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1 Semisimplicity

1.1 Simplicity
Definition. A division ring K is a ring with 1 # 0 such that every non-zero element is a unit.

o Every non-zero module M over K has a basis, and the cardinalities of two bases are the same. We call

this cardinality the dimension of M over K.

Proof. For simplicity, assume M admits a finite generating set S = {s;}/",. We prove the replacement
theorem: if T is a K-linearly independent subset of M, then we can find 7" € S with #T" = #T such
that (S\T") u T still generates.

We prove this by induction on n = #7T, n = 0 being nothing to do. Assume n > 1, and write
2 {s1,...,8n-1} € S such that (S\T”) U (T\{v,})
generates. Write v, = aqv1 + -+ + Gpn_1Vn—1 + @nSp + -+ - + @ Sm, for some a; € K. Since T is linearly

T = {v1,...,v,}. By induction we can find 7"

independent, at least one of a,,...,a,, is nonzero, say a, # 0. Then
_ -1 -1 -1 -1 -1
Sp=—(a, apv1 + -+ a, Gp_1Up_1+a, Up +a,, Api1Sn41+ 0+ A, AmSm)
Take T =T" U {s,}; then (S\T") U T generates. O

Definition. Let R be a ring. An R-module is simple if it is non-zero and it contains no proper trivial

submodule.

Proposition 1.1 (Schur’s lemma). Let E, F be simple R-module. Then every non-zero R-homomorphism

from E to F is an isomorphism. In particular, Endg(F) is a division ring.

Proof. Let f: E — F be a nonzero homomorphism. Then ker f € F and Im f € F; by simplicity, we must
have ker f =0 and Im f = F. Thus f : E — F is an isomorphism. O

Proposition 1.2. Let E = E7* @®---@E'" be a direct sum of simple modules, the E; being non-isomorphic,
and each FE; being repeated n; times in the sum. Then, up to a permutation, Fi,..., E,. are uniquely

determined up to isomorphisms, and the multiplicities nq,...,n, are uniquely determined.
Proof. Suppose there is an isomorphism
E?l @ -QE"m — Flml @ - DFM

where the E; are non-isomorphic, and the F; are non-isomorphic. By Schur’s lemma, we see each £; must be
isomorphic to some F}, and vice versa. It follows that » = s and after a permutation, £; = F;. Furthermore,

the isomorphism must induce an isomorphism
E' —— F™

for each i. Since F; >~ F;, we may assume E; = F;. Hence we are reduced to proving: if E is a simple module

and E™ =~ E™, then n = m. Since Endg(E™) is an Endg(F) = K-vector space isomorphic to the n x n

2

matrix ring M, (E), which has dimension n* over K. Thus the multiplicity n is uniquely determined. O



1.2

Semisimplicity

Let R be a ring.

Proposition 1.3. For an R-module E, TFAE:

(i)
(i)
(iii)

F is a sum of a family of simple submodules.
FE is the direct sum of a family of simple submodules.

Every submodule F of F is a direct summand of E.

If F satisfies one of the both condition, F is called semisimple.

Proof.

(i) = (i)

(if) = (i)

(iii) = (i)

Say E =Y {F; | i€ I} with E; < E. Let J € I be a maximal subset such that the sum E' = ) {E} |
j € J} is direct. To show (ii), it suffices to show each E; (i € I) is contained in the sum. For each Ej;,

E; n E’ is a submodule of E;, so it is either 0 or E;; if it is 0, then J is not maximal, a contradiction.

Say E =Y {E; | i€ I} with E; < E and the sum being direct. Let J € I be the maximal subset such
that the sum F + Y {E; | j € J} is direct. The argument above shows (iii).

We first show every nonzero submodule of E contains a simple module, and it suffices to consider the
principal submodule Rv with E 3 v # 0. The kernel of the homomorphism R — Rwv is a proper left ideal
L of R, and thus is contained in a maximal ideal M of R. Then M /L is a maximal (proper) submodule
of R/L, and hence Mwv is a maximal (proper) submodule of Rv being isomorphic to M /L under the
isomorphism R/L — Rv. Write E = Mv@® M’ for some submodule M’. Then Rv = Mv@® (M’ n Rv),
for x € Rv can be written as x = mv +m/, and m’ = x — mwv € Rv. Since Mv is maximal, M’ n Ruv is
simple.

Let E’ be the sum of all simple submodules of E. If £’ # E, then E = E' @ F for some F' # 0, and

there exists a simple submodule of F' as proved above, a contradiction to the definition of E’.

O

Proposition 1.4. Every submodule or quotient module of a semisimple module is semisimple.

Proof. Let E be a semisimple module and F' be a submodule of E. Let F’ be the sum of all simple submodules

of F and write E = F' @ F” for some F”. Every element x € F has a unique expression z = z’ + z” with
2’ e F/ and 2" € F", and so " = x — 2’ € F. Hence F = F' @ (F”" n F). Then we must have F' = F’

(otherwise, F” n F contains a simple submodule of F).

For the quotient module, write E = F@® F" for some F"; then E/F ~ F" is semisimple as shown above.

1.3

O

Jacobson’s Density Theorem

Let E be a semisimple R-module. Let R’ = Endg(E). There is a R-bilinear pairing

RxE ——£FE

() —— ()

and thus a homomorphism R’ — Endg(F), making E an R’-module. There is also a homomorphism
R — Endg/(FE), given by R 3 r +— [f, : © — ra]. This is due to the fact p(rz) = ro(x) for all p € R'. We

ask how large is the image of this homomorphism.



Theorem 1.5 (Jacobson). Let E be semisimple over R and let R’ = Endg(FE). Let f € Endgr/(E). For
Z1,...,Z, € E there exists r € R such that rz; = f(x;) for ¢ = 1,...,n. In particular, if F is finite over R/,

then the natural map R — Endp/ (F) is surjective.

We equip R and F with discrete topology and equip Endg/ (F) with pointwise convergence topology; F
being discrete, the topology on Endg/ (E) is the same as the compact-open topology. The theorem above
then shows that the homomorphism R — Endg/ (FE) is dense.

Proof. (of Theorem 1.5) First consider the case n = 1. Since F is semisimple, we can write E = Rx @ F for
some F. Let 7 : E — Rz be the projection; then 7 € R’, and hence f(z) = f(nz) = nf(x). Thus f(z) € Rz,

as wanted. For general n > 1, consider E™ and F':= Endg(E™). We need a lemma.

Lemma 1.6. Let E be an R-module, R’ := Endg(F), n > 0 and F = Endg(E™). If f € Endg/ (FE), then

the homomorphism
f’n, : E’I’L E’n.
(xla e 7xn) —_— (f(.’l?]_), LI} f(xn))
is F-linear.

Proof. Let ¢ € F; write ¢ = (¢ij)1<i,j<n With ¢;; € Endr(E) = R’ such that

n n
(1,0 ) = (Z O1iTjy s Z @njx])
j=1 j=1

Then since f € Endg/(F), it commutes with any element of R’, and thus

e, an)) = f" (Z @ljxjw-'aZ@njxj) = <Z (p1525), 2 (onjz;) )
i=1 i=1 =1 j=1
(Z p15.f (), ZS"an (x5) ) =o(f"(1,...,2n))

O

Return to the proof. By Lemma, f € Endp(E™). Since E™ is semisimple, by the first paragraph, applied
to E™, we can find r € R such that r(z1,...,2,) = f*(z1,...,2,), as desired. O

Corollary 1.6.1 (Burnside). Let E be a finite dimension vector space over an algebraically closed field k
and let R be a subalgebra of Endy(E). If E is a simple R-module, then R = Endg/ (E).

Proof. We contend Endg(FE) = k. Since E is simple, R’ = Endg(FE) is a division ring containing k such that
k< Z(R'). Let « € R'. Then k() is a field. Furthermore, R’ is contained in Endy(FE) as a k-subspace, and
therefore finite dimensional over k. Hence k(«)/k is finite, and hence k(«) = k for k is algebraically closed.
This proves that R’ = k.

Now let {v1,...,v,} be a k-basis for E. Let A € End;(F). By Jacobson’s density theorem, there exists
r € R such that rv; = Av; for i = 1,...,n. Since the effect of A is determined by its effect on a basis, we
conclude R = Endg(FE). O

The above Corollary is used in the following situation. Let E be a finite dimensional vector space over
k. Let G be a multiplicative submonoid of GL(E). A G-invariant subspace I of E is such that oF' € F
for all 0 € F. We say E is G-simple if it has no trivial proper G-invariant subspace. Let R = k[G] be the



subalgebra of Endy(E) generated by G over k. Since G is assumed to be a monoid, it follows that R consists

2 a0

with a; € k and 0; € G. Then we see a subspace F of E is G-invariant if and only if it is R-invariant. Thus

of the linear combination

E is G-simple if and only if it is R-simple.

Corollary 1.6.2. Let E be a finite dimensional vector space over k and let G be a multiplicative submonoid
of GL(FE). If E is G-simple, then k[G] = Endy(E).

When £k is not algebraically closed, we still get some result.
Definition. An R-module E is faithful if the structure homomorphism R — Endz(E) is injective.

Corollary 1.6.3 (Wedderburn). Let R be a ring and E a simple faithful R-module. Let D = Endr(FE) and
assume that E is finite dimensional over D. Then R = Endp(F).

Proof. Let {vy,...,v,} be a D-basis for E. Given A € Endp(FE), by Jacobson’s density theorem there exists
r € R such that rv; = Av; for i = 1,...,n. Hence R — Endp(F) is surjective. Since E is faithful over R,

R — Endp(FE) is injective, and our corollary is proved. O

Suppose R is a finite dimensional k-algebra, and assume R has a unit element. If R has no trivial proper
two-sided ideal, then any nonzero R-module R is faithful, for the kernel of R — Endy(F) is a two sided ideal
not equal to R. If E is simple, then E is finite dimensional over k. Then D = Endr(F) is a finite dimensional
division algebra over k. Wedderburn’s theorem gives a representation of R as the ring of D-endomorphisms
of E.

Corollary 1.6.4. Let R be a ring, finite dimensional algebra over an algebraically closed field k. Let V be
a finite dimensional vector space over k with a simple faithful representation p : R — Endg (V). Then p is

an isomorphism; in other words, R = M, (k).

Proof. We apply Wedderburn’s theorem with F = V. Note that D = Endg(V) is finite dimensional over k.
Given a € D, since k() is a commutative subfield of D, so k(a) = k by assumption that & is algebraically
closed. O

Theorem 1.7. Let k be a field, R a k-algebra, and V3, ..., V,, finite dimensional k-spaces which are also
simple R-module, and such that V; is not R-isomorphic to Vj for ¢ # j. Then there exist elements e; € R
such that e; acts as the identity on V; and e;V; = 0 if j # 1.

Proof. Let E =V @---@®V,,. Let p; : E — V; be the canonical projection. We have p;, € Endg/(E), for
if ¢ € R/, then ¢(V;) < V; by Schur’s lemma. Since the Vj} are finite dimensional over k, the result follows

from Jacobson’s density theorem. O

Corollary 1.7.1 (Bourbaki). Let k be a field, R be a k-algebra and E, F' R-modules finite dimensional over
k. Assume either

(i) k is characteristic zero and E, F are semisimple over R.
(ii) E,F are simple over R.

For each r € R let 7g and 7 be the corresponding k-endomorphisms on E and F' respectively. Suppose that
Tr(rg) = Tr(rp) for all &« € R. Then E =~ F' as R-modules.



Proof. For (ii), assume otherwise. Then by Theorem we can find e € R such that ep = idg and ep(F) = 0.
Then dimy, £ = Tr(eg) = Tr(ep) = 0, a contradiction (recall a simple module is nonzero).

For (i), let V be a simple R-module and suppose F = V"@®F’ and F = V"™ @® F’ with E’ and F’ contains
no V. Let e € R be such that ey =idy and 0 on £’ and F’. Then

ndim, V = Tr(eg) = Tr(ep) = mdimg V
It follows that n = m. Note that the characteristic 0 is used, because the values of the trace are in k. O

In the language of representations, suppose G is a monoid, and we have two semisimple representations

into finite dimensional k-spaces
p:G—Endiy(E) and p :G — Endg(F)

Assume that Trp(o) = Trp/(o) for all 0 € G. Then p and p’ are isomorphic. Indeed, we let R = k[G], so
that p and p’ extend to representations of R. By linearity one has that Tr p(r) = Trp/(r) for all r € R, so

one can apply Corollary above.



2 Local (-integral on GL(1)

We first set up our notation. Let p < o0 be a rational prime and Q,, the p-adic completion of Q. The p-adic
absolute value is denoted by |- |, : @, — Rxo.
e p=o00. Then |- |o = |- | is the usual absolute value on R.

e p <. Then |- |, is the normalized absolute value such that |p|, = p~'.

Then (Q, |-|,) is a Banach space. If F'is a finite extension of Q,,, define || : F' — Rxq by |a|r := |[Np/q, (a)|p-
Then || is an absolute value on F and F is complete with respect to |-|p. Note that when F = C, |z|¢c = |2Z]
is the square of the usual norm on C.

Suppose p < co. Let dx be a Haar measure on Q,. Then vol(Z,, dz) # 0, and for a € Qp,

vol(aZy, dz) = |a|p vol(Zy, dx)

so that d(az) = |a|dz, i.e.

za Vdz = |a z)dx
| S Iprf()

d
for all f e C.(Q,). This means 2 is a Haar measure on Q, -

||

d

f & J dz = (1 —p~t)vol(Z,,dx)

z; || A

We usually normalize dx so that vol(Z,, dx) = 1. Similarly, we normalized the Haar measure on Q, , denoted
1 dx

by d*z, so that vol(Z, ,d*z) = ﬁﬁ When p = o0, we simply take dz to be the Lebesgue measure
—p Lz
d
and d¥z = 22,
|

If p =0, Q, = R, let ¢, : R — C be given by 1 (x) = €?™*. If p < o0 by given by ¢, (z) = e~ 27z}
where {-} : Q, — Q is the fractional part

a_— aj— a_— a_ a—
{n"_|_ 71171L+"'+1+a0+"'}::nn+“'+le@
p p p p

These are called the standard additive characters on Q.
Let S(Q,) be the space of Schwartz-Bruhat functions on Q,: when p = 0, S(R) consists of the
usual Schwartz functions on R, and when p < o0, S(Qp) is the space of all locally constant functions with

compact support.
We define the Fourier transform on S(Q,):

5@ —— 5(Q,)
S f() ::j £ () (ay)dy
Qp

Example.
1. p=oo, f(z) = e~™". Then f(x) = f(=).
2. p< oo, f(x) =luz,(x), a € Qp. Then H/az\p(x) = |all;-1z, (z). In particular, H/Z\p =1z,

Proposition 2.1.



1. If g € §(Q,), then ¢ € S(Qp).
2. We have é(x) = p(—x).

In particular, the Fourier transform defines a bijection on S(Qp).

2.1 Functional equation for Riemann (-functions

Let x : (Z/nZ)* — C* be a Dirichlet character of conductor N. We extend x to Z by setting x(n) = 0 if
(n, N) > 1. Define

Lisy) = 3 A
n=1

This is absolutely convergent for Res > 1.
Theorem 2.2.

(i) For Res > 1, we have

1
Ls,x)= || ——=
U —w
pS
(ii) L(s,x) has an analytic continuation to the whole plane C with the only simple pole at s = 1.

(iii) We have the functional equation: define
s S .
e (§> yifx(=1) =1

A(s,x) = L(s,x) - 1
(5:x) 1= Ls:x) 77—?1“<S;1) Lif (1) =1

where T'(s) is the usual Gamma function, which has a meromorphic continuation with the only simple

poles at s = 0, —1,—2,.... Then there exists a unique number W (x) € S!, called the root number,
such that

A(1 = s,x71) = N*"2W (x)A(s, x)

We prove this theorem when y = 1 is the trivial character. (i) is clear. For (ii) and (iii), we proceed as
follows.

Integral representation of the (-function. Define the #-function 6 : R — C by

0(t) := Z e~

nez

-1
This series converges compactly on R. Consider the Mellin transform of 6§ := -6 — 1: for Res > 0

0

0 L * 5 sdti * —nt? sdti * —n?t sdti 1 —tys X%
M(G)(s).f‘[ 0(t)t7fJO e t?fZL e ttz(mg)sf et d*t

0 n=1 n=1 n>1 0

=7°T(s)((2s) = A (2s)



Poisson summation formula.

Theorem 2.3. If p € S(R), then

Corollary 2.3.1. For t > 0, we have

The argument.

2.2 Local L-functions on Q,
Let x : Q, — C* be a continuous group homomorphism.
e p=0o,Q, =R. Then x = |- |"sign® for some r € C and € € {0,1}. Then we define
L(s,x) :=Tr(s+r+e¢)
where T'g(s) := 77 2T (;)

e p < Q0.

- X unramified, i.e., x|,x = 1. Then define

1
L(s,x) = ——————
() =12 x(p)p~
- x ramified, i.e., X|Z,§ # 1. Then define
L(s,x) =1

The function L(s, x) is called the L-function for x.
Definition. For p € S(Q,) and x : Q; — C*, define (formally) the Tate integral/local (-integral

Ze o) = | gl d  sec

I8
Example. We compute Tate integrals of some test functions.

e p=o0, p(x) = e~ or xem’.
e p < o0, x unramified, p =1z, .

o p < o0, x ramified, ¢ = I14pnz,, where n = ¢(x) is the conductor.

2.3 Intrinsic definition for L(s, x)

For x : Q, — C*, we can find o¢ € R such that
x(z) = x"(z)|z|7

where x* : Q) — S1 is a unitary character. Then Z(p,,s) = Z(p,x%, s + 0¢) by definition. Thus in the

study of local zeta integrals, we may assume y is unitary.

10



Proposition 2.4. If x is a unitary character, Z(y, X, s) is absolutely convergent for Re s > 0.
Theorem 2.5.
(i) For 9 € S(Q,) and x : Q;f — C, the Tate integral Z(y, x,s) has a meromorphic continuation to C.
(if) For ¢ € S(Qy),

Z(p,X,5)

=@, S) =
( X5 ) I (S, X)
is an entire function on C.

(iii) We have local functional equation:

Z(@a 1- S, X_l)
— 5 =7(5,X)
Z(p, s, x)
is a constant independent of ¢ € S(Q,). The constant (s, x) is called the y-factor for y.
Remark 2.6.

1. Let Oc¢ be the ring of entire functions on C. Then L(s, x) is the ged of local zeta integrals, i.e.,

> O0cZ(p,s,x) = OcL(s,X)
»eS(Qyp)

in the field Frac O¢ of meromorphic functions on C.

2. Consider p: QF — Aut S(Q,) defined by right translation: p(z)p(z) = ¢(zx). One computes
P p
Z(p(x)p, x;8) = x| Z(0, X, 5)

Hence
Z(-,x,s) € Homgx ((p, S(Qp)), x 7'+ [7%)
and the map

Z((p,X, 8) -1
P I B € Homx (S(@Qp),x™7)

is a non-zero intertwining operator.

Proposition 2.7. Given @1, p2 € S(Q,), we have
Z((plv X5 S)Z(SOA%X_la 1- S) = Z(@??X? Z)Z(Sﬁlvx_la 1- S)

with 0 < Res < 1.

Z(@a 1- 57X71)

explicitly for some particular test function ¢.
Z(p,8,x

As before we compute the ratio
° p = 00.

e p < 00, x unramified.

e p < 00, x ramified.

11



Definition. Define the e-factor for x : Q; — C*

-€ €. |n
i |-

, if p =00, x = sign
1 ,if p < oo, x unramified

(s, X, ¥p) = {
If p < o0 and x is ramified, let ¢(x) be the conductor of x and choose any t € pc(X)Z;. Define

(5, X, Bp) = f XL (@)l ()

=17

=0 | 3@ (5) da

P

Definition. Define the y-factor for x : Q7 — C*

—5X
Y X Pp) = ——F——€(8, X, ¢
( P) L(S,X) ( P)
Theorem 2.8.

Z((ﬁv 1- S’X_1>

Z(5x) (5% 9%)

for 0 < Res < 1.

Lemma 2.9. Let t € p°Z), c=c(x) > 1.
L €(s,x,¥p) = [t]7€(0, X, ¥p)-
2. €(0,x,¥p)e(0, X, ¥p) = [t x (1)

Theorem 2.10. Z(p, x, s) has a meromorphic continuation to C.

12



3 Haar measures

3.1 GL,(Q,) is unimodular

Let p < o0 be a prime. For X = (z;;) € GL,(Q,), define

= [det X[, [ dais
ij=1
Then dX is a Haar measure on GL,,(Q,), and it is unimodular. To see this, note that GL,,(Q,) is generated

by the matrices of the forms:

(i) Ay:=a1FE11 +- -+ an By, fora= (ai)lgign € (Q;)n

(ii) Bijq :=1In+aE;jforacZ, (resp. R) and 1 < i # j <
(iii) Ci,j = In — Eii — Ejj + Eij + Eji for1<i ?fj <n.
We must show for ¢ € C.(GL,(Q,)) and A € GL,(Q,),
f H(X)dX = H(AX)dX = S(X A)dX
GLn (Qp) GLn(Qp) GL, (Qp)

When A = A,, then doing change of variable a;x;; = y;;, we have dy;; = d(a;x;;) = |a;|pdz;; and detY =
det AX = det Adet X, so that

‘ det Aln dyl
H(AX)dX = . J S(Y)dY = S(X)dX
JGLn<@p) GLW,(QP |dety|p H lail,  Jar,(a,) CL.(Q)

1,7

The same holds for Y = X A. For (ii) and (iii), note that under the open compact subgroup GL,(Z,) for
p < o0 (resp. the unit cube when p = ) is unchanged (resp. has the same volume) under the transformation
X — B; ;X and X — (;; X, so the Haar integral has the formula above. The same holds for the right
translation.

3.2 Basic representation theory

In the following we let p < o0 be a finite prime and G = GL2(Q,).

Definition.

1. Let V be a C-vector space. We say (p,V) is a representation of G if p : G — Autc V is a group
homomorphism.

2. If (p1, V1) and (p2, Vo) are representations of G, we define the space of intertwining operators to be
Home((p1, V1), (p2, V2)) := {f € Homc(V1, V2) | f(p1(g)v) = p2(9) f(v) for all g€ G, v e V}

3. A representation (p, V) of G is smooth if for any v € V, there exists an open subgroup U < G such
that p(g)v = v for all g € U. Equivalently, (p, V') is smooth if and only if

0
= U vE
n=1
where the K,, are the standard open-compact subgroups of G = GL2(Q,) defined by

K, ={geGLy(Zy) | g=12 (mod p")} = Iz + p" M>(Z,)
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4. A representation (p, V) of G is admissible if for all open compact K < G, we have dimc VE < 0.

5. A representation (p, V) is irreducible if V' does not contain any proper nontrivial G-invariant subspace
of V.

In the theory of representation of finite groups G, a representation (p, V) of G is equivalent to a C[G]-
module V', where

ClG]:=={f:G—-C}=C"

and C[G] acts on V by
p(f)v:= > f(g)plg)w

geG

for all f € C[G] and v € V. Here C[G] is a finite dimensional C-algebra with multiplication given by the
convolution: for fi, fo € C[G], define f; = f5 € C[G] by

fre fo(z) =) filzg™") fa(g)

geG

Then (C[G], *) is a (usually non-commutative) C-algebra, and V is a C[G]-module.
In algebra, C|[G] usually denotes the group ring of G:

C[G] = D Clg]

geG
with [g1].[g2] := [g192] for all g1, 92 € G.
Lemma 3.1. (C[G], #) is isomorphic to the group ring of G defined above, via the map 1, — [g], where },
is the characteristic function of the set {g}.
3.2.1 Hecke algebra

Definition. Let f: G = GL2(Q,) — C be a function.

1. For an open compact U < G, f is called bi U-invariant if f(ujgus) = f(g) for all uy, us € U and
g € G. Equivalently, f descends to a map f : U\G/U — C on the set of double cosets.

2. Define

H(G):=< f:G— C|supp f is compact, IU < G such that f is bi U-invariant.
cpt

open

Fix a Haar measure dg on G. For fi, fo € H(G), define f1 * fo € H(G) by

fis o) = | ag™)fato)dy
for all x € G. Then (H(G), *) is an associative C-algebra, called the Hecke algebra of G = GL2(Q),.

Note that H(G) has no unit element (for G is not compact). However, for every open compact U < G,
define

1
- 7
U= o dg) € M)

Lemma 3.2. Let U be an open compact subgroup of G.
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1. ey is idempotent, i.e., ey * ey = ey.
2. Put H(G,U) = eyH(G)ey. Then H(G,U) is a C-algebra with the identity ey, and
H(G,U) ={f € H(G) | f is bi U-invariant}
In particular, ey * f * ey = f for f e H(G,U).

Suppose (p, V) is a smooth admissible representation of G. Then we can view V as a H(G)-module as
follows. For f € H(G) and v € V, define

p(f)o = L F@)plgyvdg € V

This is in fact a finite sum. Let U < G be compact open such that f is bi U-invariant and v € VY. Cover
supp f by finitely many translations of U, say supp f = g1U U --- U g,U. Then

n

p(fv =", flg:)p(g:)v

i=1

Lemma 3.3.

(i) For ¢1, ¢2 € H(G) and v € V, one has p(¢1 * ¢2)v = p(¢1)p(p2)v. In particular, this means V is a
H(G)-module.

(ii) For open compact U < G, p(ey)V = VY.

(iii) If V is an H(G)-module, then VY is an H(G,U)-module for any open compact U < G.
(iv) V is simple as a H(G)-module if and only if each VE» is a simple H(G, K,,)-module.
Proof.

(i) Compute directly.
P61 62).0 = L 61 % 62(9)p(g)-vdg
= JG <L ¢1(9h1)¢2(h)dh) p(g).vdg
(Fubini) = || o1(gh™)oah)ola)-vdgdh
(invariant) = L L 61(9) 6 () p(gh) vdgdh

= L ?1(9)p(9)- (L ¢2(h)p(h)-vdh) dg
= p(¢1)p(¢2).v

(i) This follows from (i) and Lemma 3.2.1: p(ey)p(er)V = plev * er)V = plev)V, so pley)V < V.
Conversely, we need to show p(ey)VV = VY. For ve VY,

plev)o = L ev(@)plg)udg = plg)vdg = v

1
vol(U, dg) JU
(iii) For f € H(G,U) we have ey = f * ey = f by Lemma 3.2.2, so that

p(F)VY = plev)p(f)plev)VY < pley)V = VY
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(iv) Let 0 # W < VE» be a proper submodule. Then H(G)W =V as V is simple. Then
VEr = e V = e, H(G)W = H(G, Kp)ex, W = H(G, K,)W =W

0
a contradiction. Conversely, let 0 < W < V be a proper H(G)-module. Since W = |J WEn,
n=1

0 # WE» < VE» for some n, but this contradicts the simplicity of V%= as a H(G, K, )-module.

Proposition 3.4. There is a bijection

{smooth admissible representation of G} «— {smooth admissible H(G)-module}

0
where a smooth admissible H(G)-module (p, V) means that V = |J p(ek, )V with dime p(ek, )V < .
=1

n=
Under this bijection, the irreducible representations of G correspond to simple H(G)-modules.

3.2.2 Traces

In general, for V' with dimc V' = o we cannot define naive trace Tr(p(g)) for g € G. Nevertheless, if V'
is smooth admissible, then for all f € H(G), f is bi U-invariant for some open compact U < G, so that
ey * fxey = f. Thus

)V < plev)V = VY

so that dimg p(f)V < oo. Then we can define Tr p(f) := Trp(f)|yv; this is well-defined by the following

elementary lemma.

Lemma 3.5. Let T : V — V be a linear operator such that ImT < U, W for some finite-dimensional
subspaces U, W of V. Then TrT|y = Tr T|w.

Proof. Tt suffices to show TrT|y = TrTy~w, so we may assume W € U in the first place. Let wy,...,w,
be a basis for W and extend it to a basis wy,...,wy,u1,..., Uy, for U. Then by writing down the matrix
explicitly we easily see TrT|y = TrT|w . O

Theorem 3.6. Let (p1, V1) and (p2, V2) be irreducible smooth admissible representation of G = GL2(Q)).
If Tr py = Tr pa on H(G), then (p1, V1) = (p2, V2).

Proof. We first prove a lemma.
Lemma 3.7. If for all n € N we have V{*" = V;» as H(G, K,,)-modules, then V; = V5 as H(G)-modules.

Proof. Since K1 2 Ko 2 K3 2 ---, we have

VEicyKecyKs .. c VR .

o0
and V = |J VE» by smoothness. Fix a o € Isomg, (V,*', V1) and let o € Isom, (V*2, V**). Then
n=1
o9 |V1K1 € Isomg, (VlK1 , V2K1)
Since each V; is irreducible, by Lemma 3.3.(iv) each ViK” is a simple H(G, K,,)-modules, so by Schur’s lemma

O'2|V1K1 = \o; for some A € C*. Replacing oo by A" loa, we may assume 0'2|V1K1 = ¢1. Continuing in this

way, we can construct o € Isomg(Vi, V) such that o, x, = o, for each n. O
1

By this Lemma, it suffices to show VX" = V., as H(G, K,,)-modules for each n € N. Since each V"
is a simple H(G, K,,)-module and Trp; = Trps on H(G, K,,) by assumption, it follows from Jacobson’s
density theorem that V" =~ V;*» for each n € N, hence the theorem. O
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3.3 Contragredient representation

Let G = GL2(Qp) with p < oo a finite prime, and (7, V) a smooth admissible representation of G. Put

V* := Homg¢(V, C) to be the algebraic dual of V', and define
™ G —— Autc(VVY)
by 7V (g)A(v) := A(m(g~1)v). V* is too big to be smooth. To fix this, define the smooth dual

VY = AEV*\EIUOSe G such that 7V (g) A=A forall ge U
pen

cpt

A linear functional A € V'V is the smooth dual is said to be smooth.

Definition. (7v,VV) := (x¥|yv,V"V) is called the contragredient representation of (m,V).

Let
(Hy:VxVV —— C

(v, A) ——— (v, Ay := A(v)

be the canonical pairing.

Lemma 3.8. If0 > U SV % W - 0 is an exact sequence of smooth admissible G-modules, then

*
o-wvBvydyy Lo
is also exact.

Proof.

e Suppose A € WV such that 8*A = Ao B =0. Since V L wis surjective, A = 0.

e Let A € UY. Then we can find A’ € V* in the algebraic dual such that a*A’ = A. Let K < G

GL2(Q,) be a compact open subgroup such that 7" (ex)A = A. Then

o (m¥ (ex)N) (v) == L exc(9)\ (n(g~"Yaw)dg = L ex(9)\ (am(g~")v)dg

JG exc(g)a* N (n(g™Yv)dg
— 1V (ex) (0" A)(v) = 7 (ex)A(v) = A(v)

Since 7V (ex)A € V'V is smooth (see Homework 2), this shows the surjectivity of a*.

e Suppose A € V'V is such that a*A = 0 in UV. Then we can find A’ € W¥* in the algebraic dual such

that 8 A’ = A. The same argument as above says we can replace A’ by a smooth one.

Proposition 3.9. Let (7, V) be a smooth admissible representation.

(i) For all compact open K < G, the restriction A — Ay« is an isomorphism (V)& — (VE)*,

(ii) (mv,VV) is admissible.

O

(iii) The pairing (,): V x V¥V — C is a perfect pairing, in the sense that for all compact open K < G, the

induced map V& x (V)X — C is perfect. In particular, V = (VV)V.
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Proof.
(i) Suppose A € (V)X such that Aly;x = 0. Then for ve V
Aw) =7V (ex)A(v)

Y(ex)
f exc(9)A(m(g™")v)dg
G

G

A | extgnly yodg =2 | exclgnlg)ody
G
A(m(ex)v) =0

for m(ex)v e VE. Hence A = 0, proving the injectivity.

For the surjectivity, let A € (VX)* and pick A’ € V* in the algebraic dual such that A’|yyx = A. But
as in the proof of Lemma 3.8, we have

(Y (ex) Ay =7 (ex) (N |yx) =¥ (ex)A = A
Since 7V (ex)A € (VV)E | we are done.
(ii) By (i), dimc (V) = dimc(VE)* = dime VE < o0.
(iii) This follows from (i), (ii), the fact (iii) holds trivially in the finite dimensional case, and Lemma 3.7.
O

Remark 3.10. For ¢ € H(G) and A € V*, we always have 7V (¢)A € VV. This is the p-adic analogue of
approximation by smooth functions.

Suppose (7, V) an irreducible smooth admissible representation of G = GL2(Q)). Consider a new repre-
sentation defined by
7:G — Aute(V)

g—— #(g) =n("g"")
Then (7, V) is also irreducible smooth admissible.

Theorem 3.11. There is an isomorphism (#,V) = (7V, V).

3.4 Td-space
Definition.

1. A topological space is a td-space if it admits a compact open basis. Equivalently, it is a totally

disconnected locally compact space.
2. A topological group is a td-group if its underlying space is a td-space.
In the following let X be a td-space. We put

S(X):={¢: X — C| ¢ is smooth (i.e. locally constant) with compact support} (= CX (X))
D(X) := Hom¢(S(X),C) (no continuity is concerned)

Lemma 3.12. For closed Z < X, we have an exact sequence

00— S(X - 2) S(X) S(2) 0

The first arrow is “extending by zero”, and the second arrow is the restriction.
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Proof. If ¢ € S(X) such that ¢|z = 0, then since ¢ is locally constant, we can find open W containing Z
such that ¢|yw = 0, implying suppp € X —W € X — Z ie. ¢ € S(X — Z). This shows the complex is exact
in the middle.

To show the complex is exact in the last position, note that by definition S(Z) is generated by the 1y’s,
where V =U n Z for open U in X; then 1y = 1|z, showing the exactness. O

We can regard S(X) as a C-algebra, with pointwise multiplication; note that S(X) has no identity

element unless X is compact. For x € X, put

m, = {p e S(X) | ¢lx) = 0} 2 S(X)
Then S(X)/m, =~ C.
Definition.

1. A S(X)-module M is smooth if for all m € M, there exists open compact V' < X such that 1y,.m = m.

2. The fibre of M at z € X is defined as M, := mziM
Lemma 3.13. Let M be a smooth S(X)-module.
(i) mem, M < 1y.m = 0 for all sufficiently small open compact neighborhoods V' of x.
(ii) If M, =0 for all z € X, then M = 0.
Proof.

(i) Assume m = ¢.m’ for some ¢ € m,; then we can find an open compact neighborhood W of x such that
¢|lw = 0. Then for all V € W sufficiently small, 1yy.m = 1y¢ .m’ =0.
o
For the converse, take an open compact V such that 1y.m = m by virtue of smoothness. If = ¢ V,
then 1y € m, so that m = 1y.v e my M. If z € V, then by assumption, then we can find ze W < V
small enough such that 1y.m = 0. Thus

lv_W.m = 1v.m — lwm =m
Since 1y_w(z) =0, m € m, M.

(ii) Given m € M, there exists an open compact V in X such that 1y,.m = 0 for all open compact W €V < X.

Since M, = 0 for all x € X, then for each x € V we can find an open compact x € V,, € V such that
1y, .m = 0. Then

Vv=|JVa=Ve v UV,
zeV

for some z1,...,x, € V by compactness. Put V; =V, Vo =V,, — V,,, and so on; then
V=Vviu---uV,

Thus n
mzlvm:ZIVimzo

=1

the last equality resulting from the underlined statement.
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Suppose X, Y are td-spaces and f : Y — X is a continuous map. Then S(X) acts on S(Y) via f, defined
by
0.£(y) = o(f(¥))&(y)

for all p € S(X), £ € S(Y) and y € Y. Then S(Y) is a smooth S(X)-module. Indeed, for £ € S(Y), since
f(supp @) is compact, we can cover it by a finite number of open compact sets V; ..., V,; denote their union

by V and ¢ = 1y. Then if y € supp ¢, ¢(f(y))€(y) = £(y), and if y ¢ supp ¢, £(y) = 0. Thus ¢.£ =&
In general, f*(S(X)) € S(Y') unless f is proper.

Proposition 3.14. For x € X, put Y, := f~!(z) lg dY. Then the restriction S(Y) — S(Y,) induces an
isomorphism S(Y),, = S(Yz).

Proof. By the exact sequence

00— S(X - 2) S(X) S(2) 0

it suffices to show that S(Y —Y,) = m,;S(Y). By definition we have m,S(Y) € S(Y —Y,). Conversely,
suppose ¢ € S(Y — Y,). Since supp ¢ is compact, f(supp ¢) is compact not containing x, and thus we can
find an open neighborhood U of z such that f~1(U) does not intersect with supp ¢. Now consider 1;.¢. If
y € supp ¢, then 1y (f(y))1;-1(vy(y) = 0; if y ¢ supp ¢, then ¢(y) = 0. From these we conclude 1y.¢ = 0,
and by Lemma 3.13.(i) we see ¢ € m;S(Y). O

Consider X = G = GL2(Q,), and the right invariant distributions
D(G)° = {AeD(G) | Alp,¢) = A(¢) for all g e G}
— : €]
where py¢(x) := ¢(xg) for all z, g € G and ¢ € S(G). The integral f dg € D(G)~\{0}. Furthermore, we can
G
show D(G)¢ = (CJ dg.
G
Proposition 3.15. dim¢ D(G)Y < 1.

Proof. Tt suffices to show that if A € D(G)% is such that A(lg,) = 0 for some open compact subgroup
Ky < G, then A = 0. Suppose K < K is an open compact subgroup of Ky, and put £ = [Kj : K|; the index
is finite for Ky is compact and K is open. Then

K = Kog1 u Koga L1 -+ - 1 Kogy

so that 1x, = pgl—llK +"‘+pgfllK. Thus
£

0 P4
Allk,) = Y, Alp,-11k) = >, A(lx) =€ A(lg)
n=1 n=1

Thus A(1gx) = 0 for all sufficiently small open compact subgroups K of G. Since S(G) is generated by the
characteristic functions of all sufficiently small open compact subgroups, it follows that A = 0. O

3.5 Theorem

Theorem 3.16. If A : H(G) — C is a linear functional invariant under conjugation, then A is also invariant
under transpose.
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4 Local Whittaker Functionals

4.1 Bessel distributions

4.2 Multiplicity one of Whittaker models

Let (m, V) be an irreducible smooth admissible representation of G = GL2(Q,), and ¢ : Q, — C a nontrivial
character. The set

Wa = {A e VF [ A(r(n(z))v) = ¢ (z)A(v)}

is called the space of Whittaker functionals. Note that we are considering all algebraic duals of V', not

only the smooth ones.

Proposition 4.1. dim¢ W; 4 <1 (Homework 2)

Proposition 4.2. If dim¢ V' =1, then dim¢ W, 4 = 0.

de
Proof. Since dim¢V = 1, 7 : G — GL(V) = C* factors through the abelianization G*P < 5 S0 that

m(g)v = x(det g)v for some character x : Q; — C. Then for A € Wy, we have
P(@)A(v) = A(m(n(z))v) = Alx(det n(z))v) = A(v)
Since 9 is chosen to be nontrivial, this implies A = 0. O

Lemma 4.3. If VN(@) %« 0, then dimcV = 1, and 7(g).v = x(det g)v for some continuous character
x:Q, - C*.

Proof. Let 0 # ve VN(@) and H < G the stabilizer of v. Then H 2 N(Q,) and H is open by smoothness.

By openness we see

1
( 1>6Hf0raep"Zp,n>>0

a

Now use the very important identity in GL2(Q)):

o)=L )

-1 -1
This implies ( “ > € H for 0 # |a| = 0. Put wy := ( ¢ ) Then
—a —a

1 4 (1 —ad’x
=w, wo € H

1 1
for all z € Q,. Thus H contains { < 1) , < Z;) } , a generating set of SL(Q,). Hence SL2(Q,) <
T
z,yeQ

H, so that VSL2(@) £ (. Since SL2(Qp) is normal in G, VSL2(Q) ig G-invariant, and thus V = VSk2(@) by
d

irreducibility. This means the action of G on V factor through G/SL2(Q,) & Q, which is abelian. Thus

dim¢ V =1, and the second statement follows at once. O

Corollary 4.3.1. If 0 # dim¢ V < o0, then dim¢ V = 1.
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Proof. Choose a basis of V' and consider the intersection U of their stabilizer in G. By smoothness and

finiteness, it is a nonempty open subgroup. Let z € Q, and take a € Q) making |az| — 0 so small that

ata) < U. Then CO-( )

so that n(x) € U. This shows N(Q,) < U, and thus dim¢ V =1 by Lemma 4.3. O

Theorem 4.4. Suppose ¢ : Q, — C* be a nontrivial continuous homomorphism, and dim¢ V' > 1. Then
dimc Wwﬂp =1.

Proof. It suffices to show Wy 4 # 0. We proceed in the following steps.

1) Let 1 # ¢ : Q, — C* be a continuous homomorphism. We know ¢ (z) = 1, (az) for some a € Q. We
contend that if Wy # 0, then Wy 4 # 0. This is easy, for if we are given A € Wy 4 , then the map

Ay(v) = A <a 1) v) lies in W 4.

We prove the theorem by contradiction. By 1) we then have Wy ,, = 0 for all ¢ # 1.

2) We equip V' with another structure of smooth S(Q,)-modules as follows: for ¢ € S(Q,) and v € V,
define

P = o(z)7(n(z))vdx
Qp

Here ¢(z) := J &(y)¥p(xy)dy is the Fourier transform. It is clear V' then becomes an S(Q,)-module.
Qp

To see the smoothness, for v € V, since (m, V') is smooth, we can find N » 0 such that w(n(z))v = v
for x € pNZp. Take ¢ =1,-~z . Then

so that

pv = J pNr(n(z))vdr = pNJ vdr = v

pNZp pNZyp
Consider the fibre of this S(Q,)-action. For z € Q,, by Lemma 3.13.1,
m,V ={veV |1,ymz,v=0forn>» 0}
= {v eV f Yp(zy)m(n(y))vdy = 0 for n » 0}
P_an

On the other hand, for x € Q, define

Py Qp — C*
Y —— Yp(—1y)

and consider the subspace Vi, (V) = spanc {m(n(a))v —¢z(a)v|veV,aeQ,}. We contend the
equality (important!!)
Vi, (N) = m,V
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c: For v = m(n(a))w — ¢, (a)w.

| vty = | pta) (rln@)w = duleye) dy

P~ "Zp

= f wp<wy>w<n(y+a>>wdy—f dp(a(y — a))m(n(y))wdy

p="Zy,
=0

if n » 0 so that a € p~™"Z,.

: Let vem,V. Then

U

0= J Yp(zy)m(n(y))vdy
P~ "Ly
Take N » 0 so that 7(n(t))v = v for t € pNZ, and zy € Z,, for all y € p~"Z,. Then

0= Y Glyrn@)

vep~"Zy /PN Ly
= Y wlew) | ma) — dp(en)o |+ #E
H/_/

NZ
yep~ "Ly /pNZLyp =a(y) P P

and hence

p "Ly -
v=#(5zt) T e () e )e) € Vo ()

yep~"Zy/pNZp

\% \%4
This proves the contention. Now V,, := mV = Vi, (N)7 S0
Vz* = W‘/r,wz

3) Recall in 1) we are assuming Wy, = 0 for all z # 0. By Lemma 3.13.2, we have an injection

\%4
Ve [[ Vo=V =
:clegp 0 mOV

This forces
0=moV =V, (V) = spanc {r(n(a))v —v|veV, aeQ,}

so that V = VN(@) By Lemma 4.3, dim¢ V = 1, a contradiction to our assumption.

O

We saw before that if V' is a smooth admissible representation of G = GL2(Q,), then V is a module of
the Hecke algebra H(G). In fact,H(G) = S(G) as sets, but with different ring multiplication:

(H(G). %) : ¢ * d(x) = f 61(29")bol9)dg
G
(S(G),") : b1 - P2(x) := ¢1(x)P2()

When G = Q,, we can also define (%(Q,), *). But in this case, they are isomorphic as rings via the Fourier
transform:



4.3 Uniqueness of Whittaker models

For a nontrivial continuous homomorphism v : Q, — C*, consider the space
Wy = {W :G — C | W is locally constant, W(n(x)g) = ¢(z)W(g)}
on which G acts by the right translation: p(g)W(x) = W(zg).
Theorem 4.5. Let (7, V) be an irreducible smooth admissible representation with dim¢ V' = c0. Then
dimc Homeg ((7, V'), (p, Wy)) =1

Proof. Consider the maps

Homg((m, V), (p, Wy)) = W
[Af(v) = f(v)(1)]
[fa(v)(g) = Alm(g)v)] ' A
The maps are well-defined and are mutually inverses. Hence the result follows from Theorem 4.4. O

Let 0 # f : (m,V) — (p, Wy). Since V is irreducible, f must be injective. Let
Im f := Wy (nm)

This is called the Whittaker model of (7, V') in (p, W,,). We have (p, Wy (7)) = (7, V), and Theorem
4.5 is equivalent to the uniqueness of the Whittaker model, i.e.,

if (p, Wy (m)) and (p, Wy (m)’) are subrepresentations of (p, W), each of which isomorphic to (, V'), then
Wy (1) = Wy (m)" identically.
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5 Jacquet module

Let (7, V) be an irreducible smooth admissible representation of G = GL2(Q,). For a continuous homomor-
phism 1 : Qp, — C*, put

Vw(N){ﬂ'<(l) T)vz{;(m)zﬂxe(@p,ve‘/}gv

Then we have two spaces

To(V) = V/Vy(N)

Wi = {A V> C Al (; > v) = w<x>A<x>}
= Jy(V)* = Home(Jy(V),C)
Theorem 5.1. If ¢ # 1 and dim¢ V' > 1, then
dime Jy (V) =1
Proof. This follows from Theorem 4.4. O

If ¢ = 1, we write
JV):=h(V)=V/V(N)

where
1
V(N)%(N)spanc{ﬂ <0 T)vvme(@p,vev}
J(V) is called the Jacquet module of V.

Lemma 5.2. If ¢ : Q, — C* be a continuous homomorphism, then there exists a € Q, such that ¢(z) =
Yp(azx) for all x € Q,. Here 1), is the standard character on Q,:

Yp() = e~ 2mitely

Proof. We show that ¢ is trivial on pv Zy, for some N » 0. Let W be an sufficiently small open disk in C
with center 1:
W={zeC*||z—1| <e}

Lemma 5.3. If € is small enough, then W contains no nontrivial subgroup of C*.

Proof. Recall that exp : C — C* is a local diffeomorphism. Then we can find an open neighborhood U of
0 such that exp ||y : U — exp(U) = W is an isomorphism. If W contains a nontrivial subgroup, then there
exists U 3 zg # 0 such that exp(zg)™ € W for all n € Z, i.e., nzg € U for all n € Z, a contradiction. O

Pick W as in the lemma. Then ¢~!(W) is an open set containing 0 in Q,, so we can find N » 0 such
that pNZ, < =1 (W). The lemma implies ¥ (p’¥Z,) = {1}. Then for each n > 0,

pian

’(,Z) —nyg, g (C
|p P pNZp
——
a finite cyclic group
—
P

Lemma 5.4. The character group — 7 is generated by z — 1, (p~ V).
D &p
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Proof. We have isomorphisms

p"Z, Z, z
pNZp pn+NZp anrNZ

r—— p'x

z —— x mod p"*t 1V

. —omiz —(N+n) X .
The character group m is generated by the map x — e=“™**P . The number W in the exponent
T p~ "7
can be replaced by the number {M} . Thus NZp is generated by the map
p » D Lp
o —-N
o e 271-2{119 }p _ wp(prx)

Thus can find a,, € p~"Z, such that
P(x) = Yp(anz) for all x € p™"Z,

If x e p™™Z,, m > n, then
Yp(ama) = Yp(anz) for all x € p™"Z,

or Y((am — ap)z) =1 for all x € p~"Z,, or ay, — an € p"Z,. Thus {a, }nen is a Cauchy sequence in Q,; say
an — a € Qp. Then ¢(z) = ¢p(ax) for all z € Q,,. O

T:{(“ d) |a,de@;}gc

Forte T, tNt~! < N, so that 7(¢t)V(N) € V(N). Thus (7, J(V)) is an representation of T

Let

7(t)(v mod V(N)) := 7(t)v mod V(N)
Since (m, V') is smooth, it is clear from definition that (w, J(V')) is smooth.
Theorem 5.5. J(V) is an admissible representation of 7.
Proof.

1° Let

J(V) being smooth, we have
0
JV)=JIn)™
n=1

so we only need to show dimc J(V)?» < o0. The number n is fixed throughout this proof. Consider

KN .= {(Z Z) € GL2(Zy) | a,d=1 (mod p"),c=0 (mod pN)}
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Assume dime VEn = d, and choose z1, ..., 2441 € J(V)T. There is a natural projection
VED — 5 J(V)Tn
v —— [v] ;== v mod V(N)

But this is not surjective. To fix this, note that for [v] € J(V)I», v € V can be replaced by

b
CJ f f T “@ vdbd* a1d™ as
14+pnZ, J14+pn2Z, JZ, a2

for some constant ¢ # 0. Indeed, write

b
J f f 7r<a1 >vdbdxa1dxa2
1+p"Z, J14pnZ, JZ, az
1 0
:f T f f - vd*ard*as | db
Z, 1 14pnZ, J14pnz, ao

Since 7 is smooth, there exists some M > 0 such that the above sum becomes

1
vol(pMZ,) Z ™ b J J M vd*ai1d* as
bEZp/pJu 1 14+pnZy J14+pnZy a2

Since [v] = v mod V(N) is fixed by T}, we see the above integral reduces to

vol(pMZ,) Z ™ (1 i) vol(1 + p"Z,)?[v] = vol(pM Z,)#(Z, /p™) vol (1 + p"Z,)?[v].

beZy /pM

Then ¢ := vol(pM Z,)#(Z, /p™) vol(1 + p"Z,)? = vol(1 + p"Z,)? works. In particular, this shows that
[v] € J(V)T" has a representative fixed by

Bn:{(?) Z)EGLQ(ZP)|G7CZ51 (modp"),beZp}

In other words,
VB — J(v)
is surjective. Say x; € J(V)T" is represented by some v; € VBn j=1,...,d+1.

2° We have K = B,N~(p"Z,) for N > n, where

N-(pNZ,) :{(; (1)> |J;€pNZp}

b
d) € K, by definition d € 1 + p"Z,, Z, so that we can write

a b\ (a—bc/d b 1 0
c d) 0 d) \e/d 1

Since J(V) is smooth, we can find N » n such that each v; is fixed by N~ (p™VZ,). Thus v; € VEY for
i=1,....d+1.

This is because for (a

C
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3° For open compact K', K < G and z € G, define

’

[K'zK]: VE VE

1 1
v vol(K) T(krar)-v = vol(K) JMK m(g)vdg

m

This is essentially a finite sum: if we write K’ K = | | y; K for some y;, then
i=1

m

[K'zKv = Z 7 (y;)v

i=1

Take K = KN = BIN~(pVZ,), K' = K" and z = <p 1), where N » n > 1 and m = N —n; then
Ty
Kraky = | | (0 1) K ®)
y=0

To see this, we start with studying the double coset

n (P 0) 0
w5 9) s

)0 )=

IfbeZy, a,del+p"Z, and e € pNVZ,, then bd~' € Z, and pe € pV T17Z,. Also,

(p T) KKHLI = (p f) KK”rl
FONHL S (p‘l —ap‘1> <p B) _ (1 p‘1(6—0)>
" 1 1 1

-1
KN (P 0 KN+1:Z|)_| P YY) N+t
"\0 1) " 01/ "

y=0

Compute

if and only if
These show that

(#) can be derived exactly in the same way, and thus the map [K’zK] has the form

N
VER VEL

an_l m
p Y
r — ™ v

y=0
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Then we have a commutative diagram

neKN n
v; ve VEY UGG | K [KreKNv
pm_l m
zi [ I (V)T —2 s g | S (P ar
2 5\o0 1

where @ is induced by [K"zK2X]. The description given above in the right shows that ® is in fact a

C-vector space isomorphism.

4° Since {[KﬁzKﬁ’]vi}i:l,_.’dH c VEY and dime VE» = d, there exist aq, .. .,aq4+1 € C not all zero
such that
d+1
Z ;| Kr e KN v =0
i=1
Then

d+1 o d+1
0= a; - phm xz, =& ;T in J(V)In

d+1
=>0=ZOQ"3% in J(V)In
i=1

so that any d + 1 elements in J(V)T» are linearly dependent, proving dime J(V)T < d.

Theorem 5.6. dimc¢ J(V) < 2.

Proof. Suppose J(V) # 0. Since J(V) is admissible as a representation of T', (J(V)¥)™» # 0 and dimc(J(V)¥)T <
oo for some n » 0. Then the action of T on (J(V)Y)T» factors through 7'/T,,, which is a finite abelian group.
Since T is abelian, there exist A € J(V)¥\{0} (in some irreducible sub T/T},-repn of (J(V)¥)T») and con-

tinuous homomorphism x : T — C* (by Schur’s lemma) such that

V(A =x"1t)A,  teT

Then

A:JV) ——C
m(t)r — x(t)A(z)
Extending to B = TN by 0 across N, we have (recall that J(V) =V /V(N))

AtV —C

m(tn)z —— x(t)A(z)
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for t € T and n € N (we also extend x : B — C* by setting x|xy = 1). Then
0 # A € Homp((V,7|5), (C, X)) = Homg((V,7),ind% x)

by the Frobenius reciprocity, where

e f(bg) = x(b)f(g) for be B
indgx =+ f: G—»C' JU < G such that f(gu) = f(g) forall ge G, ue U
open

cpt

and G acts on ind§ x by p : G — Autcind§ x defined by p(g)f(z) = f(zg). The isomorphism is given as
below:

Lemma 5.7 (Frobenius reciprocity). Let G be a td-group and H a closed subgroup. Suppose (V,7) and
(W, p) be smooth representations of G and H, respectively. Then there is an isomorphism

Homy ((V, )|, (W, %)) = Homg((V, ), ind% (W, 1))

where ind§ W is defined by

pen
cpt

G f(bg) =9(b)f(g) forbe B
indg W := f:G—»W' 3U0< G such that f(gu) = f(g) forall ge G, ue U

with G acts on ind% x by p: G — Autc ind% W defined by p(g)f(z) = f(zg).

Proof. Define
ON
Homp ((V, )| 5, (W, 1)) ; Home((V, ), (ind% W, p))
T T%(v)(g) := T(n(g)v)

Ty (v) = T(v)(1) T

The only thing that needs to check is the well-definedness.
e Let T eLHS. Then forveV, g,9' € G
T (n(g)v)(g") = T(n(g')m(9)v) = T(n(g'g)v) = T (v)(g'g) = p(9)T(v)(g")

For v € V| by smoothness we can find open compact U < G by which v is fixed. Then for g € G and
ueU,

T (v)(gu) = T(w(gu)v) = T(n(g)m(u)v) = T(w(g)v) = T(v)(g)
so that T¢(v) € ind§ W.

e Let T eRHS. Then forve V, he H
Tu(m(h)v) = T(x(h)v)(1) = p(A)T(v)1 = T(v)(h) = Y(R)T (v)(1) = ¢ (h) T (v)

For v € V, by smoothness we can find open compact U < G such that p(u)T(v) = T'(v) for all u € U,
and thus for g € G and h € U n B, we have

$(h) T (v) = p(h)T(v)1 = T(v)1 = Tp(v)

Thus Ty (v) is smooth so that Ty (v) € W.
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By definition, indg X is smooth, and it is also admissible by

Lemma 5.8 (Iwasawa decomposition). G = BK, where K = GL3(Z,).

b
Proof. For g = (a > , we have
c d

_(detg/c a) (0 -1
B 0 ¢/ \1 dJ/c

(detg/d b\ (1 0
9=\ o0 d)\ea 1

if ord, ¢ > ord, d. O

9

if ord, ¢ < ord, d, and

To see how does this imply the admissibility, suppose generally (W, ) is a smooth admissible represen-
tation of B. A function f € ind§ W is determined by f|x forf(bk) = p(b)f(k). Let U < G be open compact.
Then any function f € (ind§ W)Y induces f : K/K n U — W. Since K is compact, K/K n U is a finite
group. At this point, if W is finite dimensional, then (ind§ W)V < spanc{f : K/K n U — C} is also finite
dimensional. In general, let z1,..., 2, € K be a complete set of representative of K/K n U. Then f(x;) is
fixed by B n 2;U x;l so that f(z;) € WBnhw:Usz; " which is finite dimensional thanks to the admissibility of
W. Thus dime(ind$ W)V < oo as well.

Then Homg (V, indg X) # 0, and since V is irreducible, we have V — indg X is injective.
Lemma 5.9. If we have an exact sequence of admissible smooth representations of G

B

0 Vi —= T, Vs 0

then
0 J() J(Vz) —— J(V3) —— 0

is also exact.

Proof. The nontrivial part is to show J(V1) — J(Va) is injective. If = [v] € J(V1) with a(z) =0 in J(V2).

Then a(v) € Vo(N), i.e..
1 =z
J ™ a(v)dx =0 for n » 0
P "Ly 1

Since the integral is in fact a finite sum (which can be seen by choosing U < p~"Z,, that fixes v and a(v)

(] e 7))

1
7'('( f) vdz = 0, i.e., v € Vi(N). O
nz,

simultaneously), it follows that

Since « is injective, it follows that f
P
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By this lemma, it suffices to show dime J(ind$ x) < 2, or dually dime(J(ind$ x))* < 2.
J(ind$ x)* = {L : ind$ x — C| L(p(n)f) = L(f) for n e N}

Consider the projection
Px

S(G) ind$ x
6 — pr(B)(g) = f o(bg)x " (b)db
B

where db is the right-invariant Haar measure on B. This is in fact surjective, for if f € indg X, let ¢ =
f+1x € S(G). Then

py(6)(g) = fB £(bg) 1k (bg)x " (b)db = L F(9)1 (bg)db = f(g) vol(K r B, db)

For L e J(ind% x)*, put A = Ap, := Lop, : S(G) — C; then A € D(G).
Let B x N act on B by 7(b,n)x = b~'an. For (b;,n) € B x N,

Px(7(b1,m) fczs Tlogn)x(b)db

(where dp is the modular character of B.) Thus
A(r(b1,n)* ) = xd5(b1 ) L(p(n)px(9)) = X5 (b1 ) A(¢)

Lemma 5.10 (Bruhat decomposition). We have

G = Bu BwB
where w = 01 .
-1 0
It follows that we have an exact sequence

0 —— S(BwB) —— S(G) S(B) 0
Taking dual, we have

0 —— D(BwB) —— D(G) D(B) 0
SO

0 —— D(BwB)X —— D(G)X —— D(B)X
where
D)X :={AeD()| 1(b,n)sA = x(b~1)A for (b,n) € B x N}
B x N B x N

Since B x N acts on BwB and B respectively, we have B = Bf: ~ and BuwB = W as topological
spaces.

Lemma 5.11. For G a td-group and x a continuous character of G, dim¢ D(G)X < 1.

Proof. Let A € D(G)X and Ko < G a compact open subgroup such that A(x 1g,) = 0 (note that y € S(G)
thanks to its continuity and by a no small subgroup argument). We need to show that A = 0.
O
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Since B and BwB a quotient of B x N, we obtain
dime D(B)X, dime D(BwB)X < dime D(B x N)X < 1
so that dimc D(G)X < 2. Finally, since p, is injective, the pullback map
p* : J(indf x) ——— D(G)X
L ——— piL=Lop,
is injective, so dimg J(ind$ x) < 2. O

Remark 5.12. This is a general method to study the representation of G = GL2(Qp). We have several
important subgroup

Borel subgroup

S

& N

N=dt ? (e
1 d
unipotent radical maximal torus / Levi subgroup

Say (m, V) a representation of G, form J(V) =V /V(N) and prove that J(V) is a admissible representation
of T. If J(V) # 0, V is a subrepresentation of ind% y.
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6 Classification of (g, K')-modules

6.1 Basics on real Lie groups
Let G be a Lie group. For x € G, denote T(G),. to be the tangent space of G at x, that is
T(G)y :=={D:Og, — C| D is a derivation at the point x}

where O¢ , is the real algebra of smooth functions defined around x. Then we can form the tangent bundle

zeG

Definition. Lie(G) = T(G). is called the Lie algebra of G, where e is the identity element of G.

For g € G, put
pg:G—— G Ag: G —— G

T g z — g '
For X € Lie(G), we can construct a right invariant vector field £x; namely, a smooth section
Lx:G->TG

with Lx(e) = X and for all g € G, the diagram

¢ —= 16

Pg Pg%k

G ““;5;“‘49 TG

commutes. It is clear that £x(g) := pg+«X is the unique right invariant vector field with Lx(e) = X.
Theorem 6.1. For X € Lie(G), there exists a unique curve vx : R — G such that
« 1x(0) =¢

¢ ilto) = (7x)s (jt

t=to

) = EX('VX@O)) for all to e R.

Such a curve is called the integral curve for £x. Moreover, the unique local flow ®(g,t) : G x R — G for

Lx is smooth and is given by ®(g,t) = gyx(t).

Definition. Define the exponential map

d d
o We have T exp(tX) = —| vx(t)=7%(0)=X.

t=0 di t=0
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Example. Let G = GL3(R) or one of its connected components G = GL2(R)*T = {4 € GLy(R) | det A > 0}.
Note that GL2(R)" < GL2(R) has index two.
With the standard coordinates z;; on G,

1<i,j<2

where for f e Og.
aof

With this standard basis, Lie(G) = M3(R). For X € M3(R) = Lie(G), we have

Xij(f)

ee]
Xt
yx(t)=eX =)

n=0

n!

Then exp : Lie(G) — G has the form
0

X”L

exp(X) =X = Z —

When G = GLy(R), we will write t — e'X to mean the integral curve for Lx.
Definition. For X € Lie(G), let p(X) : Og,. — Og,. be the derivation defined by

d

= u f(getx)

t=0

p(X)f(g)

Note that p(X)f(e) = X(f).
Definition. Define the Lie bracket [,] : Lie(G) x Lie(G) — Lie(G) by
(X, Y]f = X(p(Y)f) = Y(p(X)[)
for f € Og.. It satisfies the Jacobi’s identity
(X, [V, 2] = [[X,Y], Z] + [V, [X, Z]]

With the exponential map, we can show that G has no small subgroup, i.e., there exists an open neigh-
borhood of e in G such that W contains no nontrivial subgroup of G. Further, we can show that if G’ is a

compact td-group and f : G’ — G is a continuous group homomorphism, then f(G’) € G must be finite.

6.2 Representations

Definition. A representation (7, H) of G = GL2(R) consists of a Hilbert space (H,{,)) and a homomor-
phism 7 : G — Autc H such that the action map

GxH —— H

(9,v) —— 7m(g).v

is continuous. We say (m, H) is unitary if for all g € G,

(r(g)v, m(g)w) = (v, w)

for all v,w e H.
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Let C(G) denote the space of smooth functions on G with compact support. We define the smooth
convolution. Let dg be the right invariant Haar measure on G. For ¢ € CP*(G) and v € H, define

7(6)w = L o(g)(g)vdg

In fact, 7(¢).v is defined to be the unique vector in H such that for all w € H,

(@)= | olg)alg)o,urdy
G
The existence and the uniqueness of such vector is guaranteed by the Rieze’s representation theorem.
Definition. A vector v € H is C! if for all X € Lie(G), the limit

7). —wv

lim
t—0
exists. If it exists, we put
me)v—v d
X)w = lim ———-—— = — 0.
m(X)w lim " dt—ﬂ(e ).v

Inductively, we say v e CF (k = 2) if 7(X).v e C*~! for all X € Lie(G). Put
H™ :={ve H|veC" forall k > 1}

to be the subspace of smooth vectors in H.

o If € CL(G) and v € H, then 7(¢)v € H*™. Indeed,

T(Orop =G| weNm)0= G| oo gndg
d —t
= i, L ¢(e™"* g)m(g)vdy
- | ex(@ntovdg
G
d —tX
where ¢x(g) == — _O¢>(e 9)-

Let {¢,} be an approximate of identity on G, namely,

(1) ¢, € CL(Q) for all n,

(2) f dn(g)dg =1 for all nn and
G

(3) for all open neighborhoods U of e, lir%O on(g)dg = 1.

Lemma 6.2. For all ve H, lim w(¢$,)v = v, where {¢,} is an approximate of identity. In particular, H*™
n—0o0

is dense in H.
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6.3 Classification

Definition. Let G = GLy(R), g = Lie(G), K = 0(2). A (g,K)-module (7, V) is a C-vector space with
a Lie algebra homomorphism 7 : g — Endc V and a group homomorphism 7 : K — Aut¢(V) such that

o forall X € Lie K < g, we have

o forall Xegand ke K
m(Ady X)v = m(k)n(X)m (k™ v
where Ady, := (ck)x. and ¢ : G — G is defined by cx(z) = kzk™".
and the representation (7, V') of K is admissible, or K-finite, i.e.
o for all v e V, the C-span of {n(k)v | v e K} is finite dimensional.
In addition, we assume V is smooth, i.e., for all X € Lie K, ve V, A € V'V, the function
R 3t (m(e")v,Aye C
is smooth in the usual sense.

For an Lie algebra g over C, we can define the universal enveloping algebra U(g) by the quotient
T(g)/I, where T(g) is the tangent algebra generated by the C-module g, and I is the two-sided ideal

generated by the elements [X,Y] - X®Y +Y ®X. The resulting quotient U(g) is then a (non-commutative)
d

C-algebra. More precisely, if g has a C-basis z1,...,2q4, and [z;,z;] = >, bfj:cg with bfj € C, then the
=1

Poincaré-Birkhoff-Witt theorem, , or PBW theorem, says that

Ug) = (—D Caft -zl

d
with z,2; = zjz; + 2] bfjxg. In particular, if g is an abelian Lie algebra, then U(g) = Clzy, ..., z4].
=1

For a Lie algebraig, we have the adjoint representation
ad: g ——  Endg
X —— adx: Y~ [X,Y]
The Jacobi identity becomes
ad[Xy] =adx ady —ady adx in Endg

We have the Killing form on g, which is by definition the symmetric bilinear form B(X,Y) := Tr(adx ady)
on g. The Jacobi identity tells

B(adz X,Y) = —B(X,adz Y)

Let us assume the Killing form B is nondegenerate. Then for a basis z1,...,xzq for g, there exists a dual
basis y1, ...,y satisfying B(z;,y;) = 6;;. The Casimir element is defined as
d
A=z + -+ zaya = Y, vy € U(g)
i=1
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Proposition 6.3.
1. The element A is independent of the choice of basis z1,...,zq4.
2. A lies in the center of U(g).

Example. Consider the sl3(R) = Lie SLo(R) = {A € Ma(R) | Tr A = 0}. We have sl3(R) = RH; ®RR, @

RL,, where
1 0 0 1 0 0
H, = , R, = , L, =

[Hy, Ri]=2Ry, [Hy, L] =—2L, [Ry, L] =Hy

with the relations

Thus, with respect to the ordered basis {Hy, Ry, L4},

0 0 O 0 0 1 0 -1 0
adH+ = 0 2 0 5 adR+ = -2 0 0 5 adL+ = 0 0 0
0 0 —2 0 0 O 2 0 0

In matrices, the Killing form B is

8 0 0
B=10 0 4
0 4 0
o1 1 1 o . 1, 1 1
and thus the dual basis is §H+, ZLJF, ZRJF. The Casimir element is then §H+ + 1R+L+ + ZL+R+' For

convenience, let us put
A=H? +2R,Ly+2L R, € Z(U(sl2(R)))

Consider g := Lie GL2(R). The Killing form B on g is degenerate. To see this, note that

1 0
=slL(R)®R
g=s5L[R)® (0 1)
1

0
The element J = 0 1) commutes with everyone, i.e, ady = 0 on g. Thus J # 0 lies in the radical of B.

Nonetheless,
U(g) = R[J] ®r U(sl2(R))

so the constructed element A also commutes with elements in U(g).
Consider the action of K = O(2). We have Ad; X = gXg ! for all g € G = GL2(R) and X € g. Then
B(Ad, X,Ad,Y) = B(X,Y) and thus

Adg A = Adg(H+)2 +2Adg(Ry) Adg(Ly) +2Adg(Ly) Adg(Ry) = A

In particular, Ady A = A for all k¥ € K. Therefore, for any (g, K)-module (7, V), we have 7(A) €
End g x)(V).
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Proposition 6.4 (Schur’s lemma). If (7, V) is an irreducible admissible (g, K')-module and X € g such that
7(X) € End (g x)(V), then 7(X) acts on V' by a scalar.

In particular, 7(A) and 7 (J) acts on V as scalars, where

1 0
J = €

Let Gt = GLy(R)* = {g € Ma(R) | det g > 0}; then g := LieG = Lie GT. Put

Kt = K nG* =S04(R) = {( cos Sma) |0€R}

—sinf cosf

which is an index two abelian subgroup of K*. Let (w,V) be an admissible irreducible (g, K+)-module,
which is defined in a similar way as (g, K)-modules. Let g := g ®rC and

i 0 1,R:1 1 1 ’Lzl 1 —
-1 0 2\¢ -1 2 \—i -1

For each ¢ € Z, define the weight ¢ space

Vi):=5veV|nr CO.SG sinf v = e
—sinf cosf

By K*-finiteness, together with the fact K+ = R//é\wZ = {z — e*® | £ € Z}, we have the decomposition

V=@V

LeZ
with each V(¢) finite dimensional. 777

We have the following formulas. For v € V' (¢),

1. m(H)v = fo.

0 in 0
2. If we put kg := CO.S S , then
—sinf cosf

m(Adg, L)v = m(ke Lk, v = e**n(L)v
m(Ady, L)v = m(keLky ' )v = e**n(L)v
In particular, this means R: V(¢) > V({+2) and L:V({) - V(£ —2).

Since (m, V) is irreducible, by Schur’s lemma, 7(A) = Aa id and 7(J) = A id for some constant Aa, Ay € C.
Pick 0 # v € V(¢) and form the subspace

V' =Cv® P CR"ve®d @ CL™
n=1 n=1
This is a (g, KT)-submodule of V, so by irreducibility of V', V = V’. In particular, dim¢ V' (¢) = 0 or 1 for
each £ € Z. Put
Yy:={{eZ|dimcV(¢) =1}

Then V = @ V(¢), and if £y, {5 € v, then ¢1 = {5 (mod 2). Let € € {0,1} be the parity of V, i.e., e=¢
ey
(mod 2) for all £ € Xy .
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Theorem 6.5.

1. If Aa is not of the form m? — 1, m € Z, or \s = m? — 1 for some m € Z with m = ¢ (mod 2), then

EV:{ZEZ|ZEQ€}

2. If \a = m? —1 with m = e+ 1 (mod 2), then there are three possibilities of Xy If we put m =k + 1,
then either
¢ Sy = (bl 2 = (e 2] £ k0= ),
o Ny ={—|kl,—lk|+2,...,|k|=2,k|} ={{eZ||¢] < k|, { =2 €}, or
o Yy ={-lk|,—|k|=2,..}={leZ| < —|k|,l =2 €}

Example. A continuous character x : R* — C* has the form x = |- |*sign® with s € C, € € {0,1}. Now
pick 51,50 € C, €1, €5 € {0,1} and put y; = | - |*sign®*. Form the unitary induction ind% (1, x2)

2 2

I(x1,x2) = {f : GLo(R) — C | f is smooth and K-finite, f ((Cg :) g> = x1(a1)x2(a2) % ’ f(g)}

Then V = I(x1,x2) is a (g, K)-module, and in particular a (g, K+)-module. For £ € Z, we have

V(0) ={fel(xi,x2) | flgke) = ™ f(g)}

The Iwasawa decomposition G = BK™ implies dimc V(¢) < 1, with equality if and only if £ = € + €
(mod 2). To see the equality, if f € V(£), then

(1) f(e) = " f(e) = 1 (‘01 _01> = (-1

Thus f # 0 if and only if f(e) # 0, if and only if £ = €; + €2 (mod 2). Then
Sy={{eZ|l=€c:=¢€ +e (mod2)}

For ¢ =5 €, let ¢y € V() be the unique function with ¢,(e) = 1. If we put s = s; — s, then

s+14/¢
L p(R)pe = ————vus2.
s+1—/4

(

3. p(Ry)pe(e) = 0.

4 p(H )pele) = 5+ 1.
(A) = (52 — 1)y, so that Ay = s% — 1.
(

J)pe = (81 + 82)@e, s0 that Aj = 51 + sa.
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7 Kirillov Model

Let ¢ : Q, — C* be the standard additive character ¢ = v, and (7, V) an irreducible smooth admissible
representation of G = GL2(Q)). Recall we have Whittaker functional

AV ->C

associated with v satisfying

Define
Co(Q,) :=={¢:Q, — C|supp¢ is bounded in Q,}
Clearly, both S(Q,), S(Q,) < Co(Q;). Let

b
Blz{<g 1) aeQ;,ber}gG

and let (Ky, Co(Q,)) be the representation of By given by

K, (g f) o(z) = p(bx)p(za)

Then Ky : By — GL(Co(Qy))) is called the Kirillov representation.

Consider the map
(mV) ———— G(Q))

a 0
v —— &(a) = A <7r <0 1) v)

a b
Note that this association [v — &,] is an intertwining operator: for g = <0 1) € By and z € Q)

z 0 a b
o3 )
1 bz ar 0 ar O
(e ) D)) e (-5 0))

Ky (9)6 () = b (bx)6 (ax) = ¥(be) A (ﬂ (aox (1)> v)

and

so that &gy () = Ky (9)6u(7) as claimed.
Proposition 7.1. v+ &, is injective if dim V' = oo.
Proof. Let veV and &, = 0. Recall the space

T

Vi (N) = spang {w (é 1) v—yY(@v|zeQpue V} cVv
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Recall Theorem 5.1 that dimc Jy (V) = 1 with Jy (V) := V/V,(N). In this setting, A : Jyu (V) — Cis an
isomorphism (note ¥ # 1). Then

0
&,zO@A(ﬂ(S 1>v>:0forallae(@;

@77(3 ?)wve(N) for all a € Q,

= veVy,(N) for all a e Q)

where ¢(z) := 1(ax). The last implication is because that if we write

W(g (1))@:;”@(; f>w—w<x>w>

then

1 / /
3t o)

We view V as a smooth §(Q,)-module, where the action is given by

A~

pv = m(P)v

for ¢ € S(Qp), v € V, where $ is the Fourier transform of ¢ (with respect to the standard character ;). For
a€Qy, put V, := Jy,(V), which is the stalk of V" at a € Q. Then

veVy,(N)forallae Q) =v=0inV, forall a e Q; (M)

By Lemma 3.13, we have an injective map

Ve [[Va

aeQ,

Suppose for contradiction that v # 0. Then (#) and the injectivity of the above map force that v # 0 in the
Jacquet module Vo = J(V) = V/V(N). Denote

K:={veV]¢ =0}
Then the above map induces an injective map

K< Vy=J(V)

1 1
For v € K, we have 7 <O f) ve K forall z € Q,. Indeed, we have gy, = Ky(9)§, = 0 with g = (O f)

Then



so that the injectivity implies that
1 =z
v= v
0 1
for all z € Q,. This (by a lemma in the class) implies dim V' =1 since 0 # v € K, a contradiction. O

Suppose (m,V) is an irreducible smooth admissible representation with dim V' = co. The proposition

shows we have an injective operator

(m, V) ————— Co(Qy)

a 0
v —— & (a) = A <7r <0 1) v)

Let Ky(m) < Co(Q, ) be the image; then
V~ Ky(r) = 1€ | ve V€ Co(@))
The action of G on V is transferred to an action on Ky () via this map, namely,
Ky : G ——— GL(Ky(m))
g —— [Ky(9) 1 §o = &n(g) ]

(Ky, Ky(m)) is called the Kirillov model of (7, V). In general, it is difficult to write down explicitly the
action of GL2(Q,) on Ky (), but we know

Kw (g i) gu(ﬂf) = ¢(b$)£1,(l‘a)

Recall the Kirillov representation (K, Co(Q,, )) of By defined above. Consider its subrepresentation (Ky, S(Q,

Theorem 7.2. (Ky,S(Q,)) is an irreducible representation of Bj.

Proof. For any a € Q) and a continuous homomorphism v : Z; — C*, define ¢, € S(Q,’) by

Pa(T) = I/(CL:C)IZ; (ax)

Lemma 7.3.
S(Q)) =spanc{ o, [a€Q,, v:Z; — C*}

Proof. Let ¢ € S(Qp). Then ¢(x Z o(x Zx (p"x). We first show a smooth function ¢ supported on
nez
Z, can be written as a sum of characters. Let H be a subgroup of Z; such that on each coset of H, ¢ is

a constant; this is possible, for Z; is compact (and totally disconnected). Then ¢ descends to the quotient
¢' 2y /H — C. Since Z /H is a finite abelian group, ¢’ = Z a, - v, and hence so is ¢.
VEZ//\I‘I
Each d)(m)lZ; (p"z) can be viewed (under suitable dilation) as a smooth function on Z;, so the above

argument proves the lemma. O

Suppose 0 # W < S(Qjy) is Bi-invariant. We want to show W = S(Q)).
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1) There exists ¢, € W for some a,v. To show this, take 0 # ¢ € W. Since ¢ is compactly supported,
we can find n € Z such that zj)\pnzx # 0 while ¢|pmzx = 0 for all m < n. Write

o(p"u) = Z\au -v(u)

X
VELy

—

where u € Z and Z; denotes the continuous dual, and
a, = d(p™u)v (u)d*u
Zy
This is in fact a finite sum, as said in the above lemma.

—

Since ¢ # 0, we have a, # 0 for some v € Z, . Define

Pu(a) = | o(p"uz)v ™t (u)d v
ZP

= J.z,x Ky (p"u 1) o(x)v ™ (u)d*u

Then [x — ¢, ()] lies in W, for ¢ € W and W is Bj-invariant. Note that ¢, (zu) = v(y)¢,(x) for all
u € Z, . Define

z

1
b (@) = f Kol P | otz ew

ZP
zx
= J ) (n> ¢u(x)dz = ¢y (2)pnz, (x)
Zy p
The last equality is because ¢ = 1), is the standard additive character. Then

Gpr () = ;J;rnu(m) - ¢:n+1’,,(33) = QSD(x)Hpnzg (x)eW

2) For p e Zy\{v}, let ¢ := p™ be the conductor of y and consider

T
f e u) Ky, ( c ) Gap(x)d ueW
Zy 1
= | a7y (%) el

where we have extended p to be a character on Q, by setting u(p) :=1, and

(O = [ @

X
P

Thus ¢q, . € W for all p # v, so that ¢,,, € W for all u€ Z; . Finally,

a/
Kl/’ ( 1) ¢a,u = (baa’,u

so that ¢4, € W for all a € Q;, uerp;. Thus W = S(Qy).
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Lemma 7.4. For all ve V(N), we have §, € S(Q,). Further we have a commutative diagram

Vi—— Ky(m) — Co(Q)
ul ul
V(N) — S(Qy)

P

V(N)spanc{ﬂ<(1) ;C)vﬂa:e@p,ve‘/}

1
Forvzw(o T)w—wwithx;ﬁo,

Proof. Recall

&uly) = (3 "”f) €uly) — €uly) = (W(ay) = Déw(y)

If y € 27 '7Z,, then ¥(xy) = 1 so that &,(y) = 0; in particular, &,(y) € S(Q)).
On the other hand, V(N) is a By-module for

G096

so by the theorem we have either V(N) = 0 or V(N) =~ S(QX). But if V(N) = 0, then V¥ # ¢ so that

D
dimc V' =1 by Lemma 4.3, a contradiction.

O

Conclusion. For (7, V') admissible smooth irreducible representation of G = GL2(Q) with dim V' = oo, we

have
S(Qy) = Ky(m) = Co(Qy)
with
K¢,(7T) N \% _
s v W)
and (by Theorem 5.6)
i Bo(m)
e S

Now recall the space
Wy ={W:G — C| W is smooth, W(n(z)g) = ¢(x)W(g)}

and the map
V——m Wy

v —— Wy(g) :== A(m(g)v)
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Let Wy (m) € Wy, denote the image of V' under this map, and let G act on Wy () by right translation
p: G — GL(Wy(m)), namely, p(g)W(z) := W(zg). Then (p, Wy(m)) is called the Whittaker model of

(m, V). We have a commutative triangle

v b W,

pvw’tll

N re

(g, Ky (m
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8 Classification of Irreducible Representations of GLy(Q,)

8.1 Weil representation

For two characters x1,x2 : Q; — C*, define x : B — C* by

X (‘“ b) — vu(ar)xa(as)

az
and
o) = 10§ = {156 €] fbg) = x(03n(0)* )} = ma§ o
where

6p: B —— R,

ay b
az

is the modular character of B. Now let G act on I(x1,x2) by right translation:

ai

az|,
p: G —— GL(I(x1, x2))
g — p(9)f(x) == f(zg)
By Lemma 5.8 (and the argument below there), I(x1, x2) is an admissible smooth representation of G.
Definition. The space of Bruhat-Schwartz functions is defined as
S(Qp) = S(Qp) ®c S(Qp) = spanc{p1 ® 2(w,y) = p1(2)p2(y) | i € S(Qy)}
on which G acts by right translation:
p: G ———— GL(S(QY)
g —— p(9)@(x,y) = 2((zy)g)

Definition. On S (Qf,) we define the partial Fourier transform

Here @~ is defined by the integral

O~ (z,y) := J O (z,a),(ay)da

D

where da is the self-dual Haar measure on Q,, (in this case, da is chosen so that vol(Z,,da) = 1).
When ® = ¢ ® @2 is a simple tensor, then
(P1®p2)” =1 @ P2

Since ¢ — @ is an isomorphism on S(Q,), the partial Fourier transform is an isomorphism



and this induces a new action of G on S(Q3):
wy : G —— GL(S(Q2))

such that
(wy(9)®)™ := plg) @~
(wy,S(Q3)) is called the Weil representation of G = GLy(Q,). By definition,

()™ € Isomg((wy, S(Q})). (p, S(Q})))

and wy, is smooth (for p is smooth).

Formulas. For ®e S (Qi) and ¢ = 1, we have the following:

(i) wy ( ) 2(z,y) = |al(za. ya).
(i) w (1 ’j) B(,y) = v by (r, )

(iil) wy (_1 1) O(z,y) = J@ ®(a, b)y(ay + bz)dadb.

(iv) wy (a 1) O(x,y) = P(ax,y).

Proof. The first step to prove these formulas is to take ~ and prove the corresponding identities.

(i) We need to show

p (a a1> o~ (z,y) = <ww (a a1> ‘P(a?,y)) (z,y) = (Ialp (a a) <I>) (z,y)

Now just compute

(w(" ) @) (@29 = |tz atpotonar

= f ®(azx, )y (ya~"t) = @~ (az,a”'y) = p (

p

a

a1> o~ (z,y)
(ii)

D) )it = J B(w, )b ((bz + y)t)dt

O~ (z,bx +y) =p (1 b) >~ (2,y) =

(iii) We need to show

O™ (—y,z) =p (1 1) O~ (z,y) = f

Let ® = ¢ ® 2. Expanding, we have

(J O(a,b)p(at + bm)w(yt)dadb) dt
Q3

D

D P

| (J@ (0, by (ot + b:cw(yt)dadb) dt= [ @GOG = o1 (-9)Fa() = 2 (p.)
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O~ (az,y) =p (a 1) O~ (z,y) = <p (a 1) <1>> (z,9) :f ®(az,t)p(ty)dt

8.2 Construction of Whittaker functional

Given x = (x1,x2) : @) — C* and ® € S(Q2), define

W@X : G C

g x1]- |%(detg)J w9t xaxg (H)d*t

P

The integral really takes place on a compact set, so it is absolutely convergent. To see this, since ® has
compact support, so does wy(g)®. Then wy(g)®(t,t71) # 0 if and only if [t| < C; and [t~} < Cy for some
C1,C5 >0, i.e.,

0<Cyl<|tl<Oy

The map W, is a Whittaker functional of 1, i.e., Wg ,, is smooth and satisfies

Wa x(n(z)g) = ¥ (z)We x(9)
for all z € Q, and g € G.
o Smoothness. This follows from that w, is smooth.

o Expanding the LHS, we see

Wa x(n(z)g) = xal - I%(det(n(:r)g))f wy(n(2)g)@(t,t ™ )xixg | (£)d*t

For.(ii)

xil- I%(detg)J P(x)wy ()@t )xaxg ' (£)d*t

The map [® — Wg | € Homa((p, S(Q2)), (p, Wy)) is NOT intertwining. Nevertheless, formally we have
@O W ((0 f)) = [ ol ian oo
=] J wy (9)®(at, x)(t x)x1 x5t (t)drd*t
p 2 Qp
- J X J wp(9)®(t, 2)p(atx)x1xG (o~ ) dzdt

= X1_1X2(a) fo J@ ww(g)q)(t,tx)zb(ax)xlxz_ﬂ () dzd*t
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Changes of variables are valid if wt(x1x;') > 0 is assumed. If we write (¢,tz) = (0,t)wn(x),

w = 0 -1 , then
1 0

X2 172 (@) Wgye~ <<g g)) :JJ wy(9)@((0 tywn(z))t(az)x1x; ' (t)|t|dwd*t

where fg , is the function defined by

- f Fos (o) (wn(2) o (at) e
Qp

f‘1>7X : G

1
g——— x1|- |2(detg)f
Q;

C

(0 t)g)xaxz |- [(t)d ¢

where

This is a local zeta integral, or a Tate integral, on GL(1), and it converges absolutely when wt(y1x5 ') > —1.

(Recall the weight of a character x is the unique real number wt(x) such that |y| = | - ["*®).) When

wt(x1Xz ) > —1, we check that fs, € I(x1,x2). For b=

Fox(bg) = xa - |} (det by) f

(t— aglt) =x1|- |%(a1a2detg)f

x1(a1)xz(az)

az

1
12J
Q

aq *
eB

)

a2

(0 H)bg)xaxa | - |(B)d*t

Q)

X

D

X(0)35(b)% fo.x(9)

X
P

®((0 )g)x1x5 "] - |(ag 't)d*t

D((0 t)g)x1xz | - [(E)d*t

Again, ® — fg, is NOT intertwining. Nevertheless, we have p(g) fo. = x1] - |2 (det 9)fo(g)®.x; indeed, by

definition,

p(@)fax () = xa| - |} (det zg) f

(0 tzg)xaxa | - |(t)d*t

X
P

il \%<demdetg>j

X

P

p(9)®((0 t)z)x1x5 | - |(t)d*t

Xl - | (det ) forg)a. (2)

In the following, we always assume wt(x1 x5 1) > 1.

Consider the diagram

f¢’~,x

3(@;2)) — I(x1, x2)

Wa .,y

On each space G act by right translation.

Wy
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Proposition 8.1.
1. If fo~ =0, then Wg , = 0.
2. The map ® — fo~ , is surjective onto I(x1, x2)-

By this proposition, we obtain a (colored) arrow

S(QZQ)) — I(x1,x2)

Wy
making this triangle commutative. To show this proposition, we need the following.

Lemma 8.2. For all x € Q,, we have the identity

a —_ _1
W ( 1) X&' [T H@)(ar)da = fa s (wm(a)
p
0 -1 .
where w = (1 0 > € G = GL3(Q,) is the Weyl element.
Proof. Define £* : Q) — C by
a 1y -1
£ (@) 1= Wa ( 1) X'l @)
For.(iv) -1 -1 —1 /4y g%
L@ [ elat g 0
Then &* € L'(Q,), for (first replace ¢ by ¢~! in the definition of £*)
| te@ida < | post@l | 1ot o id
Q Q Q7
= [ et ol el tda
Qp xQp
@=at)= [ @G0l @)d
Q; xQp
([t|d*tda = |a|dtd™* a) = f |®(a,t)||x1x3 | - [(a)|dtd*a < oo
Qp xQp

because supp @ is compact and wt(x1x5 1| -]) > 0. Now for the sake of absolute convergence, we have

0
f ®(at,t™ x1x5 (at)p(ax)d* tda
Q

(t—ta™ ') = f J O(t,t  a)x1xy t ()b(az)d*tda
Qp JQ5



The last equality holds because of det(wn(z)) =1 and

(t t) = (0 1) (1 1) — (0 ywn(z)

T

Remark 8.3. If wt(xix5 ') > 0, then

f fo~ x(wn(z))Y(—az)de = We (a 1) oalp |_%(a)
Qp

for all a € Q;. This is a kind of Fourier inversion formula.

Proof. (of Proposition 8.1.1) Suppose fo~ , = 0; in particular, fo~ ,(wn(z)) =0 for all x € Q,. Let

£¥(a) = Wax ( 1) )

be the same as in Lemma 8.2. Then by the same lemma, we have

&*(a)y(ax)da =0 for all z € Q,
Qp

Integrating, for N » 0 and x € Q;, we have
0= J &*(a)y(ab)yp(—bx)dadb
p~NZ Qp
[ e@] . wiba—a)asda
Qp piNZp

(= o) = f €*(0)4 vz, (a)da
Qp
= f*(sc) VOl(anp)

since £* is smooth (and if N » 0, z and a are sufficiently close). This proves £*(z) = 0; putting 2 = 1, this
gives Wo (e) = 0.
In general, for all g € G, we have

fo~x =0=0=p(g)fo~ x = [og)o~x = flwp@@)~x = 0= W, (gax(€) = Wa,(g) =0

The third implication follows from the case we prove above, and the last implication follows from the
definition of Wg

Www(g)'ib,x(e) = Xl‘ . |%(det 6) J@X ww(e)w¢(g)¢)(t7 t_l)Xlxgl(t)dXt

(det g) ' W (9)

Nl

=Xx1| |
O

Proof. (of Proposition 8.1.2) For f € I(x1,Xx2), [ is completely determined by f|x by Iwasawa decomposition,
where K = GLy(Z,). Now define ® € S(Q2) by

Blay) X7 -T2 (det k) f(k) i (z y) = (0 1)k for some k € K
W= 0 , otherwise
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We have supp ® < (0 1)K is compact, and

fox (k) = x| |} (det B) fo (0 Dk ()t

Nl

:Xl"|

(deth) [ x| (eder k)f(<1 t) Pl 0

D

= x1| - |2 (det k) f XTI Rt det k) x| - |72 () fk)xaxa | - | (H)d*t
Zy

= [ foare = s
ZP

Since ® — P~ is bijective, we are done. O

Therefore, we obtain an operator
I(x1,x2) —— Wy

fq’ﬂx ? Wq’,x

We show this is intertwining; denote this operator by © temporarily. We must show

O(p(g) fo~ x) = p(9)O(fo~ x)

We have seen that p(g)fo = x1| - |2 (det 9) [o(g)®,x; in other words,

1 1
p(9) fa~ x = x1| - [2(det g) fo(gya~x = X1l - [2(det g) frw, () @)~ x

On the other hand,

Wy @ox (@) = xa| - |2 (det ) fo wp (@)wy(9) (T xaxg (DAt = X1 - |72 (det g) W, (g)

P

Thus

O(p(9) fo~x) = O(x1| - | (det g) fru (9)a)~x) = X1| - |2 (det ) Wo, (g)0x
= xal - |3 (det g)x7 | - |~ % (det g)p(g) W,
= p(9)Wa, = p(9)O(fo~ )

as desired. We will use this map to study the irreducibility of I(x1, x2).

8.3 Classification

Recall N = {n(aj) = (1 f) |z e Qp}

Lemma 8.4.
N -1 _ -1
I(XlaXQ) #0 < x1X3 —|‘

If either holds, then dimc I(x1,x2)Y = 1.

Proof. By Bruhat decomposition, we have G = B L BwB = B L BwN. Then f € I(x1,x2)" is uniquely
determined by f(e) and f(w). Recall the very important identity that holds for all z € Q.

=60 )
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Then

1 1 1zt = 1
) oo et 7))o

For |z| sufficiently small, since f is smooth, we have

fle) =x1 el 7 (@) f(w)

This implies either x1x5* = |-|~! or f(e) = f(w) =0 (ie. f=0), and f is uniquely determined by f(e).
This shows dime I(x1, x2)V = 1. O

Proposition 8.5. Consider the pairing

<a>:I(X17X2) X I(X1_17X2_1) — C

defined by

i f) = fK £1 () fo () dk

Then

(i) The pairing is perfect, i.e., for all compact open U < G, the induced pairing

I(xax2)” x I e )Y = C
is perfect. In particular, I(x7' x5 ') = I(x1,x2)".
(ii) The pairing is G-equivariant, i.e.,
{p(9) f1p(9) f2) = {f1, f2)
for all g € G = GL2(Qp).

Proof. By Iwasawa decompsotion G = BK elements in I(x1, x2) are uniquely determined by their restriction
to K = GLQ(ZP), i.e.,

I(x1,x2) ={f: K> C| f(bg) = x(b)f(g) forall be K n B, g € K}

We show that if f € I(x1, x2) is such that (f,g) =0 for all g e I(x7*, x5 "), then f = 0. For a fixed k; € K,
let U < G be compact open such that f(kiU) = f(k1). Define g : G — C such that

1

g(@) = X 103(b) ,if x = bkyu for some be B,ueU
. 0 , otherwise

To see g is well-defined, suppose bkiu = b'kiu’ for some other b € B, u' € U. Then b/'~'b = kju'u"'k;' €

k1 Uk . We now take U smaller so that k;Uky ' is contained in the conductor of x652. Then x~163(b~1b) =

1 1
1, or x"103(b) = x 103(Y), as wanted. Tt is clear that g e I(x7", x5 ") Now

0=(f.q)= f(kof 515(b)dk

KnBk U

which implies f(k1) = 0. Thus f = 0.
To show the pairing is G-equivariant, we use the integration formula
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where d.b is the left invariant Haar measure on B. On the other hand, consider

Dx S(G> I(X15X2)

b p(D)(g) = fB 6(bg)x 65 (b)db

where db is a chosen right invariant Haar measure on B.

 p, is surjective. The proof is similar to that of Proposition 8.1.2. For f € I(x1,xz2), define ¢ € S(G)

by
) flg) ,ifgeK
ol9) = { 0 , otherwise
Then
f 6(bg)x 1572 (b)db
B
- f )x 1057 (b)db
BnKg—1
- (bﬁﬂg)x-lé,ﬁ(b)db
qu—l
= f(g)vol(B n Kg~*,db)

e p, is intertwining. For
Py(pl9)6)(x) = fB p(9)6(bx)x 165 (b)db = jB b(brg)x 165 db = py(8)(29) = p(9)px(6)(2)

Now for f1 € I(x1,x2) and f2 € I(x;7*, x5 "), choose ¢ € S(G) such that p, (¢1) = f1

JK f1(k) fo(k)dk = L{ (JB qﬁl(bk)égéx_l(b)db) fo(k)dk

_ L{ JB 1 (bk) fo (k) dbdk

= f ?1(9) f2(g)dg
G

Let us write the last integral as (¢1, f2). Then

p(9) f1.p(9) f2) = (p(9)b1, p(9) f2) = (¢1, f2) = {f1, f2)

for p\(p(9)¢) = p(g)px(¢) = p(g)f1 and dg is right-invariant. 0

Theorem 8.6.
(i) I(x1,xz2) is irreducible if X1X§1 # |- |%.

(ii) I(x1,x2) has a unique irreducible (infinite dimensional) subrepresentation, denoted by I(x1,x2)s, if

X1X3 ' = ||, and the sequence is exact
0 — I(x1,x2)s — I(x1,x2) — Cx1| |72 odet —— 0
—1

(iii) I(x1,x2) has a unique one-dimensional subrepresentation if x1x5 L=

0 —— Cxq]- \% odet —— I(x1,x2) — I(x1,x2)g — 0
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Proof. Taking dual, if necessary, we can always assume that wt(x1x5 ") > —1. Consider the composition
(which is well-defined by Proposition 8.1)

I(x1,x2) Wy Co(Q))

f@N,X ¥ £¢,X(a) = W<I>,X (a 1>

This map is injective. To see this, assume &g, = 0. By Lemma 8.2, this implies fo~ ,(wn(z)) = 0 for all
x € Qp. By Bruhat decomposition G = B 1 BwN, to see f = 0, it suffices to show f(e) = 0, but this follows
from the smoothness of {3, and that BwN is dense in G. Let V' be the image of I(x1,x2) in Wy; then

V > I(Xl; Xg)
Suppose V' contains a proper nontrivial invariant subspace 0 # U < V. Consider

U(N) = spanc{p(n(z))u —u|ue U, zeQ,} €U
e U(N)=0. Then U =U" # 0, and by Lemma 8.4 we see xy1x53 ' = |- |7*.
o U(N) #0. Then U(N) = V(N)(= S(Q,)) by Theorem 7.2 and Lemma 7.4, so
VIN)=UN)cUcV

thus (V/U)Y < (V/V(N))Y = (VV)VN = I(x7', x5 )Y by Proposition 8.5. Since U is proper, this
implies 0 # I(x7', x3 )N, hence x7'x2 = |-|~* by Lemma 8.4.

Hence, if I(x1, x2) is irreducible, we must have x1x5 " # | - |* by our discussion, whence (i).

(ii) x1x5' =|-|. Since U is chosen arbitrary, it follows dim¢ V /U = 1 and that U is the unique irreducible

subrepresentation. Thus we have the exact sequence
00— U — V=I(x1,x2) — Cxal|- |*% odet —— 0

We must explain why V /U =~ Cxy| - |2 o det. We have
(V/U) =10 H)Y =Cx -7 odet
By Proposition 3.9.(iii), we have
V/U = ((V/U)¥)" = (Cx;'| - |? odet)” = Cxa| - | 7% o det
The last isomorphism results from the definition of contragredient action.

(iii) x1x3 "' =-|"". This follows from (ii) and the fact that taking contragredient is an exact functor.

Definition. Consider the induced module (p, I(x1, x2)) and Theorem 8.6.

1. For x1x5" # | - |, let m(x1, x2) denote the isomorphism class of (p, I(x1,x2)). This is called the

principal series.

1
2

2. Denote by St the unique irreducible subrepresentation of I(| - |2,]-|~2), and call it the standard

Steinberg representation. For xo: Q; — C*, we have
1 _1
St®xo = (p, I(xol - 7, X0l - [72)s)

This is called the the Steinberg representation, or the special / degenerate principal series.
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o We have 7(x1,x2)" = W(Xflegl)-

« Put x1 = xo|-|? and y2 = xo| -|~2. Then X1X3 ' = ||, so the Steinberg representation St ® xo is the
unique irreducible subrepresentation of I(x1, x2), and we have the following commutative digram

0 —— I(x1,x2)s —— I(x1,x2) ——— Cx1| - \*% odet —— 0

0 —— St®xo — I(xol |7, x0|-|77) —— Cxgodet ——— 0

with exact rows. Taking contragredient, and with the identification I(x1, x2)¥ = I(x7 ", x5 "), we have

0 —— (CX1_1| . |% odet — I(Xl_l,xgl) _ I(Xl_l,xgl)Q — 0

0 —— Cxp ' edet ——— I(xo| - 17, x0] - |77) —— (St®x0)Y —— 0

so that (St ® xo)" = I(xg'|- |*%,Xal| : \%)Q. We will prove in the following that, in fact,

1
3

(St®x0)" =St®xo ' =10 15, x| 9)s

Definition. Let (7, V) be a representation of G = GL2(Q,) and x : Q, — C* a character. Define
T®x: G —— GL(V)
by (7 ® x)(g).v = x(det g)m(g)v. The new representation (7 ® x, V) is called (m, V) twisted by x.
« We have (p® p1, I1(x1,x2)) = (p, [(X1/4, X21t)), given by
I(x1,x2) ————— I(x1p; X2p)
fr——— f®(puodet): g f(g)u(detg)

Indeed, for x, g € G, we have

p(9)(f @ (podet))(z) = f(zg)u(det zg)
= p(det g)(p(g)f ® (podet))(x) = (p @ p)(9)f ® (1o det)(x)

Then 7(x1, x2) ® pt = (X1, X2pt) in the principal series case.

Definition. Let (m,V) be an irreducible representation of G = GL2(Q)). Let a € Q) and consider <a );
a

being in the center of G, we have 7 “ ) € Endg(V, V). Let U be an compact open subgroup of G such
a

that VY # 0. Then = (a > € Endg(VU, VU)7 and since dime VY < o0, 7 <a > has an eigenvalue. By
a a

Schur’s lemma we can find w(a) € C such that = “ v = w(a)v for all v € V. The resulting character
a

w: Q; — C is called the central character of 7.

Proposition 8.7. For (m, V) irreducible, we have 7% =~ 7 ®@ w™1.
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Proof. From Theorem 3.11 we have an isomorphism (7V,VV) = (7, V), where #(g) := 7(tg™1). It suffices

b
to show W @ T®w™'. For g = (a d)’ we have
c

d -
tg7t . detg = ( C) = wgw ™!
b a

1
where w = ( 01 O) . Now define

0:(x,V) —— (r@w L, V)

v 0(v) = 7(w v
0(7(g)v) = m(w Hr(tg v = m(w twgw ™ det g7 )v = w (det g)m(gw ™ v = T @ W (g)0(v)

Corollary 8.7.1.

1. For x1x3 " # | - |*, we have m(x1,x2)" = 7(x2, x1)-

2. For xo: Q) — C*, we have (St ® xo)" = St®xg "
Proof.

1. The central character of (p, I(x1,x2)) is w = x1x2. Thus

W(Xl_laXQ_I) = (m(x1,x2))" = 7(x1,x2) ® (x1x2) ' = W(Xz_lv X1_1)~

2. (St®x0)¥ = (St@ x0) ® X2 = St® xp L.
O

Let (7, V) be an irreducible representation of G = GL2(Qp). We will consider the Whittaker model
Wy () of m. Recall the space

Wy :={W :G — C| W is smooth, W(n(x)g) = ()W (g)}
Let w be the central character of 7. For W € W, define
W@w ™ (g) = W(g)w ' (det g)
Then W @ w™! € Wy, as detn(z) =1 for all z € Q,. Then
(0, Wy(m) @) = (p @™, Wy(m) = (r@w ™!, V) = (V")
where the first isomorphism is defined by W ® w=! + W, and hence
Wy () = Wy(m) @w™!

by the uniqueness of Whittaker models.
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8.4 Useful integration formulas

Let G = GLy(Q,), K = GLy(Z,), N = {((1) ;‘)} B = {<* :)} T = {<* *>} where * € Q,.

Then for f € S(G), we have the following integration formulas.

| sods = | rowdras )
a BJK
:f J f(bwn)dndrb ()
BJN
0 1 o
where w = L o) (#) results from the Iwasawa decomposition, and (&) results from the Bruhat

decomposition together with the fact that vol(B,dg) = 0. (proofs to be filled) Also,

JB f(b)drb = L fN f(tn)dndt

Note that the formulas above hold up to a positive scalar, due to the uniqueness of Haar measures. We will
determine the scalar when we really need it.

Recall in the proof of Proposition 8.5 we showed the map
S(G) ——— (|71 |7%)
f s To) = | rea)ise

is surjective; take x = (|- |%,\ . |*%) so that X(Sé = Jp, and thus Xflégédb = 6§1db = drb. Hence for
Fel(|-]2,]-|72), take any S(G) 3 f — f and compute

JK F(k)dk @) L; JK f(bk)dkdrb
@) fB JN F(bwn)dndpb = fB Flwn)dn

Consider the pairing {,> : I(x1,x2) x I(x7*, x5 ") — C defined in Proposition 8.5. For (fi, f2) in the domain,
we have fifa € I(]-|2,]-|"2), and hence

o fa) = L £ (k) fo () dk = jN f1(wn) o (wn)dn (©)

The first integral takes place on a compact set, so we can easily know its convergence. The second integral
takes place on an abelian group, so the computation is rather easy.

8.5 Whittaker models for Steinberg representations
Let (m, V) be an irreducible smooth admissible representation of G = GL2(Q,).

Principal series. (7,V) = m(x1,x2) for some x1,x2 : @) — C such that xix;* # |-[*. Then the

Whittaker model of V' is
Wy (m) = {W¢,7X | e S(Qg)}

This follows from Proposition 8.1.2 and the uniqueness of Whittaker models.
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Steinberg representation. (,V) = St® xo & I(xo| - [2,x0| - |72), where xo : @ — C*. Put x =
Xol - 12, X0| - |72 Then
Wy(m) < {(Wax | ® € S(@))}

We want to characterize the subspace W¢(7T).
Proposition 8.8. For 7 = St ® xo,
Wy () = {Wq,,x | e S(Q2), J Bz, 0)dz = 0}
Q»

Proof. Our assumption is (7, V) = (p, I(x1, x2)s), where x1 = xo] - |% and x2 = xol - |_%. Note that

I(x1,x2)s = {f€I(x1,x2) | {fsxg " odety =0}

where () is the pairing defined in Proposition 8.5. To see this, the same proposition says

I —17 —1 v 3 B B
I(x1,Xx2)s = <(X1_1 X2 )> ={Tellx;",xa")" | T(xg" odet) =0}
Cxgo ™ odet

= {f € I(X17X2) | <fa Xal © det> = O}
By Proposition 8.1.2, each f € I(x1, x2) has the form fg~ , for some @ € S(Qg) Then fo~ € I(x1,X2)s if
and only if

0= (fo~ Xy odety = JK fo~ (k)Xo (det k)dk
2 J f¢~7x(wn)xg1(det wn)dn

f f (0 tywn())[t2d" tdz

J f —t, —tx)|t|*d* tdx
f J- ~(t, x)dtdx —J- O(¢,0)dt

D

where the last equality follows from definition: since ®~(z,y) = J O(x,y)Y(ay)da, letting y = 0 yields

D

o~ (x,0) = J d(z,a)da. O

P

8.6 Summary

Let (7, V) be an irreducible smooth admissible representation of G = GL2(Q,) with dim¢ V' = co. Consider
the Jacquet module J(V).

o J(V) =0. In this case, (m, V) is called supercuspidal.

e J(V) # 0. As in the first paragraph of the proof of Theorem 5.6, we can find y : T — C* and
0 # A e Homg(V,ind§ x). Since V is irreducible, A embeds V into ind% y = Ind$ X(S];%. Denote
X05® = (x1:x2), 50 nd§ x = I(x1, x).

- X1X§1 #|-|%. Then (m,V) = 7(x1, x2) = I(x1, x2), and it is called the principal series.
- Xle = ¥ Then we can find Xo such that 7 = St ® xo, and (7, V) is called the Steinberg

representation.
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9 Theory of L-functions on GLy(Q,)

Let (m, V) be an irreducible representation of G = GL2(Q,) with dim V' = oo. Consider the Whittaker model
Wy () of (m, V).

Definition. For W € W (w) and s € C, define formally the local (-integral

(W, s) ;:J W<“ >|a5§dxa
Q; 1

where d*a is the normalized Haar measure such that vol(Z;7an) = 1. In general, if x : Qf — C* isa

character, we define

a R
VW, x5) i= f@yv( 1) x(a)lal*"*d*a

Theorem 9.1.
1. (W, s) converges absolutely for Re s » 0, and has a meromorphic continuation to C.

2. There exists a unique L-factor L(s, ) such that

YW, s)
L(s,m)

E(W,s) =

is entire for all W e Wy (7), and exists Wy € Wy, (m) such that Z(Wy, s) = 1. In other words, L(s, ) is
the ged of {Vw sfwew, (r)-

In general, a function L(s,7) is called an L-factor if L(s,7)~! = Q(p~*) where Q € C[X] with
Q0) =1, ie,

*

L(s,m)~ ! = H(l —a;p~®)

i=1

for some a; € C*.

3. We have the functional equation: for W e W, (), define

o~

W(g) :== W(gw)w™!(det g) = p(w)W ®@w™'(g) € Wy (r")

1
where w = < 1 ) and w is the central character. Then there exists an epsilon factor €(s, x, ¥) such

that .
U(W,1—s5) T (W,s)

L(1—s,7v) - L(s, ) velsmy)

If (7, V) = 7(x1, x2), then
L(s,m) = L(s,x1)L(s, x2)
C(Saﬂ,l/)) = 6(87X1,¢)6(8ax2aw)
If (7, V) = St®x0 < I(xo| - |2, X0| - |72), write x1 = xo| - |? and x2 = xo| - |~%; then

L(s,m) = L(s, x1)
L(l — s»Xl_l)

(s, m 1)) = €(s, x1,%)e(s, x2,9) L(s, x2)
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If (m, V) is supercuspidal, then

L(s,m) =1
€(s,m, 1) = complicated

Similar to the GL(1), we define the y-factor for 7 to be

L1 —s,7mY)
’Y(Saﬂ-v’l/)) T L(S,’]T) €($’ﬂ7w)
Then the functional equation takes the form
\II(W, 1—s)
W v(s,m, %)

9.1 Principal Series
Let (m,V) = 7(x1,X2), X1X3 * # | - | be a principal series. Put x = (x1, x2). Then
Wy (m) = {Wax | © € S(Q))}

We may assume ® = 1 ® @2 with ¢; € S(Q,). Compute

WQ’X? J W¢X< 1) MS*%an
= J k@ ] e g et aa
Qy
j f Dlat, ) xax; Oy (@)]al* & ad*t

(> at™, t s ) jj D(a, )1 (@)lal o (8)|f*d*td*a
Qy

(=91 ®@p2) = (J p1(a)xi(a)lal*d™ ) (J@X @(t)Xz(t)|t|st>

Z(@laXh )Z((p27X27 )

which is a product of two Tate integrals. From the theory of L-functions on GL(1), we find the function

\II(W‘I),X’ 8) = Z(@la X1, S)Z(§02a X2, 8)
has analytic continuation

\Ij(Wq),X7S) — Z(‘plelaS) . Z(<p2ax2a5)
L(s, x1)L(s, x2) L(s,x1) L(s, x2)

so that
L(S,ﬂ') = L(S7X1>L(87X2)

From the formula.(iv), we know

wy (W) @(x,y) = sz O (a,b)y(ay + br)dadb

D

(® =1 ®p2) = P2 ®P1(x,y)
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Then

N|=

Wanlgw) =l - 1H0) | wulomte, =y (0"t

P

W=

—al-1F) f@ oo @B ® Bt vaxg (Ot = Wiaga . (9)

X
P

Consequently,

V(Woy,1—5) = U (Waea ()07 1)

= Z(pa, xaw™ 1 —8)Z(51, xaw™ 1 — 8)
Recall that the central character of (m, V) = (p, I(x1,x2)) is w = x1Xx2. Thus
U(Wo 1= 8) = 2@ 1= ) Z(F1x0 " 1 - 5)
and
Ll —s,7")=L(1-s,7@w ) =L(1—s,xiw DLl —s,xaw™ ) = L(1 —s,x3 )L(1 — 5, x7")
From the theory of L-functions on GL(1) we deduce that
e(s,m, ) = €(s, x1,¥)e(s, x2, %)

9.2 Steinberg Representation

Assume (7, V) = St ® xo for some character xo : Q; — C*. Put x; = xol - |z and x2 = xo| - |72. We know
its Whittaker model is

Wy(m) = {Wm | e S(Q2), J ®(x,0)dx = o}

Assume ® = @1 ®py with ¢; € S(Q,). The the imposed condition on elements of Wy, (1) means p1(0)p2(0) =
0, i.e., 1(0) = 0 or 2(0) =0, i.e., p1 € S(Q,) or 2 € S(Q;). The computation in the principal series case

shows
lII(VV‘I),X) 8) = Z(@la X1, S)Z(QDQa X2, 8)
If p2 € S(Q,), then Z(pa, x2,s) € C[p*®, p~°], so the ratio

\P(W‘b Xas) Z(@th’S)
: = “Z ) » S
L)~ Lis) 22X

is entire. If 1 € S(Q,;), then

\I/(W‘b X75) Z(@th,S)
: = -Z , X2, S
L(s,x1) L(s,x1) (2. x2: )

Z(()/o\laX;lv 1-— S)

= _ e(&Xlaw)'Z((anXQas)
L(1—s,x7")

= Z(()/o\laXIla 1— S)E(SaXIaw) :

Z(p2,X2,8)
L(l - S, Xfl)
Recall that x1x5"' = |-|. Then
Ll=sxi)  =1=x7'"0Ip"* =1=x3"®)p| ™ = —x3 " (0)lp| *L(z, x2) "

and therefore
\IJ(W@,)@S) Z((ID27X27S)
L(s,x1) L(z, x2)

is entire. Now the theorem follows from the theory of L-functions on GL(1).

= Z(@r.x7 1= 8)e(s, x1,¢) - (=x3 ()l ™)
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9.3 Supercuspidal

Let (7, V) be supercuspidal and identify V' with its Kirillov model K, (7). Since J(V) = 0 by definition, we
have Ky (m) = S(Q)). Then the Whittaker model is

and the local zeta integral
YWeos) = | &@lal Fd ac Clss )
Q

is entire. Thus L(s,7) = 1.
We proceed to prove the existence of epsilon factor €(s, x,t) and the functional equation. For { € V =
S(Q),), veZy and n € Z, put

&) =& (v) =] & "uv(u)d ueC

Zy
and

)= )= R &) -t

nez

This is a polynomial in ¢, t~! since ¢ € S(Q,) the support of £ is bounded above and below.

0 1 -
Put w = ( ) 0) and for v € Z, define

pu(a) == 1zx(a)v(a) € S(Q;)

Then

n

p

o S(Q)) is spanned by the 7 (p 1) @y. See the lemma in Theorem 7.2.

1 ifur=1

) , where 1 denotes the trivial character.
0 ifurv+#1

. @(MJ):{

Define C(m,v,t) € C[t,t™!] by

—

C(m,v,t) = m(w)puw(v,t)
where v € Z; and w is the central character of .

—

Lemma 9.2. Let zg = w(p). For any v € Z; we have

~

m(w)é(v,t) = Om, v, t) - E(v w251t h)

Proof. For any £ € V = S(Q)), ptu

— ~

A(§) = m(w)e(v,t) = —(m v, 1) - £ w ™ 25t

We need to show A(§) =0, and we verify A(p,) = 0 first.
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e 1 =vw. Then

—_

Alpvw) = m(W)puu(v,t) = C(m,v,t) - Gru(v w25 't7)

4

=C(m,v,t)— C(m,v,t) =0

e 1 # vw. Then

o — —

A(@VW) = W(w)quw(Va t) —0= W(w)@uw(yv t)

Observe that m(w)ep, is the eigenfunction of Z} with eigencharacter wu™': for a € Z,

a 1 a~!
T < 1) m(w)p, = m(w)mw ( a> o, = m(w)w(a)T ( 1) Oy

= wp (@)W

Thus
T(w)pp, (V) = JZ m(w)e,(p"u)v(u)d u = ﬂ(w)gou(p")f w,u_lu(u)dxu =0
? Zy
if wp='v #1 < p# wr, so that

—_ —_

Alpuw) = m(w)ppu(v,t) = Y m(w)p,, (0)i" =0

nez

Next we show A(m (p 1) @) = 0, from which we can conclude the lemma.

A(m (pn 1) Pp) = (W(w)ﬂ (p” 1) @M> (v, t) — C(m,v,t) <7T <p” 1) ¢M> it )

=<w (w (p_” 1>>7r<wm> (v,1) = Clm, . 0) (7 ) "Gl o 2 )

—

= 25 t"m(w)pu(v,t) = Clm, v, ) (25 't ) " (v w25 1t

= 2zgt"A(p,) =0

Now we use this lemma twice and the fact w? = —1.

Hence
C(m,v, )O(m, v tw™ 20 = w(—1)

Since C(m,v,t) € C[t,t~!], this implies C(,v,t) = At" for some A € C* and n € Z. Finally,

EWes) = fo §(a)lal"2d*a = 3, p"|H Lx £ u = E(1pt )

neZ
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Recall that W(g) = W (gw)w™!(det g). Then

UG J@x We ((a 1) w) w™(a)|a]' "2 da

= Z |p”|1—5—% JZX We <<p"u 1) u}) Yo H(p"u)d  u

neZ P
= 2 p"(s_%)zo_"J m(w)é(p™u)w ™t (u)d*u
neL Zy

—_ 1

=m(w)§(w™,p 25 )

By the lemma we have

1 ~

ﬂ(w)ﬁ(w_l,ps_%zgl) =C(mw t,p 225t (1,p%_s)
Now we define our dreamed epsilon factor:
e(s,m ) = C(ﬂ,wfl,psfézo_l) = Ap™® for some Ae C*, neZ
Then we attain the functional equation

\I/(I/I//\g, 1 —5)=e(s,m)U(We,s) forall e V = S(Q,)

9.4 Archimedean Case

Let (m,V) be an irreducible (g, K)-module, where g = Lie(GL2(R)) and K = O(2). Then (7,V) < I(x1, x2)
with x1x5 " = | - [*sign®, s € C, e € {0,1}.

o s—e¢1+2Z. Then m = m(x1, x2) is the principal series and

V= @ V@

{=e (mod 2)
with dim¢ V(¢) = 1.
o s—eel+2Zand s=k—12>0, where k is the minimal weight of 7. Let o}, < I(] - |%, | - |%Signk)

be the unique irreducible subrepresentation. Then m = o} ® xo S I(x1, x2) is the discrete series of

weight k when k > 2, and is the limit discrete series when k£ = 1. In this case,

V= @ V©
=k, 0<—k
{=k (mod 2)

For m =~ 7(x1, x2), we have
2 2
W) = { Wy | @(2,9) = pla,y)e ™), pe Cla, )}

where 1 = 1 is the standard additive character. If 7 = o} ® X0, then

0T D
W () = {W@,X | ®(e,y) = pla,y)e "D, pe Cle, yl, fR v g @Yz =0foritj=k- 2}

k—1
|z

where x = (xol - , Xo| - \%signk). To see this, put x = (x1,x2) for brevity. Consider the pairing
I, x2) x T(xgh, xg ) — C defined by

i o) = L@ f1(@) fo()da
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This pairing is Lie GLy(R)-invariant, in the sense that for all X € Lie GLy(R) we have

(X f1, fa) = =(f1, X fa2)

and is O(2)-invariant, in the sense that

{p(g) f1, f2) = frsplg™ ) f2)

To be filled
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10 Intertwining Operators

Let p < o0 be a rational prime. For s € C and x1,x2 : Q) — C*, put I(x1,x2,5) = I(x1| - [*,x2l - [7%)-

AG 6 )

()= f
0 —1 1 -1 1 0
o) = 0 -1 x 2P Lo “x
= [ oo [t () )

The first term always exists, and the second term is a Tate integral. Thus ¢y (f) converges absolutely when

Define ¢y : I(x1,Xx2,8) — C by

Formally, we write

wt(x1x5 ") +2Re(s) > —1, and by Theorem 2.5.(i), £y : I(x1, x2,5) — C has a “meromorphic continuation”
to C.
For Re(s) > 0, define M(X17X27 S) : I<X17X27 S) - I(X27X17 —S) by

M(x1,x2,8)f(g) == Ln(p(9)f)

To see g £ (p(9)f) € I(x2, X1, —5), compute
wneor ()L () (07)

d 0\ /(0 -1
_pr<<0 a) (1 O)
/

s+%

d a 0 -1 1 =z
= f@ xi(d)xz(a) |~ ‘g’ (1 0 ) (0 1) g) dx
= @ @[5 exoto))

Introduce the normalized intertwining operator

M*(Xla X2, S) = L(287X1X51)_1M(X17X27 S)

By Theorem 2.5.(ii), this is a well-defined map for all s € C.

To proceed, we first extend the modular function dp : B — R to a function on GL2(Q)), by setting
dp(g) = dp(b) if g =0k, be B, k € K. To see this is well-defined, if bk = b'k’ with b,b' € B, k, k' € K, then
b= = kk'~' € Bn K = B(Z,). Since B(Z,) < B is compact, d5(B(Z,)) is a compact subgroup of R~g, so
§5(B(Zy)) = {1}. Consequently, 65(b='0") = 1, or §5(b') = d5(b). In conclusion, we obtain a well-defined
map dp : GL2(Q,) —» R.g < C*.

For f e I(x1,xz2) and s € C, we see f0% € I(x1, X2, 5); this is called a flat section, which can be viewed
as a section of the bundle | | I(x1, x2,s) — C, and “flat” means f0%|x = f|k is independent of s. Consider

seC

the composition

M*( » ’S) (')‘S:
M(x1,x2) s T(x1,x2) — I(x1, X2, 8) — 2% I(x2, X1, —5) ~——% I(x2,X1)

[ fop

68



Definitely, for f € I(x1,x2), we define

M(x1,x2)f = M*(x1,x2,8)(f05)|s=0

We now study the action of M (1, x2) on the Godement section:

Faeelg) =l [T (etg) [ 20 Dgpns"| - ()"

P

where x = (x1, x2). For this, we introduce the sympletic Fourier transform. For ® € §(Q}), define

d(z, y) = f i D (u, v)p(—vr + uy)dudy

:chx)(u,v)w,, ((u v) (_01 é) Cj)) dudv

Clearly, if ® = o1 ® @2 € S(Q3) is a pure tensor, then
®(z,y) = Za(—2)Gi(y)
Proposition 10.1. For ® € S(Q2), we have
M (x1,X2,8) fo,x,s = V(28 x1X2 5 0) " g ow

where x = (x1, x2) and X = (x2, x1), and ~ is the y-factor.
Proof. By linearity, we may assume ® = ¢ ® @3 is a pure tensor. Further, using the formulas

Faxs(9) = xal - I"TE (det g) fp(gpm n.s(e)

Fina(9) = xal - |73 (det g) fo ()
we only need to show

M1, X2+ 8) Fos(€) = 1(25, X105 ) ™ oo (€)

First, we have

T —o(€) = BHO)Z(Fr xaxi s 1 — 25)

Secondly, compute the left hand side.

-1 1 =z
M(X17X27 f‘bxs J f<1>X5<< O) (0 1>>dl’

J J O(t,tr)x1xy |- P (t)d* tda
(x> 2t = f f B(t, 2)x1xa | - [ (1) d* tde
Q

= $2(0) f@x ert)xaxz |- [* ()t

= S/D\Q(O)Z(%Dla X1X517 28)
Thus from Theorem 2.5.(iii) we obtain

M(x1,x2,8) fox.s(€)  Z(e1,x1x5 ", 25)

= = ~(2s, 71’ -1
f@,xsw’fs(e) Z((O\la X2X1_1a 1- 28) ,Y( X1X2 w)
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11 Local Jacquet-Langlands Correspondence

Assume that (V,{,)) is a finite dimensional nondegenrate quadratic space over Q,, p < o0. Let ¢ : Q, — C*
be a nontrivial additive character. Then we have the Weil representation

wy : SLe(Qp) x O(V) ———— GL(S(V))
defined by the following formulas
(i) wy(1,h)®(z) = ®(h ') forz e V.
For simplicity, define ry : SLy(Q,) — GL(S(V)) by rv(g) := wy(g,1) and assume m := dim V' is even.

(i) rv | @) = ((—1)¥ detV,a),-|a| ¥ - ®(xa), where (-, ), is the Hilbert symbol, and det V'
a

is the determinant of the bilinear form ().

1 b b{x,x)
(iii) v (0 1) O(x) =1 (2> D(x).

(iv) rv ( 01 é) O(x) = W,(V)&)(ac), where v, (V) is the Weil index, and

Ba) = | Byl )y
v
is the Fourier transform in which dy is chosen so that the inversion formula holds.
Denote by qv : V — Q, the associated quadratic form; then we have
1
av(e) = 30
(@,y) =qv(z+y) —qv(z) —qv(y)
The Weil index depends on the form gy, so we also write v, (V) = vy (qv). For a € Q, put
vp(a) = vy (az?)

Then one can prove that v, (a) € ug(C). We list some properties of the Weil index. By definition, vy, (V) is

the unique number such that

A~

| 2wvtav @ity =10) | Bwaviy

v v

holds for all ® € S(V'), where dy is the self-dual measure with respect to (¢, gy ). We have
« (V1@ V2) =7 (Vi)yy(Va).

o Yl=aqv) = ylgv) ™"

o Yy(a)yy(0) = vy (1)vy(ab) - (a,b), for all a,be Q.
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11.1 Quaternion algebras
For a,b € Qp, define a four dimensional Q,-algebra
D = Da,b = Qp ® Qpa ® Qpﬁ @ @paﬁ
with relation o? = a, 82 = b, aff = —Ba. On D there is a natural involution:

D D

z=x1+ 2o+ 38 + v40ff ——— Z =11 — xo00 — 230 — 1400
Then one has z7 - 23 = Z3 - Z;. We use this to define the reduced trace
Trp,(2) =2+Z=211€Q,
and the reduced norm
v(z) = Npjq,(2) =22 = 7] — w30 — 23b+ 25ab e Q,
Then (D, v) is a quadratic space: define (,>p : D x D — Q, by
(z,w)p = v(zw) —v(z) —v(w) = Trp,q, (210)

In terms of the ordered basis {1, «, 8, @8}, the matrix representation of this pairing is

2ab

so det D = 16a%b*. Consider the Weil representation rp : SL2(Q,) — GL(S(D)). We first compute the Weil

index:

V(D) = 75(Qp @ Qp(—a) & Qp(—b) ® Qpabd)
= Y (1D)7y (=) vy (=) (ab)
= 74(a)7y(b) (@, 0)p vy (—a) vy (—b)
= (a,b)p

Thus 7y (D) =1 if and only if (a,b), = 1, if and only if D = M>(Q,). In this case, we have v(x) = det z.
Suppose vy (D) = (a,b), = —1; then D is the unique division algebra over Q, with dim D = 4. Consider

the group of norm one elements:
={zeD|v(z)=2z=1}

It is a compact group. Let Q : D* — GL(U) be a finite dimensional complex irreducible representation of

the group D*. Consider the space
S(D,Q) :={®eS(D)Rc U | ®(wz1) = Q(z; ) ®(z) for all 2, € Dy}
where Q(z;1)®(z) really means (idc ®Q(z; 1)) ®(z). We let SLy(Q,) act on S(D, Q) by Weil representation:

rp(9)®(7) := (rp(g9) ®idy)®()
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Extend the action of SL2(Q,) to
Gt :={ge GLy(Q,) | detg € v(D*)}

by

D (g ?) ®(z) := |a| T Q>2)P(z2) = |a|Q(2)®(x2)

if a =v(z) € v(D*), where m = dim D = 4. Then we obtain a representation of G

rp: Gt — GL(S(D,Q))

If p < o0, one can find an unramified quadratic extension contained in D so that v(D*) = QJ, implying
that GT = GLa(Qp). If p = o0, then GT = GLy(R)* is the index two subgroup consisting of matrices with

positive determinant.

11.1.1 Non-archimedean cases

Assume p < . As said above, the extended Weil representation rp : GL2(Q,) — GL(S(D,Q)) is a

representation of the whole group GL2(Q,). Consider a sequence of maps

0—— S(Q)®U S(D, Q) ‘ U

D+ ®(0)
§——— Bz |p(2)|T1Q(TEV(2))

We claim this is an exact sequence. If ®¢ = 0, then since v(D*) = Q, this means § = 0 itself. Now suppose
®(0) = 0. Since P is locally constant, this means ® € S(D*) ® Q. But Q(zz)®(xz) = Q(x)®(z) for all
z € Dy, so the map

Qz)®(x): D* - U

factors through D* /D, which is isomorphic to Q,; via the reduced norm map v : D* — Q). Thus we can
find £ € QF — U such that Q(x)®(x) = {(v(x)) for each x € D*. Since ® is locally constant, we must have
£eS(Q))QU, and & = Dy jy)e(a)-

Since ®(zz1) = Q(z1) ' ®(x) for all z € Dy, in particular ®(0) € UAP1),

o dimU = 1. Then Q(D;) = {1}, because D; is the commutator subgroup of D*. To see this, if z = T,
then 22 = 27 = 1 so that = +1. Otherwise, Q,(z) is a quadratic extension of Q,. In any case, as
long as T = 1, there exists a quadratic subfield L of D containing x. By Hilbert’s theorem 90, there
exists y € L such that x = y7—!. Moreover by Noether-Skolem theorem we can find o € D* such that
ozo~ ! =%z for all ze L. Thus x = yoy~ o lies in the commutator subgroup. Thus € factors through

D* /Dy, and we can find x : Q; — C* such that Q = xov.

e dimU > 1. Since D; & D* is a normal subgroup, U*P1) is also stable under D*. Since U is
irreducible, we must have U?(P1) = 0 or U®(P1) = /. But if the latter were to occur, Q would factor
through D* /Dy, which is an abelian group, implying dim U = 1, a contradiction. Thus in this case we
must have U2(P1) =,

Let us assume dimU > 1. Then the above discussion shows § +— ®¢ is an isomorphism S(Q, ) ® U —
S(D, ). We claim

Px, (g = rp(9)P¢
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b
for all g = <g 1). Indeed, for x € D*

<
>}
/-~
IS
>
~
A
oy
—~
B
Il
<
—
<
<
—~
B
=1
o}

(COL (1)> D¢ ()

(@ =v(z2)) = (b (2))|alQ(2)Pe(22)
(bw(2)) [ (2)|Q22) v (22)| QT e (v(w2))
) 1

Thus (rp,S(D,Q)) and (Ky,S(Q,)) ®U are isomorphic as Bj-representations. If we use this isomorphism

to transfer the action of rp to S(Q,;), we see (rp,S(Q)) is an irreducible supercuspidal representation of

GL2(Q,) by Theorem 7.2 and Lemma 7.4. Let us put
JL(Q) == (rp, S(Q}))
Next assume dim U = 1. Then we have seen 2 = x o v for some x : Q7 — C*. In this case
S(D, Q) ={PeSD)| P(xz) = D(x) for all z; € Dy}
and we have an exact sequence
0—— S(Q)®U — S(D,Q) —— C

Consider the map ®¢(z) := I (v(z)). Since D is compact, it is clear that &g € S(D,). We have
(D) = P(0) = 0 but

0(rp (W) Bo) = rp(w)Bo(0) = — fD Bo(x)dz # 0 *)

This means ¢ : S(D, ) — C is surjective, so we have an short exact sequence
0— S(@)®U — S(D,Q) ——=C ——0

We claim

It follows from definition that

D <a 0) 2(0) = lalx(a)®(0), o (1 b) ©(0) = ©(0)

0 1 0 1
and
D (g 2) (I)(O) =7Tp (% (1)> D (ag 2) @(0)
= la?x(@)rp (0 0) @(0) = [a?x(a?)]a™" @ (0) = x(a*)2(0)



If for each ® € S(D, Q) we define

fa(g) == L(rp(g9)®)

then f defines a map S(D,Q) — I(x|-|2,x|-|~2). Let us show that S(D, Q) is irreducible. Suppose V is an
invariant proper subspace of S(D,?). By definition for each ® # 0 € S(D, ) we can find b € Q, such that

1 b
d—-—P#£0
7‘D<O 1) #*

This then implies 0 # V(N) € S(Q;) n'V. If V # 0, then by irreducibility of (Ky,S(Q,)*), this forces

S(Q)) = V(N) € V, and hence V = S(Q;) as S(Q,) has codimension 1 in S(D,2). But S(Q,’) is not

invariant under the action of rp as seen in (#), this leads to a contradiction, and thus V' = 0, showing the
irreducibility of S(D, Q). Since f : S(D,Q) — I(x|-|2,x|-|2) is nontrivial, we must have S(D, Q) =~ St® .
In this case we define

JL(Q) := (rp,S(5,9)) = St® x
In both cases (dimU =1 or > 1), JL(Q) is an irreducible representation of GL2(Q,,) satisfying
S(D,Q) = JL(Q) ® U

The association
JL : Rep(D*) —— Rep(GL2(Qy))

is called the Jacquet-Langlands correspondence of ).

11.2 Quadratic extensions

Suppose K/Q, is a quadratic field extension. Denote by z — Z the nontrivial element in the Galois group
Gal(K/Qp). Then (K, N = Nk q,) is a quadratic space of dimension 2. If K’ = Q,(VD), then det K = —4D,
so for each a € Qp, we have (—det K,a), = 1if a € NK*, and —1 otherwise. For convenience, write
Ti ), (a) = (—det K, a),.

Let A : K* — C be a character and define

S(K,\) ={® e S(K) | ®(zxz1) = A(z1) ' @(z) for all z; € K1}

where K is the set of norm one element in K. As before, we let the Weil representation rx act on S(K, \),
and extend it to a representation of the subgroup G* := {g € GL2(Q,) | det g € N oK *} by means of the

formula

a O 1
e (0 1) ®(z) == |a|2 A(z)®(x2)

if a = Nk q,(2) € Q; = Nk o, K™ < Q. Again, consider the maps

0 —— S(@)) S(K, N ¢ C

D ®(0)

1

§r—— ®c 12— [N(2)|72A(27HE(N(2))

74



This is an exact sequence, which can be proved in the same way as in the quaternion case. Define the

b
subgroup Bj = {(g 1) laeQf, be Q} < Bi. Then, as a subspace of S(K, \), the space S(Q;) is
invariant under the action of G*, and (TK|Bl+vS(Q;)) = (KMBT,S(Q;‘)).

Define S(K, \) := Ind&_ (S(K,\),rk). Consider the map

Indg+(3((@;),7‘1{) (Ky,S(Qy))

[iG=S@)) &)= f ((O f)) M

We claim this is well-defined and is an isomorphism as B~ representations. Let L : S (Qf) — C* be the
evaluation map at 1. Then

and for a € Q, we have

(6 el DAG D)= (G 3))(G D)
(7))l 7)AG ) vemsre

This shows £; € S(Qy), and since Q,/Q; is finite, we find f — &; is injective. Also, f — & is Bi-
intertwining, so the irreducibility of (Ky,S(Qp)*) implies this is a Bj-isomorphism. In particular, this
shows

If Ak, # 1, then since A(21)®(x) = ®(x21), we find ®(0) = 0 for all ® € S(K, A). Thus S(Q;}) = S(K, \),
and S(Q,) = Indg+ S(Qf) = S(K, )\) as Bj-representations. In this case, we find S(K, \) is supercuspidal.

Suppose Ak, = 1. Then we can find a character  : Q, — C* with A = x o Nk q,. We are to construct
a non-trivial GLg(Qj)-equivariant map from S(K, ) to I(x, X7k /q,). For this, pick any ¢ € Q\Q, and
define

7:S(K,\) C

S UD) == x(5)U(D(1)) + ¢ (% ((5 0)))

~

Then £ is not trivial on S(K, A), and the map P — [g — f(p(g)(i))] is what we want. It remains to show

S(K, A) is irreducible as GL2(Q,,) representations.
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12 Global Theory

Lemma 12.1. Let p < o0 and (7, V') be an irreducible representation of G = GL2(Q,). Put K, = GL2(Z,).
If VE» £ 0, then dimc VEr = 1.

Proof. Recall that we have the algebra
H(G, Kp) = {¢ € S(G) | ¢(kigka) = ¢(g) for k; € K, g € G}

By Lemma 3.3.(iii) and (iv), VE# is a simple H(G, K,)-module.
Lemma 12.2 (Cartan decompsition). We have

p* 0

GLQ(QP) = |;| KP 0 pv KP
x>y
0
Then H(G, K,) is spanned by the characteristic functions of K, <g b) K, over C, and hence for ¢ €

H(G, K,), we have ¢'(g) := ¢(g9') = ¢(g) for all g € G, i.e., ¢ = ¢.
On the other hand, since G is unimodular, a direct computation shows (¢1 * ¢2)! = @b = ¢! for all
¢; € S(G). Hence,

P1 % o = (d1 % P2)" = P * P} = do x

that is, H(G, K,,) is a commutative ring. Since VEr is a simple module over a commutative ring, we must
have dim¢ VEr = 1. O

12.1 Representations of GLy(A)
Denote by A = Ag the ring of adeles over Q. Define
GL2(A) := {(gp) € H GL2(Qp) | gp € GLa(Z,) for all finitely many p}
P00

For finite prime p, put K, = GL2(Z,) and let (mp,V,) be an irreducible representation of GL2(Q,). For
p = 0, let (74, Vi) be an irreducible (g,,, Ky )-module, where g, = Lie(GLy(R)) and Ky = O(2).
(#) Assume that VE» # 0 for all but finitely many p. Define

V= @V, = I (@w@vﬁ)
p<oO Sc Mg \peS p¢S
#S<w0

Let Sy be a finite set of primes containing c. For p ¢ .S}, since we are assuming VpK” # 0, by Lemma 12.1,
we have V,” = C - £2. Then

V = spang {®pesvp ®pgs &p | vp € Vp, S 2 S0, #5 < oo}

Then
7 :=Q®'m, : GLy(A) > GL(V)

/
is an representation of GLa(A), or more precisely, a representation of (g, Ko) X H GL2(Qp).

p<0
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Definition. We say (7, V) is an irreducible representation of GLy(A) if (7, V) = (@’ﬂp, ®/ Vp> with
p<o0

each (mp,V,) irreducible and {(mp, V},)}p<o0 satisfying (#).
For (g,) = (ai;) € GL2(Qp), define
lgpll. = Yijlaigl L ifp=oo
Plp max; j |ajl, ,ifp<oo

For g = (gp) € GL2(A), define

llgll =TT llawll,

p<0

which is well-defined since for all but finitely many g,, we have [|g|[, < 1.
Definition. A function ¢ : GL2(A) — C is called an automorphic form on GLy(A) if
(i) ¢ is K-finite, where K = [] Kp;

P00

(ii) ¢ is smooth, i.e. there exists an open compact U < [] K, such that
pP<0

o ¢(gu) = ¢(g) for all u € U, and
« for all g5 € GLy(As) = [ | GL2(Q,), the map

pP<00

GLy(R) ——— C

Joo —— O(Googf)

is smooth;
(iii) ¢ is slowing increasing, i.e. there exist M7, Ms > 0 such that
|6(9)] < Mz g™
for all g € GLa(A);
(iv) ¢(rg) = ¢(g) for all r € GLo(Q) (this is why ¢ is called automorphic);
(v) ¢ is Z-finite, where Z = C[J,A] € U(ge), J = ((1) 2), and A is the Casimir element of sl3(R).
We denote by A(GL2(A)) the space of automorphic forms on GLy(A). Then A(GL2(A)) is a representation
of GLy(A) under the right translation.
In the following, let us put G = GLg, and A(GL2(A)) = A(G).
Definition. An irreducible representation (7, V') of GL2(A) is automorphic if Homgy, a) (7, A(G)) # 0.
Definition. A continuous character w : Q*\A* — C* is called a Hecke character of Q.
We write
A(G,w) = {p € A(G) | ¢(z9) = w(z)¢(g) for all z € A™}
to be the space of automorphic forms of GLy(A) with central character w. Then

AG) = @ AG,w)???
w : Hecke
and a smooth function ¢ : G(Q)\G(A) — C with central character w is automorphic if and only if ¢
is K-finite, Z-finite and slowly decreasing. A representation m = ®'m, is automorphism if and only if

Homg (7, A(G,w)) # 0 for some Hecke character w of Q.
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12.2 Siegel Set
If (2,9) € Q, define
Iz, )|, := max{|x|p, |ylp} ,if p <0
o Wl T e ifp=w

and for (z,y) € A2, define

@)l =TT I,

pP<O

Then ||-|| : A* — R is a continuous map.

We list some facts.

e For a e Q* € A*, we have

jal:= [T laly =1

PO
This is the product formula. In other words, |- | : A* — Ry factors through Q*\A*.
« A=Q+[0,1] x [] Z,
p<00

e Put (A¥)° = {z € A% | |z| = 1}. Then (A%)° = Q~ ({il} <[] Z,f).

p<0

« GLy(A) = GLy(Q) (GL2(R) < |1 GLQ(ZP))

pP<00

Lemma 12.3. There exists ¢y > 0 such that for any g € GLy(A) there exists v € GL2(Q) such that
100, )ygll < col det g|2
where det : GLy(A) — A*.

Put

BY(A) = { (‘“ x) | a; € (AX)°, xeA}
0 as

By product formula, we have B(Q) < B°(A). Since Q\A and Q*\(A*)° are compact, B(Q)\B°(A) is

compact as well. In particular, we can find compact Q¢ < BY(A) such that

In fact, we can take

p<o0 pP<0

o a1 X ) % .
Qo{<0 a2>|aze{i1}xnzp,me[ 1,1]x]_[zp}
For ¢ > 0, we define the Siegel set to be
a 0 y
S(Qg,c) :==1b 01 klbeQo,aeR* Ja] >c, ke K

where K = O(2) x [] GL2(Zp).

P<0
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Theorem 12.4. There exists ¢ > 0 such that
GL2(A) = GL2(Q)R4+6(0, ¢)
where R} € GLy(R) € GL2(A).
Lemma 12.5. Take ¢ > 0 be as in Theorem 12.4. The set
{re Q*\GL2(Q) | r& n A& # &}
is finite, where & = &(, ¢) is the Siegel set.

Corollary 12.5.1. Let w : Q*\A* — S! be a unitary Hecke character of Q and ¢ € A(G,w). If there exists

m < 1 and ¢ such that

()] < exllgl™

for all g € GLa(A), then ¢ € LY(A*G(Q)\G(A)), i.e.,

J |9(g)ldg <
Z(8)G(Q\G(A)

That |¢| is a function on Z(A)G(Q)\G(A) results from that ¢ is automorphic and w is unitary.

Proof. Let & be the Siegel set as in the previous lemma, and m : G — Z(A)\G(A) be the projection. Put
&' =m(6) c Z(A)\G(A)

and for g € Z(A)\ GLz(A), define

As(g):= ), lel(rg)

reQ*\G(Q)

Formally, it descents to a map for g € Z(A)G(Q)\G(A). To see this sum is well-defined, by Theorem 12.4,
the projection & — Z(A)G(Q)\G(A) is surjective, so for g € Z(A)G(Q)\G(A) we can choose z € & with
As(g9) = As(x). Then

{reQ\GQ) |rze @} ={reQ\GQ) | A*SGnA*rz # F} = {re Q°\G(Q) | A& nr& # &}
The last set above is finite by the previous lemma, so the sum Z Is (rg) is actually a finite sum; this

reQ*\G(Q)
shows Ag(g) is well-defined. Now Ag(9) = Iz(a)c)\aa)(g), s0

16(0) e (g)dg = f S 16(rg) e (rg)dg
ZMGQ\CA) regit(0)

|p(9)|As (g)dg

JZ(A)\G(A)

JZ(A)G(@)\G(A)

>

| 16(g)ldg
Z(A)G(Q)\G(A)

It suffices to show J |6(9)|Is’(g)dg < co. By assumption, we have
Z(M\G(A)

a0
16(9)|Ls (9)dg < clf [t tvol(QK) 7777

c

JZ(A)\G(A)

The last integral is finite if m < 1, so the result follows. O

79



12.3 Cusp forms

Definition. Let N = { <(1) :) } For ¢ € A(G), define

o (g) == fQ\AqS <<(1) f) g> dz

This is called the constant term of ¢ (along N). Here dx is the quotient measure of the Haar measure on
A normalized so that vol([0,1] x [],_, Z,) = 1 by the counting measure on Q. An automorphic form ¢ is

called cuspidal, or a cusp form if ¢ = 0.

Proposition 12.6. If ¢ is a cusp form, then ¢ is rapidly decreasing, i.e., for all m € Z there exists ¢,
such that

6(9)] < em llgl™

12.4 Poisson summation formula

For each p < 0, let v, : Q, — C* be the standard additive character. Define

bo=]]:A—>C"

p<0O

By definition, one can show ¥s(x + «) = ¥a(z) for all & € Q, so it induces a map on the quotient 1, :
Q\A — C*.
For each p < o we fix the element Iz, € §(Q,). Form the restricted tensor product S(A) = ®/S(Qp).

pP<0O
For each ® € S(A), define its Fourier transform

ch Y (zy)d

The Fourier transform induces a bijection on S(A).

Theorem 12.7. For ® € S(A), we have

Z O(a) = 2 d(w)

aeQ acQ

Proof. Define f: A — C by

fz)= ) elata)
aeQ
This series converges absolutely and compactly, so it defines a continuous function on A. To see this, let us
assume ®(z) = P (20)Py(zy) with &, € S(R), &y € S(Agn). Since Oy has compact support, by prime
factorization there exists a discrete subgroup A < R such that if o € Q, then ®¢(ay) = 0 unless a, € A.

Now it suffices to show Y (g + o) converges absolutely and compactly in zo. This is easy.
ael

Since it is periodic, it induces a continuous map f : Q\A — C, by abuse of notation. Since @ = {ty :

x— Ya(az) | a € Q} and A\Q is compact abelian, we have the Fourier expansion

f(x) = 2 e ()

aeQ
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with a, = f f(@)o(—x)dx. We compute the coefficients a.
Q\A

Ao = (2)ho(—z)dx = (2)a(—ax)dx
Q\A Q\A
= ®(x —ax)dr
j@\Aﬂ% (¢ + B)a(~aw)

= JQ\A B;@tl)(x + B)a(—a(z + B))dx

_ L O (2)ya(—az)ds = 3(—a)
Thus

f@) =] o(—a)a(x)

aeQ

The right hand side defines a continuous function as well, so this equality holds everywhere in z € A. Taking

x = 0, we obtain

aeQ aeQ

For ® € S(A™), we can similarly define ® : A" — C by

B = | @)eate )y

where -y = zyy1 + -+ + Tpyn if © = (2,), ¥y = (yn). In this way we still have the Poisson summation

formula

Y d(a)= Y ¥(a)

aeQn aeQm

Let ® € S(A™) and a € A*. Define &, € S(A™) by ®,(z) := ®(ax). We compute its Fourier transform.
Bala) = | Balyonte iy = | Dlapvala-v)dy
v a) = [ Syl ay)al"dy = o] "Bl )

Thus we have the following (slight) generalization of Poisson summation formula.

Theorem 12.8. For ® € S(A™) and a € A*, we have

Z O(aa) = ﬁ Z d(a ')

ae@n

12.5 Eisenstein series

Let x1, x2 : Q*\A* — C* be two Hecke characters of Q; then they together define a character x = (x1, x2) :
B(A) — C For ® € §(A?), define the Godement section fg , s : G(A) — C by the formula

Fons(g) = xa| - |"*¥ (det g) L (0, 09)x1xa | - P (1)d e
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where d*t = n d*t,. If & = @l ®, (with @, = Iz, «z, for almost all p < o), we have

p<oO pP<0O

ffb,x,s(g) = 1_[ fép,xp,s(gp)

p<o0

For ® € S(A?), s € C, g € G(A), define the Eisenstein series

EX(CI)587g) = Z f@,x,s(rg)
reB(Q\G(Q)
Ignoring the convergence issue, we see that g — E, (®, s, g) is automorphic, i.e., E\(®,s,rg) = E\ (D, s, g)
for all r € G(Q).
Theorem 12.9. Suppose |x1x5 ‘| = | - | for some p € R.

1—
(i) The series E, (®, s, g) converges absolutely if Re(s) > Tp

(ii) E\(®,s,g) has a meromorphic continuation to C and satisfies the functional equation

~

E\(®,s,9) = Eysw(®,—s5,9)

where x* = (x2, x1)-

(i) Ey(®,s,g) is entire if X1X3 " is not of the form |- |* for some sy € C, and has only a simple pole at

—p+1 .
5= pT_ 777 if Xle_l =|-|PT for some t € R.

In fact, one can show E,(®,s,g) € A(G, x1x2) is an automorphic form.

Proof. We have the Bruhat decomposition

SO
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Since E, (P, s, g) = Ey(p(9)®, s, e), we may assume g = e. Then formally

-1 1 «
Ey(®,s,e) = fo,xs(e) + fox,s (( )( ))
? O% ? 0/\o 1

= |, 200G PO Y | et PO

aeQ
- 0.8 | P e+ Y | D15, tha)xixg| - [P (t8)d*t
Qx\Ax 6(—:@* aeQ YQX\AX ﬂe@x
— [ st Proe
QX g2ee@?
f B(tE)xaxy |- P
|t|>10¢§6<@2

f B(te)xing| - [ ()d*t f SO0 [P (1)
|t]<1 £eQ? |t]<1

128 J Z Dt x1xa | - P d <t

[t1>1 02¢eq2

L1y —1) | 2s+1 (4 X 1 1 | 1=2s(p) g%
(t ) fll S o) | ol P+ fll SE) | Xl [

0££€Q? ) 0#££eQ? (B)

Bt xxg - |28“<t>d*t—f SO0y [ (1)
t|<1gEQ2 [t|<1

—<I>(0)J|| xixa |- [P () +<T>(0)f xixa |- 2T
t|<1

(©) |t]<1 (D)

For (A) and (B), the parenthetical terms are rapidly decreasing in ¢, so the integrals converge absolutely for

all s € C (note that f = J J and recall that Q*\(A*)? is compact). For (C)
t|>1 Q> \ (A%

1
20) | o POt =o0) [ [ g P
[t <1 0 JQx\(Ax)°

Since Q*\(A*)? is compact, the integral vanishes if Xlx51|(Ax)o # 1, and if Xlx51|(Ax)o =1, it is

fI’(O)Vol(@X\(AX)O’dXt)L xixg | [P (@)d e

Similarly, (D) vanishes if X1X2_1|(Ax)0 # 1, and if X1X2_1|(Ax)0 =1, it is

1
3(0) vol(Qx\(AX)O,dXt)L x5 - P (@)d* e

Now recall that a continuous character x : R* — C* has the form y = |-|"sign® for some r € C and € € {0, 1};
this x1x5 "|r_o = | - [PT for some tg € R. Thus if 2Re(s) — 1 + p > 0 and X1X2_1|(A><)0 = 1, we have
®(0) (0)
C)—(D) = vol(Q*\(AX)",d*t -
(C)=(D) = vol(@"\(AT) )<25+1—|—p+it0 25 — 1+ p + ito

Then E, (P, s, e) satisfies all desired properties. O
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12.5.1 Fourier Expansion

For ¢ € A(G), define Wy : G(A) — C by

1 =z
Wy (g) = JQ\AQS ((0 1) g) Y(—z)dx

where ¢ = ¢, : Q\A — C* is the standard additive character. Wy, is called the Whittaker function of ¢,

and it satisfies
1
Wy ((0 f) g> = (@) Wy(9)

for all g € G(A), z € A. Then for all ¢ € A(G), we have the Fourier expansion of ¢:
a 0
olg)=on(9)+ 2 Wolly )9
ae@Qx

1 =z

To see this, since the function = — ¢ ((O )

) g) is continuous on the compact abelian group Q\A, it has

the expansion Y, ¢,t(ax) with
aeQ

1 =z
ba=] 0 ((0 1) g) U(~az)ds

For a = 0, by definition we have ¢, = ¢n. For a # 0, compute

1 =« soalr 1 o lz _
e Ky e
a"l 0 T a 0 a 0

L (0 D06 ) ()

Taking x = 0 proves the desired identity.
For convenience, write E(g) = E,(®,s,g) and f = fs,.s, where s € C, ® € S(A?), x = (x1,x2). We

S =

discuss its Fourier expansion. Firstly, the constant term

1 =z
En(g) == JQ\AE <(0 1> 9> dx
1 =z
— f dx
J@\A ryeB(QZ)\G(Q) <7 <0 1) g)
1 =z 4 (1 z4+a
:J@\Af<<0 1>g>+0;@f<w <0 ) >9>dm

= f(g) + M f(g)

The third equality is the Bruhat decomposition

6@ =B | | B@ (2 _01> (é T)

a€eQ
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0 1
and w = < . O). For the last equality, note that vol(Q\A, dx) = 1, and define

Miw) = | 1 (w—l (é f) g) di

Ifd = X ®,eS(A?), then

pP<O

Mf(g) = H J;@ f@p,xp,s <w1 <(1) 1'1p> gp) dxp = H Mf(b,,,xp,s(gp)

P<0 P<O

Here M = {y is the intertwining operator defined before. Secondly, the Whittaker function

1 =z
Walg) = | ((0 1) g> Y(—a)da
B 1 =z Ve wl 1 24+« Ve
—j@\Af«o )g>w( )d +fQ\A§@f< (O 1>g>w< )

—_

(1 = (1 =z
S R P T e

The last equality holds when & = ®/ ®,,. If we define the local Whittaker function

PO

(1 =z
Wfp(g) = j@p Ip (w (O 1 > gp> Vp(—Tp)dzy

with fp = fop v,.s € I(X1pl - 1%, X2,p] - |7%) (c.f. Remark 8.3), we have

We(g) = [ | Wy, (9)

PO

whenever ¢ = ®/ ®, and x = H Xp-

PSS p<0

Example.

(1) Let p < o0, ® =1Iz,xz, and xp = (X1,p; X2,p) With X;, unramified. Write f = fs, . s for brevity. For
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aeQy,

() A O e [ e B
s+3 0 -1 a x 2s+1 X —2)dx
:f@p Xipl 772 (a )JQX o, ((0 t) (1 o) (0 1)) X1pXapl - 2T d t by (—)d

vl @ [ | st P O

= x1ul - Pt (a) f I, (ta)x1 X3 | - [241(8) j I, (t)y(—z)dzd*t

D P

(2 t72) = X1l - [ (@) fo I, (a)x1 pXa b - P (), (— )t

P

<t~t—1>=xl,p|~|s+%<a>fxﬂmt-la)ﬂzp(—w(t a)xapxabl - P
Q

v
1 _
—xual @ | XipXahl - P L dxe
0<ord, t<ord, a

ord, a

1 — _92g
= xapl [PT2@) D) Xipxesl 17 0™)

m=0

10

0 1)) = 1 under this situation.

In particular, W¢ ((

(2) Let p =00, ®uo(z,y) = e "@ ¥, x; , = o, = 1. Then for a e R* = Q%,

0 1 B
w ((* °)) = |a|5+ff ¢~ g 25 = e (g
O 1 RX

— |a|s+% J e—ﬂ(t2a2+t72)|t‘2sdx
RX

(¢ lalH0) = falt | e D ae ol )
RX*

0
where KCy(y) := J e VT o = QJ e v+ )50 ¢ is the K-Bessel function.
x 0

12.5.2 Application to Prime Number Theorem

Theorem 12.10. (1 +it) # 0 for all t e R*, where

_ a2 s —s\—1
= [Tz == (3) [Ta-»)
P<0 p<o0
Proof. Define
ONGEES

p

e~ (@ +v%) ,if p=o0
Iz,xz, ,if p<oo

and put ¢° = ®/ ®,; then P° = $°. Put x = (1,1), and form the Epstein Eisenstein series

P00

E(Sag) = EX(q)Ov 3,9)
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We compute its constant term; we have

EN(‘Sag) = f@o,x,s(g) + qu>°,x,s(g)

and by Proposition 10.1,

L(2s,1,) 2
M foe s(9) = [ [ 725, 10, %) oo s = | | 70 7325 38 ms = C(th(sgs)f@o,xswﬁs
p p

Compute
fursale) = [ @ 0.0]- P (0"
AX
_ J 77rt | |25+1 dxt 1_[ J ]IZ ‘23+1(tp)dxtp
p<0
=((2s+1)
Thus
En(s,e) = f‘bO,X75(e) + Mf<1>°,x,s(e) =((2s+1) +¢(2s)

To be filled. O

12.6 L-functions of cuspidal automorphic representations

Recall that (m,V) is an irreducible representation of GLo(A) if 7 = ®/ 7, with each m, an irreducible
PO

representation of GL2(Qy), and 7 is called automorphic if Homg gy (7, A(G)) # 0
Definition. An irreducible representation (w, V') is called cuspidal if Homg ) (7, Ao(G)) # 0.

Suppose 7 is an automorphic cuspidal irreducible representation of GLa(A). Since m = ®/ mp, for each
p<0
p < o0 we can form the local L-functions L(s, m,) of m,. Define the global L-function

m) =[] L(s.mp) 2722

p<0

Proposition 12.11. Suppose 7 is an automorphic cuspidal irreducible representation of GL2(A) with central

character w of weight p (i.e., |[w| =]-|?). Then L(s,7) is absolutely convergent for Re(s) > ?);J

Let p < 0. Then m, is spherical if and only if 7, Gla(Zn) 0, if and only if dlm([jﬂ' LalZn) By

Homework 5 , we see 7, = m(x1, x2) with x; : Q; — C* unramified. Since H,, := H(GL2(Q,), GL2(Z,)) is
commutative, we can find A, :H, — C such that m,(f)v = A, (f)v for all nonzero spherical vector v and
feHy (ctf. Lemma 12.1.)

Lemma 12.12. Suppose there exists C' > 0 such that

A, (F)] < C L@ )iy

for all f € H,. Then |x1x2(p)| =1 and

=

_1 1 _1
p 2 =1pl? <)l < Ipl77 =

fori=1,2.
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Proof. Define

Then T,,, R,, € H,p, and if we put a; = x;(p), ¢ = 1,2, we have

Ary(Tn) = [p| ™2 (aff + o)
Ar, (R

) = (1a2)”

To check this, we take (7, V) = (p, I(x1, Xx2)), I(x1, x2)% = Cfo, where fo € I(x1, x2) is the unique element
1
such that fo(bk) = xdz(b) for all be B(Qy), k € K = GLy(Z,). Since (T ) fo(e) = Ar, (Tn) fo(e), we have

Am, (T) = j T, (9) folg)dg
G(Qp)

"oz 1
SNk <p0 1) + fo < )
x€Lp /P Ly p

= alp"|2p" + aylp" |72

= [p"["%(al + ab)

Here the measure dg is normalized so that vol(K,dg) = 1, and we use the decomposition (c.f. Homework 5)

T s 1
k|7 K= || Pt e 0) g
1 0 1 0 p
€Ly [P Ly

The identity for R,, can be proved similarly. Now by assumption, we have
|)‘7rp(Tn)| <C Tn( )dg = C(pn + 1)
G(Qp)

|Ar, (Rn)| < C R, (d)gd =C
G(Qp)

Therefore,

lal +a%| < C(p? +p %) for ne Ny

logas|® < C forneZ

< ay] < p2. For this, form the

[

The second inequalities imply |ajas| = 1. We claim the first imply p~
formal power series

F2) = Y +ag)en = — !

- 17a12+1—a22

n=0

The first inequalities imply the power series is absolutely convergent for |z| < p‘é, and the last expression

implies || < p2. Since |ayas| = 1, this proves the claim. O
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Proof. (of Proposition 12.11) Say 7 =~ ®/ mp. Let S be a finite set of primes such that m, is NOT spherical.

p<m
Replacing 7 by 7 ® |det |~ %, we may assume w is unitary.
Since 7 is automorphic, 7 has a realization (p, V') € A¢(G). Choose 0 # ¢ € V that is fixed by GL2(Z))
for all p ¢ S. Then for all feH,, p¢ S, 7(f)¢ = Ax,(f)¢. Choose go € G(A) with ¢(go) # 0. Then

Ar, ()(90) = J ¢(909p) f (9p)dgp
G(Qp)
Since ¢ is a cusp form, ¢ is bounded on G(A) by Proposition 12.6 (the case m = 0) so that

Ar, (f) < C f(gp)dgyp
G(Qy)

for some C. By Lemma 12.12, for p ¢ S if we write m, = m(x1,, X2,p), then pz < Ixip(p)] < p2 (i =1,2).
For p¢ S,

L(s,mp) =

so that

Note that n —— converges absolutely if |x; ,[p” R() < p=1. Forp¢ S, p~2 < |xip(p)| <p2? (i =
p¢S 1- XZ,P(p)p s

1,2) implies |xiplp~ Re(s) < pa—Re(s) Thuys if Re(s) > g, the product L(s, ) converges absolutely. O

12.7 Zeta function for cusp forms

Let (m,Vy:) be an irreducible automorphic cuspidal representation of G(A) with central character w; we
assume V; € Ay(G). For ¢ € V,, define the zeta integral

a 0 s—1 ox
ool ) e

1 ~
0) € G(Q); then ¢ € Vv, 777

and ¢(g) := ¢(gw)w " (det g), where w = ( 0

Proposition 12.13.

1. Z(¢,s) converges absolutely for Re(s) » 0, has analytic continuation to an entire function and is

bounded in every vertical strip.

2. Z(¢, s) satisfies the functional equation
Z(¢7s) = Z($a1 _S)

Proof.
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On the other hand,

a 0 (10 B 10 - -l 0 o (fat 0
() R O B R ( A B R (S B R (P
a O s gxg — a 0 TS
Lol e L e
In sum, we obtain
Z<¢,s>=jl>1¢<(g f)>|a|s—édxa+jl>1$<(g f))w—wa

Since ¢ and (E are cuspidal, they are rapidly decreasing Proposition 12.6. Thus

0 1
[ 3]

for some n » 0 and C = C),, > 0. Similar for the second integral. In conclusion, both integral converges

SO

RS

@© 1
<CJ- T2t
1

absolutely and define entire functions for s € C, and thus Z(¢, s) is entire and verifies the functional equation.
O

12.8 Whittaker functions

Let (m, V) be as in the last subsection. For all p < o0, fix a nonzero Whittaker functional £, : V;, — C. Let

S be the finite set of primes such that m, is not spherical. For p ¢ S, we require Ep(gg) =1, where § is a

fixed basis element of VW(iLQ(Zp).

Lemma 12.14. If ¢ : V; — C is a global Whittaker function, then £ = C [] ¢, for some C € C.

p<o0

Corollary 12.14.1. Let m =~ ®/ mp be cuspidal irreducible. For all p < o0 we have the isomorphism

p<o0
V'“'p B W(Trp,lfip)
gp —_ ng

where W (mp,1,) is the Whittaker model of m,. Then there exist an isomorphism

Q) Vi, —— Vi S A(G)

PO

®p£p — ¢
such that Wy (g) = [ | W, (gp) for all g = (g,), € G(A).

p<o0

Now for ¢ € Ay(G), since ¢ = 0, we have

a 0O oL oax aa 0 a1 ox
Z(¢,s) = JQX\AX ) ((O 1)) lal*~"2d*a = JQX\M QGZQ;X Wy << 0 1)) laa*~2d*a
0 1
= J ) We ((g 1)) la]*"2d*a

=I1J. ((o 2)) | 2d*a, = T] 27,5

PO p<o0
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For each p < 00 we can find We, € W (my,1,) such that Z(We,,s) = L(s,m,). Thus there exists ¢ € V such
that Z(¢,s) = L(s,n), and consequently L(s,7) admits an analytic continuation to s € C with functional

equation
L(1—s,7v)=¢€(s,m)L(s,7)

where €(s, ) := H €(s,mp, 1p) is the product of all local e-factors.

PO

12.9 The Converse Theorem

Let F be a number field and let 7 =~ (X), 7, be an irreducible admissible representation of GLy(Ar) with
each 7, infinite dimensional. Suppose the central character of 7 is a Hecke character w : F*\A5 — C* of
weight p € R.

Theorem 12.15. Suppose there exists r € R such that for almost all places v with 7v = 7(x1,1, X2,,) We

have
1T | ™" < X (m)| < |m|” (0= 1,2)

where 7, is a uniformizer in F,. Suppose that for all unitary Hecke characters x : F*\A% — S! the infinite

product
L(s,T®x) = HL(S, T, ®Xv)
converges absolutely for Res » 0, EBV and satisfies the functional equation
L(s,T®x) = e(s,1@X)L(1l —s5,7¥ @ x 1)

Then 7 is cuspidal.

For each Whittaker function W e Wy, (7), define the series

e1(g) =pwlg) = >, W ((g ?) g)
aeFx

We will show later that ¢; converges absolutely and compactly on GLa(Ar), and the map

(59

is slowly decreasing for each fixed g € G(AF). Taking these for granted, we then see for each g € G(Ap), the

a 0O
FX\A;; 0 1

zeta integral

Z(¢1,5,9) ::f

converges absolutely for Res » 0. We proceed to show ¢; is an automorphic form. Since the standard

character v is trivial on F', we have
1 =z 1 azx a 0 a 0
oo o) 36 )6 D)= e (G )e) oo
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a 0
By construction, ¢ is invariant under the left translation by the <0 1) , € F*. For a € A}, since

a 0 a 0)f{a O
= W =
a6 2)e)= 30 ()6 2)e) ome
if a € F*, then ¢ ((g O> g) = p1(g). So far we have shown that ¢1(bg) = ¢1(g) for all b € B(F). It
a

a O a O
fi(a) 1=<P1<<0 1>9>7 fa(a) 1=<P2<<0 1)9)

Let x be a unitary Hecke character of F' and consider the zeta integrals

1
remains to show ¢1(wg) = p1(g), where w = ( O). For this we put p2(g) = ¢1(wg) and define

Zs)= [ flax(@l e

FX\AX

We have

and thus

Unfolding, we have

Z(f17X7S):fXW<<g ?) g) X(a)|a|57%dxa

77?7 We can find ¢ » 0 such that Z(f1,x,s) (resp. Z(f2,w 1x71,1 — s)) converges absolutely whenever
Res > ¢ (resp. Res < —c¢), and are bounded in vertical strips in Res > ¢ (resp. Res < ¢).

Lemma 12.16. Let v be a finite place of F' such that 7, is spherical principal and the additive character
¥, is unramified. If W is the unique spherical Whittaker function normalized so that W2 (e) = 1, then for

each unitary character x, : F.* — S, we have
Z(Wy, xvy8) = L(s, 7 @ Xv)
Let us assume W = [[W,,, and let S be a finite set of finite places such that m,, x,, %, are unramified,

9o € K, and W, =W} for v ¢ S. For Res > ¢,

Z(W,, Xv, 8)
L(Svﬂ'l/ ®XV)

Z(Wy, Xv: )

:L(s,w@X)Hm

Zl(s) = HZ(WIMXV»S) = L(SJT@X)H
v veS

and for Res < —e¢,
Z(W,,wIx; 11— s)
L(l - S?Trz\// ®X;1)

ZW,,wx; 1, 1—5)
L(l - 577T1\// ®X;1)

Zs(s) = L(1 — 5,7 @ x O]

v

= L(]' —377'rv ®X71)1_‘[

vesS
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By assumptions on L-functions, it follows that Z; has an analytic continuation to some entire function in s.
Recall for v ¢ S, the epsilon factor €(s, 7, ® x,,%,) = 1. By the functional equation

ZWy, Xvs 5, 9v)
L($7 Ty ® XV)

Z(WwX;lw_l 1- vagu)

v

L(l - 8777;/ ®X;1)

= 6(577r1/ ®XV7/(/)V)

we have

_ Z(WuaXUaS)
Z2(5):L(1*3aWV®X 1)6(5771-@)(71/))
,Dg L(577TV®XV)

ZWy, X, 5)
:L(S,’]T®X) :Zl(s)
,1;[9 L(S77rl/ ®XV)

Therefore Z; and Zs extend to the same entire function Z, and Z is bounded in vertical strips for Res > ¢
or Res < —c. We have

Z(Wy, Xv,5)
Z(s) = Lis,r@x) [ | 2w Xe®)
IE L(S»ﬂ'u @XV)

which is valid for every s € C. L(s, 7 ® x) is assumed to be EBV, and for each finite place v in S, the

%5 50 it is also EBV. As for the infinite place v in S, the ratio is a product

ratio is a polynomial in (#x(v))
of polynomials and Gamma functions, so by Stirling’s formula and the Phragmen-Lindel6f principle, Z is
bounded in vertical strips for —c < Res < c.

Note that f; and f> descend to a map on Ay, /F*. Toshow f; = fo, it suffices to show that fi(tx) = fa(tx)
forall t € (AX)°/F* and x € A}. Since (A})°/F* is compact, it suffices to show ¢ — fi(tx) and t — fo(tz)
have same Fourier expansions. To show this, for each character x : (A;)O JF* — C*, put

5@0) = e =x@) [ flonndt=12

(AR)0/FX

g1 and go are functions on A%/(AX)? =~ R.p =~ R, and we need to show g; = ga. Since Zi(f1,x,s) =

Z5(f2,x, 8), we have

f hi(x)e**dx = J hi(x)e*dx (=Z(s))
R R

——La ~L
where h;(z) := g;(e®). Pick g € C*(R) and consider the convolution g * h;. Then g*h; = g-*h; a, and
by the inversion formula we have

1 b+100 ~La

g hi(z) hi (s)g""(s)e™*"ds (®)

N % b—io0
where b > cif i =1 and b < —c if i = 2. Look at g(s). If we write s = o + it, then

. . —— Fourier
g(z)e” T+ dy = f g(z)e* e dx = g(x)ere (t)
R

g (o +it) = f

R

It follows from Riemann-Lebesgue lemma that as o lies in a fixed compact interval, the function g% (o + it)
decays faster than any polynomial as ¢ — +oo0. Along with the fact that i/z\iLa is EBV, the Cauchy’s integral
formula implies that the integral in (#) is independent of b. As a consequence, we have g #hy =g = hy for
all g € C*(R), whence hy = hy. So g1 = g2, and since fl(x,x) = fg(m,x) for all x € (Ax)?/F>, we obtain
f1 = fo. Therefore,

p1(wg) = p2(g9) = f2(1) = f1(1) = ¢1(9)
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In sum, we have proved that

e1(9) = QEZF]X w ((g ?) g)

is an automorphic form. We claim ¢, is in fact cuspidal, so we obtain a map
Wy(m) — Ao(G)
W r—— ow

that intertwines the G-action by right translation. Indeed, the constant term of ¢y is

1 z a 0
jF\AF Yw <<0 1) g) dr = QEZFX W ((0 1) g) JF\AF Y(ax)dr =0

(recall that F\AF is compact) so ¢y is cuspidal. Finally, we have

1 1 =z 5 0
VOl(F\A ) L\AF w <<o 1) g) Y(=fz)de =W ((0 1) g)

if 6e F*,s0 W =0 if oy =0.
a 0
pi(g) = D, W(( >g>
0 1
aeF'x

It remains to show
converges absolutely and compactly, and the map

= ()

is slowly decreasing for g € Q, where 2 is any compact set in GLy(Ap).
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