p ) has codimension 1 in S(D,Ω). But S(Qˆ

p ) is not
invariant under the action of rD as seen in (♠), this leads to a contradiction, and thus V = 0, showing the
irreducibility of S(D,Ω). Since f : S(D,Ω) Ñ I(χ| ¨ |

1
2 , χ| ¨ |´

1
2 ) is nontrivial, we must have S(D,Ω) – Stbχ.

In this case we define

JL(Ω) := (rD,S(S,Ω)) – St b χ

In both cases (dimU = 1 or ą 1), JL(Ω) is an irreducible representation of GL2(Qp) satisfying

S(D,Ω) – JL(Ω) bC U

The association
JL : Rep(Dˆ) Rep(GL2(Qp))

is called the Jacquet-Langlands correspondence of Ω.

11.2 Quadratic extensions
Suppose K/Qp is a quadratic field extension. Denote by z ÞÑ z the nontrivial element in the Galois group
Gal(K/Qp). Then (K,N = NK/Qp) is a quadratic space of dimension 2. If K = Qp(

?
D), then detK = ´4D,

so for each a P Qˆ
p , we have (´ detK, a)p = 1 if a P NKˆ, and ´1 otherwise. For convenience, write

τK/Qp(a) = (´ detK, a)p.
Let λ : Kˆ Ñ C be a character and define

S(K,λ) =
␣

Φ P S(K) | Φ(xz1) = λ(z1)
´1Φ(x) for all z1 P K1

(

where K1 is the set of norm one element in K. As before, we let the Weil representation rK act on S(K,λ),
and extend it to a representation of the subgroup G+ := tg P GL2(Qp) | det g P NK/QK

ˆu by means of the
formula

rK

(
a 0

0 1

)
Φ(x) := |a|

1
2λ(z)Φ(xz)

if a = NK/Qp(z) P Q+
p := NK/QpK

ˆ Ď Qˆ
p . Again, consider the maps

0 S(Q+
p ) S(K,λ) C

Φ Φ(0)

ξ Φξ : z ÞÑ |N(z)|´
1
2λ(z´1)ξ(N(z))

ℓ
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This is an exact sequence, which can be proved in the same way as in the quaternion case. Define the

subgroup B+
1 =

#(
a b

0 1

)
| a P Q+

p , b P Q

+

ď B1. Then, as a subspace of S(K,λ), the space S(Q+
p ) is

invariant under the action of G+, and (rK |B+
1
,S(Q+

p )) = (Kψ|B+
1
,S(Q+

p )).

Define rS(K,λ) := IndGG+(S(K,λ), rK). Consider the map

IndGG+(S(Q+
p ), rK) (Kψ,S(Qˆ

p ))

f : G Ñ S(Q+
p ) ξf (a) := f

((
a 0

0 1

))
(1)

We claim this is well-defined and is an isomorphism as B+
1 representations. Let L : S(Q+

p ) Ñ Cˆ be the
evaluation map at 1. Then

ξf (a) = L

(
ρ

(
a 0

0 1

)
f(e)

)

and for α P Q+
p , we have

f

((
a x

0 1

))
(α) = Kψ

((
α 0

0 1

))
f

((
a x

0 1

))
(1) = rK

((
α 0

0 1

))
f

((
a x

0 1

))
(1)

= L

(
f

((
aα xα

0 1

)))
= L

(
Kψ

(
1 xα

0 1

)
f

((
aα 0

0 1

)))
= ψ(xα)ξf (aα)

This shows ξf P S(Qˆ
p ), and since Qˆ

p /Q+
p is finite, we find f ÞÑ ξf is injective. Also, f ÞÑ ξf is B1-

intertwining, so the irreducibility of (Kψ,S(Qp)ˆ) implies this is a B1-isomorphism. In particular, this
shows

If λ|K1
‰ 1, then since λ(z1)Φ(x) = Φ(xz1), we find Φ(0) = 0 for all Φ P S(K,λ). Thus S(Q+

p ) – S(K,λ),
and S(Qˆ

p ) – IndGG+ S(Q+
p ) – rS(K,λ) as B1-representations. In this case, we find rS(K,λ) is supercuspidal.

Suppose λ|K1 = 1. Then we can find a character χ : Qˆ
p Ñ Cˆ with λ = χ ˝NK/Qp . We are to construct

a non-trivial GL2(Qp)-equivariant map from rS(K,λ) to I(χ, χτK/Qp). For this, pick any δ P Qˆ
p zQ+

p and
define

rℓ : rS(K,λ) C

rΦ rℓ(rΦ) := χ(δ)ℓ(rΦ(1)) + ℓ

(
rΦ

((
δ 0

0 1

)))

Then rℓ is not trivial on S(K,λ), and the map rΦ ÞÑ [g ÞÑ rℓ(ρ(g)rΦ)] is what we want. It remains to show
rS(K,λ) is irreducible as GL2(Qp) representations.
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12 Global Theory
Lemma 12.1. Let p ă 8 and (π, V ) be an irreducible representation of G = GL2(Qp). Put Kp = GL2(Zp).
If V Kp ‰ 0, then dimC V

Kp = 1.

Proof. Recall that we have the algebra

H(G,Kp) = tϕ P S(G) | ϕ(k1gk2) = ϕ(g) for ki P Kp, g P Gu

By Lemma 3.3.(iii) and (iv), V Kp is a simple H(G,Kp)-module.

Lemma 12.2 (Cartan decompsition). We have

GL2(Qp) =
ğ

xěy

Kp

(
px 0

0 py

)
Kp

Then H(G,Kp) is spanned by the characteristic functions of Kp

(
a 0

0 b

)
Kp over C, and hence for ϕ P

H(G,Kp), we have ϕt(g) := ϕ(gt) = ϕ(g) for all g P G, i.e., ϕt = ϕ.
On the other hand, since G is unimodular, a direct computation shows (ϕ1 ˚ ϕ2)

t = ϕt2 ˚ ϕt1 for all
ϕi P S(G). Hence,

ϕ1 ˚ ϕ2 = (ϕ1 ˚ ϕ2)
t = ϕt2 ˚ ϕt1 = ϕ2 ˚ ϕ1

that is, H(G,Kp) is a commutative ring. Since V Kp is a simple module over a commutative ring, we must
have dimC V

Kp = 1.

12.1 Representations of GL2(A)

Denote by A = AQ the ring of adeles over Q. Define

GL2(A) :=

#

(gp) P
ź

pď8

GL2(Qp) | gp P GL2(Zp) for all finitely many p
+

For finite prime p, put Kp = GL2(Zp) and let (πp, Vp) be an irreducible representation of GL2(Qp). For
p = 8, let (π8, V8) be an irreducible (g8,K8)-module, where g8 = Lie(GL2(R)) and K8 = O(2).

(♠) Assume that V Kp ‰ 0 for all but finitely many p. Define

V :=
â1

pď8

Vp = lim
ÝÑ
SĎMQ
#Să8

(
â

pPS

Vp b
â

pRS

V Kpp

)

Let S0 be a finite set of primes containing 8. For p R Sp, since we are assuming V Kpp ‰ 0, by Lemma 12.1,
we have V Kpp = C ¨ ξ˝

p. Then

V = spanC
␣

bpPSvp bpRS ξ
˝
p | vp P Vp, S Ě S0, #S ă 8

(

Then
π := b1πp : GL2(A) Ñ GL(V )

is an representation of GL2(A), or more precisely, a representation of (g8,K8) ˆ
ź1

pă8

GL2(Qp).
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Definition. We say (π, V ) is an irreducible representation of GL2(A) if (π, V ) –

(
b1πp,

â1

pď8

Vp

)
with

each (πp, Vp) irreducible and t(πp, Vp)upď8 satisfying (♠).

For (gp) = (aij) P GL2(Qp), define

∥gp∥p :=

#

ř

i,j |aij |
2
8 , if p = 8

maxi,j |aij |p , if p ă 8

For g = (gp) P GL2(A), define

∥g∥ =
ź

pď8

∥gp∥p

which is well-defined since for all but finitely many gp, we have ∥gp∥p ď 1.

Definition. A function ϕ : GL2(A) Ñ C is called an automorphic form on GL2(A) if

(i) ϕ is K-finite, where K =
ś

pď8

Kp;

(ii) ϕ is smooth, i.e. there exists an open compact U Ď
ś

pă8

Kp such that

• ϕ(gu) = ϕ(g) for all u P U , and
• for all gf P GL2(Af ) =

ź1

pă8

GL2(Qp), the map

GL2(R) C

g8 ϕ(g8gf )

is smooth;

(iii) ϕ is slowing increasing, i.e. there exist M1,M2 ą 0 such that

|ϕ(g)| ď M2 ∥g∥M1

for all g P GL2(A);

(iv) ϕ(rg) = ϕ(g) for all r P GL2(Q) (this is why ϕ is called automorphic);

(v) ϕ is Z-finite, where Z = C[J,∆] Ď U(gC), J =

(
1 0

0 1

)
, and ∆ is the Casimir element of sl2(R).

We denote by A(GL2(A)) the space of automorphic forms on GL2(A). Then A(GL2(A)) is a representation
of GL2(A) under the right translation.

In the following, let us put G = GL2, and A(GL2(A)) = A(G).

Definition. An irreducible representation (π, V ) of GL2(A) is automorphic if HomGL2(A)(π,A(G)) ‰ 0.

Definition. A continuous character ω : QˆzAˆ Ñ Cˆ is called a Hecke character of Q.

We write

A(G,ω) =
␣

ϕ P A(G) | ϕ(zg) = ω(z)ϕ(g) for all z P Aˆ
(

to be the space of automorphic forms of GL2(A) with central character ω. Then

A(G) =
à

ω : Hecke
A(G,ω)???

and a smooth function ϕ : G(Q)zG(A) Ñ C with central character ω is automorphic if and only if ϕ
is K-finite, Z-finite and slowly decreasing. A representation π = b1πp is automorphism if and only if
HomG(A)(π,A(G,ω)) ‰ 0 for some Hecke character ω of Q.
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12.2 Siegel Set
If (x, y) P Q2

p, define

∥(x, y)∥p :=

#

maxt|x|p, |y|pu , if p ă 8
a

|x|28 + |y|28 if p = 8

and for (x, y) P A2, define

∥(x, y)∥ :=
ź

pď8

∥(xp, yp)∥p

Then ∥¨∥ : Aˆ Ñ Rą0 is a continuous map.
We list some facts.

• For α P Qˆ Ď Aˆ, we have

|α| :=
ź

pď8

|α|p = 1

This is the product formula. In other words, | ¨ | : Aˆ Ñ Rą0 factors through QˆzAˆ.

• A = Q+ [0, 1] ˆ
ź

pă8

Zp.

• Put (Aˆ)0 = tx P Aˆ | |x| = 1u. Then (Aˆ)0 = Qˆ

(
t˘1u ˆ

ź

pă8

Zˆ
p

)
.

• GL2(A) = GL2(Q)

(
GL2(R) ˆ

ź

pă8

GL2(Zp)

)
.

Lemma 12.3. There exists c0 ą 0 such that for any g P GL2(A) there exists γ P GL2(Q) such that

∥(0, 1)γg∥ ă c0| det g|
1
2

where det : GL2(A) Ñ Aˆ.

Put

B0(A) =

#(
a1 x

0 a2

)
| ai P (Aˆ)0, x P A

+

By product formula, we have B(Q) Ď B0(A). Since QzA and Qˆz(Aˆ)0 are compact, B(Q)zB0(A) is
compact as well. In particular, we can find compact Ω0 Ď B0(A) such that

B0(A) = B(Q)Ω0

In fact, we can take

Ω0 =

#(
a1 x

0 a2

)
| ai P t˘1u ˆ

ź

pă8

Zˆ
p , x P [´1, 1] ˆ

ź

pă8

Zp

+

For c ą 0, we define the Siegel set to be

S(Ω0, c) :=

#

b

(
a 0

0 1

)
k | b P Ω0, a P Rˆ, |a| ą c, k P K

+

where K = O(2) ˆ
ś

pă8

GL2(Zp).
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Theorem 12.4. There exists c ą 0 such that

GL2(A) = GL2(Q)R+S(Ω0, c)

where R+ Ď GL2(R) Ď GL2(A).

Lemma 12.5. Take c ą 0 be as in Theorem 12.4. The set
␣

r P Qˆz GL2(Q) | rS X AˆS ‰ H
(

is finite, where S = S(Ω0, c) is the Siegel set.

Corollary 12.5.1. Let ω : QˆzAˆ Ñ S1 be a unitary Hecke character of Q and ϕ P A(G,ω). If there exists
m ă 1 and c1 such that

|ϕ(g)| ď c1 ∥g∥m

for all g P GL2(A), then ϕ P L1(AˆG(Q)zG(A)), i.e.,
ż

Z(A)G(Q)zG(A)
|ϕ(g)|dg ă 8

That |ϕ| is a function on Z(A)G(Q)zG(A) results from that ϕ is automorphic and ω is unitary.

Proof. Let S be the Siegel set as in the previous lemma, and π1 : G Ñ Z(A)zG(A) be the projection. Put

S1 = π1(S) Ď Z(A)zG(A)

and for g P Z(A)z GL2(A), define

AS(g) :=
ÿ

rPQˆzG(Q)

IS1(rg)

Formally, it descents to a map for g P Z(A)G(Q)zG(A). To see this sum is well-defined, by Theorem 12.4,
the projection S Ñ Z(A)G(Q)zG(A) is surjective, so for g P Z(A)G(Q)zG(A) we can choose x P S with
AS(g) = AS(x). Then

tr P QˆzG(Q) | rx P S1u = tr P QˆzG(Q) | AˆS X Aˆrx ‰ Hu Ď tr P QˆzG(Q) | AˆS X rS ‰ Hu

The last set above is finite by the previous lemma, so the sum
ÿ

rPQˆzG(Q)

IS1(rg) is actually a finite sum; this

shows AS(g) is well-defined. Now AS(g) ě IZ(A)G(Q)zG(A)(g), so
ż

Z(A)zG(A)
|ϕ(g)|IS1(g)dg =

ż

Z(A)G(Q)zG(A)

ÿ

rPQˆzG(Q)

|ϕ(rg)|IS1(rg)dg

=

ż

Z(A)G(Q)zG(A)
|ϕ(g)|AS(g)dg

ě

ż

Z(A)G(Q)zG(A)
|ϕ(g)|dg

It suffices to show
ż

Z(A)zG(A)
|ϕ(g)|IS1(g)dg ă 8. By assumption, we have

ż

Z(A)zG(A)
|ϕ(g)|IS1(g)dg ď c1

ż 8

c

|t|m´1dˆt vol(Ω0K) ????

The last integral is finite if m ă 1, so the result follows.
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12.3 Cusp forms

Definition. Let N =

#(
1 ˚

0 1

)+
. For ϕ P A(G), define

ϕN (g) :=

ż

QzA
ϕ

((
1 x

0 1

)
g

)
dx

This is called the constant term of ϕ (along N). Here dx is the quotient measure of the Haar measure on
A normalized so that vol([0, 1] ˆ

ś

pă8 Zp) = 1 by the counting measure on Q. An automorphic form ϕ is
called cuspidal, or a cusp form if ϕN = 0.

Proposition 12.6. If ϕ is a cusp form, then ϕ is rapidly decreasing, i.e., for all m P Z there exists cm
such that

|ϕ(g)| ď cm ∥g∥m

12.4 Poisson summation formula
For each p ď 8, let ψp : Qp Ñ Cˆ be the standard additive character. Define

ψA =
ź

pď8

: A Ñ Cˆ

By definition, one can show ψA(x + α) = ψA(x) for all α P Q, so it induces a map on the quotient ψA :

QzA Ñ Cˆ.
For each p ă 8 we fix the element IZp P S(Qp). Form the restricted tensor product S(A) =

â1

pď8

S(Qp).

For each Φ P S(A), define its Fourier transform

pΦ(x) :=

ż

A
Φ(y)ψA(xy)dy

The Fourier transform induces a bijection on S(A).

Theorem 12.7. For Φ P S(A), we have
ÿ

αPQ
Φ(α) =

ÿ

αPQ

pΦ(α)

Proof. Define f : A Ñ C by

f(x) =
ÿ

αPQ
Φ(α+ x)

This series converges absolutely and compactly, so it defines a continuous function on A. To see this, let us
assume Φ(x) = Φ8(x8)Φf (xf ) with Φ8 P S(R), Φf P S(Afin). Since Φf has compact support, by prime
factorization there exists a discrete subgroup Λ ď R such that if α P Q, then Φf (αf ) = 0 unless α8 P Λ.
Now it suffices to show

ř

αPΛ

Φ8(α8 + x8) converges absolutely and compactly in x8. This is easy.

Since it is periodic, it induces a continuous map f : QzA Ñ C, by abuse of notation. Since zQzA = tψα :

x ÞÑ ψA(αx) | α P Qu and AzQ is compact abelian, we have the Fourier expansion

f(x) =
ÿ

αPQ
aαψα(x)
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with aα =

ż

QzA
f(x)ψα(´x)dx. We compute the coefficients aα.

aα =

ż

QzA
f(x)ψα(´x)dx =

ż

QzA
f(x)ψA(´αx)dx

=

ż

QzA

ÿ

βPQ
Φ(x+ β)ψA(´αx)dx

=

ż

QzA

ÿ

βPQ
Φ(x+ β)ψA(´α(x+ β))dx

=

ż

A
Φ(x)ψA(´αx)dx = pΦ(´α)

Thus

f(x) =
ÿ

αPQ

pΦ(´α)ψα(x)

The right hand side defines a continuous function as well, so this equality holds everywhere in x P A. Taking
x = 0, we obtain

ÿ

αPQ
Φ(α) = f(0) =

ÿ

αPQ

pΦ(´α)

For Φ P S(An), we can similarly define pΦ : An Ñ C by

pΦ(x) =

ż

An
Φ(y)ψA(x ¨ y)dy

where x ¨ y = x1y1 + ¨ ¨ ¨ + xnyn if x = (xn), y = (yn). In this way we still have the Poisson summation
formula

ÿ

αPQn
Φ(α) =

ÿ

αPQn

pΦ(α)

Let Φ P S(An) and a P Aˆ. Define Φa P S(An) by Φa(x) := Φ(ax). We compute its Fourier transform.

xΦa(x) =

ż

An
Φa(y)ψA(x ¨ y)dy =

ż

An
Φ(ay)ψA(x ¨ y)dy

(y ÞÑ a´1y) =

ż

An
Φ(y)ψ(a´1xy)|a|´ndy = |a|´npΦ(a´1x)

Thus we have the following (slight) generalization of Poisson summation formula.

Theorem 12.8. For Φ P S(An) and a P Aˆ, we have
ÿ

αPQn
Φ(aα) =

1

|a|n

ÿ

αPQn

pΦ(a´1α)

12.5 Eisenstein series
Let χ1, χ2 : QˆzAˆ Ñ Cˆ be two Hecke characters of Q; then they together define a character χ = (χ1, χ2) :

B(A) Ñ C For Φ P S(A2), define the Godement section fΦ,χ,s : G(A) Ñ C by the formula

fΦ,χ,s(g) := χ1| ¨ |s+
1
2 (det g)

ż

Aˆ
Φ((0, t)g)χ1χ

´1
2 | ¨ |2s+1(t)dˆt
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where dˆt =
ź

pď8

dˆtp. If Φ =
â1

pď8

Φp (with Φp = IZpˆZp for almost all p ă 8), we have

fΦ,χ,s(g) =
ź

pď8

fΦp,χp,s(gp)

For Φ P S(A2), s P C, g P G(A), define the Eisenstein series

Eχ(Φ, s, g) :=
ÿ

rPB(Q)zG(Q)

fΦ,χ,s(rg)

Ignoring the convergence issue, we see that g ÞÑ Eχ(Φ, s, g) is automorphic, i.e., Eχ(Φ, s, rg) = Eχ(Φ, s, g)

for all r P G(Q).

Theorem 12.9. Suppose |χ1χ
´1
2 | = | ¨ |ρ for some ρ P R.

(i) The series Eχ(Φ, s, g) converges absolutely if Re(s) ą
1 ´ ρ

2
.

(ii) Eχ(Φ, s, g) has a meromorphic continuation to C and satisfies the functional equation

Eχ(Φ, s, g) = Eχsw(pΦ,´s, g)

where χsw = (χ2, χ1).

(iii) Eχ(Φ, s, g) is entire if χ1χ
´1
2 is not of the form | ¨ |s0 for some s0 P C, and has only a simple pole at

s =
´ρ˘ 1

2
??? if χ1χ

´1
2 = | ¨ |ρ+it for some t P R.

In fact, one can show Eχ(Φ, s, g) P A(G,χ1χ2) is an automorphic form.

Proof. We have the Bruhat decomposition

G(Q) = B(Q)
ğ

αPQ
B(Q)

(
0 ´1

1 0

)(
1 α

0 1

)
so

B(Q)zG(Q) =

#

e =

(
1 0

0 1

)
,

(
0 ´1

1 0

)(
1 α

0 1

)
| α P Q

+
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Since Eχ(Φ, s, g) = Eχ(ρ(g)Φ, s, e), we may assume g = e. Then formally

Eχ(Φ, s, e) = fΦ,χ,s(e) +
ÿ

αPQ
fΦ,χ,s

((
0 ´1

1 0

)(
1 α

0 1

))

=

ż

Aˆ
Φ(0, t)χ1χ

´1
2 | ¨ |2s+1(t)dˆt+

ÿ

αPQ

ż

Aˆ
Φ(t, tα)χ1χ

´1
2 | ¨ |2s+1(t)dˆ

=

ż

QˆzAˆ

ÿ

βPQˆ

Φ(0, βt)χ1χ
´1
2 | ¨ |2s+1(βt)dˆt+

ÿ

αPQ

ż

QˆzAˆ

ÿ

βPQˆ

Φ(tβ, tβα)χ1χ
´1
2 | ¨ |2s+1(tβ)dˆt

=

ż

QˆzAˆ

ÿ

0‰ξPQ2

Φ(tξ)χ1χ
´1
2 | ¨ |2s+1(t)dˆt

=

ż

|t|ą1

ÿ

0‰ξPQ2

Φ(tξ)χ1χ
´1
2 | ¨ |2s+1(t)dˆt

+

ż

|t|ă1

ÿ

ξPQ2

Φ(tξ)χ1χ
´1
2 | ¨ |2s+1(t)dˆt´

ż

|t|ă1

Φ(0)χ1χ
´1
2 | ¨ |2s+1(t)dˆt

12.8
=

ż

|t|ą1

ÿ

0‰ξPQ2

Φ(tξ)χ1χ
´1
2 | ¨ |2s+1(t)dˆt

+

ż

|t|ă1

ÿ

ξPQ2

pΦ(t´1ξ)|t|´2χ1χ
´1
2 | ¨ |2s+1(t)dˆt´

ż

|t|ă1

Φ(0)χ1χ
´1
2 | ¨ |2s+1(t)dˆt

(t ÞÑ t´1) =

ż

|t|ą1

 ÿ

0‰ξPQ2

Φ(tξ)

χ1χ
´1
2 | ¨ |2s+1(t)dˆt

(A)

+

ż

|t|ą1

 ÿ

0‰ξPQ2

pΦ(t´1ξ)

χ´1
1 χ2| ¨ |1´2s(t)dˆt

(B)

´ Φ(0)

ż

|t|ă1

χ1χ
´1
2 | ¨ |2s+1(t)dˆt

(C)

+ pΦ(0)

ż

|t|ă1

χ1χ
´1
2 | ¨ |2s´1(t)dˆt

(D)

For (A) and (B), the parenthetical terms are rapidly decreasing in t, so the integrals converge absolutely for

all s P C (note that
ż

|t|ą1

=

ż 8

1

ż

Qˆz(Aˆ)0
and recall that Qˆz(Aˆ)0 is compact). For (C)

Φ(0)

ż

|t|ă1

χ1χ
´1
2 | ¨ |2s+1(t)dˆt = Φ(0)

ż 1

0

ż

Qˆz(Aˆ)0
χ1χ

´1
2 | ¨ |2s+1(tx)dˆtdˆx

Since Qˆz(Aˆ)0 is compact, the integral vanishes if χ1χ
´1
2 |(Aˆ)0 ‰ 1, and if χ1χ

´1
2 |(Aˆ)0 = 1, it is

Φ(0) vol(Qˆz(Aˆ)0, dˆt)

ż 1

0

χ1χ
´1
2 | ¨ |2s+1(x)dˆx

Similarly, (D) vanishes if χ1χ
´1
2 |(Aˆ)0 ‰ 1, and if χ1χ

´1
2 |(Aˆ)0 = 1, it is

pΦ(0) vol(Qˆz(Aˆ)0, dˆt)

ż 1

0

χ1χ
´1
2 | ¨ |2s´1(x)dˆx

Now recall that a continuous character χ : Rˆ Ñ Cˆ has the form χ = | ¨ |rsignε for some r P C and ε P t0, 1u;
this χ1χ

´1
2 |Rą0

= | ¨ |ρ+it0 for some t0 P R. Thus if 2Re(s) ´ 1 + ρ ą 0 and χ1χ
´1
2 |(Aˆ)0 = 1, we have

(C)´(D) = vol(Qˆz(Aˆ)0, dˆt)

(
Φ(0)

2s+ 1 + ρ+ it0
´

pΦ(0)

2s´ 1 + ρ+ it0

)

Then Eχ(Φ, s, e) satisfies all desired properties.
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12.5.1 Fourier Expansion

For ϕ P A(G), define Wϕ : G(A) Ñ C by

Wϕ(g) :=

ż

QzA
ϕ

((
1 x

0 1

)
g

)
ψ(´x)dx

where ψ = ψA : QzA Ñ Cˆ is the standard additive character. Wϕ is called the Whittaker function of ϕ,
and it satisfies

Wϕ

((
1 x

0 1

)
g

)
= ψ(x)Wϕ(g)

for all g P G(A), x P A. Then for all ϕ P A(G), we have the Fourier expansion of ϕ:

ϕ(g) = ϕN (g) +
ÿ

αPQˆ

Wϕ

((
α 0

0 1

)
g

)

To see this, since the function x ÞÑ ϕ

((
1 x

0 1

)
g

)
is continuous on the compact abelian group QzA, it has

the expansion
ř

αPQ
ϕαψ(αx) with

ϕα =

ż

QzA
ϕ

((
1 x

0 1

)
g

)
ψ(´αx)dx

For α = 0, by definition we have ϕα = ϕN . For α ‰ 0, compute

ϕα =

ż

QzA
ϕ

((
1 x

0 1

)
g

)
ψ(´αx)dx

x ÞÑα´1x
=

ż

QzA
ϕ

((
1 α´1x

0 1

)
g

)
ψ(´x)|α´1|dx

=

ż

QzA
ϕ

((
α´1 0

0 1

)(
1 x

0 1

)(
α 0

0 1

)
g

)
ψ(´x)dx =Wϕ

((
α 0

0 1

)
g

)

Taking x = 0 proves the desired identity.
For convenience, write E(g) = Eχ(Φ, s, g) and f = fΦ,χ,s, where s P C, Φ P S(A2), χ = (χ1, χ2). We

discuss its Fourier expansion. Firstly, the constant term

EN (g) :=

ż

QzA
E

((
1 x

0 1

)
g

)
dx

=

ż

QzA

ÿ

γPB(Q)zG(Q)

f

(
γ

(
1 x

0 1

)
g

)
dx

=

ż

QzA
f

((
1 x

0 1

)
g

)
+

ÿ

αPQ
f

(
w´1

(
1 x+ α

0 1

)
g

)
dx

= f(g) +Mf(g)

The third equality is the Bruhat decomposition

G(Q) = B(Q)
ğ

αPQ
B(Q)

(
0 ´1

1 0

)(
1 α

0 1

)
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and w =

(
0 1

´1 0

)
. For the last equality, note that vol(QzA, dx) = 1, and define

Mf(g) :=

ż

A
f

(
w´1

(
1 x

0 1

)
g

)
dx

If Φ =
â1

pď8

Φp P S(A2), then

Mf(g) =
ź

pď8

ż

Qp
fΦp,χp,s

(
w´1

(
1 xp

0 1

)
gp

)
dxp =

ź

pď8

MfΦp,χp,s(gp)

Here M = ℓN is the intertwining operator defined before. Secondly, the Whittaker function

WE(g) :=

ż

QzA
E

((
1 x

0 1

)
g

)
ψ(´x)dx

=

ż

QzA
f

((
1 x

0 1

)
g

)
ψ(´x)dx

=0

+

ż

QzA

ÿ

αPQ
f

(
w´1

(
1 x+ α

0 1

)
g

)
ψ(´x)dx

=

ż

A
f

(
w´1

(
1 x

0 1

)
g

)
ψ(´x)dx =

ź

p

ż

Qp
fΦp,χp,s

(
w´1

(
1 xp

0 1

)
gp

)
ψp(´xp)dxp

The last equality holds when Φ =
â1

pď8

Φp. If we define the local Whittaker function

Wfp(g) :=

ż

Qp
fp

(
w´1

(
1 xp

0 1

)
gp

)
ψp(´xp)dxp

with fp = fΦP ,χp,s P I(χ1,p| ¨ |s, χ2,p| ¨ |´s) (c.f. Remark 8.3), we have

WE(g) =
ź

pď8

Wfp(gp)

whenever Φ =
â1

pď8

Φp and χ =
ź

pď8

χp.

Example.

(1) Let p ă 8, Φ = IZpˆZp and χp = (χ1,p, χ2,p) with χi,p unramified. Write f = fΦp,χp,s for brevity. For
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a P Qˆ
p ,

Wf

((
a 0

0 1

))
=

ż

Qp
f

(
w´1

(
1 x

0 1

)(
a 0

0 1

))
ψp(´x)dx

=

ż

Qp
χ1,p| ¨ |s+

1
2 (a)

ż

Qˆ
p

Φp

(
(0, t)

(
0 ´1

1 0

)(
a x

0 1

))
χ1,pχ

´1
2,p| ¨ |2s+1(t)dˆt ψp(´x)dx

= χ1,p| ¨ |s+
1
2 (a)

ż

Qp

ż

Qˆ
p

Φp(ta, tx)χ1,pχ
´1
2,p| ¨ |2s+1(t)ψp(´x)d

ˆtdx

= χ1,p| ¨ |s+
1
2 (a)

ż

Qp
IZp(ta)χ1,pχ

´1
2,p| ¨ |2s+1(t)

ż

Qp
IZp(tx)ψp(´x)dxdˆt

(x ÞÑ t´1x) = χ1,p| ¨ |s+
1
2 (a)

ż

Qˆ
p

IZp(ta)χ1,pχ
´1
2,p| ¨ |2s+1(t)|t´1|xIZp(´t´1)dˆt

(t ÞÑ t´1) = χ1,p| ¨ |s+
1
2 (a)

ż

Qˆ
p

IZp(t´1a)IZp(´t)(t´1a)χ1,pχ
´1
2,p| ¨ |2s(t´1)dˆt

= χ1,p| ¨ |s+
1
2 (a)

ż

0ďordp tďordp a
χ1,pχ

´1
2,p| ¨ |2s(t´1)dˆt

= χ1,p| ¨ |s+
1
2 (a)

ordp a
ÿ

m=0

χ´1
1,pχ2.p| ¨ |´2s(pm)

In particular, Wf

((
1 0

0 1

))
= 1 under this situation.

(2) Let p = 8, Φ8(x, y) = e´π(x2+y2), χ1,p = χ2,p = 1. Then for a P Rˆ = Qˆ
8,

Wf

((
a 0

0 1

))
= |a|s+

1
2

ż

Rˆ
e´πt2a2 |t|2s+1|t´1|{e´πx2(´t´1)dˆt

= |a|s+
1
2

ż

Rˆ
e´π(t2a2+t´2)|t|2sdˆ

(t ÞÑ |a|´
1
2 t) = |a|

1
2

ż

Rˆ
e´π|a|(t2+t´2)|t|2sdˆt = |a|

1
2Ks(π|a|)

where Ks(y) :=
ż

Rˆ
e´y(t+t´1)|t|sdˆ = 2

ż 8

0

e´y(t+t´1)tsdˆt is the K-Bessel function.

12.5.2 Application to Prime Number Theorem

Theorem 12.10. ζ(1 + it) ‰ 0 for all t P Rˆ, where

ζ(s) =
ź

pď8

L(s, 1p) = π´ s
2Γ
(s
2

)
ź

pă8

(1 ´ p´s)´1

Proof. Define

Φ˝
p :=

#

e´π(x2+y2) , if p = 8

IZpˆZp , if p ă 8

and put Φ˝ =
â1

pď8

Φ˝
p; then xΦ˝ = Φ˝. Put χ = (1, 1), and form the Epstein Eisenstein series

E(s, g) := Eχ(Φ
˝, s, g)
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We compute its constant term; we have

EN (s, g) = fΦ˝,χ,s(g) +MfΦ˝,χ,s(g)

and by Proposition 10.1,

MfΦ˝,χ,s(g) =
ź

p

γ(2s, 1p, ψp)
´1f

xΦ˝,χsw,´s
=
ź

p

L(2s, 1p)

L(1 ´ 2s, 1p)
f
xΦ˝,χ,´s

=
ζ(2s)

ζ(1 ´ 2s)
fΦ˝,χsw,´s

Compute

fΦ˝,χ,s(e) =

ż

Aˆ
Φ˝(0, t)| ¨ |2s+1(t)dˆt

=

ż

Rˆ
e´πt2 | ¨ |2s+1(t)dˆt ¨

ź

pă8

ż

Qˆ
p

IZp(tp)| ¨ |2s+1(tp)d
ˆtp

= ζ(2s+ 1)

Thus

EN (s, e) = fΦ˝,χ,s(e) +MfΦ˝,χ,s(e) = ζ(2s+ 1) + ζ(2s)

To be filled.

12.6 L-functions of cuspidal automorphic representations
Recall that (π, V ) is an irreducible representation of GL2(A) if π =

â1

pď8

πp with each πp an irreducible

representation of GL2(Qp), and π is called automorphic if HomG(A)(π,A(G)) ‰ 0.

Definition. An irreducible representation (π, V ) is called cuspidal if HomG(A)(π,A0(G)) ‰ 0.

Suppose π is an automorphic cuspidal irreducible representation of GL2(A). Since π =
â1

pď8

πp, for each

p ď 8 we can form the local L-functions L(s, πp) of πp. Define the global L-function

L(s, π) =
ź

pď8

L(s, πp) ????

Proposition 12.11. Suppose π is an automorphic cuspidal irreducible representation of GL2(A) with central
character ω of weight ρ (i.e., |ω| = | ¨ |ρ). Then L(s, π) is absolutely convergent for Re(s) ą

3 ´ ρ

2
.

Let p ă 8. Then πp is spherical if and only if πGL2(Zp)
p ‰ 0, if and only if dimC π

GL2(Zp)
p = 1. By

Homework 5 , we see πp – π(χ1, χ2) with χi : Qˆ
p Ñ Cˆ unramified. Since Hp := H(GL2(Qp),GL2(Zp)) is

commutative, we can find λπp : Hp Ñ C such that πp(f)v = λπp(f)v for all nonzero spherical vector v and
f P Hp. (c.f. Lemma 12.1.)

Lemma 12.12. Suppose there exists C ą 0 such that

|λπp(f)| ď C

ż

G(Qp)
f(g)dg

for all f P Hp. Then |χ1χ2(p)| = 1 and

p´ 1
2 = |p|

1
2 ď |χi(p)| ď |p|´

1
2 = p

1
2

for i = 1, 2.

87



Proof. Define

Tn = I
K

pn
1

K
, n P N0

Rn = I
K

pn
pn

K
= Ipn

pn

K
, n P Z

Then Tn, Rn P Hp, and if we put αi = χi(p), i = 1, 2, we have

λπp(Tn) = |p|´
n
2 (αn1 + αn2 )

λπp(Rn) = (α1α2)
n

To check this, we take (π, V ) = (ρ, I(χ1, χ2)), I(χ1, χ2)
K = Cf0, where f0 P I(χ1, χ2) is the unique element

such that f0(bk) = χδ
1
2

B(b) for all b P B(Qp), k P K = GL2(Zp). Since π(Tn)f0(e) = λπp(Tn)f0(e), we have

λπp(Tn) =

ż

G(Qp)
Tn(g)f0(g)dg

=
ÿ

xPZp/pnZp

f0

(
pn x

0 1

)
+ f0

(
1

pn

)
= αn1 |pn|

1
2 pn + αn2 |pn|´

1
2

= |pn|´
1
2 (αn1 + αn2 )

Here the measure dg is normalized so that vol(K, dg) = 1, and we use the decomposition (c.f. Homework 5)

K

(
pn

1

)
K =

ğ

xPZp/pnZp

(
pn x

0 1

)
K \

(
1 0

0 pn

)
K

The identity for Rn can be proved similarly. Now by assumption, we have

|λπp(Tn)| ď C

ż

G(Qp)
Tn(g)dg = C(pn + 1)

|λπp(Rn)| ď C

ż

G(Qp)
Rn(d)gd = C

Therefore,

|αn1 + αn2 | ď C(p
n
2 + p´n

2 ) for n P N0

|α1α2|n ď C for n P Z

The second inequalities imply |α1α2| = 1. We claim the first imply p´ 1
2 ď |αi| ď p

1
2 . For this, form the

formal power series

f(z) =
8
ÿ

n=0

(αn1 + αn2 )z
n =

1

1 ´ α1z
+

1

1 ´ α2z

The first inequalities imply the power series is absolutely convergent for |z| ă p´ 1
2 , and the last expression

implies |αi| ď p
1
2 . Since |α1α2| = 1, this proves the claim.
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Proof. (of Proposition 12.11) Say π –
â1

pď8

πp. Let S be a finite set of primes such that πp is NOT spherical.

Replacing π by π b | det |´
ρ
2 , we may assume ω is unitary.

Since π is automorphic, π has a realization (ρ, V ) Ď A0(G). Choose 0 ‰ ϕ P V that is fixed by GL2(Zp)
for all p R S. Then for all f P Hp, p R S, π(f)ϕ = λπp(f)ϕ. Choose g0 P G(A) with ϕ(g0) ‰ 0. Then

λπp(f)ϕ(g0) =

ż

G(Qp)
ϕ(g0gp)f(gp)dgp

Since ϕ is a cusp form, ϕ is bounded on G(A) by Proposition 12.6 (the case m = 0) so that

|λπp(f)| ď C

ż

G(Qp)
f(gp)dgp

for some C. By Lemma 12.12, for p R S if we write πp – π(χ1,p, χ2,p), then p´ 1
2 ď |χi,p(p)| ď p

1
2 (i = 1, 2).

For p R S,

L(s, πp) =
1

(1 ´ χ,p(p)p´s)(1 ´ χ2,p(p)p´s)

so that

L(s, π) =
ź

pPS

L(s, πp) ¨
ź

pRS

2
ź

i=1

1

1 ´ χi,p(p)p´s

Note that
ź

pRS

1

1 ´ χi,p(p)p´s
converges absolutely if |χi,p|p´ Re(s) ă p´1. For p R S, p´ 1

2 ď |χi,p(p)| ď p
1
2 (i =

1, 2) implies |χi,p|p´ Re(s) ă p
1
2 ´Re(s). Thus if Re(s) ą

3

2
, the product L(s, π) converges absolutely.

12.7 Zeta function for cusp forms
Let (π, Vπ) be an irreducible automorphic cuspidal representation of G(A) with central character ω; we
assume Vπ Ď A0(G). For ϕ P Vπ, define the zeta integral

Z(ϕ, s) =

ż

QˆzAˆ
ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa

and pϕ(g) := ϕ(gw)ω´1(det g), where w =

(
0 1

´1 0

)
P G(Q); then pϕ P Vπ_ . ???

Proposition 12.13.

1. Z(ϕ, s) converges absolutely for Re(s) " 0, has analytic continuation to an entire function and is
bounded in every vertical strip.

2. Z(ϕ, s) satisfies the functional equation

Z(ϕ, s) = Z(pϕ, 1 ´ s)

Proof.

Z(ϕ, s) =

ż

QˆzAˆ
ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa

=

ż

|a|ą1

ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa+

ż

|a|ă1

ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa
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On the other hand,

ϕ

((
a 0

0 1

))
= ϕ

(
w´1

(
1 0

0 a

)
w

)
= ϕ

((
1 0

0 a

)
w

)
= ω(a)ϕ

((
a´1 0

0 1

)
w

)
= pϕ

((
a´1 0

0 1

)
w

)
so

ż

|a|ă1

ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa =

ż

|a|ą1

pϕ

((
a 0

0 1

))
|a|

1
2 ´sdˆa

In sum, we obtain

Z(ϕ, s) =

ż

|a|ą1

ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa+

ż

|a|ą1

pϕ

((
a 0

0 1

))
|a|

1
2 ´sdˆa

Since ϕ and pϕ are cuspidal, they are rapidly decreasing Proposition 12.6. Thus
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|a|ą1

ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż 8

1

ts´n´ 1
2 dˆt

for some n " 0 and C = Cn ą 0. Similar for the second integral. In conclusion, both integral converges
absolutely and define entire functions for s P C, and thus Z(ϕ, s) is entire and verifies the functional equation.

12.8 Whittaker functions
Let (π, Vπ) be as in the last subsection. For all p ď 8, fix a nonzero Whittaker functional ℓp : Vπp Ñ C. Let
S be the finite set of primes such that πp is not spherical. For p R S, we require ℓp(ξ˝

p) = 1, where ξ˝
p is a

fixed basis element of V GL2(Zp)
πp .

Lemma 12.14. If ℓ : Vπ Ñ C is a global Whittaker function, then ℓ = C
ś

pď8

ℓp for some C P C.

Corollary 12.14.1. Let π –
â1

pď8

πp be cuspidal irreducible. For all p ď 8 we have the isomorphism

Vπp W (πp, ψp)

ξp Wξp

where W (πp, ψp) is the Whittaker model of πp. Then there exist an isomorphism
â1

pď8

Vπp Vπ Ď A0(G)

bpξp ϕ

such that Wϕ(g) =
ź

pď8

Wξp(gp) for all g = (gp)p P G(A).

Now for ϕ P A0(G), since ϕN = 0, we have

Z(ϕ, s) =

ż

QˆzAˆ
ϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa =

ż

QˆzAˆ

ÿ

αPQˆ

Wϕ

((
αa 0

0 1

))
|aα|s´ 1

2 dˆa

=

ż

Aˆ
Wϕ

((
a 0

0 1

))
|a|s´ 1

2 dˆa

=
ź

pď8

ż

Qˆ
p

Wξp

((
ap 0

0 1

))
|ap|s´ 1

2 dˆap =
ź

pď8

Z(Wξp , s)
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For each p ď 8 we can find Wξp P W (πp, ψp) such that Z(Wξp , s) = L(s, πp). Thus there exists ϕ P Vπ such
that Z(ϕ, s) = L(s, π), and consequently L(s, π) admits an analytic continuation to s P C with functional
equation

L(1 ´ s, π_) = ϵ(s, π)L(s, π)

where ϵ(s, π) :=
ź

pď8

ϵ(s, πp, ψp) is the product of all local ϵ-factors.

12.9 The Converse Theorem
Let F be a number field and let π –

Â

ν πν be an irreducible admissible representation of GL2(AF ) with
each πν infinite dimensional. Suppose the central character of π is a Hecke character ω : FˆzAˆ

F Ñ Cˆ of
weight ρ P R.

Theorem 12.15. Suppose there exists r P R such that for almost all places ν with πν = π(χ1,ν , χ2,ν) we
have

|πν |´r ď |χi,ν(π)| ď |πν |r (i = 1, 2)

where πν is a uniformizer in Fν . Suppose that for all unitary Hecke characters χ : FˆzAˆ
F Ñ S1 the infinite

product

L(s, π b χ) =
ź

ν

L(s, πν b χν)

converges absolutely for Re s " 0, EBV and satisfies the functional equation

L(s, π b χ) = ϵ(s, π b χ)L(1 ´ s, π_ b χ´1)

Then π is cuspidal.

For each Whittaker function W P Wψ(π), define the series

φ1(g) = φW (g) :=
ÿ

αPFˆ

W

((
α 0

0 1

)
g

)

We will show later that φ1 converges absolutely and compactly on GL2(AF ), and the map

a ÞÑ φ1

((
a 0

0 1

)
g

)

is slowly decreasing for each fixed g P G(AF ). Taking these for granted, we then see for each g P G(AF ), the
zeta integral

Z(φ1, s, g) :=

ż

FˆzAˆ
F

φ1

((
a 0

0 1

)
g

)
|a|sdˆa

converges absolutely for Re s " 0. We proceed to show φ1 is an automorphic form. Since the standard
character ψ is trivial on F , we have

φ1

((
1 x

0 1

)
g

)
=

ÿ

αPFˆ

W

((
1 αx

0 1

)(
α 0

0 1

)
g

)
=

ÿ

αPFˆ

ψ(αx)W

((
α 0

0 1

)
g

)
= φ1(g)
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By construction, φ1 is invariant under the left translation by the
(
α 0

0 1

)
, α P Fˆ. For a P Aˆ

F , since

φ1

((
a 0

0 a

)
g

)
=

ÿ

αPFˆ

W

((
α 0

0 1

)(
a 0

0 a

)
g

)
= ω(a)φ1(g)

if a P Fˆ, then φ1

((
a 0

0 a

)
g

)
= φ1(g). So far we have shown that φ1(bg) = φ1(g) for all b P B(F ). It

remains to show φ1(wg) = φ1(g), where w =

(
0 1

´1 0

)
. For this we put φ2(g) = φ1(wg) and define

f1(a) := φ1

((
a 0

0 1

)
g

)
, f2(a) := φ2

((
a 0

0 1

)
g

)
Let χ be a unitary Hecke character of F and consider the zeta integrals

Z(fi, χ, s) :=

ż

FˆzAˆ
fi(a)χ(a)|a|s´ 1

2 dˆa

We have

f2(a) = φ1

(
w

(
a 0

0 1

)
g

)
= ω(a)φ1

((
a´1 0

0 1

)
wg

)
and thus

Z1(s) = Z(f1, χ, s) =

ż

FˆzAˆ
φ1

((
a 0

0 1

)
g

)
χ(a)|a|s´ 1

2 dˆa

Z2(s) = Z(f2, χ, s) =

ż

FˆzAˆ
φ1

((
a 0

0 1

)
wg

)
ω´1χ´1(a)|a|

1
2 ´sdˆa

Unfolding, we have

Z(f1, χ, s) =

ż

Aˆ
W

((
a 0

0 1

)
g

)
χ(a)|a|s´ 1

2 dˆa

??? We can find c " 0 such that Z(f1, χ, s) (resp. Z(f2, ω
´1χ´1, 1 ´ s)) converges absolutely whenever

Re s ą c (resp. Re s ă ´c), and are bounded in vertical strips in Re s ą c (resp. Re s ă c).

Lemma 12.16. Let ν be a finite place of F such that πν is spherical principal and the additive character
ψν is unramified. If W ˝

ν is the unique spherical Whittaker function normalized so that W ˝
ν (e) = 1, then for

each unitary character χν : Fˆ
ν Ñ S1, we have

Z(W ˝
ν , χν , s) = L(s, πν b χν)

Let us assume W =
ś

ν
Wν , and let S be a finite set of finite places such that πν , χν , ψν are unramified,

gν P Kν and Wν =W ˝
ν for ν R S. For Re s ą c,

Z1(s) =
ź

ν

Z(Wν , χν , s) = L(s, π b χ)
ź

ν

Z(Wν , χν , s)

L(s, πν b χν)
= L(s, π b χ)

ź

νPS

Z(Wν , χν , s)

L(s, πν b χν)

and for Re s ă ´c,

Z2(s) = L(1 ´ s, π_ b χ´1)
ź

ν

Z(Wν , ω
´1χ´1

ν , 1 ´ s)

L(1 ´ s, π_
ν b χ´1

ν )
= L(1 ´ s, π_ b χ´1)

ź

νPS

Z(Wν , ω
´1χ´1

ν , 1 ´ s)

L(1 ´ s, π_
ν b χ´1

ν )
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By assumptions on L-functions, it follows that Z1 has an analytic continuation to some entire function in s.
Recall for ν R S, the epsilon factor ϵ(s, πν b χν , ψν) = 1. By the functional equation

Z(Wν , χ
´1
ν ω´1

ν , 1 ´ s, wgν)

L(1 ´ s, π_
ν b χ´1

ν )
= ϵ(s, πν b χν , ψν)

Z(Wν , χν , s, gν)

L(s, πν b χν)

we have

Z2(s) = L(1 ´ s, π_ b χ´1)ϵ(s, π b χ, ψ)
ź

νPS

Z(Wν , χν , s)

L(s, πν b χν)

= L(s, π b χ)
ź

νPS

Z(Wν , χν , s)

L(s, πν b χν)
= Z1(s)

Therefore Z1 and Z2 extend to the same entire function Z, and Z is bounded in vertical strips for Re s ą c

or Re s ă ´c. We have

Z(s) = L(s, π b χ)
ź

νPS

Z(Wν , χν , s)

L(s, πν b χν)

which is valid for every s P C. L(s, π b χ) is assumed to be EBV, and for each finite place ν in S, the
ratio is a polynomial in (#κ(ν))˘s, so it is also EBV. As for the infinite place ν in S, the ratio is a product
of polynomials and Gamma functions, so by Stirling’s formula and the Phragmen-Lindelöf principle, Z is
bounded in vertical strips for ´c ď Re s ď c.

Note that f1 and f2 descend to a map on Aˆ
F /F

ˆ. To show f1 = f2, it suffices to show that f1(tx) = f2(tx)

for all t P (Aˆ
F )

0/Fˆ and x P Aˆ
F . Since (Aˆ

F )
0/Fˆ is compact, it suffices to show t ÞÑ f1(tx) and t ÞÑ f2(tx)

have same Fourier expansions. To show this, for each character χ : (Aˆ
F )

0/Fˆ Ñ Cˆ, put

gi(x) = pfi(x, χ) = χ(x)

ż

(Aˆ
F )0/Fˆ

fi(tx)χ(t)d
ˆt (i = 1, 2)

g1 and g2 are functions on Aˆ
F /(A

ˆ
F )

0 – Rą0 – R, and we need to show g1 = g2. Since Z1(f1, χ, s) =

Z2(f2, χ, s), we have
ż

R
h1(x)e

sxdx =

ż

R
h1(x)e

sxdx (= Z(s))

where hi(x) := gi(e
x). Pick g P C8

c (R) and consider the convolution g ˚ hi. Then {g ˚ hi
La

= pgLa
phi

La
, and

by the inversion formula we have

g ˚ hi(x) =
1

2πi

ż b+i8

b´i8

phi
La
(s)pgLa(s)e´sxds (♠)

where b ą c if i = 1 and b ă ´c if i = 2. Look at pg(s). If we write s = σ + it, then

pgLa(σ + it) =

ż

R
g(x)ex(σ+it)dx =

ż

R
g(x)exσeitxdx = {g(x)exσ

Fourier
(t)

It follows from Riemann-Lebesgue lemma that as σ lies in a fixed compact interval, the function pgLa(σ+ it)

decays faster than any polynomial as t Ñ ˘8. Along with the fact that phi
La

is EBV, the Cauchy’s integral
formula implies that the integral in (♠) is independent of b. As a consequence, we have g ˚ h1 = g ˚ h2 for
all g P C8

c (R), whence h1 = h2. So g1 = g2, and since pf1(x, χ) = pf2(x, χ) for all χ P {(Aˆ
F )

0/Fˆ, we obtain
f1 = f2. Therefore,

φ1(wg) = φ2(g) = f2(1) = f1(1) = φ1(g)
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In sum, we have proved that

φ1(g) =
ÿ

αPFˆ

W

((
α 0

0 1

)
g

)

is an automorphic form. We claim φ1 is in fact cuspidal, so we obtain a map

Wψ(π) A0(G)

W φW

that intertwines the G-action by right translation. Indeed, the constant term of φW is
ż

F zAF
φW

((
1 x

0 1

)
g

)
dx =

ÿ

αPFˆ

W

((
α 0

0 1

)
g

)
ż

F zAF
ψ(αx)dx = 0

(recall that F zAF is compact) so φW is cuspidal. Finally, we have

1

vol(F zAF )

ż

F zAF
φW

((
1 x

0 1

)
g

)
ψ(´βx)dx =W

((
β 0

0 1

)
g

)

if β P Fˆ, so W = 0 if φW = 0.
It remains to show

φ1(g) =
ÿ

αPFˆ

W

((
α 0

0 1

)
g

)

converges absolutely and compactly, and the map

a ÞÑ φ1

((
a 0

0 1

)
g

)

is slowly decreasing for g P Ω, where Ω is any compact set in GL2(AF ).

94



References
[Lan02] Serge Lang. Algebra. Springer New York, 2002.

95


	Semisimplicity
	Simplicity
	Semisimplicity
	Jacobson's Density Theorem

	Local -integral on `3́9`42`"̇613A``45`47`"603AGL(1)
	Functional equation for Riemann -functions
	Local L-functions on Qp
	Intrinsic definition for L(s,)

	Haar measures
	`3́9`42`"̇613A``45`47`"603AGLn(Qp) is unimodular
	Basic representation theory
	Hecke algebra
	Traces

	Contragredient representation
	Td-space
	Theorem

	Local Whittaker Functionals
	Bessel distributions
	Multiplicity one of Whittaker models
	Uniqueness of Whittaker models

	Jacquet module
	Classification of (`3́9`42`"̇613A``45`47`"603Ag,K)-modules
	Basics on real Lie groups
	Representations
	Classification

	Kirillov Model
	Classification of Irreducible Representations of `3́9`42`"̇613A``45`47`"603AGL2(Qp)
	Weil representation
	Construction of Whittaker functional
	Classification
	Useful integration formulas
	Whittaker models for Steinberg representations
	Summary

	Theory of L-functions on `3́9`42`"̇613A``45`47`"603AGL2(Qp)
	Principal Series
	Steinberg Representation
	Supercuspidal
	Archimedean Case

	Intertwining Operators
	Local Jacquet-Langlands Correspondence
	Quaternion algebras
	Non-archimedean cases

	Quadratic extensions

	Global Theory
	Representations of `3́9`42`"̇613A``45`47`"603AGL2(A)
	Siegel Set
	Cusp forms
	Poisson summation formula
	Eisenstein series
	Fourier Expansion
	Application to Prime Number Theorem

	L-functions of cuspidal automorphic representations
	Zeta function for cusp forms
	Whittaker functions
	The Converse Theorem


